1 // SPDX-License-Identifier: GPL-2.0-only
2 /* n2-drv.c: Niagara-2 RNG driver.
3 *
4 * Copyright (C) 2008, 2011 David S. Miller <davem@davemloft.net>
5 */
6
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/types.h>
10 #include <linux/delay.h>
11 #include <linux/slab.h>
12 #include <linux/workqueue.h>
13 #include <linux/preempt.h>
14 #include <linux/hw_random.h>
15
16 #include <linux/of.h>
17 #include <linux/platform_device.h>
18 #include <linux/property.h>
19
20 #include <asm/hypervisor.h>
21
22 #include "n2rng.h"
23
24 #define DRV_MODULE_NAME "n2rng"
25 #define PFX DRV_MODULE_NAME ": "
26 #define DRV_MODULE_VERSION "0.3"
27 #define DRV_MODULE_RELDATE "Jan 7, 2017"
28
29 static char version[] =
30 DRV_MODULE_NAME " v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
31
32 MODULE_AUTHOR("David S. Miller <davem@davemloft.net>");
33 MODULE_DESCRIPTION("Niagara2 RNG driver");
34 MODULE_LICENSE("GPL");
35 MODULE_VERSION(DRV_MODULE_VERSION);
36
37 /* The Niagara2 RNG provides a 64-bit read-only random number
38 * register, plus a control register. Access to the RNG is
39 * virtualized through the hypervisor so that both guests and control
40 * nodes can access the device.
41 *
42 * The entropy source consists of raw entropy sources, each
43 * constructed from a voltage controlled oscillator whose phase is
44 * jittered by thermal noise sources.
45 *
46 * The oscillator in each of the three raw entropy sources run at
47 * different frequencies. Normally, all three generator outputs are
48 * gathered, xored together, and fed into a CRC circuit, the output of
49 * which is the 64-bit read-only register.
50 *
51 * Some time is necessary for all the necessary entropy to build up
52 * such that a full 64-bits of entropy are available in the register.
53 * In normal operating mode (RNG_CTL_LFSR is set), the chip implements
54 * an interlock which blocks register reads until sufficient entropy
55 * is available.
56 *
57 * A control register is provided for adjusting various aspects of RNG
58 * operation, and to enable diagnostic modes. Each of the three raw
59 * entropy sources has an enable bit (RNG_CTL_ES{1,2,3}). Also
60 * provided are fields for controlling the minimum time in cycles
61 * between read accesses to the register (RNG_CTL_WAIT, this controls
62 * the interlock described in the previous paragraph).
63 *
64 * The standard setting is to have the mode bit (RNG_CTL_LFSR) set,
65 * all three entropy sources enabled, and the interlock time set
66 * appropriately.
67 *
68 * The CRC polynomial used by the chip is:
69 *
70 * P(X) = x64 + x61 + x57 + x56 + x52 + x51 + x50 + x48 + x47 + x46 +
71 * x43 + x42 + x41 + x39 + x38 + x37 + x35 + x32 + x28 + x25 +
72 * x22 + x21 + x17 + x15 + x13 + x12 + x11 + x7 + x5 + x + 1
73 *
74 * The RNG_CTL_VCO value of each noise cell must be programmed
75 * separately. This is why 4 control register values must be provided
76 * to the hypervisor. During a write, the hypervisor writes them all,
77 * one at a time, to the actual RNG_CTL register. The first three
78 * values are used to setup the desired RNG_CTL_VCO for each entropy
79 * source, for example:
80 *
81 * control 0: (1 << RNG_CTL_VCO_SHIFT) | RNG_CTL_ES1
82 * control 1: (2 << RNG_CTL_VCO_SHIFT) | RNG_CTL_ES2
83 * control 2: (3 << RNG_CTL_VCO_SHIFT) | RNG_CTL_ES3
84 *
85 * And then the fourth value sets the final chip state and enables
86 * desired.
