1 /*
2 * Copyright (C) 2007-2010 Lawrence Livermore National Security, LLC.
3 * Copyright (C) 2007 The Regents of the University of California.
4 * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
5 * Written by Brian Behlendorf <behlendorf1@llnl.gov>.
6 * UCRL-CODE-235197
7 *
8 * This file is part of the SPL, Solaris Porting Layer.
9 *
10 * The SPL is free software; you can redistribute it and/or modify it
11 * under the terms of the GNU General Public License as published by the
12 * Free Software Foundation; either version 2 of the License, or (at your
13 * option) any later version.
14 *
15 * The SPL is distributed in the hope that it will be useful, but WITHOUT
16 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 * for more details.
19 *
20 * You should have received a copy of the GNU General Public License along
21 * with the SPL. If not, see <http://www.gnu.org/licenses/>.
22 */
23
24 #define SPL_KMEM_CACHE_IMPLEMENTING
25
26 #include <sys/kmem.h>
27 #include <sys/kmem_cache.h>
28 #include <sys/taskq.h>
29 #include <sys/timer.h>
30 #include <sys/vmem.h>
31 #include <sys/wait.h>
32 #include <sys/string.h>
33 #include <linux/slab.h>
34 #include <linux/swap.h>
35 #include <linux/prefetch.h>
36
37 /*
38 * Linux 3.16 replaced smp_mb__{before,after}_{atomic,clear}_{dec,inc,bit}()
39 * with smp_mb__{before,after}_atomic() because they were redundant. This is
40 * only used inside our SLAB allocator, so we implement an internal wrapper
41 * here to give us smp_mb__{before,after}_atomic() on older kernels.
42 */
43 #ifndef smp_mb__before_atomic
44 #define smp_mb__before_atomic(x) smp_mb__before_clear_bit(x)
45 #endif
46
47 #ifndef smp_mb__after_atomic
48 #define smp_mb__after_atomic(x) smp_mb__after_clear_bit(x)
49 #endif
50
51 /*
52 * Cache magazines are an optimization designed to minimize the cost of
53 * allocating memory. They do this by keeping a per-cpu cache of recently
54 * freed objects, which can then be reallocated without taking a lock. This
55 * can improve performance on highly contended caches. However, because
56 * objects in magazines will prevent otherwise empty slabs from being
57 * immediately released this may not be ideal for low memory machines.
58 *
59 * For this reason spl_kmem_cache_magazine_size can be used to set a maximum
60 * magazine size. When this value is set to 0 the magazine size will be
61 * automatically determined based on the object size. Otherwise magazines
62 * will be limited to 2-256 objects per magazine (i.e per cpu). Magazines
63 * may never be entirely disabled in this implementation.
64 */
65 static unsigned int spl_kmem_cache_magazine_size = 0;
66 module_param(spl_kmem_cache_magazine_size, uint, 0444);
67 MODULE_PARM_DESC(spl_kmem_cache_magazine_size,
68 "Default magazine size (2-256), set automatically (0)");
69
70 static unsigned int spl_kmem_cache_obj_per_slab = SPL_KMEM_CACHE_OBJ_PER_SLAB;
71 module_param(spl_kmem_cache_obj_per_slab, uint, 0644);
72 MODULE_PARM_DESC(spl_kmem_cache_obj_per_slab, "Number of objects per slab");
73
74 static unsigned int spl_kmem_cache_max_size = SPL_KMEM_CACHE_MAX_SIZE;
75 module_param(spl_kmem_cache_max_size, uint, 0644);
76 MODULE_PARM_DESC(spl_kmem_cache_max_size, "Maximum size of slab in MB");
77
78 /*
79 * For small objects the Linux slab allocator should be used to make the most
80 * efficient use of the memory. However, large objects are not supported by
81 * the Linux slab and therefore the SPL implementation is preferred. A cutoff
82 * of 16K was determined to be optimal for architectures using 4K pages and
83 * to also work well on architecutres using larger 64K page sizes.
84 */
85 static unsigned int spl_kmem_cache_slab_limit =
86 SPL_MAX_KMEM_ORDER_NR_PAGES * PAGE_SIZE;
87 module_param(spl_kmem_cache_slab_limit, uint, 0644);
88 MODULE_PARM_DESC(spl_kmem_cache_slab_limit,
89 "Objects less than N bytes use the Linux slab");
90
91 /*
92 * The number of threads available to allocate new slabs for caches. This
93 * should not need to be tuned but it is available for performance analysis.
94 */
95 static unsigned int spl_kmem_cache_kmem_threads = 4;
96 module_param(spl_kmem_cache_kmem_threads, uint, 0444);
97 MODULE_PARM_DESC(spl_kmem_cache_kmem_threads,
98 "Number of spl_kmem_cache threads");
99
100 /*
101 * Slab allocation interfaces
102 *
103 * While the Linux slab implementation was inspired by the Solaris
104 * implementation I cannot use it to emulate the Solaris APIs. I
105 * require two features which are not provided by the Linux slab.
106 *
107 * 1) Constructors AND destructors. Recent versions of the Linux
108 * kernel have removed support for destructors. This is a deal
109 * breaker for the SPL which contains particularly expensive
110 * initializers for mutex's, condition variables, etc. We also
111 * require a minimal level of cleanup for these data types unlike
112 * many Linux data types which do need to be explicitly destroyed.
113 *
114 * 2) Virtual address space backed slab. Callers of the Solaris slab
115 * expect it to work well for both small are very large allocations.
116 * Because of memory fragmentation the Linux slab which is backed
117 * by kmalloc'ed memory performs very badly when confronted with
118 * large numbers of large allocations. Basing the slab on the
119 * virtual address space removes the need for contiguous pages
120 * and greatly improve performance for large allocations.
121 *
122 * For these reasons, the SPL has its own slab implementation with
123 * the needed features. It is not as highly optimized as either the
124 * Solaris or Linux slabs, but it should get me most of what is
125 * needed until it can be optimized or obsoleted by another approach.
126 *
127 * One serious concern I do have about this method is the relatively
128 * small virtual address space on 32bit arches. This will seriously
129 * constrain the size of the slab caches and their performance.
130 */
131
132 struct list_head spl_kmem_cache_list; /* List of caches */
133 struct rw_semaphore spl_kmem_cache_sem; /* Cache list lock */
134 static taskq_t *spl_kmem_cache_taskq; /* Task queue for aging / reclaim */
135
136 static void spl_cache_shrink(spl_kmem_cache_t *skc, void *obj);
137
138 static void *
kv_alloc(spl_kmem_cache_t * skc,int size,int flags)139 kv_alloc(spl_kmem_cache_t *skc, int size, int flags)
140 {
141 gfp_t lflags = kmem_flags_convert(flags);
142 void *ptr;
143
144 if (skc->skc_flags & KMC_RECLAIMABLE)
145 lflags |= __GFP_RECLAIMABLE;
146 ptr = spl_vmalloc(size, lflags | __GFP_HIGHMEM);
147
148 /* Resulting allocated memory will be page aligned */
149 ASSERT(IS_P2ALIGNED(ptr, PAGE_SIZE));
150
151 return (ptr);
152 }
153
154 static void
kv_free(spl_kmem_cache_t * skc,void * ptr,int size)155 kv_free(spl_kmem_cache_t *skc, void *ptr, int size)
156 {
157 ASSERT(IS_P2ALIGNED(ptr, PAGE_SIZE));
158
159 /*
160 * The Linux direct reclaim path uses this out of band value to
161 * determine if forward progress is being made. Normally this is
162 * incremented by kmem_freepages() which is part of the various
163 * Linux slab implementations. However, since we are using none
164 * of that infrastructure we are responsible for incrementing it.
