1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2014-2019 Netflix Inc.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */
27
28 #include <sys/cdefs.h>
29 #include "opt_inet.h"
30 #include "opt_inet6.h"
31 #include "opt_kern_tls.h"
32 #include "opt_ratelimit.h"
33 #include "opt_rss.h"
34
35 #include <sys/param.h>
36 #include <sys/kernel.h>
37 #include <sys/domainset.h>
38 #include <sys/endian.h>
39 #include <sys/ktls.h>
40 #include <sys/lock.h>
41 #include <sys/mbuf.h>
42 #include <sys/mutex.h>
43 #include <sys/rmlock.h>
44 #include <sys/proc.h>
45 #include <sys/protosw.h>
46 #include <sys/refcount.h>
47 #include <sys/smp.h>
48 #include <sys/socket.h>
49 #include <sys/socketvar.h>
50 #include <sys/sysctl.h>
51 #include <sys/taskqueue.h>
52 #include <sys/kthread.h>
53 #include <sys/uio.h>
54 #include <sys/vmmeter.h>
55 #if defined(__aarch64__) || defined(__amd64__) || defined(__i386__)
56 #include <machine/pcb.h>
57 #endif
58 #include <machine/vmparam.h>
59 #include <net/if.h>
60 #include <net/if_var.h>
61 #ifdef RSS
62 #include <net/netisr.h>
63 #include <net/rss_config.h>
64 #endif
65 #include <net/route.h>
66 #include <net/route/nhop.h>
67 #include <netinet/in.h>
68 #include <netinet/in_pcb.h>
69 #include <netinet/tcp_var.h>
70 #ifdef TCP_OFFLOAD
71 #include <netinet/tcp_offload.h>
72 #endif
73 #include <opencrypto/cryptodev.h>
74 #include <opencrypto/ktls.h>
75 #include <vm/vm.h>
76 #include <vm/vm_pageout.h>
77 #include <vm/vm_page.h>
78 #include <vm/vm_pagequeue.h>
79
80 struct ktls_wq {
81 struct mtx mtx;
82 STAILQ_HEAD(, mbuf) m_head;
83 STAILQ_HEAD(, socket) so_head;
84 bool running;
85 int lastallocfail;
86 } __aligned(CACHE_LINE_SIZE);
87
88 struct ktls_reclaim_thread {
89 uint64_t wakeups;
90 uint64_t reclaims;
91 struct thread *td;
92 int running;
93 };
94
95 struct ktls_domain_info {
96 int count;
97 int cpu[MAXCPU];
98 struct ktls_reclaim_thread reclaim_td;
99 };
100
101 struct ktls_domain_info ktls_domains[MAXMEMDOM];
102 static struct ktls_wq *ktls_wq;
103 static struct proc *ktls_proc;
104 static uma_zone_t ktls_session_zone;
105 static uma_zone_t ktls_buffer_zone;
106 static uint16_t ktls_cpuid_lookup[MAXCPU];
107 static int ktls_init_state;
108 static struct sx ktls_init_lock;
109 SX_SYSINIT(ktls_init_lock, &ktls_init_lock, "ktls init");
110
111 SYSCTL_NODE(_kern_ipc, OID_AUTO, tls, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
112 "Kernel TLS offload");
113 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, stats, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
114 "Kernel TLS offload stats");
115
116 #ifdef RSS
117 static int ktls_bind_threads = 1;
118 #else
119 static int ktls_bind_threads;
120 #endif
121 SYSCTL_INT(_kern_ipc_tls, OID_AUTO, bind_threads, CTLFLAG_RDTUN,
122 &ktls_bind_threads, 0,
123 "Bind crypto threads to cores (1) or cores and domains (2) at boot");
124
125 static u_int ktls_maxlen = 16384;
126 SYSCTL_UINT(_kern_ipc_tls, OID_AUTO, maxlen, CTLFLAG_RDTUN,
127 &ktls_maxlen, 0, "Maximum TLS record size");
128
129 static int ktls_number_threads;
130 SYSCTL_INT(_kern_ipc_tls_stats, OID_AUTO, threads, CTLFLAG_RD,
131 &ktls_number_threads, 0,
132 "Number of TLS threads in thread-pool");
133
134 unsigned int ktls_ifnet_max_rexmit_pct = 2;
135 SYSCTL_UINT(_kern_ipc_tls, OID_AUTO, ifnet_max_rexmit_pct, CTLFLAG_RWTUN,
136 &ktls_ifnet_max_rexmit_pct, 2,
137 "Max percent bytes retransmitted before ifnet TLS is disabled");
138
139 static bool ktls_offload_enable = true;
140 SYSCTL_BOOL(_kern_ipc_tls, OID_AUTO, enable, CTLFLAG_RWTUN,
141 &ktls_offload_enable, 0,
142 "Enable support for kernel TLS offload");
143
144 static bool ktls_cbc_enable = true;
145 SYSCTL_BOOL(_kern_ipc_tls, OID_AUTO, cbc_enable, CTLFLAG_RWTUN,
146 &ktls_cbc_enable, 1,
147 "Enable support of AES-CBC crypto for kernel TLS");
148
149 static bool ktls_sw_buffer_cache = true;
150 SYSCTL_BOOL(_kern_ipc_tls, OID_AUTO, sw_buffer_cache, CTLFLAG_RDTUN,
151 &ktls_sw_buffer_cache, 1,
152 "Enable caching of output buffers for SW encryption");
153
154 static int ktls_max_reclaim = 1024;
155 SYSCTL_INT(_kern_ipc_tls, OID_AUTO, max_reclaim, CTLFLAG_RWTUN,
156 &ktls_max_reclaim, 128,
157 "Max number of 16k buffers to reclaim in thread context");
158
159 static COUNTER_U64_DEFINE_EARLY(ktls_tasks_active);
160 SYSCTL_COUNTER_U64(_kern_ipc_tls, OID_AUTO, tasks_active, CTLFLAG_RD,
161 &ktls_tasks_active, "Number of active tasks");
162
163 static COUNTER_U64_DEFINE_EARLY(ktls_cnt_tx_pending);
164 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, sw_tx_pending, CTLFLAG_RD,
165 &ktls_cnt_tx_pending,
166 "Number of TLS 1.0 records waiting for earlier TLS records");
167
168 static COUNTER_U64_DEFINE_EARLY(ktls_cnt_tx_queued);
169 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, sw_tx_inqueue, CTLFLAG_RD,
170 &ktls_cnt_tx_queued,
171 "Number of TLS records in queue to tasks for SW encryption");
172
173 static COUNTER_U64_DEFINE_EARLY(ktls_cnt_rx_queued);
174 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, sw_rx_inqueue, CTLFLAG_RD,
175 &ktls_cnt_rx_queued,
176 "Number of TLS sockets in queue to tasks for SW decryption");
177
178 static COUNTER_U64_DEFINE_EARLY(ktls_offload_total);
179 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, offload_total,
180 CTLFLAG_RD, &ktls_offload_total,
181 "Total successful TLS setups (parameters set)");
182
183 static COUNTER_U64_DEFINE_EARLY(ktls_offload_enable_calls);
184 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, enable_calls,
185 CTLFLAG_RD, &ktls_offload_enable_calls,
186 "Total number of TLS enable calls made");
187
188 static COUNTER_U64_DEFINE_EARLY(ktls_offload_active);
189 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, active, CTLFLAG_RD,
190 &ktls_offload_active, "Total Active TLS sessions");
191
192 static COUNTER_U64_DEFINE_EARLY(ktls_offload_corrupted_records);
193 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, corrupted_records, CTLFLAG_RD,
194 &ktls_offload_corrupted_records, "Total corrupted TLS records received");
195
196 static COUNTER_U64_DEFINE_EARLY(ktls_offload_failed_crypto);
197 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, failed_crypto, CTLFLAG_RD,
198 &ktls_offload_failed_crypto, "Total TLS crypto failures");
199
200 static COUNTER_U64_DEFINE_EARLY(ktls_switch_to_ifnet);
201 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_to_ifnet, CTLFLAG_RD,
202 &ktls_switch_to_ifnet, "TLS sessions switched from SW to ifnet");
203
204 static COUNTER_U64_DEFINE_EARLY(ktls_switch_to_sw);
205 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_to_sw, CTLFLAG_RD,
206 &ktls_switch_to_sw, "TLS sessions switched from ifnet to SW");
207
208 static COUNTER_U64_DEFINE_EARLY(ktls_switch_failed);
209 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_failed, CTLFLAG_RD,
210 &ktls_switch_failed, "TLS sessions unable to switch between SW and ifnet");
211
212 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_disable_fail);
213 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, ifnet_disable_failed, CTLFLAG_RD,
214 &ktls_ifnet_disable_fail, "TLS sessions unable to switch to SW from ifnet");
215
216 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_disable_ok);
217 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, ifnet_disable_ok, CTLFLAG_RD,
218 &ktls_ifnet_disable_ok, "TLS sessions able to switch to SW from ifnet");
219
220 static COUNTER_U64_DEFINE_EARLY(ktls_destroy_task);
221 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, destroy_task, CTLFLAG_RD,
222 &ktls_destroy_task,
223 "Number of times ktls session was destroyed via taskqueue");
224
225 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, sw, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
226 "Software TLS session stats");
227 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, ifnet, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
228 "Hardware (ifnet) TLS session stats");
229 #ifdef TCP_OFFLOAD
230 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, toe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
231 "TOE TLS session stats");
232 #endif
233
234 static COUNTER_U64_DEFINE_EARLY(ktls_sw_cbc);
235 SYSCTL_COUNTER_U64(_kern_ipc_tls_sw, OID_AUTO, cbc, CTLFLAG_RD, &ktls_sw_cbc,
236 "Active number of software TLS sessions using AES-CBC");
237
238 static COUNTER_U64_DEFINE_EARLY(ktls_sw_gcm);
239 SYSCTL_COUNTER_U64(_kern_ipc_tls_sw, OID_AUTO, gcm, CTLFLAG_RD, &ktls_sw_gcm,
240 "Active number of software TLS sessions using AES-GCM");
241
242 static COUNTER_U64_DEFINE_EARLY(ktls_sw_chacha20);
243 SYSCTL_COUNTER_U64(_kern_ipc_tls_sw, OID_AUTO, chacha20, CTLFLAG_RD,
244 &ktls_sw_chacha20,
245 "Active number of software TLS sessions using Chacha20-Poly1305");
246
247 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_cbc);
248 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, cbc, CTLFLAG_RD,
249 &ktls_ifnet_cbc,
250 "Active number of ifnet TLS sessions using AES-CBC");
251
252 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_gcm);
253 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, gcm, CTLFLAG_RD,
254 &ktls_ifnet_gcm,
255 "Active number of ifnet TLS sessions using AES-GCM");
256
257 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_chacha20);
258 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, chacha20, CTLFLAG_RD,
259 &ktls_ifnet_chacha20,
260 "Active number of ifnet TLS sessions using Chacha20-Poly1305");
261
262 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_reset);
263 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset, CTLFLAG_RD,
264 &ktls_ifnet_reset, "TLS sessions updated to a new ifnet send tag");
265
266 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_reset_dropped);
267 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset_dropped, CTLFLAG_RD,
268 &ktls_ifnet_reset_dropped,
269 "TLS sessions dropped after failing to update ifnet send tag");
270
271 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_reset_failed);
272 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset_failed, CTLFLAG_RD,
273 &ktls_ifnet_reset_failed,
274 "TLS sessions that failed to allocate a new ifnet send tag");
275
276 static int ktls_ifnet_permitted = 1;
277 SYSCTL_UINT(_kern_ipc_tls_ifnet, OID_AUTO, permitted, CTLFLAG_RWTUN,
278 &ktls_ifnet_permitted, 1,
279 "Whether to permit hardware (ifnet) TLS sessions");
280
281 #ifdef TCP_OFFLOAD
282 static COUNTER_U64_DEFINE_EARLY(ktls_toe_cbc);
283 SYSCTL_COUNTER_U64(_kern_ipc_tls_toe, OID_AUTO, cbc, CTLFLAG_RD,
284 &ktls_toe_cbc,
285 "Active number of TOE TLS sessions using AES-CBC");
286
287 static COUNTER_U64_DEFINE_EARLY(ktls_toe_gcm);
288 SYSCTL_COUNTER_U64(_kern_ipc_tls_toe, OID_AUTO, gcm, CTLFLAG_RD,
289 &ktls_toe_gcm,
290 "Active number of TOE TLS sessions using AES-GCM");
291
292 static COUNTER_U64_DEFINE_EARLY(ktls_toe_chacha20);
293 SYSCTL_COUNTER_U64(_kern_ipc_tls_toe, OID_AUTO, chacha20, CTLFLAG_RD,
294 &ktls_toe_chacha20,
295 "Active number of TOE TLS sessions using Chacha20-Poly1305");
296 #endif
297
298 static MALLOC_DEFINE(M_KTLS, "ktls", "Kernel TLS");
299
300 static void ktls_reclaim_thread(void *ctx);
301 static void ktls_reset_receive_tag(void *context, int pending);
302 static void ktls_reset_send_tag(void *context, int pending);
303 static void ktls_work_thread(void *ctx);
304
305 int
ktls_copyin_tls_enable(struct sockopt * sopt,struct tls_enable * tls)306 ktls_copyin_tls_enable(struct sockopt *sopt, struct tls_enable *tls)
307 {
308 struct tls_enable_v0 tls_v0;
309 int error;
310 uint8_t *cipher_key = NULL, *iv = NULL, *auth_key = NULL;
311
312 if (sopt->sopt_valsize == sizeof(tls_v0)) {
313 error = sooptcopyin(sopt, &tls_v0, sizeof(tls_v0), sizeof(tls_v0));
314 if (error != 0)
315 goto done;
316 memset(tls, 0, sizeof(*tls));
317 tls->cipher_key = tls_v0.cipher_key;
318 tls->iv = tls_v0.iv;
319 tls->auth_key = tls_v0.auth_key;
320 tls->cipher_algorithm = tls_v0.cipher_algorithm;
321 tls->cipher_key_len = tls_v0.cipher_key_len;
322 tls->iv_len = tls_v0.iv_len;
323 tls->auth_algorithm = tls_v0.auth_algorithm;
324 tls->auth_key_len = tls_v0.auth_key_len;
325 tls->flags = tls_v0.flags;
326 tls->tls_vmajor = tls_v0.tls_vmajor;
327 tls->tls_vminor = tls_v0.tls_vminor;
328 } else
329 error = sooptcopyin(sopt, tls, sizeof(*tls), sizeof(*tls));
330
331 if (error != 0)
332 return (error);
333
334 if (tls->cipher_key_len < 0 || tls->cipher_key_len > TLS_MAX_PARAM_SIZE)
335 return (EINVAL);
336 if (tls->iv_len < 0 || tls->iv_len > sizeof(((struct ktls_session *)NULL)->params.iv))
337 return (EINVAL);
338 if (tls->auth_key_len < 0 || tls->auth_key_len > TLS_MAX_PARAM_SIZE)
339 return (EINVAL);
340
341 /* All supported algorithms require a cipher key. */
342 if (tls->cipher_key_len == 0)
343 return (EINVAL);
344
345 /*
346 * Now do a deep copy of the variable-length arrays in the struct, so that
347 * subsequent consumers of it can reliably assume kernel memory. This
348 * requires doing our own allocations, which we will free in the
349 * error paths so that our caller need only worry about outstanding
350 * allocations existing on successful return.
351 */
352 if (tls->cipher_key_len != 0) {
353 cipher_key = malloc(tls->cipher_key_len, M_KTLS, M_WAITOK);
354 if (sopt->sopt_td != NULL) {
355 error = copyin(tls->cipher_key, cipher_key, tls->cipher_key_len);
356 if (error != 0)
357 goto done;
358 } else {
359 bcopy(tls->cipher_key, cipher_key, tls->cipher_key_len);
360 }
361 }
362 if (tls->iv_len != 0) {
363 iv = malloc(tls->iv_len, M_KTLS, M_WAITOK);
364 if (sopt->sopt_td != NULL) {
365 error = copyin(tls->iv, iv, tls->iv_len);
366 if (error != 0)
367 goto done;
368 } else {
369 bcopy(tls->iv, iv, tls->iv_len);
370 }
371 }
372 if (tls->auth_key_len != 0) {
373 auth_key = malloc(tls->auth_key_len, M_KTLS, M_WAITOK);
374 if (sopt->sopt_td != NULL) {
375 error = copyin(tls->auth_key, auth_key, tls->auth_key_len);
376 if (error != 0)
377 goto done;
378 } else {
379 bcopy(tls->auth_key, auth_key, tls->auth_key_len);
380 }
381 }
382 tls->cipher_key = cipher_key;
383 tls->iv = iv;
384 tls->auth_key = auth_key;
385
386 done:
387 if (error != 0) {
388 zfree(cipher_key, M_KTLS);
389 zfree(iv, M_KTLS);
390 zfree(auth_key, M_KTLS);
391 }
392
393 return (error);
394 }
395
396 void
ktls_cleanup_tls_enable(struct tls_enable * tls)397 ktls_cleanup_tls_enable(struct tls_enable *tls)
398 {
399 zfree(__DECONST(void *, tls->cipher_key), M_KTLS);
400 zfree(__DECONST(void *, tls->iv), M_KTLS);
401 zfree(__DECONST(void *, tls->auth_key), M_KTLS);
402 }
403
404 static u_int
ktls_get_cpu(struct socket * so)405 ktls_get_cpu(struct socket *so)
406 {
407 struct inpcb *inp;
408 #ifdef NUMA
409 struct ktls_domain_info *di;
410 #endif
411 u_int cpuid;
412
413 inp = sotoinpcb(so);
414 #ifdef RSS
415 cpuid = rss_hash2cpuid(inp->inp_flowid, inp->inp_flowtype);
416 if (cpuid != NETISR_CPUID_NONE)
417 return (cpuid);
418 #endif
419 /*
420 * Just use the flowid to shard connections in a repeatable
421 * fashion. Note that TLS 1.0 sessions rely on the
422 * serialization provided by having the same connection use
423 * the same queue.
