1 /*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 1989, 1993
5 * The Regents of the University of California.
6 * Copyright (c) 2005 Robert N. M. Watson
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. Neither the name of the University nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 */
33
34 #include "opt_ktrace.h"
35
36 #define EXTERR_CATEGORY EXTERR_KTRACE
37 #include <sys/systm.h>
38 #include <sys/capsicum.h>
39 #include <sys/exterrvar.h>
40 #include <sys/fcntl.h>
41 #include <sys/kernel.h>
42 #include <sys/kthread.h>
43 #include <sys/ktrace.h>
44 #include <sys/lock.h>
45 #include <sys/mutex.h>
46 #include <sys/malloc.h>
47 #include <sys/mount.h>
48 #include <sys/namei.h>
49 #include <sys/priv.h>
50 #include <sys/proc.h>
51 #include <sys/resourcevar.h>
52 #include <sys/socket.h>
53 #include <sys/stat.h>
54 #include <sys/sx.h>
55 #include <sys/sysctl.h>
56 #include <sys/sysent.h>
57 #include <sys/syslog.h>
58 #include <sys/sysproto.h>
59 #include <sys/unistd.h>
60 #include <sys/vnode.h>
61
62 #include <security/mac/mac_framework.h>
63
64 /*
65 * The ktrace facility allows the tracing of certain key events in user space
66 * processes, such as system calls, signal delivery, context switches, and
67 * user generated events using utrace(2). It works by streaming event
68 * records and data to a vnode associated with the process using the
69 * ktrace(2) system call. In general, records can be written directly from
70 * the context that generates the event. One important exception to this is
71 * during a context switch, where sleeping is not permitted. To handle this
72 * case, trace events are generated using in-kernel ktr_request records, and
73 * then delivered to disk at a convenient moment -- either immediately, the
74 * next traceable event, at system call return, or at process exit.
75 *
76 * When dealing with multiple threads or processes writing to the same event
77 * log, ordering guarantees are weak: specifically, if an event has multiple
78 * records (i.e., system call enter and return), they may be interlaced with
79 * records from another event. Process and thread ID information is provided
80 * in the record, and user applications can de-interlace events if required.
81 */
82
83 static MALLOC_DEFINE(M_KTRACE, "KTRACE", "KTRACE");
84
85 #ifdef KTRACE
86
87 FEATURE(ktrace, "Kernel support for system-call tracing");
88
89 #ifndef KTRACE_REQUEST_POOL
90 #define KTRACE_REQUEST_POOL 100
91 #endif
92
93 struct ktr_request {
94 struct ktr_header ktr_header;
95 void *ktr_buffer;
96 union {
97 struct ktr_proc_ctor ktr_proc_ctor;
98 struct ktr_cap_fail ktr_cap_fail;
99 struct ktr_syscall ktr_syscall;
100 struct ktr_sysret ktr_sysret;
101 struct ktr_genio ktr_genio;
102 struct ktr_psig ktr_psig;
103 struct ktr_csw ktr_csw;
104 struct ktr_fault ktr_fault;
105 struct ktr_faultend ktr_faultend;
106 struct ktr_struct_array ktr_struct_array;
107 struct ktr_exterr ktr_exterr;
108 } ktr_data;
109 STAILQ_ENTRY(ktr_request) ktr_list;
110 };
111
112 static const int data_lengths[] = {
113 [KTR_SYSCALL] = offsetof(struct ktr_syscall, ktr_args),
114 [KTR_SYSRET] = sizeof(struct ktr_sysret),
115 [KTR_NAMEI] = 0,
116 [KTR_GENIO] = sizeof(struct ktr_genio),
117 [KTR_PSIG] = sizeof(struct ktr_psig),
118 [KTR_CSW] = sizeof(struct ktr_csw),
119 [KTR_USER] = 0,
120 [KTR_STRUCT] = 0,
121 [KTR_SYSCTL] = 0,
122 [KTR_PROCCTOR] = sizeof(struct ktr_proc_ctor),
123 [KTR_PROCDTOR] = 0,
124 [KTR_CAPFAIL] = sizeof(struct ktr_cap_fail),
125 [KTR_FAULT] = sizeof(struct ktr_fault),
126 [KTR_FAULTEND] = sizeof(struct ktr_faultend),
127 [KTR_STRUCT_ARRAY] = sizeof(struct ktr_struct_array),
128 [KTR_ARGS] = 0,
129 [KTR_ENVS] = 0,
130 [KTR_EXTERR] = sizeof(struct ktr_exterr),
131 };
132
133 static STAILQ_HEAD(, ktr_request) ktr_free;
134
135 static SYSCTL_NODE(_kern, OID_AUTO, ktrace, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
136 "KTRACE options");
137
138 static u_int ktr_requestpool = KTRACE_REQUEST_POOL;
139 TUNABLE_INT("kern.ktrace.request_pool", &ktr_requestpool);
140
141 u_int ktr_geniosize = PAGE_SIZE;
142 SYSCTL_UINT(_kern_ktrace, OID_AUTO, genio_size, CTLFLAG_RWTUN, &ktr_geniosize,
143 0, "Maximum size of genio event payload");
144
145 /*
146 * Allow to not to send signal to traced process, in which context the
147 * ktr record is written. The limit is applied from the process that
148 * set up ktrace, so killing the traced process is not completely fair.
149 */
150 int ktr_filesize_limit_signal = 0;
151 SYSCTL_INT(_kern_ktrace, OID_AUTO, filesize_limit_signal, CTLFLAG_RWTUN,
152 &ktr_filesize_limit_signal, 0,
153 "Send SIGXFSZ to the traced process when the log size limit is exceeded");
154
155 static int print_message = 1;
156 static struct mtx ktrace_mtx;
157 static struct sx ktrace_sx;
158
159 struct ktr_io_params {
160 struct vnode *vp;
161 struct ucred *cr;
162 off_t lim;
163 u_int refs;
164 };
165
166 static void ktrace_init(void *dummy);
167 static int sysctl_kern_ktrace_request_pool(SYSCTL_HANDLER_ARGS);
168 static u_int ktrace_resize_pool(u_int oldsize, u_int newsize);
169 static struct ktr_request *ktr_getrequest_entered(struct thread *td, int type);
170 static struct ktr_request *ktr_getrequest(int type);
171 static void ktr_submitrequest(struct thread *td, struct ktr_request *req);
172 static struct ktr_io_params *ktr_freeproc(struct proc *p);
173 static void ktr_freerequest(struct ktr_request *req);
174 static void ktr_freerequest_locked(struct ktr_request *req);
175 static void ktr_writerequest(struct thread *td, struct ktr_request *req);
176 static int ktrcanset(struct thread *,struct proc *);
177 static int ktrsetchildren(struct thread *, struct proc *, int, int,
178 struct ktr_io_params *);
179 static int ktrops(struct thread *, struct proc *, int, int,
180 struct ktr_io_params *);
181 static void ktrprocctor_entered(struct thread *, struct proc *);
182
183 /*
184 * ktrace itself generates events, such as context switches, which we do not
185 * wish to trace. Maintain a flag, TDP_INKTRACE, on each thread to determine
186 * whether or not it is in a region where tracing of events should be
187 * suppressed.