165 */
166 if (current->reclaim_state)
167 #ifdef HAVE_RECLAIM_STATE_RECLAIMED
168 current->reclaim_state->reclaimed += size >> PAGE_SHIFT;
169 #else
170 current->reclaim_state->reclaimed_slab += size >> PAGE_SHIFT;
171 #endif
172 vfree(ptr);
173 }
174
175 /*
176 * Required space for each aligned sks.
177 */
178 static inline uint32_t
spl_sks_size(spl_kmem_cache_t * skc)179 spl_sks_size(spl_kmem_cache_t *skc)
180 {
181 return (P2ROUNDUP_TYPED(sizeof (spl_kmem_slab_t),
182 skc->skc_obj_align, uint32_t));
183 }
184
185 /*
186 * Required space for each aligned object.
187 */
188 static inline uint32_t
spl_obj_size(spl_kmem_cache_t * skc)189 spl_obj_size(spl_kmem_cache_t *skc)
190 {
191 uint32_t align = skc->skc_obj_align;
192
193 return (P2ROUNDUP_TYPED(skc->skc_obj_size, align, uint32_t) +
194 P2ROUNDUP_TYPED(sizeof (spl_kmem_obj_t), align, uint32_t));
195 }
196
197 uint64_t
spl_kmem_cache_inuse(kmem_cache_t * cache)198 spl_kmem_cache_inuse(kmem_cache_t *cache)
199 {
200 return (cache->skc_obj_total);
201 }
202 EXPORT_SYMBOL(spl_kmem_cache_inuse);
203
204 uint64_t
spl_kmem_cache_entry_size(kmem_cache_t * cache)205 spl_kmem_cache_entry_size(kmem_cache_t *cache)
206 {
207 return (cache->skc_obj_size);
208 }
209 EXPORT_SYMBOL(spl_kmem_cache_entry_size);
210
211 /*
212 * Lookup the spl_kmem_object_t for an object given that object.
213 */
214 static inline spl_kmem_obj_t *
spl_sko_from_obj(spl_kmem_cache_t * skc,void * obj)215 spl_sko_from_obj(spl_kmem_cache_t *skc, void *obj)
216 {
217 return (obj + P2ROUNDUP_TYPED(skc->skc_obj_size,
218 skc->skc_obj_align, uint32_t));
219 }
220
221 /*
222 * It's important that we pack the spl_kmem_obj_t structure and the
223 * actual objects in to one large address space to minimize the number
224 * of calls to the allocator. It is far better to do a few large
225 * allocations and then subdivide it ourselves. Now which allocator
226 * we use requires balancing a few trade offs.
227 *
228 * For small objects we use kmem_alloc() because as long as you are
229 * only requesting a small number of pages (ideally just one) its cheap.
230 * However, when you start requesting multiple pages with kmem_alloc()
231 * it gets increasingly expensive since it requires contiguous pages.
232 * For this reason we shift to vmem_alloc() for slabs of large objects
233 * which removes the need for contiguous pages. We do not use
234 * vmem_alloc() in all cases because there is significant locking
235 * overhead in __get_vm_area_node(). This function takes a single
236 * global lock when acquiring an available virtual address range which
237 * serializes all vmem_alloc()'s for all slab caches. Using slightly
238 * different allocation functions for small and large objects should
239 * give us the best of both worlds.
240 *
241 * +------------------------+
242 * | spl_kmem_slab_t --+-+ |
243 * | skc_obj_size <-+ | |
244 * | spl_kmem_obj_t | |
245 * | skc_obj_size <---+ |
246 * | spl_kmem_obj_t | |
247 * | ... v |
248 * +------------------------+
249 */
250 static spl_kmem_slab_t *
spl_slab_alloc(spl_kmem_cache_t * skc,int flags)251 spl_slab_alloc(spl_kmem_cache_t *skc, int flags)
252 {
253 spl_kmem_slab_t *sks;
254 void *base;
255 uint32_t obj_size;
256
257 base = kv_alloc(skc, skc->skc_slab_size, flags);
258 if (base == NULL)
259 return (NULL);
260
261 sks = (spl_kmem_slab_t *)base;
262 sks->sks_magic = SKS_MAGIC;
263 sks->sks_objs = skc->skc_slab_objs;
264 sks->sks_age = jiffies;
265 sks->sks_cache = skc;
266 INIT_LIST_HEAD(&sks->sks_list);
267 INIT_LIST_HEAD(&sks->sks_free_list);
268 sks->sks_ref = 0;
269 obj_size = spl_obj_size(skc);
270
271 for (int i = 0; i < sks->sks_objs; i++) {
272 void *obj = base + spl_sks_size(skc) + (i * obj_size);
273
274 ASSERT(IS_P2ALIGNED(obj, skc->skc_obj_align));
275 spl_kmem_obj_t *sko = spl_sko_from_obj(skc, obj);
276 sko->sko_addr = obj;
277 sko->sko_magic = SKO_MAGIC;
278 sko->sko_slab = sks;
279 INIT_LIST_HEAD(&sko->sko_list);
280 list_add_tail(&sko->sko_list, &sks->sks_free_list);
281 }
282
283 return (sks);
284 }
285
286 /*
287 * Remove a slab from complete or partial list, it must be called with
288 * the 'skc->skc_lock' held but the actual free must be performed
289 * outside the lock to prevent deadlocking on vmem addresses.
290 */
291 static void
spl_slab_free(spl_kmem_slab_t * sks,struct list_head * sks_list,struct list_head * sko_list)292 spl_slab_free(spl_kmem_slab_t *sks,
293 struct list_head *sks_list, struct list_head *sko_list)
294 {
295 spl_kmem_cache_t *skc;
296
297 ASSERT(sks->sks_magic == SKS_MAGIC);
298 ASSERT(sks->sks_ref == 0);
299
300 skc = sks->sks_cache;
301 ASSERT(skc->skc_magic == SKC_MAGIC);
302
303 /*
304 * Update slab/objects counters in the cache, then remove the
305 * slab from the skc->skc_partial_list. Finally add the slab
306 * and all its objects in to the private work lists where the
307 * destructors will be called and the memory freed to the system.
308 */
309 skc->skc_obj_total -= sks->sks_objs;
310 skc->skc_slab_total--;
311 list_del(&sks->sks_list);
312 list_add(&sks->sks_list, sks_list);
313 list_splice_init(&sks->sks_free_list, sko_list);
314 }
315
316 /*
317 * Reclaim empty slabs at the end of the partial list.
318 */
319 static void
spl_slab_reclaim(spl_kmem_cache_t * skc)320 spl_slab_reclaim(spl_kmem_cache_t *skc)
321 {
322 spl_kmem_slab_t *sks = NULL, *m = NULL;
323 spl_kmem_obj_t *sko = NULL, *n = NULL;
324 LIST_HEAD(sks_list);
325 LIST_HEAD(sko_list);
326
327 /*
328 * Empty slabs and objects must be moved to a private list so they
329 * can be safely freed outside the spin lock. All empty slabs are
330 * at the end of skc->skc_partial_list, therefore once a non-empty
331 * slab is found we can stop scanning.