87 */
88
n2rng_hv_err_trans(unsigned long hv_err)89 static int n2rng_hv_err_trans(unsigned long hv_err)
90 {
91 switch (hv_err) {
92 case HV_EOK:
93 return 0;
94 case HV_EWOULDBLOCK:
95 return -EAGAIN;
96 case HV_ENOACCESS:
97 return -EPERM;
98 case HV_EIO:
99 return -EIO;
100 case HV_EBUSY:
101 return -EBUSY;
102 case HV_EBADALIGN:
103 case HV_ENORADDR:
104 return -EFAULT;
105 default:
106 return -EINVAL;
107 }
108 }
109
n2rng_generic_read_control_v2(unsigned long ra,unsigned long unit)110 static unsigned long n2rng_generic_read_control_v2(unsigned long ra,
111 unsigned long unit)
112 {
113 unsigned long hv_err, state, ticks, watchdog_delta, watchdog_status;
114 int block = 0, busy = 0;
115
116 while (1) {
117 hv_err = sun4v_rng_ctl_read_v2(ra, unit, &state,
118 &ticks,
119 &watchdog_delta,
120 &watchdog_status);
121 if (hv_err == HV_EOK)
122 break;
123
124 if (hv_err == HV_EBUSY) {
125 if (++busy >= N2RNG_BUSY_LIMIT)
126 break;
127
128 udelay(1);
129 } else if (hv_err == HV_EWOULDBLOCK) {
130 if (++block >= N2RNG_BLOCK_LIMIT)
131 break;
132
133 __delay(ticks);
134 } else
135 break;
136 }
137
138 return hv_err;
139 }
140
141 /* In multi-socket situations, the hypervisor might need to
142 * queue up the RNG control register write if it's for a unit
143 * that is on a cpu socket other than the one we are executing on.
144 *
145 * We poll here waiting for a successful read of that control
146 * register to make sure the write has been actually performed.
147 */
n2rng_control_settle_v2(struct n2rng * np,int unit)148 static unsigned long n2rng_control_settle_v2(struct n2rng *np, int unit)
149 {
150 unsigned long ra = __pa(&np->scratch_control[0]);
151
152 return n2rng_generic_read_control_v2(ra, unit);
153 }
154
n2rng_write_ctl_one(struct n2rng * np,int unit,unsigned long state,unsigned long control_ra,unsigned long watchdog_timeout,unsigned long * ticks)155 static unsigned long n2rng_write_ctl_one(struct n2rng *np, int unit,
156 unsigned long state,
157 unsigned long control_ra,
158 unsigned long watchdog_timeout,
159 unsigned long *ticks)
160 {
161 unsigned long hv_err;
162
163 if (np->hvapi_major == 1) {
164 hv_err = sun4v_rng_ctl_write_v1(control_ra, state,
165 watchdog_timeout, ticks);
166 } else {
167 hv_err = sun4v_rng_ctl_write_v2(control_ra, state,
168 watchdog_timeout, unit);
169 if (hv_err == HV_EOK)
170 hv_err = n2rng_control_settle_v2(np, unit);
171 *ticks = N2RNG_ACCUM_CYCLES_DEFAULT;
172 }
173
174 return hv_err;
175 }
176
n2rng_generic_read_data(unsigned long data_ra)177 static int n2rng_generic_read_data(unsigned long data_ra)
178 {
179 unsigned long ticks, hv_err;
180 int block = 0, hcheck = 0;
181
182 while (1) {
183 hv_err = sun4v_rng_data_read(data_ra, &ticks);
184 if (hv_err == HV_EOK)
185 return 0;
186
187 if (hv_err == HV_EWOULDBLOCK) {
188 if (++block >= N2RNG_BLOCK_LIMIT)
189 return -EWOULDBLOCK;
190 __delay(ticks);