188 */
189 static void
ktrace_enter(struct thread * td)190 ktrace_enter(struct thread *td)
191 {
192
193 KASSERT(!(td->td_pflags & TDP_INKTRACE), ("ktrace_enter: flag set"));
194 td->td_pflags |= TDP_INKTRACE;
195 }
196
197 static void
ktrace_exit(struct thread * td)198 ktrace_exit(struct thread *td)
199 {
200
201 KASSERT(td->td_pflags & TDP_INKTRACE, ("ktrace_exit: flag not set"));
202 td->td_pflags &= ~TDP_INKTRACE;
203 }
204
205 static void
ktrace_assert(struct thread * td)206 ktrace_assert(struct thread *td)
207 {
208
209 KASSERT(td->td_pflags & TDP_INKTRACE, ("ktrace_assert: flag not set"));
210 }
211
212 static void
ast_ktrace(struct thread * td,int tda __unused)213 ast_ktrace(struct thread *td, int tda __unused)
214 {
215 KTRUSERRET(td);
216 }
217
218 static void
ktrace_init(void * dummy)219 ktrace_init(void *dummy)
220 {
221 struct ktr_request *req;
222 int i;
223
224 mtx_init(&ktrace_mtx, "ktrace", NULL, MTX_DEF | MTX_QUIET);
225 sx_init(&ktrace_sx, "ktrace_sx");
226 STAILQ_INIT(&ktr_free);
227 for (i = 0; i < ktr_requestpool; i++) {
228 req = malloc(sizeof(struct ktr_request), M_KTRACE, M_WAITOK |
229 M_ZERO);
230 STAILQ_INSERT_HEAD(&ktr_free, req, ktr_list);
231 }
232 ast_register(TDA_KTRACE, ASTR_ASTF_REQUIRED, 0, ast_ktrace);
233 }
234 SYSINIT(ktrace_init, SI_SUB_KTRACE, SI_ORDER_ANY, ktrace_init, NULL);
235
236 static int
sysctl_kern_ktrace_request_pool(SYSCTL_HANDLER_ARGS)237 sysctl_kern_ktrace_request_pool(SYSCTL_HANDLER_ARGS)
238 {
239 struct thread *td;
240 u_int newsize, oldsize, wantsize;
241 int error;
242
243 /* Handle easy read-only case first to avoid warnings from GCC. */
244 if (!req->newptr) {
245 oldsize = ktr_requestpool;
246 return (SYSCTL_OUT(req, &oldsize, sizeof(u_int)));
247 }
248
249 error = SYSCTL_IN(req, &wantsize, sizeof(u_int));
250 if (error)
251 return (error);
252 td = curthread;
253 ktrace_enter(td);
254 oldsize = ktr_requestpool;
255 newsize = ktrace_resize_pool(oldsize, wantsize);
256 ktrace_exit(td);
257 error = SYSCTL_OUT(req, &oldsize, sizeof(u_int));
258 if (error)
259 return (error);
260 if (wantsize > oldsize && newsize < wantsize)
261 return (ENOSPC);
262 return (0);
263 }
264 SYSCTL_PROC(_kern_ktrace, OID_AUTO, request_pool,
265 CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &ktr_requestpool, 0,
266 sysctl_kern_ktrace_request_pool, "IU",
267 "Pool buffer size for ktrace(1)");
268
269 static u_int
ktrace_resize_pool(u_int oldsize,u_int newsize)270 ktrace_resize_pool(u_int oldsize, u_int newsize)
271 {
272 STAILQ_HEAD(, ktr_request) ktr_new;
273 struct ktr_request *req;
274 int bound;
275
276 print_message = 1;
277 bound = newsize - oldsize;
278 if (bound == 0)
279 return (ktr_requestpool);
280 if (bound < 0) {
281 mtx_lock(&ktrace_mtx);
282 /* Shrink pool down to newsize if possible. */
283 while (bound++ < 0) {
284 req = STAILQ_FIRST(&ktr_free);
285 if (req == NULL)
286 break;
287 STAILQ_REMOVE_HEAD(&ktr_free, ktr_list);
288 ktr_requestpool--;
289 free(req, M_KTRACE);
290 }
291 } else {
292 /* Grow pool up to newsize. */
293 STAILQ_INIT(&ktr_new);
294 while (bound-- > 0) {
295 req = malloc(sizeof(struct ktr_request), M_KTRACE,
296 M_WAITOK | M_ZERO);
297 STAILQ_INSERT_HEAD(&ktr_new, req, ktr_list);
298 }
299 mtx_lock(&ktrace_mtx);
300 STAILQ_CONCAT(&ktr_free, &ktr_new);
301 ktr_requestpool += (newsize - oldsize);
302 }
303 mtx_unlock(&ktrace_mtx);
304 return (ktr_requestpool);
305 }
306
307 /* ktr_getrequest() assumes that ktr_comm[] is the same size as td_name[]. */
308 CTASSERT(sizeof(((struct ktr_header *)NULL)->ktr_comm) ==
309 (sizeof((struct thread *)NULL)->td_name));
310
311 static struct ktr_request *
ktr_getrequest_entered(struct thread * td,int type)312 ktr_getrequest_entered(struct thread *td, int type)
313 {
314 struct ktr_request *req;
315 struct proc *p = td->td_proc;
316 int pm;
317
318 mtx_lock(&ktrace_mtx);
319 if (!KTRCHECK(td, type)) {
320 mtx_unlock(&ktrace_mtx);
321 return (NULL);
322 }
323 req = STAILQ_FIRST(&ktr_free);
324 if (req != NULL) {
325 STAILQ_REMOVE_HEAD(&ktr_free, ktr_list);
326 req->ktr_header.ktr_type = type;
327 if (p->p_traceflag & KTRFAC_DROP) {
328 req->ktr_header.ktr_type |= KTR_DROP;
329 p->p_traceflag &= ~KTRFAC_DROP;
330 }
331 mtx_unlock(&ktrace_mtx);
332 nanotime(&req->ktr_header.ktr_time);
333 req->ktr_header.ktr_type |= KTR_VERSIONED;
334 req->ktr_header.ktr_pid = p->p_pid;
335 req->ktr_header.ktr_tid = td->td_tid;
336 req->ktr_header.ktr_cpu = PCPU_GET(cpuid);
337 req->ktr_header.ktr_version = KTR_VERSION1;
338 bcopy(td->td_name, req->ktr_header.ktr_comm,
339 sizeof(req->ktr_header.ktr_comm));
340 req->ktr_buffer = NULL;
341 req->ktr_header.ktr_len = 0;
342 } else {
343 p->p_traceflag |= KTRFAC_DROP;
344 pm = print_message;
345 print_message = 0;
346 mtx_unlock(&ktrace_mtx);
347 if (pm)
348 printf("Out of ktrace request objects.\n");
349 }
350 return (req);
351 }
352
353 static struct ktr_request *
ktr_getrequest(int type)354 ktr_getrequest(int type)
355 {
356 struct thread *td = curthread;
357 struct ktr_request *req;
358
359 ktrace_enter(td);
360 req = ktr_getrequest_entered(td, type);
361 if (req == NULL)
362 ktrace_exit(td);
363
364 return (req);
365 }
366
367 /*
368 * Some trace generation environments don't permit direct access to VFS,
369 * such as during a context switch where sleeping is not allowed. Under these
370 * circumstances, queue a request to the thread to be written asynchronously
371 * later.