332 */
333 spin_lock(&skc->skc_lock);
334 list_for_each_entry_safe_reverse(sks, m,
335 &skc->skc_partial_list, sks_list) {
336
337 if (sks->sks_ref > 0)
338 break;
339
340 spl_slab_free(sks, &sks_list, &sko_list);
341 }
342 spin_unlock(&skc->skc_lock);
343
344 /*
345 * The following two loops ensure all the object destructors are run,
346 * and the slabs themselves are freed. This is all done outside the
347 * skc->skc_lock since this allows the destructor to sleep, and
348 * allows us to perform a conditional reschedule when a freeing a
349 * large number of objects and slabs back to the system.
350 */
351
352 list_for_each_entry_safe(sko, n, &sko_list, sko_list) {
353 ASSERT(sko->sko_magic == SKO_MAGIC);
354 }
355
356 list_for_each_entry_safe(sks, m, &sks_list, sks_list) {
357 ASSERT(sks->sks_magic == SKS_MAGIC);
358 kv_free(skc, sks, skc->skc_slab_size);
359 }
360 }
361
362 static spl_kmem_emergency_t *
spl_emergency_search(struct rb_root * root,void * obj)363 spl_emergency_search(struct rb_root *root, void *obj)
364 {
365 struct rb_node *node = root->rb_node;
366 spl_kmem_emergency_t *ske;
367 unsigned long address = (unsigned long)obj;
368
369 while (node) {
370 ske = container_of(node, spl_kmem_emergency_t, ske_node);
371
372 if (address < ske->ske_obj)
373 node = node->rb_left;
374 else if (address > ske->ske_obj)
375 node = node->rb_right;
376 else
377 return (ske);
378 }
379
380 return (NULL);
381 }
382
383 static int
spl_emergency_insert(struct rb_root * root,spl_kmem_emergency_t * ske)384 spl_emergency_insert(struct rb_root *root, spl_kmem_emergency_t *ske)
385 {
386 struct rb_node **new = &(root->rb_node), *parent = NULL;
387 spl_kmem_emergency_t *ske_tmp;
388 unsigned long address = ske->ske_obj;
389
390 while (*new) {
391 ske_tmp = container_of(*new, spl_kmem_emergency_t, ske_node);
392
393 parent = *new;
394 if (address < ske_tmp->ske_obj)
395 new = &((*new)->rb_left);
396 else if (address > ske_tmp->ske_obj)
397 new = &((*new)->rb_right);
398 else
399 return (0);
400 }
401
402 rb_link_node(&ske->ske_node, parent, new);
403 rb_insert_color(&ske->ske_node, root);
404
405 return (1);
406 }
407
408 /*
409 * Allocate a single emergency object and track it in a red black tree.
410 */
411 static int
spl_emergency_alloc(spl_kmem_cache_t * skc,int flags,void ** obj)412 spl_emergency_alloc(spl_kmem_cache_t *skc, int flags, void **obj)
413 {
414 gfp_t lflags = kmem_flags_convert(flags);
415 spl_kmem_emergency_t *ske;
416 int order = get_order(skc->skc_obj_size);
417 int empty;
418
419 /* Last chance use a partial slab if one now exists */
420 spin_lock(&skc->skc_lock);
421 empty = list_empty(&skc->skc_partial_list);
422 spin_unlock(&skc->skc_lock);
423 if (!empty)
424 return (-EEXIST);
425
426 if (skc->skc_flags & KMC_RECLAIMABLE)
427 lflags |= __GFP_RECLAIMABLE;
428 ske = kmalloc(sizeof (*ske), lflags);
429 if (ske == NULL)
430 return (-ENOMEM);
431
432 ske->ske_obj = __get_free_pages(lflags, order);
433 if (ske->ske_obj == 0) {
434 kfree(ske);
435 return (-ENOMEM);
436 }
437
438 spin_lock(&skc->skc_lock);
439 empty = spl_emergency_insert(&skc->skc_emergency_tree, ske);
440 if (likely(empty)) {
441 skc->skc_obj_total++;
442 skc->skc_obj_emergency++;
443 if (skc->skc_obj_emergency > skc->skc_obj_emergency_max)
444 skc->skc_obj_emergency_max = skc->skc_obj_emergency;
445 }
446 spin_unlock(&skc->skc_lock);
447
448 if (unlikely(!empty)) {
449 free_pages(ske->ske_obj, order);
450 kfree(ske);
451 return (-EINVAL);
452 }
453
454 *obj = (void *)ske->ske_obj;
455
456 return (0);
457 }
458
459 /*
460 * Locate the passed object in the red black tree and free it.
461 */
462 static int
spl_emergency_free(spl_kmem_cache_t * skc,void * obj)463 spl_emergency_free(spl_kmem_cache_t *skc, void *obj)
464 {
465 spl_kmem_emergency_t *ske;
466 int order = get_order(skc->skc_obj_size);
467
468 spin_lock(&skc->skc_lock);
469 ske = spl_emergency_search(&skc->skc_emergency_tree, obj);
470 if (ske) {
471 rb_erase(&ske->ske_node, &skc->skc_emergency_tree);
472 skc->skc_obj_emergency--;
473 skc->skc_obj_total--;
474 }
475 spin_unlock(&skc->skc_lock);
476
477 if (ske == NULL)
478 return (-ENOENT);
479
480 free_pages(ske->ske_obj, order);
481 kfree(ske);
482
483 return (0);
484 }
485
486 /*
487 * Release objects from the per-cpu magazine back to their slab. The flush
488 * argument contains the max number of entries to remove from the magazine.
489 */
490 static void
spl_cache_flush(spl_kmem_cache_t * skc,spl_kmem_magazine_t * skm,int flush)491 spl_cache_flush(spl_kmem_cache_t *skc, spl_kmem_magazine_t *skm, int flush)
492 {
493 spin_lock(&skc->skc_lock);
494
495 ASSERT(skc->skc_magic == SKC_MAGIC);
496 ASSERT(skm->skm_magic == SKM_MAGIC);
497
498 int count = MIN(flush, skm->skm_avail);
499 for (int i = 0; i < count; i++)
500 spl_cache_shrink(skc, skm->skm_objs[i]);
501
502 skm->skm_avail -= count;
503 memmove(skm->skm_objs, &(skm->skm_objs[count]),
504 sizeof (void *) * skm->skm_avail);
505
506 spin_unlock(&skc->skc_lock);
507 }
508
509 /*
510 * Size a slab based on the size of each aligned object plus spl_kmem_obj_t.
511 * When on-slab we want to target spl_kmem_cache_obj_per_slab. However,
512 * for very small objects we may end up with more than this so as not
513 * to waste space in the minimal allocation of a single page.
