1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * hosting IBM Z kernel virtual machines (s390x)
4 *
5 * Copyright IBM Corp. 2008, 2020
6 *
7 * Author(s): Carsten Otte <cotte@de.ibm.com>
8 * Christian Borntraeger <borntraeger@de.ibm.com>
9 * Christian Ehrhardt <ehrhardt@de.ibm.com>
10 * Jason J. Herne <jjherne@us.ibm.com>
11 */
12
13 #define KMSG_COMPONENT "kvm-s390"
14 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
15
16 #include <linux/compiler.h>
17 #include <linux/err.h>
18 #include <linux/fs.h>
19 #include <linux/hrtimer.h>
20 #include <linux/init.h>
21 #include <linux/kvm.h>
22 #include <linux/kvm_host.h>
23 #include <linux/mman.h>
24 #include <linux/module.h>
25 #include <linux/moduleparam.h>
26 #include <linux/cpufeature.h>
27 #include <linux/random.h>
28 #include <linux/slab.h>
29 #include <linux/timer.h>
30 #include <linux/vmalloc.h>
31 #include <linux/bitmap.h>
32 #include <linux/sched/signal.h>
33 #include <linux/string.h>
34 #include <linux/pgtable.h>
35 #include <linux/mmu_notifier.h>
36
37 #include <asm/access-regs.h>
38 #include <asm/asm-offsets.h>
39 #include <asm/lowcore.h>
40 #include <asm/machine.h>
41 #include <asm/stp.h>
42 #include <asm/gmap.h>
43 #include <asm/nmi.h>
44 #include <asm/isc.h>
45 #include <asm/sclp.h>
46 #include <asm/cpacf.h>
47 #include <asm/timex.h>
48 #include <asm/asm.h>
49 #include <asm/fpu.h>
50 #include <asm/ap.h>
51 #include <asm/uv.h>
52 #include "kvm-s390.h"
53 #include "gaccess.h"
54 #include "pci.h"
55 #include "gmap.h"
56
57 #define CREATE_TRACE_POINTS
58 #include "trace.h"
59 #include "trace-s390.h"
60
61 #define MEM_OP_MAX_SIZE 65536 /* Maximum transfer size for KVM_S390_MEM_OP */
62 #define LOCAL_IRQS 32
63 #define VCPU_IRQS_MAX_BUF (sizeof(struct kvm_s390_irq) * \
64 (KVM_MAX_VCPUS + LOCAL_IRQS))
65
66 const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
67 KVM_GENERIC_VM_STATS(),
68 STATS_DESC_COUNTER(VM, inject_io),
69 STATS_DESC_COUNTER(VM, inject_float_mchk),
70 STATS_DESC_COUNTER(VM, inject_pfault_done),
71 STATS_DESC_COUNTER(VM, inject_service_signal),
72 STATS_DESC_COUNTER(VM, inject_virtio),
73 STATS_DESC_COUNTER(VM, aen_forward),
74 STATS_DESC_COUNTER(VM, gmap_shadow_reuse),
75 STATS_DESC_COUNTER(VM, gmap_shadow_create),
76 STATS_DESC_COUNTER(VM, gmap_shadow_r1_entry),
77 STATS_DESC_COUNTER(VM, gmap_shadow_r2_entry),
78 STATS_DESC_COUNTER(VM, gmap_shadow_r3_entry),
79 STATS_DESC_COUNTER(VM, gmap_shadow_sg_entry),
80 STATS_DESC_COUNTER(VM, gmap_shadow_pg_entry),
81 };
82
83 const struct kvm_stats_header kvm_vm_stats_header = {
84 .name_size = KVM_STATS_NAME_SIZE,
85 .num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
86 .id_offset = sizeof(struct kvm_stats_header),
87 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
88 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
89 sizeof(kvm_vm_stats_desc),
90 };
91
92 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
93 KVM_GENERIC_VCPU_STATS(),
94 STATS_DESC_COUNTER(VCPU, exit_userspace),
95 STATS_DESC_COUNTER(VCPU, exit_null),
96 STATS_DESC_COUNTER(VCPU, exit_external_request),
97 STATS_DESC_COUNTER(VCPU, exit_io_request),
98 STATS_DESC_COUNTER(VCPU, exit_external_interrupt),
99 STATS_DESC_COUNTER(VCPU, exit_stop_request),
100 STATS_DESC_COUNTER(VCPU, exit_validity),
101 STATS_DESC_COUNTER(VCPU, exit_instruction),
102 STATS_DESC_COUNTER(VCPU, exit_pei),
103 STATS_DESC_COUNTER(VCPU, halt_no_poll_steal),
104 STATS_DESC_COUNTER(VCPU, instruction_lctl),
105 STATS_DESC_COUNTER(VCPU, instruction_lctlg),
106 STATS_DESC_COUNTER(VCPU, instruction_stctl),
107 STATS_DESC_COUNTER(VCPU, instruction_stctg),
108 STATS_DESC_COUNTER(VCPU, exit_program_interruption),
109 STATS_DESC_COUNTER(VCPU, exit_instr_and_program),
110 STATS_DESC_COUNTER(VCPU, exit_operation_exception),
111 STATS_DESC_COUNTER(VCPU, deliver_ckc),
112 STATS_DESC_COUNTER(VCPU, deliver_cputm),
113 STATS_DESC_COUNTER(VCPU, deliver_external_call),
114 STATS_DESC_COUNTER(VCPU, deliver_emergency_signal),
115 STATS_DESC_COUNTER(VCPU, deliver_service_signal),
116 STATS_DESC_COUNTER(VCPU, deliver_virtio),
117 STATS_DESC_COUNTER(VCPU, deliver_stop_signal),
118 STATS_DESC_COUNTER(VCPU, deliver_prefix_signal),
119 STATS_DESC_COUNTER(VCPU, deliver_restart_signal),
120 STATS_DESC_COUNTER(VCPU, deliver_program),
121 STATS_DESC_COUNTER(VCPU, deliver_io),
122 STATS_DESC_COUNTER(VCPU, deliver_machine_check),
123 STATS_DESC_COUNTER(VCPU, exit_wait_state),
124 STATS_DESC_COUNTER(VCPU, inject_ckc),
125 STATS_DESC_COUNTER(VCPU, inject_cputm),
126 STATS_DESC_COUNTER(VCPU, inject_external_call),
127 STATS_DESC_COUNTER(VCPU, inject_emergency_signal),
128 STATS_DESC_COUNTER(VCPU, inject_mchk),
129 STATS_DESC_COUNTER(VCPU, inject_pfault_init),
130 STATS_DESC_COUNTER(VCPU, inject_program),
131 STATS_DESC_COUNTER(VCPU, inject_restart),
132 STATS_DESC_COUNTER(VCPU, inject_set_prefix),
133 STATS_DESC_COUNTER(VCPU, inject_stop_signal),
134 STATS_DESC_COUNTER(VCPU, instruction_epsw),
135 STATS_DESC_COUNTER(VCPU, instruction_gs),
136 STATS_DESC_COUNTER(VCPU, instruction_io_other),
137 STATS_DESC_COUNTER(VCPU, instruction_lpsw),
138 STATS_DESC_COUNTER(VCPU, instruction_lpswe),
139 STATS_DESC_COUNTER(VCPU, instruction_lpswey),
140 STATS_DESC_COUNTER(VCPU, instruction_pfmf),
141 STATS_DESC_COUNTER(VCPU, instruction_ptff),
142 STATS_DESC_COUNTER(VCPU, instruction_sck),
143 STATS_DESC_COUNTER(VCPU, instruction_sckpf),
144 STATS_DESC_COUNTER(VCPU, instruction_stidp),
145 STATS_DESC_COUNTER(VCPU, instruction_spx),
146 STATS_DESC_COUNTER(VCPU, instruction_stpx),
147 STATS_DESC_COUNTER(VCPU, instruction_stap),
148 STATS_DESC_COUNTER(VCPU, instruction_iske),
149 STATS_DESC_COUNTER(VCPU, instruction_ri),
150 STATS_DESC_COUNTER(VCPU, instruction_rrbe),
151 STATS_DESC_COUNTER(VCPU, instruction_sske),
152 STATS_DESC_COUNTER(VCPU, instruction_ipte_interlock),
153 STATS_DESC_COUNTER(VCPU, instruction_stsi),
154 STATS_DESC_COUNTER(VCPU, instruction_stfl),
155 STATS_DESC_COUNTER(VCPU, instruction_tb),
156 STATS_DESC_COUNTER(VCPU, instruction_tpi),
157 STATS_DESC_COUNTER(VCPU, instruction_tprot),
158 STATS_DESC_COUNTER(VCPU, instruction_tsch),
159 STATS_DESC_COUNTER(VCPU, instruction_sie),
160 STATS_DESC_COUNTER(VCPU, instruction_essa),
161 STATS_DESC_COUNTER(VCPU, instruction_sthyi),
162 STATS_DESC_COUNTER(VCPU, instruction_sigp_sense),
163 STATS_DESC_COUNTER(VCPU, instruction_sigp_sense_running),
164 STATS_DESC_COUNTER(VCPU, instruction_sigp_external_call),
165 STATS_DESC_COUNTER(VCPU, instruction_sigp_emergency),
166 STATS_DESC_COUNTER(VCPU, instruction_sigp_cond_emergency),
167 STATS_DESC_COUNTER(VCPU, instruction_sigp_start),
168 STATS_DESC_COUNTER(VCPU, instruction_sigp_stop),
169 STATS_DESC_COUNTER(VCPU, instruction_sigp_stop_store_status),
170 STATS_DESC_COUNTER(VCPU, instruction_sigp_store_status),
171 STATS_DESC_COUNTER(VCPU, instruction_sigp_store_adtl_status),
172 STATS_DESC_COUNTER(VCPU, instruction_sigp_arch),
173 STATS_DESC_COUNTER(VCPU, instruction_sigp_prefix),
174 STATS_DESC_COUNTER(VCPU, instruction_sigp_restart),
175 STATS_DESC_COUNTER(VCPU, instruction_sigp_init_cpu_reset),
176 STATS_DESC_COUNTER(VCPU, instruction_sigp_cpu_reset),
177 STATS_DESC_COUNTER(VCPU, instruction_sigp_unknown),
178 STATS_DESC_COUNTER(VCPU, instruction_diagnose_10),
179 STATS_DESC_COUNTER(VCPU, instruction_diagnose_44),
180 STATS_DESC_COUNTER(VCPU, instruction_diagnose_9c),
181 STATS_DESC_COUNTER(VCPU, diag_9c_ignored),
182 STATS_DESC_COUNTER(VCPU, diag_9c_forward),
183 STATS_DESC_COUNTER(VCPU, instruction_diagnose_258),
184 STATS_DESC_COUNTER(VCPU, instruction_diagnose_308),
185 STATS_DESC_COUNTER(VCPU, instruction_diagnose_500),
186 STATS_DESC_COUNTER(VCPU, instruction_diagnose_other),
187 STATS_DESC_COUNTER(VCPU, pfault_sync)
188 };
189
190 const struct kvm_stats_header kvm_vcpu_stats_header = {
191 .name_size = KVM_STATS_NAME_SIZE,
192 .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
193 .id_offset = sizeof(struct kvm_stats_header),
194 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
195 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
196 sizeof(kvm_vcpu_stats_desc),
197 };
198
199 /* allow nested virtualization in KVM (if enabled by user space) */
200 static int nested;
201 module_param(nested, int, S_IRUGO);
202 MODULE_PARM_DESC(nested, "Nested virtualization support");
203
204 /* allow 1m huge page guest backing, if !nested */
205 static int hpage;
206 module_param(hpage, int, 0444);
207 MODULE_PARM_DESC(hpage, "1m huge page backing support");
208
209 /* maximum percentage of steal time for polling. >100 is treated like 100 */
210 static u8 halt_poll_max_steal = 10;
211 module_param(halt_poll_max_steal, byte, 0644);
212 MODULE_PARM_DESC(halt_poll_max_steal, "Maximum percentage of steal time to allow polling");
213
214 /* if set to true, the GISA will be initialized and used if available */
215 static bool use_gisa = true;
216 module_param(use_gisa, bool, 0644);
217 MODULE_PARM_DESC(use_gisa, "Use the GISA if the host supports it.");
218
219 /* maximum diag9c forwarding per second */
220 unsigned int diag9c_forwarding_hz;
221 module_param(diag9c_forwarding_hz, uint, 0644);
222 MODULE_PARM_DESC(diag9c_forwarding_hz, "Maximum diag9c forwarding per second, 0 to turn off");
223
224 /*
225 * allow asynchronous deinit for protected guests; enable by default since
226 * the feature is opt-in anyway
227 */
228 static int async_destroy = 1;
229 module_param(async_destroy, int, 0444);
230 MODULE_PARM_DESC(async_destroy, "Asynchronous destroy for protected guests");
231
232 /*
233 * For now we handle at most 16 double words as this is what the s390 base
234 * kernel handles and stores in the prefix page. If we ever need to go beyond
235 * this, this requires changes to code, but the external uapi can stay.
236 */
237 #define SIZE_INTERNAL 16
238
239 /*
240 * Base feature mask that defines default mask for facilities. Consists of the
241 * defines in FACILITIES_KVM and the non-hypervisor managed bits.
242 */
243 static unsigned long kvm_s390_fac_base[SIZE_INTERNAL] = { FACILITIES_KVM };
244 /*
245 * Extended feature mask. Consists of the defines in FACILITIES_KVM_CPUMODEL
246 * and defines the facilities that can be enabled via a cpu model.
247 */
248 static unsigned long kvm_s390_fac_ext[SIZE_INTERNAL] = { FACILITIES_KVM_CPUMODEL };
249
kvm_s390_fac_size(void)250 static unsigned long kvm_s390_fac_size(void)
251 {
252 BUILD_BUG_ON(SIZE_INTERNAL > S390_ARCH_FAC_MASK_SIZE_U64);
253 BUILD_BUG_ON(SIZE_INTERNAL > S390_ARCH_FAC_LIST_SIZE_U64);
254 BUILD_BUG_ON(SIZE_INTERNAL * sizeof(unsigned long) >
255 sizeof(stfle_fac_list));
256
257 return SIZE_INTERNAL;
258 }
259
260 /* available cpu features supported by kvm */
261 static DECLARE_BITMAP(kvm_s390_available_cpu_feat, KVM_S390_VM_CPU_FEAT_NR_BITS);
262 /* available subfunctions indicated via query / "test bit" */
263 static struct kvm_s390_vm_cpu_subfunc kvm_s390_available_subfunc;
264
265 static struct gmap_notifier gmap_notifier;
266 static struct gmap_notifier vsie_gmap_notifier;
267 debug_info_t *kvm_s390_dbf;
268 debug_info_t *kvm_s390_dbf_uv;
269
270 /* Section: not file related */
271 /* forward declarations */
272 static void kvm_gmap_notifier(struct gmap *gmap, unsigned long start,
273 unsigned long end);
274 static int sca_switch_to_extended(struct kvm *kvm);
275
kvm_clock_sync_scb(struct kvm_s390_sie_block * scb,u64 delta)276 static void kvm_clock_sync_scb(struct kvm_s390_sie_block *scb, u64 delta)
277 {
278 u8 delta_idx = 0;
279
280 /*
281 * The TOD jumps by delta, we have to compensate this by adding
282 * -delta to the epoch.
283 */
284 delta = -delta;
285
286 /* sign-extension - we're adding to signed values below */
287 if ((s64)delta < 0)
288 delta_idx = -1;
289
290 scb->epoch += delta;
291 if (scb->ecd & ECD_MEF) {
292 scb->epdx += delta_idx;
293 if (scb->epoch < delta)
294 scb->epdx += 1;
295 }
296 }
297
298 /*
299 * This callback is executed during stop_machine(). All CPUs are therefore
300 * temporarily stopped. In order not to change guest behavior, we have to
301 * disable preemption whenever we touch the epoch of kvm and the VCPUs,
302 * so a CPU won't be stopped while calculating with the epoch.
303 */
kvm_clock_sync(struct notifier_block * notifier,unsigned long val,void * v)304 static int kvm_clock_sync(struct notifier_block *notifier, unsigned long val,
305 void *v)
306 {
307 struct kvm *kvm;
308 struct kvm_vcpu *vcpu;
309 unsigned long i;
310 unsigned long long *delta = v;
311
312 list_for_each_entry(kvm, &vm_list, vm_list) {
313 kvm_for_each_vcpu(i, vcpu, kvm) {
314 kvm_clock_sync_scb(vcpu->arch.sie_block, *delta);
315 if (i == 0) {
316 kvm->arch.epoch = vcpu->arch.sie_block->epoch;
317 kvm->arch.epdx = vcpu->arch.sie_block->epdx;
318 }
319 if (vcpu->arch.cputm_enabled)
320 vcpu->arch.cputm_start += *delta;
321 if (vcpu->arch.vsie_block)
322 kvm_clock_sync_scb(vcpu->arch.vsie_block,
323 *delta);
324 }
325 }
326 return NOTIFY_OK;
327 }
328
329 static struct notifier_block kvm_clock_notifier = {
330 .notifier_call = kvm_clock_sync,
331 };
332
allow_cpu_feat(unsigned long nr)333 static void allow_cpu_feat(unsigned long nr)
334 {
335 set_bit_inv(nr, kvm_s390_available_cpu_feat);
336 }
337
plo_test_bit(unsigned char nr)338 static inline int plo_test_bit(unsigned char nr)
339 {
340 unsigned long function = (unsigned long)nr | 0x100;
341 int cc;
342
343 asm volatile(
344 " lgr 0,%[function]\n"
345 /* Parameter registers are ignored for "test bit" */
346 " plo 0,0,0,0(0)\n"
347 CC_IPM(cc)
348 : CC_OUT(cc, cc)
349 : [function] "d" (function)
350 : CC_CLOBBER_LIST("0"));
351 return CC_TRANSFORM(cc) == 0;
352 }
353
pfcr_query(u8 (* query)[16])354 static __always_inline void pfcr_query(u8 (*query)[16])
355 {
356 asm volatile(
357 " lghi 0,0\n"
358 " .insn rsy,0xeb0000000016,0,0,%[query]\n"
359 : [query] "=QS" (*query)
360 :
361 : "cc", "0");
362 }
363
__sortl_query(u8 (* query)[32])364 static __always_inline void __sortl_query(u8 (*query)[32])
365 {
366 asm volatile(
367 " lghi 0,0\n"
368 " la 1,%[query]\n"
369 /* Parameter registers are ignored */
370 " .insn rre,0xb9380000,2,4\n"
371 : [query] "=R" (*query)
372 :
373 : "cc", "0", "1");
374 }
375
__dfltcc_query(u8 (* query)[32])376 static __always_inline void __dfltcc_query(u8 (*query)[32])
377 {
378 asm volatile(
379 " lghi 0,0\n"
380 " la 1,%[query]\n"
381 /* Parameter registers are ignored */
382 " .insn rrf,0xb9390000,2,4,6,0\n"
383 : [query] "=R" (*query)
384 :
385 : "cc", "0", "1");
386 }
387
kvm_s390_cpu_feat_init(void)388 static void __init kvm_s390_cpu_feat_init(void)
389 {
390 int i;
391
392 for (i = 0; i < 256; ++i) {
393 if (plo_test_bit(i))
394 kvm_s390_available_subfunc.plo[i >> 3] |= 0x80 >> (i & 7);
395 }
396
397 if (test_facility(28)) /* TOD-clock steering */
398 ptff(kvm_s390_available_subfunc.ptff,
399 sizeof(kvm_s390_available_subfunc.ptff),
400 PTFF_QAF);
401
402 if (test_facility(17)) { /* MSA */
403 __cpacf_query(CPACF_KMAC, (cpacf_mask_t *)
404 kvm_s390_available_subfunc.kmac);
405 __cpacf_query(CPACF_KMC, (cpacf_mask_t *)
406 kvm_s390_available_subfunc.kmc);
407 __cpacf_query(CPACF_KM, (cpacf_mask_t *)
408 kvm_s390_available_subfunc.km);
409 __cpacf_query(CPACF_KIMD, (cpacf_mask_t *)
410 kvm_s390_available_subfunc.kimd);
411 __cpacf_query(CPACF_KLMD, (cpacf_mask_t *)
412 kvm_s390_available_subfunc.klmd);
413 }
414 if (test_facility(76)) /* MSA3 */
415 __cpacf_query(CPACF_PCKMO, (cpacf_mask_t *)
416 kvm_s390_available_subfunc.pckmo);
417 if (test_facility(77)) { /* MSA4 */
418 __cpacf_query(CPACF_KMCTR, (cpacf_mask_t *)
419 kvm_s390_available_subfunc.kmctr);
420 __cpacf_query(CPACF_KMF, (cpacf_mask_t *)
421 kvm_s390_available_subfunc.kmf);
422 __cpacf_query(CPACF_KMO, (cpacf_mask_t *)
423 kvm_s390_available_subfunc.kmo);
424 __cpacf_query(CPACF_PCC, (cpacf_mask_t *)
425 kvm_s390_available_subfunc.pcc);
426 }
427 if (test_facility(57)) /* MSA5 */
428 __cpacf_query(CPACF_PRNO, (cpacf_mask_t *)
429 kvm_s390_available_subfunc.ppno);
430
431 if (test_facility(146)) /* MSA8 */
432 __cpacf_query(CPACF_KMA, (cpacf_mask_t *)
433 kvm_s390_available_subfunc.kma);
434
435 if (test_facility(155)) /* MSA9 */
436 __cpacf_query(CPACF_KDSA, (cpacf_mask_t *)
437 kvm_s390_available_subfunc.kdsa);
438
439 if (test_facility(150)) /* SORTL */
440 __sortl_query(&kvm_s390_available_subfunc.sortl);
441
442 if (test_facility(151)) /* DFLTCC */
443 __dfltcc_query(&kvm_s390_available_subfunc.dfltcc);
444
445 if (test_facility(201)) /* PFCR */
446 pfcr_query(&kvm_s390_available_subfunc.pfcr);
447
448 if (machine_has_esop())
449 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_ESOP);
450 /*
451 * We need SIE support, ESOP (PROT_READ protection for gmap_shadow),
452 * 64bit SCAO (SCA passthrough) and IDTE (for gmap_shadow unshadowing).
453 */
454 if (!sclp.has_sief2 || !machine_has_esop() || !sclp.has_64bscao ||
455 !test_facility(3) || !nested)
456 return;
457 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_SIEF2);
458 if (sclp.has_64bscao)
459 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_64BSCAO);
460 if (sclp.has_siif)
461 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_SIIF);
462 if (sclp.has_gpere)
463 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_GPERE);
464 if (sclp.has_gsls)
465 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_GSLS);
466 if (sclp.has_ib)
467 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_IB);
468 if (sclp.has_cei)
469 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_CEI);
470 if (sclp.has_ibs)
471 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_IBS);
472 if (sclp.has_kss)
473 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_KSS);
474 /*
475 * KVM_S390_VM_CPU_FEAT_SKEY: Wrong shadow of PTE.I bits will make
476 * all skey handling functions read/set the skey from the PGSTE
477 * instead of the real storage key.
478 *
479 * KVM_S390_VM_CPU_FEAT_CMMA: Wrong shadow of PTE.I bits will make
480 * pages being detected as preserved although they are resident.
481 *
482 * KVM_S390_VM_CPU_FEAT_PFMFI: Wrong shadow of PTE.I bits will
483 * have the same effect as for KVM_S390_VM_CPU_FEAT_SKEY.
484 *
485 * For KVM_S390_VM_CPU_FEAT_SKEY, KVM_S390_VM_CPU_FEAT_CMMA and
486 * KVM_S390_VM_CPU_FEAT_PFMFI, all PTE.I and PGSTE bits have to be
487 * correctly shadowed. We can do that for the PGSTE but not for PTE.I.
488 *
489 * KVM_S390_VM_CPU_FEAT_SIGPIF: Wrong SCB addresses in the SCA. We
490 * cannot easily shadow the SCA because of the ipte lock.
491 */
492 }
493
__kvm_s390_init(void)494 static int __init __kvm_s390_init(void)
495 {
496 int rc = -ENOMEM;
497
498 kvm_s390_dbf = debug_register("kvm-trace", 32, 1, 7 * sizeof(long));
499 if (!kvm_s390_dbf)
500 return -ENOMEM;
501
502 kvm_s390_dbf_uv = debug_register("kvm-uv", 32, 1, 7 * sizeof(long));
503 if (!kvm_s390_dbf_uv)
504 goto err_kvm_uv;
505
506 if (debug_register_view(kvm_s390_dbf, &debug_sprintf_view) ||
507 debug_register_view(kvm_s390_dbf_uv, &debug_sprintf_view))
508 goto err_debug_view;
509
510 kvm_s390_cpu_feat_init();
511
512 /* Register floating interrupt controller interface. */
513 rc = kvm_register_device_ops(&kvm_flic_ops, KVM_DEV_TYPE_FLIC);
514 if (rc) {
515 pr_err("A FLIC registration call failed with rc=%d\n", rc);
516 goto err_flic;
517 }
518
519 if (IS_ENABLED(CONFIG_VFIO_PCI_ZDEV_KVM)) {
520 rc = kvm_s390_pci_init();
521 if (rc) {
522 pr_err("Unable to allocate AIFT for PCI\n");
523 goto err_pci;
524 }
525 }
526
527 rc = kvm_s390_gib_init(GAL_ISC);
528 if (rc)
529 goto err_gib;
530
531 gmap_notifier.notifier_call = kvm_gmap_notifier;
532 gmap_register_pte_notifier(&gmap_notifier);
533 vsie_gmap_notifier.notifier_call = kvm_s390_vsie_gmap_notifier;
534 gmap_register_pte_notifier(&vsie_gmap_notifier);
535 atomic_notifier_chain_register(&s390_epoch_delta_notifier,
536 &kvm_clock_notifier);
537
538 return 0;
539
540 err_gib:
541 if (IS_ENABLED(CONFIG_VFIO_PCI_ZDEV_KVM))
542 kvm_s390_pci_exit();
543 err_pci:
544 err_flic:
545 err_debug_view:
546 debug_unregister(kvm_s390_dbf_uv);
547 err_kvm_uv:
548 debug_unregister(kvm_s390_dbf);
549 return rc;
550 }
551
__kvm_s390_exit(void)552 static void __kvm_s390_exit(void)
553 {
554 gmap_unregister_pte_notifier(&gmap_notifier);
555 gmap_unregister_pte_notifier(&vsie_gmap_notifier);
556 atomic_notifier_chain_unregister(&s390_epoch_delta_notifier,
557 &kvm_clock_notifier);
558
559 kvm_s390_gib_destroy();
560 if (IS_ENABLED(CONFIG_VFIO_PCI_ZDEV_KVM))
561 kvm_s390_pci_exit();
562 debug_unregister(kvm_s390_dbf);
563 debug_unregister(kvm_s390_dbf_uv);
564 }
565
566 /* Section: device related */
kvm_arch_dev_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)567 long kvm_arch_dev_ioctl(struct file *filp,
568 unsigned int ioctl, unsigned long arg)
569 {
570 if (ioctl == KVM_S390_ENABLE_SIE)
571 return s390_enable_sie();
572 return -EINVAL;
573 }
574
kvm_vm_ioctl_check_extension(struct kvm * kvm,long ext)575 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
576 {
577 int r;
578
579 switch (ext) {
580 case KVM_CAP_S390_PSW:
581 case KVM_CAP_S390_GMAP:
582 case KVM_CAP_SYNC_MMU:
583 #ifdef CONFIG_KVM_S390_UCONTROL
584 case KVM_CAP_S390_UCONTROL:
585 #endif
586 case KVM_CAP_ASYNC_PF:
587 case KVM_CAP_SYNC_REGS:
588 case KVM_CAP_ONE_REG:
589 case KVM_CAP_ENABLE_CAP:
590 case KVM_CAP_S390_CSS_SUPPORT:
591 case KVM_CAP_IOEVENTFD:
592 case KVM_CAP_S390_IRQCHIP:
593 case KVM_CAP_VM_ATTRIBUTES:
594 case KVM_CAP_MP_STATE:
595 case KVM_CAP_IMMEDIATE_EXIT:
596 case KVM_CAP_S390_INJECT_IRQ:
597 case KVM_CAP_S390_USER_SIGP:
598 case KVM_CAP_S390_USER_STSI:
599 case KVM_CAP_S390_SKEYS:
600 case KVM_CAP_S390_IRQ_STATE:
601 case KVM_CAP_S390_USER_INSTR0:
602 case KVM_CAP_S390_CMMA_MIGRATION:
603 case KVM_CAP_S390_AIS:
604 case KVM_CAP_S390_AIS_MIGRATION:
605 case KVM_CAP_S390_VCPU_RESETS:
606 case KVM_CAP_SET_GUEST_DEBUG:
607 case KVM_CAP_S390_DIAG318:
608 case KVM_CAP_IRQFD_RESAMPLE:
609 r = 1;
610 break;
611 case KVM_CAP_SET_GUEST_DEBUG2:
612 r = KVM_GUESTDBG_VALID_MASK;
613 break;
614 case KVM_CAP_S390_HPAGE_1M:
615 r = 0;
616 if (hpage && !(kvm && kvm_is_ucontrol(kvm)))
617 r = 1;
618 break;
619 case KVM_CAP_S390_MEM_OP:
620 r = MEM_OP_MAX_SIZE;
621 break;
622 case KVM_CAP_S390_MEM_OP_EXTENSION:
623 /*
624 * Flag bits indicating which extensions are supported.
625 * If r > 0, the base extension must also be supported/indicated,
626 * in order to maintain backwards compatibility.
627 */
628 r = KVM_S390_MEMOP_EXTENSION_CAP_BASE |
629 KVM_S390_MEMOP_EXTENSION_CAP_CMPXCHG;
630 break;
631 case KVM_CAP_NR_VCPUS:
632 case KVM_CAP_MAX_VCPUS:
633 case KVM_CAP_MAX_VCPU_ID:
634 r = KVM_S390_BSCA_CPU_SLOTS;
635 if (!kvm_s390_use_sca_entries())
636 r = KVM_MAX_VCPUS;
637 else if (sclp.has_esca && sclp.has_64bscao)
638 r = KVM_S390_ESCA_CPU_SLOTS;
639 if (ext == KVM_CAP_NR_VCPUS)
640 r = min_t(unsigned int, num_online_cpus(), r);
641 break;
642 case KVM_CAP_S390_COW:
643 r = machine_has_esop();
644 break;
645 case KVM_CAP_S390_VECTOR_REGISTERS:
646 r = test_facility(129);
647 break;
648 case KVM_CAP_S390_RI:
649 r = test_facility(64);
650 break;
651 case KVM_CAP_S390_GS:
652 r = test_facility(133);
653 break;
654 case KVM_CAP_S390_BPB:
655 r = test_facility(82);
656 break;
657 case KVM_CAP_S390_PROTECTED_ASYNC_DISABLE:
658 r = async_destroy && is_prot_virt_host();
659 break;
660 case KVM_CAP_S390_PROTECTED:
661 r = is_prot_virt_host();
662 break;
663 case KVM_CAP_S390_PROTECTED_DUMP: {
664 u64 pv_cmds_dump[] = {
665 BIT_UVC_CMD_DUMP_INIT,
666 BIT_UVC_CMD_DUMP_CONFIG_STOR_STATE,
667 BIT_UVC_CMD_DUMP_CPU,
668 BIT_UVC_CMD_DUMP_COMPLETE,
669 };
670 int i;
671
672 r = is_prot_virt_host();
673
674 for (i = 0; i < ARRAY_SIZE(pv_cmds_dump); i++) {
675 if (!test_bit_inv(pv_cmds_dump[i],
676 (unsigned long *)&uv_info.inst_calls_list)) {
677 r = 0;
678 break;
679 }
680 }
681 break;
682 }
683 case KVM_CAP_S390_ZPCI_OP:
684 r = kvm_s390_pci_interp_allowed();
685 break;
686 case KVM_CAP_S390_CPU_TOPOLOGY:
687 r = test_facility(11);
688 break;
689 default:
690 r = 0;
691 }
692 return r;
693 }
694
kvm_arch_sync_dirty_log(struct kvm * kvm,struct kvm_memory_slot * memslot)695 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
696 {
697 int i;
698 gfn_t cur_gfn, last_gfn;
699 unsigned long gaddr, vmaddr;
700 struct gmap *gmap = kvm->arch.gmap;
701 DECLARE_BITMAP(bitmap, _PAGE_ENTRIES);
702
703 /* Loop over all guest segments */
704 cur_gfn = memslot->base_gfn;
705 last_gfn = memslot->base_gfn + memslot->npages;
706 for (; cur_gfn <= last_gfn; cur_gfn += _PAGE_ENTRIES) {
707 gaddr = gfn_to_gpa(cur_gfn);
708 vmaddr = gfn_to_hva_memslot(memslot, cur_gfn);
709 if (kvm_is_error_hva(vmaddr))
710 continue;
711
712 bitmap_zero(bitmap, _PAGE_ENTRIES);
713 gmap_sync_dirty_log_pmd(gmap, bitmap, gaddr, vmaddr);
714 for (i = 0; i < _PAGE_ENTRIES; i++) {
715 if (test_bit(i, bitmap))
716 mark_page_dirty(kvm, cur_gfn + i);
717 }
718
719 if (fatal_signal_pending(current))
720 return;
721 cond_resched();
722 }
723 }
724
725 /* Section: vm related */
726 static void sca_del_vcpu(struct kvm_vcpu *vcpu);
727
728 /*
729 * Get (and clear) the dirty memory log for a memory slot.