372 */
373 static void
ktr_enqueuerequest(struct thread * td,struct ktr_request * req)374 ktr_enqueuerequest(struct thread *td, struct ktr_request *req)
375 {
376 bool sched_ast;
377
378 mtx_lock(&ktrace_mtx);
379 sched_ast = td->td_proc->p_ktrioparms != NULL;
380 if (sched_ast)
381 STAILQ_INSERT_TAIL(&td->td_proc->p_ktr, req, ktr_list);
382 else
383 ktr_freerequest_locked(req);
384 mtx_unlock(&ktrace_mtx);
385 if (sched_ast)
386 ast_sched(td, TDA_KTRACE);
387 }
388
389 /*
390 * Drain any pending ktrace records from the per-thread queue to disk. This
391 * is used both internally before committing other records, and also on
392 * system call return. We drain all the ones we can find at the time when
393 * drain is requested, but don't keep draining after that as those events
394 * may be approximately "after" the current event.
395 */
396 static void
ktr_drain(struct thread * td)397 ktr_drain(struct thread *td)
398 {
399 struct ktr_request *queued_req;
400 STAILQ_HEAD(, ktr_request) local_queue;
401
402 ktrace_assert(td);
403 sx_assert(&ktrace_sx, SX_XLOCKED);
404
405 STAILQ_INIT(&local_queue);
406
407 if (!STAILQ_EMPTY_ATOMIC(&td->td_proc->p_ktr)) {
408 mtx_lock(&ktrace_mtx);
409 STAILQ_CONCAT(&local_queue, &td->td_proc->p_ktr);
410 mtx_unlock(&ktrace_mtx);
411
412 while ((queued_req = STAILQ_FIRST(&local_queue))) {
413 STAILQ_REMOVE_HEAD(&local_queue, ktr_list);
414 ktr_writerequest(td, queued_req);
415 ktr_freerequest(queued_req);
416 }
417 }
418 }
419
420 /*
421 * Submit a trace record for immediate commit to disk -- to be used only
422 * where entering VFS is OK. First drain any pending records that may have
423 * been cached in the thread.
424 */
425 static void
ktr_submitrequest(struct thread * td,struct ktr_request * req)426 ktr_submitrequest(struct thread *td, struct ktr_request *req)
427 {
428
429 ktrace_assert(td);
430
431 sx_xlock(&ktrace_sx);
432 ktr_drain(td);
433 ktr_writerequest(td, req);
434 ktr_freerequest(req);
435 sx_xunlock(&ktrace_sx);
436 ktrace_exit(td);
437 }
438
439 static void
ktr_freerequest(struct ktr_request * req)440 ktr_freerequest(struct ktr_request *req)
441 {
442
443 mtx_lock(&ktrace_mtx);
444 ktr_freerequest_locked(req);
445 mtx_unlock(&ktrace_mtx);
446 }
447
448 static void
ktr_freerequest_locked(struct ktr_request * req)449 ktr_freerequest_locked(struct ktr_request *req)
450 {
451
452 mtx_assert(&ktrace_mtx, MA_OWNED);
453 if (req->ktr_buffer != NULL)
454 free(req->ktr_buffer, M_KTRACE);
455 STAILQ_INSERT_HEAD(&ktr_free, req, ktr_list);
456 }
457
458 static void
ktr_io_params_ref(struct ktr_io_params * kiop)459 ktr_io_params_ref(struct ktr_io_params *kiop)
460 {
461 mtx_assert(&ktrace_mtx, MA_OWNED);
462 kiop->refs++;
463 }
464
465 static struct ktr_io_params *
ktr_io_params_rele(struct ktr_io_params * kiop)466 ktr_io_params_rele(struct ktr_io_params *kiop)
467 {
468 mtx_assert(&ktrace_mtx, MA_OWNED);
469 if (kiop == NULL)
470 return (NULL);
471 KASSERT(kiop->refs > 0, ("kiop ref == 0 %p", kiop));
472 return (--(kiop->refs) == 0 ? kiop : NULL);
473 }
474
475 void
ktr_io_params_free(struct ktr_io_params * kiop)476 ktr_io_params_free(struct ktr_io_params *kiop)
477 {
478 if (kiop == NULL)
479 return;
480
481 MPASS(kiop->refs == 0);
482 vn_close(kiop->vp, FWRITE, kiop->cr, curthread);
483 crfree(kiop->cr);
484 free(kiop, M_KTRACE);
485 }
486
487 static struct ktr_io_params *
ktr_io_params_alloc(struct thread * td,struct vnode * vp)488 ktr_io_params_alloc(struct thread *td, struct vnode *vp)
489 {
490 struct ktr_io_params *res;
491
492 res = malloc(sizeof(struct ktr_io_params), M_KTRACE, M_WAITOK);
493 res->vp = vp;
494 res->cr = crhold(td->td_ucred);
495 res->lim = lim_cur(td, RLIMIT_FSIZE);
496 res->refs = 1;
497 return (res);
498 }
499
500 /*
501 * Disable tracing for a process and release all associated resources.
502 * The caller is responsible for releasing a reference on the returned
503 * vnode and credentials.
