1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Stand-alone page-table allocator for hyp stage-1 and guest stage-2.
4 * No bombay mix was harmed in the writing of this file.
5 *
6 * Copyright (C) 2020 Google LLC
7 * Author: Will Deacon <will@kernel.org>
8 */
9
10 #include <linux/bitfield.h>
11 #include <asm/kvm_pgtable.h>
12 #include <asm/stage2_pgtable.h>
13
14 struct kvm_pgtable_walk_data {
15 struct kvm_pgtable_walker *walker;
16
17 const u64 start;
18 u64 addr;
19 const u64 end;
20 };
21
kvm_pgtable_walk_skip_bbm_tlbi(const struct kvm_pgtable_visit_ctx * ctx)22 static bool kvm_pgtable_walk_skip_bbm_tlbi(const struct kvm_pgtable_visit_ctx *ctx)
23 {
24 return unlikely(ctx->flags & KVM_PGTABLE_WALK_SKIP_BBM_TLBI);
25 }
26
kvm_pgtable_walk_skip_cmo(const struct kvm_pgtable_visit_ctx * ctx)27 static bool kvm_pgtable_walk_skip_cmo(const struct kvm_pgtable_visit_ctx *ctx)
28 {
29 return unlikely(ctx->flags & KVM_PGTABLE_WALK_SKIP_CMO);
30 }
31
kvm_block_mapping_supported(const struct kvm_pgtable_visit_ctx * ctx,u64 phys)32 static bool kvm_block_mapping_supported(const struct kvm_pgtable_visit_ctx *ctx, u64 phys)
33 {
34 u64 granule = kvm_granule_size(ctx->level);
35
36 if (!kvm_level_supports_block_mapping(ctx->level))
37 return false;
38
39 if (granule > (ctx->end - ctx->addr))
40 return false;
41
42 if (!IS_ALIGNED(phys, granule))
43 return false;
44
45 return IS_ALIGNED(ctx->addr, granule);
46 }
47
kvm_pgtable_idx(struct kvm_pgtable_walk_data * data,s8 level)48 static u32 kvm_pgtable_idx(struct kvm_pgtable_walk_data *data, s8 level)
49 {
50 u64 shift = kvm_granule_shift(level);
51 u64 mask = BIT(PAGE_SHIFT - 3) - 1;
52
53 return (data->addr >> shift) & mask;
54 }
55
kvm_pgd_page_idx(struct kvm_pgtable * pgt,u64 addr)56 static u32 kvm_pgd_page_idx(struct kvm_pgtable *pgt, u64 addr)
57 {
58 u64 shift = kvm_granule_shift(pgt->start_level - 1); /* May underflow */
59 u64 mask = BIT(pgt->ia_bits) - 1;
60
61 return (addr & mask) >> shift;
62 }
63
kvm_pgd_pages(u32 ia_bits,s8 start_level)64 static u32 kvm_pgd_pages(u32 ia_bits, s8 start_level)
65 {
66 struct kvm_pgtable pgt = {
67 .ia_bits = ia_bits,
68 .start_level = start_level,
69 };
70
71 return kvm_pgd_page_idx(&pgt, -1ULL) + 1;
72 }
73
kvm_pte_table(kvm_pte_t pte,s8 level)74 static bool kvm_pte_table(kvm_pte_t pte, s8 level)
75 {
76 if (level == KVM_PGTABLE_LAST_LEVEL)
77 return false;
78
79 if (!kvm_pte_valid(pte))
80 return false;
81
82 return FIELD_GET(KVM_PTE_TYPE, pte) == KVM_PTE_TYPE_TABLE;
83 }
84
kvm_pte_follow(kvm_pte_t pte,struct kvm_pgtable_mm_ops * mm_ops)85 static kvm_pte_t *kvm_pte_follow(kvm_pte_t pte, struct kvm_pgtable_mm_ops *mm_ops)
86 {
87 return mm_ops->phys_to_virt(kvm_pte_to_phys(pte));
88 }
89
kvm_clear_pte(kvm_pte_t * ptep)90 static void kvm_clear_pte(kvm_pte_t *ptep)
91 {
92 WRITE_ONCE(*ptep, 0);
93 }
94
kvm_init_table_pte(kvm_pte_t * childp,struct kvm_pgtable_mm_ops * mm_ops)95 static kvm_pte_t kvm_init_table_pte(kvm_pte_t *childp, struct kvm_pgtable_mm_ops *mm_ops)
96 {
97 kvm_pte_t pte = kvm_phys_to_pte(mm_ops->virt_to_phys(childp));
98
99 pte |= FIELD_PREP(KVM_PTE_TYPE, KVM_PTE_TYPE_TABLE);
100 pte |= KVM_PTE_VALID;
101 return pte;
102 }
103
kvm_init_valid_leaf_pte(u64 pa,kvm_pte_t attr,s8 level)104 static kvm_pte_t kvm_init_valid_leaf_pte(u64 pa, kvm_pte_t attr, s8 level)
105 {
106 kvm_pte_t pte = kvm_phys_to_pte(pa);
107 u64 type = (level == KVM_PGTABLE_LAST_LEVEL) ? KVM_PTE_TYPE_PAGE :
108 KVM_PTE_TYPE_BLOCK;
109
110 pte |= attr & (KVM_PTE_LEAF_ATTR_LO | KVM_PTE_LEAF_ATTR_HI);
111 pte |= FIELD_PREP(KVM_PTE_TYPE, type);
112 pte |= KVM_PTE_VALID;
113
114 return pte;
115 }
116
kvm_init_invalid_leaf_owner(u8 owner_id)117 static kvm_pte_t kvm_init_invalid_leaf_owner(u8 owner_id)
118 {
119 return FIELD_PREP(KVM_INVALID_PTE_OWNER_MASK, owner_id);
120 }
121
kvm_pgtable_visitor_cb(struct kvm_pgtable_walk_data * data,const struct kvm_pgtable_visit_ctx * ctx,enum kvm_pgtable_walk_flags visit)122 static int kvm_pgtable_visitor_cb(struct kvm_pgtable_walk_data *data,
123 const struct kvm_pgtable_visit_ctx *ctx,
124 enum kvm_pgtable_walk_flags visit)
125 {
126 struct kvm_pgtable_walker *walker = data->walker;
127
128 /* Ensure the appropriate lock is held (e.g. RCU lock for stage-2 MMU) */
129 WARN_ON_ONCE(kvm_pgtable_walk_shared(ctx) && !kvm_pgtable_walk_lock_held());
130 return walker->cb(ctx, visit);
131 }
132
kvm_pgtable_walk_continue(const struct kvm_pgtable_walker * walker,int r)133 static bool kvm_pgtable_walk_continue(const struct kvm_pgtable_walker *walker,
134 int r)
135 {
136 /*
137 * Visitor callbacks return EAGAIN when the conditions that led to a
138 * fault are no longer reflected in the page tables due to a race to
139 * update a PTE. In the context of a fault handler this is interpreted
140 * as a signal to retry guest execution.
141 *
142 * Ignore the return code altogether for walkers outside a fault handler
143 * (e.g. write protecting a range of memory) and chug along with the
144 * page table walk.
145 */
146 if (r == -EAGAIN)
147 return !(walker->flags & KVM_PGTABLE_WALK_HANDLE_FAULT);
148
149 return !r;
150 }
151
152 static int __kvm_pgtable_walk(struct kvm_pgtable_walk_data *data,
153 struct kvm_pgtable_mm_ops *mm_ops, kvm_pteref_t pgtable, s8 level);
154
__kvm_pgtable_visit(struct kvm_pgtable_walk_data * data,struct kvm_pgtable_mm_ops * mm_ops,kvm_pteref_t pteref,s8 level)155 static inline int __kvm_pgtable_visit(struct kvm_pgtable_walk_data *data,
156 struct kvm_pgtable_mm_ops *mm_ops,
157 kvm_pteref_t pteref, s8 level)
158 {
159 enum kvm_pgtable_walk_flags flags = data->walker->flags;
160 kvm_pte_t *ptep = kvm_dereference_pteref(data->walker, pteref);
161 struct kvm_pgtable_visit_ctx ctx = {
162 .ptep = ptep,
163 .old = READ_ONCE(*ptep),
164 .arg = data->walker->arg,
165 .mm_ops = mm_ops,
166 .start = data->start,
167 .addr = data->addr,
168 .end = data->end,
169 .level = level,
170 .flags = flags,
171 };
172 int ret = 0;
173 bool reload = false;
174 kvm_pteref_t childp;
175 bool table = kvm_pte_table(ctx.old, level);
176
177 if (table && (ctx.flags & KVM_PGTABLE_WALK_TABLE_PRE)) {
178 ret = kvm_pgtable_visitor_cb(data, &ctx, KVM_PGTABLE_WALK_TABLE_PRE);
179 reload = true;
180 }
181
182 if (!table && (ctx.flags & KVM_PGTABLE_WALK_LEAF)) {
183 ret = kvm_pgtable_visitor_cb(data, &ctx, KVM_PGTABLE_WALK_LEAF);
184 reload = true;
185 }
186
187 /*
188 * Reload the page table after invoking the walker callback for leaf
189 * entries or after pre-order traversal, to allow the walker to descend
190 * into a newly installed or replaced table.
