xref: /illumos-gate/usr/src/cmd/mdb/intel/mdb/kvm_ia32dep.c (revision 3350c9c925acb5854315e9d992703db756886095)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  *
25  * Copyright 2018 Joyent, Inc.
26  * Copyright 2025 Oxide Computer Company
27  */
28 
29 /*
30  * Libkvm Kernel Target Intel 32-bit component
31  *
32  * This file provides the ISA-dependent portion of the libkvm kernel target.
33  * For more details on the implementation refer to mdb_kvm.c.
34  */
35 
36 #include <sys/types.h>
37 #include <sys/regset.h>
38 #include <sys/frame.h>
39 #include <sys/stack.h>
40 #include <sys/sysmacros.h>
41 #include <sys/panic.h>
42 #include <strings.h>
43 
44 #include <mdb/mdb_target_impl.h>
45 #include <mdb/mdb_disasm.h>
46 #include <mdb/mdb_modapi.h>
47 #include <mdb/mdb_conf.h>
48 #include <mdb/mdb_stack.h>
49 #include <mdb/mdb_kreg_impl.h>
50 #include <mdb/mdb_isautil.h>
51 #include <mdb/mdb_ia32util.h>
52 #include <mdb/kvm_isadep.h>
53 #include <mdb/mdb_kvm.h>
54 #include <mdb/mdb_err.h>
55 #include <mdb/mdb_debug.h>
56 #include <mdb/mdb.h>
57 
58 
59 /*ARGSUSED*/
60 int
kt_regs(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)61 kt_regs(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
62 {
63 	mdb_ia32_printregs((const mdb_tgt_gregset_t *)addr);
64 	return (DCMD_OK);
65 }
66 
67 static int
kt_stack_common(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv,mdb_stack_frame_flags_t sflags,mdb_tgt_stack_f * func)68 kt_stack_common(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv,
69     mdb_stack_frame_flags_t sflags, mdb_tgt_stack_f *func)
70 {
71 	mdb_tgt_t *t = mdb.m_target;
72 	kt_data_t *kt = t->t_data;
73 	mdb_tgt_gregset_t gregs, *grp;
74 	mdb_stack_frame_hdl_t *hdl;
75 	uint_t arglim = mdb.m_nargs;
76 	int i;
77 
78 	if (flags & DCMD_ADDRSPEC) {
79 		bzero(&gregs, sizeof (gregs));
80 		gregs.kregs[KREG_EBP] = addr;
81 		grp = &gregs;
82 	} else
83 		grp = kt->k_regs;
84 
85 	i = mdb_getopts(argc, argv,
86 	    'n', MDB_OPT_SETBITS, MSF_ADDR, &sflags,
87 	    's', MDB_OPT_SETBITS, MSF_SIZES, &sflags,
88 	    't', MDB_OPT_SETBITS, MSF_TYPES, &sflags,
89 	    'v', MDB_OPT_SETBITS, MSF_VERBOSE, &sflags,
90 	    NULL);
91 
92 	argc -= i;
93 	argv += i;
94 
95 	if (argc != 0) {
96 		if (argv->a_type == MDB_TYPE_CHAR || argc > 1)
97 			return (DCMD_USAGE);
98 
99 		arglim = mdb_argtoull(argv);
100 	}
101 
102 	if ((hdl = mdb_stack_frame_init(t, arglim, sflags)) == NULL) {
103 		mdb_warn("failed to init stack frame\n");
104 		return (DCMD_ERR);
105 	}
106 
107 	(void) mdb_ia32_kvm_stack_iter(mdb.m_target, grp, func, (void *)hdl);
108 	return (DCMD_OK);
109 }
110 
111 int
kt_stack(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)112 kt_stack(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
113 {
114 	return (kt_stack_common(addr, flags, argc, argv, 0,
115 	    mdb_ia32_kvm_frame));
116 }
117 
118 int
kt_stackv(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)119 kt_stackv(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
120 {
121 	return (kt_stack_common(addr, flags, argc, argv, MSF_VERBOSE,
122 	    mdb_ia32_kvm_frame));
123 }
124 
125 const mdb_tgt_ops_t kt_ia32_ops = {
126 	.t_setflags = kt_setflags,
127 	.t_setcontext = kt_setcontext,
128 	.t_activate = kt_activate,
129 	.t_deactivate = kt_deactivate,
130 	.t_periodic = (void (*)())(uintptr_t)mdb_tgt_nop,
131 	.t_destroy = kt_destroy,
132 	.t_name = kt_name,