730 */
kvm_vm_ioctl_get_dirty_log(struct kvm * kvm,struct kvm_dirty_log * log)731 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
732 struct kvm_dirty_log *log)
733 {
734 int r;
735 unsigned long n;
736 struct kvm_memory_slot *memslot;
737 int is_dirty;
738
739 if (kvm_is_ucontrol(kvm))
740 return -EINVAL;
741
742 mutex_lock(&kvm->slots_lock);
743
744 r = -EINVAL;
745 if (log->slot >= KVM_USER_MEM_SLOTS)
746 goto out;
747
748 r = kvm_get_dirty_log(kvm, log, &is_dirty, &memslot);
749 if (r)
750 goto out;
751
752 /* Clear the dirty log */
753 if (is_dirty) {
754 n = kvm_dirty_bitmap_bytes(memslot);
755 memset(memslot->dirty_bitmap, 0, n);
756 }
757 r = 0;
758 out:
759 mutex_unlock(&kvm->slots_lock);
760 return r;
761 }
762
icpt_operexc_on_all_vcpus(struct kvm * kvm)763 static void icpt_operexc_on_all_vcpus(struct kvm *kvm)
764 {
765 unsigned long i;
766 struct kvm_vcpu *vcpu;
767
768 kvm_for_each_vcpu(i, vcpu, kvm) {
769 kvm_s390_sync_request(KVM_REQ_ICPT_OPEREXC, vcpu);
770 }
771 }
772
kvm_vm_ioctl_enable_cap(struct kvm * kvm,struct kvm_enable_cap * cap)773 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, struct kvm_enable_cap *cap)
774 {
775 int r;
776
777 if (cap->flags)
778 return -EINVAL;
779
780 switch (cap->cap) {
781 case KVM_CAP_S390_IRQCHIP:
782 VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_IRQCHIP");
783 kvm->arch.use_irqchip = 1;
784 r = 0;
785 break;
786 case KVM_CAP_S390_USER_SIGP:
787 VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_SIGP");
788 kvm->arch.user_sigp = 1;
789 r = 0;
790 break;
791 case KVM_CAP_S390_VECTOR_REGISTERS:
792 mutex_lock(&kvm->lock);
793 if (kvm->created_vcpus) {
794 r = -EBUSY;
795 } else if (cpu_has_vx()) {
796 set_kvm_facility(kvm->arch.model.fac_mask, 129);
797 set_kvm_facility(kvm->arch.model.fac_list, 129);
798 if (test_facility(134)) {
799 set_kvm_facility(kvm->arch.model.fac_mask, 134);
800 set_kvm_facility(kvm->arch.model.fac_list, 134);
801 }
802 if (test_facility(135)) {
803 set_kvm_facility(kvm->arch.model.fac_mask, 135);
804 set_kvm_facility(kvm->arch.model.fac_list, 135);
805 }
806 if (test_facility(148)) {
807 set_kvm_facility(kvm->arch.model.fac_mask, 148);
808 set_kvm_facility(kvm->arch.model.fac_list, 148);
809 }
810 if (test_facility(152)) {
811 set_kvm_facility(kvm->arch.model.fac_mask, 152);
812 set_kvm_facility(kvm->arch.model.fac_list, 152);
813 }
814 if (test_facility(192)) {
815 set_kvm_facility(kvm->arch.model.fac_mask, 192);
816 set_kvm_facility(kvm->arch.model.fac_list, 192);
817 }
818 if (test_facility(198)) {
819 set_kvm_facility(kvm->arch.model.fac_mask, 198);
820 set_kvm_facility(kvm->arch.model.fac_list, 198);
821 }
822 if (test_facility(199)) {
823 set_kvm_facility(kvm->arch.model.fac_mask, 199);
824 set_kvm_facility(kvm->arch.model.fac_list, 199);
825 }
826 r = 0;
827 } else
828 r = -EINVAL;
829 mutex_unlock(&kvm->lock);
830 VM_EVENT(kvm, 3, "ENABLE: CAP_S390_VECTOR_REGISTERS %s",
831 r ? "(not available)" : "(success)");
832 break;
833 case KVM_CAP_S390_RI:
834 r = -EINVAL;
835 mutex_lock(&kvm->lock);
836 if (kvm->created_vcpus) {
837 r = -EBUSY;
838 } else if (test_facility(64)) {
839 set_kvm_facility(kvm->arch.model.fac_mask, 64);
840 set_kvm_facility(kvm->arch.model.fac_list, 64);
841 r = 0;
842 }
843 mutex_unlock(&kvm->lock);
844 VM_EVENT(kvm, 3, "ENABLE: CAP_S390_RI %s",
845 r ? "(not available)" : "(success)");
846 break;
847 case KVM_CAP_S390_AIS:
848 mutex_lock(&kvm->lock);
849 if (kvm->created_vcpus) {
850 r = -EBUSY;
851 } else {
852 set_kvm_facility(kvm->arch.model.fac_mask, 72);
853 set_kvm_facility(kvm->arch.model.fac_list, 72);
854 r = 0;
855 }
856 mutex_unlock(&kvm->lock);
857 VM_EVENT(kvm, 3, "ENABLE: AIS %s",
858 r ? "(not available)" : "(success)");
859 break;
860 case KVM_CAP_S390_GS:
861 r = -EINVAL;
862 mutex_lock(&kvm->lock);
863 if (kvm->created_vcpus) {
864 r = -EBUSY;
865 } else if (test_facility(133)) {
866 set_kvm_facility(kvm->arch.model.fac_mask, 133);
867 set_kvm_facility(kvm->arch.model.fac_list, 133);
868 r = 0;
869 }
870 mutex_unlock(&kvm->lock);
871 VM_EVENT(kvm, 3, "ENABLE: CAP_S390_GS %s",
872 r ? "(not available)" : "(success)");
873 break;
874 case KVM_CAP_S390_HPAGE_1M:
875 mutex_lock(&kvm->lock);
876 if (kvm->created_vcpus)
877 r = -EBUSY;
878 else if (!hpage || kvm->arch.use_cmma || kvm_is_ucontrol(kvm))
879 r = -EINVAL;
880 else {
881 r = 0;
882 mmap_write_lock(kvm->mm);
883 kvm->mm->context.allow_gmap_hpage_1m = 1;
884 mmap_write_unlock(kvm->mm);
885 /*
886 * We might have to create fake 4k page
887 * tables. To avoid that the hardware works on
888 * stale PGSTEs, we emulate these instructions.
889 */
890 kvm->arch.use_skf = 0;
891 kvm->arch.use_pfmfi = 0;
892 }
893 mutex_unlock(&kvm->lock);
894 VM_EVENT(kvm, 3, "ENABLE: CAP_S390_HPAGE %s",
895 r ? "(not available)" : "(success)");
896 break;
897 case KVM_CAP_S390_USER_STSI:
898 VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_STSI");
899 kvm->arch.user_stsi = 1;
900 r = 0;
901 break;
902 case KVM_CAP_S390_USER_INSTR0:
903 VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_INSTR0");
904 kvm->arch.user_instr0 = 1;
905 icpt_operexc_on_all_vcpus(kvm);
906 r = 0;
907 break;
908 case KVM_CAP_S390_CPU_TOPOLOGY:
909 r = -EINVAL;
910 mutex_lock(&kvm->lock);
911 if (kvm->created_vcpus) {
912 r = -EBUSY;
913 } else if (test_facility(11)) {
914 set_kvm_facility(kvm->arch.model.fac_mask, 11);
915 set_kvm_facility(kvm->arch.model.fac_list, 11);
916 r = 0;
917 }
918 mutex_unlock(&kvm->lock);
919 VM_EVENT(kvm, 3, "ENABLE: CAP_S390_CPU_TOPOLOGY %s",
920 r ? "(not available)" : "(success)");
921 break;
922 default:
923 r = -EINVAL;
924 break;
925 }
926 return r;
927 }
928
kvm_s390_get_mem_control(struct kvm * kvm,struct kvm_device_attr * attr)929 static int kvm_s390_get_mem_control(struct kvm *kvm, struct kvm_device_attr *attr)
930 {
931 int ret;
932
933 switch (attr->attr) {
934 case KVM_S390_VM_MEM_LIMIT_SIZE:
935 ret = 0;
936 VM_EVENT(kvm, 3, "QUERY: max guest memory: %lu bytes",
937 kvm->arch.mem_limit);
938 if (put_user(kvm->arch.mem_limit, (u64 __user *)attr->addr))
939 ret = -EFAULT;
940 break;
941 default:
942 ret = -ENXIO;
943 break;
944 }
945 return ret;
946 }
947
kvm_s390_set_mem_control(struct kvm * kvm,struct kvm_device_attr * attr)948 static int kvm_s390_set_mem_control(struct kvm *kvm, struct kvm_device_attr *attr)
949 {
950 int ret;
951 unsigned int idx;
952 switch (attr->attr) {
953 case KVM_S390_VM_MEM_ENABLE_CMMA:
954 ret = -ENXIO;
955 if (!sclp.has_cmma)
956 break;
957
958 VM_EVENT(kvm, 3, "%s", "ENABLE: CMMA support");
959 mutex_lock(&kvm->lock);
960 if (kvm->created_vcpus)
961 ret = -EBUSY;
962 else if (kvm->mm->context.allow_gmap_hpage_1m)
963 ret = -EINVAL;
964 else {
965 kvm->arch.use_cmma = 1;
966 /* Not compatible with cmma. */
967 kvm->arch.use_pfmfi = 0;
968 ret = 0;
969 }
970 mutex_unlock(&kvm->lock);
971 break;
972 case KVM_S390_VM_MEM_CLR_CMMA:
973 ret = -ENXIO;
974 if (!sclp.has_cmma)
975 break;
976 ret = -EINVAL;
977 if (!kvm->arch.use_cmma)
978 break;
979
980 VM_EVENT(kvm, 3, "%s", "RESET: CMMA states");
981 mutex_lock(&kvm->lock);
982 idx = srcu_read_lock(&kvm->srcu);
983 s390_reset_cmma(kvm->arch.gmap->mm);
984 srcu_read_unlock(&kvm->srcu, idx);
985 mutex_unlock(&kvm->lock);
986 ret = 0;
987 break;
988 case KVM_S390_VM_MEM_LIMIT_SIZE: {
989 unsigned long new_limit;
990
991 if (kvm_is_ucontrol(kvm))
992 return -EINVAL;
993
994 if (get_user(new_limit, (u64 __user *)attr->addr))
995 return -EFAULT;
996
997 if (kvm->arch.mem_limit != KVM_S390_NO_MEM_LIMIT &&
998 new_limit > kvm->arch.mem_limit)
999 return -E2BIG;
1000
1001 if (!new_limit)
1002 return -EINVAL;
1003
1004 /* gmap_create takes last usable address */
1005 if (new_limit != KVM_S390_NO_MEM_LIMIT)
1006 new_limit -= 1;
1007
1008 ret = -EBUSY;
1009 mutex_lock(&kvm->lock);
1010 if (!kvm->created_vcpus) {
1011 /* gmap_create will round the limit up */
1012 struct gmap *new = gmap_create(current->mm, new_limit);
1013
1014 if (!new) {
1015 ret = -ENOMEM;
1016 } else {
1017 gmap_remove(kvm->arch.gmap);
1018 new->private = kvm;
1019 kvm->arch.gmap = new;
1020 ret = 0;
1021 }
1022 }
1023 mutex_unlock(&kvm->lock);
1024 VM_EVENT(kvm, 3, "SET: max guest address: %lu", new_limit);
1025 VM_EVENT(kvm, 3, "New guest asce: 0x%pK",
1026 (void *) kvm->arch.gmap->asce);
1027 break;
1028 }
1029 default:
1030 ret = -ENXIO;
1031 break;
1032 }
1033 return ret;
1034 }
1035
1036 static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu);
1037
kvm_s390_vcpu_crypto_reset_all(struct kvm * kvm)1038 void kvm_s390_vcpu_crypto_reset_all(struct kvm *kvm)
1039 {
1040 struct kvm_vcpu *vcpu;
1041 unsigned long i;
1042
1043 kvm_s390_vcpu_block_all(kvm);
1044
1045 kvm_for_each_vcpu(i, vcpu, kvm) {
1046 kvm_s390_vcpu_crypto_setup(vcpu);
1047 /* recreate the shadow crycb by leaving the VSIE handler */
1048 kvm_s390_sync_request(KVM_REQ_VSIE_RESTART, vcpu);
1049 }
1050
1051 kvm_s390_vcpu_unblock_all(kvm);
1052 }
1053
kvm_s390_vm_set_crypto(struct kvm * kvm,struct kvm_device_attr * attr)1054 static int kvm_s390_vm_set_crypto(struct kvm *kvm, struct kvm_device_attr *attr)
1055 {
1056 mutex_lock(&kvm->lock);
1057 switch (attr->attr) {
1058 case KVM_S390_VM_CRYPTO_ENABLE_AES_KW:
1059 if (!test_kvm_facility(kvm, 76)) {
1060 mutex_unlock(&kvm->lock);
1061 return -EINVAL;
1062 }
1063 get_random_bytes(
1064 kvm->arch.crypto.crycb->aes_wrapping_key_mask,
1065 sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
1066 kvm->arch.crypto.aes_kw = 1;
1067 VM_EVENT(kvm, 3, "%s", "ENABLE: AES keywrapping support");
1068 break;
1069 case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW:
1070 if (!test_kvm_facility(kvm, 76)) {
1071 mutex_unlock(&kvm->lock);
1072 return -EINVAL;
1073 }
1074 get_random_bytes(
1075 kvm->arch.crypto.crycb->dea_wrapping_key_mask,
1076 sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
1077 kvm->arch.crypto.dea_kw = 1;
1078 VM_EVENT(kvm, 3, "%s", "ENABLE: DEA keywrapping support");
1079 break;
1080 case KVM_S390_VM_CRYPTO_DISABLE_AES_KW:
1081 if (!test_kvm_facility(kvm, 76)) {
1082 mutex_unlock(&kvm->lock);
1083 return -EINVAL;
1084 }
1085 kvm->arch.crypto.aes_kw = 0;
1086 memset(kvm->arch.crypto.crycb->aes_wrapping_key_mask, 0,
1087 sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
1088 VM_EVENT(kvm, 3, "%s", "DISABLE: AES keywrapping support");
1089 break;
1090 case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW:
1091 if (!test_kvm_facility(kvm, 76)) {
1092 mutex_unlock(&kvm->lock);
1093 return -EINVAL;
1094 }
1095 kvm->arch.crypto.dea_kw = 0;
1096 memset(kvm->arch.crypto.crycb->dea_wrapping_key_mask, 0,
1097 sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
1098 VM_EVENT(kvm, 3, "%s", "DISABLE: DEA keywrapping support");
1099 break;
1100 case KVM_S390_VM_CRYPTO_ENABLE_APIE:
1101 if (!ap_instructions_available()) {
1102 mutex_unlock(&kvm->lock);
1103 return -EOPNOTSUPP;
1104 }
1105 kvm->arch.crypto.apie = 1;
1106 break;
1107 case KVM_S390_VM_CRYPTO_DISABLE_APIE:
1108 if (!ap_instructions_available()) {
1109 mutex_unlock(&kvm->lock);
1110 return -EOPNOTSUPP;
1111 }
1112 kvm->arch.crypto.apie = 0;
1113 break;
1114 default:
1115 mutex_unlock(&kvm->lock);
1116 return -ENXIO;
1117 }
1118
1119 kvm_s390_vcpu_crypto_reset_all(kvm);
1120 mutex_unlock(&kvm->lock);
1121 return 0;
1122 }
1123
kvm_s390_vcpu_pci_setup(struct kvm_vcpu * vcpu)1124 static void kvm_s390_vcpu_pci_setup(struct kvm_vcpu *vcpu)
1125 {
1126 /* Only set the ECB bits after guest requests zPCI interpretation */
1127 if (!vcpu->kvm->arch.use_zpci_interp)
1128 return;
1129
1130 vcpu->arch.sie_block->ecb2 |= ECB2_ZPCI_LSI;
1131 vcpu->arch.sie_block->ecb3 |= ECB3_AISII + ECB3_AISI;
1132 }
1133
kvm_s390_vcpu_pci_enable_interp(struct kvm * kvm)1134 void kvm_s390_vcpu_pci_enable_interp(struct kvm *kvm)
1135 {
1136 struct kvm_vcpu *vcpu;
1137 unsigned long i;
1138
1139 lockdep_assert_held(&kvm->lock);
1140
1141 if (!kvm_s390_pci_interp_allowed())
1142 return;
1143
1144 /*
1145 * If host is configured for PCI and the necessary facilities are
1146 * available, turn on interpretation for the life of this guest
1147 */
1148 kvm->arch.use_zpci_interp = 1;
1149
1150 kvm_s390_vcpu_block_all(kvm);
1151
1152 kvm_for_each_vcpu(i, vcpu, kvm) {
1153 kvm_s390_vcpu_pci_setup(vcpu);
1154 kvm_s390_sync_request(KVM_REQ_VSIE_RESTART, vcpu);
1155 }
1156
1157 kvm_s390_vcpu_unblock_all(kvm);
1158 }
1159
kvm_s390_sync_request_broadcast(struct kvm * kvm,int req)1160 static void kvm_s390_sync_request_broadcast(struct kvm *kvm, int req)
1161 {
1162 unsigned long cx;
1163 struct kvm_vcpu *vcpu;
1164
1165 kvm_for_each_vcpu(cx, vcpu, kvm)
1166 kvm_s390_sync_request(req, vcpu);
1167 }
1168
1169 /*
1170 * Must be called with kvm->srcu held to avoid races on memslots, and with
1171 * kvm->slots_lock to avoid races with ourselves and kvm_s390_vm_stop_migration.
1172 */
kvm_s390_vm_start_migration(struct kvm * kvm)1173 static int kvm_s390_vm_start_migration(struct kvm *kvm)
1174 {
1175 struct kvm_memory_slot *ms;
1176 struct kvm_memslots *slots;
1177 unsigned long ram_pages = 0;
1178 int bkt;
1179
1180 /* migration mode already enabled */
1181 if (kvm->arch.migration_mode)
1182 return 0;
1183 slots = kvm_memslots(kvm);
1184 if (!slots || kvm_memslots_empty(slots))
1185 return -EINVAL;
1186
1187 if (!kvm->arch.use_cmma) {
1188 kvm->arch.migration_mode = 1;
1189 return 0;
1190 }
1191 /* mark all the pages in active slots as dirty */
1192 kvm_for_each_memslot(ms, bkt, slots) {
1193 if (!ms->dirty_bitmap)
1194 return -EINVAL;
1195 /*
1196 * The second half of the bitmap is only used on x86,
1197 * and would be wasted otherwise, so we put it to good
1198 * use here to keep track of the state of the storage
1199 * attributes.
1200 */
1201 memset(kvm_second_dirty_bitmap(ms), 0xff, kvm_dirty_bitmap_bytes(ms));
1202 ram_pages += ms->npages;
1203 }
1204 atomic64_set(&kvm->arch.cmma_dirty_pages, ram_pages);
1205 kvm->arch.migration_mode = 1;
1206 kvm_s390_sync_request_broadcast(kvm, KVM_REQ_START_MIGRATION);
1207 return 0;
1208 }
1209
1210 /*
1211 * Must be called with kvm->slots_lock to avoid races with ourselves and
1212 * kvm_s390_vm_start_migration.
1213 */
kvm_s390_vm_stop_migration(struct kvm * kvm)1214 static int kvm_s390_vm_stop_migration(struct kvm *kvm)
1215 {
1216 /* migration mode already disabled */
1217 if (!kvm->arch.migration_mode)
1218 return 0;
1219 kvm->arch.migration_mode = 0;
1220 if (kvm->arch.use_cmma)
1221 kvm_s390_sync_request_broadcast(kvm, KVM_REQ_STOP_MIGRATION);
1222 return 0;
1223 }
1224
kvm_s390_vm_set_migration(struct kvm * kvm,struct kvm_device_attr * attr)1225 static int kvm_s390_vm_set_migration(struct kvm *kvm,
1226 struct kvm_device_attr *attr)
1227 {
1228 int res = -ENXIO;
1229
1230 mutex_lock(&kvm->slots_lock);
1231 switch (attr->attr) {
1232 case KVM_S390_VM_MIGRATION_START:
1233 res = kvm_s390_vm_start_migration(kvm);
1234 break;
1235 case KVM_S390_VM_MIGRATION_STOP:
1236 res = kvm_s390_vm_stop_migration(kvm);
1237 break;
1238 default:
1239 break;
1240 }
1241 mutex_unlock(&kvm->slots_lock);
1242
1243 return res;
1244 }
1245
kvm_s390_vm_get_migration(struct kvm * kvm,struct kvm_device_attr * attr)1246 static int kvm_s390_vm_get_migration(struct kvm *kvm,
1247 struct kvm_device_attr *attr)
1248 {
1249 u64 mig = kvm->arch.migration_mode;
1250
1251 if (attr->attr != KVM_S390_VM_MIGRATION_STATUS)
1252 return -ENXIO;
1253
1254 if (copy_to_user((void __user *)attr->addr, &mig, sizeof(mig)))
1255 return -EFAULT;
1256 return 0;
1257 }
1258
1259 static void __kvm_s390_set_tod_clock(struct kvm *kvm, const struct kvm_s390_vm_tod_clock *gtod);
1260
kvm_s390_set_tod_ext(struct kvm * kvm,struct kvm_device_attr * attr)1261 static int kvm_s390_set_tod_ext(struct kvm *kvm, struct kvm_device_attr *attr)
1262 {
1263 struct kvm_s390_vm_tod_clock gtod;
1264
1265 if (copy_from_user(>od, (void __user *)attr->addr, sizeof(gtod)))
1266 return -EFAULT;
1267
1268 if (!test_kvm_facility(kvm, 139) && gtod.epoch_idx)
1269 return -EINVAL;
1270 __kvm_s390_set_tod_clock(kvm, >od);
1271
1272 VM_EVENT(kvm, 3, "SET: TOD extension: 0x%x, TOD base: 0x%llx",
1273 gtod.epoch_idx, gtod.tod);
1274
1275 return 0;
1276 }
1277
kvm_s390_set_tod_high(struct kvm * kvm,struct kvm_device_attr * attr)1278 static int kvm_s390_set_tod_high(struct kvm *kvm, struct kvm_device_attr *attr)
1279 {
1280 u8 gtod_high;
1281
1282 if (copy_from_user(>od_high, (void __user *)attr->addr,
1283 sizeof(gtod_high)))
1284 return -EFAULT;
1285
1286 if (gtod_high != 0)
1287 return -EINVAL;
1288 VM_EVENT(kvm, 3, "SET: TOD extension: 0x%x", gtod_high);
1289
1290 return 0;
1291 }
1292
kvm_s390_set_tod_low(struct kvm * kvm,struct kvm_device_attr * attr)1293 static int kvm_s390_set_tod_low(struct kvm *kvm, struct kvm_device_attr *attr)
1294 {
1295 struct kvm_s390_vm_tod_clock gtod = { 0 };
1296
1297 if (copy_from_user(>od.tod, (void __user *)attr->addr,
1298 sizeof(gtod.tod)))
1299 return -EFAULT;
1300
1301 __kvm_s390_set_tod_clock(kvm, >od);
1302 VM_EVENT(kvm, 3, "SET: TOD base: 0x%llx", gtod.tod);
1303 return 0;
1304 }
1305
kvm_s390_set_tod(struct kvm * kvm,struct kvm_device_attr * attr)1306 static int kvm_s390_set_tod(struct kvm *kvm, struct kvm_device_attr *attr)
1307 {
1308 int ret;
1309
1310 if (attr->flags)
1311 return -EINVAL;
1312
1313 mutex_lock(&kvm->lock);
1314 /*
1315 * For protected guests, the TOD is managed by the ultravisor, so trying
1316 * to change it will never bring the expected results.
1317 */
1318 if (kvm_s390_pv_is_protected(kvm)) {
1319 ret = -EOPNOTSUPP;
1320 goto out_unlock;
1321 }
1322
1323 switch (attr->attr) {
1324 case KVM_S390_VM_TOD_EXT:
1325 ret = kvm_s390_set_tod_ext(kvm, attr);
1326 break;
1327 case KVM_S390_VM_TOD_HIGH:
1328 ret = kvm_s390_set_tod_high(kvm, attr);
1329 break;
1330 case KVM_S390_VM_TOD_LOW:
1331 ret = kvm_s390_set_tod_low(kvm, attr);
1332 break;
1333 default:
1334 ret = -ENXIO;
1335 break;
1336 }
1337
1338 out_unlock:
1339 mutex_unlock(&kvm->lock);
1340 return ret;
1341 }
1342
kvm_s390_get_tod_clock(struct kvm * kvm,struct kvm_s390_vm_tod_clock * gtod)1343 static void kvm_s390_get_tod_clock(struct kvm *kvm,
1344 struct kvm_s390_vm_tod_clock *gtod)
1345 {
1346 union tod_clock clk;
1347
1348 preempt_disable();
1349
1350 store_tod_clock_ext(&clk);
1351
1352 gtod->tod = clk.tod + kvm->arch.epoch;
1353 gtod->epoch_idx = 0;
1354 if (test_kvm_facility(kvm, 139)) {
1355 gtod->epoch_idx = clk.ei + kvm->arch.epdx;
1356 if (gtod->tod < clk.tod)
1357 gtod->epoch_idx += 1;
1358 }
1359
1360 preempt_enable();
1361 }
1362
kvm_s390_get_tod_ext(struct kvm * kvm,struct kvm_device_attr * attr)1363 static int kvm_s390_get_tod_ext(struct kvm *kvm, struct kvm_device_attr *attr)
1364 {
1365 struct kvm_s390_vm_tod_clock gtod;
1366
1367 memset(>od, 0, sizeof(gtod));
1368 kvm_s390_get_tod_clock(kvm, >od);
1369 if (copy_to_user((void __user *)attr->addr, >od, sizeof(gtod)))
1370 return -EFAULT;
1371
1372 VM_EVENT(kvm, 3, "QUERY: TOD extension: 0x%x, TOD base: 0x%llx",
1373 gtod.epoch_idx, gtod.tod);
1374 return 0;
1375 }
1376
kvm_s390_get_tod_high(struct kvm * kvm,struct kvm_device_attr * attr)1377 static int kvm_s390_get_tod_high(struct kvm *kvm, struct kvm_device_attr *attr)
1378 {
1379 u8 gtod_high = 0;
1380
1381 if (copy_to_user((void __user *)attr->addr, >od_high,
1382 sizeof(gtod_high)))
1383 return -EFAULT;
1384 VM_EVENT(kvm, 3, "QUERY: TOD extension: 0x%x", gtod_high);
1385
1386 return 0;
1387 }
1388
kvm_s390_get_tod_low(struct kvm * kvm,struct kvm_device_attr * attr)1389 static int kvm_s390_get_tod_low(struct kvm *kvm, struct kvm_device_attr *attr)
1390 {
1391 u64 gtod;
1392
1393 gtod = kvm_s390_get_tod_clock_fast(kvm);
1394 if (copy_to_user((void __user *)attr->addr, >od, sizeof(gtod)))
1395 return -EFAULT;
1396 VM_EVENT(kvm, 3, "QUERY: TOD base: 0x%llx", gtod);
1397
1398 return 0;
1399 }
1400
kvm_s390_get_tod(struct kvm * kvm,struct kvm_device_attr * attr)1401 static int kvm_s390_get_tod(struct kvm *kvm, struct kvm_device_attr *attr)
1402 {
1403 int ret;
1404
1405 if (attr->flags)
1406 return -EINVAL;
1407
1408 switch (attr->attr) {
1409 case KVM_S390_VM_TOD_EXT:
1410 ret = kvm_s390_get_tod_ext(kvm, attr);
1411 break;
1412 case KVM_S390_VM_TOD_HIGH:
1413 ret = kvm_s390_get_tod_high(kvm, attr);
1414 break;
1415 case KVM_S390_VM_TOD_LOW:
1416 ret = kvm_s390_get_tod_low(kvm, attr);
1417 break;
1418 default:
1419 ret = -ENXIO;
1420 break;
1421 }
1422 return ret;
1423 }
1424
kvm_s390_set_processor(struct kvm * kvm,struct kvm_device_attr * attr)1425 static int kvm_s390_set_processor(struct kvm *kvm, struct kvm_device_attr *attr)
1426 {
1427 struct kvm_s390_vm_cpu_processor *proc;
1428 u16 lowest_ibc, unblocked_ibc;
1429 int ret = 0;
1430
1431 mutex_lock(&kvm->lock);
1432 if (kvm->created_vcpus) {
1433 ret = -EBUSY;
1434 goto out;
1435 }
1436 proc = kzalloc(sizeof(*proc), GFP_KERNEL_ACCOUNT);
1437 if (!proc) {
1438 ret = -ENOMEM;
1439 goto out;
1440 }
1441 if (!copy_from_user(proc, (void __user *)attr->addr,
1442 sizeof(*proc))) {
1443 kvm->arch.model.cpuid = proc->cpuid;
1444 lowest_ibc = sclp.ibc >> 16 & 0xfff;
1445 unblocked_ibc = sclp.ibc & 0xfff;
1446 if (lowest_ibc && proc->ibc) {
1447 if (proc->ibc > unblocked_ibc)
1448 kvm->arch.model.ibc = unblocked_ibc;
1449 else if (proc->ibc < lowest_ibc)
1450 kvm->arch.model.ibc = lowest_ibc;
1451 else
1452 kvm->arch.model.ibc = proc->ibc;
1453 }
1454 memcpy(kvm->arch.model.fac_list, proc->fac_list,
1455 S390_ARCH_FAC_LIST_SIZE_BYTE);
1456 VM_EVENT(kvm, 3, "SET: guest ibc: 0x%4.4x, guest cpuid: 0x%16.16llx",
1457 kvm->arch.model.ibc,
1458 kvm->arch.model.cpuid);
1459 VM_EVENT(kvm, 3, "SET: guest faclist: 0x%16.16llx.%16.16llx.%16.16llx",
1460 kvm->arch.model.fac_list[0],
1461 kvm->arch.model.fac_list[1],
1462 kvm->arch.model.fac_list[2]);
1463 } else
1464 ret = -EFAULT;
1465 kfree(proc);
1466 out:
1467 mutex_unlock(&kvm->lock);
1468 return ret;
1469 }
1470
kvm_s390_set_processor_feat(struct kvm * kvm,struct kvm_device_attr * attr)1471 static int kvm_s390_set_processor_feat(struct kvm *kvm,
1472 struct kvm_device_attr *attr)
1473 {
1474 struct kvm_s390_vm_cpu_feat data;
1475
1476 if (copy_from_user(&data, (void __user *)attr->addr, sizeof(data)))
1477 return -EFAULT;
1478 if (!bitmap_subset((unsigned long *) data.feat,
1479 kvm_s390_available_cpu_feat,
1480 KVM_S390_VM_CPU_FEAT_NR_BITS))
1481 return -EINVAL;
1482
1483 mutex_lock(&kvm->lock);
1484 if (kvm->created_vcpus) {
1485 mutex_unlock(&kvm->lock);
1486 return -EBUSY;
1487 }
1488 bitmap_from_arr64(kvm->arch.cpu_feat, data.feat, KVM_S390_VM_CPU_FEAT_NR_BITS);
1489 mutex_unlock(&kvm->lock);
1490 VM_EVENT(kvm, 3, "SET: guest feat: 0x%16.16llx.0x%16.16llx.0x%16.16llx",
1491 data.feat[0],
1492 data.feat[1],
1493 data.feat[2]);
1494 return 0;
1495 }
1496
kvm_s390_set_processor_subfunc(struct kvm * kvm,struct kvm_device_attr * attr)1497 static int kvm_s390_set_processor_subfunc(struct kvm *kvm,
1498 struct kvm_device_attr *attr)
1499 {
1500 mutex_lock(&kvm->lock);
1501 if (kvm->created_vcpus) {
1502 mutex_unlock(&kvm->lock);
1503 return -EBUSY;
1504 }
1505
1506 if (copy_from_user(&kvm->arch.model.subfuncs, (void __user *)attr->addr,
1507 sizeof(struct kvm_s390_vm_cpu_subfunc))) {
1508 mutex_unlock(&kvm->lock);
1509 return -EFAULT;
1510 }
1511 mutex_unlock(&kvm->lock);
1512
1513 VM_EVENT(kvm, 3, "SET: guest PLO subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx",
1514 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[0],
1515 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[1],
1516 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[2],
1517 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[3]);
1518 VM_EVENT(kvm, 3, "SET: guest PTFF subfunc 0x%16.16lx.%16.16lx",
1519 ((unsigned long *) &kvm->arch.model.subfuncs.ptff)[0],
1520 ((unsigned long *) &kvm->arch.model.subfuncs.ptff)[1]);
1521 VM_EVENT(kvm, 3, "SET: guest KMAC subfunc 0x%16.16lx.%16.16lx",
1522 ((unsigned long *) &kvm->arch.model.subfuncs.kmac)[0],
1523 ((unsigned long *) &kvm->arch.model.subfuncs.kmac)[1]);
1524 VM_EVENT(kvm, 3, "SET: guest KMC subfunc 0x%16.16lx.%16.16lx",
1525 ((unsigned long *) &kvm->arch.model.subfuncs.kmc)[0],
1526 ((unsigned long *) &kvm->arch.model.subfuncs.kmc)[1]);
1527 VM_EVENT(kvm, 3, "SET: guest KM subfunc 0x%16.16lx.%16.16lx",
1528 ((unsigned long *) &kvm->arch.model.subfuncs.km)[0],
1529 ((unsigned long *) &kvm->arch.model.subfuncs.km)[1]);
1530 VM_EVENT(kvm, 3, "SET: guest KIMD subfunc 0x%16.16lx.%16.16lx",
1531 ((unsigned long *) &kvm->arch.model.subfuncs.kimd)[0],
1532 ((unsigned long *) &kvm->arch.model.subfuncs.kimd)[1]);
1533 VM_EVENT(kvm, 3, "SET: guest KLMD subfunc 0x%16.16lx.%16.16lx",
1534 ((unsigned long *) &kvm->arch.model.subfuncs.klmd)[0],
1535 ((unsigned long *) &kvm->arch.model.subfuncs.klmd)[1]);
1536 VM_EVENT(kvm, 3, "SET: guest PCKMO subfunc 0x%16.16lx.%16.16lx",
1537 ((unsigned long *) &kvm->arch.model.subfuncs.pckmo)[0],
1538 ((unsigned long *) &kvm->arch.model.subfuncs.pckmo)[1]);
1539 VM_EVENT(kvm, 3, "SET: guest KMCTR subfunc 0x%16.16lx.%16.16lx",
1540 ((unsigned long *) &kvm->arch.model.subfuncs.kmctr)[0],
1541 ((unsigned long *) &kvm->arch.model.subfuncs.kmctr)[1]);
1542 VM_EVENT(kvm, 3, "SET: guest KMF subfunc 0x%16.16lx.%16.16lx",
1543 ((unsigned long *) &kvm->arch.model.subfuncs.kmf)[0],
1544 ((unsigned long *) &kvm->arch.model.subfuncs.kmf)[1]);
1545 VM_EVENT(kvm, 3, "SET: guest KMO subfunc 0x%16.16lx.%16.16lx",
1546 ((unsigned long *) &kvm->arch.model.subfuncs.kmo)[0],
1547 ((unsigned long *) &kvm->arch.model.subfuncs.kmo)[1]);
1548 VM_EVENT(kvm, 3, "SET: guest PCC subfunc 0x%16.16lx.%16.16lx",
1549 ((unsigned long *) &kvm->arch.model.subfuncs.pcc)[0],
1550 ((unsigned long *) &kvm->arch.model.subfuncs.pcc)[1]);