514 */
515 static int
spl_slab_size(spl_kmem_cache_t * skc,uint32_t * objs,uint32_t * size)516 spl_slab_size(spl_kmem_cache_t *skc, uint32_t *objs, uint32_t *size)
517 {
518 uint32_t sks_size, obj_size, max_size, tgt_size, tgt_objs;
519
520 sks_size = spl_sks_size(skc);
521 obj_size = spl_obj_size(skc);
522 max_size = (spl_kmem_cache_max_size * 1024 * 1024);
523 tgt_size = (spl_kmem_cache_obj_per_slab * obj_size + sks_size);
524
525 if (tgt_size <= max_size) {
526 tgt_objs = (tgt_size - sks_size) / obj_size;
527 } else {
528 tgt_objs = (max_size - sks_size) / obj_size;
529 tgt_size = (tgt_objs * obj_size) + sks_size;
530 }
531
532 if (tgt_objs == 0)
533 return (-ENOSPC);
534
535 *objs = tgt_objs;
536 *size = tgt_size;
537
538 return (0);
539 }
540
541 /*
542 * Make a guess at reasonable per-cpu magazine size based on the size of
543 * each object and the cost of caching N of them in each magazine. Long
544 * term this should really adapt based on an observed usage heuristic.
545 */
546 static int
spl_magazine_size(spl_kmem_cache_t * skc)547 spl_magazine_size(spl_kmem_cache_t *skc)
548 {
549 uint32_t obj_size = spl_obj_size(skc);
550 int size;
551
552 if (spl_kmem_cache_magazine_size > 0)
553 return (MAX(MIN(spl_kmem_cache_magazine_size, 256), 2));
554
555 /* Per-magazine sizes below assume a 4Kib page size */
556 if (obj_size > (PAGE_SIZE * 256))
557 size = 4; /* Minimum 4Mib per-magazine */
558 else if (obj_size > (PAGE_SIZE * 32))
559 size = 16; /* Minimum 2Mib per-magazine */
560 else if (obj_size > (PAGE_SIZE))
561 size = 64; /* Minimum 256Kib per-magazine */
562 else if (obj_size > (PAGE_SIZE / 4))
563 size = 128; /* Minimum 128Kib per-magazine */
564 else
565 size = 256;
566
567 return (size);
568 }
569
570 /*
571 * Allocate a per-cpu magazine to associate with a specific core.
572 */
573 static spl_kmem_magazine_t *
spl_magazine_alloc(spl_kmem_cache_t * skc,int cpu)574 spl_magazine_alloc(spl_kmem_cache_t *skc, int cpu)
575 {
576 spl_kmem_magazine_t *skm;
577 int size = sizeof (spl_kmem_magazine_t) +
578 sizeof (void *) * skc->skc_mag_size;
579
580 skm = kmalloc_node(size, GFP_KERNEL, cpu_to_node(cpu));
581 if (skm) {
582 skm->skm_magic = SKM_MAGIC;
583 skm->skm_avail = 0;
584 skm->skm_size = skc->skc_mag_size;
585 skm->skm_refill = skc->skc_mag_refill;
586 skm->skm_cache = skc;
587 skm->skm_cpu = cpu;
588 }
589
590 return (skm);
591 }
592
593 /*
594 * Free a per-cpu magazine associated with a specific core.
595 */
596 static void
spl_magazine_free(spl_kmem_magazine_t * skm)597 spl_magazine_free(spl_kmem_magazine_t *skm)
598 {
599 ASSERT(skm->skm_magic == SKM_MAGIC);
600 ASSERT(skm->skm_avail == 0);
601 kfree(skm);
602 }
603
604 /*
605 * Create all pre-cpu magazines of reasonable sizes.
606 */
607 static int
spl_magazine_create(spl_kmem_cache_t * skc)608 spl_magazine_create(spl_kmem_cache_t *skc)
609 {
610 int i = 0;
611
612 ASSERT((skc->skc_flags & KMC_SLAB) == 0);
613
614 skc->skc_mag = kzalloc(sizeof (spl_kmem_magazine_t *) *
615 num_possible_cpus(), kmem_flags_convert(KM_SLEEP));
616 skc->skc_mag_size = spl_magazine_size(skc);
617 skc->skc_mag_refill = (skc->skc_mag_size + 1) / 2;
618
619 for_each_possible_cpu(i) {
620 skc->skc_mag[i] = spl_magazine_alloc(skc, i);
621 if (!skc->skc_mag[i]) {
622 for (i--; i >= 0; i--)
623 spl_magazine_free(skc->skc_mag[i]);
624
625 kfree(skc->skc_mag);
626 return (-ENOMEM);
627 }
628 }
629
630 return (0);
631 }
632
633 /*
634 * Destroy all pre-cpu magazines.
635 */
636 static void
spl_magazine_destroy(spl_kmem_cache_t * skc)637 spl_magazine_destroy(spl_kmem_cache_t *skc)
638 {
639 spl_kmem_magazine_t *skm;
640 int i = 0;
641
642 ASSERT((skc->skc_flags & KMC_SLAB) == 0);
643
644 for_each_possible_cpu(i) {
645 skm = skc->skc_mag[i];
646 spl_cache_flush(skc, skm, skm->skm_avail);
647 spl_magazine_free(skm);
648 }
649
650 kfree(skc->skc_mag);
651 }
652
653 /*
654 * Create a object cache based on the following arguments:
655 * name cache name
656 * size cache object size
657 * align cache object alignment
658 * ctor cache object constructor
659 * dtor cache object destructor
660 * reclaim cache object reclaim
661 * priv cache private data for ctor/dtor/reclaim
662 * vmp unused must be NULL
663 * flags
664 * KMC_KVMEM Force kvmem backed SPL cache
665 * KMC_SLAB Force Linux slab backed cache
666 * KMC_NODEBUG Disable debugging (unsupported)
667 * KMC_RECLAIMABLE Memory can be freed under pressure
668 */
669 spl_kmem_cache_t *
spl_kmem_cache_create(const char * name,size_t size,size_t align,spl_kmem_ctor_t ctor,spl_kmem_dtor_t dtor,void * reclaim,void * priv,void * vmp,int flags)670 spl_kmem_cache_create(const char *name, size_t size, size_t align,
671 spl_kmem_ctor_t ctor, spl_kmem_dtor_t dtor, void *reclaim,
672 void *priv, void *vmp, int flags)
673 {
674 gfp_t lflags = kmem_flags_convert(KM_SLEEP);
675 spl_kmem_cache_t *skc;
676 int rc;
677
678 /*
679 * Unsupported flags
680 */
681 ASSERT(vmp == NULL);
682 ASSERT(reclaim == NULL);
683
684 might_sleep();
685
686 skc = kzalloc(sizeof (*skc), lflags);
687 if (skc == NULL)
688 return (NULL);
689
690 skc->skc_magic = SKC_MAGIC;
691 skc->skc_name_size = strlen(name) + 1;
692 skc->skc_name = kmalloc(skc->skc_name_size, lflags);
693 if (skc->skc_name == NULL) {
694 kfree(skc);
695 return (NULL);
696 }
697 strlcpy(skc->skc_name, name, skc->skc_name_size);
698
699 skc->skc_ctor = ctor;
700 skc->skc_dtor = dtor;
701 skc->skc_private = priv;
702 skc->skc_vmp = vmp;
703 skc->skc_linux_cache = NULL;
704 skc->skc_flags = flags;
705 skc->skc_obj_size = size;
706 skc->skc_obj_align = SPL_KMEM_CACHE_ALIGN;
707 atomic_set(&skc->skc_ref, 0);
708
709 INIT_LIST_HEAD(&skc->skc_list);
710 INIT_LIST_HEAD(&skc->skc_complete_list);
711 INIT_LIST_HEAD(&skc->skc_partial_list);
712 skc->skc_emergency_tree = RB_ROOT;
713 spin_lock_init(&skc->skc_lock);
714 init_waitqueue_head(&skc->skc_waitq);
715 skc->skc_slab_fail = 0;
716 skc->skc_slab_create = 0;
717 skc->skc_slab_destroy = 0;
718 skc->skc_slab_total = 0;
719 skc->skc_slab_alloc = 0;
720 skc->skc_slab_max = 0;
721 skc->skc_obj_total = 0;
722 skc->skc_obj_alloc = 0;
723 skc->skc_obj_max = 0;
724 skc->skc_obj_deadlock = 0;
725 skc->skc_obj_emergency = 0;
726 skc->skc_obj_emergency_max = 0;
727
728 rc = percpu_counter_init(&skc->skc_linux_alloc, 0, GFP_KERNEL);
729 if (rc != 0) {
730 kfree(skc->skc_name);
731 kfree(skc);
732 return (NULL);
733 }
734
735 /*
736 * Verify the requested alignment restriction is sane.