191 */
192 if (reload) {
193 ctx.old = READ_ONCE(*ptep);
194 table = kvm_pte_table(ctx.old, level);
195 }
196
197 if (!kvm_pgtable_walk_continue(data->walker, ret))
198 goto out;
199
200 if (!table) {
201 data->addr = ALIGN_DOWN(data->addr, kvm_granule_size(level));
202 data->addr += kvm_granule_size(level);
203 goto out;
204 }
205
206 childp = (kvm_pteref_t)kvm_pte_follow(ctx.old, mm_ops);
207 ret = __kvm_pgtable_walk(data, mm_ops, childp, level + 1);
208 if (!kvm_pgtable_walk_continue(data->walker, ret))
209 goto out;
210
211 if (ctx.flags & KVM_PGTABLE_WALK_TABLE_POST)
212 ret = kvm_pgtable_visitor_cb(data, &ctx, KVM_PGTABLE_WALK_TABLE_POST);
213
214 out:
215 if (kvm_pgtable_walk_continue(data->walker, ret))
216 return 0;
217
218 return ret;
219 }
220
__kvm_pgtable_walk(struct kvm_pgtable_walk_data * data,struct kvm_pgtable_mm_ops * mm_ops,kvm_pteref_t pgtable,s8 level)221 static int __kvm_pgtable_walk(struct kvm_pgtable_walk_data *data,
222 struct kvm_pgtable_mm_ops *mm_ops, kvm_pteref_t pgtable, s8 level)
223 {
224 u32 idx;
225 int ret = 0;
226
227 if (WARN_ON_ONCE(level < KVM_PGTABLE_FIRST_LEVEL ||
228 level > KVM_PGTABLE_LAST_LEVEL))
229 return -EINVAL;
230
231 for (idx = kvm_pgtable_idx(data, level); idx < PTRS_PER_PTE; ++idx) {
232 kvm_pteref_t pteref = &pgtable[idx];
233
234 if (data->addr >= data->end)
235 break;
236
237 ret = __kvm_pgtable_visit(data, mm_ops, pteref, level);
238 if (ret)
239 break;
240 }
241
242 return ret;
243 }
244
_kvm_pgtable_walk(struct kvm_pgtable * pgt,struct kvm_pgtable_walk_data * data)245 static int _kvm_pgtable_walk(struct kvm_pgtable *pgt, struct kvm_pgtable_walk_data *data)
246 {
247 u32 idx;
248 int ret = 0;
249 u64 limit = BIT(pgt->ia_bits);
250
251 if (data->addr > limit || data->end > limit)
252 return -ERANGE;
253
254 if (!pgt->pgd)
255 return -EINVAL;
256
257 for (idx = kvm_pgd_page_idx(pgt, data->addr); data->addr < data->end; ++idx) {
258 kvm_pteref_t pteref = &pgt->pgd[idx * PTRS_PER_PTE];
259
260 ret = __kvm_pgtable_walk(data, pgt->mm_ops, pteref, pgt->start_level);
261 if (ret)
262 break;
263 }
264
265 return ret;
266 }
267
kvm_pgtable_walk(struct kvm_pgtable * pgt,u64 addr,u64 size,struct kvm_pgtable_walker * walker)268 int kvm_pgtable_walk(struct kvm_pgtable *pgt, u64 addr, u64 size,
269 struct kvm_pgtable_walker *walker)
270 {
271 struct kvm_pgtable_walk_data walk_data = {
272 .start = ALIGN_DOWN(addr, PAGE_SIZE),
273 .addr = ALIGN_DOWN(addr, PAGE_SIZE),
274 .end = PAGE_ALIGN(walk_data.addr + size),
275 .walker = walker,
276 };
277 int r;
278
279 r = kvm_pgtable_walk_begin(walker);
280 if (r)
281 return r;
282
283 r = _kvm_pgtable_walk(pgt, &walk_data);
284 kvm_pgtable_walk_end(walker);
285
286 return r;
287 }
288
289 struct leaf_walk_data {
290 kvm_pte_t pte;
291 s8 level;
292 };
293
leaf_walker(const struct kvm_pgtable_visit_ctx * ctx,enum kvm_pgtable_walk_flags visit)294 static int leaf_walker(const struct kvm_pgtable_visit_ctx *ctx,
295 enum kvm_pgtable_walk_flags visit)
296 {
297 struct leaf_walk_data *data = ctx->arg;
298
299 data->pte = ctx->old;
300 data->level = ctx->level;
301
302 return 0;
303 }
304
kvm_pgtable_get_leaf(struct kvm_pgtable * pgt,u64 addr,kvm_pte_t * ptep,s8 * level)305 int kvm_pgtable_get_leaf(struct kvm_pgtable *pgt, u64 addr,
306 kvm_pte_t *ptep, s8 *level)
307 {
308 struct leaf_walk_data data;
309 struct kvm_pgtable_walker walker = {
310 .cb = leaf_walker,
311 .flags = KVM_PGTABLE_WALK_LEAF,
312 .arg = &data,
313 };
314 int ret;
315
316 ret = kvm_pgtable_walk(pgt, ALIGN_DOWN(addr, PAGE_SIZE),
317 PAGE_SIZE, &walker);
318 if (!ret) {
319 if (ptep)
320 *ptep = data.pte;
321 if (level)
322 *level = data.level;
323 }
324
325 return ret;
326 }
327
328 struct hyp_map_data {
329 const u64 phys;
330 kvm_pte_t attr;
331 };
332
hyp_set_prot_attr(enum kvm_pgtable_prot prot,kvm_pte_t * ptep)333 static int hyp_set_prot_attr(enum kvm_pgtable_prot prot, kvm_pte_t *ptep)
334 {
335 bool device = prot & KVM_PGTABLE_PROT_DEVICE;
336 u32 mtype = device ? MT_DEVICE_nGnRE : MT_NORMAL;
337 kvm_pte_t attr = FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_ATTRIDX, mtype);
338 u32 sh = KVM_PTE_LEAF_ATTR_LO_S1_SH_IS;
339 u32 ap = (prot & KVM_PGTABLE_PROT_W) ? KVM_PTE_LEAF_ATTR_LO_S1_AP_RW :
340 KVM_PTE_LEAF_ATTR_LO_S1_AP_RO;
341
342 if (!(prot & KVM_PGTABLE_PROT_R))
343 return -EINVAL;
344
345 if (prot & KVM_PGTABLE_PROT_X) {
346 if (prot & KVM_PGTABLE_PROT_W)
347 return -EINVAL;
348
349 if (device)
350 return -EINVAL;
351
352 if (system_supports_bti_kernel())
353 attr |= KVM_PTE_LEAF_ATTR_HI_S1_GP;
354 } else {
355 attr |= KVM_PTE_LEAF_ATTR_HI_S1_XN;
356 }
357
358 attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_AP, ap);
359 if (!kvm_lpa2_is_enabled())
360 attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_SH, sh);
361 attr |= KVM_PTE_LEAF_ATTR_LO_S1_AF;
362 attr |= prot & KVM_PTE_LEAF_ATTR_HI_SW;
363 *ptep = attr;
364
365 return 0;
366 }
367
kvm_pgtable_hyp_pte_prot(kvm_pte_t pte)368 enum kvm_pgtable_prot kvm_pgtable_hyp_pte_prot(kvm_pte_t pte)
369 {
370 enum kvm_pgtable_prot prot = pte & KVM_PTE_LEAF_ATTR_HI_SW;
371 u32 ap;
372
373 if (!kvm_pte_valid(pte))
374 return prot;
375
376 if (!(pte & KVM_PTE_LEAF_ATTR_HI_S1_XN))
377 prot |= KVM_PGTABLE_PROT_X;
378
379 ap = FIELD_GET(KVM_PTE_LEAF_ATTR_LO_S1_AP, pte);
380 if (ap == KVM_PTE_LEAF_ATTR_LO_S1_AP_RO)
381 prot |= KVM_PGTABLE_PROT_R;
382 else if (ap == KVM_PTE_LEAF_ATTR_LO_S1_AP_RW)
383 prot |= KVM_PGTABLE_PROT_RW;
384
385 return prot;
386 }
387
hyp_map_walker_try_leaf(const struct kvm_pgtable_visit_ctx * ctx,struct hyp_map_data * data)388 static bool hyp_map_walker_try_leaf(const struct kvm_pgtable_visit_ctx *ctx,
389 struct hyp_map_data *data)
390 {
391 u64 phys = data->phys + (ctx->addr - ctx->start);
392 kvm_pte_t new;
393
394 if (!kvm_block_mapping_supported(ctx, phys))
395 return false;
396
397 new = kvm_init_valid_leaf_pte(phys, data->attr, ctx->level);
398 if (ctx->old == new)
399 return true;
400 if (!kvm_pte_valid(ctx->old))
401 ctx->mm_ops->get_page(ctx->ptep);
402 else if (WARN_ON((ctx->old ^ new) & ~KVM_PTE_LEAF_ATTR_HI_SW))
403 return false;
404