424 */
425 #ifdef NUMA
426 if (ktls_bind_threads > 1 && inp->inp_numa_domain != M_NODOM) {
427 di = &ktls_domains[inp->inp_numa_domain];
428 cpuid = di->cpu[inp->inp_flowid % di->count];
429 } else
430 #endif
431 cpuid = ktls_cpuid_lookup[inp->inp_flowid % ktls_number_threads];
432 return (cpuid);
433 }
434
435 static int
ktls_buffer_import(void * arg,void ** store,int count,int domain,int flags)436 ktls_buffer_import(void *arg, void **store, int count, int domain, int flags)
437 {
438 vm_page_t m;
439 int i, req;
440
441 KASSERT((ktls_maxlen & PAGE_MASK) == 0,
442 ("%s: ktls max length %d is not page size-aligned",
443 __func__, ktls_maxlen));
444
445 req = VM_ALLOC_WIRED | VM_ALLOC_NODUMP | malloc2vm_flags(flags);
446 for (i = 0; i < count; i++) {
447 m = vm_page_alloc_noobj_contig_domain(domain, req,
448 atop(ktls_maxlen), 0, ~0ul, PAGE_SIZE, 0,
449 VM_MEMATTR_DEFAULT);
450 if (m == NULL)
451 break;
452 store[i] = (void *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
453 }
454 return (i);
455 }
456
457 static void
ktls_buffer_release(void * arg __unused,void ** store,int count)458 ktls_buffer_release(void *arg __unused, void **store, int count)
459 {
460 vm_page_t m;
461 int i, j;
462
463 for (i = 0; i < count; i++) {
464 m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)store[i]));
465 for (j = 0; j < atop(ktls_maxlen); j++) {
466 (void)vm_page_unwire_noq(m + j);
467 vm_page_free(m + j);
468 }
469 }
470 }
471
472 static void
ktls_free_mext_contig(struct mbuf * m)473 ktls_free_mext_contig(struct mbuf *m)
474 {
475 M_ASSERTEXTPG(m);
476 uma_zfree(ktls_buffer_zone, (void *)PHYS_TO_DMAP(m->m_epg_pa[0]));
477 }
478
479 static int
ktls_init(void)480 ktls_init(void)
481 {
482 struct thread *td;
483 struct pcpu *pc;
484 int count, domain, error, i;
485
486 ktls_wq = malloc(sizeof(*ktls_wq) * (mp_maxid + 1), M_KTLS,
487 M_WAITOK | M_ZERO);
488
489 ktls_session_zone = uma_zcreate("ktls_session",
490 sizeof(struct ktls_session),
491 NULL, NULL, NULL, NULL,
492 UMA_ALIGN_CACHE, 0);
493
494 if (ktls_sw_buffer_cache) {
495 ktls_buffer_zone = uma_zcache_create("ktls_buffers",
496 roundup2(ktls_maxlen, PAGE_SIZE), NULL, NULL, NULL, NULL,
497 ktls_buffer_import, ktls_buffer_release, NULL,
498 UMA_ZONE_FIRSTTOUCH);
499 }
500
501 /*
502 * Initialize the workqueues to run the TLS work. We create a
503 * work queue for each CPU.
504 */
505 CPU_FOREACH(i) {
506 STAILQ_INIT(&ktls_wq[i].m_head);
507 STAILQ_INIT(&ktls_wq[i].so_head);
508 mtx_init(&ktls_wq[i].mtx, "ktls work queue", NULL, MTX_DEF);
509 if (ktls_bind_threads > 1) {
510 pc = pcpu_find(i);
511 domain = pc->pc_domain;
512 count = ktls_domains[domain].count;
513 ktls_domains[domain].cpu[count] = i;
514 ktls_domains[domain].count++;
515 }
516 ktls_cpuid_lookup[ktls_number_threads] = i;
517 ktls_number_threads++;
518 }
519
520 /*
521 * If we somehow have an empty domain, fall back to choosing
522 * among all KTLS threads.
523 */
524 if (ktls_bind_threads > 1) {
525 for (i = 0; i < vm_ndomains; i++) {
526 if (ktls_domains[i].count == 0) {
527 ktls_bind_threads = 1;
528 break;
529 }
530 }
531 }
532
533 /* Start kthreads for each workqueue. */
534 CPU_FOREACH(i) {
535 error = kproc_kthread_add(ktls_work_thread, &ktls_wq[i],
536 &ktls_proc, &td, 0, 0, "KTLS", "thr_%d", i);
537 if (error) {
538 printf("Can't add KTLS thread %d error %d\n", i, error);
539 return (error);
540 }
541 }
542
543 /*
544 * Start an allocation thread per-domain to perform blocking allocations
545 * of 16k physically contiguous TLS crypto destination buffers.
546 */
547 if (ktls_sw_buffer_cache) {
548 for (domain = 0; domain < vm_ndomains; domain++) {
549 if (VM_DOMAIN_EMPTY(domain))
550 continue;
551 if (CPU_EMPTY(&cpuset_domain[domain]))
552 continue;
553 error = kproc_kthread_add(ktls_reclaim_thread,
554 &ktls_domains[domain], &ktls_proc,
555 &ktls_domains[domain].reclaim_td.td,
556 0, 0, "KTLS", "reclaim_%d", domain);
557 if (error) {
558 printf("Can't add KTLS reclaim thread %d error %d\n",
559 domain, error);
560 return (error);
561 }
562 }
563 }
564
565 if (bootverbose)
566 printf("KTLS: Initialized %d threads\n", ktls_number_threads);
567 return (0);
568 }
569
570 static int
ktls_start_kthreads(void)571 ktls_start_kthreads(void)
572 {
573 int error, state;
574
575 start:
576 state = atomic_load_acq_int(&ktls_init_state);
577 if (__predict_true(state > 0))
578 return (0);
579 if (state < 0)
580 return (ENXIO);
581
582 sx_xlock(&ktls_init_lock);
583 if (ktls_init_state != 0) {
584 sx_xunlock(&ktls_init_lock);
585 goto start;
586 }
587
588 error = ktls_init();
589 if (error == 0)
590 state = 1;
591 else
592 state = -1;
593 atomic_store_rel_int(&ktls_init_state, state);
594 sx_xunlock(&ktls_init_lock);
595 return (error);
596 }
597
598 static int
ktls_create_session(struct socket * so,struct tls_enable * en,struct ktls_session ** tlsp,int direction)599 ktls_create_session(struct socket *so, struct tls_enable *en,
600 struct ktls_session **tlsp, int direction)
601 {
602 struct ktls_session *tls;
603 int error;
604
605 /* Only TLS 1.0 - 1.3 are supported. */
606 if (en->tls_vmajor != TLS_MAJOR_VER_ONE)
607 return (EINVAL);
608 if (en->tls_vminor < TLS_MINOR_VER_ZERO ||
609 en->tls_vminor > TLS_MINOR_VER_THREE)
610 return (EINVAL);
611
612
613 /* No flags are currently supported. */
614 if (en->flags != 0)
615 return (EINVAL);
616
617 /* Common checks for supported algorithms. */
618 switch (en->cipher_algorithm) {
619 case CRYPTO_AES_NIST_GCM_16:
620 /*
621 * auth_algorithm isn't used, but permit GMAC values
622 * for compatibility.
623 */
624 switch (en->auth_algorithm) {
625 case 0:
626 #ifdef COMPAT_FREEBSD12
627 /* XXX: Really 13.0-current COMPAT. */
628 case CRYPTO_AES_128_NIST_GMAC:
629 case CRYPTO_AES_192_NIST_GMAC:
630 case CRYPTO_AES_256_NIST_GMAC:
631 #endif
632 break;
633 default:
634 return (EINVAL);
635 }
636 if (en->auth_key_len != 0)
637 return (EINVAL);
638 switch (en->tls_vminor) {
639 case TLS_MINOR_VER_TWO:
640 if (en->iv_len != TLS_AEAD_GCM_LEN)
641 return (EINVAL);
642 break;
643 case TLS_MINOR_VER_THREE:
644 if (en->iv_len != TLS_1_3_GCM_IV_LEN)
645 return (EINVAL);
646 break;
647 default:
648 return (EINVAL);
649 }
650 break;
651 case CRYPTO_AES_CBC:
652 switch (en->auth_algorithm) {
653 case CRYPTO_SHA1_HMAC:
654 break;
655 case CRYPTO_SHA2_256_HMAC:
656 case CRYPTO_SHA2_384_HMAC:
657 if (en->tls_vminor != TLS_MINOR_VER_TWO)
658 return (EINVAL);
659 break;
660 default:
661 return (EINVAL);
662 }
663 if (en->auth_key_len == 0)
664 return (EINVAL);
665
666 /*
667 * TLS 1.0 requires an implicit IV. TLS 1.1 and 1.2
668 * use explicit IVs.
669 */
670 switch (en->tls_vminor) {
671 case TLS_MINOR_VER_ZERO:
672 if (en->iv_len != TLS_CBC_IMPLICIT_IV_LEN)
673 return (EINVAL);
674 break;
675 case TLS_MINOR_VER_ONE:
676 case TLS_MINOR_VER_TWO:
677 /* Ignore any supplied IV. */
678 en->iv_len = 0;
679 break;
680 default:
681 return (EINVAL);
682 }
683 break;
684 case CRYPTO_CHACHA20_POLY1305:
685 if (en->auth_algorithm != 0 || en->auth_key_len != 0)
686 return (EINVAL);
687 if (en->tls_vminor != TLS_MINOR_VER_TWO &&
688 en->tls_vminor != TLS_MINOR_VER_THREE)
689 return (EINVAL);
690 if (en->iv_len != TLS_CHACHA20_IV_LEN)
691 return (EINVAL);
692 break;
693 default:
694 return (EINVAL);
695 }
696
697 error = ktls_start_kthreads();
698 if (error != 0)
699 return (error);
700
701 tls = uma_zalloc(ktls_session_zone, M_WAITOK | M_ZERO);
702
703 counter_u64_add(ktls_offload_active, 1);
704
705 refcount_init(&tls->refcount, 1);
706 if (direction == KTLS_RX) {
707 TASK_INIT(&tls->reset_tag_task, 0, ktls_reset_receive_tag, tls);
708 } else {
709 TASK_INIT(&tls->reset_tag_task, 0, ktls_reset_send_tag, tls);
710 tls->inp = so->so_pcb;
711 in_pcbref(tls->inp);
712 tls->tx = true;
713 }
714
715 tls->wq_index = ktls_get_cpu(so);
716
717 tls->params.cipher_algorithm = en->cipher_algorithm;
718 tls->params.auth_algorithm = en->auth_algorithm;
719 tls->params.tls_vmajor = en->tls_vmajor;
720 tls->params.tls_vminor = en->tls_vminor;
721 tls->params.flags = en->flags;
722 tls->params.max_frame_len = min(TLS_MAX_MSG_SIZE_V10_2, ktls_maxlen);
723
724 /* Set the header and trailer lengths. */
725 tls->params.tls_hlen = sizeof(struct tls_record_layer);
726 switch (en->cipher_algorithm) {
727 case CRYPTO_AES_NIST_GCM_16:
728 /*
729 * TLS 1.2 uses a 4 byte implicit IV with an explicit 8 byte
730 * nonce. TLS 1.3 uses a 12 byte implicit IV.
731 */
732 if (en->tls_vminor < TLS_MINOR_VER_THREE)
733 tls->params.tls_hlen += sizeof(uint64_t);
734 tls->params.tls_tlen = AES_GMAC_HASH_LEN;
735 tls->params.tls_bs = 1;
736 break;
737 case CRYPTO_AES_CBC:
738 switch (en->auth_algorithm) {
739 case CRYPTO_SHA1_HMAC:
740 if (en->tls_vminor == TLS_MINOR_VER_ZERO) {
741 /* Implicit IV, no nonce. */
742 tls->sequential_records = true;
743 tls->next_seqno = be64dec(en->rec_seq);
744 STAILQ_INIT(&tls->pending_records);
745 } else {
746 tls->params.tls_hlen += AES_BLOCK_LEN;
747 }
748 tls->params.tls_tlen = AES_BLOCK_LEN +
749 SHA1_HASH_LEN;
750 break;
751 case CRYPTO_SHA2_256_HMAC:
752 tls->params.tls_hlen += AES_BLOCK_LEN;
753 tls->params.tls_tlen = AES_BLOCK_LEN +
754 SHA2_256_HASH_LEN;
755 break;
756 case CRYPTO_SHA2_384_HMAC:
757 tls->params.tls_hlen += AES_BLOCK_LEN;
758 tls->params.tls_tlen = AES_BLOCK_LEN +
759 SHA2_384_HASH_LEN;
760 break;
761 default:
762 panic("invalid hmac");
763 }
764 tls->params.tls_bs = AES_BLOCK_LEN;
765 break;
766 case CRYPTO_CHACHA20_POLY1305:
767 /*
768 * Chacha20 uses a 12 byte implicit IV.
769 */
770 tls->params.tls_tlen = POLY1305_HASH_LEN;
771 tls->params.tls_bs = 1;
772 break;
773 default:
774 panic("invalid cipher");
775 }
776
777 /*
778 * TLS 1.3 includes optional padding which we do not support,
779 * and also puts the "real" record type at the end of the
780 * encrypted data.
781 */
782 if (en->tls_vminor == TLS_MINOR_VER_THREE)
783 tls->params.tls_tlen += sizeof(uint8_t);
784
785 KASSERT(tls->params.tls_hlen <= MBUF_PEXT_HDR_LEN,
786 ("TLS header length too long: %d", tls->params.tls_hlen));
787 KASSERT(tls->params.tls_tlen <= MBUF_PEXT_TRAIL_LEN,
788 ("TLS trailer length too long: %d", tls->params.tls_tlen));
789
790 if (en->auth_key_len != 0) {
791 tls->params.auth_key_len = en->auth_key_len;
792 tls->params.auth_key = malloc(en->auth_key_len, M_KTLS,
793 M_WAITOK);
794 bcopy(en->auth_key, tls->params.auth_key, en->auth_key_len);
795 }
796
797 tls->params.cipher_key_len = en->cipher_key_len;
798 tls->params.cipher_key = malloc(en->cipher_key_len, M_KTLS, M_WAITOK);
799 bcopy(en->cipher_key, tls->params.cipher_key, en->cipher_key_len);
800
801 /*
802 * This holds the implicit portion of the nonce for AEAD
803 * ciphers and the initial implicit IV for TLS 1.0. The
804 * explicit portions of the IV are generated in ktls_frame().
805 */
806 if (en->iv_len != 0) {
807 tls->params.iv_len = en->iv_len;
808 bcopy(en->iv, tls->params.iv, en->iv_len);
809
810 /*
811 * For TLS 1.2 with GCM, generate an 8-byte nonce as a
812 * counter to generate unique explicit IVs.
813 *
814 * Store this counter in the last 8 bytes of the IV
815 * array so that it is 8-byte aligned.
