xref: /freebsd/sys/kern/uipc_ktls.c (revision 614087c65e997fcdedcd60f368a035a4b09d106d)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2014-2019 Netflix Inc.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 
28 #include <sys/cdefs.h>
29 #include "opt_inet.h"
30 #include "opt_inet6.h"
31 #include "opt_kern_tls.h"
32 #include "opt_ratelimit.h"
33 #include "opt_rss.h"
34 
35 #include <sys/param.h>
36 #include <sys/kernel.h>
37 #include <sys/domainset.h>
38 #include <sys/endian.h>
39 #include <sys/ktls.h>
40 #include <sys/lock.h>
41 #include <sys/mbuf.h>
42 #include <sys/mutex.h>
43 #include <sys/rmlock.h>
44 #include <sys/proc.h>
45 #include <sys/protosw.h>
46 #include <sys/refcount.h>
47 #include <sys/smp.h>
48 #include <sys/socket.h>
49 #include <sys/socketvar.h>
50 #include <sys/sysctl.h>
51 #include <sys/taskqueue.h>
52 #include <sys/kthread.h>
53 #include <sys/uio.h>
54 #include <sys/vmmeter.h>
55 #if defined(__aarch64__) || defined(__amd64__) || defined(__i386__)
56 #include <machine/pcb.h>
57 #endif
58 #include <machine/vmparam.h>
59 #include <net/if.h>
60 #include <net/if_var.h>
61 #ifdef RSS
62 #include <net/netisr.h>
63 #include <net/rss_config.h>
64 #endif
65 #include <net/route.h>
66 #include <net/route/nhop.h>
67 #include <netinet/in.h>
68 #include <netinet/in_pcb.h>
69 #include <netinet/tcp_var.h>
70 #ifdef TCP_OFFLOAD
71 #include <netinet/tcp_offload.h>
72 #endif
73 #include <opencrypto/cryptodev.h>
74 #include <opencrypto/ktls.h>
75 #include <vm/vm.h>
76 #include <vm/vm_pageout.h>
77 #include <vm/vm_page.h>
78 #include <vm/vm_pagequeue.h>
79 
80 struct ktls_wq {
81 	struct mtx	mtx;
82 	STAILQ_HEAD(, mbuf) m_head;
83 	STAILQ_HEAD(, socket) so_head;
84 	bool		running;
85 	int		lastallocfail;
86 } __aligned(CACHE_LINE_SIZE);
87 
88 struct ktls_reclaim_thread {
89 	uint64_t wakeups;
90 	uint64_t reclaims;
91 	struct thread *td;
92 	int running;
93 };
94 
95 struct ktls_domain_info {
96 	int count;
97 	int cpu[MAXCPU];
98 	struct ktls_reclaim_thread reclaim_td;
99 };
100 
101 struct ktls_domain_info ktls_domains[MAXMEMDOM];
102 static struct ktls_wq *ktls_wq;
103 static struct proc *ktls_proc;
104 static uma_zone_t ktls_session_zone;
105 static uma_zone_t ktls_buffer_zone;
106 static uint16_t ktls_cpuid_lookup[MAXCPU];
107 static int ktls_init_state;
108 static struct sx ktls_init_lock;
109 SX_SYSINIT(ktls_init_lock, &ktls_init_lock, "ktls init");
110 
111 SYSCTL_NODE(_kern_ipc, OID_AUTO, tls, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
112     "Kernel TLS offload");
113 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, stats, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
114     "Kernel TLS offload stats");
115 
116 #ifdef RSS
117 static int ktls_bind_threads = 1;
118 #else
119 static int ktls_bind_threads;
120 #endif
121 SYSCTL_INT(_kern_ipc_tls, OID_AUTO, bind_threads, CTLFLAG_RDTUN,
122     &ktls_bind_threads, 0,
123     "Bind crypto threads to cores (1) or cores and domains (2) at boot");
124 
125 static u_int ktls_maxlen = 16384;
126 SYSCTL_UINT(_kern_ipc_tls, OID_AUTO, maxlen, CTLFLAG_RDTUN,
127     &ktls_maxlen, 0, "Maximum TLS record size");
128 
129 static int ktls_number_threads;
130 SYSCTL_INT(_kern_ipc_tls_stats, OID_AUTO, threads, CTLFLAG_RD,
131     &ktls_number_threads, 0,
132     "Number of TLS threads in thread-pool");
133 
134 unsigned int ktls_ifnet_max_rexmit_pct = 2;
135 SYSCTL_UINT(_kern_ipc_tls, OID_AUTO, ifnet_max_rexmit_pct, CTLFLAG_RWTUN,
136     &ktls_ifnet_max_rexmit_pct, 2,
137     "Max percent bytes retransmitted before ifnet TLS is disabled");
138 
139 static bool ktls_offload_enable = true;
140 SYSCTL_BOOL(_kern_ipc_tls, OID_AUTO, enable, CTLFLAG_RWTUN,
141     &ktls_offload_enable, 0,
142     "Enable support for kernel TLS offload");
143 
144 static bool ktls_cbc_enable = true;
145 SYSCTL_BOOL(_kern_ipc_tls, OID_AUTO, cbc_enable, CTLFLAG_RWTUN,
146     &ktls_cbc_enable, 1,
147     "Enable support of AES-CBC crypto for kernel TLS");
148 
149 static bool ktls_sw_buffer_cache = true;
150 SYSCTL_BOOL(_kern_ipc_tls, OID_AUTO, sw_buffer_cache, CTLFLAG_RDTUN,
151     &ktls_sw_buffer_cache, 1,
152     "Enable caching of output buffers for SW encryption");
153 
154 static int ktls_max_reclaim = 1024;
155 SYSCTL_INT(_kern_ipc_tls, OID_AUTO, max_reclaim, CTLFLAG_RWTUN,
156     &ktls_max_reclaim, 128,
157     "Max number of 16k buffers to reclaim in thread context");
158 
159 static COUNTER_U64_DEFINE_EARLY(ktls_tasks_active);
160 SYSCTL_COUNTER_U64(_kern_ipc_tls, OID_AUTO, tasks_active, CTLFLAG_RD,
161     &ktls_tasks_active, "Number of active tasks");
162 
163 static COUNTER_U64_DEFINE_EARLY(ktls_cnt_tx_pending);
164 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, sw_tx_pending, CTLFLAG_RD,
165     &ktls_cnt_tx_pending,
166     "Number of TLS 1.0 records waiting for earlier TLS records");
167 
168 static COUNTER_U64_DEFINE_EARLY(ktls_cnt_tx_queued);
169 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, sw_tx_inqueue, CTLFLAG_RD,
170     &ktls_cnt_tx_queued,
171     "Number of TLS records in queue to tasks for SW encryption");
172 
173 static COUNTER_U64_DEFINE_EARLY(ktls_cnt_rx_queued);
174 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, sw_rx_inqueue, CTLFLAG_RD,
175     &ktls_cnt_rx_queued,
176     "Number of TLS sockets in queue to tasks for SW decryption");
177 
178 static COUNTER_U64_DEFINE_EARLY(ktls_offload_total);
179 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, offload_total,
180     CTLFLAG_RD, &ktls_offload_total,
181     "Total successful TLS setups (parameters set)");
182 
183 static COUNTER_U64_DEFINE_EARLY(ktls_offload_enable_calls);
184 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, enable_calls,
185     CTLFLAG_RD, &ktls_offload_enable_calls,
186     "Total number of TLS enable calls made");
187 
188 static COUNTER_U64_DEFINE_EARLY(ktls_offload_active);
189 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, active, CTLFLAG_RD,
190     &ktls_offload_active, "Total Active TLS sessions");
191 
192 static COUNTER_U64_DEFINE_EARLY(ktls_offload_corrupted_records);
193 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, corrupted_records, CTLFLAG_RD,
194     &ktls_offload_corrupted_records, "Total corrupted TLS records received");
195 
196 static COUNTER_U64_DEFINE_EARLY(ktls_offload_failed_crypto);
197 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, failed_crypto, CTLFLAG_RD,
198     &ktls_offload_failed_crypto, "Total TLS crypto failures");
199 
200 static COUNTER_U64_DEFINE_EARLY(ktls_switch_to_ifnet);
201 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_to_ifnet, CTLFLAG_RD,
202     &ktls_switch_to_ifnet, "TLS sessions switched from SW to ifnet");
203 
204 static COUNTER_U64_DEFINE_EARLY(ktls_switch_to_sw);
205 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_to_sw, CTLFLAG_RD,
206     &ktls_switch_to_sw, "TLS sessions switched from ifnet to SW");
207 
208 static COUNTER_U64_DEFINE_EARLY(ktls_switch_failed);
209 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_failed, CTLFLAG_RD,
210     &ktls_switch_failed, "TLS sessions unable to switch between SW and ifnet");
211 
212 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_disable_fail);
213 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, ifnet_disable_failed, CTLFLAG_RD,
214     &ktls_ifnet_disable_fail, "TLS sessions unable to switch to SW from ifnet");
215 
216 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_disable_ok);
217 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, ifnet_disable_ok, CTLFLAG_RD,
218     &ktls_ifnet_disable_ok, "TLS sessions able to switch to SW from ifnet");
219 
220 static COUNTER_U64_DEFINE_EARLY(ktls_destroy_task);
221 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, destroy_task, CTLFLAG_RD,
222     &ktls_destroy_task,
223     "Number of times ktls session was destroyed via taskqueue");
224 
225 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, sw, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
226     "Software TLS session stats");
227 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, ifnet, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
228     "Hardware (ifnet) TLS session stats");
229 #ifdef TCP_OFFLOAD
230 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, toe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
231     "TOE TLS session stats");
232 #endif
233 
234 static COUNTER_U64_DEFINE_EARLY(ktls_sw_cbc);
235 SYSCTL_COUNTER_U64(_kern_ipc_tls_sw, OID_AUTO, cbc, CTLFLAG_RD, &ktls_sw_cbc,
236     "Active number of software TLS sessions using AES-CBC");
237 
238 static COUNTER_U64_DEFINE_EARLY(ktls_sw_gcm);
239 SYSCTL_COUNTER_U64(_kern_ipc_tls_sw, OID_AUTO, gcm, CTLFLAG_RD, &ktls_sw_gcm,
240     "Active number of software TLS sessions using AES-GCM");
241 
242 static COUNTER_U64_DEFINE_EARLY(ktls_sw_chacha20);
243 SYSCTL_COUNTER_U64(_kern_ipc_tls_sw, OID_AUTO, chacha20, CTLFLAG_RD,
244     &ktls_sw_chacha20,
245     "Active number of software TLS sessions using Chacha20-Poly1305");
246 
247 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_cbc);
248 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, cbc, CTLFLAG_RD,
249     &ktls_ifnet_cbc,
250     "Active number of ifnet TLS sessions using AES-CBC");
251 
252 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_gcm);
253 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, gcm, CTLFLAG_RD,
254     &ktls_ifnet_gcm,
255     "Active number of ifnet TLS sessions using AES-GCM");
256 
257 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_chacha20);
258 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, chacha20, CTLFLAG_RD,
259     &ktls_ifnet_chacha20,
260     "Active number of ifnet TLS sessions using Chacha20-Poly1305");
261 
262 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_reset);
263 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset, CTLFLAG_RD,
264     &ktls_ifnet_reset, "TLS sessions updated to a new ifnet send tag");
265 
266 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_reset_dropped);
267 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset_dropped, CTLFLAG_RD,
268     &ktls_ifnet_reset_dropped,
269     "TLS sessions dropped after failing to update ifnet send tag");
270 
271 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_reset_failed);
272 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset_failed, CTLFLAG_RD,
273     &ktls_ifnet_reset_failed,
274     "TLS sessions that failed to allocate a new ifnet send tag");
275 
276 static int ktls_ifnet_permitted = 1;
277 SYSCTL_UINT(_kern_ipc_tls_ifnet, OID_AUTO, permitted, CTLFLAG_RWTUN,
278     &ktls_ifnet_permitted, 1,
279     "Whether to permit hardware (ifnet) TLS sessions");
280 
281 #ifdef TCP_OFFLOAD
282 static COUNTER_U64_DEFINE_EARLY(ktls_toe_cbc);
283 SYSCTL_COUNTER_U64(_kern_ipc_tls_toe, OID_AUTO, cbc, CTLFLAG_RD,
284     &ktls_toe_cbc,
285     "Active number of TOE TLS sessions using AES-CBC");
286 
287 static COUNTER_U64_DEFINE_EARLY(ktls_toe_gcm);
288 SYSCTL_COUNTER_U64(_kern_ipc_tls_toe, OID_AUTO, gcm, CTLFLAG_RD,
289     &ktls_toe_gcm,
290     "Active number of TOE TLS sessions using AES-GCM");
291 
292 static COUNTER_U64_DEFINE_EARLY(ktls_toe_chacha20);
293 SYSCTL_COUNTER_U64(_kern_ipc_tls_toe, OID_AUTO, chacha20, CTLFLAG_RD,
294     &ktls_toe_chacha20,
295     "Active number of TOE TLS sessions using Chacha20-Poly1305");
296 #endif
297 
298 static MALLOC_DEFINE(M_KTLS, "ktls", "Kernel TLS");
299 
300 static void ktls_reclaim_thread(void *ctx);
301 static void ktls_reset_receive_tag(void *context, int pending);
302 static void ktls_reset_send_tag(void *context, int pending);
303 static void ktls_work_thread(void *ctx);
304 
305 int
ktls_copyin_tls_enable(struct sockopt * sopt,struct tls_enable * tls)306 ktls_copyin_tls_enable(struct sockopt *sopt, struct tls_enable *tls)
307 {
308 	struct tls_enable_v0 tls_v0;
309 	int error;
310 	uint8_t *cipher_key = NULL, *iv = NULL, *auth_key = NULL;
311 
312 	if (sopt->sopt_valsize == sizeof(tls_v0)) {
313 		error = sooptcopyin(sopt, &tls_v0, sizeof(tls_v0), sizeof(tls_v0));
314 		if (error != 0)
315 			goto done;
316 		memset(tls, 0, sizeof(*tls));
317 		tls->cipher_key = tls_v0.cipher_key;
318 		tls->iv = tls_v0.iv;
319 		tls->auth_key = tls_v0.auth_key;
320 		tls->cipher_algorithm = tls_v0.cipher_algorithm;
321 		tls->cipher_key_len = tls_v0.cipher_key_len;
322 		tls->iv_len = tls_v0.iv_len;
323 		tls->auth_algorithm = tls_v0.auth_algorithm;
324 		tls->auth_key_len = tls_v0.auth_key_len;
325 		tls->flags = tls_v0.flags;
326 		tls->tls_vmajor = tls_v0.tls_vmajor;
327 		tls->tls_vminor = tls_v0.tls_vminor;
328 	} else
329 		error = sooptcopyin(sopt, tls, sizeof(*tls), sizeof(*tls));
330 
331 	if (error != 0)
332 		return (error);
333 
334 	if (tls->cipher_key_len < 0 || tls->cipher_key_len > TLS_MAX_PARAM_SIZE)
335 		return (EINVAL);
336 	if (tls->iv_len < 0 || tls->iv_len > sizeof(((struct ktls_session *)NULL)->params.iv))
337 		return (EINVAL);
338 	if (tls->auth_key_len < 0 || tls->auth_key_len > TLS_MAX_PARAM_SIZE)
339 		return (EINVAL);
340 
341 	/* All supported algorithms require a cipher key. */
342 	if (tls->cipher_key_len == 0)
343 		return (EINVAL);
344 
345 	/*
346 	 * Now do a deep copy of the variable-length arrays in the struct, so that
347 	 * subsequent consumers of it can reliably assume kernel memory. This
348 	 * requires doing our own allocations, which we will free in the
349 	 * error paths so that our caller need only worry about outstanding
350 	 * allocations existing on successful return.
351 	 */
352 	if (tls->cipher_key_len != 0) {
353 		cipher_key = malloc(tls->cipher_key_len, M_KTLS, M_WAITOK);
354 		if (sopt->sopt_td != NULL) {
355 			error = copyin(tls->cipher_key, cipher_key, tls->cipher_key_len);
356 			if (error != 0)
357 				goto done;
358 		} else {
359 			bcopy(tls->cipher_key, cipher_key, tls->cipher_key_len);
360 		}
361 	}
362 	if (tls->iv_len != 0) {
363 		iv = malloc(tls->iv_len, M_KTLS, M_WAITOK);
364 		if (sopt->sopt_td != NULL) {
365 			error = copyin(tls->iv, iv, tls->iv_len);
366 			if (error != 0)
367 				goto done;
368 		} else {
369 			bcopy(tls->iv, iv, tls->iv_len);
370 		}
371 	}
372 	if (tls->auth_key_len != 0) {
373 		auth_key = malloc(tls->auth_key_len, M_KTLS, M_WAITOK);
374 		if (sopt->sopt_td != NULL) {
375 			error = copyin(tls->auth_key, auth_key, tls->auth_key_len);
376 			if (error != 0)
377 				goto done;
378 		} else {
379 			bcopy(tls->auth_key, auth_key, tls->auth_key_len);
380 		}
381 	}
382 	tls->cipher_key = cipher_key;
383 	tls->iv = iv;
384 	tls->auth_key = auth_key;
385 
386 done:
387 	if (error != 0) {
388 		zfree(cipher_key, M_KTLS);
389 		zfree(iv, M_KTLS);
390 		zfree(auth_key, M_KTLS);
391 	}
392 
393 	return (error);
394 }
395 
396 void
ktls_cleanup_tls_enable(struct tls_enable * tls)397 ktls_cleanup_tls_enable(struct tls_enable *tls)
398 {
399 	zfree(__DECONST(void *, tls->cipher_key), M_KTLS);
400 	zfree(__DECONST(void *, tls->iv), M_KTLS);
401 	zfree(__DECONST(void *, tls->auth_key), M_KTLS);
402 }
403 
404 static u_int
ktls_get_cpu(struct socket * so)405 ktls_get_cpu(struct socket *so)
406 {
407 	struct inpcb *inp;
408 #ifdef NUMA
409 	struct ktls_domain_info *di;
410 #endif
411 	u_int cpuid;
412 
413 	inp = sotoinpcb(so);
414 #ifdef RSS
415 	cpuid = rss_hash2cpuid(inp->inp_flowid, inp->inp_flowtype);
416 	if (cpuid != NETISR_CPUID_NONE)
417 		return (cpuid);
418 #endif
419 	/*
420 	 * Just use the flowid to shard connections in a repeatable
421 	 * fashion.  Note that TLS 1.0 sessions rely on the
422 	 * serialization provided by having the same connection use
423 	 * the same queue.