405 smp_store_release(ctx->ptep, new);
406 return true;
407 }
408
hyp_map_walker(const struct kvm_pgtable_visit_ctx * ctx,enum kvm_pgtable_walk_flags visit)409 static int hyp_map_walker(const struct kvm_pgtable_visit_ctx *ctx,
410 enum kvm_pgtable_walk_flags visit)
411 {
412 kvm_pte_t *childp, new;
413 struct hyp_map_data *data = ctx->arg;
414 struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
415
416 if (hyp_map_walker_try_leaf(ctx, data))
417 return 0;
418
419 if (WARN_ON(ctx->level == KVM_PGTABLE_LAST_LEVEL))
420 return -EINVAL;
421
422 childp = (kvm_pte_t *)mm_ops->zalloc_page(NULL);
423 if (!childp)
424 return -ENOMEM;
425
426 new = kvm_init_table_pte(childp, mm_ops);
427 mm_ops->get_page(ctx->ptep);
428 smp_store_release(ctx->ptep, new);
429
430 return 0;
431 }
432
kvm_pgtable_hyp_map(struct kvm_pgtable * pgt,u64 addr,u64 size,u64 phys,enum kvm_pgtable_prot prot)433 int kvm_pgtable_hyp_map(struct kvm_pgtable *pgt, u64 addr, u64 size, u64 phys,
434 enum kvm_pgtable_prot prot)
435 {
436 int ret;
437 struct hyp_map_data map_data = {
438 .phys = ALIGN_DOWN(phys, PAGE_SIZE),
439 };
440 struct kvm_pgtable_walker walker = {
441 .cb = hyp_map_walker,
442 .flags = KVM_PGTABLE_WALK_LEAF,
443 .arg = &map_data,
444 };
445
446 ret = hyp_set_prot_attr(prot, &map_data.attr);
447 if (ret)
448 return ret;
449
450 ret = kvm_pgtable_walk(pgt, addr, size, &walker);
451 dsb(ishst);
452 isb();
453 return ret;
454 }
455
hyp_unmap_walker(const struct kvm_pgtable_visit_ctx * ctx,enum kvm_pgtable_walk_flags visit)456 static int hyp_unmap_walker(const struct kvm_pgtable_visit_ctx *ctx,
457 enum kvm_pgtable_walk_flags visit)
458 {
459 kvm_pte_t *childp = NULL;
460 u64 granule = kvm_granule_size(ctx->level);
461 u64 *unmapped = ctx->arg;
462 struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
463
464 if (!kvm_pte_valid(ctx->old))
465 return -EINVAL;
466
467 if (kvm_pte_table(ctx->old, ctx->level)) {
468 childp = kvm_pte_follow(ctx->old, mm_ops);
469
470 if (mm_ops->page_count(childp) != 1)
471 return 0;
472
473 kvm_clear_pte(ctx->ptep);
474 dsb(ishst);
475 __tlbi_level(vae2is, __TLBI_VADDR(ctx->addr, 0), TLBI_TTL_UNKNOWN);
476 } else {
477 if (ctx->end - ctx->addr < granule)
478 return -EINVAL;
479
480 kvm_clear_pte(ctx->ptep);
481 dsb(ishst);
482 __tlbi_level(vale2is, __TLBI_VADDR(ctx->addr, 0), ctx->level);
483 *unmapped += granule;
484 }
485
486 dsb(ish);
487 isb();
488 mm_ops->put_page(ctx->ptep);
489
490 if (childp)
491 mm_ops->put_page(childp);
492
493 return 0;
494 }
495
kvm_pgtable_hyp_unmap(struct kvm_pgtable * pgt,u64 addr,u64 size)496 u64 kvm_pgtable_hyp_unmap(struct kvm_pgtable *pgt, u64 addr, u64 size)
497 {
498 u64 unmapped = 0;
499 struct kvm_pgtable_walker walker = {
500 .cb = hyp_unmap_walker,
501 .arg = &unmapped,
502 .flags = KVM_PGTABLE_WALK_LEAF | KVM_PGTABLE_WALK_TABLE_POST,
503 };
504
505 if (!pgt->mm_ops->page_count)
506 return 0;
507
508 kvm_pgtable_walk(pgt, addr, size, &walker);
509 return unmapped;
510 }
511
kvm_pgtable_hyp_init(struct kvm_pgtable * pgt,u32 va_bits,struct kvm_pgtable_mm_ops * mm_ops)512 int kvm_pgtable_hyp_init(struct kvm_pgtable *pgt, u32 va_bits,
513 struct kvm_pgtable_mm_ops *mm_ops)
514 {
515 s8 start_level = KVM_PGTABLE_LAST_LEVEL + 1 -
516 ARM64_HW_PGTABLE_LEVELS(va_bits);
517
518 if (start_level < KVM_PGTABLE_FIRST_LEVEL ||
519 start_level > KVM_PGTABLE_LAST_LEVEL)
520 return -EINVAL;
521
522 pgt->pgd = (kvm_pteref_t)mm_ops->zalloc_page(NULL);
523 if (!pgt->pgd)
524 return -ENOMEM;
525
526 pgt->ia_bits = va_bits;
527 pgt->start_level = start_level;
528 pgt->mm_ops = mm_ops;
529 pgt->mmu = NULL;
530 pgt->force_pte_cb = NULL;
531
532 return 0;
533 }
534
hyp_free_walker(const struct kvm_pgtable_visit_ctx * ctx,enum kvm_pgtable_walk_flags visit)535 static int hyp_free_walker(const struct kvm_pgtable_visit_ctx *ctx,
536 enum kvm_pgtable_walk_flags visit)
537 {
538 struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
539
540 if (!kvm_pte_valid(ctx->old))
541 return 0;
542
543 mm_ops->put_page(ctx->ptep);
544
545 if (kvm_pte_table(ctx->old, ctx->level))
546 mm_ops->put_page(kvm_pte_follow(ctx->old, mm_ops));
547
548 return 0;
549 }
550
kvm_pgtable_hyp_destroy(struct kvm_pgtable * pgt)551 void kvm_pgtable_hyp_destroy(struct kvm_pgtable *pgt)
552 {
553 struct kvm_pgtable_walker walker = {
554 .cb = hyp_free_walker,
555 .flags = KVM_PGTABLE_WALK_LEAF | KVM_PGTABLE_WALK_TABLE_POST,
556 };
557
558 WARN_ON(kvm_pgtable_walk(pgt, 0, BIT(pgt->ia_bits), &walker));
559 pgt->mm_ops->put_page(kvm_dereference_pteref(&walker, pgt->pgd));
560 pgt->pgd = NULL;
561 }
562
563 struct stage2_map_data {
564 const u64 phys;
565 kvm_pte_t attr;
566 u8 owner_id;
567
568 kvm_pte_t *anchor;
569 kvm_pte_t *childp;
570
571 struct kvm_s2_mmu *mmu;
572 void *memcache;
573
574 /* Force mappings to page granularity */
575 bool force_pte;
576
577 /* Walk should update owner_id only */
578 bool annotation;
579 };
580
kvm_get_vtcr(u64 mmfr0,u64 mmfr1,u32 phys_shift)581 u64 kvm_get_vtcr(u64 mmfr0, u64 mmfr1, u32 phys_shift)
582 {
583 u64 vtcr = VTCR_EL2_FLAGS;
584 s8 lvls;
585
586 vtcr |= kvm_get_parange(mmfr0) << VTCR_EL2_PS_SHIFT;
587 vtcr |= VTCR_EL2_T0SZ(phys_shift);
588 /*
589 * Use a minimum 2 level page table to prevent splitting
590 * host PMD huge pages at stage2.
591 */
592 lvls = stage2_pgtable_levels(phys_shift);
593 if (lvls < 2)
594 lvls = 2;
595
596 /*
597 * When LPA2 is enabled, the HW supports an extra level of translation
598 * (for 5 in total) when using 4K pages. It also introduces VTCR_EL2.SL2
599 * to as an addition to SL0 to enable encoding this extra start level.
600 * However, since we always use concatenated pages for the first level
601 * lookup, we will never need this extra level and therefore do not need
602 * to touch SL2.
603 */
604 vtcr |= VTCR_EL2_LVLS_TO_SL0(lvls);
605
606 #ifdef CONFIG_ARM64_HW_AFDBM
607 /*
608 * Enable the Hardware Access Flag management, unconditionally
609 * on all CPUs. In systems that have asymmetric support for the feature
610 * this allows KVM to leverage hardware support on the subset of cores
611 * that implement the feature.