816 */
817 if (en->cipher_algorithm == CRYPTO_AES_NIST_GCM_16 &&
818 en->tls_vminor == TLS_MINOR_VER_TWO)
819 arc4rand(tls->params.iv + 8, sizeof(uint64_t), 0);
820 }
821
822 *tlsp = tls;
823 return (0);
824 }
825
826 static struct ktls_session *
ktls_clone_session(struct ktls_session * tls,int direction)827 ktls_clone_session(struct ktls_session *tls, int direction)
828 {
829 struct ktls_session *tls_new;
830
831 tls_new = uma_zalloc(ktls_session_zone, M_WAITOK | M_ZERO);
832
833 counter_u64_add(ktls_offload_active, 1);
834
835 refcount_init(&tls_new->refcount, 1);
836 if (direction == KTLS_RX) {
837 TASK_INIT(&tls_new->reset_tag_task, 0, ktls_reset_receive_tag,
838 tls_new);
839 } else {
840 TASK_INIT(&tls_new->reset_tag_task, 0, ktls_reset_send_tag,
841 tls_new);
842 tls_new->inp = tls->inp;
843 tls_new->tx = true;
844 in_pcbref(tls_new->inp);
845 }
846
847 /* Copy fields from existing session. */
848 tls_new->params = tls->params;
849 tls_new->wq_index = tls->wq_index;
850
851 /* Deep copy keys. */
852 if (tls_new->params.auth_key != NULL) {
853 tls_new->params.auth_key = malloc(tls->params.auth_key_len,
854 M_KTLS, M_WAITOK);
855 memcpy(tls_new->params.auth_key, tls->params.auth_key,
856 tls->params.auth_key_len);
857 }
858
859 tls_new->params.cipher_key = malloc(tls->params.cipher_key_len, M_KTLS,
860 M_WAITOK);
861 memcpy(tls_new->params.cipher_key, tls->params.cipher_key,
862 tls->params.cipher_key_len);
863
864 return (tls_new);
865 }
866
867 #ifdef TCP_OFFLOAD
868 static int
ktls_try_toe(struct socket * so,struct ktls_session * tls,int direction)869 ktls_try_toe(struct socket *so, struct ktls_session *tls, int direction)
870 {
871 struct inpcb *inp;
872 struct tcpcb *tp;
873 int error;
874
875 inp = so->so_pcb;
876 INP_WLOCK(inp);
877 if (inp->inp_flags & INP_DROPPED) {
878 INP_WUNLOCK(inp);
879 return (ECONNRESET);
880 }
881 if (inp->inp_socket == NULL) {
882 INP_WUNLOCK(inp);
883 return (ECONNRESET);
884 }
885 tp = intotcpcb(inp);
886 if (!(tp->t_flags & TF_TOE)) {
887 INP_WUNLOCK(inp);
888 return (EOPNOTSUPP);
889 }
890
891 error = tcp_offload_alloc_tls_session(tp, tls, direction);
892 INP_WUNLOCK(inp);
893 if (error == 0) {
894 tls->mode = TCP_TLS_MODE_TOE;
895 switch (tls->params.cipher_algorithm) {
896 case CRYPTO_AES_CBC:
897 counter_u64_add(ktls_toe_cbc, 1);
898 break;
899 case CRYPTO_AES_NIST_GCM_16:
900 counter_u64_add(ktls_toe_gcm, 1);
901 break;
902 case CRYPTO_CHACHA20_POLY1305:
903 counter_u64_add(ktls_toe_chacha20, 1);
904 break;
905 }
906 }
907 return (error);
908 }
909 #endif
910
911 /*
912 * Common code used when first enabling ifnet TLS on a connection or
913 * when allocating a new ifnet TLS session due to a routing change.
914 * This function allocates a new TLS send tag on whatever interface
915 * the connection is currently routed over.
916 */
917 static int
ktls_alloc_snd_tag(struct inpcb * inp,struct ktls_session * tls,bool force,struct m_snd_tag ** mstp)918 ktls_alloc_snd_tag(struct inpcb *inp, struct ktls_session *tls, bool force,
919 struct m_snd_tag **mstp)
920 {
921 union if_snd_tag_alloc_params params;
922 struct ifnet *ifp;
923 struct nhop_object *nh;
924 struct tcpcb *tp;
925 int error;
926
927 INP_RLOCK(inp);
928 if (inp->inp_flags & INP_DROPPED) {
929 INP_RUNLOCK(inp);
930 return (ECONNRESET);
931 }
932 if (inp->inp_socket == NULL) {
933 INP_RUNLOCK(inp);
934 return (ECONNRESET);
935 }
936 tp = intotcpcb(inp);
937
938 /*
939 * Check administrative controls on ifnet TLS to determine if
940 * ifnet TLS should be denied.
941 *
942 * - Always permit 'force' requests.
943 * - ktls_ifnet_permitted == 0: always deny.
944 */
945 if (!force && ktls_ifnet_permitted == 0) {
946 INP_RUNLOCK(inp);
947 return (ENXIO);
948 }
949
950 /*
951 * XXX: Use the cached route in the inpcb to find the
952 * interface. This should perhaps instead use
953 * rtalloc1_fib(dst, 0, 0, fibnum). Since KTLS is only
954 * enabled after a connection has completed key negotiation in
955 * userland, the cached route will be present in practice.
956 */
957 nh = inp->inp_route.ro_nh;
958 if (nh == NULL) {
959 INP_RUNLOCK(inp);
960 return (ENXIO);
961 }
962 ifp = nh->nh_ifp;
963 if_ref(ifp);
964
965 /*
966 * Allocate a TLS + ratelimit tag if the connection has an
967 * existing pacing rate.
968 */
969 if (tp->t_pacing_rate != -1 &&
970 (if_getcapenable(ifp) & IFCAP_TXTLS_RTLMT) != 0) {
971 params.hdr.type = IF_SND_TAG_TYPE_TLS_RATE_LIMIT;
972 params.tls_rate_limit.inp = inp;
973 params.tls_rate_limit.tls = tls;
974 params.tls_rate_limit.max_rate = tp->t_pacing_rate;
975 } else {
976 params.hdr.type = IF_SND_TAG_TYPE_TLS;
977 params.tls.inp = inp;
978 params.tls.tls = tls;
979 }
980 params.hdr.flowid = inp->inp_flowid;
981 params.hdr.flowtype = inp->inp_flowtype;
982 params.hdr.numa_domain = inp->inp_numa_domain;
983 INP_RUNLOCK(inp);
984
985 if ((if_getcapenable(ifp) & IFCAP_MEXTPG) == 0) {
986 error = EOPNOTSUPP;
987 goto out;
988 }
989 if (inp->inp_vflag & INP_IPV6) {
990 if ((if_getcapenable(ifp) & IFCAP_TXTLS6) == 0) {
991 error = EOPNOTSUPP;
992 goto out;
993 }
994 } else {
995 if ((if_getcapenable(ifp) & IFCAP_TXTLS4) == 0) {
996 error = EOPNOTSUPP;
997 goto out;
998 }
999 }
1000 error = m_snd_tag_alloc(ifp, ¶ms, mstp);
1001 out:
1002 if_rele(ifp);
1003 return (error);
1004 }
1005
1006 /*
1007 * Allocate an initial TLS receive tag for doing HW decryption of TLS
1008 * data.
1009 *
1010 * This function allocates a new TLS receive tag on whatever interface
1011 * the connection is currently routed over. If the connection ends up
1012 * using a different interface for receive this will get fixed up via
1013 * ktls_input_ifp_mismatch as future packets arrive.
1014 */
1015 static int
ktls_alloc_rcv_tag(struct inpcb * inp,struct ktls_session * tls,struct m_snd_tag ** mstp)1016 ktls_alloc_rcv_tag(struct inpcb *inp, struct ktls_session *tls,
1017 struct m_snd_tag **mstp)
1018 {
1019 union if_snd_tag_alloc_params params;
1020 struct ifnet *ifp;
1021 struct nhop_object *nh;
1022 int error;
1023
1024 if (!ktls_ocf_recrypt_supported(tls))
1025 return (ENXIO);
1026
1027 INP_RLOCK(inp);
1028 if (inp->inp_flags & INP_DROPPED) {
1029 INP_RUNLOCK(inp);
1030 return (ECONNRESET);
1031 }
1032 if (inp->inp_socket == NULL) {
1033 INP_RUNLOCK(inp);
1034 return (ECONNRESET);
1035 }
1036
1037 /*
1038 * Check administrative controls on ifnet TLS to determine if
1039 * ifnet TLS should be denied.
1040 */
1041 if (ktls_ifnet_permitted == 0) {
1042 INP_RUNLOCK(inp);
1043 return (ENXIO);
1044 }
1045
1046 /*
1047 * XXX: As with ktls_alloc_snd_tag, use the cached route in
1048 * the inpcb to find the interface.
1049 */
1050 nh = inp->inp_route.ro_nh;
1051 if (nh == NULL) {
1052 INP_RUNLOCK(inp);
1053 return (ENXIO);
1054 }
1055 ifp = nh->nh_ifp;
1056 if_ref(ifp);
1057 tls->rx_ifp = ifp;
1058
1059 params.hdr.type = IF_SND_TAG_TYPE_TLS_RX;
1060 params.hdr.flowid = inp->inp_flowid;
1061 params.hdr.flowtype = inp->inp_flowtype;
1062 params.hdr.numa_domain = inp->inp_numa_domain;
1063 params.tls_rx.inp = inp;
1064 params.tls_rx.tls = tls;
1065 params.tls_rx.vlan_id = 0;
1066
1067 INP_RUNLOCK(inp);
1068
1069 if (inp->inp_vflag & INP_IPV6) {
1070 if ((if_getcapenable2(ifp) & IFCAP2_BIT(IFCAP2_RXTLS6)) == 0) {
1071 error = EOPNOTSUPP;
1072 goto out;
1073 }
1074 } else {
1075 if ((if_getcapenable2(ifp) & IFCAP2_BIT(IFCAP2_RXTLS4)) == 0) {
1076 error = EOPNOTSUPP;
1077 goto out;
1078 }
1079 }
1080 error = m_snd_tag_alloc(ifp, ¶ms, mstp);
1081
1082 /*
1083 * If this connection is over a vlan, vlan_snd_tag_alloc
1084 * rewrites vlan_id with the saved interface. Save the VLAN
1085 * ID for use in ktls_reset_receive_tag which allocates new
1086 * receive tags directly from the leaf interface bypassing
1087 * if_vlan.
1088 */
1089 if (error == 0)
1090 tls->rx_vlan_id = params.tls_rx.vlan_id;
1091 out:
1092 return (error);
1093 }
1094
1095 static int
ktls_try_ifnet(struct socket * so,struct ktls_session * tls,int direction,bool force)1096 ktls_try_ifnet(struct socket *so, struct ktls_session *tls, int direction,
1097 bool force)
1098 {
1099 struct m_snd_tag *mst;
1100 int error;
1101
1102 switch (direction) {
1103 case KTLS_TX:
1104 error = ktls_alloc_snd_tag(so->so_pcb, tls, force, &mst);
1105 if (__predict_false(error != 0))
1106 goto done;
1107 break;
1108 case KTLS_RX:
1109 KASSERT(!force, ("%s: forced receive tag", __func__));
1110 error = ktls_alloc_rcv_tag(so->so_pcb, tls, &mst);
1111 if (__predict_false(error != 0))
1112 goto done;
1113 break;
1114 default:
1115 __assert_unreachable();
1116 }
1117
1118 tls->mode = TCP_TLS_MODE_IFNET;
1119 tls->snd_tag = mst;
1120
1121 switch (tls->params.cipher_algorithm) {
1122 case CRYPTO_AES_CBC:
1123 counter_u64_add(ktls_ifnet_cbc, 1);
1124 break;
1125 case CRYPTO_AES_NIST_GCM_16:
1126 counter_u64_add(ktls_ifnet_gcm, 1);
1127 break;
1128 case CRYPTO_CHACHA20_POLY1305:
1129 counter_u64_add(ktls_ifnet_chacha20, 1);
1130 break;
1131 default:
1132 break;
1133 }
1134 done:
1135 return (error);
1136 }
1137
1138 static void
ktls_use_sw(struct ktls_session * tls)1139 ktls_use_sw(struct ktls_session *tls)
1140 {
1141 tls->mode = TCP_TLS_MODE_SW;
1142 switch (tls->params.cipher_algorithm) {
1143 case CRYPTO_AES_CBC:
1144 counter_u64_add(ktls_sw_cbc, 1);
1145 break;
1146 case CRYPTO_AES_NIST_GCM_16:
1147 counter_u64_add(ktls_sw_gcm, 1);
1148 break;
1149 case CRYPTO_CHACHA20_POLY1305:
1150 counter_u64_add(ktls_sw_chacha20, 1);
1151 break;
1152 }
1153 }
1154
1155 static int
ktls_try_sw(struct ktls_session * tls,int direction)1156 ktls_try_sw(struct ktls_session *tls, int direction)
1157 {
1158 int error;
1159
1160 error = ktls_ocf_try(tls, direction);
1161 if (error)
1162 return (error);
1163 ktls_use_sw(tls);
1164 return (0);
1165 }
1166
1167 /*
1168 * KTLS RX stores data in the socket buffer as a list of TLS records,
1169 * where each record is stored as a control message containg the TLS
1170 * header followed by data mbufs containing the decrypted data. This
1171 * is different from KTLS TX which always uses an mb_ext_pgs mbuf for
1172 * both encrypted and decrypted data. TLS records decrypted by a NIC
1173 * should be queued to the socket buffer as records, but encrypted
1174 * data which needs to be decrypted by software arrives as a stream of
1175 * regular mbufs which need to be converted. In addition, there may
1176 * already be pending encrypted data in the socket buffer when KTLS RX
1177 * is enabled.
1178 *
1179 * To manage not-yet-decrypted data for KTLS RX, the following scheme
1180 * is used:
1181 *
1182 * - A single chain of NOTREADY mbufs is hung off of sb_mtls.
1183 *
1184 * - ktls_check_rx checks this chain of mbufs reading the TLS header
1185 * from the first mbuf. Once all of the data for that TLS record is
1186 * queued, the socket is queued to a worker thread.
1187 *
1188 * - The worker thread calls ktls_decrypt to decrypt TLS records in
1189 * the TLS chain. Each TLS record is detached from the TLS chain,
1190 * decrypted, and inserted into the regular socket buffer chain as
1191 * record starting with a control message holding the TLS header and
1192 * a chain of mbufs holding the encrypted data.
1193 */
1194
1195 static void
sb_mark_notready(struct sockbuf * sb)1196 sb_mark_notready(struct sockbuf *sb)
1197 {
1198 struct mbuf *m;
1199
1200 m = sb->sb_mb;
1201 sb->sb_mtls = m;
1202 sb->sb_mb = NULL;
1203 sb->sb_mbtail = NULL;
1204 sb->sb_lastrecord = NULL;
1205 for (; m != NULL; m = m->m_next) {
1206 KASSERT(m->m_nextpkt == NULL, ("%s: m_nextpkt != NULL",
1207 __func__));
1208 KASSERT((m->m_flags & M_NOTAVAIL) == 0, ("%s: mbuf not avail",
1209 __func__));
1210 KASSERT(sb->sb_acc >= m->m_len, ("%s: sb_acc < m->m_len",
1211 __func__));
1212 m->m_flags |= M_NOTREADY;
1213 sb->sb_acc -= m->m_len;
1214 sb->sb_tlscc += m->m_len;
1215 sb->sb_mtlstail = m;
1216 }
1217 KASSERT(sb->sb_acc == 0 && sb->sb_tlscc == sb->sb_ccc,
1218 ("%s: acc %u tlscc %u ccc %u", __func__, sb->sb_acc, sb->sb_tlscc,
1219 sb->sb_ccc));
1220 }
1221
1222 /*
1223 * Return information about the pending TLS data in a socket
1224 * buffer. On return, 'seqno' is set to the sequence number
1225 * of the next TLS record to be received, 'resid' is set to
1226 * the amount of bytes still needed for the last pending
1227 * record. The function returns 'false' if the last pending
1228 * record contains a partial TLS header. In that case, 'resid'
1229 * is the number of bytes needed to complete the TLS header.
1230 */
1231 bool
ktls_pending_rx_info(struct sockbuf * sb,uint64_t * seqnop,size_t * residp)1232 ktls_pending_rx_info(struct sockbuf *sb, uint64_t *seqnop, size_t *residp)
1233 {
1234 struct tls_record_layer hdr;
1235 struct mbuf *m;
1236 uint64_t seqno;
1237 size_t resid;
1238 u_int offset, record_len;
1239
1240 SOCKBUF_LOCK_ASSERT(sb);
1241 MPASS(sb->sb_flags & SB_TLS_RX);
1242 seqno = sb->sb_tls_seqno;
1243 resid = sb->sb_tlscc;
1244 m = sb->sb_mtls;
1245 offset = 0;
1246
1247 if (resid == 0) {
1248 *seqnop = seqno;
1249 *residp = 0;
1250 return (true);
1251 }
1252
1253 for (;;) {
1254 seqno++;
1255
1256 if (resid < sizeof(hdr)) {
1257 *seqnop = seqno;
1258 *residp = sizeof(hdr) - resid;
1259 return (false);
1260 }
1261
1262 m_copydata(m, offset, sizeof(hdr), (void *)&hdr);
1263
1264 record_len = sizeof(hdr) + ntohs(hdr.tls_length);
1265 if (resid <= record_len) {
1266 *seqnop = seqno;
1267 *residp = record_len - resid;
1268 return (true);
1269 }
1270 resid -= record_len;
1271
1272 while (record_len != 0) {
1273 if (m->m_len - offset > record_len) {
1274 offset += record_len;
1275 break;
1276 }
1277
1278 record_len -= (m->m_len - offset);
1279 offset = 0;
1280 m = m->m_next;
1281 }
1282 }
1283 }
1284
1285 int
ktls_enable_rx(struct socket * so,struct tls_enable * en)1286 ktls_enable_rx(struct socket *so, struct tls_enable *en)
1287 {
1288 struct ktls_session *tls;
1289 int error;
1290
1291 if (!ktls_offload_enable)
1292 return (ENOTSUP);
1293
1294 counter_u64_add(ktls_offload_enable_calls, 1);
1295
1296 /*
1297 * This should always be true since only the TCP socket option
1298 * invokes this function.