191 } else if (hv_err == HV_ENOACCESS) {
192 return -EPERM;
193 } else if (hv_err == HV_EIO) {
194 if (++hcheck >= N2RNG_HCHECK_LIMIT)
195 return -EIO;
196 udelay(10000);
197 } else
198 return -ENODEV;
199 }
200 }
201
n2rng_read_diag_data_one(struct n2rng * np,unsigned long unit,unsigned long data_ra,unsigned long data_len,unsigned long * ticks)202 static unsigned long n2rng_read_diag_data_one(struct n2rng *np,
203 unsigned long unit,
204 unsigned long data_ra,
205 unsigned long data_len,
206 unsigned long *ticks)
207 {
208 unsigned long hv_err;
209
210 if (np->hvapi_major == 1) {
211 hv_err = sun4v_rng_data_read_diag_v1(data_ra, data_len, ticks);
212 } else {
213 hv_err = sun4v_rng_data_read_diag_v2(data_ra, data_len,
214 unit, ticks);
215 if (!*ticks)
216 *ticks = N2RNG_ACCUM_CYCLES_DEFAULT;
217 }
218 return hv_err;
219 }
220
n2rng_generic_read_diag_data(struct n2rng * np,unsigned long unit,unsigned long data_ra,unsigned long data_len)221 static int n2rng_generic_read_diag_data(struct n2rng *np,
222 unsigned long unit,
223 unsigned long data_ra,
224 unsigned long data_len)
225 {
226 unsigned long ticks, hv_err;
227 int block = 0;
228
229 while (1) {
230 hv_err = n2rng_read_diag_data_one(np, unit,
231 data_ra, data_len,
232 &ticks);
233 if (hv_err == HV_EOK)
234 return 0;
235
236 if (hv_err == HV_EWOULDBLOCK) {
237 if (++block >= N2RNG_BLOCK_LIMIT)
238 return -EWOULDBLOCK;
239 __delay(ticks);
240 } else if (hv_err == HV_ENOACCESS) {
241 return -EPERM;
242 } else if (hv_err == HV_EIO) {
243 return -EIO;
244 } else
245 return -ENODEV;
246 }
247 }
248
249
n2rng_generic_write_control(struct n2rng * np,unsigned long control_ra,unsigned long unit,unsigned long state)250 static int n2rng_generic_write_control(struct n2rng *np,
251 unsigned long control_ra,
252 unsigned long unit,
253 unsigned long state)
254 {
255 unsigned long hv_err, ticks;
256 int block = 0, busy = 0;
257
258 while (1) {
259 hv_err = n2rng_write_ctl_one(np, unit, state, control_ra,
260 np->wd_timeo, &ticks);
261 if (hv_err == HV_EOK)
262 return 0;
263
264 if (hv_err == HV_EWOULDBLOCK) {
265 if (++block >= N2RNG_BLOCK_LIMIT)
266 return -EWOULDBLOCK;
267 __delay(ticks);
268 } else if (hv_err == HV_EBUSY) {
269 if (++busy >= N2RNG_BUSY_LIMIT)
270 return -EBUSY;
271 udelay(1);
272 } else
273 return -ENODEV;
274 }
275 }
276
277 /* Just try to see if we can successfully access the control register
278 * of the RNG on the domain on which we are currently executing.
279 */
n2rng_try_read_ctl(struct n2rng * np)280 static int n2rng_try_read_ctl(struct n2rng *np)
281 {
282 unsigned long hv_err;
283 unsigned long x;
284
285 if (np->hvapi_major == 1) {
286 hv_err = sun4v_rng_get_diag_ctl();
287 } else {
288 /* We purposefully give invalid arguments, HV_NOACCESS
289 * is higher priority than the errors we'd get from
290 * these other cases, and that's the error we are
291 * truly interested in.