612 *
613 * The architecture requires VTCR_EL2.HA to be RES0 (thus ignored by
614 * hardware) on implementations that do not advertise support for the
615 * feature. As such, setting HA unconditionally is safe, unless you
616 * happen to be running on a design that has unadvertised support for
617 * HAFDBS. Here be dragons.
618 */
619 if (!cpus_have_final_cap(ARM64_WORKAROUND_AMPERE_AC03_CPU_38))
620 vtcr |= VTCR_EL2_HA;
621 #endif /* CONFIG_ARM64_HW_AFDBM */
622
623 if (kvm_lpa2_is_enabled())
624 vtcr |= VTCR_EL2_DS;
625
626 /* Set the vmid bits */
627 vtcr |= (get_vmid_bits(mmfr1) == 16) ?
628 VTCR_EL2_VS_16BIT :
629 VTCR_EL2_VS_8BIT;
630
631 return vtcr;
632 }
633
stage2_has_fwb(struct kvm_pgtable * pgt)634 static bool stage2_has_fwb(struct kvm_pgtable *pgt)
635 {
636 if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
637 return false;
638
639 return !(pgt->flags & KVM_PGTABLE_S2_NOFWB);
640 }
641
kvm_tlb_flush_vmid_range(struct kvm_s2_mmu * mmu,phys_addr_t addr,size_t size)642 void kvm_tlb_flush_vmid_range(struct kvm_s2_mmu *mmu,
643 phys_addr_t addr, size_t size)
644 {
645 unsigned long pages, inval_pages;
646
647 if (!system_supports_tlb_range()) {
648 kvm_call_hyp(__kvm_tlb_flush_vmid, mmu);
649 return;
650 }
651
652 pages = size >> PAGE_SHIFT;
653 while (pages > 0) {
654 inval_pages = min(pages, MAX_TLBI_RANGE_PAGES);
655 kvm_call_hyp(__kvm_tlb_flush_vmid_range, mmu, addr, inval_pages);
656
657 addr += inval_pages << PAGE_SHIFT;
658 pages -= inval_pages;
659 }
660 }
661
662 #define KVM_S2_MEMATTR(pgt, attr) PAGE_S2_MEMATTR(attr, stage2_has_fwb(pgt))
663
stage2_set_prot_attr(struct kvm_pgtable * pgt,enum kvm_pgtable_prot prot,kvm_pte_t * ptep)664 static int stage2_set_prot_attr(struct kvm_pgtable *pgt, enum kvm_pgtable_prot prot,
665 kvm_pte_t *ptep)
666 {
667 kvm_pte_t attr;
668 u32 sh = KVM_PTE_LEAF_ATTR_LO_S2_SH_IS;
669
670 switch (prot & (KVM_PGTABLE_PROT_DEVICE |
671 KVM_PGTABLE_PROT_NORMAL_NC)) {
672 case KVM_PGTABLE_PROT_DEVICE | KVM_PGTABLE_PROT_NORMAL_NC:
673 return -EINVAL;
674 case KVM_PGTABLE_PROT_DEVICE:
675 if (prot & KVM_PGTABLE_PROT_X)
676 return -EINVAL;
677 attr = KVM_S2_MEMATTR(pgt, DEVICE_nGnRE);
678 break;
679 case KVM_PGTABLE_PROT_NORMAL_NC:
680 if (prot & KVM_PGTABLE_PROT_X)
681 return -EINVAL;
682 attr = KVM_S2_MEMATTR(pgt, NORMAL_NC);
683 break;
684 default:
685 attr = KVM_S2_MEMATTR(pgt, NORMAL);
686 }
687
688 if (!(prot & KVM_PGTABLE_PROT_X))
689 attr |= KVM_PTE_LEAF_ATTR_HI_S2_XN;
690
691 if (prot & KVM_PGTABLE_PROT_R)
692 attr |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R;
693
694 if (prot & KVM_PGTABLE_PROT_W)
695 attr |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W;
696
697 if (!kvm_lpa2_is_enabled())
698 attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S2_SH, sh);
699
700 attr |= KVM_PTE_LEAF_ATTR_LO_S2_AF;
701 attr |= prot & KVM_PTE_LEAF_ATTR_HI_SW;
702 *ptep = attr;
703
704 return 0;
705 }
706
kvm_pgtable_stage2_pte_prot(kvm_pte_t pte)707 enum kvm_pgtable_prot kvm_pgtable_stage2_pte_prot(kvm_pte_t pte)
708 {
709 enum kvm_pgtable_prot prot = pte & KVM_PTE_LEAF_ATTR_HI_SW;
710
711 if (!kvm_pte_valid(pte))
712 return prot;
713
714 if (pte & KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R)
715 prot |= KVM_PGTABLE_PROT_R;
716 if (pte & KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W)
717 prot |= KVM_PGTABLE_PROT_W;
718 if (!(pte & KVM_PTE_LEAF_ATTR_HI_S2_XN))
719 prot |= KVM_PGTABLE_PROT_X;
720
721 return prot;
722 }
723
stage2_pte_needs_update(kvm_pte_t old,kvm_pte_t new)724 static bool stage2_pte_needs_update(kvm_pte_t old, kvm_pte_t new)
725 {
726 if (!kvm_pte_valid(old) || !kvm_pte_valid(new))
727 return true;
728
729 return ((old ^ new) & (~KVM_PTE_LEAF_ATTR_S2_PERMS));
730 }
731
stage2_pte_is_counted(kvm_pte_t pte)732 static bool stage2_pte_is_counted(kvm_pte_t pte)
733 {
734 /*
735 * The refcount tracks valid entries as well as invalid entries if they
736 * encode ownership of a page to another entity than the page-table
737 * owner, whose id is 0.
738 */
739 return !!pte;
740 }
741
stage2_pte_is_locked(kvm_pte_t pte)742 static bool stage2_pte_is_locked(kvm_pte_t pte)
743 {
744 return !kvm_pte_valid(pte) && (pte & KVM_INVALID_PTE_LOCKED);
745 }
746
stage2_try_set_pte(const struct kvm_pgtable_visit_ctx * ctx,kvm_pte_t new)747 static bool stage2_try_set_pte(const struct kvm_pgtable_visit_ctx *ctx, kvm_pte_t new)
748 {
749 if (!kvm_pgtable_walk_shared(ctx)) {
750 WRITE_ONCE(*ctx->ptep, new);
751 return true;
752 }
753
754 return cmpxchg(ctx->ptep, ctx->old, new) == ctx->old;
755 }
756
757 /**
758 * stage2_try_break_pte() - Invalidates a pte according to the
759 * 'break-before-make' requirements of the
760 * architecture.
761 *
762 * @ctx: context of the visited pte.
763 * @mmu: stage-2 mmu
764 *
765 * Returns: true if the pte was successfully broken.
766 *
767 * If the removed pte was valid, performs the necessary serialization and TLB
768 * invalidation for the old value. For counted ptes, drops the reference count
769 * on the containing table page.
770 */
stage2_try_break_pte(const struct kvm_pgtable_visit_ctx * ctx,struct kvm_s2_mmu * mmu)771 static bool stage2_try_break_pte(const struct kvm_pgtable_visit_ctx *ctx,
772 struct kvm_s2_mmu *mmu)
773 {
774 struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
775
776 if (stage2_pte_is_locked(ctx->old)) {
777 /*
778 * Should never occur if this walker has exclusive access to the
779 * page tables.
780 */
781 WARN_ON(!kvm_pgtable_walk_shared(ctx));
782 return false;
783 }
784
785 if (!stage2_try_set_pte(ctx, KVM_INVALID_PTE_LOCKED))
786 return false;
787
788 if (!kvm_pgtable_walk_skip_bbm_tlbi(ctx)) {
789 /*
790 * Perform the appropriate TLB invalidation based on the
791 * evicted pte value (if any).
792 */
793 if (kvm_pte_table(ctx->old, ctx->level)) {
794 u64 size = kvm_granule_size(ctx->level);
795 u64 addr = ALIGN_DOWN(ctx->addr, size);
796
797 kvm_tlb_flush_vmid_range(mmu, addr, size);
798 } else if (kvm_pte_valid(ctx->old)) {
799 kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, mmu,
800 ctx->addr, ctx->level);
801 }
802 }
803
804 if (stage2_pte_is_counted(ctx->old))
805 mm_ops->put_page(ctx->ptep);
806
807 return true;
808 }
809
stage2_make_pte(const struct kvm_pgtable_visit_ctx * ctx,kvm_pte_t new)810 static void stage2_make_pte(const struct kvm_pgtable_visit_ctx *ctx, kvm_pte_t new)
811 {
812 struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
813
814 WARN_ON(!stage2_pte_is_locked(*ctx->ptep));
815
816 if (stage2_pte_is_counted(new))
817 mm_ops->get_page(ctx->ptep);
818
819 smp_store_release(ctx->ptep, new);
820 }
821
stage2_unmap_defer_tlb_flush(struct kvm_pgtable * pgt)822 static bool stage2_unmap_defer_tlb_flush(struct kvm_pgtable *pgt)
823 {
824 /*
825 * If FEAT_TLBIRANGE is implemented, defer the individual
826 * TLB invalidations until the entire walk is finished, and
827 * then use the range-based TLBI instructions to do the
828 * invalidations. Condition deferred TLB invalidation on the
829 * system supporting FWB as the optimization is entirely
830 * pointless when the unmap walker needs to perform CMOs.