1299 */
1300 if (so->so_proto->pr_protocol != IPPROTO_TCP)
1301 return (EINVAL);
1302
1303 /*
1304 * XXX: Don't overwrite existing sessions. We should permit
1305 * this to support rekeying in the future.
1306 */
1307 if (so->so_rcv.sb_tls_info != NULL)
1308 return (EALREADY);
1309
1310 if (en->cipher_algorithm == CRYPTO_AES_CBC && !ktls_cbc_enable)
1311 return (ENOTSUP);
1312
1313 error = ktls_create_session(so, en, &tls, KTLS_RX);
1314 if (error)
1315 return (error);
1316
1317 error = ktls_ocf_try(tls, KTLS_RX);
1318 if (error) {
1319 ktls_free(tls);
1320 return (error);
1321 }
1322
1323 /*
1324 * Serialize with soreceive_generic() and make sure that we're not
1325 * operating on a listening socket.
1326 */
1327 error = SOCK_IO_RECV_LOCK(so, SBL_WAIT);
1328 if (error) {
1329 ktls_free(tls);
1330 return (error);
1331 }
1332
1333 /* Mark the socket as using TLS offload. */
1334 SOCK_RECVBUF_LOCK(so);
1335 if (__predict_false(so->so_rcv.sb_tls_info != NULL)) {
1336 SOCK_RECVBUF_UNLOCK(so);
1337 SOCK_IO_RECV_UNLOCK(so);
1338 ktls_free(tls);
1339 return (EALREADY);
1340 }
1341 so->so_rcv.sb_tls_seqno = be64dec(en->rec_seq);
1342 so->so_rcv.sb_tls_info = tls;
1343 so->so_rcv.sb_flags |= SB_TLS_RX;
1344
1345 /* Mark existing data as not ready until it can be decrypted. */
1346 sb_mark_notready(&so->so_rcv);
1347 ktls_check_rx(&so->so_rcv);
1348 SOCK_RECVBUF_UNLOCK(so);
1349 SOCK_IO_RECV_UNLOCK(so);
1350
1351 /* Prefer TOE -> ifnet TLS -> software TLS. */
1352 #ifdef TCP_OFFLOAD
1353 error = ktls_try_toe(so, tls, KTLS_RX);
1354 if (error)
1355 #endif
1356 error = ktls_try_ifnet(so, tls, KTLS_RX, false);
1357 if (error)
1358 ktls_use_sw(tls);
1359
1360 counter_u64_add(ktls_offload_total, 1);
1361
1362 return (0);
1363 }
1364
1365 int
ktls_enable_tx(struct socket * so,struct tls_enable * en)1366 ktls_enable_tx(struct socket *so, struct tls_enable *en)
1367 {
1368 struct ktls_session *tls;
1369 struct inpcb *inp;
1370 struct tcpcb *tp;
1371 int error;
1372
1373 if (!ktls_offload_enable)
1374 return (ENOTSUP);
1375
1376 counter_u64_add(ktls_offload_enable_calls, 1);
1377
1378 /*
1379 * This should always be true since only the TCP socket option
1380 * invokes this function.
1381 */
1382 if (so->so_proto->pr_protocol != IPPROTO_TCP)
1383 return (EINVAL);
1384
1385 /*
1386 * XXX: Don't overwrite existing sessions. We should permit
1387 * this to support rekeying in the future.
1388 */
1389 if (so->so_snd.sb_tls_info != NULL)
1390 return (EALREADY);
1391
1392 if (en->cipher_algorithm == CRYPTO_AES_CBC && !ktls_cbc_enable)
1393 return (ENOTSUP);
1394
1395 /* TLS requires ext pgs */
1396 if (mb_use_ext_pgs == 0)
1397 return (ENXIO);
1398
1399 error = ktls_create_session(so, en, &tls, KTLS_TX);
1400 if (error)
1401 return (error);
1402
1403 /* Prefer TOE -> ifnet TLS -> software TLS. */
1404 #ifdef TCP_OFFLOAD
1405 error = ktls_try_toe(so, tls, KTLS_TX);
1406 if (error)
1407 #endif
1408 error = ktls_try_ifnet(so, tls, KTLS_TX, false);
1409 if (error)
1410 error = ktls_try_sw(tls, KTLS_TX);
1411
1412 if (error) {
1413 ktls_free(tls);
1414 return (error);
1415 }
1416
1417 /*
1418 * Serialize with sosend_generic() and make sure that we're not
1419 * operating on a listening socket.
1420 */
1421 error = SOCK_IO_SEND_LOCK(so, SBL_WAIT);
1422 if (error) {
1423 ktls_free(tls);
1424 return (error);
1425 }
1426
1427 /*
1428 * Write lock the INP when setting sb_tls_info so that
1429 * routines in tcp_ratelimit.c can read sb_tls_info while
1430 * holding the INP lock.
1431 */
1432 inp = so->so_pcb;
1433 INP_WLOCK(inp);
1434 SOCK_SENDBUF_LOCK(so);
1435 if (__predict_false(so->so_snd.sb_tls_info != NULL)) {
1436 SOCK_SENDBUF_UNLOCK(so);
1437 INP_WUNLOCK(inp);
1438 SOCK_IO_SEND_UNLOCK(so);
1439 ktls_free(tls);
1440 return (EALREADY);
1441 }
1442 so->so_snd.sb_tls_seqno = be64dec(en->rec_seq);
1443 so->so_snd.sb_tls_info = tls;
1444 if (tls->mode != TCP_TLS_MODE_SW) {
1445 tp = intotcpcb(inp);
1446 MPASS(tp->t_nic_ktls_xmit == 0);
1447 tp->t_nic_ktls_xmit = 1;
1448 if (tp->t_fb->tfb_hwtls_change != NULL)
1449 (*tp->t_fb->tfb_hwtls_change)(tp, 1);
1450 }
1451 SOCK_SENDBUF_UNLOCK(so);
1452 INP_WUNLOCK(inp);
1453 SOCK_IO_SEND_UNLOCK(so);
1454
1455 counter_u64_add(ktls_offload_total, 1);
1456
1457 return (0);
1458 }
1459
1460 int
ktls_get_rx_mode(struct socket * so,int * modep)1461 ktls_get_rx_mode(struct socket *so, int *modep)
1462 {
1463 struct ktls_session *tls;
1464 struct inpcb *inp __diagused;
1465
1466 if (SOLISTENING(so))
1467 return (EINVAL);
1468 inp = so->so_pcb;
1469 INP_WLOCK_ASSERT(inp);
1470 SOCK_RECVBUF_LOCK(so);
1471 tls = so->so_rcv.sb_tls_info;
1472 if (tls == NULL)
1473 *modep = TCP_TLS_MODE_NONE;
1474 else
1475 *modep = tls->mode;
1476 SOCK_RECVBUF_UNLOCK(so);
1477 return (0);
1478 }
1479
1480 /*
1481 * ktls_get_rx_sequence - get the next TCP- and TLS- sequence number.
1482 *
1483 * This function gets information about the next TCP- and TLS-
1484 * sequence number to be processed by the TLS receive worker
1485 * thread. The information is extracted from the given "inpcb"
1486 * structure. The values are stored in host endian format at the two
1487 * given output pointer locations. The TCP sequence number points to
1488 * the beginning of the TLS header.
1489 *
1490 * This function returns zero on success, else a non-zero error code
1491 * is returned.
1492 */
1493 int
ktls_get_rx_sequence(struct inpcb * inp,uint32_t * tcpseq,uint64_t * tlsseq)1494 ktls_get_rx_sequence(struct inpcb *inp, uint32_t *tcpseq, uint64_t *tlsseq)
1495 {
1496 struct socket *so;
1497 struct tcpcb *tp;
1498
1499 INP_RLOCK(inp);
1500 so = inp->inp_socket;
1501 if (__predict_false(so == NULL)) {
1502 INP_RUNLOCK(inp);
1503 return (EINVAL);
1504 }
1505 if (inp->inp_flags & INP_DROPPED) {
1506 INP_RUNLOCK(inp);
1507 return (ECONNRESET);
1508 }
1509
1510 tp = intotcpcb(inp);
1511 MPASS(tp != NULL);
1512
1513 SOCKBUF_LOCK(&so->so_rcv);
1514 *tcpseq = tp->rcv_nxt - so->so_rcv.sb_tlscc;
1515 *tlsseq = so->so_rcv.sb_tls_seqno;
1516 SOCKBUF_UNLOCK(&so->so_rcv);
1517
1518 INP_RUNLOCK(inp);
1519
1520 return (0);
1521 }
1522
1523 int
ktls_get_tx_mode(struct socket * so,int * modep)1524 ktls_get_tx_mode(struct socket *so, int *modep)
1525 {
1526 struct ktls_session *tls;
1527 struct inpcb *inp __diagused;
1528
1529 if (SOLISTENING(so))
1530 return (EINVAL);
1531 inp = so->so_pcb;
1532 INP_WLOCK_ASSERT(inp);
1533 SOCK_SENDBUF_LOCK(so);
1534 tls = so->so_snd.sb_tls_info;
1535 if (tls == NULL)
1536 *modep = TCP_TLS_MODE_NONE;
1537 else
1538 *modep = tls->mode;
1539 SOCK_SENDBUF_UNLOCK(so);
1540 return (0);
1541 }
1542
1543 /*
1544 * Switch between SW and ifnet TLS sessions as requested.
1545 */
1546 int
ktls_set_tx_mode(struct socket * so,int mode)1547 ktls_set_tx_mode(struct socket *so, int mode)
1548 {
1549 struct ktls_session *tls, *tls_new;
1550 struct inpcb *inp;
1551 struct tcpcb *tp;
1552 int error;
1553
1554 if (SOLISTENING(so))
1555 return (EINVAL);
1556 switch (mode) {
1557 case TCP_TLS_MODE_SW:
1558 case TCP_TLS_MODE_IFNET:
1559 break;
1560 default:
1561 return (EINVAL);
1562 }
1563
1564 inp = so->so_pcb;
1565 INP_WLOCK_ASSERT(inp);
1566 tp = intotcpcb(inp);
1567
1568 if (mode == TCP_TLS_MODE_IFNET) {
1569 /* Don't allow enabling ifnet ktls multiple times */
1570 if (tp->t_nic_ktls_xmit)
1571 return (EALREADY);
1572
1573 /*
1574 * Don't enable ifnet ktls if we disabled it due to an
1575 * excessive retransmission rate
1576 */
1577 if (tp->t_nic_ktls_xmit_dis)
1578 return (ENXIO);
1579 }
1580
1581 SOCKBUF_LOCK(&so->so_snd);
1582 tls = so->so_snd.sb_tls_info;
1583 if (tls == NULL) {
1584 SOCKBUF_UNLOCK(&so->so_snd);
1585 return (0);
1586 }
1587
1588 if (tls->mode == mode) {
1589 SOCKBUF_UNLOCK(&so->so_snd);
1590 return (0);
1591 }
1592
1593 tls = ktls_hold(tls);
1594 SOCKBUF_UNLOCK(&so->so_snd);
1595 INP_WUNLOCK(inp);
1596
1597 tls_new = ktls_clone_session(tls, KTLS_TX);
1598
1599 if (mode == TCP_TLS_MODE_IFNET)
1600 error = ktls_try_ifnet(so, tls_new, KTLS_TX, true);
1601 else
1602 error = ktls_try_sw(tls_new, KTLS_TX);
1603 if (error) {
1604 counter_u64_add(ktls_switch_failed, 1);
1605 ktls_free(tls_new);
1606 ktls_free(tls);
1607 INP_WLOCK(inp);
1608 return (error);
1609 }
1610
1611 error = SOCK_IO_SEND_LOCK(so, SBL_WAIT);
1612 if (error) {
1613 counter_u64_add(ktls_switch_failed, 1);
1614 ktls_free(tls_new);
1615 ktls_free(tls);
1616 INP_WLOCK(inp);
1617 return (error);
1618 }
1619
1620 /*
1621 * If we raced with another session change, keep the existing
1622 * session.
1623 */
1624 if (tls != so->so_snd.sb_tls_info) {
1625 counter_u64_add(ktls_switch_failed, 1);
1626 SOCK_IO_SEND_UNLOCK(so);
1627 ktls_free(tls_new);
1628 ktls_free(tls);
1629 INP_WLOCK(inp);
1630 return (EBUSY);
1631 }
1632
1633 INP_WLOCK(inp);
1634 SOCKBUF_LOCK(&so->so_snd);
1635 so->so_snd.sb_tls_info = tls_new;
1636 if (tls_new->mode != TCP_TLS_MODE_SW) {
1637 MPASS(tp->t_nic_ktls_xmit == 0);
1638 tp->t_nic_ktls_xmit = 1;
1639 if (tp->t_fb->tfb_hwtls_change != NULL)
1640 (*tp->t_fb->tfb_hwtls_change)(tp, 1);
1641 }
1642 SOCKBUF_UNLOCK(&so->so_snd);
1643 SOCK_IO_SEND_UNLOCK(so);
1644
1645 /*
1646 * Drop two references on 'tls'. The first is for the
1647 * ktls_hold() above. The second drops the reference from the
1648 * socket buffer.
1649 */
1650 KASSERT(tls->refcount >= 2, ("too few references on old session"));
1651 ktls_free(tls);
1652 ktls_free(tls);
1653
1654 if (mode == TCP_TLS_MODE_IFNET)
1655 counter_u64_add(ktls_switch_to_ifnet, 1);
1656 else
1657 counter_u64_add(ktls_switch_to_sw, 1);
1658
1659 return (0);
1660 }
1661
1662 /*
1663 * Try to allocate a new TLS receive tag. This task is scheduled when
1664 * sbappend_ktls_rx detects an input path change. If a new tag is
1665 * allocated, replace the tag in the TLS session. If a new tag cannot
1666 * be allocated, let the session fall back to software decryption.
1667 */
1668 static void
ktls_reset_receive_tag(void * context,int pending)1669 ktls_reset_receive_tag(void *context, int pending)
1670 {
1671 union if_snd_tag_alloc_params params;
1672 struct ktls_session *tls;
1673 struct m_snd_tag *mst;
1674 struct inpcb *inp;
1675 struct ifnet *ifp;
1676 struct socket *so;
1677 int error;
1678
1679 MPASS(pending == 1);
1680
1681 tls = context;
1682 so = tls->so;
1683 inp = so->so_pcb;
1684 ifp = NULL;
1685
1686 INP_RLOCK(inp);
1687 if (inp->inp_flags & INP_DROPPED) {
1688 INP_RUNLOCK(inp);
1689 goto out;
1690 }
1691
1692 SOCKBUF_LOCK(&so->so_rcv);
1693 mst = tls->snd_tag;
1694 tls->snd_tag = NULL;
1695 if (mst != NULL)
1696 m_snd_tag_rele(mst);
1697
1698 ifp = tls->rx_ifp;
1699 if_ref(ifp);
1700 SOCKBUF_UNLOCK(&so->so_rcv);
1701
1702 params.hdr.type = IF_SND_TAG_TYPE_TLS_RX;
1703 params.hdr.flowid = inp->inp_flowid;
1704 params.hdr.flowtype = inp->inp_flowtype;
1705 params.hdr.numa_domain = inp->inp_numa_domain;
1706 params.tls_rx.inp = inp;
1707 params.tls_rx.tls = tls;
1708 params.tls_rx.vlan_id = tls->rx_vlan_id;
1709 INP_RUNLOCK(inp);
1710
1711 if (inp->inp_vflag & INP_IPV6) {
1712 if ((if_getcapenable2(ifp) & IFCAP2_RXTLS6) == 0)
1713 goto out;
1714 } else {
1715 if ((if_getcapenable2(ifp) & IFCAP2_RXTLS4) == 0)
1716 goto out;
1717 }
1718
1719 error = m_snd_tag_alloc(ifp, ¶ms, &mst);
1720 if (error == 0) {
1721 SOCKBUF_LOCK(&so->so_rcv);
1722 tls->snd_tag = mst;
1723 SOCKBUF_UNLOCK(&so->so_rcv);
1724
1725 counter_u64_add(ktls_ifnet_reset, 1);
1726 } else {
1727 /*
1728 * Just fall back to software decryption if a tag
1729 * cannot be allocated leaving the connection intact.
1730 * If a future input path change switches to another
1731 * interface this connection will resume ifnet TLS.