1551 VM_EVENT(kvm, 3, "SET: guest PPNO subfunc 0x%16.16lx.%16.16lx",
1552 ((unsigned long *) &kvm->arch.model.subfuncs.ppno)[0],
1553 ((unsigned long *) &kvm->arch.model.subfuncs.ppno)[1]);
1554 VM_EVENT(kvm, 3, "SET: guest KMA subfunc 0x%16.16lx.%16.16lx",
1555 ((unsigned long *) &kvm->arch.model.subfuncs.kma)[0],
1556 ((unsigned long *) &kvm->arch.model.subfuncs.kma)[1]);
1557 VM_EVENT(kvm, 3, "SET: guest KDSA subfunc 0x%16.16lx.%16.16lx",
1558 ((unsigned long *) &kvm->arch.model.subfuncs.kdsa)[0],
1559 ((unsigned long *) &kvm->arch.model.subfuncs.kdsa)[1]);
1560 VM_EVENT(kvm, 3, "SET: guest SORTL subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx",
1561 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[0],
1562 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[1],
1563 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[2],
1564 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[3]);
1565 VM_EVENT(kvm, 3, "SET: guest DFLTCC subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx",
1566 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[0],
1567 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[1],
1568 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[2],
1569 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[3]);
1570 VM_EVENT(kvm, 3, "GET: guest PFCR subfunc 0x%16.16lx.%16.16lx",
1571 ((unsigned long *) &kvm_s390_available_subfunc.pfcr)[0],
1572 ((unsigned long *) &kvm_s390_available_subfunc.pfcr)[1]);
1573
1574 return 0;
1575 }
1576
1577 #define KVM_S390_VM_CPU_UV_FEAT_GUEST_MASK \
1578 ( \
1579 ((struct kvm_s390_vm_cpu_uv_feat){ \
1580 .ap = 1, \
1581 .ap_intr = 1, \
1582 }) \
1583 .feat \
1584 )
1585
kvm_s390_set_uv_feat(struct kvm * kvm,struct kvm_device_attr * attr)1586 static int kvm_s390_set_uv_feat(struct kvm *kvm, struct kvm_device_attr *attr)
1587 {
1588 struct kvm_s390_vm_cpu_uv_feat __user *ptr = (void __user *)attr->addr;
1589 unsigned long data, filter;
1590
1591 filter = uv_info.uv_feature_indications & KVM_S390_VM_CPU_UV_FEAT_GUEST_MASK;
1592 if (get_user(data, &ptr->feat))
1593 return -EFAULT;
1594 if (!bitmap_subset(&data, &filter, KVM_S390_VM_CPU_UV_FEAT_NR_BITS))
1595 return -EINVAL;
1596
1597 mutex_lock(&kvm->lock);
1598 if (kvm->created_vcpus) {
1599 mutex_unlock(&kvm->lock);
1600 return -EBUSY;
1601 }
1602 kvm->arch.model.uv_feat_guest.feat = data;
1603 mutex_unlock(&kvm->lock);
1604
1605 VM_EVENT(kvm, 3, "SET: guest UV-feat: 0x%16.16lx", data);
1606
1607 return 0;
1608 }
1609
kvm_s390_set_cpu_model(struct kvm * kvm,struct kvm_device_attr * attr)1610 static int kvm_s390_set_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr)
1611 {
1612 int ret = -ENXIO;
1613
1614 switch (attr->attr) {
1615 case KVM_S390_VM_CPU_PROCESSOR:
1616 ret = kvm_s390_set_processor(kvm, attr);
1617 break;
1618 case KVM_S390_VM_CPU_PROCESSOR_FEAT:
1619 ret = kvm_s390_set_processor_feat(kvm, attr);
1620 break;
1621 case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC:
1622 ret = kvm_s390_set_processor_subfunc(kvm, attr);
1623 break;
1624 case KVM_S390_VM_CPU_PROCESSOR_UV_FEAT_GUEST:
1625 ret = kvm_s390_set_uv_feat(kvm, attr);
1626 break;
1627 }
1628 return ret;
1629 }
1630
kvm_s390_get_processor(struct kvm * kvm,struct kvm_device_attr * attr)1631 static int kvm_s390_get_processor(struct kvm *kvm, struct kvm_device_attr *attr)
1632 {
1633 struct kvm_s390_vm_cpu_processor *proc;
1634 int ret = 0;
1635
1636 proc = kzalloc(sizeof(*proc), GFP_KERNEL_ACCOUNT);
1637 if (!proc) {
1638 ret = -ENOMEM;
1639 goto out;
1640 }
1641 proc->cpuid = kvm->arch.model.cpuid;
1642 proc->ibc = kvm->arch.model.ibc;
1643 memcpy(&proc->fac_list, kvm->arch.model.fac_list,
1644 S390_ARCH_FAC_LIST_SIZE_BYTE);
1645 VM_EVENT(kvm, 3, "GET: guest ibc: 0x%4.4x, guest cpuid: 0x%16.16llx",
1646 kvm->arch.model.ibc,
1647 kvm->arch.model.cpuid);
1648 VM_EVENT(kvm, 3, "GET: guest faclist: 0x%16.16llx.%16.16llx.%16.16llx",
1649 kvm->arch.model.fac_list[0],
1650 kvm->arch.model.fac_list[1],
1651 kvm->arch.model.fac_list[2]);
1652 if (copy_to_user((void __user *)attr->addr, proc, sizeof(*proc)))
1653 ret = -EFAULT;
1654 kfree(proc);
1655 out:
1656 return ret;
1657 }
1658
kvm_s390_get_machine(struct kvm * kvm,struct kvm_device_attr * attr)1659 static int kvm_s390_get_machine(struct kvm *kvm, struct kvm_device_attr *attr)
1660 {
1661 struct kvm_s390_vm_cpu_machine *mach;
1662 int ret = 0;
1663
1664 mach = kzalloc(sizeof(*mach), GFP_KERNEL_ACCOUNT);
1665 if (!mach) {
1666 ret = -ENOMEM;
1667 goto out;
1668 }
1669 get_cpu_id((struct cpuid *) &mach->cpuid);
1670 mach->ibc = sclp.ibc;
1671 memcpy(&mach->fac_mask, kvm->arch.model.fac_mask,
1672 S390_ARCH_FAC_LIST_SIZE_BYTE);
1673 memcpy((unsigned long *)&mach->fac_list, stfle_fac_list,
1674 sizeof(stfle_fac_list));
1675 VM_EVENT(kvm, 3, "GET: host ibc: 0x%4.4x, host cpuid: 0x%16.16llx",
1676 kvm->arch.model.ibc,
1677 kvm->arch.model.cpuid);
1678 VM_EVENT(kvm, 3, "GET: host facmask: 0x%16.16llx.%16.16llx.%16.16llx",
1679 mach->fac_mask[0],
1680 mach->fac_mask[1],
1681 mach->fac_mask[2]);
1682 VM_EVENT(kvm, 3, "GET: host faclist: 0x%16.16llx.%16.16llx.%16.16llx",
1683 mach->fac_list[0],
1684 mach->fac_list[1],
1685 mach->fac_list[2]);
1686 if (copy_to_user((void __user *)attr->addr, mach, sizeof(*mach)))
1687 ret = -EFAULT;
1688 kfree(mach);
1689 out:
1690 return ret;
1691 }
1692
kvm_s390_get_processor_feat(struct kvm * kvm,struct kvm_device_attr * attr)1693 static int kvm_s390_get_processor_feat(struct kvm *kvm,
1694 struct kvm_device_attr *attr)
1695 {
1696 struct kvm_s390_vm_cpu_feat data;
1697
1698 bitmap_to_arr64(data.feat, kvm->arch.cpu_feat, KVM_S390_VM_CPU_FEAT_NR_BITS);
1699 if (copy_to_user((void __user *)attr->addr, &data, sizeof(data)))
1700 return -EFAULT;
1701 VM_EVENT(kvm, 3, "GET: guest feat: 0x%16.16llx.0x%16.16llx.0x%16.16llx",
1702 data.feat[0],
1703 data.feat[1],
1704 data.feat[2]);
1705 return 0;
1706 }
1707
kvm_s390_get_machine_feat(struct kvm * kvm,struct kvm_device_attr * attr)1708 static int kvm_s390_get_machine_feat(struct kvm *kvm,
1709 struct kvm_device_attr *attr)
1710 {
1711 struct kvm_s390_vm_cpu_feat data;
1712
1713 bitmap_to_arr64(data.feat, kvm_s390_available_cpu_feat, KVM_S390_VM_CPU_FEAT_NR_BITS);
1714 if (copy_to_user((void __user *)attr->addr, &data, sizeof(data)))
1715 return -EFAULT;
1716 VM_EVENT(kvm, 3, "GET: host feat: 0x%16.16llx.0x%16.16llx.0x%16.16llx",
1717 data.feat[0],
1718 data.feat[1],
1719 data.feat[2]);
1720 return 0;
1721 }
1722
kvm_s390_get_processor_subfunc(struct kvm * kvm,struct kvm_device_attr * attr)1723 static int kvm_s390_get_processor_subfunc(struct kvm *kvm,
1724 struct kvm_device_attr *attr)
1725 {
1726 if (copy_to_user((void __user *)attr->addr, &kvm->arch.model.subfuncs,
1727 sizeof(struct kvm_s390_vm_cpu_subfunc)))
1728 return -EFAULT;
1729
1730 VM_EVENT(kvm, 3, "GET: guest PLO subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx",
1731 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[0],
1732 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[1],
1733 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[2],
1734 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[3]);
1735 VM_EVENT(kvm, 3, "GET: guest PTFF subfunc 0x%16.16lx.%16.16lx",
1736 ((unsigned long *) &kvm->arch.model.subfuncs.ptff)[0],
1737 ((unsigned long *) &kvm->arch.model.subfuncs.ptff)[1]);
1738 VM_EVENT(kvm, 3, "GET: guest KMAC subfunc 0x%16.16lx.%16.16lx",
1739 ((unsigned long *) &kvm->arch.model.subfuncs.kmac)[0],
1740 ((unsigned long *) &kvm->arch.model.subfuncs.kmac)[1]);
1741 VM_EVENT(kvm, 3, "GET: guest KMC subfunc 0x%16.16lx.%16.16lx",
1742 ((unsigned long *) &kvm->arch.model.subfuncs.kmc)[0],
1743 ((unsigned long *) &kvm->arch.model.subfuncs.kmc)[1]);
1744 VM_EVENT(kvm, 3, "GET: guest KM subfunc 0x%16.16lx.%16.16lx",
1745 ((unsigned long *) &kvm->arch.model.subfuncs.km)[0],
1746 ((unsigned long *) &kvm->arch.model.subfuncs.km)[1]);
1747 VM_EVENT(kvm, 3, "GET: guest KIMD subfunc 0x%16.16lx.%16.16lx",
1748 ((unsigned long *) &kvm->arch.model.subfuncs.kimd)[0],
1749 ((unsigned long *) &kvm->arch.model.subfuncs.kimd)[1]);
1750 VM_EVENT(kvm, 3, "GET: guest KLMD subfunc 0x%16.16lx.%16.16lx",
1751 ((unsigned long *) &kvm->arch.model.subfuncs.klmd)[0],
1752 ((unsigned long *) &kvm->arch.model.subfuncs.klmd)[1]);
1753 VM_EVENT(kvm, 3, "GET: guest PCKMO subfunc 0x%16.16lx.%16.16lx",
1754 ((unsigned long *) &kvm->arch.model.subfuncs.pckmo)[0],
1755 ((unsigned long *) &kvm->arch.model.subfuncs.pckmo)[1]);
1756 VM_EVENT(kvm, 3, "GET: guest KMCTR subfunc 0x%16.16lx.%16.16lx",
1757 ((unsigned long *) &kvm->arch.model.subfuncs.kmctr)[0],
1758 ((unsigned long *) &kvm->arch.model.subfuncs.kmctr)[1]);
1759 VM_EVENT(kvm, 3, "GET: guest KMF subfunc 0x%16.16lx.%16.16lx",
1760 ((unsigned long *) &kvm->arch.model.subfuncs.kmf)[0],
1761 ((unsigned long *) &kvm->arch.model.subfuncs.kmf)[1]);
1762 VM_EVENT(kvm, 3, "GET: guest KMO subfunc 0x%16.16lx.%16.16lx",
1763 ((unsigned long *) &kvm->arch.model.subfuncs.kmo)[0],
1764 ((unsigned long *) &kvm->arch.model.subfuncs.kmo)[1]);
1765 VM_EVENT(kvm, 3, "GET: guest PCC subfunc 0x%16.16lx.%16.16lx",
1766 ((unsigned long *) &kvm->arch.model.subfuncs.pcc)[0],
1767 ((unsigned long *) &kvm->arch.model.subfuncs.pcc)[1]);
1768 VM_EVENT(kvm, 3, "GET: guest PPNO subfunc 0x%16.16lx.%16.16lx",
1769 ((unsigned long *) &kvm->arch.model.subfuncs.ppno)[0],
1770 ((unsigned long *) &kvm->arch.model.subfuncs.ppno)[1]);
1771 VM_EVENT(kvm, 3, "GET: guest KMA subfunc 0x%16.16lx.%16.16lx",
1772 ((unsigned long *) &kvm->arch.model.subfuncs.kma)[0],
1773 ((unsigned long *) &kvm->arch.model.subfuncs.kma)[1]);
1774 VM_EVENT(kvm, 3, "GET: guest KDSA subfunc 0x%16.16lx.%16.16lx",
1775 ((unsigned long *) &kvm->arch.model.subfuncs.kdsa)[0],
1776 ((unsigned long *) &kvm->arch.model.subfuncs.kdsa)[1]);
1777 VM_EVENT(kvm, 3, "GET: guest SORTL subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx",
1778 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[0],
1779 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[1],
1780 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[2],
1781 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[3]);
1782 VM_EVENT(kvm, 3, "GET: guest DFLTCC subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx",
1783 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[0],
1784 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[1],
1785 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[2],
1786 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[3]);
1787 VM_EVENT(kvm, 3, "GET: guest PFCR subfunc 0x%16.16lx.%16.16lx",
1788 ((unsigned long *) &kvm_s390_available_subfunc.pfcr)[0],
1789 ((unsigned long *) &kvm_s390_available_subfunc.pfcr)[1]);
1790
1791 return 0;
1792 }
1793
kvm_s390_get_machine_subfunc(struct kvm * kvm,struct kvm_device_attr * attr)1794 static int kvm_s390_get_machine_subfunc(struct kvm *kvm,
1795 struct kvm_device_attr *attr)
1796 {
1797 if (copy_to_user((void __user *)attr->addr, &kvm_s390_available_subfunc,
1798 sizeof(struct kvm_s390_vm_cpu_subfunc)))
1799 return -EFAULT;
1800
1801 VM_EVENT(kvm, 3, "GET: host PLO subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx",
1802 ((unsigned long *) &kvm_s390_available_subfunc.plo)[0],
1803 ((unsigned long *) &kvm_s390_available_subfunc.plo)[1],
1804 ((unsigned long *) &kvm_s390_available_subfunc.plo)[2],
1805 ((unsigned long *) &kvm_s390_available_subfunc.plo)[3]);
1806 VM_EVENT(kvm, 3, "GET: host PTFF subfunc 0x%16.16lx.%16.16lx",
1807 ((unsigned long *) &kvm_s390_available_subfunc.ptff)[0],
1808 ((unsigned long *) &kvm_s390_available_subfunc.ptff)[1]);
1809 VM_EVENT(kvm, 3, "GET: host KMAC subfunc 0x%16.16lx.%16.16lx",
1810 ((unsigned long *) &kvm_s390_available_subfunc.kmac)[0],
1811 ((unsigned long *) &kvm_s390_available_subfunc.kmac)[1]);
1812 VM_EVENT(kvm, 3, "GET: host KMC subfunc 0x%16.16lx.%16.16lx",
1813 ((unsigned long *) &kvm_s390_available_subfunc.kmc)[0],
1814 ((unsigned long *) &kvm_s390_available_subfunc.kmc)[1]);
1815 VM_EVENT(kvm, 3, "GET: host KM subfunc 0x%16.16lx.%16.16lx",
1816 ((unsigned long *) &kvm_s390_available_subfunc.km)[0],
1817 ((unsigned long *) &kvm_s390_available_subfunc.km)[1]);
1818 VM_EVENT(kvm, 3, "GET: host KIMD subfunc 0x%16.16lx.%16.16lx",
1819 ((unsigned long *) &kvm_s390_available_subfunc.kimd)[0],
1820 ((unsigned long *) &kvm_s390_available_subfunc.kimd)[1]);
1821 VM_EVENT(kvm, 3, "GET: host KLMD subfunc 0x%16.16lx.%16.16lx",
1822 ((unsigned long *) &kvm_s390_available_subfunc.klmd)[0],
1823 ((unsigned long *) &kvm_s390_available_subfunc.klmd)[1]);
1824 VM_EVENT(kvm, 3, "GET: host PCKMO subfunc 0x%16.16lx.%16.16lx",
1825 ((unsigned long *) &kvm_s390_available_subfunc.pckmo)[0],
1826 ((unsigned long *) &kvm_s390_available_subfunc.pckmo)[1]);
1827 VM_EVENT(kvm, 3, "GET: host KMCTR subfunc 0x%16.16lx.%16.16lx",
1828 ((unsigned long *) &kvm_s390_available_subfunc.kmctr)[0],
1829 ((unsigned long *) &kvm_s390_available_subfunc.kmctr)[1]);
1830 VM_EVENT(kvm, 3, "GET: host KMF subfunc 0x%16.16lx.%16.16lx",
1831 ((unsigned long *) &kvm_s390_available_subfunc.kmf)[0],
1832 ((unsigned long *) &kvm_s390_available_subfunc.kmf)[1]);
1833 VM_EVENT(kvm, 3, "GET: host KMO subfunc 0x%16.16lx.%16.16lx",
1834 ((unsigned long *) &kvm_s390_available_subfunc.kmo)[0],
1835 ((unsigned long *) &kvm_s390_available_subfunc.kmo)[1]);
1836 VM_EVENT(kvm, 3, "GET: host PCC subfunc 0x%16.16lx.%16.16lx",
1837 ((unsigned long *) &kvm_s390_available_subfunc.pcc)[0],
1838 ((unsigned long *) &kvm_s390_available_subfunc.pcc)[1]);
1839 VM_EVENT(kvm, 3, "GET: host PPNO subfunc 0x%16.16lx.%16.16lx",
1840 ((unsigned long *) &kvm_s390_available_subfunc.ppno)[0],
1841 ((unsigned long *) &kvm_s390_available_subfunc.ppno)[1]);
1842 VM_EVENT(kvm, 3, "GET: host KMA subfunc 0x%16.16lx.%16.16lx",
1843 ((unsigned long *) &kvm_s390_available_subfunc.kma)[0],
1844 ((unsigned long *) &kvm_s390_available_subfunc.kma)[1]);
1845 VM_EVENT(kvm, 3, "GET: host KDSA subfunc 0x%16.16lx.%16.16lx",
1846 ((unsigned long *) &kvm_s390_available_subfunc.kdsa)[0],
1847 ((unsigned long *) &kvm_s390_available_subfunc.kdsa)[1]);
1848 VM_EVENT(kvm, 3, "GET: host SORTL subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx",
1849 ((unsigned long *) &kvm_s390_available_subfunc.sortl)[0],
1850 ((unsigned long *) &kvm_s390_available_subfunc.sortl)[1],
1851 ((unsigned long *) &kvm_s390_available_subfunc.sortl)[2],
1852 ((unsigned long *) &kvm_s390_available_subfunc.sortl)[3]);
1853 VM_EVENT(kvm, 3, "GET: host DFLTCC subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx",
1854 ((unsigned long *) &kvm_s390_available_subfunc.dfltcc)[0],
1855 ((unsigned long *) &kvm_s390_available_subfunc.dfltcc)[1],
1856 ((unsigned long *) &kvm_s390_available_subfunc.dfltcc)[2],
1857 ((unsigned long *) &kvm_s390_available_subfunc.dfltcc)[3]);
1858 VM_EVENT(kvm, 3, "GET: host PFCR subfunc 0x%16.16lx.%16.16lx",
1859 ((unsigned long *) &kvm_s390_available_subfunc.pfcr)[0],
1860 ((unsigned long *) &kvm_s390_available_subfunc.pfcr)[1]);
1861
1862 return 0;
1863 }
1864
kvm_s390_get_processor_uv_feat(struct kvm * kvm,struct kvm_device_attr * attr)1865 static int kvm_s390_get_processor_uv_feat(struct kvm *kvm, struct kvm_device_attr *attr)
1866 {
1867 struct kvm_s390_vm_cpu_uv_feat __user *dst = (void __user *)attr->addr;
1868 unsigned long feat = kvm->arch.model.uv_feat_guest.feat;
1869
1870 if (put_user(feat, &dst->feat))
1871 return -EFAULT;
1872 VM_EVENT(kvm, 3, "GET: guest UV-feat: 0x%16.16lx", feat);
1873
1874 return 0;
1875 }
1876
kvm_s390_get_machine_uv_feat(struct kvm * kvm,struct kvm_device_attr * attr)1877 static int kvm_s390_get_machine_uv_feat(struct kvm *kvm, struct kvm_device_attr *attr)
1878 {
1879 struct kvm_s390_vm_cpu_uv_feat __user *dst = (void __user *)attr->addr;
1880 unsigned long feat;
1881
1882 BUILD_BUG_ON(sizeof(*dst) != sizeof(uv_info.uv_feature_indications));
1883
1884 feat = uv_info.uv_feature_indications & KVM_S390_VM_CPU_UV_FEAT_GUEST_MASK;
1885 if (put_user(feat, &dst->feat))
1886 return -EFAULT;
1887 VM_EVENT(kvm, 3, "GET: guest UV-feat: 0x%16.16lx", feat);
1888
1889 return 0;
1890 }
1891
kvm_s390_get_cpu_model(struct kvm * kvm,struct kvm_device_attr * attr)1892 static int kvm_s390_get_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr)
1893 {
1894 int ret = -ENXIO;
1895
1896 switch (attr->attr) {
1897 case KVM_S390_VM_CPU_PROCESSOR:
1898 ret = kvm_s390_get_processor(kvm, attr);
1899 break;
1900 case KVM_S390_VM_CPU_MACHINE:
1901 ret = kvm_s390_get_machine(kvm, attr);
1902 break;
1903 case KVM_S390_VM_CPU_PROCESSOR_FEAT:
1904 ret = kvm_s390_get_processor_feat(kvm, attr);
1905 break;
1906 case KVM_S390_VM_CPU_MACHINE_FEAT:
1907 ret = kvm_s390_get_machine_feat(kvm, attr);
1908 break;
1909 case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC:
1910 ret = kvm_s390_get_processor_subfunc(kvm, attr);
1911 break;
1912 case KVM_S390_VM_CPU_MACHINE_SUBFUNC:
1913 ret = kvm_s390_get_machine_subfunc(kvm, attr);
1914 break;
1915 case KVM_S390_VM_CPU_PROCESSOR_UV_FEAT_GUEST:
1916 ret = kvm_s390_get_processor_uv_feat(kvm, attr);
1917 break;
1918 case KVM_S390_VM_CPU_MACHINE_UV_FEAT_GUEST:
1919 ret = kvm_s390_get_machine_uv_feat(kvm, attr);
1920 break;
1921 }
1922 return ret;
1923 }
1924
1925 /**
1926 * kvm_s390_update_topology_change_report - update CPU topology change report
1927 * @kvm: guest KVM description
1928 * @val: set or clear the MTCR bit
1929 *
1930 * Updates the Multiprocessor Topology-Change-Report bit to signal
1931 * the guest with a topology change.
1932 * This is only relevant if the topology facility is present.
1933 *
1934 * The SCA version, bsca or esca, doesn't matter as offset is the same.
1935 */
kvm_s390_update_topology_change_report(struct kvm * kvm,bool val)1936 static void kvm_s390_update_topology_change_report(struct kvm *kvm, bool val)
1937 {
1938 union sca_utility new, old;
1939 struct bsca_block *sca;
1940
1941 read_lock(&kvm->arch.sca_lock);
1942 sca = kvm->arch.sca;
1943 old = READ_ONCE(sca->utility);
1944 do {
1945 new = old;
1946 new.mtcr = val;
1947 } while (!try_cmpxchg(&sca->utility.val, &old.val, new.val));
1948 read_unlock(&kvm->arch.sca_lock);
1949 }
1950
kvm_s390_set_topo_change_indication(struct kvm * kvm,struct kvm_device_attr * attr)1951 static int kvm_s390_set_topo_change_indication(struct kvm *kvm,
1952 struct kvm_device_attr *attr)
1953 {
1954 if (!test_kvm_facility(kvm, 11))
1955 return -ENXIO;
1956
1957 kvm_s390_update_topology_change_report(kvm, !!attr->attr);
1958 return 0;
1959 }
1960
kvm_s390_get_topo_change_indication(struct kvm * kvm,struct kvm_device_attr * attr)1961 static int kvm_s390_get_topo_change_indication(struct kvm *kvm,
1962 struct kvm_device_attr *attr)
1963 {
1964 u8 topo;
1965
1966 if (!test_kvm_facility(kvm, 11))
1967 return -ENXIO;
1968
1969 read_lock(&kvm->arch.sca_lock);
1970 topo = ((struct bsca_block *)kvm->arch.sca)->utility.mtcr;
1971 read_unlock(&kvm->arch.sca_lock);
1972
1973 return put_user(topo, (u8 __user *)attr->addr);
1974 }
1975
kvm_s390_vm_set_attr(struct kvm * kvm,struct kvm_device_attr * attr)1976 static int kvm_s390_vm_set_attr(struct kvm *kvm, struct kvm_device_attr *attr)
1977 {
1978 int ret;
1979
1980 switch (attr->group) {
1981 case KVM_S390_VM_MEM_CTRL:
1982 ret = kvm_s390_set_mem_control(kvm, attr);
1983 break;
1984 case KVM_S390_VM_TOD:
1985 ret = kvm_s390_set_tod(kvm, attr);
1986 break;
1987 case KVM_S390_VM_CPU_MODEL:
1988 ret = kvm_s390_set_cpu_model(kvm, attr);
1989 break;
1990 case KVM_S390_VM_CRYPTO:
1991 ret = kvm_s390_vm_set_crypto(kvm, attr);
1992 break;
1993 case KVM_S390_VM_MIGRATION:
1994 ret = kvm_s390_vm_set_migration(kvm, attr);
1995 break;
1996 case KVM_S390_VM_CPU_TOPOLOGY:
1997 ret = kvm_s390_set_topo_change_indication(kvm, attr);
1998 break;
1999 default:
2000 ret = -ENXIO;
2001 break;
2002 }
2003
2004 return ret;
2005 }
2006
kvm_s390_vm_get_attr(struct kvm * kvm,struct kvm_device_attr * attr)2007 static int kvm_s390_vm_get_attr(struct kvm *kvm, struct kvm_device_attr *attr)
2008 {
2009 int ret;
2010
2011 switch (attr->group) {
2012 case KVM_S390_VM_MEM_CTRL:
2013 ret = kvm_s390_get_mem_control(kvm, attr);
2014 break;
2015 case KVM_S390_VM_TOD:
2016 ret = kvm_s390_get_tod(kvm, attr);
2017 break;
2018 case KVM_S390_VM_CPU_MODEL:
2019 ret = kvm_s390_get_cpu_model(kvm, attr);
2020 break;
2021 case KVM_S390_VM_MIGRATION:
2022 ret = kvm_s390_vm_get_migration(kvm, attr);
2023 break;
2024 case KVM_S390_VM_CPU_TOPOLOGY:
2025 ret = kvm_s390_get_topo_change_indication(kvm, attr);
2026 break;
2027 default:
2028 ret = -ENXIO;
2029 break;
2030 }
2031
2032 return ret;
2033 }
2034
kvm_s390_vm_has_attr(struct kvm * kvm,struct kvm_device_attr * attr)2035 static int kvm_s390_vm_has_attr(struct kvm *kvm, struct kvm_device_attr *attr)
2036 {
2037 int ret;
2038
2039 switch (attr->group) {
2040 case KVM_S390_VM_MEM_CTRL:
2041 switch (attr->attr) {
2042 case KVM_S390_VM_MEM_ENABLE_CMMA:
2043 case KVM_S390_VM_MEM_CLR_CMMA:
2044 ret = sclp.has_cmma ? 0 : -ENXIO;
2045 break;
2046 case KVM_S390_VM_MEM_LIMIT_SIZE:
2047 ret = 0;
2048 break;
2049 default:
2050 ret = -ENXIO;
2051 break;
2052 }
2053 break;
2054 case KVM_S390_VM_TOD:
2055 switch (attr->attr) {
2056 case KVM_S390_VM_TOD_LOW:
2057 case KVM_S390_VM_TOD_HIGH:
2058 ret = 0;
2059 break;
2060 default:
2061 ret = -ENXIO;
2062 break;
2063 }
2064 break;
2065 case KVM_S390_VM_CPU_MODEL:
2066 switch (attr->attr) {
2067 case KVM_S390_VM_CPU_PROCESSOR:
2068 case KVM_S390_VM_CPU_MACHINE:
2069 case KVM_S390_VM_CPU_PROCESSOR_FEAT:
2070 case KVM_S390_VM_CPU_MACHINE_FEAT:
2071 case KVM_S390_VM_CPU_MACHINE_SUBFUNC:
2072 case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC:
2073 case KVM_S390_VM_CPU_MACHINE_UV_FEAT_GUEST:
2074 case KVM_S390_VM_CPU_PROCESSOR_UV_FEAT_GUEST:
2075 ret = 0;
2076 break;
2077 default:
2078 ret = -ENXIO;
2079 break;
2080 }
2081 break;
2082 case KVM_S390_VM_CRYPTO:
2083 switch (attr->attr) {
2084 case KVM_S390_VM_CRYPTO_ENABLE_AES_KW:
2085 case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW:
2086 case KVM_S390_VM_CRYPTO_DISABLE_AES_KW:
2087 case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW:
2088 ret = 0;
2089 break;
2090 case KVM_S390_VM_CRYPTO_ENABLE_APIE:
2091 case KVM_S390_VM_CRYPTO_DISABLE_APIE:
2092 ret = ap_instructions_available() ? 0 : -ENXIO;
2093 break;
2094 default:
2095 ret = -ENXIO;
2096 break;
2097 }
2098 break;
2099 case KVM_S390_VM_MIGRATION:
2100 ret = 0;
2101 break;
2102 case KVM_S390_VM_CPU_TOPOLOGY:
2103 ret = test_kvm_facility(kvm, 11) ? 0 : -ENXIO;
2104 break;
2105 default:
2106 ret = -ENXIO;
2107 break;
2108 }
2109
2110 return ret;
2111 }
2112
kvm_s390_get_skeys(struct kvm * kvm,struct kvm_s390_skeys * args)2113 static int kvm_s390_get_skeys(struct kvm *kvm, struct kvm_s390_skeys *args)
2114 {
2115 uint8_t *keys;
2116 uint64_t hva;
2117 int srcu_idx, i, r = 0;
2118
2119 if (args->flags != 0)
2120 return -EINVAL;
2121
2122 /* Is this guest using storage keys? */
2123 if (!mm_uses_skeys(current->mm))
2124 return KVM_S390_GET_SKEYS_NONE;
2125
2126 /* Enforce sane limit on memory allocation */
2127 if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX)
2128 return -EINVAL;
2129
2130 keys = kvmalloc_array(args->count, sizeof(uint8_t), GFP_KERNEL_ACCOUNT);
2131 if (!keys)
2132 return -ENOMEM;
2133
2134 mmap_read_lock(current->mm);
2135 srcu_idx = srcu_read_lock(&kvm->srcu);
2136 for (i = 0; i < args->count; i++) {
2137 hva = gfn_to_hva(kvm, args->start_gfn + i);
2138 if (kvm_is_error_hva(hva)) {
2139 r = -EFAULT;
2140 break;
2141 }
2142
2143 r = get_guest_storage_key(current->mm, hva, &keys[i]);
2144 if (r)
2145 break;
2146 }
2147 srcu_read_unlock(&kvm->srcu, srcu_idx);
2148 mmap_read_unlock(current->mm);
2149
2150 if (!r) {
2151 r = copy_to_user((uint8_t __user *)args->skeydata_addr, keys,
2152 sizeof(uint8_t) * args->count);
2153 if (r)
2154 r = -EFAULT;
2155 }
2156
2157 kvfree(keys);
2158 return r;
2159 }
2160
kvm_s390_set_skeys(struct kvm * kvm,struct kvm_s390_skeys * args)2161 static int kvm_s390_set_skeys(struct kvm *kvm, struct kvm_s390_skeys *args)
2162 {
2163 uint8_t *keys;
2164 uint64_t hva;
2165 int srcu_idx, i, r = 0;
2166 bool unlocked;
2167
2168 if (args->flags != 0)
2169 return -EINVAL;
2170
2171 /* Enforce sane limit on memory allocation */
2172 if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX)
2173 return -EINVAL;
2174
2175 keys = kvmalloc_array(args->count, sizeof(uint8_t), GFP_KERNEL_ACCOUNT);
2176 if (!keys)
2177 return -ENOMEM;
2178
2179 r = copy_from_user(keys, (uint8_t __user *)args->skeydata_addr,
2180 sizeof(uint8_t) * args->count);
2181 if (r) {
2182 r = -EFAULT;
2183 goto out;
2184 }
2185
2186 /* Enable storage key handling for the guest */
2187 r = s390_enable_skey();
2188 if (r)
2189 goto out;
2190
2191 i = 0;
2192 mmap_read_lock(current->mm);
2193 srcu_idx = srcu_read_lock(&kvm->srcu);
2194 while (i < args->count) {
2195 unlocked = false;
2196 hva = gfn_to_hva(kvm, args->start_gfn + i);
2197 if (kvm_is_error_hva(hva)) {
2198 r = -EFAULT;
2199 break;
2200 }
2201
2202 /* Lowest order bit is reserved */
2203 if (keys[i] & 0x01) {
2204 r = -EINVAL;
2205 break;
2206 }
2207
2208 r = set_guest_storage_key(current->mm, hva, keys[i], 0);
2209 if (r) {
2210 r = fixup_user_fault(current->mm, hva,
2211 FAULT_FLAG_WRITE, &unlocked);
2212 if (r)
2213 break;
2214 }
2215 if (!r)
2216 i++;
2217 }
2218 srcu_read_unlock(&kvm->srcu, srcu_idx);
2219 mmap_read_unlock(current->mm);
2220 out:
2221 kvfree(keys);
2222 return r;
2223 }
2224
2225 /*
2226 * Base address and length must be sent at the start of each block, therefore
2227 * it's cheaper to send some clean data, as long as it's less than the size of
2228 * two longs.