831 */
832 return system_supports_tlb_range() && stage2_has_fwb(pgt);
833 }
834
stage2_unmap_put_pte(const struct kvm_pgtable_visit_ctx * ctx,struct kvm_s2_mmu * mmu,struct kvm_pgtable_mm_ops * mm_ops)835 static void stage2_unmap_put_pte(const struct kvm_pgtable_visit_ctx *ctx,
836 struct kvm_s2_mmu *mmu,
837 struct kvm_pgtable_mm_ops *mm_ops)
838 {
839 struct kvm_pgtable *pgt = ctx->arg;
840
841 /*
842 * Clear the existing PTE, and perform break-before-make if it was
843 * valid. Depending on the system support, defer the TLB maintenance
844 * for the same until the entire unmap walk is completed.
845 */
846 if (kvm_pte_valid(ctx->old)) {
847 kvm_clear_pte(ctx->ptep);
848
849 if (kvm_pte_table(ctx->old, ctx->level)) {
850 kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, mmu, ctx->addr,
851 TLBI_TTL_UNKNOWN);
852 } else if (!stage2_unmap_defer_tlb_flush(pgt)) {
853 kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, mmu, ctx->addr,
854 ctx->level);
855 }
856 }
857
858 mm_ops->put_page(ctx->ptep);
859 }
860
stage2_pte_cacheable(struct kvm_pgtable * pgt,kvm_pte_t pte)861 static bool stage2_pte_cacheable(struct kvm_pgtable *pgt, kvm_pte_t pte)
862 {
863 u64 memattr = pte & KVM_PTE_LEAF_ATTR_LO_S2_MEMATTR;
864 return kvm_pte_valid(pte) && memattr == KVM_S2_MEMATTR(pgt, NORMAL);
865 }
866
stage2_pte_executable(kvm_pte_t pte)867 static bool stage2_pte_executable(kvm_pte_t pte)
868 {
869 return kvm_pte_valid(pte) && !(pte & KVM_PTE_LEAF_ATTR_HI_S2_XN);
870 }
871
stage2_map_walker_phys_addr(const struct kvm_pgtable_visit_ctx * ctx,const struct stage2_map_data * data)872 static u64 stage2_map_walker_phys_addr(const struct kvm_pgtable_visit_ctx *ctx,
873 const struct stage2_map_data *data)
874 {
875 u64 phys = data->phys;
876
877 /* Work out the correct PA based on how far the walk has gotten */
878 return phys + (ctx->addr - ctx->start);
879 }
880
stage2_leaf_mapping_allowed(const struct kvm_pgtable_visit_ctx * ctx,struct stage2_map_data * data)881 static bool stage2_leaf_mapping_allowed(const struct kvm_pgtable_visit_ctx *ctx,
882 struct stage2_map_data *data)
883 {
884 u64 phys = stage2_map_walker_phys_addr(ctx, data);
885
886 if (data->force_pte && ctx->level < KVM_PGTABLE_LAST_LEVEL)
887 return false;
888
889 if (data->annotation)
890 return true;
891
892 return kvm_block_mapping_supported(ctx, phys);
893 }
894
stage2_map_walker_try_leaf(const struct kvm_pgtable_visit_ctx * ctx,struct stage2_map_data * data)895 static int stage2_map_walker_try_leaf(const struct kvm_pgtable_visit_ctx *ctx,
896 struct stage2_map_data *data)
897 {
898 kvm_pte_t new;
899 u64 phys = stage2_map_walker_phys_addr(ctx, data);
900 u64 granule = kvm_granule_size(ctx->level);
901 struct kvm_pgtable *pgt = data->mmu->pgt;
902 struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
903
904 if (!stage2_leaf_mapping_allowed(ctx, data))
905 return -E2BIG;
906
907 if (!data->annotation)
908 new = kvm_init_valid_leaf_pte(phys, data->attr, ctx->level);
909 else
910 new = kvm_init_invalid_leaf_owner(data->owner_id);
911
912 /*
913 * Skip updating the PTE if we are trying to recreate the exact
914 * same mapping or only change the access permissions. Instead,
915 * the vCPU will exit one more time from guest if still needed
916 * and then go through the path of relaxing permissions.
917 */
918 if (!stage2_pte_needs_update(ctx->old, new))
919 return -EAGAIN;
920
921 /* If we're only changing software bits, then store them and go! */
922 if (!kvm_pgtable_walk_shared(ctx) &&
923 !((ctx->old ^ new) & ~KVM_PTE_LEAF_ATTR_HI_SW)) {
924 bool old_is_counted = stage2_pte_is_counted(ctx->old);
925
926 if (old_is_counted != stage2_pte_is_counted(new)) {
927 if (old_is_counted)
928 mm_ops->put_page(ctx->ptep);
929 else
930 mm_ops->get_page(ctx->ptep);
931 }
932 WARN_ON_ONCE(!stage2_try_set_pte(ctx, new));
933 return 0;
934 }
935
936 if (!stage2_try_break_pte(ctx, data->mmu))
937 return -EAGAIN;
938
939 /* Perform CMOs before installation of the guest stage-2 PTE */
940 if (!kvm_pgtable_walk_skip_cmo(ctx) && mm_ops->dcache_clean_inval_poc &&
941 stage2_pte_cacheable(pgt, new))
942 mm_ops->dcache_clean_inval_poc(kvm_pte_follow(new, mm_ops),
943 granule);
944
945 if (!kvm_pgtable_walk_skip_cmo(ctx) && mm_ops->icache_inval_pou &&
946 stage2_pte_executable(new))
947 mm_ops->icache_inval_pou(kvm_pte_follow(new, mm_ops), granule);
948
949 stage2_make_pte(ctx, new);
950
951 return 0;
952 }
953
stage2_map_walk_table_pre(const struct kvm_pgtable_visit_ctx * ctx,struct stage2_map_data * data)954 static int stage2_map_walk_table_pre(const struct kvm_pgtable_visit_ctx *ctx,
955 struct stage2_map_data *data)
956 {
957 struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
958 kvm_pte_t *childp = kvm_pte_follow(ctx->old, mm_ops);
959 int ret;
960
961 if (!stage2_leaf_mapping_allowed(ctx, data))
962 return 0;
963
964 ret = stage2_map_walker_try_leaf(ctx, data);
965 if (ret)
966 return ret;
967
968 mm_ops->free_unlinked_table(childp, ctx->level);
969 return 0;
970 }
971
stage2_map_walk_leaf(const struct kvm_pgtable_visit_ctx * ctx,struct stage2_map_data * data)972 static int stage2_map_walk_leaf(const struct kvm_pgtable_visit_ctx *ctx,
973 struct stage2_map_data *data)
974 {
975 struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
976 kvm_pte_t *childp, new;
977 int ret;
978
979 ret = stage2_map_walker_try_leaf(ctx, data);
980 if (ret != -E2BIG)
981 return ret;
982
983 if (WARN_ON(ctx->level == KVM_PGTABLE_LAST_LEVEL))
984 return -EINVAL;
985
986 if (!data->memcache)
987 return -ENOMEM;
988
989 childp = mm_ops->zalloc_page(data->memcache);
990 if (!childp)
991 return -ENOMEM;
992
993 if (!stage2_try_break_pte(ctx, data->mmu)) {
994 mm_ops->put_page(childp);
995 return -EAGAIN;
996 }
997
998 /*
999 * If we've run into an existing block mapping then replace it with
1000 * a table. Accesses beyond 'end' that fall within the new table
1001 * will be mapped lazily.
1002 */
1003 new = kvm_init_table_pte(childp, mm_ops);
1004 stage2_make_pte(ctx, new);
1005
1006 return 0;
1007 }
1008
1009 /*
1010 * The TABLE_PRE callback runs for table entries on the way down, looking
1011 * for table entries which we could conceivably replace with a block entry
1012 * for this mapping. If it finds one it replaces the entry and calls
1013 * kvm_pgtable_mm_ops::free_unlinked_table() to tear down the detached table.
1014 *
1015 * Otherwise, the LEAF callback performs the mapping at the existing leaves
1016 * instead.