424 	 */
425 #ifdef NUMA
426 	if (ktls_bind_threads > 1 && inp->inp_numa_domain != M_NODOM) {
427 		di = &ktls_domains[inp->inp_numa_domain];
428 		cpuid = di->cpu[inp->inp_flowid % di->count];
429 	} else
430 #endif
431 		cpuid = ktls_cpuid_lookup[inp->inp_flowid % ktls_number_threads];
432 	return (cpuid);
433 }
434 
435 static int
ktls_buffer_import(void * arg,void ** store,int count,int domain,int flags)436 ktls_buffer_import(void *arg, void **store, int count, int domain, int flags)
437 {
438 	vm_page_t m;
439 	int i, req;
440 
441 	KASSERT((ktls_maxlen & PAGE_MASK) == 0,
442 	    ("%s: ktls max length %d is not page size-aligned",
443 	    __func__, ktls_maxlen));
444 
445 	req = VM_ALLOC_WIRED | VM_ALLOC_NODUMP | malloc2vm_flags(flags);
446 	for (i = 0; i < count; i++) {
447 		m = vm_page_alloc_noobj_contig_domain(domain, req,
448 		    atop(ktls_maxlen), 0, ~0ul, PAGE_SIZE, 0,
449 		    VM_MEMATTR_DEFAULT);
450 		if (m == NULL)
451 			break;
452 		store[i] = (void *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
453 	}
454 	return (i);
455 }
456 
457 static void
ktls_buffer_release(void * arg __unused,void ** store,int count)458 ktls_buffer_release(void *arg __unused, void **store, int count)
459 {
460 	vm_page_t m;
461 	int i, j;
462 
463 	for (i = 0; i < count; i++) {
464 		m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)store[i]));
465 		for (j = 0; j < atop(ktls_maxlen); j++) {
466 			(void)vm_page_unwire_noq(m + j);
467 			vm_page_free(m + j);
468 		}
469 	}
470 }
471 
472 static void
ktls_free_mext_contig(struct mbuf * m)473 ktls_free_mext_contig(struct mbuf *m)
474 {
475 	M_ASSERTEXTPG(m);
476 	uma_zfree(ktls_buffer_zone, (void *)PHYS_TO_DMAP(m->m_epg_pa[0]));
477 }
478 
479 static int
ktls_init(void)480 ktls_init(void)
481 {
482 	struct thread *td;
483 	struct pcpu *pc;
484 	int count, domain, error, i;
485 
486 	ktls_wq = malloc(sizeof(*ktls_wq) * (mp_maxid + 1), M_KTLS,
487 	    M_WAITOK | M_ZERO);
488 
489 	ktls_session_zone = uma_zcreate("ktls_session",
490 	    sizeof(struct ktls_session),
491 	    NULL, NULL, NULL, NULL,
492 	    UMA_ALIGN_CACHE, 0);
493 
494 	if (ktls_sw_buffer_cache) {
495 		ktls_buffer_zone = uma_zcache_create("ktls_buffers",
496 		    roundup2(ktls_maxlen, PAGE_SIZE), NULL, NULL, NULL, NULL,
497 		    ktls_buffer_import, ktls_buffer_release, NULL,
498 		    UMA_ZONE_FIRSTTOUCH | UMA_ZONE_NOTRIM);
499 	}
500 
501 	/*
502 	 * Initialize the workqueues to run the TLS work.  We create a
503 	 * work queue for each CPU.
504 	 */
505 	CPU_FOREACH(i) {
506 		STAILQ_INIT(&ktls_wq[i].m_head);
507 		STAILQ_INIT(&ktls_wq[i].so_head);
508 		mtx_init(&ktls_wq[i].mtx, "ktls work queue", NULL, MTX_DEF);
509 		if (ktls_bind_threads > 1) {
510 			pc = pcpu_find(i);
511 			domain = pc->pc_domain;
512 			count = ktls_domains[domain].count;
513 			ktls_domains[domain].cpu[count] = i;
514 			ktls_domains[domain].count++;
515 		}
516 		ktls_cpuid_lookup[ktls_number_threads] = i;
517 		ktls_number_threads++;
518 	}
519 
520 	/*
521 	 * If we somehow have an empty domain, fall back to choosing
522 	 * among all KTLS threads.
523 	 */
524 	if (ktls_bind_threads > 1) {
525 		for (i = 0; i < vm_ndomains; i++) {
526 			if (ktls_domains[i].count == 0) {
527 				ktls_bind_threads = 1;
528 				break;
529 			}
530 		}
531 	}
532 
533 	/* Start kthreads for each workqueue. */
534 	CPU_FOREACH(i) {
535 		error = kproc_kthread_add(ktls_work_thread, &ktls_wq[i],
536 		    &ktls_proc, &td, 0, 0, "KTLS", "thr_%d", i);
537 		if (error) {
538 			printf("Can't add KTLS thread %d error %d\n", i, error);
539 			return (error);
540 		}
541 	}
542 
543 	/*
544 	 * Start an allocation thread per-domain to perform blocking allocations
545 	 * of 16k physically contiguous TLS crypto destination buffers.
546 	 */
547 	if (ktls_sw_buffer_cache) {
548 		for (domain = 0; domain < vm_ndomains; domain++) {
549 			if (VM_DOMAIN_EMPTY(domain))
550 				continue;
551 			if (CPU_EMPTY(&cpuset_domain[domain]))
552 				continue;
553 			error = kproc_kthread_add(ktls_reclaim_thread,
554 			    &ktls_domains[domain], &ktls_proc,
555 			    &ktls_domains[domain].reclaim_td.td,
556 			    0, 0, "KTLS", "reclaim_%d", domain);
557 			if (error) {
558 				printf("Can't add KTLS reclaim thread %d error %d\n",
559 				    domain, error);
560 				return (error);
561 			}
562 		}
563 	}
564 
565 	if (bootverbose)
566 		printf("KTLS: Initialized %d threads\n", ktls_number_threads);
567 	return (0);
568 }
569 
570 static int
ktls_start_kthreads(void)571 ktls_start_kthreads(void)
572 {
573 	int error, state;
574 
575 start:
576 	state = atomic_load_acq_int(&ktls_init_state);
577 	if (__predict_true(state > 0))
578 		return (0);
579 	if (state < 0)
580 		return (ENXIO);
581 
582 	sx_xlock(&ktls_init_lock);
583 	if (ktls_init_state != 0) {
584 		sx_xunlock(&ktls_init_lock);
585 		goto start;
586 	}
587 
588 	error = ktls_init();
589 	if (error == 0)
590 		state = 1;
591 	else
592 		state = -1;
593 	atomic_store_rel_int(&ktls_init_state, state);
594 	sx_xunlock(&ktls_init_lock);
595 	return (error);
596 }
597 
598 static int
ktls_create_session(struct socket * so,struct tls_enable * en,struct ktls_session ** tlsp,int direction)599 ktls_create_session(struct socket *so, struct tls_enable *en,
600     struct ktls_session **tlsp, int direction)
601 {
602 	struct ktls_session *tls;
603 	int error;
604 
605 	/* Only TLS 1.0 - 1.3 are supported. */
606 	if (en->tls_vmajor != TLS_MAJOR_VER_ONE)
607 		return (EINVAL);
608 	if (en->tls_vminor < TLS_MINOR_VER_ZERO ||
609 	    en->tls_vminor > TLS_MINOR_VER_THREE)
610 		return (EINVAL);
611 
612 
613 	/* No flags are currently supported. */
614 	if (en->flags != 0)
615 		return (EINVAL);
616 
617 	/* Common checks for supported algorithms. */
618 	switch (en->cipher_algorithm) {
619 	case CRYPTO_AES_NIST_GCM_16:
620 		/*
621 		 * auth_algorithm isn't used, but permit GMAC values
622 		 * for compatibility.
623 		 */
624 		switch (en->auth_algorithm) {
625 		case 0:
626 #ifdef COMPAT_FREEBSD12
627 		/* XXX: Really 13.0-current COMPAT. */
628 		case CRYPTO_AES_128_NIST_GMAC:
629 		case CRYPTO_AES_192_NIST_GMAC:
630 		case CRYPTO_AES_256_NIST_GMAC:
631 #endif
632 			break;
633 		default:
634 			return (EINVAL);
635 		}
636 		if (en->auth_key_len != 0)
637 			return (EINVAL);
638 		switch (en->tls_vminor) {
639 		case TLS_MINOR_VER_TWO:
640 			if (en->iv_len != TLS_AEAD_GCM_LEN)
641 				return (EINVAL);
642 			break;
643 		case TLS_MINOR_VER_THREE:
644 			if (en->iv_len != TLS_1_3_GCM_IV_LEN)
645 				return (EINVAL);
646 			break;
647 		default:
648 			return (EINVAL);
649 		}
650 		break;
651 	case CRYPTO_AES_CBC:
652 		switch (en->auth_algorithm) {
653 		case CRYPTO_SHA1_HMAC:
654 			break;
655 		case CRYPTO_SHA2_256_HMAC:
656 		case CRYPTO_SHA2_384_HMAC:
657 			if (en->tls_vminor != TLS_MINOR_VER_TWO)
658 				return (EINVAL);
659 			break;
660 		default:
661 			return (EINVAL);
662 		}
663 		if (en->auth_key_len == 0)
664 			return (EINVAL);
665 
666 		/*
667 		 * TLS 1.0 requires an implicit IV.  TLS 1.1 and 1.2
668 		 * use explicit IVs.
669 		 */
670 		switch (en->tls_vminor) {
671 		case TLS_MINOR_VER_ZERO:
672 			if (en->iv_len != TLS_CBC_IMPLICIT_IV_LEN)
673 				return (EINVAL);
674 			break;
675 		case TLS_MINOR_VER_ONE:
676 		case TLS_MINOR_VER_TWO:
677 			/* Ignore any supplied IV. */
678 			en->iv_len = 0;
679 			break;
680 		default:
681 			return (EINVAL);
682 		}
683 		break;
684 	case CRYPTO_CHACHA20_POLY1305:
685 		if (en->auth_algorithm != 0 || en->auth_key_len != 0)
686 			return (EINVAL);
687 		if (en->tls_vminor != TLS_MINOR_VER_TWO &&
688 		    en->tls_vminor != TLS_MINOR_VER_THREE)
689 			return (EINVAL);
690 		if (en->iv_len != TLS_CHACHA20_IV_LEN)
691 			return (EINVAL);
692 		break;
693 	default:
694 		return (EINVAL);
695 	}
696 
697 	error = ktls_start_kthreads();
698 	if (error != 0)
699 		return (error);
700 
701 	tls = uma_zalloc(ktls_session_zone, M_WAITOK | M_ZERO);
702 
703 	counter_u64_add(ktls_offload_active, 1);
704 
705 	refcount_init(&tls->refcount, 1);
706 	if (direction == KTLS_RX) {
707 		TASK_INIT(&tls->reset_tag_task, 0, ktls_reset_receive_tag, tls);
708 	} else {
709 		TASK_INIT(&tls->reset_tag_task, 0, ktls_reset_send_tag, tls);
710 		tls->inp = so->so_pcb;
711 		in_pcbref(tls->inp);
712 		tls->tx = true;
713 	}
714 
715 	tls->wq_index = ktls_get_cpu(so);
716 
717 	tls->params.cipher_algorithm = en->cipher_algorithm;
718 	tls->params.auth_algorithm = en->auth_algorithm;
719 	tls->params.tls_vmajor = en->tls_vmajor;
720 	tls->params.tls_vminor = en->tls_vminor;
721 	tls->params.flags = en->flags;
722 	tls->params.max_frame_len = min(TLS_MAX_MSG_SIZE_V10_2, ktls_maxlen);
723 
724 	/* Set the header and trailer lengths. */
725 	tls->params.tls_hlen = sizeof(struct tls_record_layer);
726 	switch (en->cipher_algorithm) {
727 	case CRYPTO_AES_NIST_GCM_16:
728 		/*
729 		 * TLS 1.2 uses a 4 byte implicit IV with an explicit 8 byte
730 		 * nonce.  TLS 1.3 uses a 12 byte implicit IV.
731 		 */
732 		if (en->tls_vminor < TLS_MINOR_VER_THREE)
733 			tls->params.tls_hlen += sizeof(uint64_t);
734 		tls->params.tls_tlen = AES_GMAC_HASH_LEN;
735 		tls->params.tls_bs = 1;
736 		break;
737 	case CRYPTO_AES_CBC:
738 		switch (en->auth_algorithm) {
739 		case CRYPTO_SHA1_HMAC:
740 			if (en->tls_vminor == TLS_MINOR_VER_ZERO) {
741 				/* Implicit IV, no nonce. */
742 				tls->sequential_records = true;
743 				tls->next_seqno = be64dec(en->rec_seq);
744 				STAILQ_INIT(&tls->pending_records);
745 			} else {
746 				tls->params.tls_hlen += AES_BLOCK_LEN;
747 			}
748 			tls->params.tls_tlen = AES_BLOCK_LEN +
749 			    SHA1_HASH_LEN;
750 			break;
751 		case CRYPTO_SHA2_256_HMAC:
752 			tls->params.tls_hlen += AES_BLOCK_LEN;
753 			tls->params.tls_tlen = AES_BLOCK_LEN +
754 			    SHA2_256_HASH_LEN;
755 			break;
756 		case CRYPTO_SHA2_384_HMAC:
757 			tls->params.tls_hlen += AES_BLOCK_LEN;
758 			tls->params.tls_tlen = AES_BLOCK_LEN +
759 			    SHA2_384_HASH_LEN;
760 			break;
761 		default:
762 			panic("invalid hmac");
763 		}
764 		tls->params.tls_bs = AES_BLOCK_LEN;
765 		break;
766 	case CRYPTO_CHACHA20_POLY1305:
767 		/*
768 		 * Chacha20 uses a 12 byte implicit IV.
769 		 */
770 		tls->params.tls_tlen = POLY1305_HASH_LEN;
771 		tls->params.tls_bs = 1;
772 		break;
773 	default:
774 		panic("invalid cipher");
775 	}
776 
777 	/*
778 	 * TLS 1.3 includes optional padding which we do not support,
779 	 * and also puts the "real" record type at the end of the
780 	 * encrypted data.
781 	 */
782 	if (en->tls_vminor == TLS_MINOR_VER_THREE)
783 		tls->params.tls_tlen += sizeof(uint8_t);
784 
785 	KASSERT(tls->params.tls_hlen <= MBUF_PEXT_HDR_LEN,
786 	    ("TLS header length too long: %d", tls->params.tls_hlen));
787 	KASSERT(tls->params.tls_tlen <= MBUF_PEXT_TRAIL_LEN,
788 	    ("TLS trailer length too long: %d", tls->params.tls_tlen));
789 
790 	if (en->auth_key_len != 0) {
791 		tls->params.auth_key_len = en->auth_key_len;
792 		tls->params.auth_key = malloc(en->auth_key_len, M_KTLS,
793 		    M_WAITOK);
794 		bcopy(en->auth_key, tls->params.auth_key, en->auth_key_len);
795 	}
796 
797 	tls->params.cipher_key_len = en->cipher_key_len;
798 	tls->params.cipher_key = malloc(en->cipher_key_len, M_KTLS, M_WAITOK);
799 	bcopy(en->cipher_key, tls->params.cipher_key, en->cipher_key_len);
800 
801 	/*
802 	 * This holds the implicit portion of the nonce for AEAD
803 	 * ciphers and the initial implicit IV for TLS 1.0.  The
804 	 * explicit portions of the IV are generated in ktls_frame().
805 	 */
806 	if (en->iv_len != 0) {
807 		tls->params.iv_len = en->iv_len;
808 		bcopy(en->iv, tls->params.iv, en->iv_len);
809 
810 		/*
811 		 * For TLS 1.2 with GCM, generate an 8-byte nonce as a
812 		 * counter to generate unique explicit IVs.
813 		 *
814 		 * Store this counter in the last 8 bytes of the IV
815 		 * array so that it is 8-byte aligned.