504 */
505 static struct ktr_io_params *
ktr_freeproc(struct proc * p)506 ktr_freeproc(struct proc *p)
507 {
508 struct ktr_io_params *kiop;
509 struct ktr_request *req;
510
511 PROC_LOCK_ASSERT(p, MA_OWNED);
512 mtx_assert(&ktrace_mtx, MA_OWNED);
513 kiop = ktr_io_params_rele(p->p_ktrioparms);
514 p->p_ktrioparms = NULL;
515 p->p_traceflag = 0;
516 while ((req = STAILQ_FIRST(&p->p_ktr)) != NULL) {
517 STAILQ_REMOVE_HEAD(&p->p_ktr, ktr_list);
518 ktr_freerequest_locked(req);
519 }
520 return (kiop);
521 }
522
523 struct vnode *
ktr_get_tracevp(struct proc * p,bool ref)524 ktr_get_tracevp(struct proc *p, bool ref)
525 {
526 struct vnode *vp;
527
528 PROC_LOCK_ASSERT(p, MA_OWNED);
529
530 if (p->p_ktrioparms != NULL) {
531 vp = p->p_ktrioparms->vp;
532 if (ref)
533 vrefact(vp);
534 } else {
535 vp = NULL;
536 }
537 return (vp);
538 }
539
540 void
ktrsyscall(int code,int narg,syscallarg_t args[])541 ktrsyscall(int code, int narg, syscallarg_t args[])
542 {
543 struct ktr_request *req;
544 struct ktr_syscall *ktp;
545 size_t buflen;
546 char *buf = NULL;
547
548 if (__predict_false(curthread->td_pflags & TDP_INKTRACE))
549 return;
550
551 buflen = sizeof(register_t) * narg;
552 if (buflen > 0) {
553 buf = malloc(buflen, M_KTRACE, M_WAITOK);
554 bcopy(args, buf, buflen);
555 }
556 req = ktr_getrequest(KTR_SYSCALL);
557 if (req == NULL) {
558 if (buf != NULL)
559 free(buf, M_KTRACE);
560 return;
561 }
562 ktp = &req->ktr_data.ktr_syscall;
563 ktp->ktr_code = code;
564 ktp->ktr_narg = narg;
565 if (buflen > 0) {
566 req->ktr_header.ktr_len = buflen;
567 req->ktr_buffer = buf;
568 }
569 ktr_submitrequest(curthread, req);
570 }
571
572 void
ktrdata(int type,const void * data,size_t len)573 ktrdata(int type, const void *data, size_t len)
574 {
575 struct ktr_request *req;
576 void *buf;
577
578 if ((req = ktr_getrequest(type)) == NULL)
579 return;
580 buf = malloc(len, M_KTRACE, M_WAITOK);
581 bcopy(data, buf, len);
582 req->ktr_header.ktr_len = len;
583 req->ktr_buffer = buf;
584 ktr_submitrequest(curthread, req);
585 }
586
587 void
ktrsysret(int code,int error,register_t retval)588 ktrsysret(int code, int error, register_t retval)
589 {
590 struct ktr_request *req;
591 struct ktr_sysret *ktp;
592
593 if (__predict_false(curthread->td_pflags & TDP_INKTRACE))
594 return;
595
596 req = ktr_getrequest(KTR_SYSRET);
597 if (req == NULL)
598 return;
599 ktp = &req->ktr_data.ktr_sysret;
600 ktp->ktr_code = code;
601 ktp->ktr_error = error;
602 ktp->ktr_retval = ((error == 0) ? retval: 0); /* what about val2 ? */
603 ktr_submitrequest(curthread, req);
604 }
605
606 /*
607 * When a setuid process execs, disable tracing.
608 *
609 * XXX: We toss any pending asynchronous records.
610 */
611 struct ktr_io_params *
ktrprocexec(struct proc * p)612 ktrprocexec(struct proc *p)
613 {
614 struct ktr_io_params *kiop;
615
616 PROC_LOCK_ASSERT(p, MA_OWNED);
617
618 kiop = p->p_ktrioparms;
619 if (kiop == NULL || priv_check_cred(kiop->cr, PRIV_DEBUG_DIFFCRED) == 0)
620 return (NULL);
621
622 mtx_lock(&ktrace_mtx);
623 kiop = ktr_freeproc(p);
624 mtx_unlock(&ktrace_mtx);
625 return (kiop);
626 }
627
628 /*
629 * When a process exits, drain per-process asynchronous trace records
630 * and disable tracing.
631 */
632 void
ktrprocexit(struct thread * td)633 ktrprocexit(struct thread *td)
634 {
635 struct ktr_request *req;
636 struct proc *p;
637 struct ktr_io_params *kiop;
638
639 p = td->td_proc;
640 if (p->p_traceflag == 0)
641 return;
642
643 ktrace_enter(td);
644 req = ktr_getrequest_entered(td, KTR_PROCDTOR);
645 if (req != NULL)
646 ktr_enqueuerequest(td, req);
647 sx_xlock(&ktrace_sx);
648 ktr_drain(td);
649 sx_xunlock(&ktrace_sx);
650 PROC_LOCK(p);
651 mtx_lock(&ktrace_mtx);
652 kiop = ktr_freeproc(p);
653 mtx_unlock(&ktrace_mtx);
654 PROC_UNLOCK(p);
655 ktr_io_params_free(kiop);
656 ktrace_exit(td);
657 }
658
659 static void
ktrprocctor_entered(struct thread * td,struct proc * p)660 ktrprocctor_entered(struct thread *td, struct proc *p)
661 {
662 struct ktr_proc_ctor *ktp;
663 struct ktr_request *req;
664 struct thread *td2;
665
666 ktrace_assert(td);
667 td2 = FIRST_THREAD_IN_PROC(p);
668 req = ktr_getrequest_entered(td2, KTR_PROCCTOR);
669 if (req == NULL)
670 return;
671 ktp = &req->ktr_data.ktr_proc_ctor;
672 ktp->sv_flags = p->p_sysent->sv_flags;
673 ktr_enqueuerequest(td2, req);
674 }
675
676 void
ktrprocctor(struct proc * p)677 ktrprocctor(struct proc *p)
678 {
679 struct thread *td = curthread;
680
681 if ((p->p_traceflag & KTRFAC_MASK) == 0)
682 return;
683
684 ktrace_enter(td);
685 ktrprocctor_entered(td, p);
686 ktrace_exit(td);
687 }
688
689 /*
690 * When a process forks, enable tracing in the new process if needed.
691 */
692 void
ktrprocfork(struct proc * p1,struct proc * p2)693 ktrprocfork(struct proc *p1, struct proc *p2)
694 {
695
696 MPASS(p2->p_ktrioparms == NULL);
697 MPASS(p2->p_traceflag == 0);
698
699 if (p1->p_traceflag == 0)
700 return;
701
702 PROC_LOCK(p1);
703 mtx_lock(&ktrace_mtx);
704 if (p1->p_traceflag & KTRFAC_INHERIT) {
705 p2->p_traceflag = p1->p_traceflag;
706 if ((p2->p_ktrioparms = p1->p_ktrioparms) != NULL)
707 p1->p_ktrioparms->refs++;
708 }
709 mtx_unlock(&ktrace_mtx);
710 PROC_UNLOCK(p1);
711
712 ktrprocctor(p2);
713 }
714
715 /*
716 * When a thread returns, drain any asynchronous records generated by the
717 * system call.