1017 */
stage2_map_walker(const struct kvm_pgtable_visit_ctx * ctx,enum kvm_pgtable_walk_flags visit)1018 static int stage2_map_walker(const struct kvm_pgtable_visit_ctx *ctx,
1019 enum kvm_pgtable_walk_flags visit)
1020 {
1021 struct stage2_map_data *data = ctx->arg;
1022
1023 switch (visit) {
1024 case KVM_PGTABLE_WALK_TABLE_PRE:
1025 return stage2_map_walk_table_pre(ctx, data);
1026 case KVM_PGTABLE_WALK_LEAF:
1027 return stage2_map_walk_leaf(ctx, data);
1028 default:
1029 return -EINVAL;
1030 }
1031 }
1032
kvm_pgtable_stage2_map(struct kvm_pgtable * pgt,u64 addr,u64 size,u64 phys,enum kvm_pgtable_prot prot,void * mc,enum kvm_pgtable_walk_flags flags)1033 int kvm_pgtable_stage2_map(struct kvm_pgtable *pgt, u64 addr, u64 size,
1034 u64 phys, enum kvm_pgtable_prot prot,
1035 void *mc, enum kvm_pgtable_walk_flags flags)
1036 {
1037 int ret;
1038 struct stage2_map_data map_data = {
1039 .phys = ALIGN_DOWN(phys, PAGE_SIZE),
1040 .mmu = pgt->mmu,
1041 .memcache = mc,
1042 .force_pte = pgt->force_pte_cb && pgt->force_pte_cb(addr, addr + size, prot),
1043 };
1044 struct kvm_pgtable_walker walker = {
1045 .cb = stage2_map_walker,
1046 .flags = flags |
1047 KVM_PGTABLE_WALK_TABLE_PRE |
1048 KVM_PGTABLE_WALK_LEAF,
1049 .arg = &map_data,
1050 };
1051
1052 if (WARN_ON((pgt->flags & KVM_PGTABLE_S2_IDMAP) && (addr != phys)))
1053 return -EINVAL;
1054
1055 ret = stage2_set_prot_attr(pgt, prot, &map_data.attr);
1056 if (ret)
1057 return ret;
1058
1059 ret = kvm_pgtable_walk(pgt, addr, size, &walker);
1060 dsb(ishst);
1061 return ret;
1062 }
1063
kvm_pgtable_stage2_set_owner(struct kvm_pgtable * pgt,u64 addr,u64 size,void * mc,u8 owner_id)1064 int kvm_pgtable_stage2_set_owner(struct kvm_pgtable *pgt, u64 addr, u64 size,
1065 void *mc, u8 owner_id)
1066 {
1067 int ret;
1068 struct stage2_map_data map_data = {
1069 .mmu = pgt->mmu,
1070 .memcache = mc,
1071 .owner_id = owner_id,
1072 .force_pte = true,
1073 .annotation = true,
1074 };
1075 struct kvm_pgtable_walker walker = {
1076 .cb = stage2_map_walker,
1077 .flags = KVM_PGTABLE_WALK_TABLE_PRE |
1078 KVM_PGTABLE_WALK_LEAF,
1079 .arg = &map_data,
1080 };
1081
1082 if (owner_id > KVM_MAX_OWNER_ID)
1083 return -EINVAL;
1084
1085 ret = kvm_pgtable_walk(pgt, addr, size, &walker);
1086 return ret;
1087 }
1088
stage2_unmap_walker(const struct kvm_pgtable_visit_ctx * ctx,enum kvm_pgtable_walk_flags visit)1089 static int stage2_unmap_walker(const struct kvm_pgtable_visit_ctx *ctx,
1090 enum kvm_pgtable_walk_flags visit)
1091 {
1092 struct kvm_pgtable *pgt = ctx->arg;
1093 struct kvm_s2_mmu *mmu = pgt->mmu;
1094 struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
1095 kvm_pte_t *childp = NULL;
1096 bool need_flush = false;
1097
1098 if (!kvm_pte_valid(ctx->old)) {
1099 if (stage2_pte_is_counted(ctx->old)) {
1100 kvm_clear_pte(ctx->ptep);
1101 mm_ops->put_page(ctx->ptep);
1102 }
1103 return 0;
1104 }
1105
1106 if (kvm_pte_table(ctx->old, ctx->level)) {
1107 childp = kvm_pte_follow(ctx->old, mm_ops);
1108
1109 if (mm_ops->page_count(childp) != 1)
1110 return 0;
1111 } else if (stage2_pte_cacheable(pgt, ctx->old)) {
1112 need_flush = !stage2_has_fwb(pgt);
1113 }
1114
1115 /*
1116 * This is similar to the map() path in that we unmap the entire
1117 * block entry and rely on the remaining portions being faulted
1118 * back lazily.
1119 */
1120 stage2_unmap_put_pte(ctx, mmu, mm_ops);
1121
1122 if (need_flush && mm_ops->dcache_clean_inval_poc)
1123 mm_ops->dcache_clean_inval_poc(kvm_pte_follow(ctx->old, mm_ops),
1124 kvm_granule_size(ctx->level));
1125
1126 if (childp)
1127 mm_ops->put_page(childp);
1128
1129 return 0;
1130 }
1131
kvm_pgtable_stage2_unmap(struct kvm_pgtable * pgt,u64 addr,u64 size)1132 int kvm_pgtable_stage2_unmap(struct kvm_pgtable *pgt, u64 addr, u64 size)
1133 {
1134 int ret;
1135 struct kvm_pgtable_walker walker = {
1136 .cb = stage2_unmap_walker,
1137 .arg = pgt,
1138 .flags = KVM_PGTABLE_WALK_LEAF | KVM_PGTABLE_WALK_TABLE_POST,
1139 };
1140
1141 ret = kvm_pgtable_walk(pgt, addr, size, &walker);
1142 if (stage2_unmap_defer_tlb_flush(pgt))
1143 /* Perform the deferred TLB invalidations */
1144 kvm_tlb_flush_vmid_range(pgt->mmu, addr, size);
1145
1146 return ret;
1147 }
1148
1149 struct stage2_attr_data {
1150 kvm_pte_t attr_set;
1151 kvm_pte_t attr_clr;
1152 kvm_pte_t pte;
1153 s8 level;
1154 };
1155
stage2_attr_walker(const struct kvm_pgtable_visit_ctx * ctx,enum kvm_pgtable_walk_flags visit)1156 static int stage2_attr_walker(const struct kvm_pgtable_visit_ctx *ctx,
1157 enum kvm_pgtable_walk_flags visit)
1158 {
1159 kvm_pte_t pte = ctx->old;
1160 struct stage2_attr_data *data = ctx->arg;
1161 struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
1162
1163 if (!kvm_pte_valid(ctx->old))
1164 return -EAGAIN;
1165
1166 data->level = ctx->level;
1167 data->pte = pte;
1168 pte &= ~data->attr_clr;
1169 pte |= data->attr_set;
1170
1171 /*
1172 * We may race with the CPU trying to set the access flag here,
1173 * but worst-case the access flag update gets lost and will be
1174 * set on the next access instead.
1175 */
1176 if (data->pte != pte) {
1177 /*
1178 * Invalidate instruction cache before updating the guest
1179 * stage-2 PTE if we are going to add executable permission.