292 */
293 hv_err = sun4v_rng_ctl_read_v2(0UL, ~0UL, &x, &x, &x, &x);
294 switch (hv_err) {
295 case HV_EWOULDBLOCK:
296 case HV_ENOACCESS:
297 break;
298 default:
299 hv_err = HV_EOK;
300 break;
301 }
302 }
303
304 return n2rng_hv_err_trans(hv_err);
305 }
306
n2rng_control_default(struct n2rng * np,int ctl)307 static u64 n2rng_control_default(struct n2rng *np, int ctl)
308 {
309 u64 val = 0;
310
311 if (np->data->chip_version == 1) {
312 val = ((2 << RNG_v1_CTL_ASEL_SHIFT) |
313 (N2RNG_ACCUM_CYCLES_DEFAULT << RNG_v1_CTL_WAIT_SHIFT) |
314 RNG_CTL_LFSR);
315
316 switch (ctl) {
317 case 0:
318 val |= (1 << RNG_v1_CTL_VCO_SHIFT) | RNG_CTL_ES1;
319 break;
320 case 1:
321 val |= (2 << RNG_v1_CTL_VCO_SHIFT) | RNG_CTL_ES2;
322 break;
323 case 2:
324 val |= (3 << RNG_v1_CTL_VCO_SHIFT) | RNG_CTL_ES3;
325 break;
326 case 3:
327 val |= RNG_CTL_ES1 | RNG_CTL_ES2 | RNG_CTL_ES3;
328 break;
329 default:
330 break;
331 }
332
333 } else {
334 val = ((2 << RNG_v2_CTL_ASEL_SHIFT) |
335 (N2RNG_ACCUM_CYCLES_DEFAULT << RNG_v2_CTL_WAIT_SHIFT) |
336 RNG_CTL_LFSR);
337
338 switch (ctl) {
339 case 0:
340 val |= (1 << RNG_v2_CTL_VCO_SHIFT) | RNG_CTL_ES1;
341 break;
342 case 1:
343 val |= (2 << RNG_v2_CTL_VCO_SHIFT) | RNG_CTL_ES2;
344 break;
345 case 2:
346 val |= (3 << RNG_v2_CTL_VCO_SHIFT) | RNG_CTL_ES3;
347 break;
348 case 3:
349 val |= RNG_CTL_ES1 | RNG_CTL_ES2 | RNG_CTL_ES3;
350 break;
351 default:
352 break;
353 }
354 }
355
356 return val;
357 }
358
n2rng_control_swstate_init(struct n2rng * np)359 static void n2rng_control_swstate_init(struct n2rng *np)
360 {
361 int i;
362
363 np->flags |= N2RNG_FLAG_CONTROL;
364
365 np->health_check_sec = N2RNG_HEALTH_CHECK_SEC_DEFAULT;
366 np->accum_cycles = N2RNG_ACCUM_CYCLES_DEFAULT;
367 np->wd_timeo = N2RNG_WD_TIMEO_DEFAULT;
368
369 for (i = 0; i < np->num_units; i++) {
370 struct n2rng_unit *up = &np->units[i];
371
372 up->control[0] = n2rng_control_default(np, 0);
373 up->control[1] = n2rng_control_default(np, 1);
374 up->control[2] = n2rng_control_default(np, 2);
375 up->control[3] = n2rng_control_default(np, 3);
376 }
377
378 np->hv_state = HV_RNG_STATE_UNCONFIGURED;
379 }
380
n2rng_grab_diag_control(struct n2rng * np)381 static int n2rng_grab_diag_control(struct n2rng *np)
382 {
383 int i, busy_count, err = -ENODEV;
384
385 busy_count = 0;
386 for (i = 0; i < 100; i++) {
387 err = n2rng_try_read_ctl(np);
388 if (err != -EAGAIN)
389 break;
390
391 if (++busy_count > 100) {
392 dev_err(&np->op->dev,
393 "Grab diag control timeout.\n");
394 return -ENODEV;
395 }
396
397 udelay(1);
398 }
399
400 return err;
401 }
402
n2rng_init_control(struct n2rng * np)403 static int n2rng_init_control(struct n2rng *np)
404 {
405 int err = n2rng_grab_diag_control(np);
406
407 /* Not in the control domain, that's OK we are only a consumer
408 * of the RNG data, we don't setup and program it.