718 */
719 void
ktruserret(struct thread * td)720 ktruserret(struct thread *td)
721 {
722
723 ktrace_enter(td);
724 sx_xlock(&ktrace_sx);
725 ktr_drain(td);
726 sx_xunlock(&ktrace_sx);
727 ktrace_exit(td);
728 }
729
730 void
ktrnamei(const char * path)731 ktrnamei(const char *path)
732 {
733 struct ktr_request *req;
734 int namelen;
735 char *buf = NULL;
736
737 namelen = strlen(path);
738 if (namelen > 0) {
739 buf = malloc(namelen, M_KTRACE, M_WAITOK);
740 bcopy(path, buf, namelen);
741 }
742 req = ktr_getrequest(KTR_NAMEI);
743 if (req == NULL) {
744 if (buf != NULL)
745 free(buf, M_KTRACE);
746 return;
747 }
748 if (namelen > 0) {
749 req->ktr_header.ktr_len = namelen;
750 req->ktr_buffer = buf;
751 }
752 ktr_submitrequest(curthread, req);
753 }
754
755 void
ktrsysctl(int * name,u_int namelen)756 ktrsysctl(int *name, u_int namelen)
757 {
758 struct ktr_request *req;
759 u_int mib[CTL_MAXNAME + 2];
760 char *mibname;
761 size_t mibnamelen;
762 int error;
763
764 /* Lookup name of mib. */
765 KASSERT(namelen <= CTL_MAXNAME, ("sysctl MIB too long"));
766 mib[0] = 0;
767 mib[1] = 1;
768 bcopy(name, mib + 2, namelen * sizeof(*name));
769 mibnamelen = 128;
770 mibname = malloc(mibnamelen, M_KTRACE, M_WAITOK);
771 error = kernel_sysctl(curthread, mib, namelen + 2, mibname, &mibnamelen,
772 NULL, 0, &mibnamelen, 0);
773 if (error) {
774 free(mibname, M_KTRACE);
775 return;
776 }
777 req = ktr_getrequest(KTR_SYSCTL);
778 if (req == NULL) {
779 free(mibname, M_KTRACE);
780 return;
781 }
782 req->ktr_header.ktr_len = mibnamelen;
783 req->ktr_buffer = mibname;
784 ktr_submitrequest(curthread, req);
785 }
786
787 void
ktrgenio(int fd,enum uio_rw rw,struct uio * uio,int error)788 ktrgenio(int fd, enum uio_rw rw, struct uio *uio, int error)
789 {
790 struct ktr_request *req;
791 struct ktr_genio *ktg;
792 int datalen;
793 char *buf;
794
795 if (error != 0 && (rw == UIO_READ || error == EFAULT)) {
796 freeuio(uio);
797 return;
798 }
799 uio->uio_offset = 0;
800 uio->uio_rw = UIO_WRITE;
801 datalen = MIN(uio->uio_resid, ktr_geniosize);
802 buf = malloc(datalen, M_KTRACE, M_WAITOK);
803 error = uiomove(buf, datalen, uio);
804 freeuio(uio);
805 if (error) {
806 free(buf, M_KTRACE);
807 return;
808 }
809 req = ktr_getrequest(KTR_GENIO);
810 if (req == NULL) {
811 free(buf, M_KTRACE);
812 return;
813 }
814 ktg = &req->ktr_data.ktr_genio;
815 ktg->ktr_fd = fd;
816 ktg->ktr_rw = rw;
817 req->ktr_header.ktr_len = datalen;
818 req->ktr_buffer = buf;
819 ktr_submitrequest(curthread, req);
820 }
821
822 void
ktrpsig(int sig,sig_t action,sigset_t * mask,int code)823 ktrpsig(int sig, sig_t action, sigset_t *mask, int code)
824 {
825 struct thread *td = curthread;
826 struct ktr_request *req;
827 struct ktr_psig *kp;
828
829 req = ktr_getrequest(KTR_PSIG);
830 if (req == NULL)
831 return;
832 kp = &req->ktr_data.ktr_psig;
833 kp->signo = (char)sig;
834 kp->action = action;
835 kp->mask = *mask;
836 kp->code = code;
837 ktr_enqueuerequest(td, req);
838 ktrace_exit(td);
839 }
840
841 static void
ktrcsw_impl(int out,int user,const char * wmesg,const struct timespec * tv)842 ktrcsw_impl(int out, int user, const char *wmesg, const struct timespec *tv)
843 {
844 struct thread *td = curthread;
845 struct ktr_request *req;
846 struct ktr_csw *kc;
847
848 if (__predict_false(curthread->td_pflags & TDP_INKTRACE))
849 return;
850
851 req = ktr_getrequest(KTR_CSW);
852 if (req == NULL)
853 return;
854 kc = &req->ktr_data.ktr_csw;
855 kc->out = out;
856 kc->user = user;
857 if (tv != NULL)
858 req->ktr_header.ktr_time = *tv;
859 if (wmesg != NULL)
860 strlcpy(kc->wmesg, wmesg, sizeof(kc->wmesg));
861 else
862 bzero(kc->wmesg, sizeof(kc->wmesg));
863 ktr_enqueuerequest(td, req);
864 ktrace_exit(td);
865 }
866
867 void
ktrcsw(int out,int user,const char * wmesg)868 ktrcsw(int out, int user, const char *wmesg)
869 {
870 ktrcsw_impl(out, user, wmesg, NULL);
871 }
872
873 void
ktrcsw_out(const struct timespec * tv,const char * wmesg)874 ktrcsw_out(const struct timespec *tv, const char *wmesg)
875 {
876 ktrcsw_impl(1, 0, wmesg, tv);
877 }
878
879 void
ktrstruct(const char * name,const void * data,size_t datalen)880 ktrstruct(const char *name, const void *data, size_t datalen)
881 {
882 struct ktr_request *req;
883 char *buf;
884 size_t buflen, namelen;
885
886 if (__predict_false(curthread->td_pflags & TDP_INKTRACE))
887 return;
888
889 if (data == NULL)
890 datalen = 0;
891 namelen = strlen(name) + 1;
892 buflen = namelen + datalen;
893 buf = malloc(buflen, M_KTRACE, M_WAITOK);
894 strcpy(buf, name);
895 bcopy(data, buf + namelen, datalen);
896 if ((req = ktr_getrequest(KTR_STRUCT)) == NULL) {
897 free(buf, M_KTRACE);
898 return;
899 }
900 req->ktr_buffer = buf;
901 req->ktr_header.ktr_len = buflen;
902 ktr_submitrequest(curthread, req);
903 }
904
905 void
ktrstruct_error(const char * name,const void * data,size_t datalen,int error)906 ktrstruct_error(const char *name, const void *data, size_t datalen, int error)
907 {
908
909 if (error == 0)
910 ktrstruct(name, data, datalen);
911 }
912
913 void
ktrstructarray(const char * name,enum uio_seg seg,const void * data,int num_items,size_t struct_size)914 ktrstructarray(const char *name, enum uio_seg seg, const void *data,