737 */
738 if (align) {
739 VERIFY(ISP2(align));
740 VERIFY3U(align, >=, SPL_KMEM_CACHE_ALIGN);
741 VERIFY3U(align, <=, PAGE_SIZE);
742 skc->skc_obj_align = align;
743 }
744
745 /*
746 * When no specific type of slab is requested (kmem, vmem, or
747 * linuxslab) then select a cache type based on the object size
748 * and default tunables.
749 */
750 if (!(skc->skc_flags & (KMC_SLAB | KMC_KVMEM))) {
751 if (spl_kmem_cache_slab_limit &&
752 size <= (size_t)spl_kmem_cache_slab_limit) {
753 /*
754 * Objects smaller than spl_kmem_cache_slab_limit can
755 * use the Linux slab for better space-efficiency.
756 */
757 skc->skc_flags |= KMC_SLAB;
758 } else {
759 /*
760 * All other objects are considered large and are
761 * placed on kvmem backed slabs.
762 */
763 skc->skc_flags |= KMC_KVMEM;
764 }
765 }
766
767 /*
768 * Given the type of slab allocate the required resources.
769 */
770 if (skc->skc_flags & KMC_KVMEM) {
771 rc = spl_slab_size(skc,
772 &skc->skc_slab_objs, &skc->skc_slab_size);
773 if (rc)
774 goto out;
775
776 rc = spl_magazine_create(skc);
777 if (rc)
778 goto out;
779 } else {
780 unsigned long slabflags = 0;
781
782 if (size > spl_kmem_cache_slab_limit)
783 goto out;
784
785 if (skc->skc_flags & KMC_RECLAIMABLE)
786 slabflags |= SLAB_RECLAIM_ACCOUNT;
787
788 skc->skc_linux_cache = kmem_cache_create_usercopy(
789 skc->skc_name, size, align, slabflags, 0, size, NULL);
790 if (skc->skc_linux_cache == NULL)
791 goto out;
792 }
793
794 down_write(&spl_kmem_cache_sem);
795 list_add_tail(&skc->skc_list, &spl_kmem_cache_list);
796 up_write(&spl_kmem_cache_sem);
797
798 return (skc);
799 out:
800 kfree(skc->skc_name);
801 percpu_counter_destroy(&skc->skc_linux_alloc);
802 kfree(skc);
803 return (NULL);
804 }
805 EXPORT_SYMBOL(spl_kmem_cache_create);
806
807 /*
808 * Register a move callback for cache defragmentation.
809 * XXX: Unimplemented but harmless to stub out for now.
810 */
811 void
spl_kmem_cache_set_move(spl_kmem_cache_t * skc,kmem_cbrc_t (move)(void *,void *,size_t,void *))812 spl_kmem_cache_set_move(spl_kmem_cache_t *skc,
813 kmem_cbrc_t (move)(void *, void *, size_t, void *))
814 {
815 ASSERT(move != NULL);
816 }
817 EXPORT_SYMBOL(spl_kmem_cache_set_move);
818
819 /*
820 * Destroy a cache and all objects associated with the cache.
821 */
822 void
spl_kmem_cache_destroy(spl_kmem_cache_t * skc)823 spl_kmem_cache_destroy(spl_kmem_cache_t *skc)
824 {
825 DECLARE_WAIT_QUEUE_HEAD(wq);
826 taskqid_t id;
827
828 ASSERT(skc->skc_magic == SKC_MAGIC);
829 ASSERT(skc->skc_flags & (KMC_KVMEM | KMC_SLAB));
830
831 down_write(&spl_kmem_cache_sem);
832 list_del_init(&skc->skc_list);
833 up_write(&spl_kmem_cache_sem);
834
835 /* Cancel any and wait for any pending delayed tasks */
836 VERIFY(!test_and_set_bit(KMC_BIT_DESTROY, &skc->skc_flags));
837
838 spin_lock(&skc->skc_lock);
839 id = skc->skc_taskqid;
840 spin_unlock(&skc->skc_lock);
841
842 taskq_cancel_id(spl_kmem_cache_taskq, id);
843
844 /*
845 * Wait until all current callers complete, this is mainly
846 * to catch the case where a low memory situation triggers a
847 * cache reaping action which races with this destroy.
848 */
849 wait_event(wq, atomic_read(&skc->skc_ref) == 0);
850
851 if (skc->skc_flags & KMC_KVMEM) {
852 spl_magazine_destroy(skc);
853 spl_slab_reclaim(skc);
854 } else {
855 ASSERT(skc->skc_flags & KMC_SLAB);
856 kmem_cache_destroy(skc->skc_linux_cache);
857 }
858
859 spin_lock(&skc->skc_lock);
860
861 /*
862 * Validate there are no objects in use and free all the
863 * spl_kmem_slab_t, spl_kmem_obj_t, and object buffers.
864 */
865 ASSERT3U(skc->skc_slab_alloc, ==, 0);
866 ASSERT3U(skc->skc_obj_alloc, ==, 0);
867 ASSERT3U(skc->skc_slab_total, ==, 0);
868 ASSERT3U(skc->skc_obj_total, ==, 0);
869 ASSERT3U(skc->skc_obj_emergency, ==, 0);
870 ASSERT(list_empty(&skc->skc_complete_list));
871
872 ASSERT3U(percpu_counter_sum(&skc->skc_linux_alloc), ==, 0);
873 percpu_counter_destroy(&skc->skc_linux_alloc);
874
875 spin_unlock(&skc->skc_lock);
876
877 kfree(skc->skc_name);
878 kfree(skc);
879 }
880 EXPORT_SYMBOL(spl_kmem_cache_destroy);
881
882 /*
883 * Allocate an object from a slab attached to the cache. This is used to
884 * repopulate the per-cpu magazine caches in batches when they run low.