816 		 */
817 		if (en->cipher_algorithm == CRYPTO_AES_NIST_GCM_16 &&
818 		    en->tls_vminor == TLS_MINOR_VER_TWO)
819 			arc4rand(tls->params.iv + 8, sizeof(uint64_t), 0);
820 	}
821 
822 	tls->gen = 0;
823 	*tlsp = tls;
824 	return (0);
825 }
826 
827 static struct ktls_session *
ktls_clone_session(struct ktls_session * tls,int direction)828 ktls_clone_session(struct ktls_session *tls, int direction)
829 {
830 	struct ktls_session *tls_new;
831 
832 	tls_new = uma_zalloc(ktls_session_zone, M_WAITOK | M_ZERO);
833 
834 	counter_u64_add(ktls_offload_active, 1);
835 
836 	refcount_init(&tls_new->refcount, 1);
837 	if (direction == KTLS_RX) {
838 		TASK_INIT(&tls_new->reset_tag_task, 0, ktls_reset_receive_tag,
839 		    tls_new);
840 	} else {
841 		TASK_INIT(&tls_new->reset_tag_task, 0, ktls_reset_send_tag,
842 		    tls_new);
843 		tls_new->inp = tls->inp;
844 		tls_new->tx = true;
845 		in_pcbref(tls_new->inp);
846 	}
847 
848 	/* Copy fields from existing session. */
849 	tls_new->params = tls->params;
850 	tls_new->wq_index = tls->wq_index;
851 
852 	/* Deep copy keys. */
853 	if (tls_new->params.auth_key != NULL) {
854 		tls_new->params.auth_key = malloc(tls->params.auth_key_len,
855 		    M_KTLS, M_WAITOK);
856 		memcpy(tls_new->params.auth_key, tls->params.auth_key,
857 		    tls->params.auth_key_len);
858 	}
859 
860 	tls_new->params.cipher_key = malloc(tls->params.cipher_key_len, M_KTLS,
861 	    M_WAITOK);
862 	memcpy(tls_new->params.cipher_key, tls->params.cipher_key,
863 	    tls->params.cipher_key_len);
864 
865 	tls_new->gen = 0;
866 	return (tls_new);
867 }
868 
869 #ifdef TCP_OFFLOAD
870 static int
ktls_try_toe(struct socket * so,struct ktls_session * tls,int direction)871 ktls_try_toe(struct socket *so, struct ktls_session *tls, int direction)
872 {
873 	struct inpcb *inp;
874 	struct tcpcb *tp;
875 	int error;
876 
877 	inp = so->so_pcb;
878 	INP_WLOCK(inp);
879 	if (inp->inp_flags & INP_DROPPED) {
880 		INP_WUNLOCK(inp);
881 		return (ECONNRESET);
882 	}
883 	if (inp->inp_socket == NULL) {
884 		INP_WUNLOCK(inp);
885 		return (ECONNRESET);
886 	}
887 	tp = intotcpcb(inp);
888 	if (!(tp->t_flags & TF_TOE)) {
889 		INP_WUNLOCK(inp);
890 		return (EOPNOTSUPP);
891 	}
892 
893 	error = tcp_offload_alloc_tls_session(tp, tls, direction);
894 	INP_WUNLOCK(inp);
895 	if (error == 0) {
896 		tls->mode = TCP_TLS_MODE_TOE;
897 		switch (tls->params.cipher_algorithm) {
898 		case CRYPTO_AES_CBC:
899 			counter_u64_add(ktls_toe_cbc, 1);
900 			break;
901 		case CRYPTO_AES_NIST_GCM_16:
902 			counter_u64_add(ktls_toe_gcm, 1);
903 			break;
904 		case CRYPTO_CHACHA20_POLY1305:
905 			counter_u64_add(ktls_toe_chacha20, 1);
906 			break;
907 		}
908 	}
909 	return (error);
910 }
911 #endif
912 
913 /*
914  * Common code used when first enabling ifnet TLS on a connection or
915  * when allocating a new ifnet TLS session due to a routing change.
916  * This function allocates a new TLS send tag on whatever interface
917  * the connection is currently routed over.
918  */
919 static int
ktls_alloc_snd_tag(struct inpcb * inp,struct ktls_session * tls,bool force,struct m_snd_tag ** mstp)920 ktls_alloc_snd_tag(struct inpcb *inp, struct ktls_session *tls, bool force,
921     struct m_snd_tag **mstp)
922 {
923 	union if_snd_tag_alloc_params params;
924 	struct ifnet *ifp;
925 	struct nhop_object *nh;
926 	struct tcpcb *tp;
927 	int error;
928 
929 	INP_RLOCK(inp);
930 	if (inp->inp_flags & INP_DROPPED) {
931 		INP_RUNLOCK(inp);
932 		return (ECONNRESET);
933 	}
934 	if (inp->inp_socket == NULL) {
935 		INP_RUNLOCK(inp);
936 		return (ECONNRESET);
937 	}
938 	tp = intotcpcb(inp);
939 
940 	/*
941 	 * Check administrative controls on ifnet TLS to determine if
942 	 * ifnet TLS should be denied.
943 	 *
944 	 * - Always permit 'force' requests.
945 	 * - ktls_ifnet_permitted == 0: always deny.
946 	 */
947 	if (!force && ktls_ifnet_permitted == 0) {
948 		INP_RUNLOCK(inp);
949 		return (ENXIO);
950 	}
951 
952 	/*
953 	 * XXX: Use the cached route in the inpcb to find the
954 	 * interface.  This should perhaps instead use
955 	 * rtalloc1_fib(dst, 0, 0, fibnum).  Since KTLS is only
956 	 * enabled after a connection has completed key negotiation in
957 	 * userland, the cached route will be present in practice.
958 	 */
959 	nh = inp->inp_route.ro_nh;
960 	if (nh == NULL) {
961 		INP_RUNLOCK(inp);
962 		return (ENXIO);
963 	}
964 	ifp = nh->nh_ifp;
965 	if_ref(ifp);
966 
967 	/*
968 	 * Allocate a TLS + ratelimit tag if the connection has an
969 	 * existing pacing rate.
970 	 */
971 	if (tp->t_pacing_rate != -1 &&
972 	    (if_getcapenable(ifp) & IFCAP_TXTLS_RTLMT) != 0) {
973 		params.hdr.type = IF_SND_TAG_TYPE_TLS_RATE_LIMIT;
974 		params.tls_rate_limit.inp = inp;
975 		params.tls_rate_limit.tls = tls;
976 		params.tls_rate_limit.max_rate = tp->t_pacing_rate;
977 	} else {
978 		params.hdr.type = IF_SND_TAG_TYPE_TLS;
979 		params.tls.inp = inp;
980 		params.tls.tls = tls;
981 	}
982 	params.hdr.flowid = inp->inp_flowid;
983 	params.hdr.flowtype = inp->inp_flowtype;
984 	params.hdr.numa_domain = inp->inp_numa_domain;
985 	INP_RUNLOCK(inp);
986 
987 	if ((if_getcapenable(ifp) & IFCAP_MEXTPG) == 0) {
988 		error = EOPNOTSUPP;
989 		goto out;
990 	}
991 	if (inp->inp_vflag & INP_IPV6) {
992 		if ((if_getcapenable(ifp) & IFCAP_TXTLS6) == 0) {
993 			error = EOPNOTSUPP;
994 			goto out;
995 		}
996 	} else {
997 		if ((if_getcapenable(ifp) & IFCAP_TXTLS4) == 0) {
998 			error = EOPNOTSUPP;
999 			goto out;
1000 		}
1001 	}
1002 	error = m_snd_tag_alloc(ifp, &params, mstp);
1003 out:
1004 	if_rele(ifp);
1005 	return (error);
1006 }
1007 
1008 /*
1009  * Allocate an initial TLS receive tag for doing HW decryption of TLS
1010  * data.
1011  *
1012  * This function allocates a new TLS receive tag on whatever interface
1013  * the connection is currently routed over.  If the connection ends up
1014  * using a different interface for receive this will get fixed up via
1015  * ktls_input_ifp_mismatch as future packets arrive.
1016  */
1017 static int
ktls_alloc_rcv_tag(struct inpcb * inp,struct ktls_session * tls,struct m_snd_tag ** mstp)1018 ktls_alloc_rcv_tag(struct inpcb *inp, struct ktls_session *tls,
1019     struct m_snd_tag **mstp)
1020 {
1021 	union if_snd_tag_alloc_params params;
1022 	struct ifnet *ifp;
1023 	struct nhop_object *nh;
1024 	int error;
1025 
1026 	if (!ktls_ocf_recrypt_supported(tls))
1027 		return (ENXIO);
1028 
1029 	INP_RLOCK(inp);
1030 	if (inp->inp_flags & INP_DROPPED) {
1031 		INP_RUNLOCK(inp);
1032 		return (ECONNRESET);
1033 	}
1034 	if (inp->inp_socket == NULL) {
1035 		INP_RUNLOCK(inp);
1036 		return (ECONNRESET);
1037 	}
1038 
1039 	/*
1040 	 * Check administrative controls on ifnet TLS to determine if
1041 	 * ifnet TLS should be denied.
1042 	 */
1043 	if (ktls_ifnet_permitted == 0) {
1044 		INP_RUNLOCK(inp);
1045 		return (ENXIO);
1046 	}
1047 
1048 	/*
1049 	 * XXX: As with ktls_alloc_snd_tag, use the cached route in
1050 	 * the inpcb to find the interface.
1051 	 */
1052 	nh = inp->inp_route.ro_nh;
1053 	if (nh == NULL) {
1054 		INP_RUNLOCK(inp);
1055 		return (ENXIO);
1056 	}
1057 	ifp = nh->nh_ifp;
1058 	if_ref(ifp);
1059 	tls->rx_ifp = ifp;
1060 
1061 	params.hdr.type = IF_SND_TAG_TYPE_TLS_RX;
1062 	params.hdr.flowid = inp->inp_flowid;
1063 	params.hdr.flowtype = inp->inp_flowtype;
1064 	params.hdr.numa_domain = inp->inp_numa_domain;
1065 	params.tls_rx.inp = inp;
1066 	params.tls_rx.tls = tls;
1067 	params.tls_rx.vlan_id = 0;
1068 
1069 	INP_RUNLOCK(inp);
1070 
1071 	if (inp->inp_vflag & INP_IPV6) {
1072 		if ((if_getcapenable2(ifp) & IFCAP2_BIT(IFCAP2_RXTLS6)) == 0) {
1073 			error = EOPNOTSUPP;
1074 			goto out;
1075 		}
1076 	} else {
1077 		if ((if_getcapenable2(ifp) & IFCAP2_BIT(IFCAP2_RXTLS4)) == 0) {
1078 			error = EOPNOTSUPP;
1079 			goto out;
1080 		}
1081 	}
1082 	error = m_snd_tag_alloc(ifp, &params, mstp);
1083 
1084 	/*
1085 	 * If this connection is over a vlan, vlan_snd_tag_alloc
1086 	 * rewrites vlan_id with the saved interface.  Save the VLAN
1087 	 * ID for use in ktls_reset_receive_tag which allocates new
1088 	 * receive tags directly from the leaf interface bypassing
1089 	 * if_vlan.
1090 	 */
1091 	if (error == 0)
1092 		tls->rx_vlan_id = params.tls_rx.vlan_id;
1093 out:
1094 	return (error);
1095 }
1096 
1097 static int
ktls_try_ifnet(struct socket * so,struct ktls_session * tls,int direction,bool force)1098 ktls_try_ifnet(struct socket *so, struct ktls_session *tls, int direction,
1099     bool force)
1100 {
1101 	struct m_snd_tag *mst;
1102 	int error;
1103 
1104 	switch (direction) {
1105 	case KTLS_TX:
1106 		error = ktls_alloc_snd_tag(so->so_pcb, tls, force, &mst);
1107 		if (__predict_false(error != 0))
1108 			goto done;
1109 		break;
1110 	case KTLS_RX:
1111 		KASSERT(!force, ("%s: forced receive tag", __func__));
1112 		error = ktls_alloc_rcv_tag(so->so_pcb, tls, &mst);
1113 		if (__predict_false(error != 0))
1114 			goto done;
1115 		break;
1116 	default:
1117 		__assert_unreachable();
1118 	}
1119 
1120 	tls->mode = TCP_TLS_MODE_IFNET;
1121 	tls->snd_tag = mst;
1122 
1123 	switch (tls->params.cipher_algorithm) {
1124 	case CRYPTO_AES_CBC:
1125 		counter_u64_add(ktls_ifnet_cbc, 1);
1126 		break;
1127 	case CRYPTO_AES_NIST_GCM_16:
1128 		counter_u64_add(ktls_ifnet_gcm, 1);
1129 		break;
1130 	case CRYPTO_CHACHA20_POLY1305:
1131 		counter_u64_add(ktls_ifnet_chacha20, 1);
1132 		break;
1133 	default:
1134 		break;
1135 	}
1136 done:
1137 	return (error);
1138 }
1139 
1140 static void
ktls_use_sw(struct ktls_session * tls)1141 ktls_use_sw(struct ktls_session *tls)
1142 {
1143 	tls->mode = TCP_TLS_MODE_SW;
1144 	switch (tls->params.cipher_algorithm) {
1145 	case CRYPTO_AES_CBC:
1146 		counter_u64_add(ktls_sw_cbc, 1);
1147 		break;
1148 	case CRYPTO_AES_NIST_GCM_16:
1149 		counter_u64_add(ktls_sw_gcm, 1);
1150 		break;
1151 	case CRYPTO_CHACHA20_POLY1305:
1152 		counter_u64_add(ktls_sw_chacha20, 1);
1153 		break;
1154 	}
1155 }
1156 
1157 static int
ktls_try_sw(struct ktls_session * tls,int direction)1158 ktls_try_sw(struct ktls_session *tls, int direction)
1159 {
1160 	int error;
1161 
1162 	error = ktls_ocf_try(tls, direction);
1163 	if (error)
1164 		return (error);
1165 	ktls_use_sw(tls);
1166 	return (0);
1167 }
1168 
1169 /*
1170  * KTLS RX stores data in the socket buffer as a list of TLS records,
1171  * where each record is stored as a control message containg the TLS
1172  * header followed by data mbufs containing the decrypted data.  This
1173  * is different from KTLS TX which always uses an mb_ext_pgs mbuf for
1174  * both encrypted and decrypted data.  TLS records decrypted by a NIC
1175  * should be queued to the socket buffer as records, but encrypted
1176  * data which needs to be decrypted by software arrives as a stream of
1177  * regular mbufs which need to be converted.  In addition, there may
1178  * already be pending encrypted data in the socket buffer when KTLS RX
1179  * is enabled.
1180  *
1181  * To manage not-yet-decrypted data for KTLS RX, the following scheme
1182  * is used:
1183  *
1184  * - A single chain of NOTREADY mbufs is hung off of sb_mtls.
1185  *
1186  * - ktls_check_rx checks this chain of mbufs reading the TLS header
1187  *   from the first mbuf.  Once all of the data for that TLS record is
1188  *   queued, the socket is queued to a worker thread.
1189  *
1190  * - The worker thread calls ktls_decrypt to decrypt TLS records in
1191  *   the TLS chain.  Each TLS record is detached from the TLS chain,
1192  *   decrypted, and inserted into the regular socket buffer chain as
1193  *   record starting with a control message holding the TLS header and
1194  *   a chain of mbufs holding the encrypted data.
1195  */
1196 
1197 static void
sb_mark_notready(struct sockbuf * sb)1198 sb_mark_notready(struct sockbuf *sb)
1199 {
1200 	struct mbuf *m;
1201 
1202 	m = sb->sb_mb;
1203 	sb->sb_mtls = m;
1204 	sb->sb_mb = NULL;
1205 	sb->sb_mbtail = NULL;
1206 	sb->sb_lastrecord = NULL;
1207 	for (; m != NULL; m = m->m_next) {
1208 		KASSERT(m->m_nextpkt == NULL, ("%s: m_nextpkt != NULL",
1209 		    __func__));
1210 		KASSERT((m->m_flags & M_NOTAVAIL) == 0, ("%s: mbuf not avail",
1211 		    __func__));
1212 		KASSERT(sb->sb_acc >= m->m_len, ("%s: sb_acc < m->m_len",
1213 		    __func__));
1214 		m->m_flags |= M_NOTREADY;
1215 		sb->sb_acc -= m->m_len;
1216 		sb->sb_tlscc += m->m_len;
1217 		sb->sb_mtlstail = m;
1218 	}
1219 	KASSERT(sb->sb_acc == 0 && sb->sb_tlscc == sb->sb_ccc,
1220 	    ("%s: acc %u tlscc %u ccc %u", __func__, sb->sb_acc, sb->sb_tlscc,
1221 	    sb->sb_ccc));
1222 }
1223 
1224 /*
1225  * Return information about the pending TLS data in a socket
1226  * buffer.  On return, 'seqno' is set to the sequence number
1227  * of the next TLS record to be received, 'resid' is set to
1228  * the amount of bytes still needed for the last pending
1229  * record.  The function returns 'false' if the last pending
1230  * record contains a partial TLS header.  In that case, 'resid'
1231  * is the number of bytes needed to complete the TLS header.
1232  */
1233 bool
ktls_pending_rx_info(struct sockbuf * sb,uint64_t * seqnop,size_t * residp)1234 ktls_pending_rx_info(struct sockbuf *sb, uint64_t *seqnop, size_t *residp)
1235 {
1236 	struct tls_record_layer hdr;
1237 	struct mbuf *m;
1238 	uint64_t seqno;
1239 	size_t resid;
1240 	u_int offset, record_len;
1241 
1242 	SOCKBUF_LOCK_ASSERT(sb);
1243 	MPASS(sb->sb_flags & SB_TLS_RX);
1244 	seqno = sb->sb_tls_seqno;
1245 	resid = sb->sb_tlscc;
1246 	m = sb->sb_mtls;
1247 	offset = 0;
1248 
1249 	if (resid == 0) {
1250 		*seqnop = seqno;
1251 		*residp = 0;
1252 		return (true);
1253 	}
1254 
1255 	for (;;) {
1256 		seqno++;
1257 
1258 		if (resid < sizeof(hdr)) {
1259 			*seqnop = seqno;
1260 			*residp = sizeof(hdr) - resid;
1261 			return (false);
1262 		}
1263 
1264 		m_copydata(m, offset, sizeof(hdr), (void *)&hdr);
1265 
1266 		record_len = sizeof(hdr) + ntohs(hdr.tls_length);
1267 		if (resid <= record_len) {
1268 			*seqnop = seqno;
1269 			*residp = record_len - resid;
1270 			return (true);
1271 		}
1272 		resid -= record_len;
1273 
1274 		while (record_len != 0) {
1275 			if (m->m_len - offset > record_len) {
1276 				offset += record_len;
1277 				break;
1278 			}
1279 
1280 			record_len -= (m->m_len - offset);
1281 			offset = 0;
1282 			m = m->m_next;
1283 		}
1284 	}
1285 }
1286 
1287 int
ktls_enable_rx(struct socket * so,struct tls_enable * en)1288 ktls_enable_rx(struct socket *so, struct tls_enable *en)
1289 {
1290 	struct ktls_session *tls;
1291 	int error;
1292 
1293 	if (!ktls_offload_enable)
1294 		return (ENOTSUP);
1295 
1296 	counter_u64_add(ktls_offload_enable_calls, 1);
1297 
1298 	/*
1299 	 * This should always be true since only the TCP socket option
1300 	 * invokes this function.
1301 	 */
1302 	if (so->so_proto->pr_protocol != IPPROTO_TCP)
1303 		return (EINVAL);
1304 
1305 	/*
1306 	 * XXX: Don't overwrite existing sessions.  We should permit
1307 	 * this to support rekeying in the future.
1308 	 */
1309 	if (so->so_rcv.sb_tls_info != NULL)
1310 		return (EALREADY);
1311 
1312 	if (en->cipher_algorithm == CRYPTO_AES_CBC && !ktls_cbc_enable)
1313 		return (ENOTSUP);
1314 
1315 	error = ktls_create_session(so, en, &tls, KTLS_RX);
1316 	if (error)
1317 		return (error);
1318 
1319 	error = ktls_ocf_try(tls, KTLS_RX);
1320 	if (error) {
1321 		ktls_free(tls);
1322 		return (error);
1323 	}
1324 
1325 	/*
1326 	 * Serialize with soreceive_generic() and make sure that we're not
1327 	 * operating on a listening socket.