409 */
410 if (err == -EPERM)
411 return 0;
412 if (err)
413 return err;
414
415 n2rng_control_swstate_init(np);
416
417 return 0;
418 }
419
n2rng_data_read(struct hwrng * rng,u32 * data)420 static int n2rng_data_read(struct hwrng *rng, u32 *data)
421 {
422 struct n2rng *np = (struct n2rng *) rng->priv;
423 unsigned long ra = __pa(&np->test_data);
424 int len;
425
426 if (!(np->flags & N2RNG_FLAG_READY)) {
427 len = 0;
428 } else if (np->flags & N2RNG_FLAG_BUFFER_VALID) {
429 np->flags &= ~N2RNG_FLAG_BUFFER_VALID;
430 *data = np->buffer;
431 len = 4;
432 } else {
433 int err = n2rng_generic_read_data(ra);
434 if (!err) {
435 np->flags |= N2RNG_FLAG_BUFFER_VALID;
436 np->buffer = np->test_data >> 32;
437 *data = np->test_data & 0xffffffff;
438 len = 4;
439 } else {
440 dev_err(&np->op->dev, "RNG error, retesting\n");
441 np->flags &= ~N2RNG_FLAG_READY;
442 if (!(np->flags & N2RNG_FLAG_SHUTDOWN))
443 schedule_delayed_work(&np->work, 0);
444 len = 0;
445 }
446 }
447
448 return len;
449 }
450
451 /* On a guest node, just make sure we can read random data properly.
452 * If a control node reboots or reloads it's n2rng driver, this won't
453 * work during that time. So we have to keep probing until the device
454 * becomes usable.
455 */
n2rng_guest_check(struct n2rng * np)456 static int n2rng_guest_check(struct n2rng *np)
457 {
458 unsigned long ra = __pa(&np->test_data);
459
460 return n2rng_generic_read_data(ra);
461 }
462
n2rng_entropy_diag_read(struct n2rng * np,unsigned long unit,u64 * pre_control,u64 pre_state,u64 * buffer,unsigned long buf_len,u64 * post_control,u64 post_state)463 static int n2rng_entropy_diag_read(struct n2rng *np, unsigned long unit,
464 u64 *pre_control, u64 pre_state,
465 u64 *buffer, unsigned long buf_len,
466 u64 *post_control, u64 post_state)
467 {
468 unsigned long post_ctl_ra = __pa(post_control);
469 unsigned long pre_ctl_ra = __pa(pre_control);
470 unsigned long buffer_ra = __pa(buffer);
471 int err;
472
473 err = n2rng_generic_write_control(np, pre_ctl_ra, unit, pre_state);
474 if (err)
475 return err;
476
477 err = n2rng_generic_read_diag_data(np, unit,
478 buffer_ra, buf_len);
479
480 (void) n2rng_generic_write_control(np, post_ctl_ra, unit,
481 post_state);
482
483 return err;
484 }
485
advance_polynomial(u64 poly,u64 val,int count)486 static u64 advance_polynomial(u64 poly, u64 val, int count)
487 {
488 int i;
489
490 for (i = 0; i < count; i++) {
491 int highbit_set = ((s64)val < 0);
492
493 val <<= 1;
494 if (highbit_set)
495 val ^= poly;
496 }
497
498 return val;
499 }
500
n2rng_test_buffer_find(struct n2rng * np,u64 val)501 static int n2rng_test_buffer_find(struct n2rng *np, u64 val)
502 {
503 int i, count = 0;
504
505 /* Purposefully skip over the first word. */
506 for (i = 1; i < SELFTEST_BUFFER_WORDS; i++) {
507 if (np->test_buffer[i] == val)
508 count++;
