xref: /illumos-gate/usr/src/cmd/mdb/intel/mdb/kvm_amd64dep.c (revision 3350c9c925acb5854315e9d992703db756886095)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  *
25  * Copyright 2018 Joyent, Inc.
26  * Copyright 2025 Oxide Computer Company
27  */
28 
29 /*
30  * Libkvm Kernel Target Intel 64-bit component
31  *
32  * This file provides the ISA-dependent portion of the libkvm kernel target.
33  * For more details on the implementation refer to mdb_kvm.c.
34  */
35 
36 #include <sys/types.h>
37 #include <sys/reg.h>
38 #include <sys/frame.h>
39 #include <sys/stack.h>
40 #include <sys/sysmacros.h>
41 #include <sys/panic.h>
42 #include <sys/privregs.h>
43 #include <strings.h>
44 
45 #include <mdb/mdb_target_impl.h>
46 #include <mdb/mdb_disasm.h>
47 #include <mdb/mdb_modapi.h>
48 #include <mdb/mdb_conf.h>
49 #include <mdb/mdb_stack.h>
50 #include <mdb/mdb_kreg_impl.h>
51 #include <mdb/mdb_stack.h>
52 #include <mdb/mdb_isautil.h>
53 #include <mdb/mdb_amd64util.h>
54 #include <mdb/kvm_isadep.h>
55 #include <mdb/mdb_kvm.h>
56 #include <mdb/mdb_err.h>
57 #include <mdb/mdb_debug.h>
58 #include <mdb/mdb.h>
59 
60 /*ARGSUSED*/
61 int
kt_regs(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)62 kt_regs(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
63 {
64 	mdb_amd64_printregs((const mdb_tgt_gregset_t *)addr);
65 	return (DCMD_OK);
66 }
67 
68 static int
kt_stack_common(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv,mdb_stack_frame_flags_t sflags,mdb_tgt_stack_f * func)69 kt_stack_common(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv,
70     mdb_stack_frame_flags_t sflags, mdb_tgt_stack_f *func)
71 {
72 	mdb_tgt_t *t = mdb.m_target;
73 	kt_data_t *kt = t->t_data;
74 	mdb_tgt_gregset_t gregs, *grp;
75 	mdb_stack_frame_hdl_t *hdl;
76 	uint_t arglim = mdb.m_nargs;
77 	int i;
78 
79 	if (flags & DCMD_ADDRSPEC) {
80 		bzero(&gregs, sizeof (gregs));
81 		gregs.kregs[KREG_RBP] = addr;
82 		grp = &gregs;
83 	} else {
84 		grp = kt->k_regs;
85 	}
86 
87 	i = mdb_getopts(argc, argv,
88 	    'n', MDB_OPT_SETBITS, MSF_ADDR, &sflags,
89 	    's', MDB_OPT_SETBITS, MSF_SIZES, &sflags,
90 	    't', MDB_OPT_SETBITS, MSF_TYPES, &sflags,
91 	    'v', MDB_OPT_SETBITS, MSF_VERBOSE, &sflags,
92 	    NULL);
93 
94 	argc -= i;
95 	argv += i;
96 
97 	if (argc != 0) {
98 		if (argv->a_type == MDB_TYPE_CHAR || argc > 1)
99 			return (DCMD_USAGE);
100 
101 		arglim = mdb_argtoull(argv);
102 	}
103 
104 	if ((hdl = mdb_stack_frame_init(t, arglim, sflags)) == NULL) {
105 		mdb_warn("failed to init stack frame\n");
106 		return (DCMD_ERR);
107 	}
108 
109 	(void) mdb_amd64_kvm_stack_iter(t, grp, func, (void *)hdl);
110 	return (DCMD_OK);
111 }
112 
113 int
kt_stack(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)114 kt_stack(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
115 {
116 	return (kt_stack_common(addr, flags, argc, argv, 0,
117 	    mdb_amd64_kvm_frame));
118 }
119 
120 int
kt_stackv(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)121 kt_stackv(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
122 {
123 	return (kt_stack_common(addr, flags, argc, argv,
124 	    MSF_VERBOSE, mdb_amd64_kvm_frame));
125 }
126 
127 const mdb_tgt_ops_t kt_amd64_ops = {
128 	.t_setflags = kt_setflags,
129 	.t_setcontext = kt_setcontext,
130 	.t_activate = kt_activate,
131 	.t_deactivate = kt_deactivate,
132 	.t_periodic = (void (*)())(uintptr_t)mdb_tgt_nop,
133 	.t_destroy = kt_destroy,
134 	.t_name = kt_name,
135 	.t_isa = (const char *(*)())mdb_conf_isa,
136 	.t_platform = kt_platform,
137 	.t_uname = kt_uname,
138 	.t_dmodel = kt_dmodel,