1328 	 */
1329 	error = SOCK_IO_RECV_LOCK(so, SBL_WAIT);
1330 	if (error) {
1331 		ktls_free(tls);
1332 		return (error);
1333 	}
1334 
1335 	/* Mark the socket as using TLS offload. */
1336 	SOCK_RECVBUF_LOCK(so);
1337 	if (__predict_false(so->so_rcv.sb_tls_info != NULL))
1338 		error = EALREADY;
1339 	else if ((so->so_rcv.sb_flags & SB_SPLICED) != 0)
1340 		error = EINVAL;
1341 	if (error != 0) {
1342 		SOCK_RECVBUF_UNLOCK(so);
1343 		SOCK_IO_RECV_UNLOCK(so);
1344 		ktls_free(tls);
1345 		return (EALREADY);
1346 	}
1347 	so->so_rcv.sb_tls_seqno = be64dec(en->rec_seq);
1348 	so->so_rcv.sb_tls_info = tls;
1349 	so->so_rcv.sb_flags |= SB_TLS_RX;
1350 
1351 	/* Mark existing data as not ready until it can be decrypted. */
1352 	sb_mark_notready(&so->so_rcv);
1353 	ktls_check_rx(&so->so_rcv);
1354 	SOCK_RECVBUF_UNLOCK(so);
1355 	SOCK_IO_RECV_UNLOCK(so);
1356 
1357 	/* Prefer TOE -> ifnet TLS -> software TLS. */
1358 #ifdef TCP_OFFLOAD
1359 	error = ktls_try_toe(so, tls, KTLS_RX);
1360 	if (error)
1361 #endif
1362 		error = ktls_try_ifnet(so, tls, KTLS_RX, false);
1363 	if (error)
1364 		ktls_use_sw(tls);
1365 
1366 	counter_u64_add(ktls_offload_total, 1);
1367 
1368 	return (0);
1369 }
1370 
1371 int
ktls_enable_tx(struct socket * so,struct tls_enable * en)1372 ktls_enable_tx(struct socket *so, struct tls_enable *en)
1373 {
1374 	struct ktls_session *tls;
1375 	struct inpcb *inp;
1376 	struct tcpcb *tp;
1377 	int error;
1378 
1379 	if (!ktls_offload_enable)
1380 		return (ENOTSUP);
1381 
1382 	counter_u64_add(ktls_offload_enable_calls, 1);
1383 
1384 	/*
1385 	 * This should always be true since only the TCP socket option
1386 	 * invokes this function.
1387 	 */
1388 	if (so->so_proto->pr_protocol != IPPROTO_TCP)
1389 		return (EINVAL);
1390 
1391 	/*
1392 	 * XXX: Don't overwrite existing sessions.  We should permit
1393 	 * this to support rekeying in the future.
1394 	 */
1395 	if (so->so_snd.sb_tls_info != NULL)
1396 		return (EALREADY);
1397 
1398 	if (en->cipher_algorithm == CRYPTO_AES_CBC && !ktls_cbc_enable)
1399 		return (ENOTSUP);
1400 
1401 	/* TLS requires ext pgs */
1402 	if (mb_use_ext_pgs == 0)
1403 		return (ENXIO);
1404 
1405 	error = ktls_create_session(so, en, &tls, KTLS_TX);
1406 	if (error)
1407 		return (error);
1408 
1409 	/* Prefer TOE -> ifnet TLS -> software TLS. */
1410 #ifdef TCP_OFFLOAD
1411 	error = ktls_try_toe(so, tls, KTLS_TX);
1412 	if (error)
1413 #endif
1414 		error = ktls_try_ifnet(so, tls, KTLS_TX, false);
1415 	if (error)
1416 		error = ktls_try_sw(tls, KTLS_TX);
1417 
1418 	if (error) {
1419 		ktls_free(tls);
1420 		return (error);
1421 	}
1422 
1423 	/*
1424 	 * Serialize with sosend_generic() and make sure that we're not
1425 	 * operating on a listening socket.
1426 	 */
1427 	error = SOCK_IO_SEND_LOCK(so, SBL_WAIT);
1428 	if (error) {
1429 		ktls_free(tls);
1430 		return (error);
1431 	}
1432 
1433 	/*
1434 	 * Write lock the INP when setting sb_tls_info so that
1435 	 * routines in tcp_ratelimit.c can read sb_tls_info while
1436 	 * holding the INP lock.
1437 	 */
1438 	inp = so->so_pcb;
1439 	INP_WLOCK(inp);
1440 	SOCK_SENDBUF_LOCK(so);
1441 	if (__predict_false(so->so_snd.sb_tls_info != NULL))
1442 		error = EALREADY;
1443 	else if ((so->so_snd.sb_flags & SB_SPLICED) != 0)
1444 		error = EINVAL;
1445 	if (error != 0) {
1446 		SOCK_SENDBUF_UNLOCK(so);
1447 		INP_WUNLOCK(inp);
1448 		SOCK_IO_SEND_UNLOCK(so);
1449 		ktls_free(tls);
1450 		return (error);
1451 	}
1452 	so->so_snd.sb_tls_seqno = be64dec(en->rec_seq);
1453 	so->so_snd.sb_tls_info = tls;
1454 	if (tls->mode != TCP_TLS_MODE_SW) {
1455 		tp = intotcpcb(inp);
1456 		MPASS(tp->t_nic_ktls_xmit == 0);
1457 		tp->t_nic_ktls_xmit = 1;
1458 		if (tp->t_fb->tfb_hwtls_change != NULL)
1459 			(*tp->t_fb->tfb_hwtls_change)(tp, 1);
1460 	}
1461 	SOCK_SENDBUF_UNLOCK(so);
1462 	INP_WUNLOCK(inp);
1463 	SOCK_IO_SEND_UNLOCK(so);
1464 
1465 	counter_u64_add(ktls_offload_total, 1);
1466 
1467 	return (0);
1468 }
1469 
1470 int
ktls_get_rx_mode(struct socket * so,int * modep)1471 ktls_get_rx_mode(struct socket *so, int *modep)
1472 {
1473 	struct ktls_session *tls;
1474 	struct inpcb *inp __diagused;
1475 
1476 	if (SOLISTENING(so))
1477 		return (EINVAL);
1478 	inp = so->so_pcb;
1479 	INP_WLOCK_ASSERT(inp);
1480 	SOCK_RECVBUF_LOCK(so);
1481 	tls = so->so_rcv.sb_tls_info;
1482 	if (tls == NULL)
1483 		*modep = TCP_TLS_MODE_NONE;
1484 	else
1485 		*modep = tls->mode;
1486 	SOCK_RECVBUF_UNLOCK(so);
1487 	return (0);
1488 }
1489 
1490 /*
1491  * ktls_get_rx_sequence - get the next TCP- and TLS- sequence number.
1492  *
1493  * This function gets information about the next TCP- and TLS-
1494  * sequence number to be processed by the TLS receive worker
1495  * thread. The information is extracted from the given "inpcb"
1496  * structure. The values are stored in host endian format at the two
1497  * given output pointer locations. The TCP sequence number points to
1498  * the beginning of the TLS header.
1499  *
1500  * This function returns zero on success, else a non-zero error code
1501  * is returned.
1502  */
1503 int
ktls_get_rx_sequence(struct inpcb * inp,uint32_t * tcpseq,uint64_t * tlsseq)1504 ktls_get_rx_sequence(struct inpcb *inp, uint32_t *tcpseq, uint64_t *tlsseq)
1505 {
1506 	struct socket *so;
1507 	struct tcpcb *tp;
1508 
1509 	INP_RLOCK(inp);
1510 	so = inp->inp_socket;
1511 	if (__predict_false(so == NULL)) {
1512 		INP_RUNLOCK(inp);
1513 		return (EINVAL);
1514 	}
1515 	if (inp->inp_flags & INP_DROPPED) {
1516 		INP_RUNLOCK(inp);
1517 		return (ECONNRESET);
1518 	}
1519 
1520 	tp = intotcpcb(inp);
1521 	MPASS(tp != NULL);
1522 
1523 	SOCKBUF_LOCK(&so->so_rcv);
1524 	*tcpseq = tp->rcv_nxt - so->so_rcv.sb_tlscc;
1525 	*tlsseq = so->so_rcv.sb_tls_seqno;
1526 	SOCKBUF_UNLOCK(&so->so_rcv);
1527 
1528 	INP_RUNLOCK(inp);
1529 
1530 	return (0);
1531 }
1532 
1533 int
ktls_get_tx_mode(struct socket * so,int * modep)1534 ktls_get_tx_mode(struct socket *so, int *modep)
1535 {
1536 	struct ktls_session *tls;
1537 	struct inpcb *inp __diagused;
1538 
1539 	if (SOLISTENING(so))
1540 		return (EINVAL);
1541 	inp = so->so_pcb;
1542 	INP_WLOCK_ASSERT(inp);
1543 	SOCK_SENDBUF_LOCK(so);
1544 	tls = so->so_snd.sb_tls_info;
1545 	if (tls == NULL)
1546 		*modep = TCP_TLS_MODE_NONE;
1547 	else
1548 		*modep = tls->mode;
1549 	SOCK_SENDBUF_UNLOCK(so);
1550 	return (0);
1551 }
1552 
1553 /*
1554  * Switch between SW and ifnet TLS sessions as requested.
1555  */
1556 int
ktls_set_tx_mode(struct socket * so,int mode)1557 ktls_set_tx_mode(struct socket *so, int mode)
1558 {
1559 	struct ktls_session *tls, *tls_new;
1560 	struct inpcb *inp;
1561 	struct tcpcb *tp;
1562 	int error;
1563 
1564 	if (SOLISTENING(so))
1565 		return (EINVAL);
1566 	switch (mode) {
1567 	case TCP_TLS_MODE_SW:
1568 	case TCP_TLS_MODE_IFNET:
1569 		break;
1570 	default:
1571 		return (EINVAL);
1572 	}
1573 
1574 	inp = so->so_pcb;
1575 	INP_WLOCK_ASSERT(inp);
1576 	tp = intotcpcb(inp);
1577 
1578 	if (mode == TCP_TLS_MODE_IFNET) {
1579 		/* Don't allow enabling ifnet ktls multiple times */
1580 		if (tp->t_nic_ktls_xmit)
1581 			return (EALREADY);
1582 
1583 		/*
1584 		 * Don't enable ifnet ktls if we disabled it due to an
1585 		 * excessive retransmission rate
1586 		 */
1587 		if (tp->t_nic_ktls_xmit_dis)
1588 			return (ENXIO);
1589 	}
1590 
1591 	SOCKBUF_LOCK(&so->so_snd);
1592 	tls = so->so_snd.sb_tls_info;
1593 	if (tls == NULL) {
1594 		SOCKBUF_UNLOCK(&so->so_snd);
1595 		return (0);
1596 	}
1597 
1598 	if (tls->mode == mode) {
1599 		SOCKBUF_UNLOCK(&so->so_snd);
1600 		return (0);
1601 	}
1602 
1603 	tls = ktls_hold(tls);
1604 	SOCKBUF_UNLOCK(&so->so_snd);
1605 	INP_WUNLOCK(inp);
1606 
1607 	tls_new = ktls_clone_session(tls, KTLS_TX);
1608 
1609 	if (mode == TCP_TLS_MODE_IFNET)
1610 		error = ktls_try_ifnet(so, tls_new, KTLS_TX, true);
1611 	else
1612 		error = ktls_try_sw(tls_new, KTLS_TX);
1613 	if (error) {
1614 		counter_u64_add(ktls_switch_failed, 1);
1615 		ktls_free(tls_new);
1616 		ktls_free(tls);
1617 		INP_WLOCK(inp);
1618 		return (error);
1619 	}
1620 
1621 	error = SOCK_IO_SEND_LOCK(so, SBL_WAIT);
1622 	if (error) {
1623 		counter_u64_add(ktls_switch_failed, 1);
1624 		ktls_free(tls_new);
1625 		ktls_free(tls);
1626 		INP_WLOCK(inp);
1627 		return (error);
1628 	}
1629 
1630 	/*
1631 	 * If we raced with another session change, keep the existing
1632 	 * session.
1633 	 */
1634 	if (tls != so->so_snd.sb_tls_info) {
1635 		counter_u64_add(ktls_switch_failed, 1);
1636 		SOCK_IO_SEND_UNLOCK(so);
1637 		ktls_free(tls_new);
1638 		ktls_free(tls);
1639 		INP_WLOCK(inp);
1640 		return (EBUSY);
1641 	}
1642 
1643 	INP_WLOCK(inp);
1644 	SOCKBUF_LOCK(&so->so_snd);
1645 	so->so_snd.sb_tls_info = tls_new;
1646 	if (tls_new->mode != TCP_TLS_MODE_SW) {
1647 		MPASS(tp->t_nic_ktls_xmit == 0);
1648 		tp->t_nic_ktls_xmit = 1;
1649 		if (tp->t_fb->tfb_hwtls_change != NULL)
1650 			(*tp->t_fb->tfb_hwtls_change)(tp, 1);
1651 	}
1652 	SOCKBUF_UNLOCK(&so->so_snd);
1653 	SOCK_IO_SEND_UNLOCK(so);
1654 
1655 	/*
1656 	 * Drop two references on 'tls'.  The first is for the
1657 	 * ktls_hold() above.  The second drops the reference from the
1658 	 * socket buffer.
1659 	 */
1660 	KASSERT(tls->refcount >= 2, ("too few references on old session"));
1661 	ktls_free(tls);
1662 	ktls_free(tls);
1663 
1664 	if (mode == TCP_TLS_MODE_IFNET)
1665 		counter_u64_add(ktls_switch_to_ifnet, 1);
1666 	else
1667 		counter_u64_add(ktls_switch_to_sw, 1);
1668 
1669 	return (0);
1670 }
1671 
1672 /*
1673  * Try to allocate a new TLS receive tag.  This task is scheduled when
1674  * sbappend_ktls_rx detects an input path change.  If a new tag is
1675  * allocated, replace the tag in the TLS session.  If a new tag cannot
1676  * be allocated, let the session fall back to software decryption.
1677  */
1678 static void
ktls_reset_receive_tag(void * context,int pending)1679 ktls_reset_receive_tag(void *context, int pending)
1680 {
1681 	union if_snd_tag_alloc_params params;
1682 	struct ktls_session *tls;
1683 	struct m_snd_tag *mst;
1684 	struct inpcb *inp;
1685 	struct ifnet *ifp;
1686 	struct socket *so;
1687 	int error;
1688 
1689 	MPASS(pending == 1);
1690 
1691 	tls = context;
1692 	so = tls->so;
1693 	inp = so->so_pcb;
1694 	ifp = NULL;
1695 
1696 	INP_RLOCK(inp);
1697 	if (inp->inp_flags & INP_DROPPED) {
1698 		INP_RUNLOCK(inp);
1699 		goto out;
1700 	}
1701 
1702 	SOCKBUF_LOCK(&so->so_rcv);
1703 	mst = tls->snd_tag;
1704 	tls->snd_tag = NULL;
1705 	if (mst != NULL)
1706 		m_snd_tag_rele(mst);
1707 
1708 	ifp = tls->rx_ifp;
1709 	if_ref(ifp);
1710 	SOCKBUF_UNLOCK(&so->so_rcv);
1711 
1712 	params.hdr.type = IF_SND_TAG_TYPE_TLS_RX;
1713 	params.hdr.flowid = inp->inp_flowid;
1714 	params.hdr.flowtype = inp->inp_flowtype;
1715 	params.hdr.numa_domain = inp->inp_numa_domain;
1716 	params.tls_rx.inp = inp;
1717 	params.tls_rx.tls = tls;
1718 	params.tls_rx.vlan_id = tls->rx_vlan_id;
1719 	INP_RUNLOCK(inp);
1720 
1721 	if (inp->inp_vflag & INP_IPV6) {
1722 		if ((if_getcapenable2(ifp) & IFCAP2_RXTLS6) == 0)
1723 			goto out;
1724 	} else {
1725 		if ((if_getcapenable2(ifp) & IFCAP2_RXTLS4) == 0)
1726 			goto out;
1727 	}
1728 
1729 	error = m_snd_tag_alloc(ifp, &params, &mst);
1730 	if (error == 0) {
1731 		SOCKBUF_LOCK(&so->so_rcv);
1732 		tls->snd_tag = mst;
1733 		SOCKBUF_UNLOCK(&so->so_rcv);
1734 
1735 		counter_u64_add(ktls_ifnet_reset, 1);
1736 	} else {
1737 		/*
1738 		 * Just fall back to software decryption if a tag
1739 		 * cannot be allocated leaving the connection intact.
1740 		 * If a future input path change switches to another
1741 		 * interface this connection will resume ifnet TLS.
1742 		 */
1743 		counter_u64_add(ktls_ifnet_reset_failed, 1);
1744 	}
1745 
1746 out:
1747 	mtx_pool_lock(mtxpool_sleep, tls);
1748 	tls->reset_pending = false;
1749 	mtx_pool_unlock(mtxpool_sleep, tls);
1750 
1751 	if (ifp != NULL)
1752 		if_rele(ifp);
1753 	CURVNET_SET(so->so_vnet);
1754 	sorele(so);
1755 	CURVNET_RESTORE();
1756 	ktls_free(tls);
1757 }
1758 
1759 /*
1760  * Try to allocate a new TLS send tag.  This task is scheduled when
1761  * ip_output detects a route change while trying to transmit a packet
1762  * holding a TLS record.  If a new tag is allocated, replace the tag
1763  * in the TLS session.  Subsequent packets on the connection will use
1764  * the new tag.  If a new tag cannot be allocated, drop the
1765  * connection.
1766  */
1767 static void
ktls_reset_send_tag(void * context,int pending)1768 ktls_reset_send_tag(void *context, int pending)
1769 {
1770 	struct epoch_tracker et;
1771 	struct ktls_session *tls;
1772 	struct m_snd_tag *old, *new;
1773 	struct inpcb *inp;
1774 	struct tcpcb *tp;
1775 	int error;
1776 
1777 	MPASS(pending == 1);
1778 
1779 	tls = context;
1780 	inp = tls->inp;
1781 
1782 	/*
1783 	 * Free the old tag first before allocating a new one.