1732 */
1733 counter_u64_add(ktls_ifnet_reset_failed, 1);
1734 }
1735
1736 out:
1737 mtx_pool_lock(mtxpool_sleep, tls);
1738 tls->reset_pending = false;
1739 mtx_pool_unlock(mtxpool_sleep, tls);
1740
1741 if (ifp != NULL)
1742 if_rele(ifp);
1743 CURVNET_SET(so->so_vnet);
1744 sorele(so);
1745 CURVNET_RESTORE();
1746 ktls_free(tls);
1747 }
1748
1749 /*
1750 * Try to allocate a new TLS send tag. This task is scheduled when
1751 * ip_output detects a route change while trying to transmit a packet
1752 * holding a TLS record. If a new tag is allocated, replace the tag
1753 * in the TLS session. Subsequent packets on the connection will use
1754 * the new tag. If a new tag cannot be allocated, drop the
1755 * connection.
1756 */
1757 static void
ktls_reset_send_tag(void * context,int pending)1758 ktls_reset_send_tag(void *context, int pending)
1759 {
1760 struct epoch_tracker et;
1761 struct ktls_session *tls;
1762 struct m_snd_tag *old, *new;
1763 struct inpcb *inp;
1764 struct tcpcb *tp;
1765 int error;
1766
1767 MPASS(pending == 1);
1768
1769 tls = context;
1770 inp = tls->inp;
1771
1772 /*
1773 * Free the old tag first before allocating a new one.
1774 * ip[6]_output_send() will treat a NULL send tag the same as
1775 * an ifp mismatch and drop packets until a new tag is
1776 * allocated.
1777 *
1778 * Write-lock the INP when changing tls->snd_tag since
1779 * ip[6]_output_send() holds a read-lock when reading the
1780 * pointer.
1781 */
1782 INP_WLOCK(inp);
1783 old = tls->snd_tag;
1784 tls->snd_tag = NULL;
1785 INP_WUNLOCK(inp);
1786 if (old != NULL)
1787 m_snd_tag_rele(old);
1788
1789 error = ktls_alloc_snd_tag(inp, tls, true, &new);
1790
1791 if (error == 0) {
1792 INP_WLOCK(inp);
1793 tls->snd_tag = new;
1794 mtx_pool_lock(mtxpool_sleep, tls);
1795 tls->reset_pending = false;
1796 mtx_pool_unlock(mtxpool_sleep, tls);
1797 INP_WUNLOCK(inp);
1798
1799 counter_u64_add(ktls_ifnet_reset, 1);
1800
1801 /*
1802 * XXX: Should we kick tcp_output explicitly now that
1803 * the send tag is fixed or just rely on timers?
1804 */
1805 } else {
1806 NET_EPOCH_ENTER(et);
1807 INP_WLOCK(inp);
1808 if (!(inp->inp_flags & INP_DROPPED)) {
1809 tp = intotcpcb(inp);
1810 CURVNET_SET(inp->inp_vnet);
1811 tp = tcp_drop(tp, ECONNABORTED);
1812 CURVNET_RESTORE();
1813 if (tp != NULL) {
1814 counter_u64_add(ktls_ifnet_reset_dropped, 1);
1815 INP_WUNLOCK(inp);
1816 }
1817 } else
1818 INP_WUNLOCK(inp);
1819 NET_EPOCH_EXIT(et);
1820
1821 counter_u64_add(ktls_ifnet_reset_failed, 1);
1822
1823 /*
1824 * Leave reset_pending true to avoid future tasks while
1825 * the socket goes away.
1826 */
1827 }
1828
1829 ktls_free(tls);
1830 }
1831
1832 void
ktls_input_ifp_mismatch(struct sockbuf * sb,struct ifnet * ifp)1833 ktls_input_ifp_mismatch(struct sockbuf *sb, struct ifnet *ifp)
1834 {
1835 struct ktls_session *tls;
1836 struct socket *so;
1837
1838 SOCKBUF_LOCK_ASSERT(sb);
1839 KASSERT(sb->sb_flags & SB_TLS_RX, ("%s: sockbuf %p isn't TLS RX",
1840 __func__, sb));
1841 so = __containerof(sb, struct socket, so_rcv);
1842
1843 tls = sb->sb_tls_info;
1844 if_rele(tls->rx_ifp);
1845 if_ref(ifp);
1846 tls->rx_ifp = ifp;
1847
1848 /*
1849 * See if we should schedule a task to update the receive tag for
1850 * this session.
1851 */
1852 mtx_pool_lock(mtxpool_sleep, tls);
1853 if (!tls->reset_pending) {
1854 (void) ktls_hold(tls);
1855 soref(so);
1856 tls->so = so;
1857 tls->reset_pending = true;
1858 taskqueue_enqueue(taskqueue_thread, &tls->reset_tag_task);
1859 }
1860 mtx_pool_unlock(mtxpool_sleep, tls);
1861 }
1862
1863 int
ktls_output_eagain(struct inpcb * inp,struct ktls_session * tls)1864 ktls_output_eagain(struct inpcb *inp, struct ktls_session *tls)
1865 {
1866
1867 if (inp == NULL)
1868 return (ENOBUFS);
1869
1870 INP_LOCK_ASSERT(inp);
1871
1872 /*
1873 * See if we should schedule a task to update the send tag for
1874 * this session.
1875 */
1876 mtx_pool_lock(mtxpool_sleep, tls);
1877 if (!tls->reset_pending) {
1878 (void) ktls_hold(tls);
1879 tls->reset_pending = true;
1880 taskqueue_enqueue(taskqueue_thread, &tls->reset_tag_task);
1881 }
1882 mtx_pool_unlock(mtxpool_sleep, tls);
1883 return (ENOBUFS);
1884 }
1885
1886 #ifdef RATELIMIT
1887 int
ktls_modify_txrtlmt(struct ktls_session * tls,uint64_t max_pacing_rate)1888 ktls_modify_txrtlmt(struct ktls_session *tls, uint64_t max_pacing_rate)
1889 {
1890 union if_snd_tag_modify_params params = {
1891 .rate_limit.max_rate = max_pacing_rate,
1892 .rate_limit.flags = M_NOWAIT,
1893 };
1894 struct m_snd_tag *mst;
1895
1896 /* Can't get to the inp, but it should be locked. */
1897 /* INP_LOCK_ASSERT(inp); */
1898
1899 MPASS(tls->mode == TCP_TLS_MODE_IFNET);
1900
1901 if (tls->snd_tag == NULL) {
1902 /*
1903 * Resetting send tag, ignore this change. The
1904 * pending reset may or may not see this updated rate
1905 * in the tcpcb. If it doesn't, we will just lose
1906 * this rate change.
1907 */
1908 return (0);
1909 }
1910
1911 mst = tls->snd_tag;
1912
1913 MPASS(mst != NULL);
1914 MPASS(mst->sw->type == IF_SND_TAG_TYPE_TLS_RATE_LIMIT);
1915
1916 return (mst->sw->snd_tag_modify(mst, ¶ms));
1917 }
1918 #endif
1919
1920 static void
ktls_destroy_help(void * context,int pending __unused)1921 ktls_destroy_help(void *context, int pending __unused)
1922 {
1923 ktls_destroy(context);
1924 }
1925
1926 void
ktls_destroy(struct ktls_session * tls)1927 ktls_destroy(struct ktls_session *tls)
1928 {
1929 struct inpcb *inp;
1930 struct tcpcb *tp;
1931 bool wlocked;
1932
1933 MPASS(tls->refcount == 0);
1934
1935 inp = tls->inp;
1936 if (tls->tx) {
1937 wlocked = INP_WLOCKED(inp);
1938 if (!wlocked && !INP_TRY_WLOCK(inp)) {
1939 /*
1940 * rwlocks read locks are anonymous, and there
1941 * is no way to know if our current thread
1942 * holds an rlock on the inp. As a rough
1943 * estimate, check to see if the thread holds
1944 * *any* rlocks at all. If it does not, then we
1945 * know that we don't hold the inp rlock, and
1946 * can safely take the wlock
1947 */
1948 if (curthread->td_rw_rlocks == 0) {
1949 INP_WLOCK(inp);
1950 } else {
1951 /*
1952 * We might hold the rlock, so let's
1953 * do the destroy in a taskqueue
1954 * context to avoid a potential
1955 * deadlock. This should be very
1956 * rare.
1957 */
1958 counter_u64_add(ktls_destroy_task, 1);
1959 TASK_INIT(&tls->destroy_task, 0,
1960 ktls_destroy_help, tls);
1961 (void)taskqueue_enqueue(taskqueue_thread,
1962 &tls->destroy_task);
1963 return;
1964 }
1965 }
1966 }
1967
1968 if (tls->sequential_records) {
1969 struct mbuf *m, *n;
1970 int page_count;
1971
1972 STAILQ_FOREACH_SAFE(m, &tls->pending_records, m_epg_stailq, n) {
1973 page_count = m->m_epg_enc_cnt;
1974 while (page_count > 0) {
1975 KASSERT(page_count >= m->m_epg_nrdy,
1976 ("%s: too few pages", __func__));
1977 page_count -= m->m_epg_nrdy;
1978 m = m_free(m);
1979 }
1980 }
1981 }
1982
1983 counter_u64_add(ktls_offload_active, -1);
1984 switch (tls->mode) {
1985 case TCP_TLS_MODE_SW:
1986 switch (tls->params.cipher_algorithm) {
1987 case CRYPTO_AES_CBC:
1988 counter_u64_add(ktls_sw_cbc, -1);
1989 break;
1990 case CRYPTO_AES_NIST_GCM_16:
1991 counter_u64_add(ktls_sw_gcm, -1);
1992 break;
1993 case CRYPTO_CHACHA20_POLY1305:
1994 counter_u64_add(ktls_sw_chacha20, -1);
1995 break;
1996 }
1997 break;
1998 case TCP_TLS_MODE_IFNET:
1999 switch (tls->params.cipher_algorithm) {
2000 case CRYPTO_AES_CBC:
2001 counter_u64_add(ktls_ifnet_cbc, -1);
2002 break;
2003 case CRYPTO_AES_NIST_GCM_16:
2004 counter_u64_add(ktls_ifnet_gcm, -1);
2005 break;
2006 case CRYPTO_CHACHA20_POLY1305:
2007 counter_u64_add(ktls_ifnet_chacha20, -1);
2008 break;
2009 }
2010 if (tls->snd_tag != NULL)
2011 m_snd_tag_rele(tls->snd_tag);
2012 if (tls->rx_ifp != NULL)
2013 if_rele(tls->rx_ifp);
2014 if (tls->tx) {
2015 INP_WLOCK_ASSERT(inp);
2016 tp = intotcpcb(inp);
2017 MPASS(tp->t_nic_ktls_xmit == 1);
2018 tp->t_nic_ktls_xmit = 0;
2019 }
2020 break;
2021 #ifdef TCP_OFFLOAD
2022 case TCP_TLS_MODE_TOE:
2023 switch (tls->params.cipher_algorithm) {
2024 case CRYPTO_AES_CBC:
2025 counter_u64_add(ktls_toe_cbc, -1);
2026 break;
2027 case CRYPTO_AES_NIST_GCM_16:
2028 counter_u64_add(ktls_toe_gcm, -1);
2029 break;
2030 case CRYPTO_CHACHA20_POLY1305:
2031 counter_u64_add(ktls_toe_chacha20, -1);
2032 break;
2033 }
2034 break;
2035 #endif
2036 }
2037 if (tls->ocf_session != NULL)
2038 ktls_ocf_free(tls);
2039 if (tls->params.auth_key != NULL) {
2040 zfree(tls->params.auth_key, M_KTLS);
2041 tls->params.auth_key = NULL;
2042 tls->params.auth_key_len = 0;
2043 }
2044 if (tls->params.cipher_key != NULL) {
2045 zfree(tls->params.cipher_key, M_KTLS);
2046 tls->params.cipher_key = NULL;
2047 tls->params.cipher_key_len = 0;
2048 }
2049 if (tls->tx) {
2050 INP_WLOCK_ASSERT(inp);
2051 if (!in_pcbrele_wlocked(inp) && !wlocked)
2052 INP_WUNLOCK(inp);
2053 }
2054 explicit_bzero(tls->params.iv, sizeof(tls->params.iv));
2055
2056 uma_zfree(ktls_session_zone, tls);
2057 }
2058
2059 void
ktls_seq(struct sockbuf * sb,struct mbuf * m)2060 ktls_seq(struct sockbuf *sb, struct mbuf *m)
2061 {
2062
2063 for (; m != NULL; m = m->m_next) {
2064 KASSERT((m->m_flags & M_EXTPG) != 0,
2065 ("ktls_seq: mapped mbuf %p", m));
2066
2067 m->m_epg_seqno = sb->sb_tls_seqno;
2068 sb->sb_tls_seqno++;
2069 }
2070 }
2071
2072 /*
2073 * Add TLS framing (headers and trailers) to a chain of mbufs. Each
2074 * mbuf in the chain must be an unmapped mbuf. The payload of the
2075 * mbuf must be populated with the payload of each TLS record.
2076 *
2077 * The record_type argument specifies the TLS record type used when
2078 * populating the TLS header.
2079 *
2080 * The enq_count argument on return is set to the number of pages of
2081 * payload data for this entire chain that need to be encrypted via SW
2082 * encryption. The returned value should be passed to ktls_enqueue
2083 * when scheduling encryption of this chain of mbufs. To handle the
2084 * special case of empty fragments for TLS 1.0 sessions, an empty
2085 * fragment counts as one page.
2086 */
2087 void
ktls_frame(struct mbuf * top,struct ktls_session * tls,int * enq_cnt,uint8_t record_type)2088 ktls_frame(struct mbuf *top, struct ktls_session *tls, int *enq_cnt,
2089 uint8_t record_type)
2090 {
2091 struct tls_record_layer *tlshdr;
2092 struct mbuf *m;
2093 uint64_t *noncep;
2094 uint16_t tls_len;
2095 int maxlen __diagused;
2096
2097 maxlen = tls->params.max_frame_len;
2098 *enq_cnt = 0;
2099 for (m = top; m != NULL; m = m->m_next) {
2100 /*
2101 * All mbufs in the chain should be TLS records whose
2102 * payload does not exceed the maximum frame length.
2103 *
2104 * Empty TLS 1.0 records are permitted when using CBC.
2105 */
2106 KASSERT(m->m_len <= maxlen && m->m_len >= 0 &&
2107 (m->m_len > 0 || ktls_permit_empty_frames(tls)),
2108 ("ktls_frame: m %p len %d", m, m->m_len));
2109
2110 /*
2111 * TLS frames require unmapped mbufs to store session
2112 * info.
2113 */
2114 KASSERT((m->m_flags & M_EXTPG) != 0,
2115 ("ktls_frame: mapped mbuf %p (top = %p)", m, top));
2116
2117 tls_len = m->m_len;
2118
2119 /* Save a reference to the session. */
2120 m->m_epg_tls = ktls_hold(tls);
2121
2122 m->m_epg_hdrlen = tls->params.tls_hlen;
2123 m->m_epg_trllen = tls->params.tls_tlen;
2124 if (tls->params.cipher_algorithm == CRYPTO_AES_CBC) {
2125 int bs, delta;
2126
2127 /*
2128 * AES-CBC pads messages to a multiple of the
2129 * block size. Note that the padding is
2130 * applied after the digest and the encryption
2131 * is done on the "plaintext || mac || padding".
2132 * At least one byte of padding is always
2133 * present.
2134 *
2135 * Compute the final trailer length assuming
2136 * at most one block of padding.
2137 * tls->params.tls_tlen is the maximum
2138 * possible trailer length (padding + digest).
2139 * delta holds the number of excess padding
2140 * bytes if the maximum were used. Those
2141 * extra bytes are removed.
2142 */
2143 bs = tls->params.tls_bs;
2144 delta = (tls_len + tls->params.tls_tlen) & (bs - 1);
2145 m->m_epg_trllen -= delta;
2146 }
2147 m->m_len += m->m_epg_hdrlen + m->m_epg_trllen;
2148
2149 /* Populate the TLS header. */
2150 tlshdr = (void *)m->m_epg_hdr;
2151 tlshdr->tls_vmajor = tls->params.tls_vmajor;
2152
2153 /*
2154 * TLS 1.3 masquarades as TLS 1.2 with a record type
2155 * of TLS_RLTYPE_APP.
2156 */
2157 if (tls->params.tls_vminor == TLS_MINOR_VER_THREE &&
2158 tls->params.tls_vmajor == TLS_MAJOR_VER_ONE) {
2159 tlshdr->tls_vminor = TLS_MINOR_VER_TWO;
2160 tlshdr->tls_type = TLS_RLTYPE_APP;
2161 /* save the real record type for later */
2162 m->m_epg_record_type = record_type;
2163 m->m_epg_trail[0] = record_type;
2164 } else {
2165 tlshdr->tls_vminor = tls->params.tls_vminor;
2166 tlshdr->tls_type = record_type;
2167 }
2168 tlshdr->tls_length = htons(m->m_len - sizeof(*tlshdr));
2169
2170 /*
2171 * Store nonces / explicit IVs after the end of the
2172 * TLS header.