2229 */
2230 #define KVM_S390_MAX_BIT_DISTANCE (2 * sizeof(void *))
2231 /* for consistency */
2232 #define KVM_S390_CMMA_SIZE_MAX ((u32)KVM_S390_SKEYS_MAX)
2233
kvm_s390_peek_cmma(struct kvm * kvm,struct kvm_s390_cmma_log * args,u8 * res,unsigned long bufsize)2234 static int kvm_s390_peek_cmma(struct kvm *kvm, struct kvm_s390_cmma_log *args,
2235 u8 *res, unsigned long bufsize)
2236 {
2237 unsigned long pgstev, hva, cur_gfn = args->start_gfn;
2238
2239 args->count = 0;
2240 while (args->count < bufsize) {
2241 hva = gfn_to_hva(kvm, cur_gfn);
2242 /*
2243 * We return an error if the first value was invalid, but we
2244 * return successfully if at least one value was copied.
2245 */
2246 if (kvm_is_error_hva(hva))
2247 return args->count ? 0 : -EFAULT;
2248 if (get_pgste(kvm->mm, hva, &pgstev) < 0)
2249 pgstev = 0;
2250 res[args->count++] = (pgstev >> 24) & 0x43;
2251 cur_gfn++;
2252 }
2253
2254 return 0;
2255 }
2256
gfn_to_memslot_approx(struct kvm_memslots * slots,gfn_t gfn)2257 static struct kvm_memory_slot *gfn_to_memslot_approx(struct kvm_memslots *slots,
2258 gfn_t gfn)
2259 {
2260 return ____gfn_to_memslot(slots, gfn, true);
2261 }
2262
kvm_s390_next_dirty_cmma(struct kvm_memslots * slots,unsigned long cur_gfn)2263 static unsigned long kvm_s390_next_dirty_cmma(struct kvm_memslots *slots,
2264 unsigned long cur_gfn)
2265 {
2266 struct kvm_memory_slot *ms = gfn_to_memslot_approx(slots, cur_gfn);
2267 unsigned long ofs = cur_gfn - ms->base_gfn;
2268 struct rb_node *mnode = &ms->gfn_node[slots->node_idx];
2269
2270 if (ms->base_gfn + ms->npages <= cur_gfn) {
2271 mnode = rb_next(mnode);
2272 /* If we are above the highest slot, wrap around */
2273 if (!mnode)
2274 mnode = rb_first(&slots->gfn_tree);
2275
2276 ms = container_of(mnode, struct kvm_memory_slot, gfn_node[slots->node_idx]);
2277 ofs = 0;
2278 }
2279
2280 if (cur_gfn < ms->base_gfn)
2281 ofs = 0;
2282
2283 ofs = find_next_bit(kvm_second_dirty_bitmap(ms), ms->npages, ofs);
2284 while (ofs >= ms->npages && (mnode = rb_next(mnode))) {
2285 ms = container_of(mnode, struct kvm_memory_slot, gfn_node[slots->node_idx]);
2286 ofs = find_first_bit(kvm_second_dirty_bitmap(ms), ms->npages);
2287 }
2288 return ms->base_gfn + ofs;
2289 }
2290
kvm_s390_get_cmma(struct kvm * kvm,struct kvm_s390_cmma_log * args,u8 * res,unsigned long bufsize)2291 static int kvm_s390_get_cmma(struct kvm *kvm, struct kvm_s390_cmma_log *args,
2292 u8 *res, unsigned long bufsize)
2293 {
2294 unsigned long mem_end, cur_gfn, next_gfn, hva, pgstev;
2295 struct kvm_memslots *slots = kvm_memslots(kvm);
2296 struct kvm_memory_slot *ms;
2297
2298 if (unlikely(kvm_memslots_empty(slots)))
2299 return 0;
2300
2301 cur_gfn = kvm_s390_next_dirty_cmma(slots, args->start_gfn);
2302 ms = gfn_to_memslot(kvm, cur_gfn);
2303 args->count = 0;
2304 args->start_gfn = cur_gfn;
2305 if (!ms)
2306 return 0;
2307 next_gfn = kvm_s390_next_dirty_cmma(slots, cur_gfn + 1);
2308 mem_end = kvm_s390_get_gfn_end(slots);
2309
2310 while (args->count < bufsize) {
2311 hva = gfn_to_hva(kvm, cur_gfn);
2312 if (kvm_is_error_hva(hva))
2313 return 0;
2314 /* Decrement only if we actually flipped the bit to 0 */
2315 if (test_and_clear_bit(cur_gfn - ms->base_gfn, kvm_second_dirty_bitmap(ms)))
2316 atomic64_dec(&kvm->arch.cmma_dirty_pages);
2317 if (get_pgste(kvm->mm, hva, &pgstev) < 0)
2318 pgstev = 0;
2319 /* Save the value */
2320 res[args->count++] = (pgstev >> 24) & 0x43;
2321 /* If the next bit is too far away, stop. */
2322 if (next_gfn > cur_gfn + KVM_S390_MAX_BIT_DISTANCE)
2323 return 0;
2324 /* If we reached the previous "next", find the next one */
2325 if (cur_gfn == next_gfn)
2326 next_gfn = kvm_s390_next_dirty_cmma(slots, cur_gfn + 1);
2327 /* Reached the end of memory or of the buffer, stop */
2328 if ((next_gfn >= mem_end) ||
2329 (next_gfn - args->start_gfn >= bufsize))
2330 return 0;
2331 cur_gfn++;
2332 /* Reached the end of the current memslot, take the next one. */
2333 if (cur_gfn - ms->base_gfn >= ms->npages) {
2334 ms = gfn_to_memslot(kvm, cur_gfn);
2335 if (!ms)
2336 return 0;
2337 }
2338 }
2339 return 0;
2340 }
2341
2342 /*
2343 * This function searches for the next page with dirty CMMA attributes, and
2344 * saves the attributes in the buffer up to either the end of the buffer or
2345 * until a block of at least KVM_S390_MAX_BIT_DISTANCE clean bits is found;
2346 * no trailing clean bytes are saved.
2347 * In case no dirty bits were found, or if CMMA was not enabled or used, the
2348 * output buffer will indicate 0 as length.
2349 */
kvm_s390_get_cmma_bits(struct kvm * kvm,struct kvm_s390_cmma_log * args)2350 static int kvm_s390_get_cmma_bits(struct kvm *kvm,
2351 struct kvm_s390_cmma_log *args)
2352 {
2353 unsigned long bufsize;
2354 int srcu_idx, peek, ret;
2355 u8 *values;
2356
2357 if (!kvm->arch.use_cmma)
2358 return -ENXIO;
2359 /* Invalid/unsupported flags were specified */
2360 if (args->flags & ~KVM_S390_CMMA_PEEK)
2361 return -EINVAL;
2362 /* Migration mode query, and we are not doing a migration */
2363 peek = !!(args->flags & KVM_S390_CMMA_PEEK);
2364 if (!peek && !kvm->arch.migration_mode)
2365 return -EINVAL;
2366 /* CMMA is disabled or was not used, or the buffer has length zero */
2367 bufsize = min(args->count, KVM_S390_CMMA_SIZE_MAX);
2368 if (!bufsize || !kvm->mm->context.uses_cmm) {
2369 memset(args, 0, sizeof(*args));
2370 return 0;
2371 }
2372 /* We are not peeking, and there are no dirty pages */
2373 if (!peek && !atomic64_read(&kvm->arch.cmma_dirty_pages)) {
2374 memset(args, 0, sizeof(*args));
2375 return 0;
2376 }
2377
2378 values = vmalloc(bufsize);
2379 if (!values)
2380 return -ENOMEM;
2381
2382 mmap_read_lock(kvm->mm);
2383 srcu_idx = srcu_read_lock(&kvm->srcu);
2384 if (peek)
2385 ret = kvm_s390_peek_cmma(kvm, args, values, bufsize);
2386 else
2387 ret = kvm_s390_get_cmma(kvm, args, values, bufsize);
2388 srcu_read_unlock(&kvm->srcu, srcu_idx);
2389 mmap_read_unlock(kvm->mm);
2390
2391 if (kvm->arch.migration_mode)
2392 args->remaining = atomic64_read(&kvm->arch.cmma_dirty_pages);
2393 else
2394 args->remaining = 0;
2395
2396 if (copy_to_user((void __user *)args->values, values, args->count))
2397 ret = -EFAULT;
2398
2399 vfree(values);
2400 return ret;
2401 }
2402
2403 /*
2404 * This function sets the CMMA attributes for the given pages. If the input
2405 * buffer has zero length, no action is taken, otherwise the attributes are
2406 * set and the mm->context.uses_cmm flag is set.
2407 */
kvm_s390_set_cmma_bits(struct kvm * kvm,const struct kvm_s390_cmma_log * args)2408 static int kvm_s390_set_cmma_bits(struct kvm *kvm,
2409 const struct kvm_s390_cmma_log *args)
2410 {
2411 unsigned long hva, mask, pgstev, i;
2412 uint8_t *bits;
2413 int srcu_idx, r = 0;
2414
2415 mask = args->mask;
2416
2417 if (!kvm->arch.use_cmma)
2418 return -ENXIO;
2419 /* invalid/unsupported flags */
2420 if (args->flags != 0)
2421 return -EINVAL;
2422 /* Enforce sane limit on memory allocation */
2423 if (args->count > KVM_S390_CMMA_SIZE_MAX)
2424 return -EINVAL;
2425 /* Nothing to do */
2426 if (args->count == 0)
2427 return 0;
2428
2429 bits = vmalloc(array_size(sizeof(*bits), args->count));
2430 if (!bits)
2431 return -ENOMEM;
2432
2433 r = copy_from_user(bits, (void __user *)args->values, args->count);
2434 if (r) {
2435 r = -EFAULT;
2436 goto out;
2437 }
2438
2439 mmap_read_lock(kvm->mm);
2440 srcu_idx = srcu_read_lock(&kvm->srcu);
2441 for (i = 0; i < args->count; i++) {
2442 hva = gfn_to_hva(kvm, args->start_gfn + i);
2443 if (kvm_is_error_hva(hva)) {
2444 r = -EFAULT;
2445 break;
2446 }
2447
2448 pgstev = bits[i];
2449 pgstev = pgstev << 24;
2450 mask &= _PGSTE_GPS_USAGE_MASK | _PGSTE_GPS_NODAT;
2451 set_pgste_bits(kvm->mm, hva, mask, pgstev);
2452 }
2453 srcu_read_unlock(&kvm->srcu, srcu_idx);
2454 mmap_read_unlock(kvm->mm);
2455
2456 if (!kvm->mm->context.uses_cmm) {
2457 mmap_write_lock(kvm->mm);
2458 kvm->mm->context.uses_cmm = 1;
2459 mmap_write_unlock(kvm->mm);
2460 }
2461 out:
2462 vfree(bits);
2463 return r;
2464 }
2465
2466 /**
2467 * kvm_s390_cpus_from_pv - Convert all protected vCPUs in a protected VM to
2468 * non protected.
2469 * @kvm: the VM whose protected vCPUs are to be converted
2470 * @rc: return value for the RC field of the UVC (in case of error)
2471 * @rrc: return value for the RRC field of the UVC (in case of error)
2472 *
2473 * Does not stop in case of error, tries to convert as many
2474 * CPUs as possible. In case of error, the RC and RRC of the last error are
2475 * returned.
2476 *
2477 * Return: 0 in case of success, otherwise -EIO
2478 */
kvm_s390_cpus_from_pv(struct kvm * kvm,u16 * rc,u16 * rrc)2479 int kvm_s390_cpus_from_pv(struct kvm *kvm, u16 *rc, u16 *rrc)
2480 {
2481 struct kvm_vcpu *vcpu;
2482 unsigned long i;
2483 u16 _rc, _rrc;
2484 int ret = 0;
2485
2486 /*
2487 * We ignore failures and try to destroy as many CPUs as possible.
2488 * At the same time we must not free the assigned resources when
2489 * this fails, as the ultravisor has still access to that memory.
2490 * So kvm_s390_pv_destroy_cpu can leave a "wanted" memory leak
2491 * behind.
2492 * We want to return the first failure rc and rrc, though.
2493 */
2494 kvm_for_each_vcpu(i, vcpu, kvm) {
2495 mutex_lock(&vcpu->mutex);
2496 if (kvm_s390_pv_destroy_cpu(vcpu, &_rc, &_rrc) && !ret) {
2497 *rc = _rc;
2498 *rrc = _rrc;
2499 ret = -EIO;
2500 }
2501 mutex_unlock(&vcpu->mutex);
2502 }
2503 /* Ensure that we re-enable gisa if the non-PV guest used it but the PV guest did not. */
2504 if (use_gisa)
2505 kvm_s390_gisa_enable(kvm);
2506 return ret;
2507 }
2508
2509 /**
2510 * kvm_s390_cpus_to_pv - Convert all non-protected vCPUs in a protected VM
2511 * to protected.
2512 * @kvm: the VM whose protected vCPUs are to be converted
2513 * @rc: return value for the RC field of the UVC (in case of error)
2514 * @rrc: return value for the RRC field of the UVC (in case of error)
2515 *
2516 * Tries to undo the conversion in case of error.
2517 *
2518 * Return: 0 in case of success, otherwise -EIO
2519 */
kvm_s390_cpus_to_pv(struct kvm * kvm,u16 * rc,u16 * rrc)2520 static int kvm_s390_cpus_to_pv(struct kvm *kvm, u16 *rc, u16 *rrc)
2521 {
2522 unsigned long i;
2523 int r = 0;
2524 u16 dummy;
2525
2526 struct kvm_vcpu *vcpu;
2527
2528 /* Disable the GISA if the ultravisor does not support AIV. */
2529 if (!uv_has_feature(BIT_UV_FEAT_AIV))
2530 kvm_s390_gisa_disable(kvm);
2531
2532 kvm_for_each_vcpu(i, vcpu, kvm) {
2533 mutex_lock(&vcpu->mutex);
2534 r = kvm_s390_pv_create_cpu(vcpu, rc, rrc);
2535 mutex_unlock(&vcpu->mutex);
2536 if (r)
2537 break;
2538 }
2539 if (r)
2540 kvm_s390_cpus_from_pv(kvm, &dummy, &dummy);
2541 return r;
2542 }
2543
2544 /*
2545 * Here we provide user space with a direct interface to query UV
2546 * related data like UV maxima and available features as well as
2547 * feature specific data.
2548 *
2549 * To facilitate future extension of the data structures we'll try to
2550 * write data up to the maximum requested length.
2551 */
kvm_s390_handle_pv_info(struct kvm_s390_pv_info * info)2552 static ssize_t kvm_s390_handle_pv_info(struct kvm_s390_pv_info *info)
2553 {
2554 ssize_t len_min;
2555
2556 switch (info->header.id) {
2557 case KVM_PV_INFO_VM: {
2558 len_min = sizeof(info->header) + sizeof(info->vm);
2559
2560 if (info->header.len_max < len_min)
2561 return -EINVAL;
2562
2563 memcpy(info->vm.inst_calls_list,
2564 uv_info.inst_calls_list,
2565 sizeof(uv_info.inst_calls_list));
2566
2567 /* It's max cpuid not max cpus, so it's off by one */
2568 info->vm.max_cpus = uv_info.max_guest_cpu_id + 1;
2569 info->vm.max_guests = uv_info.max_num_sec_conf;
2570 info->vm.max_guest_addr = uv_info.max_sec_stor_addr;
2571 info->vm.feature_indication = uv_info.uv_feature_indications;
2572
2573 return len_min;
2574 }
2575 case KVM_PV_INFO_DUMP: {
2576 len_min = sizeof(info->header) + sizeof(info->dump);
2577
2578 if (info->header.len_max < len_min)
2579 return -EINVAL;
2580
2581 info->dump.dump_cpu_buffer_len = uv_info.guest_cpu_stor_len;
2582 info->dump.dump_config_mem_buffer_per_1m = uv_info.conf_dump_storage_state_len;
2583 info->dump.dump_config_finalize_len = uv_info.conf_dump_finalize_len;
2584 return len_min;
2585 }
2586 default:
2587 return -EINVAL;
2588 }
2589 }
2590
kvm_s390_pv_dmp(struct kvm * kvm,struct kvm_pv_cmd * cmd,struct kvm_s390_pv_dmp dmp)2591 static int kvm_s390_pv_dmp(struct kvm *kvm, struct kvm_pv_cmd *cmd,
2592 struct kvm_s390_pv_dmp dmp)
2593 {
2594 int r = -EINVAL;
2595 void __user *result_buff = (void __user *)dmp.buff_addr;
2596
2597 switch (dmp.subcmd) {
2598 case KVM_PV_DUMP_INIT: {
2599 if (kvm->arch.pv.dumping)
2600 break;
2601
2602 /*
2603 * Block SIE entry as concurrent dump UVCs could lead
2604 * to validities.
2605 */
2606 kvm_s390_vcpu_block_all(kvm);
2607
2608 r = uv_cmd_nodata(kvm_s390_pv_get_handle(kvm),
2609 UVC_CMD_DUMP_INIT, &cmd->rc, &cmd->rrc);
2610 KVM_UV_EVENT(kvm, 3, "PROTVIRT DUMP INIT: rc %x rrc %x",
2611 cmd->rc, cmd->rrc);
2612 if (!r) {
2613 kvm->arch.pv.dumping = true;
2614 } else {
2615 kvm_s390_vcpu_unblock_all(kvm);
2616 r = -EINVAL;
2617 }
2618 break;
2619 }
2620 case KVM_PV_DUMP_CONFIG_STOR_STATE: {
2621 if (!kvm->arch.pv.dumping)
2622 break;
2623
2624 /*
2625 * gaddr is an output parameter since we might stop
2626 * early. As dmp will be copied back in our caller, we
2627 * don't need to do it ourselves.
2628 */
2629 r = kvm_s390_pv_dump_stor_state(kvm, result_buff, &dmp.gaddr, dmp.buff_len,
2630 &cmd->rc, &cmd->rrc);
2631 break;
2632 }
2633 case KVM_PV_DUMP_COMPLETE: {
2634 if (!kvm->arch.pv.dumping)
2635 break;
2636
2637 r = -EINVAL;
2638 if (dmp.buff_len < uv_info.conf_dump_finalize_len)
2639 break;
2640
2641 r = kvm_s390_pv_dump_complete(kvm, result_buff,
2642 &cmd->rc, &cmd->rrc);
2643 break;
2644 }
2645 default:
2646 r = -ENOTTY;
2647 break;
2648 }
2649
2650 return r;
2651 }
2652
kvm_s390_handle_pv(struct kvm * kvm,struct kvm_pv_cmd * cmd)2653 static int kvm_s390_handle_pv(struct kvm *kvm, struct kvm_pv_cmd *cmd)
2654 {
2655 const bool need_lock = (cmd->cmd != KVM_PV_ASYNC_CLEANUP_PERFORM);
2656 void __user *argp = (void __user *)cmd->data;
2657 int r = 0;
2658 u16 dummy;
2659
2660 if (need_lock)
2661 mutex_lock(&kvm->lock);
2662
2663 switch (cmd->cmd) {
2664 case KVM_PV_ENABLE: {
2665 r = -EINVAL;
2666 if (kvm_s390_pv_is_protected(kvm))
2667 break;
2668
2669 /*
2670 * FMT 4 SIE needs esca. As we never switch back to bsca from
2671 * esca, we need no cleanup in the error cases below
2672 */
2673 r = sca_switch_to_extended(kvm);
2674 if (r)
2675 break;
2676
2677 r = s390_disable_cow_sharing();
2678 if (r)
2679 break;
2680
2681 r = kvm_s390_pv_init_vm(kvm, &cmd->rc, &cmd->rrc);
2682 if (r)
2683 break;
2684
2685 r = kvm_s390_cpus_to_pv(kvm, &cmd->rc, &cmd->rrc);
2686 if (r)
2687 kvm_s390_pv_deinit_vm(kvm, &dummy, &dummy);
2688
2689 /* we need to block service interrupts from now on */
2690 set_bit(IRQ_PEND_EXT_SERVICE, &kvm->arch.float_int.masked_irqs);
2691 break;
2692 }
2693 case KVM_PV_ASYNC_CLEANUP_PREPARE:
2694 r = -EINVAL;
2695 if (!kvm_s390_pv_is_protected(kvm) || !async_destroy)
2696 break;
2697
2698 r = kvm_s390_cpus_from_pv(kvm, &cmd->rc, &cmd->rrc);
2699 /*
2700 * If a CPU could not be destroyed, destroy VM will also fail.
2701 * There is no point in trying to destroy it. Instead return
2702 * the rc and rrc from the first CPU that failed destroying.
2703 */
2704 if (r)
2705 break;
2706 r = kvm_s390_pv_set_aside(kvm, &cmd->rc, &cmd->rrc);
2707
2708 /* no need to block service interrupts any more */
2709 clear_bit(IRQ_PEND_EXT_SERVICE, &kvm->arch.float_int.masked_irqs);
2710 break;
2711 case KVM_PV_ASYNC_CLEANUP_PERFORM:
2712 r = -EINVAL;
2713 if (!async_destroy)
2714 break;
2715 /* kvm->lock must not be held; this is asserted inside the function. */
2716 r = kvm_s390_pv_deinit_aside_vm(kvm, &cmd->rc, &cmd->rrc);
2717 break;
2718 case KVM_PV_DISABLE: {
2719 r = -EINVAL;
2720 if (!kvm_s390_pv_is_protected(kvm))
2721 break;
2722
2723 r = kvm_s390_cpus_from_pv(kvm, &cmd->rc, &cmd->rrc);
2724 /*
2725 * If a CPU could not be destroyed, destroy VM will also fail.
2726 * There is no point in trying to destroy it. Instead return
2727 * the rc and rrc from the first CPU that failed destroying.
2728 */
2729 if (r)
2730 break;
2731 r = kvm_s390_pv_deinit_cleanup_all(kvm, &cmd->rc, &cmd->rrc);
2732
2733 /* no need to block service interrupts any more */
2734 clear_bit(IRQ_PEND_EXT_SERVICE, &kvm->arch.float_int.masked_irqs);
2735 break;
2736 }
2737 case KVM_PV_SET_SEC_PARMS: {
2738 struct kvm_s390_pv_sec_parm parms = {};
2739 void *hdr;
2740
2741 r = -EINVAL;
2742 if (!kvm_s390_pv_is_protected(kvm))
2743 break;
2744
2745 r = -EFAULT;
2746 if (copy_from_user(&parms, argp, sizeof(parms)))
2747 break;
2748
2749 /* Currently restricted to 8KB */
2750 r = -EINVAL;
2751 if (parms.length > PAGE_SIZE * 2)
2752 break;
2753
2754 r = -ENOMEM;
2755 hdr = vmalloc(parms.length);
2756 if (!hdr)
2757 break;
2758
2759 r = -EFAULT;
2760 if (!copy_from_user(hdr, (void __user *)parms.origin,
2761 parms.length))
2762 r = kvm_s390_pv_set_sec_parms(kvm, hdr, parms.length,
2763 &cmd->rc, &cmd->rrc);
2764
2765 vfree(hdr);
2766 break;
2767 }
2768 case KVM_PV_UNPACK: {
2769 struct kvm_s390_pv_unp unp = {};
2770
2771 r = -EINVAL;
2772 if (!kvm_s390_pv_is_protected(kvm) || !mm_is_protected(kvm->mm))
2773 break;
2774
2775 r = -EFAULT;
2776 if (copy_from_user(&unp, argp, sizeof(unp)))
2777 break;
2778
2779 r = kvm_s390_pv_unpack(kvm, unp.addr, unp.size, unp.tweak,
2780 &cmd->rc, &cmd->rrc);
2781 break;
2782 }
2783 case KVM_PV_VERIFY: {
2784 r = -EINVAL;
2785 if (!kvm_s390_pv_is_protected(kvm))
2786 break;
2787
2788 r = uv_cmd_nodata(kvm_s390_pv_get_handle(kvm),
2789 UVC_CMD_VERIFY_IMG, &cmd->rc, &cmd->rrc);
2790 KVM_UV_EVENT(kvm, 3, "PROTVIRT VERIFY: rc %x rrc %x", cmd->rc,
2791 cmd->rrc);
2792 break;
2793 }
2794 case KVM_PV_PREP_RESET: {
2795 r = -EINVAL;
2796 if (!kvm_s390_pv_is_protected(kvm))
2797 break;
2798
2799 r = uv_cmd_nodata(kvm_s390_pv_get_handle(kvm),
2800 UVC_CMD_PREPARE_RESET, &cmd->rc, &cmd->rrc);
2801 KVM_UV_EVENT(kvm, 3, "PROTVIRT PREP RESET: rc %x rrc %x",
2802 cmd->rc, cmd->rrc);
2803 break;
2804 }
2805 case KVM_PV_UNSHARE_ALL: {
2806 r = -EINVAL;
2807 if (!kvm_s390_pv_is_protected(kvm))
2808 break;
2809
2810 r = uv_cmd_nodata(kvm_s390_pv_get_handle(kvm),
2811 UVC_CMD_SET_UNSHARE_ALL, &cmd->rc, &cmd->rrc);
2812 KVM_UV_EVENT(kvm, 3, "PROTVIRT UNSHARE: rc %x rrc %x",
2813 cmd->rc, cmd->rrc);
2814 break;
2815 }
2816 case KVM_PV_INFO: {
2817 struct kvm_s390_pv_info info = {};
2818 ssize_t data_len;
2819
2820 /*
2821 * No need to check the VM protection here.
2822 *
2823 * Maybe user space wants to query some of the data
2824 * when the VM is still unprotected. If we see the
2825 * need to fence a new data command we can still
2826 * return an error in the info handler.
2827 */
2828
2829 r = -EFAULT;
2830 if (copy_from_user(&info, argp, sizeof(info.header)))
2831 break;
2832
2833 r = -EINVAL;
2834 if (info.header.len_max < sizeof(info.header))
2835 break;
2836
2837 data_len = kvm_s390_handle_pv_info(&info);
2838 if (data_len < 0) {
2839 r = data_len;
2840 break;
2841 }
2842 /*
2843 * If a data command struct is extended (multiple
2844 * times) this can be used to determine how much of it
2845 * is valid.
2846 */
2847 info.header.len_written = data_len;
2848
2849 r = -EFAULT;
2850 if (copy_to_user(argp, &info, data_len))
2851 break;
2852
2853 r = 0;
2854 break;
2855 }
2856 case KVM_PV_DUMP: {
2857 struct kvm_s390_pv_dmp dmp;
2858
2859 r = -EINVAL;
2860 if (!kvm_s390_pv_is_protected(kvm))
2861 break;
2862
2863 r = -EFAULT;
2864 if (copy_from_user(&dmp, argp, sizeof(dmp)))
2865 break;
2866
2867 r = kvm_s390_pv_dmp(kvm, cmd, dmp);
2868 if (r)
2869 break;
2870
2871 if (copy_to_user(argp, &dmp, sizeof(dmp))) {
2872 r = -EFAULT;
2873 break;
2874 }
2875
2876 break;
2877 }
2878 default:
2879 r = -ENOTTY;
2880 }
2881 if (need_lock)
2882 mutex_unlock(&kvm->lock);
2883
2884 return r;
2885 }
2886
mem_op_validate_common(struct kvm_s390_mem_op * mop,u64 supported_flags)2887 static int mem_op_validate_common(struct kvm_s390_mem_op *mop, u64 supported_flags)
2888 {
2889 if (mop->flags & ~supported_flags || !mop->size)
2890 return -EINVAL;
2891 if (mop->size > MEM_OP_MAX_SIZE)
2892 return -E2BIG;
2893 if (mop->flags & KVM_S390_MEMOP_F_SKEY_PROTECTION) {
2894 if (mop->key > 0xf)
2895 return -EINVAL;
2896 } else {
2897 mop->key = 0;
2898 }
2899 return 0;
2900 }
2901
kvm_s390_vm_mem_op_abs(struct kvm * kvm,struct kvm_s390_mem_op * mop)2902 static int kvm_s390_vm_mem_op_abs(struct kvm *kvm, struct kvm_s390_mem_op *mop)
2903 {
2904 void __user *uaddr = (void __user *)mop->buf;
2905 enum gacc_mode acc_mode;
2906 void *tmpbuf = NULL;
2907 int r, srcu_idx;
2908
2909 r = mem_op_validate_common(mop, KVM_S390_MEMOP_F_SKEY_PROTECTION |
2910 KVM_S390_MEMOP_F_CHECK_ONLY);
2911 if (r)
2912 return r;
2913
2914 if (!(mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY)) {
2915 tmpbuf = vmalloc(mop->size);
2916 if (!tmpbuf)
2917 return -ENOMEM;
2918 }
2919
2920 srcu_idx = srcu_read_lock(&kvm->srcu);
2921
2922 if (!kvm_is_gpa_in_memslot(kvm, mop->gaddr)) {
2923 r = PGM_ADDRESSING;
2924 goto out_unlock;
2925 }
2926
2927 acc_mode = mop->op == KVM_S390_MEMOP_ABSOLUTE_READ ? GACC_FETCH : GACC_STORE;
2928 if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) {
2929 r = check_gpa_range(kvm, mop->gaddr, mop->size, acc_mode, mop->key);
2930 goto out_unlock;
2931 }
2932 if (acc_mode == GACC_FETCH) {
2933 r = access_guest_abs_with_key(kvm, mop->gaddr, tmpbuf,
2934 mop->size, GACC_FETCH, mop->key);
2935 if (r)
2936 goto out_unlock;
2937 if (copy_to_user(uaddr, tmpbuf, mop->size))
2938 r = -EFAULT;
2939 } else {
2940 if (copy_from_user(tmpbuf, uaddr, mop->size)) {
2941 r = -EFAULT;
2942 goto out_unlock;
2943 }
2944 r = access_guest_abs_with_key(kvm, mop->gaddr, tmpbuf,
2945 mop->size, GACC_STORE, mop->key);
2946 }
2947
2948 out_unlock:
2949 srcu_read_unlock(&kvm->srcu, srcu_idx);
2950
2951 vfree(tmpbuf);
2952 return r;
2953 }
2954
kvm_s390_vm_mem_op_cmpxchg(struct kvm * kvm,struct kvm_s390_mem_op * mop)2955 static int kvm_s390_vm_mem_op_cmpxchg(struct kvm *kvm, struct kvm_s390_mem_op *mop)
2956 {
2957 void __user *uaddr = (void __user *)mop->buf;
2958 void __user *old_addr = (void __user *)mop->old_addr;
2959 union {
2960 __uint128_t quad;
2961 char raw[sizeof(__uint128_t)];
2962 } old = { .quad = 0}, new = { .quad = 0 };
2963 unsigned int off_in_quad = sizeof(new) - mop->size;
2964 int r, srcu_idx;
2965 bool success;
2966
2967 r = mem_op_validate_common(mop, KVM_S390_MEMOP_F_SKEY_PROTECTION);
2968 if (r)
2969 return r;
2970 /*
2971 * This validates off_in_quad. Checking that size is a power
2972 * of two is not necessary, as cmpxchg_guest_abs_with_key
2973 * takes care of that
2974 */
2975 if (mop->size > sizeof(new))
2976 return -EINVAL;
2977 if (copy_from_user(&new.raw[off_in_quad], uaddr, mop->size))
2978 return -EFAULT;
2979 if (copy_from_user(&old.raw[off_in_quad], old_addr, mop->size))
2980 return -EFAULT;
2981
2982 srcu_idx = srcu_read_lock(&kvm->srcu);
2983
2984 if (!kvm_is_gpa_in_memslot(kvm, mop->gaddr)) {
2985 r = PGM_ADDRESSING;
2986 goto out_unlock;
2987 }
2988
2989 r = cmpxchg_guest_abs_with_key(kvm, mop->gaddr, mop->size, &old.quad,
2990 new.quad, mop->key, &success);
2991 if (!success && copy_to_user(old_addr, &old.raw[off_in_quad], mop->size))
2992 r = -EFAULT;
2993
2994 out_unlock:
2995 srcu_read_unlock(&kvm->srcu, srcu_idx);
2996 return r;
2997 }
2998
kvm_s390_vm_mem_op(struct kvm * kvm,struct kvm_s390_mem_op * mop)2999 static int kvm_s390_vm_mem_op(struct kvm *kvm, struct kvm_s390_mem_op *mop)
3000 {
3001 /*
3002 * This is technically a heuristic only, if the kvm->lock is not
3003 * taken, it is not guaranteed that the vm is/remains non-protected.
3004 * This is ok from a kernel perspective, wrongdoing is detected
3005 * on the access, -EFAULT is returned and the vm may crash the
3006 * next time it accesses the memory in question.
3007 * There is no sane usecase to do switching and a memop on two
3008 * different CPUs at the same time.