1180 */
1181 if (mm_ops->icache_inval_pou &&
1182 stage2_pte_executable(pte) && !stage2_pte_executable(ctx->old))
1183 mm_ops->icache_inval_pou(kvm_pte_follow(pte, mm_ops),
1184 kvm_granule_size(ctx->level));
1185
1186 if (!stage2_try_set_pte(ctx, pte))
1187 return -EAGAIN;
1188 }
1189
1190 return 0;
1191 }
1192
stage2_update_leaf_attrs(struct kvm_pgtable * pgt,u64 addr,u64 size,kvm_pte_t attr_set,kvm_pte_t attr_clr,kvm_pte_t * orig_pte,s8 * level,enum kvm_pgtable_walk_flags flags)1193 static int stage2_update_leaf_attrs(struct kvm_pgtable *pgt, u64 addr,
1194 u64 size, kvm_pte_t attr_set,
1195 kvm_pte_t attr_clr, kvm_pte_t *orig_pte,
1196 s8 *level, enum kvm_pgtable_walk_flags flags)
1197 {
1198 int ret;
1199 kvm_pte_t attr_mask = KVM_PTE_LEAF_ATTR_LO | KVM_PTE_LEAF_ATTR_HI;
1200 struct stage2_attr_data data = {
1201 .attr_set = attr_set & attr_mask,
1202 .attr_clr = attr_clr & attr_mask,
1203 };
1204 struct kvm_pgtable_walker walker = {
1205 .cb = stage2_attr_walker,
1206 .arg = &data,
1207 .flags = flags | KVM_PGTABLE_WALK_LEAF,
1208 };
1209
1210 ret = kvm_pgtable_walk(pgt, addr, size, &walker);
1211 if (ret)
1212 return ret;
1213
1214 if (orig_pte)
1215 *orig_pte = data.pte;
1216
1217 if (level)
1218 *level = data.level;
1219 return 0;
1220 }
1221
kvm_pgtable_stage2_wrprotect(struct kvm_pgtable * pgt,u64 addr,u64 size)1222 int kvm_pgtable_stage2_wrprotect(struct kvm_pgtable *pgt, u64 addr, u64 size)
1223 {
1224 return stage2_update_leaf_attrs(pgt, addr, size, 0,
1225 KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W,
1226 NULL, NULL, 0);
1227 }
1228
kvm_pgtable_stage2_mkyoung(struct kvm_pgtable * pgt,u64 addr,enum kvm_pgtable_walk_flags flags)1229 void kvm_pgtable_stage2_mkyoung(struct kvm_pgtable *pgt, u64 addr,
1230 enum kvm_pgtable_walk_flags flags)
1231 {
1232 int ret;
1233
1234 ret = stage2_update_leaf_attrs(pgt, addr, 1, KVM_PTE_LEAF_ATTR_LO_S2_AF, 0,
1235 NULL, NULL, flags);
1236 if (!ret)
1237 dsb(ishst);
1238 }
1239
1240 struct stage2_age_data {
1241 bool mkold;
1242 bool young;
1243 };
1244
stage2_age_walker(const struct kvm_pgtable_visit_ctx * ctx,enum kvm_pgtable_walk_flags visit)1245 static int stage2_age_walker(const struct kvm_pgtable_visit_ctx *ctx,
1246 enum kvm_pgtable_walk_flags visit)
1247 {
1248 kvm_pte_t new = ctx->old & ~KVM_PTE_LEAF_ATTR_LO_S2_AF;
1249 struct stage2_age_data *data = ctx->arg;
1250
1251 if (!kvm_pte_valid(ctx->old) || new == ctx->old)
1252 return 0;
1253
1254 data->young = true;
1255
1256 /*
1257 * stage2_age_walker() is always called while holding the MMU lock for
1258 * write, so this will always succeed. Nonetheless, this deliberately
1259 * follows the race detection pattern of the other stage-2 walkers in
1260 * case the locking mechanics of the MMU notifiers is ever changed.
1261 */
1262 if (data->mkold && !stage2_try_set_pte(ctx, new))
1263 return -EAGAIN;
1264
1265 /*
1266 * "But where's the TLBI?!", you scream.
1267 * "Over in the core code", I sigh.
1268 *
1269 * See the '->clear_flush_young()' callback on the KVM mmu notifier.
1270 */
1271 return 0;
1272 }
1273
kvm_pgtable_stage2_test_clear_young(struct kvm_pgtable * pgt,u64 addr,u64 size,bool mkold)1274 bool kvm_pgtable_stage2_test_clear_young(struct kvm_pgtable *pgt, u64 addr,
1275 u64 size, bool mkold)
1276 {
1277 struct stage2_age_data data = {
1278 .mkold = mkold,
1279 };
1280 struct kvm_pgtable_walker walker = {
1281 .cb = stage2_age_walker,
1282 .arg = &data,
1283 .flags = KVM_PGTABLE_WALK_LEAF,
1284 };
1285
1286 WARN_ON(kvm_pgtable_walk(pgt, addr, size, &walker));
1287 return data.young;
1288 }
1289
kvm_pgtable_stage2_relax_perms(struct kvm_pgtable * pgt,u64 addr,enum kvm_pgtable_prot prot,enum kvm_pgtable_walk_flags flags)1290 int kvm_pgtable_stage2_relax_perms(struct kvm_pgtable *pgt, u64 addr,
1291 enum kvm_pgtable_prot prot, enum kvm_pgtable_walk_flags flags)
1292 {
1293 int ret;
1294 s8 level;
1295 kvm_pte_t set = 0, clr = 0;
1296
1297 if (prot & KVM_PTE_LEAF_ATTR_HI_SW)
1298 return -EINVAL;
1299
1300 if (prot & KVM_PGTABLE_PROT_R)
1301 set |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R;
1302
1303 if (prot & KVM_PGTABLE_PROT_W)
1304 set |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W;
1305
1306 if (prot & KVM_PGTABLE_PROT_X)
1307 clr |= KVM_PTE_LEAF_ATTR_HI_S2_XN;
1308
1309 ret = stage2_update_leaf_attrs(pgt, addr, 1, set, clr, NULL, &level, flags);
1310 if (!ret || ret == -EAGAIN)
1311 kvm_call_hyp(__kvm_tlb_flush_vmid_ipa_nsh, pgt->mmu, addr, level);
1312 return ret;
1313 }
1314
stage2_flush_walker(const struct kvm_pgtable_visit_ctx * ctx,enum kvm_pgtable_walk_flags visit)1315 static int stage2_flush_walker(const struct kvm_pgtable_visit_ctx *ctx,
1316 enum kvm_pgtable_walk_flags visit)
1317 {
1318 struct kvm_pgtable *pgt = ctx->arg;
1319 struct kvm_pgtable_mm_ops *mm_ops = pgt->mm_ops;
1320
1321 if (!stage2_pte_cacheable(pgt, ctx->old))
1322 return 0;
1323
1324 if (mm_ops->dcache_clean_inval_poc)
1325 mm_ops->dcache_clean_inval_poc(kvm_pte_follow(ctx->old, mm_ops),
1326 kvm_granule_size(ctx->level));
1327 return 0;
1328 }
1329
kvm_pgtable_stage2_flush(struct kvm_pgtable * pgt,u64 addr,u64 size)1330 int kvm_pgtable_stage2_flush(struct kvm_pgtable *pgt, u64 addr, u64 size)
1331 {
1332 struct kvm_pgtable_walker walker = {
1333 .cb = stage2_flush_walker,
1334 .flags = KVM_PGTABLE_WALK_LEAF,
1335 .arg = pgt,
1336 };
1337
1338 if (stage2_has_fwb(pgt))
1339 return 0;
1340
1341 return kvm_pgtable_walk(pgt, addr, size, &walker);
1342 }
1343
kvm_pgtable_stage2_create_unlinked(struct kvm_pgtable * pgt,u64 phys,s8 level,enum kvm_pgtable_prot prot,void * mc,bool force_pte)1344 kvm_pte_t *kvm_pgtable_stage2_create_unlinked(struct kvm_pgtable *pgt,
1345 u64 phys, s8 level,
1346 enum kvm_pgtable_prot prot,
1347 void *mc, bool force_pte)
1348 {
1349 struct stage2_map_data map_data = {
1350 .phys = phys,
1351 .mmu = pgt->mmu,
1352 .memcache = mc,
1353 .force_pte = force_pte,
1354 };
1355 struct kvm_pgtable_walker walker = {
1356 .cb = stage2_map_walker,
1357 .flags = KVM_PGTABLE_WALK_LEAF |
1358 KVM_PGTABLE_WALK_SKIP_BBM_TLBI |
1359 KVM_PGTABLE_WALK_SKIP_CMO,
1360 .arg = &map_data,
1361 };
1362 /*
1363 * The input address (.addr) is irrelevant for walking an
1364 * unlinked table. Construct an ambiguous IA range to map
1365 * kvm_granule_size(level) worth of memory.
1366 */
1367 struct kvm_pgtable_walk_data data = {
1368 .walker = &walker,
1369 .addr = 0,
1370 .end = kvm_granule_size(level),
1371 };
1372 struct kvm_pgtable_mm_ops *mm_ops = pgt->mm_ops;
1373 kvm_pte_t *pgtable;
1374 int ret;
1375
1376 if (!IS_ALIGNED(phys, kvm_granule_size(level)))
1377 return ERR_PTR(-EINVAL);
1378
1379 ret = stage2_set_prot_attr(pgt, prot, &map_data.attr);
1380 if (ret)
1381 return ERR_PTR(ret);
1382
1383 pgtable = mm_ops->zalloc_page(mc);
1384 if (!pgtable)
1385 return ERR_PTR(-ENOMEM);
1386
1387 ret = __kvm_pgtable_walk(&data, mm_ops, (kvm_pteref_t)pgtable,
1388 level + 1);
1389 if (ret) {
1390 kvm_pgtable_stage2_free_unlinked(mm_ops, pgtable, level);
1391 return ERR_PTR(ret);
1392 }
1393
1394 return pgtable;
1395 }
1396
1397 /*
1398 * Get the number of page-tables needed to replace a block with a
1399 * fully populated tree up to the PTE entries. Note that @level is
1400 * interpreted as in "level @level entry".