1784 	 * ip[6]_output_send() will treat a NULL send tag the same as
1785 	 * an ifp mismatch and drop packets until a new tag is
1786 	 * allocated.
1787 	 *
1788 	 * Write-lock the INP when changing tls->snd_tag since
1789 	 * ip[6]_output_send() holds a read-lock when reading the
1790 	 * pointer.
1791 	 */
1792 	INP_WLOCK(inp);
1793 	old = tls->snd_tag;
1794 	tls->snd_tag = NULL;
1795 	INP_WUNLOCK(inp);
1796 	if (old != NULL)
1797 		m_snd_tag_rele(old);
1798 
1799 	error = ktls_alloc_snd_tag(inp, tls, true, &new);
1800 
1801 	if (error == 0) {
1802 		INP_WLOCK(inp);
1803 		tls->snd_tag = new;
1804 		mtx_pool_lock(mtxpool_sleep, tls);
1805 		tls->reset_pending = false;
1806 		mtx_pool_unlock(mtxpool_sleep, tls);
1807 		INP_WUNLOCK(inp);
1808 
1809 		counter_u64_add(ktls_ifnet_reset, 1);
1810 
1811 		/*
1812 		 * XXX: Should we kick tcp_output explicitly now that
1813 		 * the send tag is fixed or just rely on timers?
1814 		 */
1815 	} else {
1816 		NET_EPOCH_ENTER(et);
1817 		INP_WLOCK(inp);
1818 		if (!(inp->inp_flags & INP_DROPPED)) {
1819 			tp = intotcpcb(inp);
1820 			CURVNET_SET(inp->inp_vnet);
1821 			tp = tcp_drop(tp, ECONNABORTED);
1822 			CURVNET_RESTORE();
1823 			if (tp != NULL) {
1824 				counter_u64_add(ktls_ifnet_reset_dropped, 1);
1825 				INP_WUNLOCK(inp);
1826 			}
1827 		} else
1828 			INP_WUNLOCK(inp);
1829 		NET_EPOCH_EXIT(et);
1830 
1831 		counter_u64_add(ktls_ifnet_reset_failed, 1);
1832 
1833 		/*
1834 		 * Leave reset_pending true to avoid future tasks while
1835 		 * the socket goes away.
1836 		 */
1837 	}
1838 
1839 	ktls_free(tls);
1840 }
1841 
1842 void
ktls_input_ifp_mismatch(struct sockbuf * sb,struct ifnet * ifp)1843 ktls_input_ifp_mismatch(struct sockbuf *sb, struct ifnet *ifp)
1844 {
1845 	struct ktls_session *tls;
1846 	struct socket *so;
1847 
1848 	SOCKBUF_LOCK_ASSERT(sb);
1849 	KASSERT(sb->sb_flags & SB_TLS_RX, ("%s: sockbuf %p isn't TLS RX",
1850 	    __func__, sb));
1851 	so = __containerof(sb, struct socket, so_rcv);
1852 
1853 	tls = sb->sb_tls_info;
1854 	if_rele(tls->rx_ifp);
1855 	if_ref(ifp);
1856 	tls->rx_ifp = ifp;
1857 
1858 	/*
1859 	 * See if we should schedule a task to update the receive tag for
1860 	 * this session.
1861 	 */
1862 	mtx_pool_lock(mtxpool_sleep, tls);
1863 	if (!tls->reset_pending) {
1864 		(void) ktls_hold(tls);
1865 		soref(so);
1866 		tls->so = so;
1867 		tls->reset_pending = true;
1868 		taskqueue_enqueue(taskqueue_thread, &tls->reset_tag_task);
1869 	}
1870 	mtx_pool_unlock(mtxpool_sleep, tls);
1871 }
1872 
1873 int
ktls_output_eagain(struct inpcb * inp,struct ktls_session * tls)1874 ktls_output_eagain(struct inpcb *inp, struct ktls_session *tls)
1875 {
1876 
1877 	if (inp == NULL)
1878 		return (ENOBUFS);
1879 
1880 	INP_LOCK_ASSERT(inp);
1881 
1882 	/*
1883 	 * See if we should schedule a task to update the send tag for
1884 	 * this session.
1885 	 */
1886 	mtx_pool_lock(mtxpool_sleep, tls);
1887 	if (!tls->reset_pending) {
1888 		(void) ktls_hold(tls);
1889 		tls->reset_pending = true;
1890 		taskqueue_enqueue(taskqueue_thread, &tls->reset_tag_task);
1891 	}
1892 	mtx_pool_unlock(mtxpool_sleep, tls);
1893 	return (ENOBUFS);
1894 }
1895 
1896 #ifdef RATELIMIT
1897 int
ktls_modify_txrtlmt(struct ktls_session * tls,uint64_t max_pacing_rate)1898 ktls_modify_txrtlmt(struct ktls_session *tls, uint64_t max_pacing_rate)
1899 {
1900 	union if_snd_tag_modify_params params = {
1901 		.rate_limit.max_rate = max_pacing_rate,
1902 		.rate_limit.flags = M_NOWAIT,
1903 	};
1904 	struct m_snd_tag *mst;
1905 
1906 	/* Can't get to the inp, but it should be locked. */
1907 	/* INP_LOCK_ASSERT(inp); */
1908 
1909 	MPASS(tls->mode == TCP_TLS_MODE_IFNET);
1910 
1911 	if (tls->snd_tag == NULL) {
1912 		/*
1913 		 * Resetting send tag, ignore this change.  The
1914 		 * pending reset may or may not see this updated rate
1915 		 * in the tcpcb.  If it doesn't, we will just lose
1916 		 * this rate change.
1917 		 */
1918 		return (0);
1919 	}
1920 
1921 	mst = tls->snd_tag;
1922 
1923 	MPASS(mst != NULL);
1924 	MPASS(mst->sw->type == IF_SND_TAG_TYPE_TLS_RATE_LIMIT);
1925 
1926 	return (mst->sw->snd_tag_modify(mst, &params));
1927 }
1928 #endif
1929 
1930 static void
ktls_destroy_help(void * context,int pending __unused)1931 ktls_destroy_help(void *context, int pending __unused)
1932 {
1933 	ktls_destroy(context);
1934 }
1935 
1936 void
ktls_destroy(struct ktls_session * tls)1937 ktls_destroy(struct ktls_session *tls)
1938 {
1939 	struct inpcb *inp;
1940 	struct tcpcb *tp;
1941 	bool wlocked;
1942 
1943 	MPASS(tls->refcount == 0);
1944 
1945 	inp = tls->inp;
1946 	if (tls->tx) {
1947 		wlocked = INP_WLOCKED(inp);
1948 		if (!wlocked && !INP_TRY_WLOCK(inp)) {
1949 			/*
1950 			 * rwlocks read locks are anonymous, and there
1951 			 * is no way to know if our current thread
1952 			 * holds an rlock on the inp.  As a rough
1953 			 * estimate, check to see if the thread holds
1954 			 * *any* rlocks at all.  If it does not, then we
1955 			 * know that we don't hold the inp rlock, and
1956 			 * can safely take the wlock
1957 			 */
1958 			if (curthread->td_rw_rlocks == 0) {
1959 				INP_WLOCK(inp);
1960 			} else {
1961 				/*
1962 				 * We might hold the rlock, so let's
1963 				 * do the destroy in a taskqueue
1964 				 * context to avoid a potential
1965 				 * deadlock.  This should be very
1966 				 * rare.
1967 				 */
1968 				counter_u64_add(ktls_destroy_task, 1);
1969 				TASK_INIT(&tls->destroy_task, 0,
1970 				    ktls_destroy_help, tls);
1971 				(void)taskqueue_enqueue(taskqueue_thread,
1972 				    &tls->destroy_task);
1973 				return;
1974 			}
1975 		}
1976 	}
1977 
1978 	if (tls->sequential_records) {
1979 		struct mbuf *m, *n;
1980 		int page_count;
1981 
1982 		STAILQ_FOREACH_SAFE(m, &tls->pending_records, m_epg_stailq, n) {
1983 			page_count = m->m_epg_enc_cnt;
1984 			while (page_count > 0) {
1985 				KASSERT(page_count >= m->m_epg_nrdy,
1986 				    ("%s: too few pages", __func__));
1987 				page_count -= m->m_epg_nrdy;
1988 				m = m_free(m);
1989 			}
1990 		}
1991 	}
1992 
1993 	counter_u64_add(ktls_offload_active, -1);
1994 	switch (tls->mode) {
1995 	case TCP_TLS_MODE_SW:
1996 		switch (tls->params.cipher_algorithm) {
1997 		case CRYPTO_AES_CBC:
1998 			counter_u64_add(ktls_sw_cbc, -1);
1999 			break;
2000 		case CRYPTO_AES_NIST_GCM_16:
2001 			counter_u64_add(ktls_sw_gcm, -1);
2002 			break;
2003 		case CRYPTO_CHACHA20_POLY1305:
2004 			counter_u64_add(ktls_sw_chacha20, -1);
2005 			break;
2006 		}
2007 		break;
2008 	case TCP_TLS_MODE_IFNET:
2009 		switch (tls->params.cipher_algorithm) {
2010 		case CRYPTO_AES_CBC:
2011 			counter_u64_add(ktls_ifnet_cbc, -1);
2012 			break;
2013 		case CRYPTO_AES_NIST_GCM_16:
2014 			counter_u64_add(ktls_ifnet_gcm, -1);
2015 			break;
2016 		case CRYPTO_CHACHA20_POLY1305:
2017 			counter_u64_add(ktls_ifnet_chacha20, -1);
2018 			break;
2019 		}
2020 		if (tls->snd_tag != NULL)
2021 			m_snd_tag_rele(tls->snd_tag);
2022 		if (tls->rx_ifp != NULL)
2023 			if_rele(tls->rx_ifp);
2024 		if (tls->tx) {
2025 			INP_WLOCK_ASSERT(inp);
2026 			tp = intotcpcb(inp);
2027 			MPASS(tp->t_nic_ktls_xmit == 1);
2028 			tp->t_nic_ktls_xmit = 0;
2029 		}
2030 		break;
2031 #ifdef TCP_OFFLOAD
2032 	case TCP_TLS_MODE_TOE:
2033 		switch (tls->params.cipher_algorithm) {
2034 		case CRYPTO_AES_CBC:
2035 			counter_u64_add(ktls_toe_cbc, -1);
2036 			break;
2037 		case CRYPTO_AES_NIST_GCM_16:
2038 			counter_u64_add(ktls_toe_gcm, -1);
2039 			break;
2040 		case CRYPTO_CHACHA20_POLY1305:
2041 			counter_u64_add(ktls_toe_chacha20, -1);
2042 			break;
2043 		}
2044 		break;
2045 #endif
2046 	}
2047 	if (tls->ocf_session != NULL)
2048 		ktls_ocf_free(tls);
2049 	if (tls->params.auth_key != NULL) {
2050 		zfree(tls->params.auth_key, M_KTLS);
2051 		tls->params.auth_key = NULL;
2052 		tls->params.auth_key_len = 0;
2053 	}
2054 	if (tls->params.cipher_key != NULL) {
2055 		zfree(tls->params.cipher_key, M_KTLS);
2056 		tls->params.cipher_key = NULL;
2057 		tls->params.cipher_key_len = 0;
2058 	}
2059 	if (tls->tx) {
2060 		INP_WLOCK_ASSERT(inp);
2061 		if (!in_pcbrele_wlocked(inp) && !wlocked)
2062 			INP_WUNLOCK(inp);
2063 	}
2064 	explicit_bzero(tls->params.iv, sizeof(tls->params.iv));
2065 
2066 	uma_zfree(ktls_session_zone, tls);
2067 }
2068 
2069 void
ktls_seq(struct sockbuf * sb,struct mbuf * m)2070 ktls_seq(struct sockbuf *sb, struct mbuf *m)
2071 {
2072 
2073 	for (; m != NULL; m = m->m_next) {
2074 		KASSERT((m->m_flags & M_EXTPG) != 0,
2075 		    ("ktls_seq: mapped mbuf %p", m));
2076 
2077 		m->m_epg_seqno = sb->sb_tls_seqno;
2078 		sb->sb_tls_seqno++;
2079 	}
2080 }
2081 
2082 /*
2083  * Add TLS framing (headers and trailers) to a chain of mbufs.  Each
2084  * mbuf in the chain must be an unmapped mbuf.  The payload of the
2085  * mbuf must be populated with the payload of each TLS record.
2086  *
2087  * The record_type argument specifies the TLS record type used when
2088  * populating the TLS header.
2089  *
2090  * The enq_count argument on return is set to the number of pages of
2091  * payload data for this entire chain that need to be encrypted via SW
2092  * encryption.  The returned value should be passed to ktls_enqueue
2093  * when scheduling encryption of this chain of mbufs.  To handle the
2094  * special case of empty fragments for TLS 1.0 sessions, an empty
2095  * fragment counts as one page.
2096  */
2097 void
ktls_frame(struct mbuf * top,struct ktls_session * tls,int * enq_cnt,uint8_t record_type)2098 ktls_frame(struct mbuf *top, struct ktls_session *tls, int *enq_cnt,
2099     uint8_t record_type)
2100 {
2101 	struct tls_record_layer *tlshdr;
2102 	struct mbuf *m;
2103 	uint64_t *noncep;
2104 	uint16_t tls_len;
2105 	int maxlen __diagused;
2106 
2107 	maxlen = tls->params.max_frame_len;
2108 	*enq_cnt = 0;
2109 	for (m = top; m != NULL; m = m->m_next) {
2110 		/*
2111 		 * All mbufs in the chain should be TLS records whose
2112 		 * payload does not exceed the maximum frame length.
2113 		 *
2114 		 * Empty TLS 1.0 records are permitted when using CBC.
2115 		 */
2116 		KASSERT(m->m_len <= maxlen && m->m_len >= 0 &&
2117 		    (m->m_len > 0 || ktls_permit_empty_frames(tls)),
2118 		    ("ktls_frame: m %p len %d", m, m->m_len));
2119 
2120 		/*
2121 		 * TLS frames require unmapped mbufs to store session
2122 		 * info.
2123 		 */
2124 		KASSERT((m->m_flags & M_EXTPG) != 0,
2125 		    ("ktls_frame: mapped mbuf %p (top = %p)", m, top));
2126 
2127 		tls_len = m->m_len;
2128 
2129 		/* Save a reference to the session. */
2130 		m->m_epg_tls = ktls_hold(tls);
2131 
2132 		m->m_epg_hdrlen = tls->params.tls_hlen;
2133 		m->m_epg_trllen = tls->params.tls_tlen;
2134 		if (tls->params.cipher_algorithm == CRYPTO_AES_CBC) {
2135 			int bs, delta;
2136 
2137 			/*
2138 			 * AES-CBC pads messages to a multiple of the
2139 			 * block size.  Note that the padding is
2140 			 * applied after the digest and the encryption
2141 			 * is done on the "plaintext || mac || padding".
2142 			 * At least one byte of padding is always
2143 			 * present.
2144 			 *
2145 			 * Compute the final trailer length assuming
2146 			 * at most one block of padding.
2147 			 * tls->params.tls_tlen is the maximum
2148 			 * possible trailer length (padding + digest).
2149 			 * delta holds the number of excess padding
2150 			 * bytes if the maximum were used.  Those
2151 			 * extra bytes are removed.
2152 			 */
2153 			bs = tls->params.tls_bs;
2154 			delta = (tls_len + tls->params.tls_tlen) & (bs - 1);
2155 			m->m_epg_trllen -= delta;
2156 		}
2157 		m->m_len += m->m_epg_hdrlen + m->m_epg_trllen;
2158 
2159 		/* Populate the TLS header. */
2160 		tlshdr = (void *)m->m_epg_hdr;
2161 		tlshdr->tls_vmajor = tls->params.tls_vmajor;
2162 
2163 		/*
2164 		 * TLS 1.3 masquarades as TLS 1.2 with a record type
2165 		 * of TLS_RLTYPE_APP.
2166 		 */
2167 		if (tls->params.tls_vminor == TLS_MINOR_VER_THREE &&
2168 		    tls->params.tls_vmajor == TLS_MAJOR_VER_ONE) {
2169 			tlshdr->tls_vminor = TLS_MINOR_VER_TWO;
2170 			tlshdr->tls_type = TLS_RLTYPE_APP;
2171 			/* save the real record type for later */
2172 			m->m_epg_record_type = record_type;
2173 			m->m_epg_trail[0] = record_type;
2174 		} else {
2175 			tlshdr->tls_vminor = tls->params.tls_vminor;
2176 			tlshdr->tls_type = record_type;
2177 		}
2178 		tlshdr->tls_length = htons(m->m_len - sizeof(*tlshdr));
2179 
2180 		/*
2181 		 * Store nonces / explicit IVs after the end of the
2182 		 * TLS header.
2183 		 *
2184 		 * For GCM with TLS 1.2, an 8 byte nonce is copied
2185 		 * from the end of the IV.  The nonce is then
2186 		 * incremented for use by the next record.
2187 		 *
2188 		 * For CBC, a random nonce is inserted for TLS 1.1+.
2189 		 */
2190 		if (tls->params.cipher_algorithm == CRYPTO_AES_NIST_GCM_16 &&
2191 		    tls->params.tls_vminor == TLS_MINOR_VER_TWO) {
2192 			noncep = (uint64_t *)(tls->params.iv + 8);
2193 			be64enc(tlshdr + 1, *noncep);
2194 			(*noncep)++;
2195 		} else if (tls->params.cipher_algorithm == CRYPTO_AES_CBC &&
2196 		    tls->params.tls_vminor >= TLS_MINOR_VER_ONE)
2197 			arc4rand(tlshdr + 1, AES_BLOCK_LEN, 0);
2198 
2199 		/*
2200 		 * When using SW encryption, mark the mbuf not ready.
2201 		 * It will be marked ready via sbready() after the
2202 		 * record has been encrypted.
2203 		 *
2204 		 * When using ifnet TLS, unencrypted TLS records are
2205 		 * sent down the stack to the NIC.