2173 *
2174 * For GCM with TLS 1.2, an 8 byte nonce is copied
2175 * from the end of the IV. The nonce is then
2176 * incremented for use by the next record.
2177 *
2178 * For CBC, a random nonce is inserted for TLS 1.1+.
2179 */
2180 if (tls->params.cipher_algorithm == CRYPTO_AES_NIST_GCM_16 &&
2181 tls->params.tls_vminor == TLS_MINOR_VER_TWO) {
2182 noncep = (uint64_t *)(tls->params.iv + 8);
2183 be64enc(tlshdr + 1, *noncep);
2184 (*noncep)++;
2185 } else if (tls->params.cipher_algorithm == CRYPTO_AES_CBC &&
2186 tls->params.tls_vminor >= TLS_MINOR_VER_ONE)
2187 arc4rand(tlshdr + 1, AES_BLOCK_LEN, 0);
2188
2189 /*
2190 * When using SW encryption, mark the mbuf not ready.
2191 * It will be marked ready via sbready() after the
2192 * record has been encrypted.
2193 *
2194 * When using ifnet TLS, unencrypted TLS records are
2195 * sent down the stack to the NIC.
2196 */
2197 if (tls->mode == TCP_TLS_MODE_SW) {
2198 m->m_flags |= M_NOTREADY;
2199 if (__predict_false(tls_len == 0)) {
2200 /* TLS 1.0 empty fragment. */
2201 m->m_epg_nrdy = 1;
2202 } else
2203 m->m_epg_nrdy = m->m_epg_npgs;
2204 *enq_cnt += m->m_epg_nrdy;
2205 }
2206 }
2207 }
2208
2209 bool
ktls_permit_empty_frames(struct ktls_session * tls)2210 ktls_permit_empty_frames(struct ktls_session *tls)
2211 {
2212 return (tls->params.cipher_algorithm == CRYPTO_AES_CBC &&
2213 tls->params.tls_vminor == TLS_MINOR_VER_ZERO);
2214 }
2215
2216 void
ktls_check_rx(struct sockbuf * sb)2217 ktls_check_rx(struct sockbuf *sb)
2218 {
2219 struct tls_record_layer hdr;
2220 struct ktls_wq *wq;
2221 struct socket *so;
2222 bool running;
2223
2224 SOCKBUF_LOCK_ASSERT(sb);
2225 KASSERT(sb->sb_flags & SB_TLS_RX, ("%s: sockbuf %p isn't TLS RX",
2226 __func__, sb));
2227 so = __containerof(sb, struct socket, so_rcv);
2228
2229 if (sb->sb_flags & SB_TLS_RX_RUNNING)
2230 return;
2231
2232 /* Is there enough queued for a TLS header? */
2233 if (sb->sb_tlscc < sizeof(hdr)) {
2234 if ((sb->sb_state & SBS_CANTRCVMORE) != 0 && sb->sb_tlscc != 0)
2235 so->so_error = EMSGSIZE;
2236 return;
2237 }
2238
2239 m_copydata(sb->sb_mtls, 0, sizeof(hdr), (void *)&hdr);
2240
2241 /* Is the entire record queued? */
2242 if (sb->sb_tlscc < sizeof(hdr) + ntohs(hdr.tls_length)) {
2243 if ((sb->sb_state & SBS_CANTRCVMORE) != 0)
2244 so->so_error = EMSGSIZE;
2245 return;
2246 }
2247
2248 sb->sb_flags |= SB_TLS_RX_RUNNING;
2249
2250 soref(so);
2251 wq = &ktls_wq[so->so_rcv.sb_tls_info->wq_index];
2252 mtx_lock(&wq->mtx);
2253 STAILQ_INSERT_TAIL(&wq->so_head, so, so_ktls_rx_list);
2254 running = wq->running;
2255 mtx_unlock(&wq->mtx);
2256 if (!running)
2257 wakeup(wq);
2258 counter_u64_add(ktls_cnt_rx_queued, 1);
2259 }
2260
2261 static struct mbuf *
ktls_detach_record(struct sockbuf * sb,int len)2262 ktls_detach_record(struct sockbuf *sb, int len)
2263 {
2264 struct mbuf *m, *n, *top;
2265 int remain;
2266
2267 SOCKBUF_LOCK_ASSERT(sb);
2268 MPASS(len <= sb->sb_tlscc);
2269
2270 /*
2271 * If TLS chain is the exact size of the record,
2272 * just grab the whole record.
2273 */
2274 top = sb->sb_mtls;
2275 if (sb->sb_tlscc == len) {
2276 sb->sb_mtls = NULL;
2277 sb->sb_mtlstail = NULL;
2278 goto out;
2279 }
2280
2281 /*
2282 * While it would be nice to use m_split() here, we need
2283 * to know exactly what m_split() allocates to update the
2284 * accounting, so do it inline instead.
2285 */
2286 remain = len;
2287 for (m = top; remain > m->m_len; m = m->m_next)
2288 remain -= m->m_len;
2289
2290 /* Easy case: don't have to split 'm'. */
2291 if (remain == m->m_len) {
2292 sb->sb_mtls = m->m_next;
2293 if (sb->sb_mtls == NULL)
2294 sb->sb_mtlstail = NULL;
2295 m->m_next = NULL;
2296 goto out;
2297 }
2298
2299 /*
2300 * Need to allocate an mbuf to hold the remainder of 'm'. Try
2301 * with M_NOWAIT first.
2302 */
2303 n = m_get(M_NOWAIT, MT_DATA);
2304 if (n == NULL) {
2305 /*
2306 * Use M_WAITOK with socket buffer unlocked. If
2307 * 'sb_mtls' changes while the lock is dropped, return
2308 * NULL to force the caller to retry.
2309 */
2310 SOCKBUF_UNLOCK(sb);
2311
2312 n = m_get(M_WAITOK, MT_DATA);
2313
2314 SOCKBUF_LOCK(sb);
2315 if (sb->sb_mtls != top) {
2316 m_free(n);
2317 return (NULL);
2318 }
2319 }
2320 n->m_flags |= (m->m_flags & (M_NOTREADY | M_DECRYPTED));
2321
2322 /* Store remainder in 'n'. */
2323 n->m_len = m->m_len - remain;
2324 if (m->m_flags & M_EXT) {
2325 n->m_data = m->m_data + remain;
2326 mb_dupcl(n, m);
2327 } else {
2328 bcopy(mtod(m, caddr_t) + remain, mtod(n, caddr_t), n->m_len);
2329 }
2330
2331 /* Trim 'm' and update accounting. */
2332 m->m_len -= n->m_len;
2333 sb->sb_tlscc -= n->m_len;
2334 sb->sb_ccc -= n->m_len;
2335
2336 /* Account for 'n'. */
2337 sballoc_ktls_rx(sb, n);
2338
2339 /* Insert 'n' into the TLS chain. */
2340 sb->sb_mtls = n;
2341 n->m_next = m->m_next;
2342 if (sb->sb_mtlstail == m)
2343 sb->sb_mtlstail = n;
2344
2345 /* Detach the record from the TLS chain. */
2346 m->m_next = NULL;
2347
2348 out:
2349 MPASS(m_length(top, NULL) == len);
2350 for (m = top; m != NULL; m = m->m_next)
2351 sbfree_ktls_rx(sb, m);
2352 sb->sb_tlsdcc = len;
2353 sb->sb_ccc += len;
2354 SBCHECK(sb);
2355 return (top);
2356 }
2357
2358 /*
2359 * Determine the length of the trailing zero padding and find the real
2360 * record type in the byte before the padding.
2361 *
2362 * Walking the mbuf chain backwards is clumsy, so another option would
2363 * be to scan forwards remembering the last non-zero byte before the
2364 * trailer. However, it would be expensive to scan the entire record.
2365 * Instead, find the last non-zero byte of each mbuf in the chain
2366 * keeping track of the relative offset of that nonzero byte.
2367 *
2368 * trail_len is the size of the MAC/tag on input and is set to the
2369 * size of the full trailer including padding and the record type on
2370 * return.
2371 */
2372 static int
tls13_find_record_type(struct ktls_session * tls,struct mbuf * m,int tls_len,int * trailer_len,uint8_t * record_typep)2373 tls13_find_record_type(struct ktls_session *tls, struct mbuf *m, int tls_len,
2374 int *trailer_len, uint8_t *record_typep)
2375 {
2376 char *cp;
2377 u_int digest_start, last_offset, m_len, offset;
2378 uint8_t record_type;
2379
2380 digest_start = tls_len - *trailer_len;
2381 last_offset = 0;
2382 offset = 0;
2383 for (; m != NULL && offset < digest_start;
2384 offset += m->m_len, m = m->m_next) {
2385 /* Don't look for padding in the tag. */
2386 m_len = min(digest_start - offset, m->m_len);
2387 cp = mtod(m, char *);
2388
2389 /* Find last non-zero byte in this mbuf. */
2390 while (m_len > 0 && cp[m_len - 1] == 0)
2391 m_len--;
2392 if (m_len > 0) {
2393 record_type = cp[m_len - 1];
2394 last_offset = offset + m_len;
2395 }
2396 }
2397 if (last_offset < tls->params.tls_hlen)
2398 return (EBADMSG);
2399
2400 *record_typep = record_type;
2401 *trailer_len = tls_len - last_offset + 1;
2402 return (0);
2403 }
2404
2405 /*
2406 * Check if a mbuf chain is fully decrypted at the given offset and
2407 * length. Returns KTLS_MBUF_CRYPTO_ST_DECRYPTED if all data is
2408 * decrypted. KTLS_MBUF_CRYPTO_ST_MIXED if there is a mix of encrypted
2409 * and decrypted data. Else KTLS_MBUF_CRYPTO_ST_ENCRYPTED if all data
2410 * is encrypted.
2411 */
2412 ktls_mbuf_crypto_st_t
ktls_mbuf_crypto_state(struct mbuf * mb,int offset,int len)2413 ktls_mbuf_crypto_state(struct mbuf *mb, int offset, int len)
2414 {
2415 int m_flags_ored = 0;
2416 int m_flags_anded = -1;
2417
2418 for (; mb != NULL; mb = mb->m_next) {
2419 if (offset < mb->m_len)
2420 break;
2421 offset -= mb->m_len;
2422 }
2423 offset += len;
2424
2425 for (; mb != NULL; mb = mb->m_next) {
2426 m_flags_ored |= mb->m_flags;
2427 m_flags_anded &= mb->m_flags;
2428
2429 if (offset <= mb->m_len)
2430 break;
2431 offset -= mb->m_len;
2432 }
2433 MPASS(mb != NULL || offset == 0);
2434
2435 if ((m_flags_ored ^ m_flags_anded) & M_DECRYPTED)
2436 return (KTLS_MBUF_CRYPTO_ST_MIXED);
2437 else
2438 return ((m_flags_ored & M_DECRYPTED) ?
2439 KTLS_MBUF_CRYPTO_ST_DECRYPTED :
2440 KTLS_MBUF_CRYPTO_ST_ENCRYPTED);
2441 }
2442
2443 /*
2444 * ktls_resync_ifnet - get HW TLS RX back on track after packet loss
2445 */
2446 static int
ktls_resync_ifnet(struct socket * so,uint32_t tls_len,uint64_t tls_rcd_num)2447 ktls_resync_ifnet(struct socket *so, uint32_t tls_len, uint64_t tls_rcd_num)
2448 {
2449 union if_snd_tag_modify_params params;
2450 struct m_snd_tag *mst;
2451 struct inpcb *inp;
2452 struct tcpcb *tp;
2453
2454 mst = so->so_rcv.sb_tls_info->snd_tag;
2455 if (__predict_false(mst == NULL))
2456 return (EINVAL);
2457
2458 inp = sotoinpcb(so);
2459 if (__predict_false(inp == NULL))
2460 return (EINVAL);
2461
2462 INP_RLOCK(inp);
2463 if (inp->inp_flags & INP_DROPPED) {
2464 INP_RUNLOCK(inp);
2465 return (ECONNRESET);
2466 }
2467
2468 tp = intotcpcb(inp);
2469 MPASS(tp != NULL);
2470
2471 /* Get the TCP sequence number of the next valid TLS header. */
2472 SOCKBUF_LOCK(&so->so_rcv);
2473 params.tls_rx.tls_hdr_tcp_sn =
2474 tp->rcv_nxt - so->so_rcv.sb_tlscc - tls_len;
2475 params.tls_rx.tls_rec_length = tls_len;
2476 params.tls_rx.tls_seq_number = tls_rcd_num;
2477 SOCKBUF_UNLOCK(&so->so_rcv);
2478
2479 INP_RUNLOCK(inp);
2480
2481 MPASS(mst->sw->type == IF_SND_TAG_TYPE_TLS_RX);
2482 return (mst->sw->snd_tag_modify(mst, ¶ms));
2483 }
2484
2485 static void
ktls_drop(struct socket * so,int error)2486 ktls_drop(struct socket *so, int error)
2487 {
2488 struct epoch_tracker et;
2489 struct inpcb *inp = sotoinpcb(so);
2490 struct tcpcb *tp;
2491
2492 NET_EPOCH_ENTER(et);
2493 INP_WLOCK(inp);
2494 if (!(inp->inp_flags & INP_DROPPED)) {
2495 tp = intotcpcb(inp);
2496 CURVNET_SET(inp->inp_vnet);
2497 tp = tcp_drop(tp, error);
2498 CURVNET_RESTORE();
2499 if (tp != NULL)
2500 INP_WUNLOCK(inp);
2501 } else {
2502 so->so_error = error;
2503 SOCK_RECVBUF_LOCK(so);
2504 sorwakeup_locked(so);
2505 INP_WUNLOCK(inp);
2506 }
2507 NET_EPOCH_EXIT(et);
2508 }
2509
2510 static void
ktls_decrypt(struct socket * so)2511 ktls_decrypt(struct socket *so)
2512 {
2513 char tls_header[MBUF_PEXT_HDR_LEN];
2514 struct ktls_session *tls;
2515 struct sockbuf *sb;
2516 struct tls_record_layer *hdr;
2517 struct tls_get_record tgr;
2518 struct mbuf *control, *data, *m;
2519 ktls_mbuf_crypto_st_t state;
2520 uint64_t seqno;
2521 int error, remain, tls_len, trail_len;
2522 bool tls13;
2523 uint8_t vminor, record_type;
2524
2525 hdr = (struct tls_record_layer *)tls_header;
2526 sb = &so->so_rcv;
2527 SOCKBUF_LOCK(sb);
2528 KASSERT(sb->sb_flags & SB_TLS_RX_RUNNING,
2529 ("%s: socket %p not running", __func__, so));
2530
2531 tls = sb->sb_tls_info;
2532 MPASS(tls != NULL);
2533
2534 tls13 = (tls->params.tls_vminor == TLS_MINOR_VER_THREE);
2535 if (tls13)
2536 vminor = TLS_MINOR_VER_TWO;
2537 else
2538 vminor = tls->params.tls_vminor;
2539 for (;;) {
2540 /* Is there enough queued for a TLS header? */
2541 if (sb->sb_tlscc < tls->params.tls_hlen)
2542 break;
2543
2544 m_copydata(sb->sb_mtls, 0, tls->params.tls_hlen, tls_header);
2545 tls_len = sizeof(*hdr) + ntohs(hdr->tls_length);
2546
2547 if (hdr->tls_vmajor != tls->params.tls_vmajor ||
2548 hdr->tls_vminor != vminor)
2549 error = EINVAL;
2550 else if (tls13 && hdr->tls_type != TLS_RLTYPE_APP)
2551 error = EINVAL;
2552 else if (tls_len < tls->params.tls_hlen || tls_len >
2553 tls->params.tls_hlen + TLS_MAX_MSG_SIZE_V10_2 +
2554 tls->params.tls_tlen)
2555 error = EMSGSIZE;
2556 else
2557 error = 0;
2558 if (__predict_false(error != 0)) {
2559 /*
2560 * We have a corrupted record and are likely
2561 * out of sync. The connection isn't
2562 * recoverable at this point, so abort it.
2563 */
2564 SOCKBUF_UNLOCK(sb);
2565 counter_u64_add(ktls_offload_corrupted_records, 1);
2566
2567 ktls_drop(so, error);
2568 goto deref;
2569 }
2570
2571 /* Is the entire record queued? */
2572 if (sb->sb_tlscc < tls_len)
2573 break;
2574
2575 /*
2576 * Split out the portion of the mbuf chain containing
2577 * this TLS record.