3009 */
3010 if (kvm_s390_pv_get_handle(kvm))
3011 return -EINVAL;
3012
3013 switch (mop->op) {
3014 case KVM_S390_MEMOP_ABSOLUTE_READ:
3015 case KVM_S390_MEMOP_ABSOLUTE_WRITE:
3016 return kvm_s390_vm_mem_op_abs(kvm, mop);
3017 case KVM_S390_MEMOP_ABSOLUTE_CMPXCHG:
3018 return kvm_s390_vm_mem_op_cmpxchg(kvm, mop);
3019 default:
3020 return -EINVAL;
3021 }
3022 }
3023
kvm_arch_vm_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)3024 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
3025 {
3026 struct kvm *kvm = filp->private_data;
3027 void __user *argp = (void __user *)arg;
3028 struct kvm_device_attr attr;
3029 int r;
3030
3031 switch (ioctl) {
3032 case KVM_S390_INTERRUPT: {
3033 struct kvm_s390_interrupt s390int;
3034
3035 r = -EFAULT;
3036 if (copy_from_user(&s390int, argp, sizeof(s390int)))
3037 break;
3038 r = kvm_s390_inject_vm(kvm, &s390int);
3039 break;
3040 }
3041 case KVM_CREATE_IRQCHIP: {
3042 r = -EINVAL;
3043 if (kvm->arch.use_irqchip)
3044 r = 0;
3045 break;
3046 }
3047 case KVM_SET_DEVICE_ATTR: {
3048 r = -EFAULT;
3049 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
3050 break;
3051 r = kvm_s390_vm_set_attr(kvm, &attr);
3052 break;
3053 }
3054 case KVM_GET_DEVICE_ATTR: {
3055 r = -EFAULT;
3056 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
3057 break;
3058 r = kvm_s390_vm_get_attr(kvm, &attr);
3059 break;
3060 }
3061 case KVM_HAS_DEVICE_ATTR: {
3062 r = -EFAULT;
3063 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
3064 break;
3065 r = kvm_s390_vm_has_attr(kvm, &attr);
3066 break;
3067 }
3068 case KVM_S390_GET_SKEYS: {
3069 struct kvm_s390_skeys args;
3070
3071 r = -EFAULT;
3072 if (copy_from_user(&args, argp,
3073 sizeof(struct kvm_s390_skeys)))
3074 break;
3075 r = kvm_s390_get_skeys(kvm, &args);
3076 break;
3077 }
3078 case KVM_S390_SET_SKEYS: {
3079 struct kvm_s390_skeys args;
3080
3081 r = -EFAULT;
3082 if (copy_from_user(&args, argp,
3083 sizeof(struct kvm_s390_skeys)))
3084 break;
3085 r = kvm_s390_set_skeys(kvm, &args);
3086 break;
3087 }
3088 case KVM_S390_GET_CMMA_BITS: {
3089 struct kvm_s390_cmma_log args;
3090
3091 r = -EFAULT;
3092 if (copy_from_user(&args, argp, sizeof(args)))
3093 break;
3094 mutex_lock(&kvm->slots_lock);
3095 r = kvm_s390_get_cmma_bits(kvm, &args);
3096 mutex_unlock(&kvm->slots_lock);
3097 if (!r) {
3098 r = copy_to_user(argp, &args, sizeof(args));
3099 if (r)
3100 r = -EFAULT;
3101 }
3102 break;
3103 }
3104 case KVM_S390_SET_CMMA_BITS: {
3105 struct kvm_s390_cmma_log args;
3106
3107 r = -EFAULT;
3108 if (copy_from_user(&args, argp, sizeof(args)))
3109 break;
3110 mutex_lock(&kvm->slots_lock);
3111 r = kvm_s390_set_cmma_bits(kvm, &args);
3112 mutex_unlock(&kvm->slots_lock);
3113 break;
3114 }
3115 case KVM_S390_PV_COMMAND: {
3116 struct kvm_pv_cmd args;
3117
3118 /* protvirt means user cpu state */
3119 kvm_s390_set_user_cpu_state_ctrl(kvm);
3120 r = 0;
3121 if (!is_prot_virt_host()) {
3122 r = -EINVAL;
3123 break;
3124 }
3125 if (copy_from_user(&args, argp, sizeof(args))) {
3126 r = -EFAULT;
3127 break;
3128 }
3129 if (args.flags) {
3130 r = -EINVAL;
3131 break;
3132 }
3133 /* must be called without kvm->lock */
3134 r = kvm_s390_handle_pv(kvm, &args);
3135 if (copy_to_user(argp, &args, sizeof(args))) {
3136 r = -EFAULT;
3137 break;
3138 }
3139 break;
3140 }
3141 case KVM_S390_MEM_OP: {
3142 struct kvm_s390_mem_op mem_op;
3143
3144 if (copy_from_user(&mem_op, argp, sizeof(mem_op)) == 0)
3145 r = kvm_s390_vm_mem_op(kvm, &mem_op);
3146 else
3147 r = -EFAULT;
3148 break;
3149 }
3150 case KVM_S390_ZPCI_OP: {
3151 struct kvm_s390_zpci_op args;
3152
3153 r = -EINVAL;
3154 if (!IS_ENABLED(CONFIG_VFIO_PCI_ZDEV_KVM))
3155 break;
3156 if (copy_from_user(&args, argp, sizeof(args))) {
3157 r = -EFAULT;
3158 break;
3159 }
3160 r = kvm_s390_pci_zpci_op(kvm, &args);
3161 break;
3162 }
3163 default:
3164 r = -ENOTTY;
3165 }
3166
3167 return r;
3168 }
3169
kvm_s390_apxa_installed(void)3170 static int kvm_s390_apxa_installed(void)
3171 {
3172 struct ap_config_info info;
3173
3174 if (ap_instructions_available()) {
3175 if (ap_qci(&info) == 0)
3176 return info.apxa;
3177 }
3178
3179 return 0;
3180 }
3181
3182 /*
3183 * The format of the crypto control block (CRYCB) is specified in the 3 low
3184 * order bits of the CRYCB designation (CRYCBD) field as follows:
3185 * Format 0: Neither the message security assist extension 3 (MSAX3) nor the
3186 * AP extended addressing (APXA) facility are installed.
3187 * Format 1: The APXA facility is not installed but the MSAX3 facility is.
3188 * Format 2: Both the APXA and MSAX3 facilities are installed
3189 */
kvm_s390_set_crycb_format(struct kvm * kvm)3190 static void kvm_s390_set_crycb_format(struct kvm *kvm)
3191 {
3192 kvm->arch.crypto.crycbd = virt_to_phys(kvm->arch.crypto.crycb);
3193
3194 /* Clear the CRYCB format bits - i.e., set format 0 by default */
3195 kvm->arch.crypto.crycbd &= ~(CRYCB_FORMAT_MASK);
3196
3197 /* Check whether MSAX3 is installed */
3198 if (!test_kvm_facility(kvm, 76))
3199 return;
3200
3201 if (kvm_s390_apxa_installed())
3202 kvm->arch.crypto.crycbd |= CRYCB_FORMAT2;
3203 else
3204 kvm->arch.crypto.crycbd |= CRYCB_FORMAT1;
3205 }
3206
3207 /*
3208 * kvm_arch_crypto_set_masks
3209 *
3210 * @kvm: pointer to the target guest's KVM struct containing the crypto masks
3211 * to be set.
3212 * @apm: the mask identifying the accessible AP adapters
3213 * @aqm: the mask identifying the accessible AP domains
3214 * @adm: the mask identifying the accessible AP control domains
3215 *
3216 * Set the masks that identify the adapters, domains and control domains to
3217 * which the KVM guest is granted access.
3218 *
3219 * Note: The kvm->lock mutex must be locked by the caller before invoking this
3220 * function.
3221 */
kvm_arch_crypto_set_masks(struct kvm * kvm,unsigned long * apm,unsigned long * aqm,unsigned long * adm)3222 void kvm_arch_crypto_set_masks(struct kvm *kvm, unsigned long *apm,
3223 unsigned long *aqm, unsigned long *adm)
3224 {
3225 struct kvm_s390_crypto_cb *crycb = kvm->arch.crypto.crycb;
3226
3227 kvm_s390_vcpu_block_all(kvm);
3228
3229 switch (kvm->arch.crypto.crycbd & CRYCB_FORMAT_MASK) {
3230 case CRYCB_FORMAT2: /* APCB1 use 256 bits */
3231 memcpy(crycb->apcb1.apm, apm, 32);
3232 VM_EVENT(kvm, 3, "SET CRYCB: apm %016lx %016lx %016lx %016lx",
3233 apm[0], apm[1], apm[2], apm[3]);
3234 memcpy(crycb->apcb1.aqm, aqm, 32);
3235 VM_EVENT(kvm, 3, "SET CRYCB: aqm %016lx %016lx %016lx %016lx",
3236 aqm[0], aqm[1], aqm[2], aqm[3]);
3237 memcpy(crycb->apcb1.adm, adm, 32);
3238 VM_EVENT(kvm, 3, "SET CRYCB: adm %016lx %016lx %016lx %016lx",
3239 adm[0], adm[1], adm[2], adm[3]);
3240 break;
3241 case CRYCB_FORMAT1:
3242 case CRYCB_FORMAT0: /* Fall through both use APCB0 */
3243 memcpy(crycb->apcb0.apm, apm, 8);
3244 memcpy(crycb->apcb0.aqm, aqm, 2);
3245 memcpy(crycb->apcb0.adm, adm, 2);
3246 VM_EVENT(kvm, 3, "SET CRYCB: apm %016lx aqm %04x adm %04x",
3247 apm[0], *((unsigned short *)aqm),
3248 *((unsigned short *)adm));
3249 break;
3250 default: /* Can not happen */
3251 break;
3252 }
3253
3254 /* recreate the shadow crycb for each vcpu */
3255 kvm_s390_sync_request_broadcast(kvm, KVM_REQ_VSIE_RESTART);
3256 kvm_s390_vcpu_unblock_all(kvm);
3257 }
3258 EXPORT_SYMBOL_GPL(kvm_arch_crypto_set_masks);
3259
3260 /*
3261 * kvm_arch_crypto_clear_masks
3262 *
3263 * @kvm: pointer to the target guest's KVM struct containing the crypto masks
3264 * to be cleared.
3265 *
3266 * Clear the masks that identify the adapters, domains and control domains to
3267 * which the KVM guest is granted access.
3268 *
3269 * Note: The kvm->lock mutex must be locked by the caller before invoking this
3270 * function.
3271 */
kvm_arch_crypto_clear_masks(struct kvm * kvm)3272 void kvm_arch_crypto_clear_masks(struct kvm *kvm)
3273 {
3274 kvm_s390_vcpu_block_all(kvm);
3275
3276 memset(&kvm->arch.crypto.crycb->apcb0, 0,
3277 sizeof(kvm->arch.crypto.crycb->apcb0));
3278 memset(&kvm->arch.crypto.crycb->apcb1, 0,
3279 sizeof(kvm->arch.crypto.crycb->apcb1));
3280
3281 VM_EVENT(kvm, 3, "%s", "CLR CRYCB:");
3282 /* recreate the shadow crycb for each vcpu */
3283 kvm_s390_sync_request_broadcast(kvm, KVM_REQ_VSIE_RESTART);
3284 kvm_s390_vcpu_unblock_all(kvm);
3285 }
3286 EXPORT_SYMBOL_GPL(kvm_arch_crypto_clear_masks);
3287
kvm_s390_get_initial_cpuid(void)3288 static u64 kvm_s390_get_initial_cpuid(void)
3289 {
3290 struct cpuid cpuid;
3291
3292 get_cpu_id(&cpuid);
3293 cpuid.version = 0xff;
3294 return *((u64 *) &cpuid);
3295 }
3296
kvm_s390_crypto_init(struct kvm * kvm)3297 static void kvm_s390_crypto_init(struct kvm *kvm)
3298 {
3299 kvm->arch.crypto.crycb = &kvm->arch.sie_page2->crycb;
3300 kvm_s390_set_crycb_format(kvm);
3301 init_rwsem(&kvm->arch.crypto.pqap_hook_rwsem);
3302
3303 if (!test_kvm_facility(kvm, 76))
3304 return;
3305
3306 /* Enable AES/DEA protected key functions by default */
3307 kvm->arch.crypto.aes_kw = 1;
3308 kvm->arch.crypto.dea_kw = 1;
3309 get_random_bytes(kvm->arch.crypto.crycb->aes_wrapping_key_mask,
3310 sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
3311 get_random_bytes(kvm->arch.crypto.crycb->dea_wrapping_key_mask,
3312 sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
3313 }
3314
sca_dispose(struct kvm * kvm)3315 static void sca_dispose(struct kvm *kvm)
3316 {
3317 if (kvm->arch.use_esca)
3318 free_pages_exact(kvm->arch.sca, sizeof(struct esca_block));
3319 else
3320 free_page((unsigned long)(kvm->arch.sca));
3321 kvm->arch.sca = NULL;
3322 }
3323
kvm_arch_free_vm(struct kvm * kvm)3324 void kvm_arch_free_vm(struct kvm *kvm)
3325 {
3326 if (IS_ENABLED(CONFIG_VFIO_PCI_ZDEV_KVM))
3327 kvm_s390_pci_clear_list(kvm);
3328
3329 __kvm_arch_free_vm(kvm);
3330 }
3331
kvm_arch_init_vm(struct kvm * kvm,unsigned long type)3332 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
3333 {
3334 gfp_t alloc_flags = GFP_KERNEL_ACCOUNT;
3335 int i, rc;
3336 char debug_name[16];
3337 static unsigned long sca_offset;
3338
3339 rc = -EINVAL;
3340 #ifdef CONFIG_KVM_S390_UCONTROL
3341 if (type & ~KVM_VM_S390_UCONTROL)
3342 goto out_err;
3343 if ((type & KVM_VM_S390_UCONTROL) && (!capable(CAP_SYS_ADMIN)))
3344 goto out_err;
3345 #else
3346 if (type)
3347 goto out_err;
3348 #endif
3349
3350 rc = s390_enable_sie();
3351 if (rc)
3352 goto out_err;
3353
3354 rc = -ENOMEM;
3355
3356 if (!sclp.has_64bscao)
3357 alloc_flags |= GFP_DMA;
3358 rwlock_init(&kvm->arch.sca_lock);
3359 /* start with basic SCA */
3360 kvm->arch.sca = (struct bsca_block *) get_zeroed_page(alloc_flags);
3361 if (!kvm->arch.sca)
3362 goto out_err;
3363 mutex_lock(&kvm_lock);
3364 sca_offset += 16;
3365 if (sca_offset + sizeof(struct bsca_block) > PAGE_SIZE)
3366 sca_offset = 0;
3367 kvm->arch.sca = (struct bsca_block *)
3368 ((char *) kvm->arch.sca + sca_offset);
3369 mutex_unlock(&kvm_lock);
3370
3371 sprintf(debug_name, "kvm-%u", current->pid);
3372
3373 kvm->arch.dbf = debug_register(debug_name, 32, 1, 7 * sizeof(long));
3374 if (!kvm->arch.dbf)
3375 goto out_err;
3376
3377 BUILD_BUG_ON(sizeof(struct sie_page2) != 4096);
3378 kvm->arch.sie_page2 =
3379 (struct sie_page2 *) get_zeroed_page(GFP_KERNEL_ACCOUNT | GFP_DMA);
3380 if (!kvm->arch.sie_page2)
3381 goto out_err;
3382
3383 kvm->arch.sie_page2->kvm = kvm;
3384 kvm->arch.model.fac_list = kvm->arch.sie_page2->fac_list;
3385
3386 for (i = 0; i < kvm_s390_fac_size(); i++) {
3387 kvm->arch.model.fac_mask[i] = stfle_fac_list[i] &
3388 (kvm_s390_fac_base[i] |
3389 kvm_s390_fac_ext[i]);
3390 kvm->arch.model.fac_list[i] = stfle_fac_list[i] &
3391 kvm_s390_fac_base[i];
3392 }
3393 kvm->arch.model.subfuncs = kvm_s390_available_subfunc;
3394
3395 /* we are always in czam mode - even on pre z14 machines */
3396 set_kvm_facility(kvm->arch.model.fac_mask, 138);
3397 set_kvm_facility(kvm->arch.model.fac_list, 138);
3398 /* we emulate STHYI in kvm */
3399 set_kvm_facility(kvm->arch.model.fac_mask, 74);
3400 set_kvm_facility(kvm->arch.model.fac_list, 74);
3401 if (machine_has_tlb_guest()) {
3402 set_kvm_facility(kvm->arch.model.fac_mask, 147);
3403 set_kvm_facility(kvm->arch.model.fac_list, 147);
3404 }
3405
3406 if (css_general_characteristics.aiv && test_facility(65))
3407 set_kvm_facility(kvm->arch.model.fac_mask, 65);
3408
3409 kvm->arch.model.cpuid = kvm_s390_get_initial_cpuid();
3410 kvm->arch.model.ibc = sclp.ibc & 0x0fff;
3411
3412 kvm->arch.model.uv_feat_guest.feat = 0;
3413
3414 kvm_s390_crypto_init(kvm);
3415
3416 if (IS_ENABLED(CONFIG_VFIO_PCI_ZDEV_KVM)) {
3417 mutex_lock(&kvm->lock);
3418 kvm_s390_pci_init_list(kvm);
3419 kvm_s390_vcpu_pci_enable_interp(kvm);
3420 mutex_unlock(&kvm->lock);
3421 }
3422
3423 mutex_init(&kvm->arch.float_int.ais_lock);
3424 spin_lock_init(&kvm->arch.float_int.lock);
3425 for (i = 0; i < FIRQ_LIST_COUNT; i++)
3426 INIT_LIST_HEAD(&kvm->arch.float_int.lists[i]);
3427 init_waitqueue_head(&kvm->arch.ipte_wq);
3428 mutex_init(&kvm->arch.ipte_mutex);
3429
3430 debug_register_view(kvm->arch.dbf, &debug_sprintf_view);
3431 VM_EVENT(kvm, 3, "vm created with type %lu", type);
3432
3433 if (type & KVM_VM_S390_UCONTROL) {
3434 struct kvm_userspace_memory_region2 fake_memslot = {
3435 .slot = KVM_S390_UCONTROL_MEMSLOT,
3436 .guest_phys_addr = 0,
3437 .userspace_addr = 0,
3438 .memory_size = ALIGN_DOWN(TASK_SIZE, _SEGMENT_SIZE),
3439 .flags = 0,
3440 };
3441
3442 kvm->arch.gmap = NULL;
3443 kvm->arch.mem_limit = KVM_S390_NO_MEM_LIMIT;
3444 /* one flat fake memslot covering the whole address-space */
3445 mutex_lock(&kvm->slots_lock);
3446 KVM_BUG_ON(kvm_set_internal_memslot(kvm, &fake_memslot), kvm);
3447 mutex_unlock(&kvm->slots_lock);
3448 } else {
3449 if (sclp.hamax == U64_MAX)
3450 kvm->arch.mem_limit = TASK_SIZE_MAX;
3451 else
3452 kvm->arch.mem_limit = min_t(unsigned long, TASK_SIZE_MAX,
3453 sclp.hamax + 1);
3454 kvm->arch.gmap = gmap_create(current->mm, kvm->arch.mem_limit - 1);
3455 if (!kvm->arch.gmap)
3456 goto out_err;
3457 kvm->arch.gmap->private = kvm;
3458 kvm->arch.gmap->pfault_enabled = 0;
3459 }
3460
3461 kvm->arch.use_pfmfi = sclp.has_pfmfi;
3462 kvm->arch.use_skf = sclp.has_skey;
3463 spin_lock_init(&kvm->arch.start_stop_lock);
3464 kvm_s390_vsie_init(kvm);
3465 if (use_gisa)
3466 kvm_s390_gisa_init(kvm);
3467 INIT_LIST_HEAD(&kvm->arch.pv.need_cleanup);
3468 kvm->arch.pv.set_aside = NULL;
3469 KVM_EVENT(3, "vm 0x%pK created by pid %u", kvm, current->pid);
3470
3471 return 0;
3472 out_err:
3473 free_page((unsigned long)kvm->arch.sie_page2);
3474 debug_unregister(kvm->arch.dbf);
3475 sca_dispose(kvm);
3476 KVM_EVENT(3, "creation of vm failed: %d", rc);
3477 return rc;
3478 }
3479
kvm_arch_vcpu_destroy(struct kvm_vcpu * vcpu)3480 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
3481 {
3482 u16 rc, rrc;
3483
3484 VCPU_EVENT(vcpu, 3, "%s", "free cpu");
3485 trace_kvm_s390_destroy_vcpu(vcpu->vcpu_id);
3486 kvm_s390_clear_local_irqs(vcpu);
3487 kvm_clear_async_pf_completion_queue(vcpu);
3488 if (!kvm_is_ucontrol(vcpu->kvm))
3489 sca_del_vcpu(vcpu);
3490 kvm_s390_update_topology_change_report(vcpu->kvm, 1);
3491
3492 if (kvm_is_ucontrol(vcpu->kvm))
3493 gmap_remove(vcpu->arch.gmap);
3494
3495 if (vcpu->kvm->arch.use_cmma)
3496 kvm_s390_vcpu_unsetup_cmma(vcpu);
3497 /* We can not hold the vcpu mutex here, we are already dying */
3498 if (kvm_s390_pv_cpu_get_handle(vcpu))
3499 kvm_s390_pv_destroy_cpu(vcpu, &rc, &rrc);
3500 free_page((unsigned long)(vcpu->arch.sie_block));
3501 }
3502
kvm_arch_destroy_vm(struct kvm * kvm)3503 void kvm_arch_destroy_vm(struct kvm *kvm)
3504 {
3505 u16 rc, rrc;
3506
3507 kvm_destroy_vcpus(kvm);
3508 sca_dispose(kvm);
3509 kvm_s390_gisa_destroy(kvm);
3510 /*
3511 * We are already at the end of life and kvm->lock is not taken.
3512 * This is ok as the file descriptor is closed by now and nobody
3513 * can mess with the pv state.
3514 */
3515 kvm_s390_pv_deinit_cleanup_all(kvm, &rc, &rrc);
3516 /*
3517 * Remove the mmu notifier only when the whole KVM VM is torn down,
3518 * and only if one was registered to begin with. If the VM is
3519 * currently not protected, but has been previously been protected,
3520 * then it's possible that the notifier is still registered.
3521 */
3522 if (kvm->arch.pv.mmu_notifier.ops)
3523 mmu_notifier_unregister(&kvm->arch.pv.mmu_notifier, kvm->mm);
3524
3525 debug_unregister(kvm->arch.dbf);
3526 free_page((unsigned long)kvm->arch.sie_page2);
3527 if (!kvm_is_ucontrol(kvm))
3528 gmap_remove(kvm->arch.gmap);
3529 kvm_s390_destroy_adapters(kvm);
3530 kvm_s390_clear_float_irqs(kvm);
3531 kvm_s390_vsie_destroy(kvm);
3532 KVM_EVENT(3, "vm 0x%pK destroyed", kvm);
3533 }
3534
3535 /* Section: vcpu related */
__kvm_ucontrol_vcpu_init(struct kvm_vcpu * vcpu)3536 static int __kvm_ucontrol_vcpu_init(struct kvm_vcpu *vcpu)
3537 {
3538 vcpu->arch.gmap = gmap_create(current->mm, -1UL);
3539 if (!vcpu->arch.gmap)
3540 return -ENOMEM;
3541 vcpu->arch.gmap->private = vcpu->kvm;
3542
3543 return 0;
3544 }
3545
sca_del_vcpu(struct kvm_vcpu * vcpu)3546 static void sca_del_vcpu(struct kvm_vcpu *vcpu)
3547 {
3548 if (!kvm_s390_use_sca_entries())
3549 return;
3550 read_lock(&vcpu->kvm->arch.sca_lock);
3551 if (vcpu->kvm->arch.use_esca) {
3552 struct esca_block *sca = vcpu->kvm->arch.sca;
3553
3554 clear_bit_inv(vcpu->vcpu_id, (unsigned long *) sca->mcn);
3555 sca->cpu[vcpu->vcpu_id].sda = 0;
3556 } else {
3557 struct bsca_block *sca = vcpu->kvm->arch.sca;
3558
3559 clear_bit_inv(vcpu->vcpu_id, (unsigned long *) &sca->mcn);
3560 sca->cpu[vcpu->vcpu_id].sda = 0;
3561 }
3562 read_unlock(&vcpu->kvm->arch.sca_lock);
3563 }
3564
sca_add_vcpu(struct kvm_vcpu * vcpu)3565 static void sca_add_vcpu(struct kvm_vcpu *vcpu)
3566 {
3567 if (!kvm_s390_use_sca_entries()) {
3568 phys_addr_t sca_phys = virt_to_phys(vcpu->kvm->arch.sca);
3569
3570 /* we still need the basic sca for the ipte control */
3571 vcpu->arch.sie_block->scaoh = sca_phys >> 32;
3572 vcpu->arch.sie_block->scaol = sca_phys;
3573 return;
3574 }
3575 read_lock(&vcpu->kvm->arch.sca_lock);
3576 if (vcpu->kvm->arch.use_esca) {
3577 struct esca_block *sca = vcpu->kvm->arch.sca;
3578 phys_addr_t sca_phys = virt_to_phys(sca);
3579
3580 sca->cpu[vcpu->vcpu_id].sda = virt_to_phys(vcpu->arch.sie_block);
3581 vcpu->arch.sie_block->scaoh = sca_phys >> 32;
3582 vcpu->arch.sie_block->scaol = sca_phys & ESCA_SCAOL_MASK;
3583 vcpu->arch.sie_block->ecb2 |= ECB2_ESCA;
3584 set_bit_inv(vcpu->vcpu_id, (unsigned long *) sca->mcn);
3585 } else {
3586 struct bsca_block *sca = vcpu->kvm->arch.sca;
3587 phys_addr_t sca_phys = virt_to_phys(sca);
3588
3589 sca->cpu[vcpu->vcpu_id].sda = virt_to_phys(vcpu->arch.sie_block);
3590 vcpu->arch.sie_block->scaoh = sca_phys >> 32;
3591 vcpu->arch.sie_block->scaol = sca_phys;
3592 set_bit_inv(vcpu->vcpu_id, (unsigned long *) &sca->mcn);
3593 }
3594 read_unlock(&vcpu->kvm->arch.sca_lock);
3595 }
3596
3597 /* Basic SCA to Extended SCA data copy routines */
sca_copy_entry(struct esca_entry * d,struct bsca_entry * s)3598 static inline void sca_copy_entry(struct esca_entry *d, struct bsca_entry *s)
3599 {
3600 d->sda = s->sda;
3601 d->sigp_ctrl.c = s->sigp_ctrl.c;
3602 d->sigp_ctrl.scn = s->sigp_ctrl.scn;
3603 }
3604
sca_copy_b_to_e(struct esca_block * d,struct bsca_block * s)3605 static void sca_copy_b_to_e(struct esca_block *d, struct bsca_block *s)
3606 {
3607 int i;
3608
3609 d->ipte_control = s->ipte_control;
3610 d->mcn[0] = s->mcn;
3611 for (i = 0; i < KVM_S390_BSCA_CPU_SLOTS; i++)
3612 sca_copy_entry(&d->cpu[i], &s->cpu[i]);
3613 }
3614
sca_switch_to_extended(struct kvm * kvm)3615 static int sca_switch_to_extended(struct kvm *kvm)
3616 {
3617 struct bsca_block *old_sca = kvm->arch.sca;
3618 struct esca_block *new_sca;
3619 struct kvm_vcpu *vcpu;
3620 unsigned long vcpu_idx;
3621 u32 scaol, scaoh;
3622 phys_addr_t new_sca_phys;
3623
3624 if (kvm->arch.use_esca)
3625 return 0;
3626
3627 new_sca = alloc_pages_exact(sizeof(*new_sca), GFP_KERNEL_ACCOUNT | __GFP_ZERO);
3628 if (!new_sca)
3629 return -ENOMEM;
3630
3631 new_sca_phys = virt_to_phys(new_sca);
3632 scaoh = new_sca_phys >> 32;
3633 scaol = new_sca_phys & ESCA_SCAOL_MASK;
3634
3635 kvm_s390_vcpu_block_all(kvm);
3636 write_lock(&kvm->arch.sca_lock);
3637
3638 sca_copy_b_to_e(new_sca, old_sca);
3639
3640 kvm_for_each_vcpu(vcpu_idx, vcpu, kvm) {
3641 vcpu->arch.sie_block->scaoh = scaoh;
3642 vcpu->arch.sie_block->scaol = scaol;
3643 vcpu->arch.sie_block->ecb2 |= ECB2_ESCA;
3644 }
3645 kvm->arch.sca = new_sca;
3646 kvm->arch.use_esca = 1;
3647
3648 write_unlock(&kvm->arch.sca_lock);
3649 kvm_s390_vcpu_unblock_all(kvm);
3650
3651 free_page((unsigned long)old_sca);
3652
3653 VM_EVENT(kvm, 2, "Switched to ESCA (0x%pK -> 0x%pK)",
3654 old_sca, kvm->arch.sca);
3655 return 0;
3656 }
3657
sca_can_add_vcpu(struct kvm * kvm,unsigned int id)3658 static int sca_can_add_vcpu(struct kvm *kvm, unsigned int id)
3659 {
3660 int rc;
3661
3662 if (!kvm_s390_use_sca_entries()) {
3663 if (id < KVM_MAX_VCPUS)
3664 return true;
3665 return false;
3666 }
3667 if (id < KVM_S390_BSCA_CPU_SLOTS)
3668 return true;
3669 if (!sclp.has_esca || !sclp.has_64bscao)
3670 return false;
3671
3672 rc = kvm->arch.use_esca ? 0 : sca_switch_to_extended(kvm);
3673
3674 return rc == 0 && id < KVM_S390_ESCA_CPU_SLOTS;
3675 }
3676
3677 /* needs disabled preemption to protect from TOD sync and vcpu_load/put */
__start_cpu_timer_accounting(struct kvm_vcpu * vcpu)3678 static void __start_cpu_timer_accounting(struct kvm_vcpu *vcpu)
3679 {
3680 WARN_ON_ONCE(vcpu->arch.cputm_start != 0);
3681 raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount);
3682 vcpu->arch.cputm_start = get_tod_clock_fast();
3683 raw_write_seqcount_end(&vcpu->arch.cputm_seqcount);
3684 }
3685
3686 /* needs disabled preemption to protect from TOD sync and vcpu_load/put */
__stop_cpu_timer_accounting(struct kvm_vcpu * vcpu)3687 static void __stop_cpu_timer_accounting(struct kvm_vcpu *vcpu)
3688 {
3689 WARN_ON_ONCE(vcpu->arch.cputm_start == 0);
3690 raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount);
3691 vcpu->arch.sie_block->cputm -= get_tod_clock_fast() - vcpu->arch.cputm_start;
3692 vcpu->arch.cputm_start = 0;
3693 raw_write_seqcount_end(&vcpu->arch.cputm_seqcount);
3694 }
3695
3696 /* needs disabled preemption to protect from TOD sync and vcpu_load/put */
__enable_cpu_timer_accounting(struct kvm_vcpu * vcpu)3697 static void __enable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
3698 {
3699 WARN_ON_ONCE(vcpu->arch.cputm_enabled);
3700 vcpu->arch.cputm_enabled = true;
3701 __start_cpu_timer_accounting(vcpu);
3702 }
3703
3704 /* needs disabled preemption to protect from TOD sync and vcpu_load/put */
__disable_cpu_timer_accounting(struct kvm_vcpu * vcpu)3705 static void __disable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
3706 {
3707 WARN_ON_ONCE(!vcpu->arch.cputm_enabled);
3708 __stop_cpu_timer_accounting(vcpu);
3709 vcpu->arch.cputm_enabled = false;
3710 }
3711
enable_cpu_timer_accounting(struct kvm_vcpu * vcpu)3712 static void enable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
3713 {
3714 preempt_disable(); /* protect from TOD sync and vcpu_load/put */
3715 __enable_cpu_timer_accounting(vcpu);
3716 preempt_enable();
3717 }
3718
disable_cpu_timer_accounting(struct kvm_vcpu * vcpu)3719 static void disable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
3720 {
3721 preempt_disable(); /* protect from TOD sync and vcpu_load/put */
3722 __disable_cpu_timer_accounting(vcpu);
3723 preempt_enable();
3724 }
3725
3726 /* set the cpu timer - may only be called from the VCPU thread itself */
kvm_s390_set_cpu_timer(struct kvm_vcpu * vcpu,__u64 cputm)3727 void kvm_s390_set_cpu_timer(struct kvm_vcpu *vcpu, __u64 cputm)
3728 {
3729 preempt_disable(); /* protect from TOD sync and vcpu_load/put */
3730 raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount);
3731 if (vcpu->arch.cputm_enabled)
3732 vcpu->arch.cputm_start = get_tod_clock_fast();
3733 vcpu->arch.sie_block->cputm = cputm;
3734 raw_write_seqcount_end(&vcpu->arch.cputm_seqcount);
3735 preempt_enable();
3736 }
3737
3738 /* update and get the cpu timer - can also be called from other VCPU threads */
kvm_s390_get_cpu_timer(struct kvm_vcpu * vcpu)3739 __u64 kvm_s390_get_cpu_timer(struct kvm_vcpu *vcpu)
3740 {
3741 unsigned int seq;
3742 __u64 value;
3743
3744 if (unlikely(!vcpu->arch.cputm_enabled))
3745 return vcpu->arch.sie_block->cputm;
3746
3747 preempt_disable(); /* protect from TOD sync and vcpu_load/put */
3748 do {
3749 seq = raw_read_seqcount(&vcpu->arch.cputm_seqcount);
3750 /*
3751 * If the writer would ever execute a read in the critical
3752 * section, e.g. in irq context, we have a deadlock.
3753 */
3754 WARN_ON_ONCE((seq & 1) && smp_processor_id() == vcpu->cpu);
3755 value = vcpu->arch.sie_block->cputm;
3756 /* if cputm_start is 0, accounting is being started/stopped */
3757 if (likely(vcpu->arch.cputm_start))
3758 value -= get_tod_clock_fast() - vcpu->arch.cputm_start;
3759 } while (read_seqcount_retry(&vcpu->arch.cputm_seqcount, seq & ~1));
3760 preempt_enable();
3761 return value;
3762 }
3763
kvm_arch_vcpu_load(struct kvm_vcpu * vcpu,int cpu)3764 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
3765 {
3766
3767 kvm_s390_set_cpuflags(vcpu, CPUSTAT_RUNNING);
3768 if (vcpu->arch.cputm_enabled && !is_vcpu_idle(vcpu))
3769 __start_cpu_timer_accounting(vcpu);
3770 vcpu->cpu = cpu;
3771 }
3772
kvm_arch_vcpu_put(struct kvm_vcpu * vcpu)3773 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
3774 {
3775 vcpu->cpu = -1;
3776 if (vcpu->arch.cputm_enabled && !is_vcpu_idle(vcpu))
3777 __stop_cpu_timer_accounting(vcpu);
3778 kvm_s390_clear_cpuflags(vcpu, CPUSTAT_RUNNING);
3779
3780 }
3781
kvm_arch_vcpu_postcreate(struct kvm_vcpu * vcpu)3782 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
3783 {
3784 mutex_lock(&vcpu->kvm->lock);
3785 preempt_disable();
3786 vcpu->arch.sie_block->epoch = vcpu->kvm->arch.epoch;
3787 vcpu->arch.sie_block->epdx = vcpu->kvm->arch.epdx;
3788 preempt_enable();
3789 mutex_unlock(&vcpu->kvm->lock);
3790 if (!kvm_is_ucontrol(vcpu->kvm)) {
3791 vcpu->arch.gmap = vcpu->kvm->arch.gmap;
3792 sca_add_vcpu(vcpu);
3793 }
3794 if (test_kvm_facility(vcpu->kvm, 74) || vcpu->kvm->arch.user_instr0)
3795 vcpu->arch.sie_block->ictl |= ICTL_OPEREXC;
3796 }
3797
kvm_has_pckmo_subfunc(struct kvm * kvm,unsigned long nr)3798 static bool kvm_has_pckmo_subfunc(struct kvm *kvm, unsigned long nr)
3799 {
3800 if (test_bit_inv(nr, (unsigned long *)&kvm->arch.model.subfuncs.pckmo) &&
3801 test_bit_inv(nr, (unsigned long *)&kvm_s390_available_subfunc.pckmo))
3802 return true;
3803 return false;
3804 }
3805
kvm_has_pckmo_ecc(struct kvm * kvm)3806 static bool kvm_has_pckmo_ecc(struct kvm *kvm)
3807 {
3808 /* At least one ECC subfunction must be present */
3809 return kvm_has_pckmo_subfunc(kvm, 32) ||
3810 kvm_has_pckmo_subfunc(kvm, 33) ||
3811 kvm_has_pckmo_subfunc(kvm, 34) ||
3812 kvm_has_pckmo_subfunc(kvm, 40) ||
3813 kvm_has_pckmo_subfunc(kvm, 41);
3814
3815 }
3816
kvm_has_pckmo_hmac(struct kvm * kvm)3817 static bool kvm_has_pckmo_hmac(struct kvm *kvm)
3818 {
3819 /* At least one HMAC subfunction must be present */
3820 return kvm_has_pckmo_subfunc(kvm, 118) ||
3821 kvm_has_pckmo_subfunc(kvm, 122);
3822 }
3823
kvm_s390_vcpu_crypto_setup(struct kvm_vcpu * vcpu)3824 static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu)
3825 {
3826 /*
3827 * If the AP instructions are not being interpreted and the MSAX3
3828 * facility is not configured for the guest, there is nothing to set up.