2206 		 */
2207 		if (tls->mode == TCP_TLS_MODE_SW) {
2208 			m->m_flags |= M_NOTREADY;
2209 			if (__predict_false(tls_len == 0)) {
2210 				/* TLS 1.0 empty fragment. */
2211 				m->m_epg_nrdy = 1;
2212 			} else
2213 				m->m_epg_nrdy = m->m_epg_npgs;
2214 			*enq_cnt += m->m_epg_nrdy;
2215 		}
2216 	}
2217 }
2218 
2219 bool
ktls_permit_empty_frames(struct ktls_session * tls)2220 ktls_permit_empty_frames(struct ktls_session *tls)
2221 {
2222 	return (tls->params.cipher_algorithm == CRYPTO_AES_CBC &&
2223 	    tls->params.tls_vminor == TLS_MINOR_VER_ZERO);
2224 }
2225 
2226 void
ktls_check_rx(struct sockbuf * sb)2227 ktls_check_rx(struct sockbuf *sb)
2228 {
2229 	struct tls_record_layer hdr;
2230 	struct ktls_wq *wq;
2231 	struct socket *so;
2232 	bool running;
2233 
2234 	SOCKBUF_LOCK_ASSERT(sb);
2235 	KASSERT(sb->sb_flags & SB_TLS_RX, ("%s: sockbuf %p isn't TLS RX",
2236 	    __func__, sb));
2237 	so = __containerof(sb, struct socket, so_rcv);
2238 
2239 	if (sb->sb_flags & SB_TLS_RX_RUNNING)
2240 		return;
2241 
2242 	/* Is there enough queued for a TLS header? */
2243 	if (sb->sb_tlscc < sizeof(hdr)) {
2244 		if ((sb->sb_state & SBS_CANTRCVMORE) != 0 && sb->sb_tlscc != 0)
2245 			so->so_error = EMSGSIZE;
2246 		return;
2247 	}
2248 
2249 	m_copydata(sb->sb_mtls, 0, sizeof(hdr), (void *)&hdr);
2250 
2251 	/* Is the entire record queued? */
2252 	if (sb->sb_tlscc < sizeof(hdr) + ntohs(hdr.tls_length)) {
2253 		if ((sb->sb_state & SBS_CANTRCVMORE) != 0)
2254 			so->so_error = EMSGSIZE;
2255 		return;
2256 	}
2257 
2258 	sb->sb_flags |= SB_TLS_RX_RUNNING;
2259 
2260 	soref(so);
2261 	wq = &ktls_wq[so->so_rcv.sb_tls_info->wq_index];
2262 	mtx_lock(&wq->mtx);
2263 	STAILQ_INSERT_TAIL(&wq->so_head, so, so_ktls_rx_list);
2264 	running = wq->running;
2265 	mtx_unlock(&wq->mtx);
2266 	if (!running)
2267 		wakeup(wq);
2268 	counter_u64_add(ktls_cnt_rx_queued, 1);
2269 }
2270 
2271 static struct mbuf *
ktls_detach_record(struct sockbuf * sb,int len)2272 ktls_detach_record(struct sockbuf *sb, int len)
2273 {
2274 	struct mbuf *m, *n, *top;
2275 	int remain;
2276 
2277 	SOCKBUF_LOCK_ASSERT(sb);
2278 	MPASS(len <= sb->sb_tlscc);
2279 
2280 	/*
2281 	 * If TLS chain is the exact size of the record,
2282 	 * just grab the whole record.
2283 	 */
2284 	top = sb->sb_mtls;
2285 	if (sb->sb_tlscc == len) {
2286 		sb->sb_mtls = NULL;
2287 		sb->sb_mtlstail = NULL;
2288 		goto out;
2289 	}
2290 
2291 	/*
2292 	 * While it would be nice to use m_split() here, we need
2293 	 * to know exactly what m_split() allocates to update the
2294 	 * accounting, so do it inline instead.
2295 	 */
2296 	remain = len;
2297 	for (m = top; remain > m->m_len; m = m->m_next)
2298 		remain -= m->m_len;
2299 
2300 	/* Easy case: don't have to split 'm'. */
2301 	if (remain == m->m_len) {
2302 		sb->sb_mtls = m->m_next;
2303 		if (sb->sb_mtls == NULL)
2304 			sb->sb_mtlstail = NULL;
2305 		m->m_next = NULL;
2306 		goto out;
2307 	}
2308 
2309 	/*
2310 	 * Need to allocate an mbuf to hold the remainder of 'm'.  Try
2311 	 * with M_NOWAIT first.
2312 	 */
2313 	n = m_get(M_NOWAIT, MT_DATA);
2314 	if (n == NULL) {
2315 		/*
2316 		 * Use M_WAITOK with socket buffer unlocked.  If
2317 		 * 'sb_mtls' changes while the lock is dropped, return
2318 		 * NULL to force the caller to retry.
2319 		 */
2320 		SOCKBUF_UNLOCK(sb);
2321 
2322 		n = m_get(M_WAITOK, MT_DATA);
2323 
2324 		SOCKBUF_LOCK(sb);
2325 		if (sb->sb_mtls != top) {
2326 			m_free(n);
2327 			return (NULL);
2328 		}
2329 	}
2330 	n->m_flags |= (m->m_flags & (M_NOTREADY | M_DECRYPTED));
2331 
2332 	/* Store remainder in 'n'. */
2333 	n->m_len = m->m_len - remain;
2334 	if (m->m_flags & M_EXT) {
2335 		n->m_data = m->m_data + remain;
2336 		mb_dupcl(n, m);
2337 	} else {
2338 		bcopy(mtod(m, caddr_t) + remain, mtod(n, caddr_t), n->m_len);
2339 	}
2340 
2341 	/* Trim 'm' and update accounting. */
2342 	m->m_len -= n->m_len;
2343 	sb->sb_tlscc -= n->m_len;
2344 	sb->sb_ccc -= n->m_len;
2345 
2346 	/* Account for 'n'. */
2347 	sballoc_ktls_rx(sb, n);
2348 
2349 	/* Insert 'n' into the TLS chain. */
2350 	sb->sb_mtls = n;
2351 	n->m_next = m->m_next;
2352 	if (sb->sb_mtlstail == m)
2353 		sb->sb_mtlstail = n;
2354 
2355 	/* Detach the record from the TLS chain. */
2356 	m->m_next = NULL;
2357 
2358 out:
2359 	MPASS(m_length(top, NULL) == len);
2360 	for (m = top; m != NULL; m = m->m_next)
2361 		sbfree_ktls_rx(sb, m);
2362 	sb->sb_tlsdcc = len;
2363 	sb->sb_ccc += len;
2364 	SBCHECK(sb);
2365 	return (top);
2366 }
2367 
2368 /*
2369  * Determine the length of the trailing zero padding and find the real
2370  * record type in the byte before the padding.
2371  *
2372  * Walking the mbuf chain backwards is clumsy, so another option would
2373  * be to scan forwards remembering the last non-zero byte before the
2374  * trailer.  However, it would be expensive to scan the entire record.
2375  * Instead, find the last non-zero byte of each mbuf in the chain
2376  * keeping track of the relative offset of that nonzero byte.
2377  *
2378  * trail_len is the size of the MAC/tag on input and is set to the
2379  * size of the full trailer including padding and the record type on
2380  * return.
2381  */
2382 static int
tls13_find_record_type(struct ktls_session * tls,struct mbuf * m,int tls_len,int * trailer_len,uint8_t * record_typep)2383 tls13_find_record_type(struct ktls_session *tls, struct mbuf *m, int tls_len,
2384     int *trailer_len, uint8_t *record_typep)
2385 {
2386 	char *cp;
2387 	u_int digest_start, last_offset, m_len, offset;
2388 	uint8_t record_type;
2389 
2390 	digest_start = tls_len - *trailer_len;
2391 	last_offset = 0;
2392 	offset = 0;
2393 	for (; m != NULL && offset < digest_start;
2394 	     offset += m->m_len, m = m->m_next) {
2395 		/* Don't look for padding in the tag. */
2396 		m_len = min(digest_start - offset, m->m_len);
2397 		cp = mtod(m, char *);
2398 
2399 		/* Find last non-zero byte in this mbuf. */
2400 		while (m_len > 0 && cp[m_len - 1] == 0)
2401 			m_len--;
2402 		if (m_len > 0) {
2403 			record_type = cp[m_len - 1];
2404 			last_offset = offset + m_len;
2405 		}
2406 	}
2407 	if (last_offset < tls->params.tls_hlen)
2408 		return (EBADMSG);
2409 
2410 	*record_typep = record_type;
2411 	*trailer_len = tls_len - last_offset + 1;
2412 	return (0);
2413 }
2414 
2415 /*
2416  * Check if a mbuf chain is fully decrypted at the given offset and
2417  * length. Returns KTLS_MBUF_CRYPTO_ST_DECRYPTED if all data is
2418  * decrypted. KTLS_MBUF_CRYPTO_ST_MIXED if there is a mix of encrypted
2419  * and decrypted data. Else KTLS_MBUF_CRYPTO_ST_ENCRYPTED if all data
2420  * is encrypted.
2421  */
2422 ktls_mbuf_crypto_st_t
ktls_mbuf_crypto_state(struct mbuf * mb,int offset,int len)2423 ktls_mbuf_crypto_state(struct mbuf *mb, int offset, int len)
2424 {
2425 	int m_flags_ored = 0;
2426 	int m_flags_anded = -1;
2427 
2428 	for (; mb != NULL; mb = mb->m_next) {
2429 		if (offset < mb->m_len)
2430 			break;
2431 		offset -= mb->m_len;
2432 	}
2433 	offset += len;
2434 
2435 	for (; mb != NULL; mb = mb->m_next) {
2436 		m_flags_ored |= mb->m_flags;
2437 		m_flags_anded &= mb->m_flags;
2438 
2439 		if (offset <= mb->m_len)
2440 			break;
2441 		offset -= mb->m_len;
2442 	}
2443 	MPASS(mb != NULL || offset == 0);
2444 
2445 	if ((m_flags_ored ^ m_flags_anded) & M_DECRYPTED)
2446 		return (KTLS_MBUF_CRYPTO_ST_MIXED);
2447 	else
2448 		return ((m_flags_ored & M_DECRYPTED) ?
2449 		    KTLS_MBUF_CRYPTO_ST_DECRYPTED :
2450 		    KTLS_MBUF_CRYPTO_ST_ENCRYPTED);
2451 }
2452 
2453 /*
2454  * ktls_resync_ifnet - get HW TLS RX back on track after packet loss
2455  */
2456 static int
ktls_resync_ifnet(struct socket * so,uint32_t tls_len,uint64_t tls_rcd_num)2457 ktls_resync_ifnet(struct socket *so, uint32_t tls_len, uint64_t tls_rcd_num)
2458 {
2459 	union if_snd_tag_modify_params params;
2460 	struct m_snd_tag *mst;
2461 	struct inpcb *inp;
2462 	struct tcpcb *tp;
2463 
2464 	mst = so->so_rcv.sb_tls_info->snd_tag;
2465 	if (__predict_false(mst == NULL))
2466 		return (EINVAL);
2467 
2468 	inp = sotoinpcb(so);
2469 	if (__predict_false(inp == NULL))
2470 		return (EINVAL);
2471 
2472 	INP_RLOCK(inp);
2473 	if (inp->inp_flags & INP_DROPPED) {
2474 		INP_RUNLOCK(inp);
2475 		return (ECONNRESET);
2476 	}
2477 
2478 	tp = intotcpcb(inp);
2479 	MPASS(tp != NULL);
2480 
2481 	/* Get the TCP sequence number of the next valid TLS header. */
2482 	SOCKBUF_LOCK(&so->so_rcv);
2483 	params.tls_rx.tls_hdr_tcp_sn =
2484 	    tp->rcv_nxt - so->so_rcv.sb_tlscc - tls_len;
2485 	params.tls_rx.tls_rec_length = tls_len;
2486 	params.tls_rx.tls_seq_number = tls_rcd_num;
2487 	SOCKBUF_UNLOCK(&so->so_rcv);
2488 
2489 	INP_RUNLOCK(inp);
2490 
2491 	MPASS(mst->sw->type == IF_SND_TAG_TYPE_TLS_RX);
2492 	return (mst->sw->snd_tag_modify(mst, &params));
2493 }
2494 
2495 static void
ktls_drop(struct socket * so,int error)2496 ktls_drop(struct socket *so, int error)
2497 {
2498 	struct epoch_tracker et;
2499 	struct inpcb *inp = sotoinpcb(so);
2500 	struct tcpcb *tp;
2501 
2502 	NET_EPOCH_ENTER(et);
2503 	INP_WLOCK(inp);
2504 	if (!(inp->inp_flags & INP_DROPPED)) {
2505 		tp = intotcpcb(inp);
2506 		CURVNET_SET(inp->inp_vnet);
2507 		tp = tcp_drop(tp, error);
2508 		CURVNET_RESTORE();
2509 		if (tp != NULL)
2510 			INP_WUNLOCK(inp);
2511 	} else {
2512 		so->so_error = error;
2513 		SOCK_RECVBUF_LOCK(so);
2514 		sorwakeup_locked(so);
2515 		INP_WUNLOCK(inp);
2516 	}
2517 	NET_EPOCH_EXIT(et);
2518 }
2519 
2520 static void
ktls_decrypt(struct socket * so)2521 ktls_decrypt(struct socket *so)
2522 {
2523 	char tls_header[MBUF_PEXT_HDR_LEN];
2524 	struct ktls_session *tls;
2525 	struct sockbuf *sb;
2526 	struct tls_record_layer *hdr;
2527 	struct tls_get_record tgr;
2528 	struct mbuf *control, *data, *m;
2529 	ktls_mbuf_crypto_st_t state;
2530 	uint64_t seqno;
2531 	int error, remain, tls_len, trail_len;
2532 	bool tls13;
2533 	uint8_t vminor, record_type;
2534 
2535 	hdr = (struct tls_record_layer *)tls_header;
2536 	sb = &so->so_rcv;
2537 	SOCKBUF_LOCK(sb);
2538 	KASSERT(sb->sb_flags & SB_TLS_RX_RUNNING,
2539 	    ("%s: socket %p not running", __func__, so));
2540 
2541 	tls = sb->sb_tls_info;
2542 	MPASS(tls != NULL);
2543 
2544 	tls13 = (tls->params.tls_vminor == TLS_MINOR_VER_THREE);
2545 	if (tls13)
2546 		vminor = TLS_MINOR_VER_TWO;
2547 	else
2548 		vminor = tls->params.tls_vminor;
2549 	for (;;) {
2550 		/* Is there enough queued for a TLS header? */
2551 		if (sb->sb_tlscc < tls->params.tls_hlen)
2552 			break;
2553 
2554 		m_copydata(sb->sb_mtls, 0, tls->params.tls_hlen, tls_header);
2555 		tls_len = sizeof(*hdr) + ntohs(hdr->tls_length);
2556 
2557 		if (hdr->tls_vmajor != tls->params.tls_vmajor ||
2558 		    hdr->tls_vminor != vminor)
2559 			error = EINVAL;
2560 		else if (tls13 && hdr->tls_type != TLS_RLTYPE_APP)
2561 			error = EINVAL;
2562 		else if (tls_len < tls->params.tls_hlen || tls_len >
2563 		    tls->params.tls_hlen + TLS_MAX_MSG_SIZE_V10_2 +
2564 		    tls->params.tls_tlen)
2565 			error = EMSGSIZE;
2566 		else
2567 			error = 0;
2568 		if (__predict_false(error != 0)) {
2569 			/*
2570 			 * We have a corrupted record and are likely
2571 			 * out of sync.  The connection isn't
2572 			 * recoverable at this point, so abort it.
2573 			 */
2574 			SOCKBUF_UNLOCK(sb);
2575 			counter_u64_add(ktls_offload_corrupted_records, 1);
2576 
2577 			ktls_drop(so, error);
2578 			goto deref;
2579 		}
2580 
2581 		/* Is the entire record queued? */
2582 		if (sb->sb_tlscc < tls_len)
2583 			break;
2584 
2585 		/*
2586 		 * Split out the portion of the mbuf chain containing
2587 		 * this TLS record.
2588 		 */
2589 		data = ktls_detach_record(sb, tls_len);
2590 		if (data == NULL)
2591 			continue;
2592 		MPASS(sb->sb_tlsdcc == tls_len);
2593 
2594 		seqno = sb->sb_tls_seqno;
2595 		sb->sb_tls_seqno++;
2596 		SBCHECK(sb);
2597 		SOCKBUF_UNLOCK(sb);
2598 
2599 		/* get crypto state for this TLS record */
2600 		state = ktls_mbuf_crypto_state(data, 0, tls_len);
2601 
2602 		switch (state) {
2603 		case KTLS_MBUF_CRYPTO_ST_MIXED:
2604 			error = ktls_ocf_recrypt(tls, hdr, data, seqno);
2605 			if (error)
2606 				break;
2607 			/* FALLTHROUGH */
2608 		case KTLS_MBUF_CRYPTO_ST_ENCRYPTED:
2609 			error = ktls_ocf_decrypt(tls, hdr, data, seqno,
2610 			    &trail_len);
2611 			if (__predict_true(error == 0)) {
2612 				if (tls13) {
2613 					error = tls13_find_record_type(tls, data,
2614 					    tls_len, &trail_len, &record_type);
2615 				} else {
2616 					record_type = hdr->tls_type;
2617 				}
2618 			}
2619 			break;
2620 		case KTLS_MBUF_CRYPTO_ST_DECRYPTED:
2621 			/*
2622 			 * NIC TLS is only supported for AEAD
2623 			 * ciphersuites which used a fixed sized
2624 			 * trailer.
2625 			 */
2626 			if (tls13) {
2627 				trail_len = tls->params.tls_tlen - 1;
2628 				error = tls13_find_record_type(tls, data,
2629 				    tls_len, &trail_len, &record_type);
2630 			} else {
2631 				trail_len = tls->params.tls_tlen;
2632 				error = 0;
2633 				record_type = hdr->tls_type;
2634 			}
2635 			break;
2636 		default:
2637 			error = EINVAL;
2638 			break;
2639 		}
2640 		if (error) {
2641 			counter_u64_add(ktls_offload_failed_crypto, 1);
2642 
2643 			SOCKBUF_LOCK(sb);
2644 			if (sb->sb_tlsdcc == 0) {
2645 				/*
2646 				 * sbcut/drop/flush discarded these
2647 				 * mbufs.