139 	.t_aread = kt_aread,
140 	.t_awrite = kt_awrite,
141 	.t_vread = kt_vread,
142 	.t_vwrite = kt_vwrite,
143 	.t_pread = kt_pread,
144 	.t_pwrite = kt_pwrite,
145 	.t_fread = kt_fread,
146 	.t_fwrite = kt_fwrite,
147 	.t_ioread = (ssize_t (*)())mdb_tgt_notsup,
148 	.t_iowrite = (ssize_t (*)())mdb_tgt_notsup,
149 	.t_vtop = kt_vtop,
150 	.t_lookup_by_name = kt_lookup_by_name,
151 	.t_lookup_by_addr = kt_lookup_by_addr,
152 	.t_symbol_iter = kt_symbol_iter,
153 	.t_mapping_iter = kt_mapping_iter,
154 	.t_object_iter = kt_object_iter,
155 	.t_addr_to_map = kt_addr_to_map,
156 	.t_name_to_map = kt_name_to_map,
157 	.t_addr_to_ctf = kt_addr_to_ctf,
158 	.t_name_to_ctf = kt_name_to_ctf,
159 	.t_status = kt_status,
160 	.t_run = (int (*)())(uintptr_t)mdb_tgt_notsup,
161 	.t_step = (int (*)())(uintptr_t)mdb_tgt_notsup,
162 	.t_step_out = (int (*)())(uintptr_t)mdb_tgt_notsup,
163 	.t_next = (int (*)())(uintptr_t)mdb_tgt_notsup,
164 	.t_cont = (int (*)())(uintptr_t)mdb_tgt_notsup,
165 	.t_signal = (int (*)())(uintptr_t)mdb_tgt_notsup,
166 	.t_add_vbrkpt = (int (*)())(uintptr_t)mdb_tgt_null,
167 	.t_add_sbrkpt = (int (*)())(uintptr_t)mdb_tgt_null,
168 	.t_add_pwapt = (int (*)())(uintptr_t)mdb_tgt_null,
169 	.t_add_vwapt = (int (*)())(uintptr_t)mdb_tgt_null,
170 	.t_add_iowapt = (int (*)())(uintptr_t)mdb_tgt_null,
171 	.t_add_sysenter = (int (*)())(uintptr_t)mdb_tgt_null,
172 	.t_add_sysexit = (int (*)())(uintptr_t)mdb_tgt_null,
173 	.t_add_signal = (int (*)())(uintptr_t)mdb_tgt_null,
174 	.t_add_fault = (int (*)())(uintptr_t)mdb_tgt_null,
175 	.t_getareg = kt_getareg,
176 	.t_putareg = kt_putareg,
177 	.t_stack_iter = mdb_amd64_kvm_stack_iter,
178 	.t_auxv = (int (*)())(uintptr_t)mdb_tgt_notsup,
179 	.t_thread_name = (int (*)())(uintptr_t)mdb_tgt_notsup,
180 };
181 
182 void
kt_regs_to_kregs(struct regs * regs,mdb_tgt_gregset_t * gregs)183 kt_regs_to_kregs(struct regs *regs, mdb_tgt_gregset_t *gregs)
184 {
185 	gregs->kregs[KREG_SAVFP] = regs->r_savfp;
186 	gregs->kregs[KREG_SAVPC] = regs->r_savpc;
187 	gregs->kregs[KREG_RDI] = regs->r_rdi;
188 	gregs->kregs[KREG_RSI] = regs->r_rsi;
189 	gregs->kregs[KREG_RDX] = regs->r_rdx;
190 	gregs->kregs[KREG_RCX] = regs->r_rcx;
191 	gregs->kregs[KREG_R8] = regs->r_r8;
192 	gregs->kregs[KREG_R9] = regs->r_r9;
193 	gregs->kregs[KREG_RAX] = regs->r_rax;
194 	gregs->kregs[KREG_RBX] = regs->r_rbx;
195 	gregs->kregs[KREG_RBP] = regs->r_rbp;
196 	gregs->kregs[KREG_R10] = regs->r_r10;
197 	gregs->kregs[KREG_R11] = regs->r_r11;
198 	gregs->kregs[KREG_R12] = regs->r_r12;
199 	gregs->kregs[KREG_R13] = regs->r_r13;
200 	gregs->kregs[KREG_R14] = regs->r_r14;
201 	gregs->kregs[KREG_R15] = regs->r_r15;
202 	gregs->kregs[KREG_DS] = regs->r_ds;
203 	gregs->kregs[KREG_ES] = regs->r_es;
204 	gregs->kregs[KREG_FS] = regs->r_fs;
205 	gregs->kregs[KREG_GS] = regs->r_gs;
206 	gregs->kregs[KREG_TRAPNO] = regs->r_trapno;
207 	gregs->kregs[KREG_ERR] = regs->r_err;
208 	gregs->kregs[KREG_RIP] = regs->r_rip;
209 	gregs->kregs[KREG_CS] = regs->r_cs;
210 	gregs->kregs[KREG_RFLAGS] = regs->r_rfl;
211 	gregs->kregs[KREG_RSP] = regs->r_rsp;
212 	gregs->kregs[KREG_SS] = regs->r_ss;
213 }
214 
215 void
kt_amd64_init(mdb_tgt_t * t)216 kt_amd64_init(mdb_tgt_t *t)
217 {
218 	kt_data_t *kt = t->t_data;
219 	panic_data_t pd;
220 	struct regs regs;
221 	uintptr_t addr;
222 
223 	/*
224 	 * Initialize the machine-dependent parts of the kernel target
225 	 * structure.  Once this is complete and we fill in the ops
226 	 * vector, the target is now fully constructed and we can use
227 	 * the target API itself to perform the rest of our initialization.