3829 */
3830 if (!vcpu->kvm->arch.crypto.apie && !test_kvm_facility(vcpu->kvm, 76))
3831 return;
3832
3833 vcpu->arch.sie_block->crycbd = vcpu->kvm->arch.crypto.crycbd;
3834 vcpu->arch.sie_block->ecb3 &= ~(ECB3_AES | ECB3_DEA);
3835 vcpu->arch.sie_block->eca &= ~ECA_APIE;
3836 vcpu->arch.sie_block->ecd &= ~(ECD_ECC | ECD_HMAC);
3837
3838 if (vcpu->kvm->arch.crypto.apie)
3839 vcpu->arch.sie_block->eca |= ECA_APIE;
3840
3841 /* Set up protected key support */
3842 if (vcpu->kvm->arch.crypto.aes_kw) {
3843 vcpu->arch.sie_block->ecb3 |= ECB3_AES;
3844 /* ecc/hmac is also wrapped with AES key */
3845 if (kvm_has_pckmo_ecc(vcpu->kvm))
3846 vcpu->arch.sie_block->ecd |= ECD_ECC;
3847 if (kvm_has_pckmo_hmac(vcpu->kvm))
3848 vcpu->arch.sie_block->ecd |= ECD_HMAC;
3849 }
3850
3851 if (vcpu->kvm->arch.crypto.dea_kw)
3852 vcpu->arch.sie_block->ecb3 |= ECB3_DEA;
3853 }
3854
kvm_s390_vcpu_unsetup_cmma(struct kvm_vcpu * vcpu)3855 void kvm_s390_vcpu_unsetup_cmma(struct kvm_vcpu *vcpu)
3856 {
3857 free_page((unsigned long)phys_to_virt(vcpu->arch.sie_block->cbrlo));
3858 vcpu->arch.sie_block->cbrlo = 0;
3859 }
3860
kvm_s390_vcpu_setup_cmma(struct kvm_vcpu * vcpu)3861 int kvm_s390_vcpu_setup_cmma(struct kvm_vcpu *vcpu)
3862 {
3863 void *cbrlo_page = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3864
3865 if (!cbrlo_page)
3866 return -ENOMEM;
3867
3868 vcpu->arch.sie_block->cbrlo = virt_to_phys(cbrlo_page);
3869 return 0;
3870 }
3871
kvm_s390_vcpu_setup_model(struct kvm_vcpu * vcpu)3872 static void kvm_s390_vcpu_setup_model(struct kvm_vcpu *vcpu)
3873 {
3874 struct kvm_s390_cpu_model *model = &vcpu->kvm->arch.model;
3875
3876 vcpu->arch.sie_block->ibc = model->ibc;
3877 if (test_kvm_facility(vcpu->kvm, 7))
3878 vcpu->arch.sie_block->fac = virt_to_phys(model->fac_list);
3879 }
3880
kvm_s390_vcpu_setup(struct kvm_vcpu * vcpu)3881 static int kvm_s390_vcpu_setup(struct kvm_vcpu *vcpu)
3882 {
3883 int rc = 0;
3884 u16 uvrc, uvrrc;
3885
3886 atomic_set(&vcpu->arch.sie_block->cpuflags, CPUSTAT_ZARCH |
3887 CPUSTAT_SM |
3888 CPUSTAT_STOPPED);
3889
3890 if (test_kvm_facility(vcpu->kvm, 78))
3891 kvm_s390_set_cpuflags(vcpu, CPUSTAT_GED2);
3892 else if (test_kvm_facility(vcpu->kvm, 8))
3893 kvm_s390_set_cpuflags(vcpu, CPUSTAT_GED);
3894
3895 kvm_s390_vcpu_setup_model(vcpu);
3896
3897 /* pgste_set_pte has special handling for !machine_has_esop() */
3898 if (machine_has_esop())
3899 vcpu->arch.sie_block->ecb |= ECB_HOSTPROTINT;
3900 if (test_kvm_facility(vcpu->kvm, 9))
3901 vcpu->arch.sie_block->ecb |= ECB_SRSI;
3902 if (test_kvm_facility(vcpu->kvm, 11))
3903 vcpu->arch.sie_block->ecb |= ECB_PTF;
3904 if (test_kvm_facility(vcpu->kvm, 73))
3905 vcpu->arch.sie_block->ecb |= ECB_TE;
3906 if (!kvm_is_ucontrol(vcpu->kvm))
3907 vcpu->arch.sie_block->ecb |= ECB_SPECI;
3908
3909 if (test_kvm_facility(vcpu->kvm, 8) && vcpu->kvm->arch.use_pfmfi)
3910 vcpu->arch.sie_block->ecb2 |= ECB2_PFMFI;
3911 if (test_kvm_facility(vcpu->kvm, 130))
3912 vcpu->arch.sie_block->ecb2 |= ECB2_IEP;
3913 vcpu->arch.sie_block->eca = ECA_MVPGI | ECA_PROTEXCI;
3914 if (sclp.has_cei)
3915 vcpu->arch.sie_block->eca |= ECA_CEI;
3916 if (sclp.has_ib)
3917 vcpu->arch.sie_block->eca |= ECA_IB;
3918 if (sclp.has_siif)
3919 vcpu->arch.sie_block->eca |= ECA_SII;
3920 if (sclp.has_sigpif)
3921 vcpu->arch.sie_block->eca |= ECA_SIGPI;
3922 if (test_kvm_facility(vcpu->kvm, 129)) {
3923 vcpu->arch.sie_block->eca |= ECA_VX;
3924 vcpu->arch.sie_block->ecd |= ECD_HOSTREGMGMT;
3925 }
3926 if (test_kvm_facility(vcpu->kvm, 139))
3927 vcpu->arch.sie_block->ecd |= ECD_MEF;
3928 if (test_kvm_facility(vcpu->kvm, 156))
3929 vcpu->arch.sie_block->ecd |= ECD_ETOKENF;
3930 if (vcpu->arch.sie_block->gd) {
3931 vcpu->arch.sie_block->eca |= ECA_AIV;
3932 VCPU_EVENT(vcpu, 3, "AIV gisa format-%u enabled for cpu %03u",
3933 vcpu->arch.sie_block->gd & 0x3, vcpu->vcpu_id);
3934 }
3935 vcpu->arch.sie_block->sdnxo = virt_to_phys(&vcpu->run->s.regs.sdnx) | SDNXC;
3936 vcpu->arch.sie_block->riccbd = virt_to_phys(&vcpu->run->s.regs.riccb);
3937
3938 if (sclp.has_kss)
3939 kvm_s390_set_cpuflags(vcpu, CPUSTAT_KSS);
3940 else
3941 vcpu->arch.sie_block->ictl |= ICTL_ISKE | ICTL_SSKE | ICTL_RRBE;
3942
3943 if (vcpu->kvm->arch.use_cmma) {
3944 rc = kvm_s390_vcpu_setup_cmma(vcpu);
3945 if (rc)
3946 return rc;
3947 }
3948 hrtimer_setup(&vcpu->arch.ckc_timer, kvm_s390_idle_wakeup, CLOCK_MONOTONIC,
3949 HRTIMER_MODE_REL);
3950
3951 vcpu->arch.sie_block->hpid = HPID_KVM;
3952
3953 kvm_s390_vcpu_crypto_setup(vcpu);
3954
3955 kvm_s390_vcpu_pci_setup(vcpu);
3956
3957 mutex_lock(&vcpu->kvm->lock);
3958 if (kvm_s390_pv_is_protected(vcpu->kvm)) {
3959 rc = kvm_s390_pv_create_cpu(vcpu, &uvrc, &uvrrc);
3960 if (rc)
3961 kvm_s390_vcpu_unsetup_cmma(vcpu);
3962 }
3963 mutex_unlock(&vcpu->kvm->lock);
3964
3965 return rc;
3966 }
3967
kvm_arch_vcpu_precreate(struct kvm * kvm,unsigned int id)3968 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
3969 {
3970 if (!kvm_is_ucontrol(kvm) && !sca_can_add_vcpu(kvm, id))
3971 return -EINVAL;
3972 return 0;
3973 }
3974
kvm_arch_vcpu_create(struct kvm_vcpu * vcpu)3975 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
3976 {
3977 struct sie_page *sie_page;
3978 int rc;
3979
3980 BUILD_BUG_ON(sizeof(struct sie_page) != 4096);
3981 sie_page = (struct sie_page *) get_zeroed_page(GFP_KERNEL_ACCOUNT);
3982 if (!sie_page)
3983 return -ENOMEM;
3984
3985 vcpu->arch.sie_block = &sie_page->sie_block;
3986 vcpu->arch.sie_block->itdba = virt_to_phys(&sie_page->itdb);
3987
3988 /* the real guest size will always be smaller than msl */
3989 vcpu->arch.sie_block->mso = 0;
3990 vcpu->arch.sie_block->msl = sclp.hamax;
3991
3992 vcpu->arch.sie_block->icpua = vcpu->vcpu_id;
3993 spin_lock_init(&vcpu->arch.local_int.lock);
3994 vcpu->arch.sie_block->gd = kvm_s390_get_gisa_desc(vcpu->kvm);
3995 seqcount_init(&vcpu->arch.cputm_seqcount);
3996
3997 vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID;
3998 kvm_clear_async_pf_completion_queue(vcpu);
3999 vcpu->run->kvm_valid_regs = KVM_SYNC_PREFIX |
4000 KVM_SYNC_GPRS |
4001 KVM_SYNC_ACRS |
4002 KVM_SYNC_CRS |
4003 KVM_SYNC_ARCH0 |
4004 KVM_SYNC_PFAULT |
4005 KVM_SYNC_DIAG318;
4006 vcpu->arch.acrs_loaded = false;
4007 kvm_s390_set_prefix(vcpu, 0);
4008 if (test_kvm_facility(vcpu->kvm, 64))
4009 vcpu->run->kvm_valid_regs |= KVM_SYNC_RICCB;
4010 if (test_kvm_facility(vcpu->kvm, 82))
4011 vcpu->run->kvm_valid_regs |= KVM_SYNC_BPBC;
4012 if (test_kvm_facility(vcpu->kvm, 133))
4013 vcpu->run->kvm_valid_regs |= KVM_SYNC_GSCB;
4014 if (test_kvm_facility(vcpu->kvm, 156))
4015 vcpu->run->kvm_valid_regs |= KVM_SYNC_ETOKEN;
4016 /* fprs can be synchronized via vrs, even if the guest has no vx. With
4017 * cpu_has_vx(), (load|store)_fpu_regs() will work with vrs format.
4018 */
4019 if (cpu_has_vx())
4020 vcpu->run->kvm_valid_regs |= KVM_SYNC_VRS;
4021 else
4022 vcpu->run->kvm_valid_regs |= KVM_SYNC_FPRS;
4023
4024 if (kvm_is_ucontrol(vcpu->kvm)) {
4025 rc = __kvm_ucontrol_vcpu_init(vcpu);
4026 if (rc)
4027 goto out_free_sie_block;
4028 }
4029
4030 VM_EVENT(vcpu->kvm, 3, "create cpu %d at 0x%pK, sie block at 0x%pK",
4031 vcpu->vcpu_id, vcpu, vcpu->arch.sie_block);
4032 trace_kvm_s390_create_vcpu(vcpu->vcpu_id, vcpu, vcpu->arch.sie_block);
4033
4034 rc = kvm_s390_vcpu_setup(vcpu);
4035 if (rc)
4036 goto out_ucontrol_uninit;
4037
4038 kvm_s390_update_topology_change_report(vcpu->kvm, 1);
4039 return 0;
4040
4041 out_ucontrol_uninit:
4042 if (kvm_is_ucontrol(vcpu->kvm))
4043 gmap_remove(vcpu->arch.gmap);
4044 out_free_sie_block:
4045 free_page((unsigned long)(vcpu->arch.sie_block));
4046 return rc;
4047 }
4048
kvm_arch_vcpu_runnable(struct kvm_vcpu * vcpu)4049 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
4050 {
4051 clear_bit(vcpu->vcpu_idx, vcpu->kvm->arch.gisa_int.kicked_mask);
4052 return kvm_s390_vcpu_has_irq(vcpu, 0);
4053 }
4054
kvm_arch_vcpu_in_kernel(struct kvm_vcpu * vcpu)4055 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
4056 {
4057 return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_PSTATE);
4058 }
4059
kvm_s390_vcpu_block(struct kvm_vcpu * vcpu)4060 void kvm_s390_vcpu_block(struct kvm_vcpu *vcpu)
4061 {
4062 atomic_or(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20);
4063 exit_sie(vcpu);
4064 }
4065
kvm_s390_vcpu_unblock(struct kvm_vcpu * vcpu)4066 void kvm_s390_vcpu_unblock(struct kvm_vcpu *vcpu)
4067 {
4068 atomic_andnot(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20);
4069 }
4070
kvm_s390_vcpu_request(struct kvm_vcpu * vcpu)4071 static void kvm_s390_vcpu_request(struct kvm_vcpu *vcpu)
4072 {
4073 atomic_or(PROG_REQUEST, &vcpu->arch.sie_block->prog20);
4074 exit_sie(vcpu);
4075 }
4076
kvm_s390_vcpu_sie_inhibited(struct kvm_vcpu * vcpu)4077 bool kvm_s390_vcpu_sie_inhibited(struct kvm_vcpu *vcpu)
4078 {
4079 return atomic_read(&vcpu->arch.sie_block->prog20) &
4080 (PROG_BLOCK_SIE | PROG_REQUEST);
4081 }
4082
kvm_s390_vcpu_request_handled(struct kvm_vcpu * vcpu)4083 static void kvm_s390_vcpu_request_handled(struct kvm_vcpu *vcpu)
4084 {
4085 atomic_andnot(PROG_REQUEST, &vcpu->arch.sie_block->prog20);
4086 }
4087
4088 /*
4089 * Kick a guest cpu out of (v)SIE and wait until (v)SIE is not running.
4090 * If the CPU is not running (e.g. waiting as idle) the function will
4091 * return immediately. */
exit_sie(struct kvm_vcpu * vcpu)4092 void exit_sie(struct kvm_vcpu *vcpu)
4093 {
4094 kvm_s390_set_cpuflags(vcpu, CPUSTAT_STOP_INT);
4095 kvm_s390_vsie_kick(vcpu);
4096 while (vcpu->arch.sie_block->prog0c & PROG_IN_SIE)
4097 cpu_relax();
4098 }
4099
4100 /* Kick a guest cpu out of SIE to process a request synchronously */
kvm_s390_sync_request(int req,struct kvm_vcpu * vcpu)4101 void kvm_s390_sync_request(int req, struct kvm_vcpu *vcpu)
4102 {
4103 __kvm_make_request(req, vcpu);
4104 kvm_s390_vcpu_request(vcpu);
4105 }
4106
kvm_gmap_notifier(struct gmap * gmap,unsigned long start,unsigned long end)4107 static void kvm_gmap_notifier(struct gmap *gmap, unsigned long start,
4108 unsigned long end)
4109 {
4110 struct kvm *kvm = gmap->private;
4111 struct kvm_vcpu *vcpu;
4112 unsigned long prefix;
4113 unsigned long i;
4114
4115 trace_kvm_s390_gmap_notifier(start, end, gmap_is_shadow(gmap));
4116
4117 if (gmap_is_shadow(gmap))
4118 return;
4119 if (start >= 1UL << 31)
4120 /* We are only interested in prefix pages */
4121 return;
4122 kvm_for_each_vcpu(i, vcpu, kvm) {
4123 /* match against both prefix pages */
4124 prefix = kvm_s390_get_prefix(vcpu);
4125 if (prefix <= end && start <= prefix + 2*PAGE_SIZE - 1) {
4126 VCPU_EVENT(vcpu, 2, "gmap notifier for %lx-%lx",
4127 start, end);
4128 kvm_s390_sync_request(KVM_REQ_REFRESH_GUEST_PREFIX, vcpu);
4129 }
4130 }
4131 }
4132
kvm_arch_no_poll(struct kvm_vcpu * vcpu)4133 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
4134 {
4135 /* do not poll with more than halt_poll_max_steal percent of steal time */
4136 if (get_lowcore()->avg_steal_timer * 100 / (TICK_USEC << 12) >=
4137 READ_ONCE(halt_poll_max_steal)) {
4138 vcpu->stat.halt_no_poll_steal++;
4139 return true;
4140 }
4141 return false;
4142 }
4143
kvm_arch_vcpu_should_kick(struct kvm_vcpu * vcpu)4144 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
4145 {
4146 /* kvm common code refers to this, but never calls it */
4147 BUG();
4148 return 0;
4149 }
4150
kvm_arch_vcpu_ioctl_get_one_reg(struct kvm_vcpu * vcpu,struct kvm_one_reg * reg)4151 static int kvm_arch_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu,
4152 struct kvm_one_reg *reg)
4153 {
4154 int r = -EINVAL;
4155
4156 switch (reg->id) {
4157 case KVM_REG_S390_TODPR:
4158 r = put_user(vcpu->arch.sie_block->todpr,
4159 (u32 __user *)reg->addr);
4160 break;
4161 case KVM_REG_S390_EPOCHDIFF:
4162 r = put_user(vcpu->arch.sie_block->epoch,
4163 (u64 __user *)reg->addr);
4164 break;
4165 case KVM_REG_S390_CPU_TIMER:
4166 r = put_user(kvm_s390_get_cpu_timer(vcpu),
4167 (u64 __user *)reg->addr);
4168 break;
4169 case KVM_REG_S390_CLOCK_COMP:
4170 r = put_user(vcpu->arch.sie_block->ckc,
4171 (u64 __user *)reg->addr);
4172 break;
4173 case KVM_REG_S390_PFTOKEN:
4174 r = put_user(vcpu->arch.pfault_token,
4175 (u64 __user *)reg->addr);
4176 break;
4177 case KVM_REG_S390_PFCOMPARE:
4178 r = put_user(vcpu->arch.pfault_compare,
4179 (u64 __user *)reg->addr);
4180 break;
4181 case KVM_REG_S390_PFSELECT:
4182 r = put_user(vcpu->arch.pfault_select,
4183 (u64 __user *)reg->addr);
4184 break;
4185 case KVM_REG_S390_PP:
4186 r = put_user(vcpu->arch.sie_block->pp,
4187 (u64 __user *)reg->addr);
4188 break;
4189 case KVM_REG_S390_GBEA:
4190 r = put_user(vcpu->arch.sie_block->gbea,
4191 (u64 __user *)reg->addr);
4192 break;
4193 default:
4194 break;
4195 }
4196
4197 return r;
4198 }
4199
kvm_arch_vcpu_ioctl_set_one_reg(struct kvm_vcpu * vcpu,struct kvm_one_reg * reg)4200 static int kvm_arch_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu,
4201 struct kvm_one_reg *reg)
4202 {
4203 int r = -EINVAL;
4204 __u64 val;
4205
4206 switch (reg->id) {
4207 case KVM_REG_S390_TODPR:
4208 r = get_user(vcpu->arch.sie_block->todpr,
4209 (u32 __user *)reg->addr);
4210 break;
4211 case KVM_REG_S390_EPOCHDIFF:
4212 r = get_user(vcpu->arch.sie_block->epoch,
4213 (u64 __user *)reg->addr);
4214 break;
4215 case KVM_REG_S390_CPU_TIMER:
4216 r = get_user(val, (u64 __user *)reg->addr);
4217 if (!r)
4218 kvm_s390_set_cpu_timer(vcpu, val);
4219 break;
4220 case KVM_REG_S390_CLOCK_COMP:
4221 r = get_user(vcpu->arch.sie_block->ckc,
4222 (u64 __user *)reg->addr);
4223 break;
4224 case KVM_REG_S390_PFTOKEN:
4225 r = get_user(vcpu->arch.pfault_token,
4226 (u64 __user *)reg->addr);
4227 if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
4228 kvm_clear_async_pf_completion_queue(vcpu);
4229 break;
4230 case KVM_REG_S390_PFCOMPARE:
4231 r = get_user(vcpu->arch.pfault_compare,
4232 (u64 __user *)reg->addr);
4233 break;
4234 case KVM_REG_S390_PFSELECT:
4235 r = get_user(vcpu->arch.pfault_select,
4236 (u64 __user *)reg->addr);
4237 break;
4238 case KVM_REG_S390_PP:
4239 r = get_user(vcpu->arch.sie_block->pp,
4240 (u64 __user *)reg->addr);
4241 break;
4242 case KVM_REG_S390_GBEA:
4243 r = get_user(vcpu->arch.sie_block->gbea,
4244 (u64 __user *)reg->addr);
4245 break;
4246 default:
4247 break;
4248 }
4249
4250 return r;
4251 }
4252
kvm_arch_vcpu_ioctl_normal_reset(struct kvm_vcpu * vcpu)4253 static void kvm_arch_vcpu_ioctl_normal_reset(struct kvm_vcpu *vcpu)
4254 {
4255 vcpu->arch.sie_block->gpsw.mask &= ~PSW_MASK_RI;
4256 vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID;
4257 memset(vcpu->run->s.regs.riccb, 0, sizeof(vcpu->run->s.regs.riccb));
4258
4259 kvm_clear_async_pf_completion_queue(vcpu);
4260 if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm))
4261 kvm_s390_vcpu_stop(vcpu);
4262 kvm_s390_clear_local_irqs(vcpu);
4263 }
4264
kvm_arch_vcpu_ioctl_initial_reset(struct kvm_vcpu * vcpu)4265 static void kvm_arch_vcpu_ioctl_initial_reset(struct kvm_vcpu *vcpu)
4266 {
4267 /* Initial reset is a superset of the normal reset */
4268 kvm_arch_vcpu_ioctl_normal_reset(vcpu);
4269
4270 /*
4271 * This equals initial cpu reset in pop, but we don't switch to ESA.
4272 * We do not only reset the internal data, but also ...
4273 */
4274 vcpu->arch.sie_block->gpsw.mask = 0;
4275 vcpu->arch.sie_block->gpsw.addr = 0;
4276 kvm_s390_set_prefix(vcpu, 0);
4277 kvm_s390_set_cpu_timer(vcpu, 0);
4278 vcpu->arch.sie_block->ckc = 0;
4279 memset(vcpu->arch.sie_block->gcr, 0, sizeof(vcpu->arch.sie_block->gcr));
4280 vcpu->arch.sie_block->gcr[0] = CR0_INITIAL_MASK;
4281 vcpu->arch.sie_block->gcr[14] = CR14_INITIAL_MASK;
4282
4283 /* ... the data in sync regs */
4284 memset(vcpu->run->s.regs.crs, 0, sizeof(vcpu->run->s.regs.crs));
4285 vcpu->run->s.regs.ckc = 0;
4286 vcpu->run->s.regs.crs[0] = CR0_INITIAL_MASK;
4287 vcpu->run->s.regs.crs[14] = CR14_INITIAL_MASK;
4288 vcpu->run->psw_addr = 0;
4289 vcpu->run->psw_mask = 0;
4290 vcpu->run->s.regs.todpr = 0;
4291 vcpu->run->s.regs.cputm = 0;
4292 vcpu->run->s.regs.ckc = 0;
4293 vcpu->run->s.regs.pp = 0;
4294 vcpu->run->s.regs.gbea = 1;
4295 vcpu->run->s.regs.fpc = 0;
4296 /*
4297 * Do not reset these registers in the protected case, as some of
4298 * them are overlaid and they are not accessible in this case
4299 * anyway.
4300 */
4301 if (!kvm_s390_pv_cpu_is_protected(vcpu)) {
4302 vcpu->arch.sie_block->gbea = 1;
4303 vcpu->arch.sie_block->pp = 0;
4304 vcpu->arch.sie_block->fpf &= ~FPF_BPBC;
4305 vcpu->arch.sie_block->todpr = 0;
4306 }
4307 }
4308
kvm_arch_vcpu_ioctl_clear_reset(struct kvm_vcpu * vcpu)4309 static void kvm_arch_vcpu_ioctl_clear_reset(struct kvm_vcpu *vcpu)
4310 {
4311 struct kvm_sync_regs *regs = &vcpu->run->s.regs;
4312
4313 /* Clear reset is a superset of the initial reset */
4314 kvm_arch_vcpu_ioctl_initial_reset(vcpu);
4315
4316 memset(®s->gprs, 0, sizeof(regs->gprs));
4317 memset(®s->vrs, 0, sizeof(regs->vrs));
4318 memset(®s->acrs, 0, sizeof(regs->acrs));
4319 memset(®s->gscb, 0, sizeof(regs->gscb));
4320
4321 regs->etoken = 0;
4322 regs->etoken_extension = 0;
4323 }
4324
kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)4325 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
4326 {
4327 vcpu_load(vcpu);
4328 memcpy(&vcpu->run->s.regs.gprs, ®s->gprs, sizeof(regs->gprs));
4329 vcpu_put(vcpu);
4330 return 0;
4331 }
4332
kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)4333 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
4334 {
4335 vcpu_load(vcpu);
4336 memcpy(®s->gprs, &vcpu->run->s.regs.gprs, sizeof(regs->gprs));
4337 vcpu_put(vcpu);
4338 return 0;
4339 }
4340
kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)4341 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
4342 struct kvm_sregs *sregs)
4343 {
4344 vcpu_load(vcpu);
4345
4346 memcpy(&vcpu->run->s.regs.acrs, &sregs->acrs, sizeof(sregs->acrs));
4347 memcpy(&vcpu->arch.sie_block->gcr, &sregs->crs, sizeof(sregs->crs));
4348
4349 vcpu_put(vcpu);
4350 return 0;
4351 }
4352
kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)4353 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
4354 struct kvm_sregs *sregs)
4355 {
4356 vcpu_load(vcpu);
4357
4358 memcpy(&sregs->acrs, &vcpu->run->s.regs.acrs, sizeof(sregs->acrs));
4359 memcpy(&sregs->crs, &vcpu->arch.sie_block->gcr, sizeof(sregs->crs));
4360
4361 vcpu_put(vcpu);
4362 return 0;
4363 }
4364
kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)4365 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
4366 {
4367 int ret = 0;
4368
4369 vcpu_load(vcpu);
4370
4371 vcpu->run->s.regs.fpc = fpu->fpc;
4372 if (cpu_has_vx())
4373 convert_fp_to_vx((__vector128 *) vcpu->run->s.regs.vrs,
4374 (freg_t *) fpu->fprs);
4375 else
4376 memcpy(vcpu->run->s.regs.fprs, &fpu->fprs, sizeof(fpu->fprs));
4377
4378 vcpu_put(vcpu);
4379 return ret;
4380 }
4381
kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)4382 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
4383 {
4384 vcpu_load(vcpu);
4385
4386 if (cpu_has_vx())
4387 convert_vx_to_fp((freg_t *) fpu->fprs,
4388 (__vector128 *) vcpu->run->s.regs.vrs);
4389 else
4390 memcpy(fpu->fprs, vcpu->run->s.regs.fprs, sizeof(fpu->fprs));
4391 fpu->fpc = vcpu->run->s.regs.fpc;
4392
4393 vcpu_put(vcpu);
4394 return 0;
4395 }
4396
kvm_arch_vcpu_ioctl_set_initial_psw(struct kvm_vcpu * vcpu,psw_t psw)4397 static int kvm_arch_vcpu_ioctl_set_initial_psw(struct kvm_vcpu *vcpu, psw_t psw)
4398 {
4399 int rc = 0;
4400
4401 if (!is_vcpu_stopped(vcpu))
4402 rc = -EBUSY;
4403 else {
4404 vcpu->run->psw_mask = psw.mask;
4405 vcpu->run->psw_addr = psw.addr;
4406 }
4407 return rc;
4408 }
4409
kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu * vcpu,struct kvm_translation * tr)4410 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
4411 struct kvm_translation *tr)
4412 {
4413 return -EINVAL; /* not implemented yet */
4414 }
4415
4416 #define VALID_GUESTDBG_FLAGS (KVM_GUESTDBG_SINGLESTEP | \
4417 KVM_GUESTDBG_USE_HW_BP | \
4418 KVM_GUESTDBG_ENABLE)
4419
kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu * vcpu,struct kvm_guest_debug * dbg)4420 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
4421 struct kvm_guest_debug *dbg)
4422 {
4423 int rc = 0;
4424
4425 vcpu_load(vcpu);
4426
4427 vcpu->guest_debug = 0;
4428 kvm_s390_clear_bp_data(vcpu);
4429
4430 if (dbg->control & ~VALID_GUESTDBG_FLAGS) {
4431 rc = -EINVAL;
4432 goto out;
4433 }
4434 if (!sclp.has_gpere) {
4435 rc = -EINVAL;
4436 goto out;
4437 }
4438
4439 if (dbg->control & KVM_GUESTDBG_ENABLE) {
4440 vcpu->guest_debug = dbg->control;
4441 /* enforce guest PER */
4442 kvm_s390_set_cpuflags(vcpu, CPUSTAT_P);
4443
4444 if (dbg->control & KVM_GUESTDBG_USE_HW_BP)
4445 rc = kvm_s390_import_bp_data(vcpu, dbg);
4446 } else {
4447 kvm_s390_clear_cpuflags(vcpu, CPUSTAT_P);
4448 vcpu->arch.guestdbg.last_bp = 0;
4449 }
4450
4451 if (rc) {
4452 vcpu->guest_debug = 0;
4453 kvm_s390_clear_bp_data(vcpu);
4454 kvm_s390_clear_cpuflags(vcpu, CPUSTAT_P);
4455 }
4456
4457 out:
4458 vcpu_put(vcpu);
4459 return rc;
4460 }
4461
kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)4462 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
4463 struct kvm_mp_state *mp_state)
4464 {
4465 int ret;
4466
4467 vcpu_load(vcpu);
4468
4469 /* CHECK_STOP and LOAD are not supported yet */
4470 ret = is_vcpu_stopped(vcpu) ? KVM_MP_STATE_STOPPED :
4471 KVM_MP_STATE_OPERATING;
4472
4473 vcpu_put(vcpu);
4474 return ret;
4475 }
4476
kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)4477 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
4478 struct kvm_mp_state *mp_state)
4479 {
4480 int rc = 0;
4481
4482 vcpu_load(vcpu);
4483
4484 /* user space knows about this interface - let it control the state */
4485 kvm_s390_set_user_cpu_state_ctrl(vcpu->kvm);
4486
4487 switch (mp_state->mp_state) {
4488 case KVM_MP_STATE_STOPPED:
4489 rc = kvm_s390_vcpu_stop(vcpu);
4490 break;
4491 case KVM_MP_STATE_OPERATING:
4492 rc = kvm_s390_vcpu_start(vcpu);
4493 break;
4494 case KVM_MP_STATE_LOAD:
4495 if (!kvm_s390_pv_cpu_is_protected(vcpu)) {
4496 rc = -ENXIO;
4497 break;
4498 }
4499 rc = kvm_s390_pv_set_cpu_state(vcpu, PV_CPU_STATE_OPR_LOAD);
4500 break;
4501 case KVM_MP_STATE_CHECK_STOP:
4502 fallthrough; /* CHECK_STOP and LOAD are not supported yet */
4503 default:
4504 rc = -ENXIO;
4505 }
4506
4507 vcpu_put(vcpu);
4508 return rc;
4509 }
4510
ibs_enabled(struct kvm_vcpu * vcpu)4511 static bool ibs_enabled(struct kvm_vcpu *vcpu)
4512 {
4513 return kvm_s390_test_cpuflags(vcpu, CPUSTAT_IBS);
4514 }
4515
__kvm_s390_fixup_fault_sync(struct gmap * gmap,gpa_t gaddr,unsigned int flags)4516 static int __kvm_s390_fixup_fault_sync(struct gmap *gmap, gpa_t gaddr, unsigned int flags)
4517 {
4518 struct kvm *kvm = gmap->private;
4519 gfn_t gfn = gpa_to_gfn(gaddr);
4520 bool unlocked;
4521 hva_t vmaddr;
4522 gpa_t tmp;
4523 int rc;
4524
4525 if (kvm_is_ucontrol(kvm)) {
4526 tmp = __gmap_translate(gmap, gaddr);
4527 gfn = gpa_to_gfn(tmp);
4528 }
4529
4530 vmaddr = gfn_to_hva(kvm, gfn);
4531 rc = fixup_user_fault(gmap->mm, vmaddr, FAULT_FLAG_WRITE, &unlocked);
4532 if (!rc)
4533 rc = __gmap_link(gmap, gaddr, vmaddr);
4534 return rc;
4535 }
4536
4537 /**
4538 * __kvm_s390_mprotect_many() - Apply specified protection to guest pages
4539 * @gmap: the gmap of the guest
4540 * @gpa: the starting guest address
4541 * @npages: how many pages to protect
4542 * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE
4543 * @bits: pgste notification bits to set
4544 *
4545 * Returns: 0 in case of success, < 0 in case of error - see gmap_protect_one()
4546 *
4547 * Context: kvm->srcu and gmap->mm need to be held in read mode
4548 */
__kvm_s390_mprotect_many(struct gmap * gmap,gpa_t gpa,u8 npages,unsigned int prot,unsigned long bits)4549 int __kvm_s390_mprotect_many(struct gmap *gmap, gpa_t gpa, u8 npages, unsigned int prot,
4550 unsigned long bits)
4551 {
4552 unsigned int fault_flag = (prot & PROT_WRITE) ? FAULT_FLAG_WRITE : 0;
4553 gpa_t end = gpa + npages * PAGE_SIZE;
4554 int rc;
4555
4556 for (; gpa < end; gpa = ALIGN(gpa + 1, rc)) {
4557 rc = gmap_protect_one(gmap, gpa, prot, bits);
4558 if (rc == -EAGAIN) {
4559 __kvm_s390_fixup_fault_sync(gmap, gpa, fault_flag);
4560 rc = gmap_protect_one(gmap, gpa, prot, bits);
4561 }
4562 if (rc < 0)
4563 return rc;
4564 }
4565
4566 return 0;
4567 }
4568
kvm_s390_mprotect_notify_prefix(struct kvm_vcpu * vcpu)4569 static int kvm_s390_mprotect_notify_prefix(struct kvm_vcpu *vcpu)
4570 {
4571 gpa_t gaddr = kvm_s390_get_prefix(vcpu);
4572 int idx, rc;
4573
4574 idx = srcu_read_lock(&vcpu->kvm->srcu);
4575 mmap_read_lock(vcpu->arch.gmap->mm);
4576
4577 rc = __kvm_s390_mprotect_many(vcpu->arch.gmap, gaddr, 2, PROT_WRITE, GMAP_NOTIFY_MPROT);
4578
4579 mmap_read_unlock(vcpu->arch.gmap->mm);
4580 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4581
4582 return rc;
4583 }
4584
kvm_s390_handle_requests(struct kvm_vcpu * vcpu)4585 static int kvm_s390_handle_requests(struct kvm_vcpu *vcpu)
4586 {
4587 retry:
4588 kvm_s390_vcpu_request_handled(vcpu);
4589 if (!kvm_request_pending(vcpu))
4590 return 0;
4591 /*
4592 * If the guest prefix changed, re-arm the ipte notifier for the
4593 * guest prefix page. gmap_mprotect_notify will wait on the ptl lock.