509 }
510 return count;
511 }
512
n2rng_dump_test_buffer(struct n2rng * np)513 static void n2rng_dump_test_buffer(struct n2rng *np)
514 {
515 int i;
516
517 for (i = 0; i < SELFTEST_BUFFER_WORDS; i++)
518 dev_err(&np->op->dev, "Test buffer slot %d [0x%016llx]\n",
519 i, np->test_buffer[i]);
520 }
521
n2rng_check_selftest_buffer(struct n2rng * np,unsigned long unit)522 static int n2rng_check_selftest_buffer(struct n2rng *np, unsigned long unit)
523 {
524 u64 val;
525 int err, matches, limit;
526
527 switch (np->data->id) {
528 case N2_n2_rng:
529 case N2_vf_rng:
530 case N2_kt_rng:
531 case N2_m4_rng: /* yes, m4 uses the old value */
532 val = RNG_v1_SELFTEST_VAL;
533 break;
534 default:
535 val = RNG_v2_SELFTEST_VAL;
536 break;
537 }
538
539 matches = 0;
540 for (limit = 0; limit < SELFTEST_LOOPS_MAX; limit++) {
541 matches += n2rng_test_buffer_find(np, val);
542 if (matches >= SELFTEST_MATCH_GOAL)
543 break;
544 val = advance_polynomial(SELFTEST_POLY, val, 1);
545 }
546
547 err = 0;
548 if (limit >= SELFTEST_LOOPS_MAX) {
549 err = -ENODEV;
550 dev_err(&np->op->dev, "Selftest failed on unit %lu\n", unit);
551 n2rng_dump_test_buffer(np);
552 } else
553 dev_info(&np->op->dev, "Selftest passed on unit %lu\n", unit);
554
555 return err;
556 }
557
n2rng_control_selftest(struct n2rng * np,unsigned long unit)558 static int n2rng_control_selftest(struct n2rng *np, unsigned long unit)
559 {
560 int err;
561 u64 base, base3;
562
563 switch (np->data->id) {
564 case N2_n2_rng:
565 case N2_vf_rng:
566 case N2_kt_rng:
567 base = RNG_v1_CTL_ASEL_NOOUT << RNG_v1_CTL_ASEL_SHIFT;
568 base3 = base | RNG_CTL_LFSR |
569 ((RNG_v1_SELFTEST_TICKS - 2) << RNG_v1_CTL_WAIT_SHIFT);
570 break;
571 case N2_m4_rng:
572 base = RNG_v2_CTL_ASEL_NOOUT << RNG_v2_CTL_ASEL_SHIFT;
573 base3 = base | RNG_CTL_LFSR |
574 ((RNG_v1_SELFTEST_TICKS - 2) << RNG_v2_CTL_WAIT_SHIFT);
575 break;
576 default:
577 base = RNG_v2_CTL_ASEL_NOOUT << RNG_v2_CTL_ASEL_SHIFT;
578 base3 = base | RNG_CTL_LFSR |
579 (RNG_v2_SELFTEST_TICKS << RNG_v2_CTL_WAIT_SHIFT);
580 break;
581 }
582
583 np->test_control[0] = base;
584 np->test_control[1] = base;
585 np->test_control[2] = base;
586 np->test_control[3] = base3;
587
588 err = n2rng_entropy_diag_read(np, unit, np->test_control,
589 HV_RNG_STATE_HEALTHCHECK,
590 np->test_buffer,
591 sizeof(np->test_buffer),
592 &np->units[unit].control[0],
593 np->hv_state);
594 if (err)
595 return err;
596
597 return n2rng_check_selftest_buffer(np, unit);
598 }
599
n2rng_control_check(struct n2rng * np)600 static int n2rng_control_check(struct n2rng *np)
601 {
602 int i;
603
604 for (i = 0; i < np->num_units; i++) {
605 int err = n2rng_control_selftest(np, i);
606 if (err)
607 return err;
608 }
609 return 0;
610 }
611
612 /* The sanity checks passed, install the final configuration into the
613 * chip, it's ready to use.