133 	.t_isa = (const char *(*)())mdb_conf_isa,
134 	.t_platform = kt_platform,
135 	.t_uname = kt_uname,
136 	.t_dmodel = kt_dmodel,
137 	.t_aread = kt_aread,
138 	.t_awrite = kt_awrite,
139 	.t_vread = kt_vread,
140 	.t_vwrite = kt_vwrite,
141 	.t_pread = kt_pread,
142 	.t_pwrite = kt_pwrite,
143 	.t_fread = kt_fread,
144 	.t_fwrite = kt_fwrite,
145 	.t_ioread = (ssize_t (*)())mdb_tgt_notsup,
146 	.t_iowrite = (ssize_t (*)())mdb_tgt_notsup,
147 	.t_vtop = kt_vtop,
148 	.t_lookup_by_name = kt_lookup_by_name,
149 	.t_lookup_by_addr = kt_lookup_by_addr,
150 	.t_symbol_iter = kt_symbol_iter,
151 	.t_mapping_iter = kt_mapping_iter,
152 	.t_object_iter = kt_object_iter,
153 	.t_addr_to_map = kt_addr_to_map,
154 	.t_name_to_map = kt_name_to_map,
155 	.t_addr_to_ctf = kt_addr_to_ctf,
156 	.t_name_to_ctf = kt_name_to_ctf,
157 	.t_status = kt_status,
158 	.t_run = (int (*)())mdb_tgt_notsup,
159 	.t_step = (int (*)())mdb_tgt_notsup,
160 	.t_step_out = (int (*)())mdb_tgt_notsup,
161 	.t_next = (int (*)())mdb_tgt_notsup,
162 	.t_cont = (int (*)())mdb_tgt_notsup,
163 	.t_signal = (int (*)())mdb_tgt_notsup,
164 	.t_add_vbrkpt = (int (*)())(uintptr_t)mdb_tgt_null,
165 	.t_add_sbrkpt = (int (*)())(uintptr_t)mdb_tgt_null,
166 	.t_add_pwapt = (int (*)())(uintptr_t)mdb_tgt_null,
167 	.t_add_vwapt = (int (*)())(uintptr_t)mdb_tgt_null,
168 	.t_add_iowapt = (int (*)())(uintptr_t)mdb_tgt_null,
169 	.t_add_sysenter = (int (*)())(uintptr_t)mdb_tgt_null,
170 	.t_add_sysexit = (int (*)())(uintptr_t)mdb_tgt_null,
171 	.t_add_signal = (int (*)())(uintptr_t)mdb_tgt_null,
172 	.t_add_fault = (int (*)())(uintptr_t)mdb_tgt_null,
173 	.t_getareg = kt_getareg,
174 	.t_putareg = kt_putareg,
175 	.t_stack_iter = mdb_ia32_kvm_stack_iter,
176 	.t_auxv = (int (*)())mdb_tgt_notsup,
177 	.t_thread_name = (int (*)())(uintptr_t)mdb_tgt_notsup,
178 };
179 
180 void
kt_regs_to_kregs(struct regs * regs,mdb_tgt_gregset_t * gregs)181 kt_regs_to_kregs(struct regs *regs, mdb_tgt_gregset_t *gregs)
182 {
183 	gregs->kregs[KREG_SAVFP] = regs->r_savfp;
184 	gregs->kregs[KREG_SAVPC] = regs->r_savpc;
185 	gregs->kregs[KREG_EAX] = regs->r_eax;
186 	gregs->kregs[KREG_EBX] = regs->r_ebx;
187 	gregs->kregs[KREG_ECX] = regs->r_ecx;
188 	gregs->kregs[KREG_EDX] = regs->r_edx;
189 	gregs->kregs[KREG_ESI] = regs->r_esi;
190 	gregs->kregs[KREG_EDI] = regs->r_edi;
191 	gregs->kregs[KREG_EBP] = regs->r_ebp;
192 	gregs->kregs[KREG_ESP] = regs->r_esp;
193 	gregs->kregs[KREG_CS] = regs->r_cs;
194 	gregs->kregs[KREG_DS] = regs->r_ds;
195 	gregs->kregs[KREG_SS] = regs->r_ss;
196 	gregs->kregs[KREG_ES] = regs->r_es;
197 	gregs->kregs[KREG_FS] = regs->r_fs;
198 	gregs->kregs[KREG_GS] = regs->r_gs;
199 	gregs->kregs[KREG_EFLAGS] = regs->r_efl;
200 	gregs->kregs[KREG_EIP] = regs->r_eip;
201 	gregs->kregs[KREG_UESP] = regs->r_uesp;
202 	gregs->kregs[KREG_TRAPNO] = regs->r_trapno;
203 	gregs->kregs[KREG_ERR] = regs->r_err;
204 }
205 
206 void
kt_ia32_init(mdb_tgt_t * t)207 kt_ia32_init(mdb_tgt_t *t)
208 {
209 	kt_data_t *kt = t->t_data;
210 	panic_data_t pd;
211 	label_t label;
212 	struct regs regs;
213 	kreg_t *kregs;
214 	uintptr_t addr;
215 
216 	/*
217 	 * Initialize the machine-dependent parts of the kernel target
218 	 * structure.  Once this is complete and we fill in the ops
219 	 * vector, the target is now fully constructed and we can use
220 	 * the target API itself to perform the rest of our initialization.