4594 * This ensures that the ipte instruction for this request has
4595 * already finished. We might race against a second unmapper that
4596 * wants to set the blocking bit. Lets just retry the request loop.
4597 */
4598 if (kvm_check_request(KVM_REQ_REFRESH_GUEST_PREFIX, vcpu)) {
4599 int rc;
4600
4601 rc = kvm_s390_mprotect_notify_prefix(vcpu);
4602 if (rc) {
4603 kvm_make_request(KVM_REQ_REFRESH_GUEST_PREFIX, vcpu);
4604 return rc;
4605 }
4606 goto retry;
4607 }
4608
4609 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
4610 vcpu->arch.sie_block->ihcpu = 0xffff;
4611 goto retry;
4612 }
4613
4614 if (kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu)) {
4615 if (!ibs_enabled(vcpu)) {
4616 trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 1);
4617 kvm_s390_set_cpuflags(vcpu, CPUSTAT_IBS);
4618 }
4619 goto retry;
4620 }
4621
4622 if (kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu)) {
4623 if (ibs_enabled(vcpu)) {
4624 trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 0);
4625 kvm_s390_clear_cpuflags(vcpu, CPUSTAT_IBS);
4626 }
4627 goto retry;
4628 }
4629
4630 if (kvm_check_request(KVM_REQ_ICPT_OPEREXC, vcpu)) {
4631 vcpu->arch.sie_block->ictl |= ICTL_OPEREXC;
4632 goto retry;
4633 }
4634
4635 if (kvm_check_request(KVM_REQ_START_MIGRATION, vcpu)) {
4636 /*
4637 * Disable CMM virtualization; we will emulate the ESSA
4638 * instruction manually, in order to provide additional
4639 * functionalities needed for live migration.
4640 */
4641 vcpu->arch.sie_block->ecb2 &= ~ECB2_CMMA;
4642 goto retry;
4643 }
4644
4645 if (kvm_check_request(KVM_REQ_STOP_MIGRATION, vcpu)) {
4646 /*
4647 * Re-enable CMM virtualization if CMMA is available and
4648 * CMM has been used.
4649 */
4650 if ((vcpu->kvm->arch.use_cmma) &&
4651 (vcpu->kvm->mm->context.uses_cmm))
4652 vcpu->arch.sie_block->ecb2 |= ECB2_CMMA;
4653 goto retry;
4654 }
4655
4656 /* we left the vsie handler, nothing to do, just clear the request */
4657 kvm_clear_request(KVM_REQ_VSIE_RESTART, vcpu);
4658
4659 return 0;
4660 }
4661
__kvm_s390_set_tod_clock(struct kvm * kvm,const struct kvm_s390_vm_tod_clock * gtod)4662 static void __kvm_s390_set_tod_clock(struct kvm *kvm, const struct kvm_s390_vm_tod_clock *gtod)
4663 {
4664 struct kvm_vcpu *vcpu;
4665 union tod_clock clk;
4666 unsigned long i;
4667
4668 preempt_disable();
4669
4670 store_tod_clock_ext(&clk);
4671
4672 kvm->arch.epoch = gtod->tod - clk.tod;
4673 kvm->arch.epdx = 0;
4674 if (test_kvm_facility(kvm, 139)) {
4675 kvm->arch.epdx = gtod->epoch_idx - clk.ei;
4676 if (kvm->arch.epoch > gtod->tod)
4677 kvm->arch.epdx -= 1;
4678 }
4679
4680 kvm_s390_vcpu_block_all(kvm);
4681 kvm_for_each_vcpu(i, vcpu, kvm) {
4682 vcpu->arch.sie_block->epoch = kvm->arch.epoch;
4683 vcpu->arch.sie_block->epdx = kvm->arch.epdx;
4684 }
4685
4686 kvm_s390_vcpu_unblock_all(kvm);
4687 preempt_enable();
4688 }
4689
kvm_s390_try_set_tod_clock(struct kvm * kvm,const struct kvm_s390_vm_tod_clock * gtod)4690 int kvm_s390_try_set_tod_clock(struct kvm *kvm, const struct kvm_s390_vm_tod_clock *gtod)
4691 {
4692 if (!mutex_trylock(&kvm->lock))
4693 return 0;
4694 __kvm_s390_set_tod_clock(kvm, gtod);
4695 mutex_unlock(&kvm->lock);
4696 return 1;
4697 }
4698
__kvm_inject_pfault_token(struct kvm_vcpu * vcpu,bool start_token,unsigned long token)4699 static void __kvm_inject_pfault_token(struct kvm_vcpu *vcpu, bool start_token,
4700 unsigned long token)
4701 {
4702 struct kvm_s390_interrupt inti;
4703 struct kvm_s390_irq irq;
4704
4705 if (start_token) {
4706 irq.u.ext.ext_params2 = token;
4707 irq.type = KVM_S390_INT_PFAULT_INIT;
4708 WARN_ON_ONCE(kvm_s390_inject_vcpu(vcpu, &irq));
4709 } else {
4710 inti.type = KVM_S390_INT_PFAULT_DONE;
4711 inti.parm64 = token;
4712 WARN_ON_ONCE(kvm_s390_inject_vm(vcpu->kvm, &inti));
4713 }
4714 }
4715
kvm_arch_async_page_not_present(struct kvm_vcpu * vcpu,struct kvm_async_pf * work)4716 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
4717 struct kvm_async_pf *work)
4718 {
4719 trace_kvm_s390_pfault_init(vcpu, work->arch.pfault_token);
4720 __kvm_inject_pfault_token(vcpu, true, work->arch.pfault_token);
4721
4722 return true;
4723 }
4724
kvm_arch_async_page_present(struct kvm_vcpu * vcpu,struct kvm_async_pf * work)4725 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
4726 struct kvm_async_pf *work)
4727 {
4728 trace_kvm_s390_pfault_done(vcpu, work->arch.pfault_token);
4729 __kvm_inject_pfault_token(vcpu, false, work->arch.pfault_token);
4730 }
4731
kvm_arch_async_page_ready(struct kvm_vcpu * vcpu,struct kvm_async_pf * work)4732 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu,
4733 struct kvm_async_pf *work)
4734 {
4735 /* s390 will always inject the page directly */
4736 }
4737
kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu * vcpu)4738 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
4739 {
4740 /*
4741 * s390 will always inject the page directly,
4742 * but we still want check_async_completion to cleanup
4743 */
4744 return true;
4745 }
4746
kvm_arch_setup_async_pf(struct kvm_vcpu * vcpu)4747 static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu)
4748 {
4749 hva_t hva;
4750 struct kvm_arch_async_pf arch;
4751
4752 if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
4753 return false;
4754 if ((vcpu->arch.sie_block->gpsw.mask & vcpu->arch.pfault_select) !=
4755 vcpu->arch.pfault_compare)
4756 return false;
4757 if (psw_extint_disabled(vcpu))
4758 return false;
4759 if (kvm_s390_vcpu_has_irq(vcpu, 0))
4760 return false;
4761 if (!(vcpu->arch.sie_block->gcr[0] & CR0_SERVICE_SIGNAL_SUBMASK))
4762 return false;
4763 if (!vcpu->arch.gmap->pfault_enabled)
4764 return false;
4765
4766 hva = gfn_to_hva(vcpu->kvm, current->thread.gmap_teid.addr);
4767 if (read_guest_real(vcpu, vcpu->arch.pfault_token, &arch.pfault_token, 8))
4768 return false;
4769
4770 return kvm_setup_async_pf(vcpu, current->thread.gmap_teid.addr * PAGE_SIZE, hva, &arch);
4771 }
4772
vcpu_pre_run(struct kvm_vcpu * vcpu)4773 static int vcpu_pre_run(struct kvm_vcpu *vcpu)
4774 {
4775 int rc, cpuflags;
4776
4777 /*
4778 * On s390 notifications for arriving pages will be delivered directly
4779 * to the guest but the house keeping for completed pfaults is
4780 * handled outside the worker.
4781 */
4782 kvm_check_async_pf_completion(vcpu);
4783
4784 vcpu->arch.sie_block->gg14 = vcpu->run->s.regs.gprs[14];
4785 vcpu->arch.sie_block->gg15 = vcpu->run->s.regs.gprs[15];
4786
4787 if (need_resched())
4788 schedule();
4789
4790 if (!kvm_is_ucontrol(vcpu->kvm)) {
4791 rc = kvm_s390_deliver_pending_interrupts(vcpu);
4792 if (rc || guestdbg_exit_pending(vcpu))
4793 return rc;
4794 }
4795
4796 rc = kvm_s390_handle_requests(vcpu);
4797 if (rc)
4798 return rc;
4799
4800 if (guestdbg_enabled(vcpu)) {
4801 kvm_s390_backup_guest_per_regs(vcpu);
4802 kvm_s390_patch_guest_per_regs(vcpu);
4803 }
4804
4805 clear_bit(vcpu->vcpu_idx, vcpu->kvm->arch.gisa_int.kicked_mask);
4806
4807 vcpu->arch.sie_block->icptcode = 0;
4808 current->thread.gmap_int_code = 0;
4809 cpuflags = atomic_read(&vcpu->arch.sie_block->cpuflags);
4810 VCPU_EVENT(vcpu, 6, "entering sie flags %x", cpuflags);
4811 trace_kvm_s390_sie_enter(vcpu, cpuflags);
4812
4813 return 0;
4814 }
4815
vcpu_post_run_addressing_exception(struct kvm_vcpu * vcpu)4816 static int vcpu_post_run_addressing_exception(struct kvm_vcpu *vcpu)
4817 {
4818 struct kvm_s390_pgm_info pgm_info = {
4819 .code = PGM_ADDRESSING,
4820 };
4821 u8 opcode, ilen;
4822 int rc;
4823
4824 VCPU_EVENT(vcpu, 3, "%s", "fault in sie instruction");
4825 trace_kvm_s390_sie_fault(vcpu);
4826
4827 /*
4828 * We want to inject an addressing exception, which is defined as a
4829 * suppressing or terminating exception. However, since we came here
4830 * by a DAT access exception, the PSW still points to the faulting
4831 * instruction since DAT exceptions are nullifying. So we've got
4832 * to look up the current opcode to get the length of the instruction
4833 * to be able to forward the PSW.
4834 */
4835 rc = read_guest_instr(vcpu, vcpu->arch.sie_block->gpsw.addr, &opcode, 1);
4836 ilen = insn_length(opcode);
4837 if (rc < 0) {
4838 return rc;
4839 } else if (rc) {
4840 /* Instruction-Fetching Exceptions - we can't detect the ilen.
4841 * Forward by arbitrary ilc, injection will take care of
4842 * nullification if necessary.
4843 */
4844 pgm_info = vcpu->arch.pgm;
4845 ilen = 4;
4846 }
4847 pgm_info.flags = ilen | KVM_S390_PGM_FLAGS_ILC_VALID;
4848 kvm_s390_forward_psw(vcpu, ilen);
4849 return kvm_s390_inject_prog_irq(vcpu, &pgm_info);
4850 }
4851
kvm_s390_assert_primary_as(struct kvm_vcpu * vcpu)4852 static void kvm_s390_assert_primary_as(struct kvm_vcpu *vcpu)
4853 {
4854 KVM_BUG(current->thread.gmap_teid.as != PSW_BITS_AS_PRIMARY, vcpu->kvm,
4855 "Unexpected program interrupt 0x%x, TEID 0x%016lx",
4856 current->thread.gmap_int_code, current->thread.gmap_teid.val);
4857 }
4858
4859 /*
4860 * __kvm_s390_handle_dat_fault() - handle a dat fault for the gmap of a vcpu
4861 * @vcpu: the vCPU whose gmap is to be fixed up
4862 * @gfn: the guest frame number used for memslots (including fake memslots)
4863 * @gaddr: the gmap address, does not have to match @gfn for ucontrol gmaps
4864 * @flags: FOLL_* flags
4865 *
4866 * Return: 0 on success, < 0 in case of error.
4867 * Context: The mm lock must not be held before calling. May sleep.
4868 */
__kvm_s390_handle_dat_fault(struct kvm_vcpu * vcpu,gfn_t gfn,gpa_t gaddr,unsigned int flags)4869 int __kvm_s390_handle_dat_fault(struct kvm_vcpu *vcpu, gfn_t gfn, gpa_t gaddr, unsigned int flags)
4870 {
4871 struct kvm_memory_slot *slot;
4872 unsigned int fault_flags;
4873 bool writable, unlocked;
4874 unsigned long vmaddr;
4875 struct page *page;
4876 kvm_pfn_t pfn;
4877 int rc;
4878
4879 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
4880 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
4881 return vcpu_post_run_addressing_exception(vcpu);
4882
4883 fault_flags = flags & FOLL_WRITE ? FAULT_FLAG_WRITE : 0;
4884 if (vcpu->arch.gmap->pfault_enabled)
4885 flags |= FOLL_NOWAIT;
4886 vmaddr = __gfn_to_hva_memslot(slot, gfn);
4887
4888 try_again:
4889 pfn = __kvm_faultin_pfn(slot, gfn, flags, &writable, &page);
4890
4891 /* Access outside memory, inject addressing exception */
4892 if (is_noslot_pfn(pfn))
4893 return vcpu_post_run_addressing_exception(vcpu);
4894 /* Signal pending: try again */
4895 if (pfn == KVM_PFN_ERR_SIGPENDING)
4896 return -EAGAIN;
4897
4898 /* Needs I/O, try to setup async pfault (only possible with FOLL_NOWAIT) */
4899 if (pfn == KVM_PFN_ERR_NEEDS_IO) {
4900 trace_kvm_s390_major_guest_pfault(vcpu);
4901 if (kvm_arch_setup_async_pf(vcpu))
4902 return 0;
4903 vcpu->stat.pfault_sync++;
4904 /* Could not setup async pfault, try again synchronously */
4905 flags &= ~FOLL_NOWAIT;
4906 goto try_again;
4907 }
4908 /* Any other error */
4909 if (is_error_pfn(pfn))
4910 return -EFAULT;
4911
4912 /* Success */
4913 mmap_read_lock(vcpu->arch.gmap->mm);
4914 /* Mark the userspace PTEs as young and/or dirty, to avoid page fault loops */
4915 rc = fixup_user_fault(vcpu->arch.gmap->mm, vmaddr, fault_flags, &unlocked);
4916 if (!rc)
4917 rc = __gmap_link(vcpu->arch.gmap, gaddr, vmaddr);
4918 scoped_guard(spinlock, &vcpu->kvm->mmu_lock) {
4919 kvm_release_faultin_page(vcpu->kvm, page, false, writable);
4920 }
4921 mmap_read_unlock(vcpu->arch.gmap->mm);
4922 return rc;
4923 }
4924
vcpu_dat_fault_handler(struct kvm_vcpu * vcpu,unsigned long gaddr,unsigned int flags)4925 static int vcpu_dat_fault_handler(struct kvm_vcpu *vcpu, unsigned long gaddr, unsigned int flags)
4926 {
4927 unsigned long gaddr_tmp;
4928 gfn_t gfn;
4929
4930 gfn = gpa_to_gfn(gaddr);
4931 if (kvm_is_ucontrol(vcpu->kvm)) {
4932 /*
4933 * This translates the per-vCPU guest address into a
4934 * fake guest address, which can then be used with the
4935 * fake memslots that are identity mapping userspace.
4936 * This allows ucontrol VMs to use the normal fault
4937 * resolution path, like normal VMs.
4938 */
4939 mmap_read_lock(vcpu->arch.gmap->mm);
4940 gaddr_tmp = __gmap_translate(vcpu->arch.gmap, gaddr);
4941 mmap_read_unlock(vcpu->arch.gmap->mm);
4942 if (gaddr_tmp == -EFAULT) {
4943 vcpu->run->exit_reason = KVM_EXIT_S390_UCONTROL;
4944 vcpu->run->s390_ucontrol.trans_exc_code = gaddr;
4945 vcpu->run->s390_ucontrol.pgm_code = PGM_SEGMENT_TRANSLATION;
4946 return -EREMOTE;
4947 }
4948 gfn = gpa_to_gfn(gaddr_tmp);
4949 }
4950 return __kvm_s390_handle_dat_fault(vcpu, gfn, gaddr, flags);
4951 }
4952
vcpu_post_run_handle_fault(struct kvm_vcpu * vcpu)4953 static int vcpu_post_run_handle_fault(struct kvm_vcpu *vcpu)
4954 {
4955 unsigned int flags = 0;
4956 unsigned long gaddr;
4957 int rc;
4958
4959 gaddr = current->thread.gmap_teid.addr * PAGE_SIZE;
4960 if (kvm_s390_cur_gmap_fault_is_write())
4961 flags = FAULT_FLAG_WRITE;
4962
4963 switch (current->thread.gmap_int_code & PGM_INT_CODE_MASK) {
4964 case 0:
4965 vcpu->stat.exit_null++;
4966 break;
4967 case PGM_SECURE_STORAGE_ACCESS:
4968 case PGM_SECURE_STORAGE_VIOLATION:
4969 kvm_s390_assert_primary_as(vcpu);
4970 /*
4971 * This can happen after a reboot with asynchronous teardown;
4972 * the new guest (normal or protected) will run on top of the
4973 * previous protected guest. The old pages need to be destroyed
4974 * so the new guest can use them.
4975 */
4976 if (gmap_destroy_page(vcpu->arch.gmap, gaddr)) {
4977 /*
4978 * Either KVM messed up the secure guest mapping or the
4979 * same page is mapped into multiple secure guests.
4980 *
4981 * This exception is only triggered when a guest 2 is
4982 * running and can therefore never occur in kernel
4983 * context.
4984 */
4985 pr_warn_ratelimited("Secure storage violation (%x) in task: %s, pid %d\n",
4986 current->thread.gmap_int_code, current->comm,
4987 current->pid);
4988 send_sig(SIGSEGV, current, 0);
4989 }
4990 break;
4991 case PGM_NON_SECURE_STORAGE_ACCESS:
4992 kvm_s390_assert_primary_as(vcpu);
4993 /*
4994 * This is normal operation; a page belonging to a protected
4995 * guest has not been imported yet. Try to import the page into
4996 * the protected guest.
4997 */
4998 rc = gmap_convert_to_secure(vcpu->arch.gmap, gaddr);
4999 if (rc == -EINVAL)
5000 send_sig(SIGSEGV, current, 0);
5001 if (rc != -ENXIO)
5002 break;
5003 flags = FAULT_FLAG_WRITE;
5004 fallthrough;
5005 case PGM_PROTECTION:
5006 case PGM_SEGMENT_TRANSLATION:
5007 case PGM_PAGE_TRANSLATION:
5008 case PGM_ASCE_TYPE:
5009 case PGM_REGION_FIRST_TRANS:
5010 case PGM_REGION_SECOND_TRANS:
5011 case PGM_REGION_THIRD_TRANS:
5012 kvm_s390_assert_primary_as(vcpu);
5013 return vcpu_dat_fault_handler(vcpu, gaddr, flags);
5014 default:
5015 KVM_BUG(1, vcpu->kvm, "Unexpected program interrupt 0x%x, TEID 0x%016lx",
5016 current->thread.gmap_int_code, current->thread.gmap_teid.val);
5017 send_sig(SIGSEGV, current, 0);
5018 break;
5019 }
5020 return 0;
5021 }
5022
vcpu_post_run(struct kvm_vcpu * vcpu,int exit_reason)5023 static int vcpu_post_run(struct kvm_vcpu *vcpu, int exit_reason)
5024 {
5025 struct mcck_volatile_info *mcck_info;
5026 struct sie_page *sie_page;
5027 int rc;
5028
5029 VCPU_EVENT(vcpu, 6, "exit sie icptcode %d",
5030 vcpu->arch.sie_block->icptcode);
5031 trace_kvm_s390_sie_exit(vcpu, vcpu->arch.sie_block->icptcode);
5032
5033 if (guestdbg_enabled(vcpu))
5034 kvm_s390_restore_guest_per_regs(vcpu);
5035
5036 vcpu->run->s.regs.gprs[14] = vcpu->arch.sie_block->gg14;
5037 vcpu->run->s.regs.gprs[15] = vcpu->arch.sie_block->gg15;
5038
5039 if (exit_reason == -EINTR) {
5040 VCPU_EVENT(vcpu, 3, "%s", "machine check");
5041 sie_page = container_of(vcpu->arch.sie_block,
5042 struct sie_page, sie_block);
5043 mcck_info = &sie_page->mcck_info;
5044 kvm_s390_reinject_machine_check(vcpu, mcck_info);
5045 return 0;
5046 }
5047
5048 if (vcpu->arch.sie_block->icptcode > 0) {
5049 rc = kvm_handle_sie_intercept(vcpu);
5050
5051 if (rc != -EOPNOTSUPP)
5052 return rc;
5053 vcpu->run->exit_reason = KVM_EXIT_S390_SIEIC;
5054 vcpu->run->s390_sieic.icptcode = vcpu->arch.sie_block->icptcode;
5055 vcpu->run->s390_sieic.ipa = vcpu->arch.sie_block->ipa;
5056 vcpu->run->s390_sieic.ipb = vcpu->arch.sie_block->ipb;
5057 return -EREMOTE;
5058 }
5059
5060 return vcpu_post_run_handle_fault(vcpu);
5061 }
5062
5063 #define PSW_INT_MASK (PSW_MASK_EXT | PSW_MASK_IO | PSW_MASK_MCHECK)
__vcpu_run(struct kvm_vcpu * vcpu)5064 static int __vcpu_run(struct kvm_vcpu *vcpu)
5065 {
5066 int rc, exit_reason;
5067 struct sie_page *sie_page = (struct sie_page *)vcpu->arch.sie_block;
5068
5069 /*
5070 * We try to hold kvm->srcu during most of vcpu_run (except when run-
5071 * ning the guest), so that memslots (and other stuff) are protected
5072 */
5073 kvm_vcpu_srcu_read_lock(vcpu);
5074
5075 do {
5076 rc = vcpu_pre_run(vcpu);
5077 if (rc || guestdbg_exit_pending(vcpu))
5078 break;
5079
5080 kvm_vcpu_srcu_read_unlock(vcpu);
5081 /*
5082 * As PF_VCPU will be used in fault handler, between
5083 * guest_enter and guest_exit should be no uaccess.
5084 */
5085 local_irq_disable();
5086 guest_enter_irqoff();
5087 __disable_cpu_timer_accounting(vcpu);
5088 local_irq_enable();
5089 if (kvm_s390_pv_cpu_is_protected(vcpu)) {
5090 memcpy(sie_page->pv_grregs,
5091 vcpu->run->s.regs.gprs,
5092 sizeof(sie_page->pv_grregs));
5093 }
5094 exit_reason = sie64a(vcpu->arch.sie_block,
5095 vcpu->run->s.regs.gprs,
5096 vcpu->arch.gmap->asce);
5097 if (kvm_s390_pv_cpu_is_protected(vcpu)) {
5098 memcpy(vcpu->run->s.regs.gprs,
5099 sie_page->pv_grregs,
5100 sizeof(sie_page->pv_grregs));
5101 /*
5102 * We're not allowed to inject interrupts on intercepts
5103 * that leave the guest state in an "in-between" state
5104 * where the next SIE entry will do a continuation.
5105 * Fence interrupts in our "internal" PSW.
5106 */
5107 if (vcpu->arch.sie_block->icptcode == ICPT_PV_INSTR ||
5108 vcpu->arch.sie_block->icptcode == ICPT_PV_PREF) {
5109 vcpu->arch.sie_block->gpsw.mask &= ~PSW_INT_MASK;
5110 }
5111 }
5112 local_irq_disable();
5113 __enable_cpu_timer_accounting(vcpu);
5114 guest_exit_irqoff();
5115 local_irq_enable();
5116 kvm_vcpu_srcu_read_lock(vcpu);
5117
5118 rc = vcpu_post_run(vcpu, exit_reason);
5119 } while (!signal_pending(current) && !guestdbg_exit_pending(vcpu) && !rc);
5120
5121 kvm_vcpu_srcu_read_unlock(vcpu);
5122 return rc;
5123 }
5124
sync_regs_fmt2(struct kvm_vcpu * vcpu)5125 static void sync_regs_fmt2(struct kvm_vcpu *vcpu)
5126 {
5127 struct kvm_run *kvm_run = vcpu->run;
5128 struct runtime_instr_cb *riccb;
5129 struct gs_cb *gscb;
5130
5131 riccb = (struct runtime_instr_cb *) &kvm_run->s.regs.riccb;
5132 gscb = (struct gs_cb *) &kvm_run->s.regs.gscb;
5133 vcpu->arch.sie_block->gpsw.mask = kvm_run->psw_mask;
5134 vcpu->arch.sie_block->gpsw.addr = kvm_run->psw_addr;
5135 if (kvm_run->kvm_dirty_regs & KVM_SYNC_ARCH0) {
5136 vcpu->arch.sie_block->todpr = kvm_run->s.regs.todpr;
5137 vcpu->arch.sie_block->pp = kvm_run->s.regs.pp;
5138 vcpu->arch.sie_block->gbea = kvm_run->s.regs.gbea;
5139 }
5140 if (kvm_run->kvm_dirty_regs & KVM_SYNC_PFAULT) {
5141 vcpu->arch.pfault_token = kvm_run->s.regs.pft;
5142 vcpu->arch.pfault_select = kvm_run->s.regs.pfs;
5143 vcpu->arch.pfault_compare = kvm_run->s.regs.pfc;
5144 if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
5145 kvm_clear_async_pf_completion_queue(vcpu);
5146 }
5147 if (kvm_run->kvm_dirty_regs & KVM_SYNC_DIAG318) {
5148 vcpu->arch.diag318_info.val = kvm_run->s.regs.diag318;
5149 vcpu->arch.sie_block->cpnc = vcpu->arch.diag318_info.cpnc;
5150 VCPU_EVENT(vcpu, 3, "setting cpnc to %d", vcpu->arch.diag318_info.cpnc);
5151 }
5152 /*
5153 * If userspace sets the riccb (e.g. after migration) to a valid state,
5154 * we should enable RI here instead of doing the lazy enablement.
5155 */
5156 if ((kvm_run->kvm_dirty_regs & KVM_SYNC_RICCB) &&
5157 test_kvm_facility(vcpu->kvm, 64) &&
5158 riccb->v &&
5159 !(vcpu->arch.sie_block->ecb3 & ECB3_RI)) {
5160 VCPU_EVENT(vcpu, 3, "%s", "ENABLE: RI (sync_regs)");
5161 vcpu->arch.sie_block->ecb3 |= ECB3_RI;
5162 }
5163 /*
5164 * If userspace sets the gscb (e.g. after migration) to non-zero,
5165 * we should enable GS here instead of doing the lazy enablement.
5166 */
5167 if ((kvm_run->kvm_dirty_regs & KVM_SYNC_GSCB) &&
5168 test_kvm_facility(vcpu->kvm, 133) &&
5169 gscb->gssm &&
5170 !vcpu->arch.gs_enabled) {
5171 VCPU_EVENT(vcpu, 3, "%s", "ENABLE: GS (sync_regs)");
5172 vcpu->arch.sie_block->ecb |= ECB_GS;
5173 vcpu->arch.sie_block->ecd |= ECD_HOSTREGMGMT;
5174 vcpu->arch.gs_enabled = 1;
5175 }
5176 if ((kvm_run->kvm_dirty_regs & KVM_SYNC_BPBC) &&
5177 test_kvm_facility(vcpu->kvm, 82)) {
5178 vcpu->arch.sie_block->fpf &= ~FPF_BPBC;
5179 vcpu->arch.sie_block->fpf |= kvm_run->s.regs.bpbc ? FPF_BPBC : 0;
5180 }
5181 if (cpu_has_gs()) {
5182 preempt_disable();
5183 local_ctl_set_bit(2, CR2_GUARDED_STORAGE_BIT);
5184 if (current->thread.gs_cb) {
5185 vcpu->arch.host_gscb = current->thread.gs_cb;
5186 save_gs_cb(vcpu->arch.host_gscb);
5187 }
5188 if (vcpu->arch.gs_enabled) {
5189 current->thread.gs_cb = (struct gs_cb *)
5190 &vcpu->run->s.regs.gscb;
5191 restore_gs_cb(current->thread.gs_cb);
5192 }
5193 preempt_enable();
5194 }
5195 /* SIE will load etoken directly from SDNX and therefore kvm_run */
5196 }
5197
sync_regs(struct kvm_vcpu * vcpu)5198 static void sync_regs(struct kvm_vcpu *vcpu)
5199 {
5200 struct kvm_run *kvm_run = vcpu->run;
5201
5202 if (kvm_run->kvm_dirty_regs & KVM_SYNC_PREFIX)
5203 kvm_s390_set_prefix(vcpu, kvm_run->s.regs.prefix);
5204 if (kvm_run->kvm_dirty_regs & KVM_SYNC_CRS) {
5205 memcpy(&vcpu->arch.sie_block->gcr, &kvm_run->s.regs.crs, 128);
5206 /* some control register changes require a tlb flush */
5207 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
5208 }
5209 if (kvm_run->kvm_dirty_regs & KVM_SYNC_ARCH0) {
5210 kvm_s390_set_cpu_timer(vcpu, kvm_run->s.regs.cputm);
5211 vcpu->arch.sie_block->ckc = kvm_run->s.regs.ckc;
5212 }
5213 save_access_regs(vcpu->arch.host_acrs);
5214 restore_access_regs(vcpu->run->s.regs.acrs);
5215 vcpu->arch.acrs_loaded = true;
5216 kvm_s390_fpu_load(vcpu->run);
5217 /* Sync fmt2 only data */
5218 if (likely(!kvm_s390_pv_cpu_is_protected(vcpu))) {
5219 sync_regs_fmt2(vcpu);
5220 } else {
5221 /*
5222 * In several places we have to modify our internal view to
5223 * not do things that are disallowed by the ultravisor. For
5224 * example we must not inject interrupts after specific exits
5225 * (e.g. 112 prefix page not secure). We do this by turning
5226 * off the machine check, external and I/O interrupt bits
5227 * of our PSW copy. To avoid getting validity intercepts, we
5228 * do only accept the condition code from userspace.
5229 */
5230 vcpu->arch.sie_block->gpsw.mask &= ~PSW_MASK_CC;
5231 vcpu->arch.sie_block->gpsw.mask |= kvm_run->psw_mask &
5232 PSW_MASK_CC;
5233 }
5234
5235 kvm_run->kvm_dirty_regs = 0;
5236 }
5237
store_regs_fmt2(struct kvm_vcpu * vcpu)5238 static void store_regs_fmt2(struct kvm_vcpu *vcpu)
5239 {
5240 struct kvm_run *kvm_run = vcpu->run;
5241
5242 kvm_run->s.regs.todpr = vcpu->arch.sie_block->todpr;
5243 kvm_run->s.regs.pp = vcpu->arch.sie_block->pp;
5244 kvm_run->s.regs.gbea = vcpu->arch.sie_block->gbea;
5245 kvm_run->s.regs.bpbc = (vcpu->arch.sie_block->fpf & FPF_BPBC) == FPF_BPBC;
5246 kvm_run->s.regs.diag318 = vcpu->arch.diag318_info.val;
5247 if (cpu_has_gs()) {
5248 preempt_disable();
5249 local_ctl_set_bit(2, CR2_GUARDED_STORAGE_BIT);
5250 if (vcpu->arch.gs_enabled)
5251 save_gs_cb(current->thread.gs_cb);
5252 current->thread.gs_cb = vcpu->arch.host_gscb;
5253 restore_gs_cb(vcpu->arch.host_gscb);
5254 if (!vcpu->arch.host_gscb)
5255 local_ctl_clear_bit(2, CR2_GUARDED_STORAGE_BIT);
5256 vcpu->arch.host_gscb = NULL;
5257 preempt_enable();
5258 }
5259 /* SIE will save etoken directly into SDNX and therefore kvm_run */
5260 }
5261
store_regs(struct kvm_vcpu * vcpu)5262 static void store_regs(struct kvm_vcpu *vcpu)
5263 {
5264 struct kvm_run *kvm_run = vcpu->run;
5265
5266 kvm_run->psw_mask = vcpu->arch.sie_block->gpsw.mask;
5267 kvm_run->psw_addr = vcpu->arch.sie_block->gpsw.addr;
5268 kvm_run->s.regs.prefix = kvm_s390_get_prefix(vcpu);
5269 memcpy(&kvm_run->s.regs.crs, &vcpu->arch.sie_block->gcr, 128);
5270 kvm_run->s.regs.cputm = kvm_s390_get_cpu_timer(vcpu);
5271 kvm_run->s.regs.ckc = vcpu->arch.sie_block->ckc;
5272 kvm_run->s.regs.pft = vcpu->arch.pfault_token;
5273 kvm_run->s.regs.pfs = vcpu->arch.pfault_select;
5274 kvm_run->s.regs.pfc = vcpu->arch.pfault_compare;
5275 save_access_regs(vcpu->run->s.regs.acrs);
5276 restore_access_regs(vcpu->arch.host_acrs);
5277 vcpu->arch.acrs_loaded = false;
5278 kvm_s390_fpu_store(vcpu->run);
5279 if (likely(!kvm_s390_pv_cpu_is_protected(vcpu)))
5280 store_regs_fmt2(vcpu);
5281 }
5282
kvm_arch_vcpu_ioctl_run(struct kvm_vcpu * vcpu)5283 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
5284 {
5285 struct kvm_run *kvm_run = vcpu->run;
5286 DECLARE_KERNEL_FPU_ONSTACK32(fpu);
5287 int rc;
5288
5289 /*
5290 * Running a VM while dumping always has the potential to
5291 * produce inconsistent dump data. But for PV vcpus a SIE
5292 * entry while dumping could also lead to a fatal validity
5293 * intercept which we absolutely want to avoid.