885 */
886 static void *
spl_cache_obj(spl_kmem_cache_t * skc,spl_kmem_slab_t * sks)887 spl_cache_obj(spl_kmem_cache_t *skc, spl_kmem_slab_t *sks)
888 {
889 spl_kmem_obj_t *sko;
890
891 ASSERT(skc->skc_magic == SKC_MAGIC);
892 ASSERT(sks->sks_magic == SKS_MAGIC);
893
894 sko = list_entry(sks->sks_free_list.next, spl_kmem_obj_t, sko_list);
895 ASSERT(sko->sko_magic == SKO_MAGIC);
896 ASSERT(sko->sko_addr != NULL);
897
898 /* Remove from sks_free_list */
899 list_del_init(&sko->sko_list);
900
901 sks->sks_age = jiffies;
902 sks->sks_ref++;
903 skc->skc_obj_alloc++;
904
905 /* Track max obj usage statistics */
906 if (skc->skc_obj_alloc > skc->skc_obj_max)
907 skc->skc_obj_max = skc->skc_obj_alloc;
908
909 /* Track max slab usage statistics */
910 if (sks->sks_ref == 1) {
911 skc->skc_slab_alloc++;
912
913 if (skc->skc_slab_alloc > skc->skc_slab_max)
914 skc->skc_slab_max = skc->skc_slab_alloc;
915 }
916
917 return (sko->sko_addr);
918 }
919
920 /*
921 * Generic slab allocation function to run by the global work queues.
922 * It is responsible for allocating a new slab, linking it in to the list
923 * of partial slabs, and then waking any waiters.
924 */
925 static int
__spl_cache_grow(spl_kmem_cache_t * skc,int flags)926 __spl_cache_grow(spl_kmem_cache_t *skc, int flags)
927 {
928 spl_kmem_slab_t *sks;
929
930 fstrans_cookie_t cookie = spl_fstrans_mark();
931 sks = spl_slab_alloc(skc, flags);
932 spl_fstrans_unmark(cookie);
933
934 spin_lock(&skc->skc_lock);
935 if (sks) {
936 skc->skc_slab_total++;
937 skc->skc_obj_total += sks->sks_objs;
938 list_add_tail(&sks->sks_list, &skc->skc_partial_list);
939
940 smp_mb__before_atomic();
941 clear_bit(KMC_BIT_DEADLOCKED, &skc->skc_flags);
942 smp_mb__after_atomic();
943 }
944 spin_unlock(&skc->skc_lock);
945
946 return (sks == NULL ? -ENOMEM : 0);
947 }
948
949 static void
spl_cache_grow_work(void * data)950 spl_cache_grow_work(void *data)
951 {
952 spl_kmem_alloc_t *ska = (spl_kmem_alloc_t *)data;
953 spl_kmem_cache_t *skc = ska->ska_cache;
954
955 int error = __spl_cache_grow(skc, ska->ska_flags);
956
957 atomic_dec(&skc->skc_ref);
958 smp_mb__before_atomic();
959 clear_bit(KMC_BIT_GROWING, &skc->skc_flags);
960 smp_mb__after_atomic();
961 if (error == 0)
962 wake_up_all(&skc->skc_waitq);
963
964 kfree(ska);
965 }
966
967 /*
968 * Returns non-zero when a new slab should be available.
969 */
970 static int
spl_cache_grow_wait(spl_kmem_cache_t * skc)971 spl_cache_grow_wait(spl_kmem_cache_t *skc)
972 {
973 return (!test_bit(KMC_BIT_GROWING, &skc->skc_flags));
974 }
975
976 /*
977 * No available objects on any slabs, create a new slab. Note that this
978 * functionality is disabled for KMC_SLAB caches which are backed by the
979 * Linux slab.
980 */
981 static int
spl_cache_grow(spl_kmem_cache_t * skc,int flags,void ** obj)982 spl_cache_grow(spl_kmem_cache_t *skc, int flags, void **obj)
983 {
984 int remaining, rc = 0;
985
986 ASSERT0(flags & ~KM_PUBLIC_MASK);
987 ASSERT(skc->skc_magic == SKC_MAGIC);
988 ASSERT((skc->skc_flags & KMC_SLAB) == 0);
989
990 *obj = NULL;
991
992 /*
993 * Since we can't sleep attempt an emergency allocation to satisfy
994 * the request. The only alterative is to fail the allocation but
995 * it's preferable try. The use of KM_NOSLEEP is expected to be rare.
996 */
997 if (flags & KM_NOSLEEP)
998 return (spl_emergency_alloc(skc, flags, obj));
999
1000 might_sleep();
1001
1002 /*
1003 * Before allocating a new slab wait for any reaping to complete and
1004 * then return so the local magazine can be rechecked for new objects.
1005 */
1006 if (test_bit(KMC_BIT_REAPING, &skc->skc_flags)) {
1007 rc = wait_on_bit(&skc->skc_flags, KMC_BIT_REAPING,
1008 TASK_UNINTERRUPTIBLE);
1009 return (rc ? rc : -EAGAIN);
1010 }
1011
1012 /*
1013 * Note: It would be nice to reduce the overhead of context switch
1014 * and improve NUMA locality, by trying to allocate a new slab in the
1015 * current process context with KM_NOSLEEP flag.
1016 *
1017 * However, this can't be applied to vmem/kvmem due to a bug that
1018 * spl_vmalloc() doesn't honor gfp flags in page table allocation.
1019 */
1020
1021 /*
1022 * This is handled by dispatching a work request to the global work
1023 * queue. This allows us to asynchronously allocate a new slab while
1024 * retaining the ability to safely fall back to a smaller synchronous
1025 * allocations to ensure forward progress is always maintained.
1026 */
1027 if (test_and_set_bit(KMC_BIT_GROWING, &skc->skc_flags) == 0) {
1028 spl_kmem_alloc_t *ska;
1029
1030 ska = kmalloc(sizeof (*ska), kmem_flags_convert(flags));
1031 if (ska == NULL) {
1032 clear_bit_unlock(KMC_BIT_GROWING, &skc->skc_flags);
1033 smp_mb__after_atomic();
1034 wake_up_all(&skc->skc_waitq);
1035 return (-ENOMEM);
1036 }
1037
1038 atomic_inc(&skc->skc_ref);
1039 ska->ska_cache = skc;
1040 ska->ska_flags = flags;
1041 taskq_init_ent(&ska->ska_tqe);
1042 taskq_dispatch_ent(spl_kmem_cache_taskq,
1043 spl_cache_grow_work, ska, 0, &ska->ska_tqe);
1044 }
1045
1046 /*
1047 * The goal here is to only detect the rare case where a virtual slab
1048 * allocation has deadlocked. We must be careful to minimize the use
1049 * of emergency objects which are more expensive to track. Therefore,
1050 * we set a very long timeout for the asynchronous allocation and if
1051 * the timeout is reached the cache is flagged as deadlocked. From
1052 * this point only new emergency objects will be allocated until the
1053 * asynchronous allocation completes and clears the deadlocked flag.
1054 */
1055 if (test_bit(KMC_BIT_DEADLOCKED, &skc->skc_flags)) {
1056 rc = spl_emergency_alloc(skc, flags, obj);
1057 } else {
1058 remaining = wait_event_timeout(skc->skc_waitq,
1059 spl_cache_grow_wait(skc), HZ / 10);
1060
1061 if (!remaining) {
1062 spin_lock(&skc->skc_lock);
1063 if (test_bit(KMC_BIT_GROWING, &skc->skc_flags)) {
1064 set_bit(KMC_BIT_DEADLOCKED, &skc->skc_flags);
1065 skc->skc_obj_deadlock++;
1066 }
1067 spin_unlock(&skc->skc_lock);
1068 }
1069
1070 rc = -ENOMEM;
1071 }
1072
1073 return (rc);
1074 }
1075
1076 /*
1077 * Refill a per-cpu magazine with objects from the slabs for this cache.