614 */
n2rng_control_configure_units(struct n2rng * np)615 static int n2rng_control_configure_units(struct n2rng *np)
616 {
617 int unit, err;
618
619 err = 0;
620 for (unit = 0; unit < np->num_units; unit++) {
621 struct n2rng_unit *up = &np->units[unit];
622 unsigned long ctl_ra = __pa(&up->control[0]);
623 int esrc;
624 u64 base, shift;
625
626 if (np->data->chip_version == 1) {
627 base = ((np->accum_cycles << RNG_v1_CTL_WAIT_SHIFT) |
628 (RNG_v1_CTL_ASEL_NOOUT << RNG_v1_CTL_ASEL_SHIFT) |
629 RNG_CTL_LFSR);
630 shift = RNG_v1_CTL_VCO_SHIFT;
631 } else {
632 base = ((np->accum_cycles << RNG_v2_CTL_WAIT_SHIFT) |
633 (RNG_v2_CTL_ASEL_NOOUT << RNG_v2_CTL_ASEL_SHIFT) |
634 RNG_CTL_LFSR);
635 shift = RNG_v2_CTL_VCO_SHIFT;
636 }
637
638 /* XXX This isn't the best. We should fetch a bunch
639 * XXX of words using each entropy source combined XXX
640 * with each VCO setting, and see which combinations
641 * XXX give the best random data.
642 */
643 for (esrc = 0; esrc < 3; esrc++)
644 up->control[esrc] = base |
645 (esrc << shift) |
646 (RNG_CTL_ES1 << esrc);
647
648 up->control[3] = base |
649 (RNG_CTL_ES1 | RNG_CTL_ES2 | RNG_CTL_ES3);
650
651 err = n2rng_generic_write_control(np, ctl_ra, unit,
652 HV_RNG_STATE_CONFIGURED);
653 if (err)
654 break;
655 }
656
657 return err;
658 }
659
n2rng_work(struct work_struct * work)660 static void n2rng_work(struct work_struct *work)
661 {
662 struct n2rng *np = container_of(work, struct n2rng, work.work);
663 int err = 0;
664 static int retries = 4;
665
666 if (!(np->flags & N2RNG_FLAG_CONTROL)) {
667 err = n2rng_guest_check(np);
668 } else {
669 preempt_disable();
670 err = n2rng_control_check(np);
671 preempt_enable();
672
673 if (!err)
674 err = n2rng_control_configure_units(np);
675 }
676
677 if (!err) {
678 np->flags |= N2RNG_FLAG_READY;
679 dev_info(&np->op->dev, "RNG ready\n");
680 }
681
682 if (--retries == 0)
683 dev_err(&np->op->dev, "Self-test retries failed, RNG not ready\n");
684 else if (err && !(np->flags & N2RNG_FLAG_SHUTDOWN))
685 schedule_delayed_work(&np->work, HZ * 2);
686 }
687
n2rng_driver_version(void)688 static void n2rng_driver_version(void)
689 {
690 static int n2rng_version_printed;
691
692 if (n2rng_version_printed++ == 0)
693 pr_info("%s", version);
694 }
695
696 static const struct of_device_id n2rng_match[];
n2rng_probe(struct platform_device * op)697 static int n2rng_probe(struct platform_device *op)
698 {
699 int err = -ENOMEM;
700 struct n2rng *np;
701
702 n2rng_driver_version();
703 np = devm_kzalloc(&op->dev, sizeof(*np), GFP_KERNEL);
704 if (!np)
705 goto out;
706 np->op = op;
707 np->data = (struct n2rng_template *)device_get_match_data(&op->dev);
708
709 INIT_DELAYED_WORK(&np->work, n2rng_work);
710
711 if (np->data->multi_capable)
712 np->flags |= N2RNG_FLAG_MULTI;
713
714 err = -ENODEV;
715 np->hvapi_major = 2;
716 if (sun4v_hvapi_register(HV_GRP_RNG,
717 np->hvapi_major,
718 &np->hvapi_minor)) {
719 np->hvapi_major = 1;
720 if (sun4v_hvapi_register(HV_GRP_RNG,
721 np->hvapi_major,
722 &np->hvapi_minor)) {
723 dev_err(&op->dev, "Cannot register suitable "
724 "HVAPI version.\n");
725 goto out;
726 }
727 }
728
729 if (np->flags & N2RNG_FLAG_MULTI) {
730 if (np->hvapi_major < 2) {
731 dev_err(&op->dev, "multi-unit-capable RNG requires "
732 "HVAPI major version 2 or later, got %lu\n",
733 np->hvapi_major);
734 goto out_hvapi_unregister;
735 }
736 np->num_units = of_getintprop_default(op->dev.of_node,
737 "rng-#units", 0);
738 if (!np->num_units) {
739 dev_err(&op->dev, "VF RNG lacks rng-#units property\n");
740 goto out_hvapi_unregister;
741 }
742 } else {
743 np->num_units = 1;
744 }
745
746 dev_info(&op->dev, "Registered RNG HVAPI major %lu minor %lu\n",
747 np->hvapi_major, np->hvapi_minor);
748 np->units = devm_kcalloc(&op->dev, np->num_units, sizeof(*np->units),
749 GFP_KERNEL);
750 err = -ENOMEM;
751 if (!np->units)
752 goto out_hvapi_unregister;
753
754 err = n2rng_init_control(np);
755 if (err)
756 goto out_hvapi_unregister;
757
758 dev_info(&op->dev, "Found %s RNG, units: %d\n",
759 ((np->flags & N2RNG_FLAG_MULTI) ?