221 	 */
222 	kt->k_rds = mdb_ia32_kregs;
223 	kt->k_regs = mdb_zalloc(sizeof (mdb_tgt_gregset_t), UM_SLEEP);
224 	kt->k_regsize = sizeof (mdb_tgt_gregset_t);
225 	kt->k_dcmd_regs = kt_regs;
226 	kt->k_dcmd_stack = kt_stack;
227 	kt->k_dcmd_stackv = kt_stackv;
228 	kt->k_dcmd_stackr = kt_stackv;
229 	kt->k_dcmd_cpustack = kt_cpustack;
230 	kt->k_dcmd_cpuregs = kt_cpuregs;
231 
232 	t->t_ops = &kt_ia32_ops;
233 	kregs = kt->k_regs->kregs;
234 
235 	(void) mdb_dis_select("ia32");
236 
237 	/*
238 	 * Lookup the symbols corresponding to subroutines in locore.s where
239 	 * we expect a saved regs structure to be pushed on the stack.  When
240 	 * performing stack tracebacks we will attempt to detect interrupt
241 	 * frames by comparing the %eip value to these symbols.
242 	 */
243 	(void) mdb_tgt_lookup_by_name(t, MDB_TGT_OBJ_EXEC,
244 	    "cmnint", &kt->k_intr_sym, NULL);
245 
246 	(void) mdb_tgt_lookup_by_name(t, MDB_TGT_OBJ_EXEC,
247 	    "cmntrap", &kt->k_trap_sym, NULL);
248 
249 	/*
250 	 * Don't attempt to load any thread or register information if
251 	 * we're examining the live operating system.
252 	 */
253 	if (kt->k_symfile != NULL && strcmp(kt->k_symfile, "/dev/ksyms") == 0)
254 		return;
255 
256 	/*
257 	 * If the panicbuf symbol is present and we can consume a panicbuf
258 	 * header of the appropriate version from this address, then we can
259 	 * initialize our current register set based on its contents.
260 	 * Prior to the re-structuring of panicbuf, our only register data
261 	 * was the panic_regs label_t, into which a setjmp() was performed,
262 	 * or the panic_reg register pointer, which was only non-zero if
263 	 * the system panicked as a result of a trap calling die().
264 	 */
265 	if (mdb_tgt_readsym(t, MDB_TGT_AS_VIRT, &pd, sizeof (pd),
266 	    MDB_TGT_OBJ_EXEC, "panicbuf") == sizeof (pd) &&
267 	    pd.pd_version == PANICBUFVERS) {
268 
269 		size_t pd_size = MIN(PANICBUFSIZE, pd.pd_msgoff);
270 		panic_data_t *pdp = mdb_zalloc(pd_size, UM_SLEEP);
271 		uint_t i, n;
272 
273 		(void) mdb_tgt_readsym(t, MDB_TGT_AS_VIRT, pdp, pd_size,
274 		    MDB_TGT_OBJ_EXEC, "panicbuf");
275 
276 		n = (pd_size - (sizeof (panic_data_t) -
277 		    sizeof (panic_nv_t))) / sizeof (panic_nv_t);
278 
279 		for (i = 0; i < n; i++) {
280 			(void) kt_putareg(t, kt->k_tid,
281 			    pdp->pd_nvdata[i].pnv_name,
282 			    pdp->pd_nvdata[i].pnv_value);
283 		}
284 
285 		mdb_free(pdp, pd_size);
286 
287 		return;
288 	}
289 
290 	if (mdb_tgt_readsym(t, MDB_TGT_AS_VIRT, &addr, sizeof (addr),
291 	    MDB_TGT_OBJ_EXEC, "panic_reg") == sizeof (addr) && addr != 0 &&
292 	    mdb_tgt_vread(t, &regs, sizeof (regs), addr) == sizeof (regs)) {
293 		kt_regs_to_kregs(&regs, kt->k_regs);
294 		return;
295 	}
296 
297 	/*
298 	 * If we can't read any panic regs, then our penultimate try is for any
299 	 * CPU context that may have been stored (for example, in Xen core
300 	 * dumps).  As this can only succeed for kernels with the above
301 	 * methods available, we let it over-ride the older panic_regs method,
302 	 * which will always manage to read the label_t, even if there's
303 	 * nothing useful there.
304 	 */
305 	if (kt_kvmregs(t, 0, kt->k_regs) == 0)
306 		return;
307 
308 	if (mdb_tgt_readsym(t, MDB_TGT_AS_VIRT, &label, sizeof (label),
309 	    MDB_TGT_OBJ_EXEC, "panic_regs") == sizeof (label)) {
310 		kregs[KREG_EDI] = label.val[0];
311 		kregs[KREG_ESI] = label.val[1];
312 		kregs[KREG_EBX] = label.val[2];
313 		kregs[KREG_EBP] = label.val[3];
314 		kregs[KREG_ESP] = label.val[4];
315 		kregs[KREG_EIP] = label.val[5];
316 		return;
317 	}
318 
319 	warn("failed to read panicbuf, panic_reg and panic_regs -- "
320 	    "current register set will be unavailable\n");
321 }
322