1078 * Ideally the magazine can be repopulated using existing objects which have
1079 * been released, however if we are unable to locate enough free objects new
1080 * slabs of objects will be created. On success NULL is returned, otherwise
1081 * the address of a single emergency object is returned for use by the caller.
1082 */
1083 static void *
spl_cache_refill(spl_kmem_cache_t * skc,spl_kmem_magazine_t * skm,int flags)1084 spl_cache_refill(spl_kmem_cache_t *skc, spl_kmem_magazine_t *skm, int flags)
1085 {
1086 spl_kmem_slab_t *sks;
1087 int count = 0, rc, refill;
1088 void *obj = NULL;
1089
1090 ASSERT(skc->skc_magic == SKC_MAGIC);
1091 ASSERT(skm->skm_magic == SKM_MAGIC);
1092
1093 refill = MIN(skm->skm_refill, skm->skm_size - skm->skm_avail);
1094 spin_lock(&skc->skc_lock);
1095
1096 while (refill > 0) {
1097 /* No slabs available we may need to grow the cache */
1098 if (list_empty(&skc->skc_partial_list)) {
1099 spin_unlock(&skc->skc_lock);
1100
1101 local_irq_enable();
1102 rc = spl_cache_grow(skc, flags, &obj);
1103 local_irq_disable();
1104
1105 /* Emergency object for immediate use by caller */
1106 if (rc == 0 && obj != NULL)
1107 return (obj);
1108
1109 if (rc)
1110 goto out;
1111
1112 /* Rescheduled to different CPU skm is not local */
1113 if (skm != skc->skc_mag[smp_processor_id()])
1114 goto out;
1115
1116 /*
1117 * Potentially rescheduled to the same CPU but
1118 * allocations may have occurred from this CPU while
1119 * we were sleeping so recalculate max refill.
1120 */
1121 refill = MIN(refill, skm->skm_size - skm->skm_avail);
1122
1123 spin_lock(&skc->skc_lock);
1124 continue;
1125 }
1126
1127 /* Grab the next available slab */
1128 sks = list_entry((&skc->skc_partial_list)->next,
1129 spl_kmem_slab_t, sks_list);
1130 ASSERT(sks->sks_magic == SKS_MAGIC);
1131 ASSERT(sks->sks_ref < sks->sks_objs);
1132 ASSERT(!list_empty(&sks->sks_free_list));
1133
1134 /*
1135 * Consume as many objects as needed to refill the requested
1136 * cache. We must also be careful not to overfill it.
1137 */
1138 while (sks->sks_ref < sks->sks_objs && refill-- > 0 &&
1139 ++count) {
1140 ASSERT(skm->skm_avail < skm->skm_size);
1141 ASSERT(count < skm->skm_size);
1142 skm->skm_objs[skm->skm_avail++] =
1143 spl_cache_obj(skc, sks);
1144 }
1145
1146 /* Move slab to skc_complete_list when full */
1147 if (sks->sks_ref == sks->sks_objs) {
1148 list_del(&sks->sks_list);
1149 list_add(&sks->sks_list, &skc->skc_complete_list);
1150 }
1151 }
1152
1153 spin_unlock(&skc->skc_lock);
1154 out:
1155 return (NULL);
1156 }
1157
1158 /*
1159 * Release an object back to the slab from which it came.
1160 */
1161 static void
spl_cache_shrink(spl_kmem_cache_t * skc,void * obj)1162 spl_cache_shrink(spl_kmem_cache_t *skc, void *obj)
1163 {
1164 spl_kmem_slab_t *sks = NULL;
1165 spl_kmem_obj_t *sko = NULL;
1166
1167 ASSERT(skc->skc_magic == SKC_MAGIC);
1168
1169 sko = spl_sko_from_obj(skc, obj);
1170 ASSERT(sko->sko_magic == SKO_MAGIC);
1171 sks = sko->sko_slab;
1172 ASSERT(sks->sks_magic == SKS_MAGIC);
1173 ASSERT(sks->sks_cache == skc);
1174 list_add(&sko->sko_list, &sks->sks_free_list);
1175
1176 sks->sks_age = jiffies;
1177 sks->sks_ref--;
1178 skc->skc_obj_alloc--;
1179
1180 /*
1181 * Move slab to skc_partial_list when no longer full. Slabs
1182 * are added to the head to keep the partial list is quasi-full
1183 * sorted order. Fuller at the head, emptier at the tail.
1184 */
1185 if (sks->sks_ref == (sks->sks_objs - 1)) {
1186 list_del(&sks->sks_list);
1187 list_add(&sks->sks_list, &skc->skc_partial_list);
1188 }
1189
1190 /*
1191 * Move empty slabs to the end of the partial list so
1192 * they can be easily found and freed during reclamation.
1193 */
1194 if (sks->sks_ref == 0) {
1195 list_del(&sks->sks_list);
1196 list_add_tail(&sks->sks_list, &skc->skc_partial_list);
1197 skc->skc_slab_alloc--;
1198 }
1199 }
1200
1201 /*
1202 * Allocate an object from the per-cpu magazine, or if the magazine
1203 * is empty directly allocate from a slab and repopulate the magazine.
1204 */
1205 void *
spl_kmem_cache_alloc(spl_kmem_cache_t * skc,int flags)1206 spl_kmem_cache_alloc(spl_kmem_cache_t *skc, int flags)
1207 {
1208 spl_kmem_magazine_t *skm;
1209 void *obj = NULL;
1210
1211 ASSERT0(flags & ~KM_PUBLIC_MASK);
1212 ASSERT(skc->skc_magic == SKC_MAGIC);
1213 ASSERT(!test_bit(KMC_BIT_DESTROY, &skc->skc_flags));
1214
1215 /*
1216 * Allocate directly from a Linux slab. All optimizations are left
1217 * to the underlying cache we only need to guarantee that KM_SLEEP
1218 * callers will never fail.
1219 */
1220 if (skc->skc_flags & KMC_SLAB) {
1221 struct kmem_cache *slc = skc->skc_linux_cache;
1222 do {
1223 obj = kmem_cache_alloc(slc, kmem_flags_convert(flags));
1224 } while ((obj == NULL) && !(flags & KM_NOSLEEP));
1225
1226 if (obj != NULL) {
1227 /*
1228 * Even though we leave everything up to the
1229 * underlying cache we still keep track of
1230 * how many objects we've allocated in it for
1231 * better debuggability.
1232 */
1233 percpu_counter_inc(&skc->skc_linux_alloc);
1234 }
1235 goto ret;
1236 }
1237
1238 local_irq_disable();
1239
1240 restart:
1241 /*
1242 * Safe to update per-cpu structure without lock, but
1243 * in the restart case we must be careful to reacquire
1244 * the local magazine since this may have changed
1245 * when we need to grow the cache.