915 int num_items, size_t struct_size)
916 {
917 struct ktr_request *req;
918 struct ktr_struct_array *ksa;
919 char *buf;
920 size_t buflen, datalen, namelen;
921 int max_items;
922
923 if (__predict_false(curthread->td_pflags & TDP_INKTRACE))
924 return;
925 if (num_items < 0)
926 return;
927
928 /* Trim array length to genio size. */
929 max_items = ktr_geniosize / struct_size;
930 if (num_items > max_items) {
931 if (max_items == 0)
932 num_items = 1;
933 else
934 num_items = max_items;
935 }
936 datalen = num_items * struct_size;
937
938 if (data == NULL)
939 datalen = 0;
940
941 namelen = strlen(name) + 1;
942 buflen = namelen + datalen;
943 buf = malloc(buflen, M_KTRACE, M_WAITOK);
944 strcpy(buf, name);
945 if (seg == UIO_SYSSPACE)
946 bcopy(data, buf + namelen, datalen);
947 else {
948 if (copyin(data, buf + namelen, datalen) != 0) {
949 free(buf, M_KTRACE);
950 return;
951 }
952 }
953 if ((req = ktr_getrequest(KTR_STRUCT_ARRAY)) == NULL) {
954 free(buf, M_KTRACE);
955 return;
956 }
957 ksa = &req->ktr_data.ktr_struct_array;
958 ksa->struct_size = struct_size;
959 req->ktr_buffer = buf;
960 req->ktr_header.ktr_len = buflen;
961 ktr_submitrequest(curthread, req);
962 }
963
964 void
ktrcapfail(enum ktr_cap_violation type,const void * data)965 ktrcapfail(enum ktr_cap_violation type, const void *data)
966 {
967 struct thread *td = curthread;
968 struct ktr_request *req;
969 struct ktr_cap_fail *kcf;
970 union ktr_cap_data *kcd;
971
972 if (__predict_false(td->td_pflags & TDP_INKTRACE))
973 return;
974 if (type != CAPFAIL_SYSCALL &&
975 (td->td_sa.callp->sy_flags & SYF_CAPENABLED) == 0)
976 return;
977
978 req = ktr_getrequest(KTR_CAPFAIL);
979 if (req == NULL)
980 return;
981 kcf = &req->ktr_data.ktr_cap_fail;
982 kcf->cap_type = type;
983 kcf->cap_code = td->td_sa.code;
984 kcf->cap_svflags = td->td_proc->p_sysent->sv_flags;
985 if (data != NULL) {
986 kcd = &kcf->cap_data;
987 switch (type) {
988 case CAPFAIL_NOTCAPABLE:
989 case CAPFAIL_INCREASE:
990 kcd->cap_needed = *(const cap_rights_t *)data;
991 kcd->cap_held = *((const cap_rights_t *)data + 1);
992 break;
993 case CAPFAIL_SYSCALL:
994 case CAPFAIL_SIGNAL:
995 case CAPFAIL_PROTO:
996 kcd->cap_int = *(const int *)data;
997 break;
998 case CAPFAIL_SOCKADDR: {
999 size_t len;
1000
1001 len = MIN(((const struct sockaddr *)data)->sa_len,
1002 sizeof(kcd->cap_sockaddr));
1003 memset(&kcd->cap_sockaddr, 0,
1004 sizeof(kcd->cap_sockaddr));
1005 memcpy(&kcd->cap_sockaddr, data, len);
1006 break;
1007 }
1008 case CAPFAIL_NAMEI:
1009 strlcpy(kcd->cap_path, data, MAXPATHLEN);
1010 break;
1011 case CAPFAIL_CPUSET:
1012 default:
1013 break;
1014 }
1015 }
1016 ktr_enqueuerequest(td, req);
1017 ktrace_exit(td);
1018 }
1019
1020 void
ktrfault(vm_offset_t vaddr,int type)1021 ktrfault(vm_offset_t vaddr, int type)
1022 {
1023 struct thread *td = curthread;
1024 struct ktr_request *req;
1025 struct ktr_fault *kf;
1026
1027 if (__predict_false(curthread->td_pflags & TDP_INKTRACE))
1028 return;
1029
1030 req = ktr_getrequest(KTR_FAULT);
1031 if (req == NULL)
1032 return;
1033 kf = &req->ktr_data.ktr_fault;
1034 kf->vaddr = vaddr;
1035 kf->type = type;
1036 ktr_enqueuerequest(td, req);
1037 ktrace_exit(td);
1038 }
1039
1040 void
ktrfaultend(int result)1041 ktrfaultend(int result)
1042 {
1043 struct thread *td = curthread;
1044 struct ktr_request *req;
1045 struct ktr_faultend *kf;
1046
1047 if (__predict_false(curthread->td_pflags & TDP_INKTRACE))
1048 return;
1049
1050 req = ktr_getrequest(KTR_FAULTEND);
1051 if (req == NULL)
1052 return;
1053 kf = &req->ktr_data.ktr_faultend;
1054 kf->result = result;
1055 ktr_enqueuerequest(td, req);
1056 ktrace_exit(td);
1057 }
1058
1059 void
ktrexterr(struct thread * td)1060 ktrexterr(struct thread *td)
1061 {
1062 struct ktr_request *req;
1063 struct ktr_exterr *ktre;
1064
1065 if (!KTRPOINT(td, KTR_EXTERR))
1066 return;
1067
1068 req = ktr_getrequest(KTR_EXTERR);
1069 if (req == NULL)
1070 return;
1071 ktre = &req->ktr_data.ktr_exterr;
1072 if (exterr_to_ue(td, &ktre->ue) == 0)
1073 ktr_enqueuerequest(td, req);
1074 else
1075 ktr_freerequest(req);
1076 ktrace_exit(td);
1077 }
1078 #endif /* KTRACE */
1079
1080 #ifndef KTRACE
1081 void
ktrexterr(struct thread * td __unused)1082 ktrexterr(struct thread *td __unused)
1083 {
1084 }
1085 #endif
1086
1087 /* Interface and common routines */
1088
1089 #ifndef _SYS_SYSPROTO_H_
1090 struct ktrace_args {
1091 char *fname;
1092 int ops;
1093 int facs;
1094 int pid;
1095 };
1096 #endif
1097 /* ARGSUSED */
1098 int
sys_ktrace(struct thread * td,struct ktrace_args * uap)1099 sys_ktrace(struct thread *td, struct ktrace_args *uap)
1100 {
1101 #ifdef KTRACE
1102 struct vnode *vp = NULL;
1103 struct proc *p;
1104 struct pgrp *pg;
1105 int facs = uap->facs & ~KTRFAC_ROOT;
1106 int ops = KTROP(uap->ops);
1107 int descend = uap->ops & KTRFLAG_DESCEND;
1108 int ret = 0;
1109 int flags, error = 0;
1110 struct nameidata nd;
1111 struct ktr_io_params *kiop, *old_kiop;
1112
1113 /*
1114 * Need something to (un)trace.
1115 */
1116 if (ops != KTROP_CLEARFILE && facs == 0)
1117 return (EINVAL);
1118
1119 kiop = NULL;
1120 if (ops != KTROP_CLEAR) {
1121 /*
1122 * an operation which requires a file argument.