2648 				 */
2649 				m_freem(data);
2650 				break;
2651 			}
2652 
2653 			/*
2654 			 * Drop this TLS record's data, but keep
2655 			 * decrypting subsequent records.
2656 			 */
2657 			sb->sb_ccc -= tls_len;
2658 			sb->sb_tlsdcc = 0;
2659 
2660 			if (error != EMSGSIZE)
2661 				error = EBADMSG;
2662 			CURVNET_SET(so->so_vnet);
2663 			so->so_error = error;
2664 			sorwakeup_locked(so);
2665 			CURVNET_RESTORE();
2666 
2667 			m_freem(data);
2668 
2669 			SOCKBUF_LOCK(sb);
2670 			continue;
2671 		}
2672 
2673 		/* Allocate the control mbuf. */
2674 		memset(&tgr, 0, sizeof(tgr));
2675 		tgr.tls_type = record_type;
2676 		tgr.tls_vmajor = hdr->tls_vmajor;
2677 		tgr.tls_vminor = hdr->tls_vminor;
2678 		tgr.tls_length = htobe16(tls_len - tls->params.tls_hlen -
2679 		    trail_len);
2680 		control = sbcreatecontrol(&tgr, sizeof(tgr),
2681 		    TLS_GET_RECORD, IPPROTO_TCP, M_WAITOK);
2682 
2683 		SOCKBUF_LOCK(sb);
2684 		if (sb->sb_tlsdcc == 0) {
2685 			/* sbcut/drop/flush discarded these mbufs. */
2686 			MPASS(sb->sb_tlscc == 0);
2687 			m_freem(data);
2688 			m_freem(control);
2689 			break;
2690 		}
2691 
2692 		/*
2693 		 * Clear the 'dcc' accounting in preparation for
2694 		 * adding the decrypted record.
2695 		 */
2696 		sb->sb_ccc -= tls_len;
2697 		sb->sb_tlsdcc = 0;
2698 		SBCHECK(sb);
2699 
2700 		/* If there is no payload, drop all of the data. */
2701 		if (tgr.tls_length == htobe16(0)) {
2702 			m_freem(data);
2703 			data = NULL;
2704 		} else {
2705 			/* Trim header. */
2706 			remain = tls->params.tls_hlen;
2707 			while (remain > 0) {
2708 				if (data->m_len > remain) {
2709 					data->m_data += remain;
2710 					data->m_len -= remain;
2711 					break;
2712 				}
2713 				remain -= data->m_len;
2714 				data = m_free(data);
2715 			}
2716 
2717 			/* Trim trailer and clear M_NOTREADY. */
2718 			remain = be16toh(tgr.tls_length);
2719 			m = data;
2720 			for (m = data; remain > m->m_len; m = m->m_next) {
2721 				m->m_flags &= ~(M_NOTREADY | M_DECRYPTED);
2722 				remain -= m->m_len;
2723 			}
2724 			m->m_len = remain;
2725 			m_freem(m->m_next);
2726 			m->m_next = NULL;
2727 			m->m_flags &= ~(M_NOTREADY | M_DECRYPTED);
2728 
2729 			/* Set EOR on the final mbuf. */
2730 			m->m_flags |= M_EOR;
2731 		}
2732 
2733 		sbappendcontrol_locked(sb, data, control, 0);
2734 
2735 		if (__predict_false(state != KTLS_MBUF_CRYPTO_ST_DECRYPTED)) {
2736 			sb->sb_flags |= SB_TLS_RX_RESYNC;
2737 			SOCKBUF_UNLOCK(sb);
2738 			ktls_resync_ifnet(so, tls_len, seqno);
2739 			SOCKBUF_LOCK(sb);
2740 		} else if (__predict_false(sb->sb_flags & SB_TLS_RX_RESYNC)) {
2741 			sb->sb_flags &= ~SB_TLS_RX_RESYNC;
2742 			SOCKBUF_UNLOCK(sb);
2743 			ktls_resync_ifnet(so, 0, seqno);
2744 			SOCKBUF_LOCK(sb);
2745 		}
2746 	}
2747 
2748 	sb->sb_flags &= ~SB_TLS_RX_RUNNING;
2749 
2750 	if ((sb->sb_state & SBS_CANTRCVMORE) != 0 && sb->sb_tlscc > 0)
2751 		so->so_error = EMSGSIZE;
2752 
2753 	sorwakeup_locked(so);
2754 
2755 deref:
2756 	SOCKBUF_UNLOCK_ASSERT(sb);
2757 
2758 	CURVNET_SET(so->so_vnet);
2759 	sorele(so);
2760 	CURVNET_RESTORE();
2761 }
2762 
2763 void
ktls_enqueue_to_free(struct mbuf * m)2764 ktls_enqueue_to_free(struct mbuf *m)
2765 {
2766 	struct ktls_wq *wq;
2767 	bool running;
2768 
2769 	/* Mark it for freeing. */
2770 	m->m_epg_flags |= EPG_FLAG_2FREE;
2771 	wq = &ktls_wq[m->m_epg_tls->wq_index];
2772 	mtx_lock(&wq->mtx);
2773 	STAILQ_INSERT_TAIL(&wq->m_head, m, m_epg_stailq);
2774 	running = wq->running;
2775 	mtx_unlock(&wq->mtx);
2776 	if (!running)
2777 		wakeup(wq);
2778 }
2779 
2780 static void *
ktls_buffer_alloc(struct ktls_wq * wq,struct mbuf * m)2781 ktls_buffer_alloc(struct ktls_wq *wq, struct mbuf *m)
2782 {
2783 	void *buf;
2784 	int domain, running;
2785 
2786 	if (m->m_epg_npgs <= 2)
2787 		return (NULL);
2788 	if (ktls_buffer_zone == NULL)
2789 		return (NULL);
2790 	if ((u_int)(ticks - wq->lastallocfail) < hz) {
2791 		/*
2792 		 * Rate-limit allocation attempts after a failure.
2793 		 * ktls_buffer_import() will acquire a per-domain mutex to check
2794 		 * the free page queues and may fail consistently if memory is
2795 		 * fragmented.
2796 		 */
2797 		return (NULL);
2798 	}
2799 	buf = uma_zalloc(ktls_buffer_zone, M_NOWAIT | M_NORECLAIM);
2800 	if (buf == NULL) {
2801 		domain = PCPU_GET(domain);
2802 		wq->lastallocfail = ticks;
2803 
2804 		/*
2805 		 * Note that this check is "racy", but the races are
2806 		 * harmless, and are either a spurious wakeup if
2807 		 * multiple threads fail allocations before the alloc
2808 		 * thread wakes, or waiting an extra second in case we
2809 		 * see an old value of running == true.
2810 		 */
2811 		if (!VM_DOMAIN_EMPTY(domain)) {
2812 			running = atomic_load_int(&ktls_domains[domain].reclaim_td.running);
2813 			if (!running)
2814 				wakeup(&ktls_domains[domain].reclaim_td);
2815 		}
2816 	}
2817 	return (buf);
2818 }
2819 
2820 static int
ktls_encrypt_record(struct ktls_wq * wq,struct mbuf * m,struct ktls_session * tls,struct ktls_ocf_encrypt_state * state)2821 ktls_encrypt_record(struct ktls_wq *wq, struct mbuf *m,
2822     struct ktls_session *tls, struct ktls_ocf_encrypt_state *state)
2823 {
2824 	vm_page_t pg;
2825 	int error, i, len, off;
2826 
2827 	KASSERT((m->m_flags & (M_EXTPG | M_NOTREADY)) == (M_EXTPG | M_NOTREADY),
2828 	    ("%p not unready & nomap mbuf\n", m));
2829 	KASSERT(ptoa(m->m_epg_npgs) <= ktls_maxlen,
2830 	    ("page count %d larger than maximum frame length %d", m->m_epg_npgs,
2831 	    ktls_maxlen));
2832 
2833 	/* Anonymous mbufs are encrypted in place. */
2834 	if ((m->m_epg_flags & EPG_FLAG_ANON) != 0)
2835 		return (ktls_ocf_encrypt(state, tls, m, NULL, 0));
2836 
2837 	/*
2838 	 * For file-backed mbufs (from sendfile), anonymous wired
2839 	 * pages are allocated and used as the encryption destination.
2840 	 */
2841 	if ((state->cbuf = ktls_buffer_alloc(wq, m)) != NULL) {
2842 		len = ptoa(m->m_epg_npgs - 1) + m->m_epg_last_len -
2843 		    m->m_epg_1st_off;
2844 		state->dst_iov[0].iov_base = (char *)state->cbuf +
2845 		    m->m_epg_1st_off;
2846 		state->dst_iov[0].iov_len = len;
2847 		state->parray[0] = DMAP_TO_PHYS((vm_offset_t)state->cbuf);
2848 		i = 1;
2849 	} else {
2850 		off = m->m_epg_1st_off;
2851 		for (i = 0; i < m->m_epg_npgs; i++, off = 0) {
2852 			pg = vm_page_alloc_noobj(VM_ALLOC_NODUMP |
2853 			    VM_ALLOC_WIRED | VM_ALLOC_WAITOK);
2854 			len = m_epg_pagelen(m, i, off);
2855 			state->parray[i] = VM_PAGE_TO_PHYS(pg);
2856 			state->dst_iov[i].iov_base =
2857 			    (char *)PHYS_TO_DMAP(state->parray[i]) + off;
2858 			state->dst_iov[i].iov_len = len;
2859 		}
2860 	}
2861 	KASSERT(i + 1 <= nitems(state->dst_iov), ("dst_iov is too small"));
2862 	state->dst_iov[i].iov_base = m->m_epg_trail;
2863 	state->dst_iov[i].iov_len = m->m_epg_trllen;
2864 
2865 	error = ktls_ocf_encrypt(state, tls, m, state->dst_iov, i + 1);
2866 
2867 	if (__predict_false(error != 0)) {
2868 		/* Free the anonymous pages. */
2869 		if (state->cbuf != NULL)
2870 			uma_zfree(ktls_buffer_zone, state->cbuf);
2871 		else {
2872 			for (i = 0; i < m->m_epg_npgs; i++) {
2873 				pg = PHYS_TO_VM_PAGE(state->parray[i]);
2874 				(void)vm_page_unwire_noq(pg);
2875 				vm_page_free(pg);
2876 			}
2877 		}
2878 	}
2879 	return (error);
2880 }
2881 
2882 /* Number of TLS records in a batch passed to ktls_enqueue(). */
2883 static u_int
ktls_batched_records(struct mbuf * m)2884 ktls_batched_records(struct mbuf *m)
2885 {
2886 	int page_count, records;
2887 
2888 	records = 0;
2889 	page_count = m->m_epg_enc_cnt;
2890 	while (page_count > 0) {
2891 		records++;
2892 		page_count -= m->m_epg_nrdy;
2893 		m = m->m_next;
2894 	}
2895 	KASSERT(page_count == 0, ("%s: mismatched page count", __func__));
2896 	return (records);
2897 }
2898 
2899 void
ktls_enqueue(struct mbuf * m,struct socket * so,int page_count)2900 ktls_enqueue(struct mbuf *m, struct socket *so, int page_count)
2901 {
2902 	struct ktls_session *tls;
2903 	struct ktls_wq *wq;
2904 	int queued;
2905 	bool running;
2906 
2907 	KASSERT(((m->m_flags & (M_EXTPG | M_NOTREADY)) ==
2908 	    (M_EXTPG | M_NOTREADY)),
2909 	    ("ktls_enqueue: %p not unready & nomap mbuf\n", m));
2910 	KASSERT(page_count != 0, ("enqueueing TLS mbuf with zero page count"));
2911 
2912 	KASSERT(m->m_epg_tls->mode == TCP_TLS_MODE_SW, ("!SW TLS mbuf"));
2913 
2914 	m->m_epg_enc_cnt = page_count;
2915 
2916 	/*
2917 	 * Save a pointer to the socket.  The caller is responsible
2918 	 * for taking an additional reference via soref().
2919 	 */
2920 	m->m_epg_so = so;
2921 
2922 	queued = 1;
2923 	tls = m->m_epg_tls;
2924 	wq = &ktls_wq[tls->wq_index];
2925 	mtx_lock(&wq->mtx);
2926 	if (__predict_false(tls->sequential_records)) {
2927 		/*
2928 		 * For TLS 1.0, records must be encrypted
2929 		 * sequentially.  For a given connection, all records
2930 		 * queued to the associated work queue are processed
2931 		 * sequentially.  However, sendfile(2) might complete
2932 		 * I/O requests spanning multiple TLS records out of
2933 		 * order.  Here we ensure TLS records are enqueued to
2934 		 * the work queue in FIFO order.
2935 		 *
2936 		 * tls->next_seqno holds the sequence number of the
2937 		 * next TLS record that should be enqueued to the work
2938 		 * queue.  If this next record is not tls->next_seqno,
2939 		 * it must be a future record, so insert it, sorted by
2940 		 * TLS sequence number, into tls->pending_records and
2941 		 * return.
2942 		 *
2943 		 * If this TLS record matches tls->next_seqno, place
2944 		 * it in the work queue and then check
2945 		 * tls->pending_records to see if any
2946 		 * previously-queued records are now ready for
2947 		 * encryption.
2948 		 */
2949 		if (m->m_epg_seqno != tls->next_seqno) {
2950 			struct mbuf *n, *p;
2951 
2952 			p = NULL;
2953 			STAILQ_FOREACH(n, &tls->pending_records, m_epg_stailq) {
2954 				if (n->m_epg_seqno > m->m_epg_seqno)
2955 					break;
2956 				p = n;
2957 			}
2958 			if (n == NULL)
2959 				STAILQ_INSERT_TAIL(&tls->pending_records, m,
2960 				    m_epg_stailq);
2961 			else if (p == NULL)
2962 				STAILQ_INSERT_HEAD(&tls->pending_records, m,
2963 				    m_epg_stailq);
2964 			else
2965 				STAILQ_INSERT_AFTER(&tls->pending_records, p, m,
2966 				    m_epg_stailq);
2967 			mtx_unlock(&wq->mtx);
2968 			counter_u64_add(ktls_cnt_tx_pending, 1);
2969 			return;
2970 		}
2971 
2972 		tls->next_seqno += ktls_batched_records(m);
2973 		STAILQ_INSERT_TAIL(&wq->m_head, m, m_epg_stailq);
2974 
2975 		while (!STAILQ_EMPTY(&tls->pending_records)) {
2976 			struct mbuf *n;
2977 
2978 			n = STAILQ_FIRST(&tls->pending_records);
2979 			if (n->m_epg_seqno != tls->next_seqno)
2980 				break;
2981 
2982 			queued++;
2983 			STAILQ_REMOVE_HEAD(&tls->pending_records, m_epg_stailq);
2984 			tls->next_seqno += ktls_batched_records(n);
2985 			STAILQ_INSERT_TAIL(&wq->m_head, n, m_epg_stailq);
2986 		}
2987 		counter_u64_add(ktls_cnt_tx_pending, -(queued - 1));
2988 	} else
2989 		STAILQ_INSERT_TAIL(&wq->m_head, m, m_epg_stailq);
2990 
2991 	running = wq->running;
2992 	mtx_unlock(&wq->mtx);
2993 	if (!running)
2994 		wakeup(wq);
2995 	counter_u64_add(ktls_cnt_tx_queued, queued);
2996 }
2997 
2998 /*
2999  * Once a file-backed mbuf (from sendfile) has been encrypted, free
3000  * the pages from the file and replace them with the anonymous pages
3001  * allocated in ktls_encrypt_record().
3002  */
3003 static void
ktls_finish_nonanon(struct mbuf * m,struct ktls_ocf_encrypt_state * state)3004 ktls_finish_nonanon(struct mbuf *m, struct ktls_ocf_encrypt_state *state)
3005 {
3006 	int i;
3007 
3008 	MPASS((m->m_epg_flags & EPG_FLAG_ANON) == 0);
3009 
3010 	/* Free the old pages. */
3011 	m->m_ext.ext_free(m);
3012 
3013 	/* Replace them with the new pages. */
3014 	if (state->cbuf != NULL) {
3015 		for (i = 0; i < m->m_epg_npgs; i++)
3016 			m->m_epg_pa[i] = state->parray[0] + ptoa(i);
3017 
3018 		/* Contig pages should go back to the cache. */
3019 		m->m_ext.ext_free = ktls_free_mext_contig;
3020 	} else {
3021 		for (i = 0; i < m->m_epg_npgs; i++)
3022 			m->m_epg_pa[i] = state->parray[i];
3023 
3024 		/* Use the basic free routine. */
3025 		m->m_ext.ext_free = mb_free_mext_pgs;
3026 	}
3027 
3028 	/* Pages are now writable. */
3029 	m->m_epg_flags |= EPG_FLAG_ANON;
3030 }
3031 
3032 static __noinline void
ktls_encrypt(struct ktls_wq * wq,struct mbuf * top)3033 ktls_encrypt(struct ktls_wq *wq, struct mbuf *top)
3034 {
3035 	struct ktls_ocf_encrypt_state state;
3036 	struct ktls_session *tls;
3037 	struct socket *so;
3038 	struct mbuf *m;
3039 	int error, npages, total_pages;
3040 
3041 	so = top->m_epg_so;
3042 	tls = top->m_epg_tls;
3043 	KASSERT(tls != NULL, ("tls = NULL, top = %p\n", top));
3044 	KASSERT(so != NULL, ("so = NULL, top = %p\n", top));
3045 #ifdef INVARIANTS
3046 	top->m_epg_so = NULL;
3047 #endif
3048 	total_pages = top->m_epg_enc_cnt;
3049 	npages = 0;
3050 
3051 	/*
3052 	 * Encrypt the TLS records in the chain of mbufs starting with
3053 	 * 'top'.  'total_pages' gives us a total count of pages and is
3054 	 * used to know when we have finished encrypting the TLS
3055 	 * records originally queued with 'top'.
3056 	 *
3057 	 * NB: These mbufs are queued in the socket buffer and
3058 	 * 'm_next' is traversing the mbufs in the socket buffer.  The
3059 	 * socket buffer lock is not held while traversing this chain.