228 	 */
229 	kt->k_rds = mdb_amd64_kregs;
230 	kt->k_regs = mdb_zalloc(sizeof (mdb_tgt_gregset_t), UM_SLEEP);
231 	kt->k_regsize = sizeof (mdb_tgt_gregset_t);
232 	kt->k_dcmd_regs = kt_regs;
233 	kt->k_dcmd_stack = kt_stack;
234 	kt->k_dcmd_stackv = kt_stackv;
235 	kt->k_dcmd_stackr = kt_stackv;
236 	kt->k_dcmd_cpustack = kt_cpustack;
237 	kt->k_dcmd_cpuregs = kt_cpuregs;
238 
239 	t->t_ops = &kt_amd64_ops;
240 
241 	(void) mdb_dis_select("amd64");
242 
243 	/*
244 	 * Lookup the symbols corresponding to subroutines in locore.s where
245 	 * we expect a saved regs structure to be pushed on the stack.  When
246 	 * performing stack tracebacks we will attempt to detect interrupt
247 	 * frames by comparing the %eip value to these symbols.
248 	 */
249 	(void) mdb_tgt_lookup_by_name(t, MDB_TGT_OBJ_EXEC,
250 	    "cmnint", &kt->k_intr_sym, NULL);
251 
252 	(void) mdb_tgt_lookup_by_name(t, MDB_TGT_OBJ_EXEC,
253 	    "cmntrap", &kt->k_trap_sym, NULL);
254 
255 	/*
256 	 * Don't attempt to load any thread or register information if
257 	 * we're examining the live operating system.
258 	 */
259 	if (kt->k_symfile != NULL && strcmp(kt->k_symfile, "/dev/ksyms") == 0)
260 		return;
261 
262 	/*
263 	 * If the panicbuf symbol is present and we can consume a panicbuf
264 	 * header of the appropriate version from this address, then we can
265 	 * initialize our current register set based on its contents.
266 	 * Prior to the re-structuring of panicbuf, our only register data
267 	 * was the panic_regs label_t, into which a setjmp() was performed,
268 	 * or the panic_reg register pointer, which was only non-zero if
269 	 * the system panicked as a result of a trap calling die().
270 	 */
271 	if (mdb_tgt_readsym(t, MDB_TGT_AS_VIRT, &pd, sizeof (pd),
272 	    MDB_TGT_OBJ_EXEC, "panicbuf") == sizeof (pd) &&
273 	    pd.pd_version == PANICBUFVERS) {
274 
275 		size_t pd_size = MIN(PANICBUFSIZE, pd.pd_msgoff);
276 		panic_data_t *pdp = mdb_zalloc(pd_size, UM_SLEEP);
277 		uint_t i, n;
278 
279 		(void) mdb_tgt_readsym(t, MDB_TGT_AS_VIRT, pdp, pd_size,
280 		    MDB_TGT_OBJ_EXEC, "panicbuf");
281 
282 		n = (pd_size - (sizeof (panic_data_t) -
283 		    sizeof (panic_nv_t))) / sizeof (panic_nv_t);
284 
285 		for (i = 0; i < n; i++) {
286 			(void) kt_putareg(t, kt->k_tid,
287 			    pdp->pd_nvdata[i].pnv_name,
288 			    pdp->pd_nvdata[i].pnv_value);
289 		}
290 
291 		mdb_free(pdp, pd_size);
292 
293 		return;
294 	};
295 
296 	if (mdb_tgt_readsym(t, MDB_TGT_AS_VIRT, &addr, sizeof (addr),
297 	    MDB_TGT_OBJ_EXEC, "panic_reg") == sizeof (addr) && addr != 0 &&
298 	    mdb_tgt_vread(t, &regs, sizeof (regs), addr) == sizeof (regs)) {
299 		kt_regs_to_kregs(&regs, kt->k_regs);
300 		return;
301 	}
302 
303 	/*
304 	 * If we can't read any panic regs, then our final try is for any CPU
305 	 * context that may have been stored (for example, in Xen core dumps).
306 	 */
307 	if (kt_kvmregs(t, 0, kt->k_regs) == 0)
308 		return;
309 
310 	warn("failed to read panicbuf and panic_reg -- "
311 	    "current register set will be unavailable\n");
312 }
313