760 "multi-unit-capable" : "single-unit"),
761 np->num_units);
762
763 np->hwrng.name = DRV_MODULE_NAME;
764 np->hwrng.data_read = n2rng_data_read;
765 np->hwrng.priv = (unsigned long) np;
766
767 err = devm_hwrng_register(&op->dev, &np->hwrng);
768 if (err)
769 goto out_hvapi_unregister;
770
771 platform_set_drvdata(op, np);
772
773 schedule_delayed_work(&np->work, 0);
774
775 return 0;
776
777 out_hvapi_unregister:
778 sun4v_hvapi_unregister(HV_GRP_RNG);
779
780 out:
781 return err;
782 }
783
n2rng_remove(struct platform_device * op)784 static void n2rng_remove(struct platform_device *op)
785 {
786 struct n2rng *np = platform_get_drvdata(op);
787
788 np->flags |= N2RNG_FLAG_SHUTDOWN;
789
790 cancel_delayed_work_sync(&np->work);
791
792 sun4v_hvapi_unregister(HV_GRP_RNG);
793 }
794
795 static struct n2rng_template n2_template = {
796 .id = N2_n2_rng,
797 .multi_capable = 0,
798 .chip_version = 1,
799 };
800
801 static struct n2rng_template vf_template = {
802 .id = N2_vf_rng,
803 .multi_capable = 1,
804 .chip_version = 1,
805 };
806
807 static struct n2rng_template kt_template = {
808 .id = N2_kt_rng,
809 .multi_capable = 1,
810 .chip_version = 1,
811 };
812
813 static struct n2rng_template m4_template = {
814 .id = N2_m4_rng,
815 .multi_capable = 1,
816 .chip_version = 2,
817 };
818
819 static struct n2rng_template m7_template = {
820 .id = N2_m7_rng,
821 .multi_capable = 1,
822 .chip_version = 2,
823 };
824
825 static const struct of_device_id n2rng_match[] = {
826 {
827 .name = "random-number-generator",
828 .compatible = "SUNW,n2-rng",
829 .data = &n2_template,
830 },
831 {
832 .name = "random-number-generator",
833 .compatible = "SUNW,vf-rng",
834 .data = &vf_template,
835 },
836 {
837 .name = "random-number-generator",
838 .compatible = "SUNW,kt-rng",
839 .data = &kt_template,
840 },
841 {
842 .name = "random-number-generator",
843 .compatible = "ORCL,m4-rng",
844 .data = &m4_template,
845 },
846 {
847 .name = "random-number-generator",
848 .compatible = "ORCL,m7-rng",
849 .data = &m7_template,
850 },
851 {},
852 };
853 MODULE_DEVICE_TABLE(of, n2rng_match);
854
855 static struct platform_driver n2rng_driver = {
856 .driver = {
857 .name = "n2rng",
858 .of_match_table = n2rng_match,
859 },
860 .probe = n2rng_probe,
861 .remove_new = n2rng_remove,
862 };
863
864 module_platform_driver(n2rng_driver);
865