3060 	 * Since the mbufs are all marked M_NOTREADY their 'm_next'
3061 	 * pointers should be stable.  However, the 'm_next' of the
3062 	 * last mbuf encrypted is not necessarily NULL.  It can point
3063 	 * to other mbufs appended while 'top' was on the TLS work
3064 	 * queue.
3065 	 *
3066 	 * Each mbuf holds an entire TLS record.
3067 	 */
3068 	error = 0;
3069 	for (m = top; npages != total_pages; m = m->m_next) {
3070 		KASSERT(m->m_epg_tls == tls,
3071 		    ("different TLS sessions in a single mbuf chain: %p vs %p",
3072 		    tls, m->m_epg_tls));
3073 		KASSERT(npages + m->m_epg_npgs <= total_pages,
3074 		    ("page count mismatch: top %p, total_pages %d, m %p", top,
3075 		    total_pages, m));
3076 
3077 		error = ktls_encrypt_record(wq, m, tls, &state);
3078 		if (error) {
3079 			counter_u64_add(ktls_offload_failed_crypto, 1);
3080 			break;
3081 		}
3082 
3083 		if ((m->m_epg_flags & EPG_FLAG_ANON) == 0)
3084 			ktls_finish_nonanon(m, &state);
3085 		m->m_flags |= M_RDONLY;
3086 
3087 		npages += m->m_epg_nrdy;
3088 
3089 		/*
3090 		 * Drop a reference to the session now that it is no
3091 		 * longer needed.  Existing code depends on encrypted
3092 		 * records having no associated session vs
3093 		 * yet-to-be-encrypted records having an associated
3094 		 * session.
3095 		 */
3096 		m->m_epg_tls = NULL;
3097 		ktls_free(tls);
3098 	}
3099 
3100 	CURVNET_SET(so->so_vnet);
3101 	if (error == 0) {
3102 		(void)so->so_proto->pr_ready(so, top, npages);
3103 	} else {
3104 		ktls_drop(so, EIO);
3105 		mb_free_notready(top, total_pages);
3106 	}
3107 
3108 	sorele(so);
3109 	CURVNET_RESTORE();
3110 }
3111 
3112 void
ktls_encrypt_cb(struct ktls_ocf_encrypt_state * state,int error)3113 ktls_encrypt_cb(struct ktls_ocf_encrypt_state *state, int error)
3114 {
3115 	struct ktls_session *tls;
3116 	struct socket *so;
3117 	struct mbuf *m;
3118 	int npages;
3119 
3120 	m = state->m;
3121 
3122 	if ((m->m_epg_flags & EPG_FLAG_ANON) == 0)
3123 		ktls_finish_nonanon(m, state);
3124 	m->m_flags |= M_RDONLY;
3125 
3126 	so = state->so;
3127 	free(state, M_KTLS);
3128 
3129 	/*
3130 	 * Drop a reference to the session now that it is no longer
3131 	 * needed.  Existing code depends on encrypted records having
3132 	 * no associated session vs yet-to-be-encrypted records having
3133 	 * an associated session.
3134 	 */
3135 	tls = m->m_epg_tls;
3136 	m->m_epg_tls = NULL;
3137 	ktls_free(tls);
3138 
3139 	if (error != 0)
3140 		counter_u64_add(ktls_offload_failed_crypto, 1);
3141 
3142 	CURVNET_SET(so->so_vnet);
3143 	npages = m->m_epg_nrdy;
3144 
3145 	if (error == 0) {
3146 		(void)so->so_proto->pr_ready(so, m, npages);
3147 	} else {
3148 		ktls_drop(so, EIO);
3149 		mb_free_notready(m, npages);
3150 	}
3151 
3152 	sorele(so);
3153 	CURVNET_RESTORE();
3154 }
3155 
3156 /*
3157  * Similar to ktls_encrypt, but used with asynchronous OCF backends
3158  * (coprocessors) where encryption does not use host CPU resources and
3159  * it can be beneficial to queue more requests than CPUs.
3160  */
3161 static __noinline void
ktls_encrypt_async(struct ktls_wq * wq,struct mbuf * top)3162 ktls_encrypt_async(struct ktls_wq *wq, struct mbuf *top)
3163 {
3164 	struct ktls_ocf_encrypt_state *state;
3165 	struct ktls_session *tls;
3166 	struct socket *so;
3167 	struct mbuf *m, *n;
3168 	int error, mpages, npages, total_pages;
3169 
3170 	so = top->m_epg_so;
3171 	tls = top->m_epg_tls;
3172 	KASSERT(tls != NULL, ("tls = NULL, top = %p\n", top));
3173 	KASSERT(so != NULL, ("so = NULL, top = %p\n", top));
3174 #ifdef INVARIANTS
3175 	top->m_epg_so = NULL;
3176 #endif
3177 	total_pages = top->m_epg_enc_cnt;
3178 	npages = 0;
3179 
3180 	error = 0;
3181 	for (m = top; npages != total_pages; m = n) {
3182 		KASSERT(m->m_epg_tls == tls,
3183 		    ("different TLS sessions in a single mbuf chain: %p vs %p",
3184 		    tls, m->m_epg_tls));
3185 		KASSERT(npages + m->m_epg_npgs <= total_pages,
3186 		    ("page count mismatch: top %p, total_pages %d, m %p", top,
3187 		    total_pages, m));
3188 
3189 		state = malloc(sizeof(*state), M_KTLS, M_WAITOK | M_ZERO);
3190 		soref(so);
3191 		state->so = so;
3192 		state->m = m;
3193 
3194 		mpages = m->m_epg_nrdy;
3195 		n = m->m_next;
3196 
3197 		error = ktls_encrypt_record(wq, m, tls, state);
3198 		if (error) {
3199 			counter_u64_add(ktls_offload_failed_crypto, 1);
3200 			free(state, M_KTLS);
3201 			CURVNET_SET(so->so_vnet);
3202 			sorele(so);
3203 			CURVNET_RESTORE();
3204 			break;
3205 		}
3206 
3207 		npages += mpages;
3208 	}
3209 
3210 	CURVNET_SET(so->so_vnet);
3211 	if (error != 0) {
3212 		ktls_drop(so, EIO);
3213 		mb_free_notready(m, total_pages - npages);
3214 	}
3215 
3216 	sorele(so);
3217 	CURVNET_RESTORE();
3218 }
3219 
3220 static int
ktls_bind_domain(int domain)3221 ktls_bind_domain(int domain)
3222 {
3223 	int error;
3224 
3225 	error = cpuset_setthread(curthread->td_tid, &cpuset_domain[domain]);
3226 	if (error != 0)
3227 		return (error);
3228 	curthread->td_domain.dr_policy = DOMAINSET_PREF(domain);
3229 	return (0);
3230 }
3231 
3232 static void
ktls_reclaim_thread(void * ctx)3233 ktls_reclaim_thread(void *ctx)
3234 {
3235 	struct ktls_domain_info *ktls_domain = ctx;
3236 	struct ktls_reclaim_thread *sc = &ktls_domain->reclaim_td;
3237 	struct sysctl_oid *oid;
3238 	char name[80];
3239 	int error, domain;
3240 
3241 	domain = ktls_domain - ktls_domains;
3242 	if (bootverbose)
3243 		printf("Starting KTLS reclaim thread for domain %d\n", domain);
3244 	error = ktls_bind_domain(domain);
3245 	if (error)
3246 		printf("Unable to bind KTLS reclaim thread for domain %d: error %d\n",
3247 		    domain, error);
3248 	snprintf(name, sizeof(name), "domain%d", domain);
3249 	oid = SYSCTL_ADD_NODE(NULL, SYSCTL_STATIC_CHILDREN(_kern_ipc_tls), OID_AUTO,
3250 	    name, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
3251 	SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "reclaims",
3252 	    CTLFLAG_RD,  &sc->reclaims, 0, "buffers reclaimed");
3253 	SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "wakeups",
3254 	    CTLFLAG_RD,  &sc->wakeups, 0, "thread wakeups");
3255 	SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "running",
3256 	    CTLFLAG_RD,  &sc->running, 0, "thread running");
3257 
3258 	for (;;) {
3259 		atomic_store_int(&sc->running, 0);
3260 		tsleep(sc, PZERO | PNOLOCK, "-",  0);
3261 		atomic_store_int(&sc->running, 1);
3262 		sc->wakeups++;
3263 		/*
3264 		 * Below we attempt to reclaim ktls_max_reclaim
3265 		 * buffers using vm_page_reclaim_contig_domain_ext().
3266 		 * We do this here, as this function can take several
3267 		 * seconds to scan all of memory and it does not
3268 		 * matter if this thread pauses for a while.  If we
3269 		 * block a ktls worker thread, we risk developing
3270 		 * backlogs of buffers to be encrypted, leading to
3271 		 * surges of traffic and potential NIC output drops.
3272 		 */
3273 		if (vm_page_reclaim_contig_domain_ext(domain, VM_ALLOC_NORMAL,
3274 		    atop(ktls_maxlen), 0, ~0ul, PAGE_SIZE, 0,
3275 		    ktls_max_reclaim) != 0) {
3276 			vm_wait_domain(domain);
3277 		} else {
3278 			sc->reclaims += ktls_max_reclaim;
3279 		}
3280 	}
3281 }
3282 
3283 static void
ktls_work_thread(void * ctx)3284 ktls_work_thread(void *ctx)
3285 {
3286 	struct ktls_wq *wq = ctx;
3287 	struct mbuf *m, *n;
3288 	struct socket *so, *son;
3289 	STAILQ_HEAD(, mbuf) local_m_head;
3290 	STAILQ_HEAD(, socket) local_so_head;
3291 	int cpu;
3292 
3293 	cpu = wq - ktls_wq;
3294 	if (bootverbose)
3295 		printf("Starting KTLS worker thread for CPU %d\n", cpu);
3296 
3297 	/*
3298 	 * Bind to a core.  If ktls_bind_threads is > 1, then
3299 	 * we bind to the NUMA domain instead.
3300 	 */
3301 	if (ktls_bind_threads) {
3302 		int error;
3303 
3304 		if (ktls_bind_threads > 1) {
3305 			struct pcpu *pc = pcpu_find(cpu);
3306 
3307 			error = ktls_bind_domain(pc->pc_domain);
3308 		} else {
3309 			cpuset_t mask;
3310 
3311 			CPU_SETOF(cpu, &mask);
3312 			error = cpuset_setthread(curthread->td_tid, &mask);
3313 		}
3314 		if (error)
3315 			printf("Unable to bind KTLS worker thread for CPU %d: error %d\n",
3316 				cpu, error);
3317 	}
3318 #if defined(__aarch64__) || defined(__amd64__) || defined(__i386__)
3319 	fpu_kern_thread(0);
3320 #endif
3321 	for (;;) {
3322 		mtx_lock(&wq->mtx);
3323 		while (STAILQ_EMPTY(&wq->m_head) &&
3324 		    STAILQ_EMPTY(&wq->so_head)) {
3325 			wq->running = false;
3326 			mtx_sleep(wq, &wq->mtx, 0, "-", 0);
3327 			wq->running = true;
3328 		}
3329 
3330 		STAILQ_INIT(&local_m_head);
3331 		STAILQ_CONCAT(&local_m_head, &wq->m_head);
3332 		STAILQ_INIT(&local_so_head);
3333 		STAILQ_CONCAT(&local_so_head, &wq->so_head);
3334 		mtx_unlock(&wq->mtx);
3335 
3336 		STAILQ_FOREACH_SAFE(m, &local_m_head, m_epg_stailq, n) {
3337 			if (m->m_epg_flags & EPG_FLAG_2FREE) {
3338 				ktls_free(m->m_epg_tls);
3339 				m_free_raw(m);
3340 			} else {
3341 				if (m->m_epg_tls->sync_dispatch)
3342 					ktls_encrypt(wq, m);
3343 				else
3344 					ktls_encrypt_async(wq, m);
3345 				counter_u64_add(ktls_cnt_tx_queued, -1);
3346 			}
3347 		}
3348 
3349 		STAILQ_FOREACH_SAFE(so, &local_so_head, so_ktls_rx_list, son) {
3350 			ktls_decrypt(so);
3351 			counter_u64_add(ktls_cnt_rx_queued, -1);
3352 		}
3353 	}
3354 }
3355 
3356 static void
ktls_disable_ifnet_help(void * context,int pending __unused)3357 ktls_disable_ifnet_help(void *context, int pending __unused)
3358 {
3359 	struct ktls_session *tls;
3360 	struct inpcb *inp;
3361 	struct tcpcb *tp;
3362 	struct socket *so;
3363 	int err;
3364 
3365 	tls = context;
3366 	inp = tls->inp;
3367 	if (inp == NULL)
3368 		return;
3369 	INP_WLOCK(inp);
3370 	so = inp->inp_socket;
3371 	MPASS(so != NULL);
3372 	if (inp->inp_flags & INP_DROPPED) {
3373 		goto out;
3374 	}
3375 
3376 	if (so->so_snd.sb_tls_info != NULL)
3377 		err = ktls_set_tx_mode(so, TCP_TLS_MODE_SW);
3378 	else
3379 		err = ENXIO;
3380 	if (err == 0) {
3381 		counter_u64_add(ktls_ifnet_disable_ok, 1);
3382 		/* ktls_set_tx_mode() drops inp wlock, so recheck flags */
3383 		if ((inp->inp_flags & INP_DROPPED) == 0 &&
3384 		    (tp = intotcpcb(inp)) != NULL &&
3385 		    tp->t_fb->tfb_hwtls_change != NULL)
3386 			(*tp->t_fb->tfb_hwtls_change)(tp, 0);
3387 	} else {
3388 		counter_u64_add(ktls_ifnet_disable_fail, 1);
3389 	}
3390 
3391 out:
3392 	CURVNET_SET(so->so_vnet);
3393 	sorele(so);
3394 	CURVNET_RESTORE();
3395 	INP_WUNLOCK(inp);
3396 	ktls_free(tls);
3397 }
3398 
3399 /*
3400  * Called when re-transmits are becoming a substantial portion of the
3401  * sends on this connection.  When this happens, we transition the
3402  * connection to software TLS.  This is needed because most inline TLS
3403  * NICs keep crypto state only for in-order transmits.  This means
3404  * that to handle a TCP rexmit (which is out-of-order), the NIC must
3405  * re-DMA the entire TLS record up to and including the current
3406  * segment.  This means that when re-transmitting the last ~1448 byte
3407  * segment of a 16KB TLS record, we could wind up re-DMA'ing an order
3408  * of magnitude more data than we are sending.  This can cause the
3409  * PCIe link to saturate well before the network, which can cause
3410  * output drops, and a general loss of capacity.
3411  */
3412 void
ktls_disable_ifnet(void * arg)3413 ktls_disable_ifnet(void *arg)
3414 {
3415 	struct tcpcb *tp;
3416 	struct inpcb *inp;
3417 	struct socket *so;
3418 	struct ktls_session *tls;
3419 
3420 	tp = arg;
3421 	inp = tptoinpcb(tp);
3422 	INP_WLOCK_ASSERT(inp);
3423 	so = inp->inp_socket;
3424 	SOCK_LOCK(so);
3425 	tls = so->so_snd.sb_tls_info;
3426 	if (tp->t_nic_ktls_xmit_dis == 1) {
3427 		SOCK_UNLOCK(so);
3428 		return;
3429 	}
3430 
3431 	/*
3432 	 * note that t_nic_ktls_xmit_dis is never cleared; disabling
3433 	 * ifnet can only be done once per connection, so we never want
3434 	 * to do it again
3435 	 */
3436 
3437 	(void)ktls_hold(tls);
3438 	soref(so);
3439 	tp->t_nic_ktls_xmit_dis = 1;
3440 	SOCK_UNLOCK(so);
3441 	TASK_INIT(&tls->disable_ifnet_task, 0, ktls_disable_ifnet_help, tls);
3442 	(void)taskqueue_enqueue(taskqueue_thread, &tls->disable_ifnet_task);
3443 }
3444 
3445 void
ktls_session_to_xktls_onedir(const struct ktls_session * ktls,bool export_keys,struct xktls_session_onedir * xk)3446 ktls_session_to_xktls_onedir(const struct ktls_session *ktls, bool export_keys,
3447     struct xktls_session_onedir *xk)
3448 {
3449 	if_t ifp;
3450 	struct m_snd_tag *st;
3451 
3452 	xk->gen = ktls->gen;
3453 #define	A(m) xk->m = ktls->params.m
3454 	A(cipher_algorithm);
3455 	A(auth_algorithm);
3456 	A(cipher_key_len);
3457 	A(auth_key_len);
3458 	A(max_frame_len);
3459 	A(tls_vmajor);
3460 	A(tls_vminor);
3461 	A(tls_hlen);
3462 	A(tls_tlen);
3463 	A(tls_bs);
3464 	A(flags);
3465 	if (export_keys) {
3466 		memcpy(&xk->iv, &ktls->params.iv, XKTLS_SESSION_IV_BUF_LEN);
3467 		A(iv_len);
3468 	} else {
3469 		memset(&xk->iv, 0, XKTLS_SESSION_IV_BUF_LEN);
3470 		xk->iv_len = 0;
3471 	}
3472 #undef A
3473 	if ((st = ktls->snd_tag) != NULL &&
3474 	    (ifp = ktls->snd_tag->ifp) != NULL)
3475 		strncpy(xk->ifnet, if_name(ifp), sizeof(xk->ifnet));
3476 }
3477 
3478 void
ktls_session_copy_keys(const struct ktls_session * ktls,uint8_t * data,size_t * sz)3479 ktls_session_copy_keys(const struct ktls_session *ktls,
3480     uint8_t *data, size_t *sz)
3481 {
3482 	size_t t, ta, tc;
3483 
3484 	if (ktls == NULL) {
3485 		*sz = 0;
3486 		return;
3487 	}
3488 	t = *sz;
3489 	tc = MIN(t, ktls->params.cipher_key_len);
3490 	if (data != NULL)
3491 		memcpy(data, ktls->params.cipher_key, tc);
3492 	ta = MIN(t - tc, ktls->params.auth_key_len);
3493 	if (data != NULL)
3494 		memcpy(data + tc, ktls->params.auth_key, ta);
3495 	*sz = ta + tc;
3496 }
3497