1123 */
1124 NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_USERSPACE, uap->fname);
1125 flags = FREAD | FWRITE | O_NOFOLLOW;
1126 error = vn_open(&nd, &flags, 0, NULL);
1127 if (error)
1128 return (error);
1129 NDFREE_PNBUF(&nd);
1130 vp = nd.ni_vp;
1131 VOP_UNLOCK(vp);
1132 if (vp->v_type != VREG) {
1133 (void)vn_close(vp, FREAD|FWRITE, td->td_ucred, td);
1134 return (EACCES);
1135 }
1136 kiop = ktr_io_params_alloc(td, vp);
1137 }
1138
1139 /*
1140 * Clear all uses of the tracefile.
1141 */
1142 ktrace_enter(td);
1143 if (ops == KTROP_CLEARFILE) {
1144 restart:
1145 sx_slock(&allproc_lock);
1146 FOREACH_PROC_IN_SYSTEM(p) {
1147 old_kiop = NULL;
1148 PROC_LOCK(p);
1149 if (p->p_ktrioparms != NULL &&
1150 p->p_ktrioparms->vp == vp) {
1151 if (ktrcanset(td, p)) {
1152 mtx_lock(&ktrace_mtx);
1153 old_kiop = ktr_freeproc(p);
1154 mtx_unlock(&ktrace_mtx);
1155 } else
1156 error = EPERM;
1157 }
1158 PROC_UNLOCK(p);
1159 if (old_kiop != NULL) {
1160 sx_sunlock(&allproc_lock);
1161 ktr_io_params_free(old_kiop);
1162 goto restart;
1163 }
1164 }
1165 sx_sunlock(&allproc_lock);
1166 goto done;
1167 }
1168 /*
1169 * do it
1170 */
1171 sx_slock(&proctree_lock);
1172 if (uap->pid < 0) {
1173 /*
1174 * by process group
1175 */
1176 pg = pgfind(-uap->pid);
1177 if (pg == NULL) {
1178 sx_sunlock(&proctree_lock);
1179 error = ESRCH;
1180 goto done;
1181 }
1182
1183 /*
1184 * ktrops() may call vrele(). Lock pg_members
1185 * by the proctree_lock rather than pg_mtx.
1186 */
1187 PGRP_UNLOCK(pg);
1188 if (LIST_EMPTY(&pg->pg_members)) {
1189 sx_sunlock(&proctree_lock);
1190 error = ESRCH;
1191 goto done;
1192 }
1193 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
1194 PROC_LOCK(p);
1195 if (descend)
1196 ret |= ktrsetchildren(td, p, ops, facs, kiop);
1197 else
1198 ret |= ktrops(td, p, ops, facs, kiop);
1199 }
1200 } else {
1201 /*
1202 * by pid
1203 */
1204 p = pfind(uap->pid);
1205 if (p == NULL) {
1206 error = ESRCH;
1207 sx_sunlock(&proctree_lock);
1208 goto done;
1209 }
1210 if (descend)
1211 ret |= ktrsetchildren(td, p, ops, facs, kiop);
1212 else
1213 ret |= ktrops(td, p, ops, facs, kiop);
1214 }
1215 sx_sunlock(&proctree_lock);
1216 if (!ret)
1217 error = EPERM;
1218 done:
1219 if (kiop != NULL) {
1220 mtx_lock(&ktrace_mtx);
1221 kiop = ktr_io_params_rele(kiop);
1222 mtx_unlock(&ktrace_mtx);
1223 ktr_io_params_free(kiop);
1224 }
1225 ktrace_exit(td);
1226 return (error);
1227 #else /* !KTRACE */
1228 return (ENOSYS);
1229 #endif /* KTRACE */
1230 }
1231
1232 /* ARGSUSED */
1233 int
sys_utrace(struct thread * td,struct utrace_args * uap)1234 sys_utrace(struct thread *td, struct utrace_args *uap)
1235 {
1236
1237 #ifdef KTRACE
1238 struct ktr_request *req;
1239 void *cp;
1240 int error;
1241
1242 if (!KTRPOINT(td, KTR_USER))
1243 return (0);
1244 if (uap->len > KTR_USER_MAXLEN)
1245 return (EINVAL);
1246 cp = malloc(uap->len, M_KTRACE, M_WAITOK);
1247 error = copyin(uap->addr, cp, uap->len);
1248 if (error) {
1249 free(cp, M_KTRACE);
1250 return (error);
1251 }
1252 req = ktr_getrequest(KTR_USER);
1253 if (req == NULL) {
1254 free(cp, M_KTRACE);
1255 return (ENOMEM);
1256 }
1257 req->ktr_buffer = cp;
1258 req->ktr_header.ktr_len = uap->len;
1259 ktr_submitrequest(td, req);
1260 return (0);
1261 #else /* !KTRACE */
1262 return (ENOSYS);
1263 #endif /* KTRACE */
1264 }
1265
1266 #ifdef KTRACE
1267 static int
ktrops(struct thread * td,struct proc * p,int ops,int facs,struct ktr_io_params * new_kiop)1268 ktrops(struct thread *td, struct proc *p, int ops, int facs,
1269 struct ktr_io_params *new_kiop)
1270 {
1271 struct ktr_io_params *old_kiop;
1272
1273 PROC_LOCK_ASSERT(p, MA_OWNED);
1274 if (!ktrcanset(td, p)) {
1275 PROC_UNLOCK(p);
1276 return (0);
1277 }
1278 if ((ops == KTROP_SET && p->p_state == PRS_NEW) ||
1279 p_cansee(td, p) != 0) {
1280 /*
1281 * Disallow setting trace points if the process is being born.
1282 * This avoids races with trace point inheritance in
1283 * ktrprocfork().
1284 */
1285 PROC_UNLOCK(p);
1286 return (0);
1287 }
1288 if ((p->p_flag & P_WEXIT) != 0) {
1289 /*
1290 * There's nothing to do if the process is exiting, but avoid
1291 * signaling an error.
1292 */
1293 PROC_UNLOCK(p);
1294 return (1);
1295 }
1296 old_kiop = NULL;
1297 mtx_lock(&ktrace_mtx);
1298 if (ops == KTROP_SET) {
1299 if (p->p_ktrioparms != NULL &&
1300 p->p_ktrioparms->vp != new_kiop->vp) {
1301 /* if trace file already in use, relinquish below */
1302 old_kiop = ktr_io_params_rele(p->p_ktrioparms);
1303 p->p_ktrioparms = NULL;
1304 }
1305 if (p->p_ktrioparms == NULL) {
1306 p->p_ktrioparms = new_kiop;
1307 ktr_io_params_ref(new_kiop);
1308 }
1309 p->p_traceflag |= facs;
1310 if (priv_check(td, PRIV_KTRACE) == 0)
1311 p->p_traceflag |= KTRFAC_ROOT;
1312 } else {
1313 /* KTROP_CLEAR */
1314 if (((p->p_traceflag &= ~facs) & KTRFAC_MASK) == 0)
1315 /* no more tracing */
1316 old_kiop = ktr_freeproc(p);
1317 }
1318 mtx_unlock(&ktrace_mtx);
1319 if ((p->p_traceflag & KTRFAC_MASK) != 0)
1320 ktrprocctor_entered(td, p);
1321 PROC_UNLOCK(p);
1322 ktr_io_params_free(old_kiop);
1323
1324 return (1);
1325 }
1326
1327 static int
ktrsetchildren(struct thread * td,struct proc * top,int ops,int facs,struct ktr_io_params * new_kiop)1328 ktrsetchildren(struct thread *td, struct proc *top, int ops, int facs,
1329 struct ktr_io_params *new_kiop)
1330 {
1331 struct proc *p;
1332 int ret = 0;
1333
1334 p = top;
1335 PROC_LOCK_ASSERT(p, MA_OWNED);
1336 sx_assert(&proctree_lock, SX_LOCKED);
1337 for (;;) {
1338 ret |= ktrops(td, p, ops, facs, new_kiop);
1339 /*
1340 * If this process has children, descend to them next,
1341 * otherwise do any siblings, and if done with this level,
1342 * follow back up the tree (but not past top).