1246 */
1247 skm = skc->skc_mag[smp_processor_id()];
1248 ASSERT(skm->skm_magic == SKM_MAGIC);
1249
1250 if (likely(skm->skm_avail)) {
1251 /* Object available in CPU cache, use it */
1252 obj = skm->skm_objs[--skm->skm_avail];
1253 } else {
1254 obj = spl_cache_refill(skc, skm, flags);
1255 if ((obj == NULL) && !(flags & KM_NOSLEEP))
1256 goto restart;
1257
1258 local_irq_enable();
1259 goto ret;
1260 }
1261
1262 local_irq_enable();
1263 ASSERT(obj);
1264 ASSERT(IS_P2ALIGNED(obj, skc->skc_obj_align));
1265
1266 ret:
1267 /* Pre-emptively migrate object to CPU L1 cache */
1268 if (obj) {
1269 if (obj && skc->skc_ctor)
1270 skc->skc_ctor(obj, skc->skc_private, flags);
1271 else
1272 prefetchw(obj);
1273 }
1274
1275 return (obj);
1276 }
1277 EXPORT_SYMBOL(spl_kmem_cache_alloc);
1278
1279 /*
1280 * Free an object back to the local per-cpu magazine, there is no
1281 * guarantee that this is the same magazine the object was originally
1282 * allocated from. We may need to flush entire from the magazine
1283 * back to the slabs to make space.
1284 */
1285 void
spl_kmem_cache_free(spl_kmem_cache_t * skc,void * obj)1286 spl_kmem_cache_free(spl_kmem_cache_t *skc, void *obj)
1287 {
1288 spl_kmem_magazine_t *skm;
1289 unsigned long flags;
1290 int do_reclaim = 0;
1291 int do_emergency = 0;
1292
1293 ASSERT(skc->skc_magic == SKC_MAGIC);
1294 ASSERT(!test_bit(KMC_BIT_DESTROY, &skc->skc_flags));
1295
1296 /*
1297 * Run the destructor
1298 */
1299 if (skc->skc_dtor)
1300 skc->skc_dtor(obj, skc->skc_private);
1301
1302 /*
1303 * Free the object from the Linux underlying Linux slab.
1304 */
1305 if (skc->skc_flags & KMC_SLAB) {
1306 kmem_cache_free(skc->skc_linux_cache, obj);
1307 percpu_counter_dec(&skc->skc_linux_alloc);
1308 return;
1309 }
1310
1311 /*
1312 * While a cache has outstanding emergency objects all freed objects
1313 * must be checked. However, since emergency objects will never use
1314 * a virtual address these objects can be safely excluded as an
1315 * optimization.
1316 */
1317 if (!is_vmalloc_addr(obj)) {
1318 spin_lock(&skc->skc_lock);
1319 do_emergency = (skc->skc_obj_emergency > 0);
1320 spin_unlock(&skc->skc_lock);
1321
1322 if (do_emergency && (spl_emergency_free(skc, obj) == 0))
1323 return;
1324 }
1325
1326 local_irq_save(flags);
1327
1328 /*
1329 * Safe to update per-cpu structure without lock, but
1330 * no remote memory allocation tracking is being performed
1331 * it is entirely possible to allocate an object from one
1332 * CPU cache and return it to another.
1333 */
1334 skm = skc->skc_mag[smp_processor_id()];
1335 ASSERT(skm->skm_magic == SKM_MAGIC);
1336
1337 /*
1338 * Per-CPU cache full, flush it to make space for this object,
1339 * this may result in an empty slab which can be reclaimed once
1340 * interrupts are re-enabled.
1341 */
1342 if (unlikely(skm->skm_avail >= skm->skm_size)) {
1343 spl_cache_flush(skc, skm, skm->skm_refill);
1344 do_reclaim = 1;
1345 }
1346
1347 /* Available space in cache, use it */
1348 skm->skm_objs[skm->skm_avail++] = obj;
1349
1350 local_irq_restore(flags);
1351
1352 if (do_reclaim)
1353 spl_slab_reclaim(skc);
1354 }
1355 EXPORT_SYMBOL(spl_kmem_cache_free);
1356
1357 /*
1358 * Depending on how many and which objects are released it may simply
1359 * repopulate the local magazine which will then need to age-out. Objects
1360 * which cannot fit in the magazine will be released back to their slabs
1361 * which will also need to age out before being released. This is all just
1362 * best effort and we do not want to thrash creating and destroying slabs.
1363 */
1364 void
spl_kmem_cache_reap_now(spl_kmem_cache_t * skc)1365 spl_kmem_cache_reap_now(spl_kmem_cache_t *skc)
1366 {
1367 ASSERT(skc->skc_magic == SKC_MAGIC);
1368 ASSERT(!test_bit(KMC_BIT_DESTROY, &skc->skc_flags));
1369
1370 if (skc->skc_flags & KMC_SLAB)
1371 return;
1372
1373 atomic_inc(&skc->skc_ref);
1374
1375 /*
1376 * Prevent concurrent cache reaping when contended.
1377 */
1378 if (test_and_set_bit(KMC_BIT_REAPING, &skc->skc_flags))
1379 goto out;
1380
1381 /* Reclaim from the magazine and free all now empty slabs. */
1382 unsigned long irq_flags;
1383 local_irq_save(irq_flags);
1384 spl_kmem_magazine_t *skm = skc->skc_mag[smp_processor_id()];
1385 spl_cache_flush(skc, skm, skm->skm_avail);
1386 local_irq_restore(irq_flags);
1387
1388 spl_slab_reclaim(skc);
1389 clear_bit_unlock(KMC_BIT_REAPING, &skc->skc_flags);
1390 smp_mb__after_atomic();
1391 wake_up_bit(&skc->skc_flags, KMC_BIT_REAPING);
1392 out:
1393 atomic_dec(&skc->skc_ref);
1394 }
1395 EXPORT_SYMBOL(spl_kmem_cache_reap_now);
1396
1397 /*
1398 * This is stubbed out for code consistency with other platforms. There
1399 * is existing logic to prevent concurrent reaping so while this is ugly
1400 * it should do no harm.
1401 */
1402 int
spl_kmem_cache_reap_active(void)1403 spl_kmem_cache_reap_active(void)
1404 {
1405 return (0);
1406 }
1407 EXPORT_SYMBOL(spl_kmem_cache_reap_active);
1408
1409 /*
1410 * Reap all free slabs from all registered caches.
1411 */
1412 void
spl_kmem_reap(void)1413 spl_kmem_reap(void)
1414 {
1415 spl_kmem_cache_t *skc = NULL;
1416
1417 down_read(&spl_kmem_cache_sem);
1418 list_for_each_entry(skc, &spl_kmem_cache_list, skc_list) {
1419 spl_kmem_cache_reap_now(skc);
1420 }
1421 up_read(&spl_kmem_cache_sem);
1422 }
1423 EXPORT_SYMBOL(spl_kmem_reap);
1424
1425 int
spl_kmem_cache_init(void)1426 spl_kmem_cache_init(void)
1427 {
1428 init_rwsem(&spl_kmem_cache_sem);
1429 INIT_LIST_HEAD(&spl_kmem_cache_list);
1430 spl_kmem_cache_taskq = taskq_create("spl_kmem_cache",
1431 spl_kmem_cache_kmem_threads, maxclsyspri,
1432 spl_kmem_cache_kmem_threads * 8, INT_MAX,
1433 TASKQ_PREPOPULATE | TASKQ_DYNAMIC);
1434
1435 if (spl_kmem_cache_taskq == NULL)
1436 return (-ENOMEM);
1437
1438 return (0);
1439 }
1440
1441 void
spl_kmem_cache_fini(void)1442 spl_kmem_cache_fini(void)
1443 {
1444 taskq_destroy(spl_kmem_cache_taskq);
1445 }
1446