2578 */
2579 data = ktls_detach_record(sb, tls_len);
2580 if (data == NULL)
2581 continue;
2582 MPASS(sb->sb_tlsdcc == tls_len);
2583
2584 seqno = sb->sb_tls_seqno;
2585 sb->sb_tls_seqno++;
2586 SBCHECK(sb);
2587 SOCKBUF_UNLOCK(sb);
2588
2589 /* get crypto state for this TLS record */
2590 state = ktls_mbuf_crypto_state(data, 0, tls_len);
2591
2592 switch (state) {
2593 case KTLS_MBUF_CRYPTO_ST_MIXED:
2594 error = ktls_ocf_recrypt(tls, hdr, data, seqno);
2595 if (error)
2596 break;
2597 /* FALLTHROUGH */
2598 case KTLS_MBUF_CRYPTO_ST_ENCRYPTED:
2599 error = ktls_ocf_decrypt(tls, hdr, data, seqno,
2600 &trail_len);
2601 if (__predict_true(error == 0)) {
2602 if (tls13) {
2603 error = tls13_find_record_type(tls, data,
2604 tls_len, &trail_len, &record_type);
2605 } else {
2606 record_type = hdr->tls_type;
2607 }
2608 }
2609 break;
2610 case KTLS_MBUF_CRYPTO_ST_DECRYPTED:
2611 /*
2612 * NIC TLS is only supported for AEAD
2613 * ciphersuites which used a fixed sized
2614 * trailer.
2615 */
2616 if (tls13) {
2617 trail_len = tls->params.tls_tlen - 1;
2618 error = tls13_find_record_type(tls, data,
2619 tls_len, &trail_len, &record_type);
2620 } else {
2621 trail_len = tls->params.tls_tlen;
2622 error = 0;
2623 record_type = hdr->tls_type;
2624 }
2625 break;
2626 default:
2627 error = EINVAL;
2628 break;
2629 }
2630 if (error) {
2631 counter_u64_add(ktls_offload_failed_crypto, 1);
2632
2633 SOCKBUF_LOCK(sb);
2634 if (sb->sb_tlsdcc == 0) {
2635 /*
2636 * sbcut/drop/flush discarded these
2637 * mbufs.
2638 */
2639 m_freem(data);
2640 break;
2641 }
2642
2643 /*
2644 * Drop this TLS record's data, but keep
2645 * decrypting subsequent records.
2646 */
2647 sb->sb_ccc -= tls_len;
2648 sb->sb_tlsdcc = 0;
2649
2650 if (error != EMSGSIZE)
2651 error = EBADMSG;
2652 CURVNET_SET(so->so_vnet);
2653 so->so_error = error;
2654 sorwakeup_locked(so);
2655 CURVNET_RESTORE();
2656
2657 m_freem(data);
2658
2659 SOCKBUF_LOCK(sb);
2660 continue;
2661 }
2662
2663 /* Allocate the control mbuf. */
2664 memset(&tgr, 0, sizeof(tgr));
2665 tgr.tls_type = record_type;
2666 tgr.tls_vmajor = hdr->tls_vmajor;
2667 tgr.tls_vminor = hdr->tls_vminor;
2668 tgr.tls_length = htobe16(tls_len - tls->params.tls_hlen -
2669 trail_len);
2670 control = sbcreatecontrol(&tgr, sizeof(tgr),
2671 TLS_GET_RECORD, IPPROTO_TCP, M_WAITOK);
2672
2673 SOCKBUF_LOCK(sb);
2674 if (sb->sb_tlsdcc == 0) {
2675 /* sbcut/drop/flush discarded these mbufs. */
2676 MPASS(sb->sb_tlscc == 0);
2677 m_freem(data);
2678 m_freem(control);
2679 break;
2680 }
2681
2682 /*
2683 * Clear the 'dcc' accounting in preparation for
2684 * adding the decrypted record.
2685 */
2686 sb->sb_ccc -= tls_len;
2687 sb->sb_tlsdcc = 0;
2688 SBCHECK(sb);
2689
2690 /* If there is no payload, drop all of the data. */
2691 if (tgr.tls_length == htobe16(0)) {
2692 m_freem(data);
2693 data = NULL;
2694 } else {
2695 /* Trim header. */
2696 remain = tls->params.tls_hlen;
2697 while (remain > 0) {
2698 if (data->m_len > remain) {
2699 data->m_data += remain;
2700 data->m_len -= remain;
2701 break;
2702 }
2703 remain -= data->m_len;
2704 data = m_free(data);
2705 }
2706
2707 /* Trim trailer and clear M_NOTREADY. */
2708 remain = be16toh(tgr.tls_length);
2709 m = data;
2710 for (m = data; remain > m->m_len; m = m->m_next) {
2711 m->m_flags &= ~(M_NOTREADY | M_DECRYPTED);
2712 remain -= m->m_len;
2713 }
2714 m->m_len = remain;
2715 m_freem(m->m_next);
2716 m->m_next = NULL;
2717 m->m_flags &= ~(M_NOTREADY | M_DECRYPTED);
2718
2719 /* Set EOR on the final mbuf. */
2720 m->m_flags |= M_EOR;
2721 }
2722
2723 sbappendcontrol_locked(sb, data, control, 0);
2724
2725 if (__predict_false(state != KTLS_MBUF_CRYPTO_ST_DECRYPTED)) {
2726 sb->sb_flags |= SB_TLS_RX_RESYNC;
2727 SOCKBUF_UNLOCK(sb);
2728 ktls_resync_ifnet(so, tls_len, seqno);
2729 SOCKBUF_LOCK(sb);
2730 } else if (__predict_false(sb->sb_flags & SB_TLS_RX_RESYNC)) {
2731 sb->sb_flags &= ~SB_TLS_RX_RESYNC;
2732 SOCKBUF_UNLOCK(sb);
2733 ktls_resync_ifnet(so, 0, seqno);
2734 SOCKBUF_LOCK(sb);
2735 }
2736 }
2737
2738 sb->sb_flags &= ~SB_TLS_RX_RUNNING;
2739
2740 if ((sb->sb_state & SBS_CANTRCVMORE) != 0 && sb->sb_tlscc > 0)
2741 so->so_error = EMSGSIZE;
2742
2743 sorwakeup_locked(so);
2744
2745 deref:
2746 SOCKBUF_UNLOCK_ASSERT(sb);
2747
2748 CURVNET_SET(so->so_vnet);
2749 sorele(so);
2750 CURVNET_RESTORE();
2751 }
2752
2753 void
ktls_enqueue_to_free(struct mbuf * m)2754 ktls_enqueue_to_free(struct mbuf *m)
2755 {
2756 struct ktls_wq *wq;
2757 bool running;
2758
2759 /* Mark it for freeing. */
2760 m->m_epg_flags |= EPG_FLAG_2FREE;
2761 wq = &ktls_wq[m->m_epg_tls->wq_index];
2762 mtx_lock(&wq->mtx);
2763 STAILQ_INSERT_TAIL(&wq->m_head, m, m_epg_stailq);
2764 running = wq->running;
2765 mtx_unlock(&wq->mtx);
2766 if (!running)
2767 wakeup(wq);
2768 }
2769
2770 static void *
ktls_buffer_alloc(struct ktls_wq * wq,struct mbuf * m)2771 ktls_buffer_alloc(struct ktls_wq *wq, struct mbuf *m)
2772 {
2773 void *buf;
2774 int domain, running;
2775
2776 if (m->m_epg_npgs <= 2)
2777 return (NULL);
2778 if (ktls_buffer_zone == NULL)
2779 return (NULL);
2780 if ((u_int)(ticks - wq->lastallocfail) < hz) {
2781 /*
2782 * Rate-limit allocation attempts after a failure.
2783 * ktls_buffer_import() will acquire a per-domain mutex to check
2784 * the free page queues and may fail consistently if memory is
2785 * fragmented.
2786 */
2787 return (NULL);
2788 }
2789 buf = uma_zalloc(ktls_buffer_zone, M_NOWAIT | M_NORECLAIM);
2790 if (buf == NULL) {
2791 domain = PCPU_GET(domain);
2792 wq->lastallocfail = ticks;
2793
2794 /*
2795 * Note that this check is "racy", but the races are
2796 * harmless, and are either a spurious wakeup if
2797 * multiple threads fail allocations before the alloc
2798 * thread wakes, or waiting an extra second in case we
2799 * see an old value of running == true.
2800 */
2801 if (!VM_DOMAIN_EMPTY(domain)) {
2802 running = atomic_load_int(&ktls_domains[domain].reclaim_td.running);
2803 if (!running)
2804 wakeup(&ktls_domains[domain].reclaim_td);
2805 }
2806 }
2807 return (buf);
2808 }
2809
2810 static int
ktls_encrypt_record(struct ktls_wq * wq,struct mbuf * m,struct ktls_session * tls,struct ktls_ocf_encrypt_state * state)2811 ktls_encrypt_record(struct ktls_wq *wq, struct mbuf *m,
2812 struct ktls_session *tls, struct ktls_ocf_encrypt_state *state)
2813 {
2814 vm_page_t pg;
2815 int error, i, len, off;
2816
2817 KASSERT((m->m_flags & (M_EXTPG | M_NOTREADY)) == (M_EXTPG | M_NOTREADY),
2818 ("%p not unready & nomap mbuf\n", m));
2819 KASSERT(ptoa(m->m_epg_npgs) <= ktls_maxlen,
2820 ("page count %d larger than maximum frame length %d", m->m_epg_npgs,
2821 ktls_maxlen));
2822
2823 /* Anonymous mbufs are encrypted in place. */
2824 if ((m->m_epg_flags & EPG_FLAG_ANON) != 0)
2825 return (ktls_ocf_encrypt(state, tls, m, NULL, 0));
2826
2827 /*
2828 * For file-backed mbufs (from sendfile), anonymous wired
2829 * pages are allocated and used as the encryption destination.
2830 */
2831 if ((state->cbuf = ktls_buffer_alloc(wq, m)) != NULL) {
2832 len = ptoa(m->m_epg_npgs - 1) + m->m_epg_last_len -
2833 m->m_epg_1st_off;
2834 state->dst_iov[0].iov_base = (char *)state->cbuf +
2835 m->m_epg_1st_off;
2836 state->dst_iov[0].iov_len = len;
2837 state->parray[0] = DMAP_TO_PHYS((vm_offset_t)state->cbuf);
2838 i = 1;
2839 } else {
2840 off = m->m_epg_1st_off;
2841 for (i = 0; i < m->m_epg_npgs; i++, off = 0) {
2842 pg = vm_page_alloc_noobj(VM_ALLOC_NODUMP |
2843 VM_ALLOC_WIRED | VM_ALLOC_WAITOK);
2844 len = m_epg_pagelen(m, i, off);
2845 state->parray[i] = VM_PAGE_TO_PHYS(pg);
2846 state->dst_iov[i].iov_base =
2847 (char *)PHYS_TO_DMAP(state->parray[i]) + off;
2848 state->dst_iov[i].iov_len = len;
2849 }
2850 }
2851 KASSERT(i + 1 <= nitems(state->dst_iov), ("dst_iov is too small"));
2852 state->dst_iov[i].iov_base = m->m_epg_trail;
2853 state->dst_iov[i].iov_len = m->m_epg_trllen;
2854
2855 error = ktls_ocf_encrypt(state, tls, m, state->dst_iov, i + 1);
2856
2857 if (__predict_false(error != 0)) {
2858 /* Free the anonymous pages. */
2859 if (state->cbuf != NULL)
2860 uma_zfree(ktls_buffer_zone, state->cbuf);
2861 else {
2862 for (i = 0; i < m->m_epg_npgs; i++) {
2863 pg = PHYS_TO_VM_PAGE(state->parray[i]);
2864 (void)vm_page_unwire_noq(pg);
2865 vm_page_free(pg);
2866 }
2867 }
2868 }
2869 return (error);
2870 }
2871
2872 /* Number of TLS records in a batch passed to ktls_enqueue(). */
2873 static u_int
ktls_batched_records(struct mbuf * m)2874 ktls_batched_records(struct mbuf *m)
2875 {
2876 int page_count, records;
2877
2878 records = 0;
2879 page_count = m->m_epg_enc_cnt;
2880 while (page_count > 0) {
2881 records++;
2882 page_count -= m->m_epg_nrdy;
2883 m = m->m_next;
2884 }
2885 KASSERT(page_count == 0, ("%s: mismatched page count", __func__));
2886 return (records);
2887 }
2888
2889 void
ktls_enqueue(struct mbuf * m,struct socket * so,int page_count)2890 ktls_enqueue(struct mbuf *m, struct socket *so, int page_count)
2891 {
2892 struct ktls_session *tls;
2893 struct ktls_wq *wq;
2894 int queued;
2895 bool running;
2896
2897 KASSERT(((m->m_flags & (M_EXTPG | M_NOTREADY)) ==
2898 (M_EXTPG | M_NOTREADY)),
2899 ("ktls_enqueue: %p not unready & nomap mbuf\n", m));
2900 KASSERT(page_count != 0, ("enqueueing TLS mbuf with zero page count"));
2901
2902 KASSERT(m->m_epg_tls->mode == TCP_TLS_MODE_SW, ("!SW TLS mbuf"));
2903
2904 m->m_epg_enc_cnt = page_count;
2905
2906 /*
2907 * Save a pointer to the socket. The caller is responsible
2908 * for taking an additional reference via soref().
2909 */
2910 m->m_epg_so = so;
2911
2912 queued = 1;
2913 tls = m->m_epg_tls;
2914 wq = &ktls_wq[tls->wq_index];
2915 mtx_lock(&wq->mtx);
2916 if (__predict_false(tls->sequential_records)) {
2917 /*
2918 * For TLS 1.0, records must be encrypted
2919 * sequentially. For a given connection, all records
2920 * queued to the associated work queue are processed
2921 * sequentially. However, sendfile(2) might complete
2922 * I/O requests spanning multiple TLS records out of
2923 * order. Here we ensure TLS records are enqueued to
2924 * the work queue in FIFO order.
2925 *
2926 * tls->next_seqno holds the sequence number of the
2927 * next TLS record that should be enqueued to the work
2928 * queue. If this next record is not tls->next_seqno,
2929 * it must be a future record, so insert it, sorted by
2930 * TLS sequence number, into tls->pending_records and
2931 * return.
2932 *
2933 * If this TLS record matches tls->next_seqno, place
2934 * it in the work queue and then check
2935 * tls->pending_records to see if any
2936 * previously-queued records are now ready for
2937 * encryption.
2938 */
2939 if (m->m_epg_seqno != tls->next_seqno) {
2940 struct mbuf *n, *p;
2941
2942 p = NULL;
2943 STAILQ_FOREACH(n, &tls->pending_records, m_epg_stailq) {
2944 if (n->m_epg_seqno > m->m_epg_seqno)
2945 break;
2946 p = n;
2947 }
2948 if (n == NULL)
2949 STAILQ_INSERT_TAIL(&tls->pending_records, m,
2950 m_epg_stailq);
2951 else if (p == NULL)
2952 STAILQ_INSERT_HEAD(&tls->pending_records, m,
2953 m_epg_stailq);
2954 else
2955 STAILQ_INSERT_AFTER(&tls->pending_records, p, m,
2956 m_epg_stailq);
2957 mtx_unlock(&wq->mtx);
2958 counter_u64_add(ktls_cnt_tx_pending, 1);
2959 return;
2960 }
2961
2962 tls->next_seqno += ktls_batched_records(m);
2963 STAILQ_INSERT_TAIL(&wq->m_head, m, m_epg_stailq);
2964
2965 while (!STAILQ_EMPTY(&tls->pending_records)) {
2966 struct mbuf *n;
2967
2968 n = STAILQ_FIRST(&tls->pending_records);
2969 if (n->m_epg_seqno != tls->next_seqno)
2970 break;
2971
2972 queued++;
2973 STAILQ_REMOVE_HEAD(&tls->pending_records, m_epg_stailq);
2974 tls->next_seqno += ktls_batched_records(n);
2975 STAILQ_INSERT_TAIL(&wq->m_head, n, m_epg_stailq);
2976 }
2977 counter_u64_add(ktls_cnt_tx_pending, -(queued - 1));
2978 } else
2979 STAILQ_INSERT_TAIL(&wq->m_head, m, m_epg_stailq);
2980
2981 running = wq->running;
2982 mtx_unlock(&wq->mtx);
2983 if (!running)
2984 wakeup(wq);
2985 counter_u64_add(ktls_cnt_tx_queued, queued);
2986 }
2987
2988 /*
2989 * Once a file-backed mbuf (from sendfile) has been encrypted, free
2990 * the pages from the file and replace them with the anonymous pages
2991 * allocated in ktls_encrypt_record().