5294 */
5295 if (vcpu->kvm->arch.pv.dumping)
5296 return -EINVAL;
5297
5298 if (!vcpu->wants_to_run)
5299 return -EINTR;
5300
5301 if (kvm_run->kvm_valid_regs & ~KVM_SYNC_S390_VALID_FIELDS ||
5302 kvm_run->kvm_dirty_regs & ~KVM_SYNC_S390_VALID_FIELDS)
5303 return -EINVAL;
5304
5305 vcpu_load(vcpu);
5306
5307 if (guestdbg_exit_pending(vcpu)) {
5308 kvm_s390_prepare_debug_exit(vcpu);
5309 rc = 0;
5310 goto out;
5311 }
5312
5313 kvm_sigset_activate(vcpu);
5314
5315 /*
5316 * no need to check the return value of vcpu_start as it can only have
5317 * an error for protvirt, but protvirt means user cpu state
5318 */
5319 if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm)) {
5320 kvm_s390_vcpu_start(vcpu);
5321 } else if (is_vcpu_stopped(vcpu)) {
5322 pr_err_ratelimited("can't run stopped vcpu %d\n",
5323 vcpu->vcpu_id);
5324 rc = -EINVAL;
5325 goto out;
5326 }
5327
5328 kernel_fpu_begin(&fpu, KERNEL_FPC | KERNEL_VXR);
5329 sync_regs(vcpu);
5330 enable_cpu_timer_accounting(vcpu);
5331
5332 might_fault();
5333 rc = __vcpu_run(vcpu);
5334
5335 if (signal_pending(current) && !rc) {
5336 kvm_run->exit_reason = KVM_EXIT_INTR;
5337 rc = -EINTR;
5338 }
5339
5340 if (guestdbg_exit_pending(vcpu) && !rc) {
5341 kvm_s390_prepare_debug_exit(vcpu);
5342 rc = 0;
5343 }
5344
5345 if (rc == -EREMOTE) {
5346 /* userspace support is needed, kvm_run has been prepared */
5347 rc = 0;
5348 }
5349
5350 disable_cpu_timer_accounting(vcpu);
5351 store_regs(vcpu);
5352 kernel_fpu_end(&fpu, KERNEL_FPC | KERNEL_VXR);
5353
5354 kvm_sigset_deactivate(vcpu);
5355
5356 vcpu->stat.exit_userspace++;
5357 out:
5358 vcpu_put(vcpu);
5359 return rc;
5360 }
5361
5362 /*
5363 * store status at address
5364 * we use have two special cases:
5365 * KVM_S390_STORE_STATUS_NOADDR: -> 0x1200 on 64 bit
5366 * KVM_S390_STORE_STATUS_PREFIXED: -> prefix
5367 */
kvm_s390_store_status_unloaded(struct kvm_vcpu * vcpu,unsigned long gpa)5368 int kvm_s390_store_status_unloaded(struct kvm_vcpu *vcpu, unsigned long gpa)
5369 {
5370 unsigned char archmode = 1;
5371 freg_t fprs[NUM_FPRS];
5372 unsigned int px;
5373 u64 clkcomp, cputm;
5374 int rc;
5375
5376 px = kvm_s390_get_prefix(vcpu);
5377 if (gpa == KVM_S390_STORE_STATUS_NOADDR) {
5378 if (write_guest_abs(vcpu, 163, &archmode, 1))
5379 return -EFAULT;
5380 gpa = 0;
5381 } else if (gpa == KVM_S390_STORE_STATUS_PREFIXED) {
5382 if (write_guest_real(vcpu, 163, &archmode, 1))
5383 return -EFAULT;
5384 gpa = px;
5385 } else
5386 gpa -= __LC_FPREGS_SAVE_AREA;
5387
5388 /* manually convert vector registers if necessary */
5389 if (cpu_has_vx()) {
5390 convert_vx_to_fp(fprs, (__vector128 *) vcpu->run->s.regs.vrs);
5391 rc = write_guest_abs(vcpu, gpa + __LC_FPREGS_SAVE_AREA,
5392 fprs, 128);
5393 } else {
5394 rc = write_guest_abs(vcpu, gpa + __LC_FPREGS_SAVE_AREA,
5395 vcpu->run->s.regs.fprs, 128);
5396 }
5397 rc |= write_guest_abs(vcpu, gpa + __LC_GPREGS_SAVE_AREA,
5398 vcpu->run->s.regs.gprs, 128);
5399 rc |= write_guest_abs(vcpu, gpa + __LC_PSW_SAVE_AREA,
5400 &vcpu->arch.sie_block->gpsw, 16);
5401 rc |= write_guest_abs(vcpu, gpa + __LC_PREFIX_SAVE_AREA,
5402 &px, 4);
5403 rc |= write_guest_abs(vcpu, gpa + __LC_FP_CREG_SAVE_AREA,
5404 &vcpu->run->s.regs.fpc, 4);
5405 rc |= write_guest_abs(vcpu, gpa + __LC_TOD_PROGREG_SAVE_AREA,
5406 &vcpu->arch.sie_block->todpr, 4);
5407 cputm = kvm_s390_get_cpu_timer(vcpu);
5408 rc |= write_guest_abs(vcpu, gpa + __LC_CPU_TIMER_SAVE_AREA,
5409 &cputm, 8);
5410 clkcomp = vcpu->arch.sie_block->ckc >> 8;
5411 rc |= write_guest_abs(vcpu, gpa + __LC_CLOCK_COMP_SAVE_AREA,
5412 &clkcomp, 8);
5413 rc |= write_guest_abs(vcpu, gpa + __LC_AREGS_SAVE_AREA,
5414 &vcpu->run->s.regs.acrs, 64);
5415 rc |= write_guest_abs(vcpu, gpa + __LC_CREGS_SAVE_AREA,
5416 &vcpu->arch.sie_block->gcr, 128);
5417 return rc ? -EFAULT : 0;
5418 }
5419
kvm_s390_vcpu_store_status(struct kvm_vcpu * vcpu,unsigned long addr)5420 int kvm_s390_vcpu_store_status(struct kvm_vcpu *vcpu, unsigned long addr)
5421 {
5422 /*
5423 * The guest FPRS and ACRS are in the host FPRS/ACRS due to the lazy
5424 * switch in the run ioctl. Let's update our copies before we save
5425 * it into the save area
5426 */
5427 kvm_s390_fpu_store(vcpu->run);
5428 save_access_regs(vcpu->run->s.regs.acrs);
5429
5430 return kvm_s390_store_status_unloaded(vcpu, addr);
5431 }
5432
__disable_ibs_on_vcpu(struct kvm_vcpu * vcpu)5433 static void __disable_ibs_on_vcpu(struct kvm_vcpu *vcpu)
5434 {
5435 kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu);
5436 kvm_s390_sync_request(KVM_REQ_DISABLE_IBS, vcpu);
5437 }
5438
__disable_ibs_on_all_vcpus(struct kvm * kvm)5439 static void __disable_ibs_on_all_vcpus(struct kvm *kvm)
5440 {
5441 unsigned long i;
5442 struct kvm_vcpu *vcpu;
5443
5444 kvm_for_each_vcpu(i, vcpu, kvm) {
5445 __disable_ibs_on_vcpu(vcpu);
5446 }
5447 }
5448
__enable_ibs_on_vcpu(struct kvm_vcpu * vcpu)5449 static void __enable_ibs_on_vcpu(struct kvm_vcpu *vcpu)
5450 {
5451 if (!sclp.has_ibs)
5452 return;
5453 kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu);
5454 kvm_s390_sync_request(KVM_REQ_ENABLE_IBS, vcpu);
5455 }
5456
kvm_s390_vcpu_start(struct kvm_vcpu * vcpu)5457 int kvm_s390_vcpu_start(struct kvm_vcpu *vcpu)
5458 {
5459 int i, online_vcpus, r = 0, started_vcpus = 0;
5460
5461 if (!is_vcpu_stopped(vcpu))
5462 return 0;
5463
5464 trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 1);
5465 /* Only one cpu at a time may enter/leave the STOPPED state. */
5466 spin_lock(&vcpu->kvm->arch.start_stop_lock);
5467 online_vcpus = atomic_read(&vcpu->kvm->online_vcpus);
5468
5469 /* Let's tell the UV that we want to change into the operating state */
5470 if (kvm_s390_pv_cpu_is_protected(vcpu)) {
5471 r = kvm_s390_pv_set_cpu_state(vcpu, PV_CPU_STATE_OPR);
5472 if (r) {
5473 spin_unlock(&vcpu->kvm->arch.start_stop_lock);
5474 return r;
5475 }
5476 }
5477
5478 for (i = 0; i < online_vcpus; i++) {
5479 if (!is_vcpu_stopped(kvm_get_vcpu(vcpu->kvm, i)))
5480 started_vcpus++;
5481 }
5482
5483 if (started_vcpus == 0) {
5484 /* we're the only active VCPU -> speed it up */
5485 __enable_ibs_on_vcpu(vcpu);
5486 } else if (started_vcpus == 1) {
5487 /*
5488 * As we are starting a second VCPU, we have to disable
5489 * the IBS facility on all VCPUs to remove potentially
5490 * outstanding ENABLE requests.
5491 */
5492 __disable_ibs_on_all_vcpus(vcpu->kvm);
5493 }
5494
5495 kvm_s390_clear_cpuflags(vcpu, CPUSTAT_STOPPED);
5496 /*
5497 * The real PSW might have changed due to a RESTART interpreted by the
5498 * ultravisor. We block all interrupts and let the next sie exit
5499 * refresh our view.
5500 */
5501 if (kvm_s390_pv_cpu_is_protected(vcpu))
5502 vcpu->arch.sie_block->gpsw.mask &= ~PSW_INT_MASK;
5503 /*
5504 * Another VCPU might have used IBS while we were offline.
5505 * Let's play safe and flush the VCPU at startup.
5506 */
5507 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
5508 spin_unlock(&vcpu->kvm->arch.start_stop_lock);
5509 return 0;
5510 }
5511
kvm_s390_vcpu_stop(struct kvm_vcpu * vcpu)5512 int kvm_s390_vcpu_stop(struct kvm_vcpu *vcpu)
5513 {
5514 int i, online_vcpus, r = 0, started_vcpus = 0;
5515 struct kvm_vcpu *started_vcpu = NULL;
5516
5517 if (is_vcpu_stopped(vcpu))
5518 return 0;
5519
5520 trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 0);
5521 /* Only one cpu at a time may enter/leave the STOPPED state. */
5522 spin_lock(&vcpu->kvm->arch.start_stop_lock);
5523 online_vcpus = atomic_read(&vcpu->kvm->online_vcpus);
5524
5525 /* Let's tell the UV that we want to change into the stopped state */
5526 if (kvm_s390_pv_cpu_is_protected(vcpu)) {
5527 r = kvm_s390_pv_set_cpu_state(vcpu, PV_CPU_STATE_STP);
5528 if (r) {
5529 spin_unlock(&vcpu->kvm->arch.start_stop_lock);
5530 return r;
5531 }
5532 }
5533
5534 /*
5535 * Set the VCPU to STOPPED and THEN clear the interrupt flag,
5536 * now that the SIGP STOP and SIGP STOP AND STORE STATUS orders
5537 * have been fully processed. This will ensure that the VCPU
5538 * is kept BUSY if another VCPU is inquiring with SIGP SENSE.
5539 */
5540 kvm_s390_set_cpuflags(vcpu, CPUSTAT_STOPPED);
5541 kvm_s390_clear_stop_irq(vcpu);
5542
5543 __disable_ibs_on_vcpu(vcpu);
5544
5545 for (i = 0; i < online_vcpus; i++) {
5546 struct kvm_vcpu *tmp = kvm_get_vcpu(vcpu->kvm, i);
5547
5548 if (!is_vcpu_stopped(tmp)) {
5549 started_vcpus++;
5550 started_vcpu = tmp;
5551 }
5552 }
5553
5554 if (started_vcpus == 1) {
5555 /*
5556 * As we only have one VCPU left, we want to enable the
5557 * IBS facility for that VCPU to speed it up.
5558 */
5559 __enable_ibs_on_vcpu(started_vcpu);
5560 }
5561
5562 spin_unlock(&vcpu->kvm->arch.start_stop_lock);
5563 return 0;
5564 }
5565
kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu * vcpu,struct kvm_enable_cap * cap)5566 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
5567 struct kvm_enable_cap *cap)
5568 {
5569 int r;
5570
5571 if (cap->flags)
5572 return -EINVAL;
5573
5574 switch (cap->cap) {
5575 case KVM_CAP_S390_CSS_SUPPORT:
5576 if (!vcpu->kvm->arch.css_support) {
5577 vcpu->kvm->arch.css_support = 1;
5578 VM_EVENT(vcpu->kvm, 3, "%s", "ENABLE: CSS support");
5579 trace_kvm_s390_enable_css(vcpu->kvm);
5580 }
5581 r = 0;
5582 break;
5583 default:
5584 r = -EINVAL;
5585 break;
5586 }
5587 return r;
5588 }
5589
kvm_s390_vcpu_sida_op(struct kvm_vcpu * vcpu,struct kvm_s390_mem_op * mop)5590 static long kvm_s390_vcpu_sida_op(struct kvm_vcpu *vcpu,
5591 struct kvm_s390_mem_op *mop)
5592 {
5593 void __user *uaddr = (void __user *)mop->buf;
5594 void *sida_addr;
5595 int r = 0;
5596
5597 if (mop->flags || !mop->size)
5598 return -EINVAL;
5599 if (mop->size + mop->sida_offset < mop->size)
5600 return -EINVAL;
5601 if (mop->size + mop->sida_offset > sida_size(vcpu->arch.sie_block))
5602 return -E2BIG;
5603 if (!kvm_s390_pv_cpu_is_protected(vcpu))
5604 return -EINVAL;
5605
5606 sida_addr = (char *)sida_addr(vcpu->arch.sie_block) + mop->sida_offset;
5607
5608 switch (mop->op) {
5609 case KVM_S390_MEMOP_SIDA_READ:
5610 if (copy_to_user(uaddr, sida_addr, mop->size))
5611 r = -EFAULT;
5612
5613 break;
5614 case KVM_S390_MEMOP_SIDA_WRITE:
5615 if (copy_from_user(sida_addr, uaddr, mop->size))
5616 r = -EFAULT;
5617 break;
5618 }
5619 return r;
5620 }
5621
kvm_s390_vcpu_mem_op(struct kvm_vcpu * vcpu,struct kvm_s390_mem_op * mop)5622 static long kvm_s390_vcpu_mem_op(struct kvm_vcpu *vcpu,
5623 struct kvm_s390_mem_op *mop)
5624 {
5625 void __user *uaddr = (void __user *)mop->buf;
5626 enum gacc_mode acc_mode;
5627 void *tmpbuf = NULL;
5628 int r;
5629
5630 r = mem_op_validate_common(mop, KVM_S390_MEMOP_F_INJECT_EXCEPTION |
5631 KVM_S390_MEMOP_F_CHECK_ONLY |
5632 KVM_S390_MEMOP_F_SKEY_PROTECTION);
5633 if (r)
5634 return r;
5635 if (mop->ar >= NUM_ACRS)
5636 return -EINVAL;
5637 if (kvm_s390_pv_cpu_is_protected(vcpu))
5638 return -EINVAL;
5639 if (!(mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY)) {
5640 tmpbuf = vmalloc(mop->size);
5641 if (!tmpbuf)
5642 return -ENOMEM;
5643 }
5644
5645 acc_mode = mop->op == KVM_S390_MEMOP_LOGICAL_READ ? GACC_FETCH : GACC_STORE;
5646 if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) {
5647 r = check_gva_range(vcpu, mop->gaddr, mop->ar, mop->size,
5648 acc_mode, mop->key);
5649 goto out_inject;
5650 }
5651 if (acc_mode == GACC_FETCH) {
5652 r = read_guest_with_key(vcpu, mop->gaddr, mop->ar, tmpbuf,
5653 mop->size, mop->key);
5654 if (r)
5655 goto out_inject;
5656 if (copy_to_user(uaddr, tmpbuf, mop->size)) {
5657 r = -EFAULT;
5658 goto out_free;
5659 }
5660 } else {
5661 if (copy_from_user(tmpbuf, uaddr, mop->size)) {
5662 r = -EFAULT;
5663 goto out_free;
5664 }
5665 r = write_guest_with_key(vcpu, mop->gaddr, mop->ar, tmpbuf,
5666 mop->size, mop->key);
5667 }
5668
5669 out_inject:
5670 if (r > 0 && (mop->flags & KVM_S390_MEMOP_F_INJECT_EXCEPTION) != 0)
5671 kvm_s390_inject_prog_irq(vcpu, &vcpu->arch.pgm);
5672
5673 out_free:
5674 vfree(tmpbuf);
5675 return r;
5676 }
5677
kvm_s390_vcpu_memsida_op(struct kvm_vcpu * vcpu,struct kvm_s390_mem_op * mop)5678 static long kvm_s390_vcpu_memsida_op(struct kvm_vcpu *vcpu,
5679 struct kvm_s390_mem_op *mop)
5680 {
5681 int r, srcu_idx;
5682
5683 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5684
5685 switch (mop->op) {
5686 case KVM_S390_MEMOP_LOGICAL_READ:
5687 case KVM_S390_MEMOP_LOGICAL_WRITE:
5688 r = kvm_s390_vcpu_mem_op(vcpu, mop);
5689 break;
5690 case KVM_S390_MEMOP_SIDA_READ:
5691 case KVM_S390_MEMOP_SIDA_WRITE:
5692 /* we are locked against sida going away by the vcpu->mutex */
5693 r = kvm_s390_vcpu_sida_op(vcpu, mop);
5694 break;
5695 default:
5696 r = -EINVAL;
5697 }
5698
5699 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
5700 return r;
5701 }
5702
kvm_arch_vcpu_async_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)5703 long kvm_arch_vcpu_async_ioctl(struct file *filp,
5704 unsigned int ioctl, unsigned long arg)
5705 {
5706 struct kvm_vcpu *vcpu = filp->private_data;
5707 void __user *argp = (void __user *)arg;
5708 int rc;
5709
5710 switch (ioctl) {
5711 case KVM_S390_IRQ: {
5712 struct kvm_s390_irq s390irq;
5713
5714 if (copy_from_user(&s390irq, argp, sizeof(s390irq)))
5715 return -EFAULT;
5716 rc = kvm_s390_inject_vcpu(vcpu, &s390irq);
5717 break;
5718 }
5719 case KVM_S390_INTERRUPT: {
5720 struct kvm_s390_interrupt s390int;
5721 struct kvm_s390_irq s390irq = {};
5722
5723 if (copy_from_user(&s390int, argp, sizeof(s390int)))
5724 return -EFAULT;
5725 if (s390int_to_s390irq(&s390int, &s390irq))
5726 return -EINVAL;
5727 rc = kvm_s390_inject_vcpu(vcpu, &s390irq);
5728 break;
5729 }
5730 default:
5731 rc = -ENOIOCTLCMD;
5732 break;
5733 }
5734
5735 /*
5736 * To simplify single stepping of userspace-emulated instructions,
5737 * KVM_EXIT_S390_SIEIC exit sets KVM_GUESTDBG_EXIT_PENDING (see
5738 * should_handle_per_ifetch()). However, if userspace emulation injects
5739 * an interrupt, it needs to be cleared, so that KVM_EXIT_DEBUG happens
5740 * after (and not before) the interrupt delivery.
5741 */
5742 if (!rc)
5743 vcpu->guest_debug &= ~KVM_GUESTDBG_EXIT_PENDING;
5744
5745 return rc;
5746 }
5747
kvm_s390_handle_pv_vcpu_dump(struct kvm_vcpu * vcpu,struct kvm_pv_cmd * cmd)5748 static int kvm_s390_handle_pv_vcpu_dump(struct kvm_vcpu *vcpu,
5749 struct kvm_pv_cmd *cmd)
5750 {
5751 struct kvm_s390_pv_dmp dmp;
5752 void *data;
5753 int ret;
5754
5755 /* Dump initialization is a prerequisite */
5756 if (!vcpu->kvm->arch.pv.dumping)
5757 return -EINVAL;
5758
5759 if (copy_from_user(&dmp, (__u8 __user *)cmd->data, sizeof(dmp)))
5760 return -EFAULT;
5761
5762 /* We only handle this subcmd right now */
5763 if (dmp.subcmd != KVM_PV_DUMP_CPU)
5764 return -EINVAL;
5765
5766 /* CPU dump length is the same as create cpu storage donation. */
5767 if (dmp.buff_len != uv_info.guest_cpu_stor_len)
5768 return -EINVAL;
5769
5770 data = kvzalloc(uv_info.guest_cpu_stor_len, GFP_KERNEL);
5771 if (!data)
5772 return -ENOMEM;
5773
5774 ret = kvm_s390_pv_dump_cpu(vcpu, data, &cmd->rc, &cmd->rrc);
5775
5776 VCPU_EVENT(vcpu, 3, "PROTVIRT DUMP CPU %d rc %x rrc %x",
5777 vcpu->vcpu_id, cmd->rc, cmd->rrc);
5778
5779 if (ret)
5780 ret = -EINVAL;
5781
5782 /* On success copy over the dump data */
5783 if (!ret && copy_to_user((__u8 __user *)dmp.buff_addr, data, uv_info.guest_cpu_stor_len))
5784 ret = -EFAULT;
5785
5786 kvfree(data);
5787 return ret;
5788 }
5789
kvm_arch_vcpu_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)5790 long kvm_arch_vcpu_ioctl(struct file *filp,
5791 unsigned int ioctl, unsigned long arg)
5792 {
5793 struct kvm_vcpu *vcpu = filp->private_data;
5794 void __user *argp = (void __user *)arg;
5795 int idx;
5796 long r;
5797 u16 rc, rrc;
5798
5799 vcpu_load(vcpu);
5800
5801 switch (ioctl) {
5802 case KVM_S390_STORE_STATUS:
5803 idx = srcu_read_lock(&vcpu->kvm->srcu);
5804 r = kvm_s390_store_status_unloaded(vcpu, arg);
5805 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5806 break;
5807 case KVM_S390_SET_INITIAL_PSW: {
5808 psw_t psw;
5809
5810 r = -EFAULT;
5811 if (copy_from_user(&psw, argp, sizeof(psw)))
5812 break;
5813 r = kvm_arch_vcpu_ioctl_set_initial_psw(vcpu, psw);
5814 break;
5815 }
5816 case KVM_S390_CLEAR_RESET:
5817 r = 0;
5818 kvm_arch_vcpu_ioctl_clear_reset(vcpu);
5819 if (kvm_s390_pv_cpu_is_protected(vcpu)) {
5820 r = uv_cmd_nodata(kvm_s390_pv_cpu_get_handle(vcpu),
5821 UVC_CMD_CPU_RESET_CLEAR, &rc, &rrc);
5822 VCPU_EVENT(vcpu, 3, "PROTVIRT RESET CLEAR VCPU: rc %x rrc %x",
5823 rc, rrc);
5824 }
5825 break;
5826 case KVM_S390_INITIAL_RESET:
5827 r = 0;
5828 kvm_arch_vcpu_ioctl_initial_reset(vcpu);
5829 if (kvm_s390_pv_cpu_is_protected(vcpu)) {
5830 r = uv_cmd_nodata(kvm_s390_pv_cpu_get_handle(vcpu),
5831 UVC_CMD_CPU_RESET_INITIAL,
5832 &rc, &rrc);
5833 VCPU_EVENT(vcpu, 3, "PROTVIRT RESET INITIAL VCPU: rc %x rrc %x",
5834 rc, rrc);
5835 }
5836 break;
5837 case KVM_S390_NORMAL_RESET:
5838 r = 0;
5839 kvm_arch_vcpu_ioctl_normal_reset(vcpu);
5840 if (kvm_s390_pv_cpu_is_protected(vcpu)) {
5841 r = uv_cmd_nodata(kvm_s390_pv_cpu_get_handle(vcpu),
5842 UVC_CMD_CPU_RESET, &rc, &rrc);
5843 VCPU_EVENT(vcpu, 3, "PROTVIRT RESET NORMAL VCPU: rc %x rrc %x",
5844 rc, rrc);
5845 }
5846 break;
5847 case KVM_SET_ONE_REG:
5848 case KVM_GET_ONE_REG: {
5849 struct kvm_one_reg reg;
5850 r = -EINVAL;
5851 if (kvm_s390_pv_cpu_is_protected(vcpu))
5852 break;
5853 r = -EFAULT;
5854 if (copy_from_user(®, argp, sizeof(reg)))
5855 break;
5856 if (ioctl == KVM_SET_ONE_REG)
5857 r = kvm_arch_vcpu_ioctl_set_one_reg(vcpu, ®);
5858 else
5859 r = kvm_arch_vcpu_ioctl_get_one_reg(vcpu, ®);
5860 break;
5861 }
5862 #ifdef CONFIG_KVM_S390_UCONTROL
5863 case KVM_S390_UCAS_MAP: {
5864 struct kvm_s390_ucas_mapping ucasmap;
5865
5866 if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) {
5867 r = -EFAULT;
5868 break;
5869 }
5870
5871 if (!kvm_is_ucontrol(vcpu->kvm)) {
5872 r = -EINVAL;
5873 break;
5874 }
5875
5876 r = gmap_map_segment(vcpu->arch.gmap, ucasmap.user_addr,
5877 ucasmap.vcpu_addr, ucasmap.length);
5878 break;
5879 }
5880 case KVM_S390_UCAS_UNMAP: {
5881 struct kvm_s390_ucas_mapping ucasmap;
5882
5883 if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) {
5884 r = -EFAULT;
5885 break;
5886 }
5887
5888 if (!kvm_is_ucontrol(vcpu->kvm)) {
5889 r = -EINVAL;
5890 break;
5891 }
5892
5893 r = gmap_unmap_segment(vcpu->arch.gmap, ucasmap.vcpu_addr,
5894 ucasmap.length);
5895 break;
5896 }
5897 #endif
5898 case KVM_S390_VCPU_FAULT: {
5899 idx = srcu_read_lock(&vcpu->kvm->srcu);
5900 r = vcpu_dat_fault_handler(vcpu, arg, 0);
5901 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5902 break;
5903 }
5904 case KVM_ENABLE_CAP:
5905 {
5906 struct kvm_enable_cap cap;
5907 r = -EFAULT;
5908 if (copy_from_user(&cap, argp, sizeof(cap)))
5909 break;
5910 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
5911 break;
5912 }
5913 case KVM_S390_MEM_OP: {
5914 struct kvm_s390_mem_op mem_op;
5915
5916 if (copy_from_user(&mem_op, argp, sizeof(mem_op)) == 0)
5917 r = kvm_s390_vcpu_memsida_op(vcpu, &mem_op);
5918 else
5919 r = -EFAULT;
5920 break;
5921 }
5922 case KVM_S390_SET_IRQ_STATE: {
5923 struct kvm_s390_irq_state irq_state;
5924
5925 r = -EFAULT;
5926 if (copy_from_user(&irq_state, argp, sizeof(irq_state)))
5927 break;
5928 if (irq_state.len > VCPU_IRQS_MAX_BUF ||
5929 irq_state.len == 0 ||
5930 irq_state.len % sizeof(struct kvm_s390_irq) > 0) {
5931 r = -EINVAL;
5932 break;
5933 }
5934 /* do not use irq_state.flags, it will break old QEMUs */
5935 r = kvm_s390_set_irq_state(vcpu,
5936 (void __user *) irq_state.buf,
5937 irq_state.len);
5938 break;
5939 }
5940 case KVM_S390_GET_IRQ_STATE: {
5941 struct kvm_s390_irq_state irq_state;
5942
5943 r = -EFAULT;
5944 if (copy_from_user(&irq_state, argp, sizeof(irq_state)))
5945 break;
5946 if (irq_state.len == 0) {
5947 r = -EINVAL;
5948 break;
5949 }
5950 /* do not use irq_state.flags, it will break old QEMUs */
5951 r = kvm_s390_get_irq_state(vcpu,
5952 (__u8 __user *) irq_state.buf,
5953 irq_state.len);
5954 break;
5955 }
5956 case KVM_S390_PV_CPU_COMMAND: {
5957 struct kvm_pv_cmd cmd;
5958
5959 r = -EINVAL;
5960 if (!is_prot_virt_host())
5961 break;
5962
5963 r = -EFAULT;
5964 if (copy_from_user(&cmd, argp, sizeof(cmd)))
5965 break;
5966
5967 r = -EINVAL;
5968 if (cmd.flags)
5969 break;
5970
5971 /* We only handle this cmd right now */
5972 if (cmd.cmd != KVM_PV_DUMP)
5973 break;
5974
5975 r = kvm_s390_handle_pv_vcpu_dump(vcpu, &cmd);
5976
5977 /* Always copy over UV rc / rrc data */
5978 if (copy_to_user((__u8 __user *)argp, &cmd.rc,
5979 sizeof(cmd.rc) + sizeof(cmd.rrc)))
5980 r = -EFAULT;
5981 break;
5982 }
5983 default:
5984 r = -ENOTTY;
5985 }
5986
5987 vcpu_put(vcpu);
5988 return r;
5989 }
5990
kvm_arch_vcpu_fault(struct kvm_vcpu * vcpu,struct vm_fault * vmf)5991 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
5992 {
5993 #ifdef CONFIG_KVM_S390_UCONTROL
5994 if ((vmf->pgoff == KVM_S390_SIE_PAGE_OFFSET)
5995 && (kvm_is_ucontrol(vcpu->kvm))) {
5996 vmf->page = virt_to_page(vcpu->arch.sie_block);
5997 get_page(vmf->page);
5998 return 0;
5999 }
6000 #endif
6001 return VM_FAULT_SIGBUS;
6002 }
6003
kvm_arch_irqchip_in_kernel(struct kvm * kvm)6004 bool kvm_arch_irqchip_in_kernel(struct kvm *kvm)
6005 {
6006 return true;
6007 }
6008
6009 /* Section: memory related */
kvm_arch_prepare_memory_region(struct kvm * kvm,const struct kvm_memory_slot * old,struct kvm_memory_slot * new,enum kvm_mr_change change)6010 int kvm_arch_prepare_memory_region(struct kvm *kvm,
6011 const struct kvm_memory_slot *old,
6012 struct kvm_memory_slot *new,
6013 enum kvm_mr_change change)
6014 {
6015 gpa_t size;
6016
6017 if (kvm_is_ucontrol(kvm) && new->id < KVM_USER_MEM_SLOTS)
6018 return -EINVAL;
6019
6020 /* When we are protected, we should not change the memory slots */
6021 if (kvm_s390_pv_get_handle(kvm))
6022 return -EINVAL;
6023
6024 if (change != KVM_MR_DELETE && change != KVM_MR_FLAGS_ONLY) {
6025 /*
6026 * A few sanity checks. We can have memory slots which have to be
6027 * located/ended at a segment boundary (1MB). The memory in userland is
6028 * ok to be fragmented into various different vmas. It is okay to mmap()
6029 * and munmap() stuff in this slot after doing this call at any time
6030 */
6031
6032 if (new->userspace_addr & 0xffffful)
6033 return -EINVAL;
6034
6035 size = new->npages * PAGE_SIZE;
6036 if (size & 0xffffful)
6037 return -EINVAL;
6038
6039 if ((new->base_gfn * PAGE_SIZE) + size > kvm->arch.mem_limit)
6040 return -EINVAL;
6041 }
6042
6043 if (!kvm->arch.migration_mode)
6044 return 0;
6045
6046 /*
6047 * Turn off migration mode when:
6048 * - userspace creates a new memslot with dirty logging off,
6049 * - userspace modifies an existing memslot (MOVE or FLAGS_ONLY) and
6050 * dirty logging is turned off.
6051 * Migration mode expects dirty page logging being enabled to store
6052 * its dirty bitmap.
6053 */
6054 if (change != KVM_MR_DELETE &&
6055 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
6056 WARN(kvm_s390_vm_stop_migration(kvm),
6057 "Failed to stop migration mode");
6058
6059 return 0;
6060 }
6061
kvm_arch_commit_memory_region(struct kvm * kvm,struct kvm_memory_slot * old,const struct kvm_memory_slot * new,enum kvm_mr_change change)6062 void kvm_arch_commit_memory_region(struct kvm *kvm,
6063 struct kvm_memory_slot *old,
6064 const struct kvm_memory_slot *new,
6065 enum kvm_mr_change change)
6066 {
6067 int rc = 0;
6068
6069 if (kvm_is_ucontrol(kvm))
6070 return;
6071
6072 switch (change) {
6073 case KVM_MR_DELETE:
6074 rc = gmap_unmap_segment(kvm->arch.gmap, old->base_gfn * PAGE_SIZE,
6075 old->npages * PAGE_SIZE);
6076 break;
6077 case KVM_MR_MOVE:
6078 rc = gmap_unmap_segment(kvm->arch.gmap, old->base_gfn * PAGE_SIZE,
6079 old->npages * PAGE_SIZE);
6080 if (rc)
6081 break;
6082 fallthrough;
6083 case KVM_MR_CREATE:
6084 rc = gmap_map_segment(kvm->arch.gmap, new->userspace_addr,
6085 new->base_gfn * PAGE_SIZE,
6086 new->npages * PAGE_SIZE);
6087 break;
6088 case KVM_MR_FLAGS_ONLY:
6089 break;
6090 default:
6091 WARN(1, "Unknown KVM MR CHANGE: %d\n", change);
6092 }
6093 if (rc)
6094 pr_warn("failed to commit memory region\n");
6095 return;
6096 }
6097
nonhyp_mask(int i)6098 static inline unsigned long nonhyp_mask(int i)
6099 {
6100 unsigned int nonhyp_fai = (sclp.hmfai << i * 2) >> 30;
6101
6102 return 0x0000ffffffffffffUL >> (nonhyp_fai << 4);
6103 }
6104
kvm_s390_init(void)6105 static int __init kvm_s390_init(void)
6106 {
6107 int i, r;
6108
6109 if (!sclp.has_sief2) {
6110 pr_info("SIE is not available\n");
6111 return -ENODEV;
6112 }
6113
6114 if (nested && hpage) {
6115 pr_info("A KVM host that supports nesting cannot back its KVM guests with huge pages\n");
6116 return -EINVAL;
6117 }
6118
6119 for (i = 0; i < 16; i++)
6120 kvm_s390_fac_base[i] |=
6121 stfle_fac_list[i] & nonhyp_mask(i);
6122
6123 r = __kvm_s390_init();
6124 if (r)
6125 return r;
6126
6127 r = kvm_init(sizeof(struct kvm_vcpu), 0, THIS_MODULE);
6128 if (r) {
6129 __kvm_s390_exit();
6130 return r;
6131 }
6132 return 0;
6133 }
6134
kvm_s390_exit(void)6135 static void __exit kvm_s390_exit(void)
6136 {
6137 kvm_exit();
6138
6139 __kvm_s390_exit();
6140 }
6141
6142 module_init(kvm_s390_init);
6143 module_exit(kvm_s390_exit);
6144
6145 /*
6146 * Enable autoloading of the kvm module.
6147 * Note that we add the module alias here instead of virt/kvm/kvm_main.c
6148 * since x86 takes a different approach.
6149 */
6150 #include <linux/miscdevice.h>
6151 MODULE_ALIAS_MISCDEV(KVM_MINOR);
6152 MODULE_ALIAS("devname:kvm");
6153