1401 */
stage2_block_get_nr_page_tables(s8 level)1402 static int stage2_block_get_nr_page_tables(s8 level)
1403 {
1404 switch (level) {
1405 case 1:
1406 return PTRS_PER_PTE + 1;
1407 case 2:
1408 return 1;
1409 case 3:
1410 return 0;
1411 default:
1412 WARN_ON_ONCE(level < KVM_PGTABLE_MIN_BLOCK_LEVEL ||
1413 level > KVM_PGTABLE_LAST_LEVEL);
1414 return -EINVAL;
1415 };
1416 }
1417
stage2_split_walker(const struct kvm_pgtable_visit_ctx * ctx,enum kvm_pgtable_walk_flags visit)1418 static int stage2_split_walker(const struct kvm_pgtable_visit_ctx *ctx,
1419 enum kvm_pgtable_walk_flags visit)
1420 {
1421 struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
1422 struct kvm_mmu_memory_cache *mc = ctx->arg;
1423 struct kvm_s2_mmu *mmu;
1424 kvm_pte_t pte = ctx->old, new, *childp;
1425 enum kvm_pgtable_prot prot;
1426 s8 level = ctx->level;
1427 bool force_pte;
1428 int nr_pages;
1429 u64 phys;
1430
1431 /* No huge-pages exist at the last level */
1432 if (level == KVM_PGTABLE_LAST_LEVEL)
1433 return 0;
1434
1435 /* We only split valid block mappings */
1436 if (!kvm_pte_valid(pte))
1437 return 0;
1438
1439 nr_pages = stage2_block_get_nr_page_tables(level);
1440 if (nr_pages < 0)
1441 return nr_pages;
1442
1443 if (mc->nobjs >= nr_pages) {
1444 /* Build a tree mapped down to the PTE granularity. */
1445 force_pte = true;
1446 } else {
1447 /*
1448 * Don't force PTEs, so create_unlinked() below does
1449 * not populate the tree up to the PTE level. The
1450 * consequence is that the call will require a single
1451 * page of level 2 entries at level 1, or a single
1452 * page of PTEs at level 2. If we are at level 1, the
1453 * PTEs will be created recursively.
1454 */
1455 force_pte = false;
1456 nr_pages = 1;
1457 }
1458
1459 if (mc->nobjs < nr_pages)
1460 return -ENOMEM;
1461
1462 mmu = container_of(mc, struct kvm_s2_mmu, split_page_cache);
1463 phys = kvm_pte_to_phys(pte);
1464 prot = kvm_pgtable_stage2_pte_prot(pte);
1465
1466 childp = kvm_pgtable_stage2_create_unlinked(mmu->pgt, phys,
1467 level, prot, mc, force_pte);
1468 if (IS_ERR(childp))
1469 return PTR_ERR(childp);
1470
1471 if (!stage2_try_break_pte(ctx, mmu)) {
1472 kvm_pgtable_stage2_free_unlinked(mm_ops, childp, level);
1473 return -EAGAIN;
1474 }
1475
1476 /*
1477 * Note, the contents of the page table are guaranteed to be made
1478 * visible before the new PTE is assigned because stage2_make_pte()
1479 * writes the PTE using smp_store_release().
1480 */
1481 new = kvm_init_table_pte(childp, mm_ops);
1482 stage2_make_pte(ctx, new);
1483 return 0;
1484 }
1485
kvm_pgtable_stage2_split(struct kvm_pgtable * pgt,u64 addr,u64 size,struct kvm_mmu_memory_cache * mc)1486 int kvm_pgtable_stage2_split(struct kvm_pgtable *pgt, u64 addr, u64 size,
1487 struct kvm_mmu_memory_cache *mc)
1488 {
1489 struct kvm_pgtable_walker walker = {
1490 .cb = stage2_split_walker,
1491 .flags = KVM_PGTABLE_WALK_LEAF,
1492 .arg = mc,
1493 };
1494 int ret;
1495
1496 ret = kvm_pgtable_walk(pgt, addr, size, &walker);
1497 dsb(ishst);
1498 return ret;
1499 }
1500
__kvm_pgtable_stage2_init(struct kvm_pgtable * pgt,struct kvm_s2_mmu * mmu,struct kvm_pgtable_mm_ops * mm_ops,enum kvm_pgtable_stage2_flags flags,kvm_pgtable_force_pte_cb_t force_pte_cb)1501 int __kvm_pgtable_stage2_init(struct kvm_pgtable *pgt, struct kvm_s2_mmu *mmu,
1502 struct kvm_pgtable_mm_ops *mm_ops,
1503 enum kvm_pgtable_stage2_flags flags,
1504 kvm_pgtable_force_pte_cb_t force_pte_cb)
1505 {
1506 size_t pgd_sz;
1507 u64 vtcr = mmu->vtcr;
1508 u32 ia_bits = VTCR_EL2_IPA(vtcr);
1509 u32 sl0 = FIELD_GET(VTCR_EL2_SL0_MASK, vtcr);
1510 s8 start_level = VTCR_EL2_TGRAN_SL0_BASE - sl0;
1511
1512 pgd_sz = kvm_pgd_pages(ia_bits, start_level) * PAGE_SIZE;
1513 pgt->pgd = (kvm_pteref_t)mm_ops->zalloc_pages_exact(pgd_sz);
1514 if (!pgt->pgd)
1515 return -ENOMEM;
1516
1517 pgt->ia_bits = ia_bits;
1518 pgt->start_level = start_level;
1519 pgt->mm_ops = mm_ops;
1520 pgt->mmu = mmu;
1521 pgt->flags = flags;
1522 pgt->force_pte_cb = force_pte_cb;
1523
1524 /* Ensure zeroed PGD pages are visible to the hardware walker */
1525 dsb(ishst);
1526 return 0;
1527 }
1528
kvm_pgtable_stage2_pgd_size(u64 vtcr)1529 size_t kvm_pgtable_stage2_pgd_size(u64 vtcr)
1530 {
1531 u32 ia_bits = VTCR_EL2_IPA(vtcr);
1532 u32 sl0 = FIELD_GET(VTCR_EL2_SL0_MASK, vtcr);
1533 s8 start_level = VTCR_EL2_TGRAN_SL0_BASE - sl0;
1534
1535 return kvm_pgd_pages(ia_bits, start_level) * PAGE_SIZE;
1536 }
1537
stage2_free_walker(const struct kvm_pgtable_visit_ctx * ctx,enum kvm_pgtable_walk_flags visit)1538 static int stage2_free_walker(const struct kvm_pgtable_visit_ctx *ctx,
1539 enum kvm_pgtable_walk_flags visit)
1540 {
1541 struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
1542
1543 if (!stage2_pte_is_counted(ctx->old))
1544 return 0;
1545
1546 mm_ops->put_page(ctx->ptep);
1547
1548 if (kvm_pte_table(ctx->old, ctx->level))
1549 mm_ops->put_page(kvm_pte_follow(ctx->old, mm_ops));
1550
1551 return 0;
1552 }
1553
kvm_pgtable_stage2_destroy(struct kvm_pgtable * pgt)1554 void kvm_pgtable_stage2_destroy(struct kvm_pgtable *pgt)
1555 {
1556 size_t pgd_sz;
1557 struct kvm_pgtable_walker walker = {
1558 .cb = stage2_free_walker,
1559 .flags = KVM_PGTABLE_WALK_LEAF |
1560 KVM_PGTABLE_WALK_TABLE_POST,
1561 };
1562
1563 WARN_ON(kvm_pgtable_walk(pgt, 0, BIT(pgt->ia_bits), &walker));
1564 pgd_sz = kvm_pgd_pages(pgt->ia_bits, pgt->start_level) * PAGE_SIZE;
1565 pgt->mm_ops->free_pages_exact(kvm_dereference_pteref(&walker, pgt->pgd), pgd_sz);
1566 pgt->pgd = NULL;
1567 }
1568
kvm_pgtable_stage2_free_unlinked(struct kvm_pgtable_mm_ops * mm_ops,void * pgtable,s8 level)1569 void kvm_pgtable_stage2_free_unlinked(struct kvm_pgtable_mm_ops *mm_ops, void *pgtable, s8 level)
1570 {
1571 kvm_pteref_t ptep = (kvm_pteref_t)pgtable;
1572 struct kvm_pgtable_walker walker = {
1573 .cb = stage2_free_walker,
1574 .flags = KVM_PGTABLE_WALK_LEAF |
1575 KVM_PGTABLE_WALK_TABLE_POST,
1576 };
1577 struct kvm_pgtable_walk_data data = {
1578 .walker = &walker,
1579
1580 /*
1581 * At this point the IPA really doesn't matter, as the page
1582 * table being traversed has already been removed from the stage
1583 * 2. Set an appropriate range to cover the entire page table.
1584 */
1585 .addr = 0,
1586 .end = kvm_granule_size(level),
1587 };
1588
1589 WARN_ON(__kvm_pgtable_walk(&data, mm_ops, ptep, level + 1));
1590
1591 WARN_ON(mm_ops->page_count(pgtable) != 1);
1592 mm_ops->put_page(pgtable);
1593 }
1594