1343 */
1344 if (!LIST_EMPTY(&p->p_children))
1345 p = LIST_FIRST(&p->p_children);
1346 else for (;;) {
1347 if (p == top)
1348 return (ret);
1349 if (LIST_NEXT(p, p_sibling)) {
1350 p = LIST_NEXT(p, p_sibling);
1351 break;
1352 }
1353 p = p->p_pptr;
1354 }
1355 PROC_LOCK(p);
1356 }
1357 /*NOTREACHED*/
1358 }
1359
1360 static void
ktr_writerequest(struct thread * td,struct ktr_request * req)1361 ktr_writerequest(struct thread *td, struct ktr_request *req)
1362 {
1363 struct ktr_io_params *kiop, *kiop1;
1364 struct ktr_header *kth;
1365 struct vnode *vp;
1366 struct proc *p;
1367 struct ucred *cred;
1368 struct uio auio;
1369 struct iovec aiov[3];
1370 struct mount *mp;
1371 off_t lim;
1372 int datalen, buflen;
1373 int error;
1374
1375 p = td->td_proc;
1376
1377 /*
1378 * We reference the kiop for use in I/O in case ktrace is
1379 * disabled on the process as we write out the request.
1380 */
1381 mtx_lock(&ktrace_mtx);
1382 kiop = p->p_ktrioparms;
1383
1384 /*
1385 * If kiop is NULL, it has been cleared out from under this
1386 * request, so just drop it.
1387 */
1388 if (kiop == NULL) {
1389 mtx_unlock(&ktrace_mtx);
1390 return;
1391 }
1392
1393 ktr_io_params_ref(kiop);
1394 vp = kiop->vp;
1395 cred = kiop->cr;
1396 lim = kiop->lim;
1397
1398 KASSERT(cred != NULL, ("ktr_writerequest: cred == NULL"));
1399 mtx_unlock(&ktrace_mtx);
1400
1401 kth = &req->ktr_header;
1402 KASSERT(((u_short)kth->ktr_type & ~KTR_TYPE) < nitems(data_lengths),
1403 ("data_lengths array overflow"));
1404 datalen = data_lengths[(u_short)kth->ktr_type & ~KTR_TYPE];
1405 buflen = kth->ktr_len;
1406 auio.uio_iov = &aiov[0];
1407 auio.uio_offset = 0;
1408 auio.uio_segflg = UIO_SYSSPACE;
1409 auio.uio_rw = UIO_WRITE;
1410 aiov[0].iov_base = (caddr_t)kth;
1411 aiov[0].iov_len = sizeof(struct ktr_header);
1412 auio.uio_resid = sizeof(struct ktr_header);
1413 auio.uio_iovcnt = 1;
1414 auio.uio_td = td;
1415 if (datalen != 0) {
1416 aiov[1].iov_base = (caddr_t)&req->ktr_data;
1417 aiov[1].iov_len = datalen;
1418 auio.uio_resid += datalen;
1419 auio.uio_iovcnt++;
1420 kth->ktr_len += datalen;
1421 }
1422 if (buflen != 0) {
1423 KASSERT(req->ktr_buffer != NULL, ("ktrace: nothing to write"));
1424 aiov[auio.uio_iovcnt].iov_base = req->ktr_buffer;
1425 aiov[auio.uio_iovcnt].iov_len = buflen;
1426 auio.uio_resid += buflen;
1427 auio.uio_iovcnt++;
1428 }
1429
1430 vn_start_write(vp, &mp, V_WAIT);
1431 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1432 td->td_ktr_io_lim = lim;
1433 #ifdef MAC
1434 error = mac_vnode_check_write(cred, NOCRED, vp);
1435 if (error == 0)
1436 #endif
1437 error = VOP_WRITE(vp, &auio, IO_UNIT | IO_APPEND, cred);
1438 VOP_UNLOCK(vp);
1439 vn_finished_write(mp);
1440 if (error == 0) {
1441 mtx_lock(&ktrace_mtx);
1442 kiop = ktr_io_params_rele(kiop);
1443 mtx_unlock(&ktrace_mtx);
1444 ktr_io_params_free(kiop);
1445 return;
1446 }
1447
1448 /*
1449 * If error encountered, give up tracing on this vnode on this
1450 * process. Other processes might still be suitable for
1451 * writes to this vnode.
1452 */
1453 log(LOG_NOTICE,
1454 "ktrace write failed, errno %d, tracing stopped for pid %d\n",
1455 error, p->p_pid);
1456
1457 kiop1 = NULL;
1458 PROC_LOCK(p);
1459 mtx_lock(&ktrace_mtx);
1460 if (p->p_ktrioparms != NULL && p->p_ktrioparms->vp == vp)
1461 kiop1 = ktr_freeproc(p);
1462 kiop = ktr_io_params_rele(kiop);
1463 mtx_unlock(&ktrace_mtx);
1464 PROC_UNLOCK(p);
1465 ktr_io_params_free(kiop1);
1466 ktr_io_params_free(kiop);
1467 }
1468
1469 /*
1470 * Return true if caller has permission to set the ktracing state
1471 * of target. Essentially, the target can't possess any
1472 * more permissions than the caller. KTRFAC_ROOT signifies that
1473 * root previously set the tracing status on the target process, and
1474 * so, only root may further change it.
1475 */
1476 static int
ktrcanset(struct thread * td,struct proc * targetp)1477 ktrcanset(struct thread *td, struct proc *targetp)
1478 {
1479
1480 PROC_LOCK_ASSERT(targetp, MA_OWNED);
1481 if (targetp->p_traceflag & KTRFAC_ROOT &&
1482 priv_check(td, PRIV_KTRACE))
1483 return (0);
1484
1485 if (p_candebug(td, targetp) != 0)
1486 return (0);
1487
1488 return (1);
1489 }
1490
1491 #endif /* KTRACE */
1492