2992 */
2993 static void
ktls_finish_nonanon(struct mbuf * m,struct ktls_ocf_encrypt_state * state)2994 ktls_finish_nonanon(struct mbuf *m, struct ktls_ocf_encrypt_state *state)
2995 {
2996 int i;
2997
2998 MPASS((m->m_epg_flags & EPG_FLAG_ANON) == 0);
2999
3000 /* Free the old pages. */
3001 m->m_ext.ext_free(m);
3002
3003 /* Replace them with the new pages. */
3004 if (state->cbuf != NULL) {
3005 for (i = 0; i < m->m_epg_npgs; i++)
3006 m->m_epg_pa[i] = state->parray[0] + ptoa(i);
3007
3008 /* Contig pages should go back to the cache. */
3009 m->m_ext.ext_free = ktls_free_mext_contig;
3010 } else {
3011 for (i = 0; i < m->m_epg_npgs; i++)
3012 m->m_epg_pa[i] = state->parray[i];
3013
3014 /* Use the basic free routine. */
3015 m->m_ext.ext_free = mb_free_mext_pgs;
3016 }
3017
3018 /* Pages are now writable. */
3019 m->m_epg_flags |= EPG_FLAG_ANON;
3020 }
3021
3022 static __noinline void
ktls_encrypt(struct ktls_wq * wq,struct mbuf * top)3023 ktls_encrypt(struct ktls_wq *wq, struct mbuf *top)
3024 {
3025 struct ktls_ocf_encrypt_state state;
3026 struct ktls_session *tls;
3027 struct socket *so;
3028 struct mbuf *m;
3029 int error, npages, total_pages;
3030
3031 so = top->m_epg_so;
3032 tls = top->m_epg_tls;
3033 KASSERT(tls != NULL, ("tls = NULL, top = %p\n", top));
3034 KASSERT(so != NULL, ("so = NULL, top = %p\n", top));
3035 #ifdef INVARIANTS
3036 top->m_epg_so = NULL;
3037 #endif
3038 total_pages = top->m_epg_enc_cnt;
3039 npages = 0;
3040
3041 /*
3042 * Encrypt the TLS records in the chain of mbufs starting with
3043 * 'top'. 'total_pages' gives us a total count of pages and is
3044 * used to know when we have finished encrypting the TLS
3045 * records originally queued with 'top'.
3046 *
3047 * NB: These mbufs are queued in the socket buffer and
3048 * 'm_next' is traversing the mbufs in the socket buffer. The
3049 * socket buffer lock is not held while traversing this chain.
3050 * Since the mbufs are all marked M_NOTREADY their 'm_next'
3051 * pointers should be stable. However, the 'm_next' of the
3052 * last mbuf encrypted is not necessarily NULL. It can point
3053 * to other mbufs appended while 'top' was on the TLS work
3054 * queue.
3055 *
3056 * Each mbuf holds an entire TLS record.
3057 */
3058 error = 0;
3059 for (m = top; npages != total_pages; m = m->m_next) {
3060 KASSERT(m->m_epg_tls == tls,
3061 ("different TLS sessions in a single mbuf chain: %p vs %p",
3062 tls, m->m_epg_tls));
3063 KASSERT(npages + m->m_epg_npgs <= total_pages,
3064 ("page count mismatch: top %p, total_pages %d, m %p", top,
3065 total_pages, m));
3066
3067 error = ktls_encrypt_record(wq, m, tls, &state);
3068 if (error) {
3069 counter_u64_add(ktls_offload_failed_crypto, 1);
3070 break;
3071 }
3072
3073 if ((m->m_epg_flags & EPG_FLAG_ANON) == 0)
3074 ktls_finish_nonanon(m, &state);
3075 m->m_flags |= M_RDONLY;
3076
3077 npages += m->m_epg_nrdy;
3078
3079 /*
3080 * Drop a reference to the session now that it is no
3081 * longer needed. Existing code depends on encrypted
3082 * records having no associated session vs
3083 * yet-to-be-encrypted records having an associated
3084 * session.
3085 */
3086 m->m_epg_tls = NULL;
3087 ktls_free(tls);
3088 }
3089
3090 CURVNET_SET(so->so_vnet);
3091 if (error == 0) {
3092 (void)so->so_proto->pr_ready(so, top, npages);
3093 } else {
3094 ktls_drop(so, EIO);
3095 mb_free_notready(top, total_pages);
3096 }
3097
3098 sorele(so);
3099 CURVNET_RESTORE();
3100 }
3101
3102 void
ktls_encrypt_cb(struct ktls_ocf_encrypt_state * state,int error)3103 ktls_encrypt_cb(struct ktls_ocf_encrypt_state *state, int error)
3104 {
3105 struct ktls_session *tls;
3106 struct socket *so;
3107 struct mbuf *m;
3108 int npages;
3109
3110 m = state->m;
3111
3112 if ((m->m_epg_flags & EPG_FLAG_ANON) == 0)
3113 ktls_finish_nonanon(m, state);
3114 m->m_flags |= M_RDONLY;
3115
3116 so = state->so;
3117 free(state, M_KTLS);
3118
3119 /*
3120 * Drop a reference to the session now that it is no longer
3121 * needed. Existing code depends on encrypted records having
3122 * no associated session vs yet-to-be-encrypted records having
3123 * an associated session.
3124 */
3125 tls = m->m_epg_tls;
3126 m->m_epg_tls = NULL;
3127 ktls_free(tls);
3128
3129 if (error != 0)
3130 counter_u64_add(ktls_offload_failed_crypto, 1);
3131
3132 CURVNET_SET(so->so_vnet);
3133 npages = m->m_epg_nrdy;
3134
3135 if (error == 0) {
3136 (void)so->so_proto->pr_ready(so, m, npages);
3137 } else {
3138 ktls_drop(so, EIO);
3139 mb_free_notready(m, npages);
3140 }
3141
3142 sorele(so);
3143 CURVNET_RESTORE();
3144 }
3145
3146 /*
3147 * Similar to ktls_encrypt, but used with asynchronous OCF backends
3148 * (coprocessors) where encryption does not use host CPU resources and
3149 * it can be beneficial to queue more requests than CPUs.
3150 */
3151 static __noinline void
ktls_encrypt_async(struct ktls_wq * wq,struct mbuf * top)3152 ktls_encrypt_async(struct ktls_wq *wq, struct mbuf *top)
3153 {
3154 struct ktls_ocf_encrypt_state *state;
3155 struct ktls_session *tls;
3156 struct socket *so;
3157 struct mbuf *m, *n;
3158 int error, mpages, npages, total_pages;
3159
3160 so = top->m_epg_so;
3161 tls = top->m_epg_tls;
3162 KASSERT(tls != NULL, ("tls = NULL, top = %p\n", top));
3163 KASSERT(so != NULL, ("so = NULL, top = %p\n", top));
3164 #ifdef INVARIANTS
3165 top->m_epg_so = NULL;
3166 #endif
3167 total_pages = top->m_epg_enc_cnt;
3168 npages = 0;
3169
3170 error = 0;
3171 for (m = top; npages != total_pages; m = n) {
3172 KASSERT(m->m_epg_tls == tls,
3173 ("different TLS sessions in a single mbuf chain: %p vs %p",
3174 tls, m->m_epg_tls));
3175 KASSERT(npages + m->m_epg_npgs <= total_pages,
3176 ("page count mismatch: top %p, total_pages %d, m %p", top,
3177 total_pages, m));
3178
3179 state = malloc(sizeof(*state), M_KTLS, M_WAITOK | M_ZERO);
3180 soref(so);
3181 state->so = so;
3182 state->m = m;
3183
3184 mpages = m->m_epg_nrdy;
3185 n = m->m_next;
3186
3187 error = ktls_encrypt_record(wq, m, tls, state);
3188 if (error) {
3189 counter_u64_add(ktls_offload_failed_crypto, 1);
3190 free(state, M_KTLS);
3191 CURVNET_SET(so->so_vnet);
3192 sorele(so);
3193 CURVNET_RESTORE();
3194 break;
3195 }
3196
3197 npages += mpages;
3198 }
3199
3200 CURVNET_SET(so->so_vnet);
3201 if (error != 0) {
3202 ktls_drop(so, EIO);
3203 mb_free_notready(m, total_pages - npages);
3204 }
3205
3206 sorele(so);
3207 CURVNET_RESTORE();
3208 }
3209
3210 static int
ktls_bind_domain(int domain)3211 ktls_bind_domain(int domain)
3212 {
3213 int error;
3214
3215 error = cpuset_setthread(curthread->td_tid, &cpuset_domain[domain]);
3216 if (error != 0)
3217 return (error);
3218 curthread->td_domain.dr_policy = DOMAINSET_PREF(domain);
3219 return (0);
3220 }
3221
3222 static void
ktls_reclaim_thread(void * ctx)3223 ktls_reclaim_thread(void *ctx)
3224 {
3225 struct ktls_domain_info *ktls_domain = ctx;
3226 struct ktls_reclaim_thread *sc = &ktls_domain->reclaim_td;
3227 struct sysctl_oid *oid;
3228 char name[80];
3229 int error, domain;
3230
3231 domain = ktls_domain - ktls_domains;
3232 if (bootverbose)
3233 printf("Starting KTLS reclaim thread for domain %d\n", domain);
3234 error = ktls_bind_domain(domain);
3235 if (error)
3236 printf("Unable to bind KTLS reclaim thread for domain %d: error %d\n",
3237 domain, error);
3238 snprintf(name, sizeof(name), "domain%d", domain);
3239 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_STATIC_CHILDREN(_kern_ipc_tls), OID_AUTO,
3240 name, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
3241 SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "reclaims",
3242 CTLFLAG_RD, &sc->reclaims, 0, "buffers reclaimed");
3243 SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "wakeups",
3244 CTLFLAG_RD, &sc->wakeups, 0, "thread wakeups");
3245 SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "running",
3246 CTLFLAG_RD, &sc->running, 0, "thread running");
3247
3248 for (;;) {
3249 atomic_store_int(&sc->running, 0);
3250 tsleep(sc, PZERO | PNOLOCK, "-", 0);
3251 atomic_store_int(&sc->running, 1);
3252 sc->wakeups++;
3253 /*
3254 * Below we attempt to reclaim ktls_max_reclaim
3255 * buffers using vm_page_reclaim_contig_domain_ext().
3256 * We do this here, as this function can take several
3257 * seconds to scan all of memory and it does not
3258 * matter if this thread pauses for a while. If we
3259 * block a ktls worker thread, we risk developing
3260 * backlogs of buffers to be encrypted, leading to
3261 * surges of traffic and potential NIC output drops.
3262 */
3263 if (vm_page_reclaim_contig_domain_ext(domain, VM_ALLOC_NORMAL,
3264 atop(ktls_maxlen), 0, ~0ul, PAGE_SIZE, 0,
3265 ktls_max_reclaim) != 0) {
3266 vm_wait_domain(domain);
3267 } else {
3268 sc->reclaims += ktls_max_reclaim;
3269 }
3270 }
3271 }
3272
3273 static void
ktls_work_thread(void * ctx)3274 ktls_work_thread(void *ctx)
3275 {
3276 struct ktls_wq *wq = ctx;
3277 struct mbuf *m, *n;
3278 struct socket *so, *son;
3279 STAILQ_HEAD(, mbuf) local_m_head;
3280 STAILQ_HEAD(, socket) local_so_head;
3281 int cpu;
3282
3283 cpu = wq - ktls_wq;
3284 if (bootverbose)
3285 printf("Starting KTLS worker thread for CPU %d\n", cpu);
3286
3287 /*
3288 * Bind to a core. If ktls_bind_threads is > 1, then
3289 * we bind to the NUMA domain instead.
3290 */
3291 if (ktls_bind_threads) {
3292 int error;
3293
3294 if (ktls_bind_threads > 1) {
3295 struct pcpu *pc = pcpu_find(cpu);
3296
3297 error = ktls_bind_domain(pc->pc_domain);
3298 } else {
3299 cpuset_t mask;
3300
3301 CPU_SETOF(cpu, &mask);
3302 error = cpuset_setthread(curthread->td_tid, &mask);
3303 }
3304 if (error)
3305 printf("Unable to bind KTLS worker thread for CPU %d: error %d\n",
3306 cpu, error);
3307 }
3308 #if defined(__aarch64__) || defined(__amd64__) || defined(__i386__)
3309 fpu_kern_thread(0);
3310 #endif
3311 for (;;) {
3312 mtx_lock(&wq->mtx);
3313 while (STAILQ_EMPTY(&wq->m_head) &&
3314 STAILQ_EMPTY(&wq->so_head)) {
3315 wq->running = false;
3316 mtx_sleep(wq, &wq->mtx, 0, "-", 0);
3317 wq->running = true;
3318 }
3319
3320 STAILQ_INIT(&local_m_head);
3321 STAILQ_CONCAT(&local_m_head, &wq->m_head);
3322 STAILQ_INIT(&local_so_head);
3323 STAILQ_CONCAT(&local_so_head, &wq->so_head);
3324 mtx_unlock(&wq->mtx);
3325
3326 STAILQ_FOREACH_SAFE(m, &local_m_head, m_epg_stailq, n) {
3327 if (m->m_epg_flags & EPG_FLAG_2FREE) {
3328 ktls_free(m->m_epg_tls);
3329 m_free_raw(m);
3330 } else {
3331 if (m->m_epg_tls->sync_dispatch)
3332 ktls_encrypt(wq, m);
3333 else
3334 ktls_encrypt_async(wq, m);
3335 counter_u64_add(ktls_cnt_tx_queued, -1);
3336 }
3337 }
3338
3339 STAILQ_FOREACH_SAFE(so, &local_so_head, so_ktls_rx_list, son) {
3340 ktls_decrypt(so);
3341 counter_u64_add(ktls_cnt_rx_queued, -1);
3342 }
3343 }
3344 }
3345
3346 static void
ktls_disable_ifnet_help(void * context,int pending __unused)3347 ktls_disable_ifnet_help(void *context, int pending __unused)
3348 {
3349 struct ktls_session *tls;
3350 struct inpcb *inp;
3351 struct tcpcb *tp;
3352 struct socket *so;
3353 int err;
3354
3355 tls = context;
3356 inp = tls->inp;
3357 if (inp == NULL)
3358 return;
3359 INP_WLOCK(inp);
3360 so = inp->inp_socket;
3361 MPASS(so != NULL);
3362 if (inp->inp_flags & INP_DROPPED) {
3363 goto out;
3364 }
3365
3366 if (so->so_snd.sb_tls_info != NULL)
3367 err = ktls_set_tx_mode(so, TCP_TLS_MODE_SW);
3368 else
3369 err = ENXIO;
3370 if (err == 0) {
3371 counter_u64_add(ktls_ifnet_disable_ok, 1);
3372 /* ktls_set_tx_mode() drops inp wlock, so recheck flags */
3373 if ((inp->inp_flags & INP_DROPPED) == 0 &&
3374 (tp = intotcpcb(inp)) != NULL &&
3375 tp->t_fb->tfb_hwtls_change != NULL)
3376 (*tp->t_fb->tfb_hwtls_change)(tp, 0);
3377 } else {
3378 counter_u64_add(ktls_ifnet_disable_fail, 1);
3379 }
3380
3381 out:
3382 CURVNET_SET(so->so_vnet);
3383 sorele(so);
3384 CURVNET_RESTORE();
3385 INP_WUNLOCK(inp);
3386 ktls_free(tls);
3387 }
3388
3389 /*
3390 * Called when re-transmits are becoming a substantial portion of the
3391 * sends on this connection. When this happens, we transition the
3392 * connection to software TLS. This is needed because most inline TLS
3393 * NICs keep crypto state only for in-order transmits. This means
3394 * that to handle a TCP rexmit (which is out-of-order), the NIC must
3395 * re-DMA the entire TLS record up to and including the current
3396 * segment. This means that when re-transmitting the last ~1448 byte
3397 * segment of a 16KB TLS record, we could wind up re-DMA'ing an order
3398 * of magnitude more data than we are sending. This can cause the
3399 * PCIe link to saturate well before the network, which can cause
3400 * output drops, and a general loss of capacity.
3401 */
3402 void
ktls_disable_ifnet(void * arg)3403 ktls_disable_ifnet(void *arg)
3404 {
3405 struct tcpcb *tp;
3406 struct inpcb *inp;
3407 struct socket *so;
3408 struct ktls_session *tls;
3409
3410 tp = arg;
3411 inp = tptoinpcb(tp);
3412 INP_WLOCK_ASSERT(inp);
3413 so = inp->inp_socket;
3414 SOCK_LOCK(so);
3415 tls = so->so_snd.sb_tls_info;
3416 if (tp->t_nic_ktls_xmit_dis == 1) {
3417 SOCK_UNLOCK(so);
3418 return;
3419 }
3420
3421 /*
3422 * note that t_nic_ktls_xmit_dis is never cleared; disabling
3423 * ifnet can only be done once per connection, so we never want
3424 * to do it again
3425 */
3426
3427 (void)ktls_hold(tls);
3428 soref(so);
3429 tp->t_nic_ktls_xmit_dis = 1;
3430 SOCK_UNLOCK(so);
3431 TASK_INIT(&tls->disable_ifnet_task, 0, ktls_disable_ifnet_help, tls);
3432 (void)taskqueue_enqueue(taskqueue_thread, &tls->disable_ifnet_task);
3433 }
3434