xref: /linux/drivers/net/dsa/microchip/ksz8.c (revision 8be4d31cb8aaeea27bde4b7ddb26e28a89062ebf)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Microchip KSZ8XXX series switch driver
4  *
5  * It supports the following switches:
6  * - KSZ8463
7  * - KSZ8863, KSZ8873 aka KSZ88X3
8  * - KSZ8895, KSZ8864 aka KSZ8895 family
9  * - KSZ8794, KSZ8795, KSZ8765 aka KSZ87XX
10  * Note that it does NOT support:
11  * - KSZ8563, KSZ8567 - see KSZ9477 driver
12  *
13  * Copyright (C) 2017 Microchip Technology Inc.
14  *	Tristram Ha <Tristram.Ha@microchip.com>
15  */
16 
17 #include <linux/bitfield.h>
18 #include <linux/delay.h>
19 #include <linux/export.h>
20 #include <linux/gpio.h>
21 #include <linux/if_vlan.h>
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/platform_data/microchip-ksz.h>
25 #include <linux/phy.h>
26 #include <linux/etherdevice.h>
27 #include <linux/if_bridge.h>
28 #include <linux/micrel_phy.h>
29 #include <net/dsa.h>
30 #include <net/switchdev.h>
31 #include <linux/phylink.h>
32 
33 #include "ksz_common.h"
34 #include "ksz8_reg.h"
35 #include "ksz8.h"
36 
ksz_cfg(struct ksz_device * dev,u32 addr,u8 bits,bool set)37 static void ksz_cfg(struct ksz_device *dev, u32 addr, u8 bits, bool set)
38 {
39 	regmap_update_bits(ksz_regmap_8(dev), addr, bits, set ? bits : 0);
40 }
41 
ksz_port_cfg(struct ksz_device * dev,int port,int offset,u8 bits,bool set)42 static void ksz_port_cfg(struct ksz_device *dev, int port, int offset, u8 bits,
43 			 bool set)
44 {
45 	regmap_update_bits(ksz_regmap_8(dev),
46 			   dev->dev_ops->get_port_addr(port, offset),
47 			   bits, set ? bits : 0);
48 }
49 
50 /**
51  * ksz8_ind_write8 - EEE/ACL/PME indirect register write
52  * @dev: The device structure.
53  * @table: Function & table select, register 110.
54  * @addr: Indirect access control, register 111.
55  * @data: The data to be written.
56  *
57  * This function performs an indirect register write for EEE, ACL or
58  * PME switch functionalities. Both 8-bit registers 110 and 111 are
59  * written at once with ksz_write16, using the serial multiple write
60  * functionality.
61  *
62  * Return: 0 on success, or an error code on failure.
63  */
ksz8_ind_write8(struct ksz_device * dev,u8 table,u16 addr,u8 data)64 static int ksz8_ind_write8(struct ksz_device *dev, u8 table, u16 addr, u8 data)
65 {
66 	const u16 *regs;
67 	u16 ctrl_addr;
68 	int ret = 0;
69 
70 	regs = dev->info->regs;
71 
72 	mutex_lock(&dev->alu_mutex);
73 
74 	ctrl_addr = IND_ACC_TABLE(table) | addr;
75 	ret = ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
76 	if (!ret)
77 		ret = ksz_write8(dev, regs[REG_IND_BYTE], data);
78 
79 	mutex_unlock(&dev->alu_mutex);
80 
81 	return ret;
82 }
83 
84 /**
85  * ksz8_ind_read8 - EEE/ACL/PME indirect register read
86  * @dev: The device structure.
87  * @table: Function & table select, register 110.
88  * @addr: Indirect access control, register 111.
89  * @val: The value read.
90  *
91  * This function performs an indirect register read for EEE, ACL or
92  * PME switch functionalities. Both 8-bit registers 110 and 111 are
93  * written at once with ksz_write16, using the serial multiple write
94  * functionality.
95  *
96  * Return: 0 on success, or an error code on failure.
97  */
ksz8_ind_read8(struct ksz_device * dev,u8 table,u16 addr,u8 * val)98 static int ksz8_ind_read8(struct ksz_device *dev, u8 table, u16 addr, u8 *val)
99 {
100 	const u16 *regs;
101 	u16 ctrl_addr;
102 	int ret = 0;
103 
104 	regs = dev->info->regs;
105 
106 	mutex_lock(&dev->alu_mutex);
107 
108 	ctrl_addr = IND_ACC_TABLE(table | TABLE_READ) | addr;
109 	ret = ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
110 	if (!ret)
111 		ret = ksz_read8(dev, regs[REG_IND_BYTE], val);
112 
113 	mutex_unlock(&dev->alu_mutex);
114 
115 	return ret;
116 }
117 
ksz8_pme_write8(struct ksz_device * dev,u32 reg,u8 value)118 int ksz8_pme_write8(struct ksz_device *dev, u32 reg, u8 value)
119 {
120 	return ksz8_ind_write8(dev, (u8)(reg >> 8), (u8)(reg), value);
121 }
122 
ksz8_pme_pread8(struct ksz_device * dev,int port,int offset,u8 * data)123 int ksz8_pme_pread8(struct ksz_device *dev, int port, int offset, u8 *data)
124 {
125 	u8 table = (u8)(offset >> 8 | (port + 1));
126 
127 	return ksz8_ind_read8(dev, table, (u8)(offset), data);
128 }
129 
ksz8_pme_pwrite8(struct ksz_device * dev,int port,int offset,u8 data)130 int ksz8_pme_pwrite8(struct ksz_device *dev, int port, int offset, u8 data)
131 {
132 	u8 table = (u8)(offset >> 8 | (port + 1));
133 
134 	return ksz8_ind_write8(dev, table, (u8)(offset), data);
135 }
136 
ksz8_reset_switch(struct ksz_device * dev)137 int ksz8_reset_switch(struct ksz_device *dev)
138 {
139 	if (ksz_is_ksz88x3(dev)) {
140 		/* reset switch */
141 		ksz_cfg(dev, KSZ8863_REG_SW_RESET,
142 			KSZ8863_GLOBAL_SOFTWARE_RESET | KSZ8863_PCS_RESET, true);
143 		ksz_cfg(dev, KSZ8863_REG_SW_RESET,
144 			KSZ8863_GLOBAL_SOFTWARE_RESET | KSZ8863_PCS_RESET, false);
145 	} else if (ksz_is_ksz8463(dev)) {
146 		ksz_cfg(dev, KSZ8463_REG_SW_RESET,
147 			KSZ8463_GLOBAL_SOFTWARE_RESET, true);
148 		ksz_cfg(dev, KSZ8463_REG_SW_RESET,
149 			KSZ8463_GLOBAL_SOFTWARE_RESET, false);
150 	} else {
151 		/* reset switch */
152 		ksz_write8(dev, REG_POWER_MANAGEMENT_1,
153 			   SW_SOFTWARE_POWER_DOWN << SW_POWER_MANAGEMENT_MODE_S);
154 		ksz_write8(dev, REG_POWER_MANAGEMENT_1, 0);
155 	}
156 
157 	return 0;
158 }
159 
ksz8863_change_mtu(struct ksz_device * dev,int frame_size)160 static int ksz8863_change_mtu(struct ksz_device *dev, int frame_size)
161 {
162 	u8 ctrl2 = 0;
163 
164 	if (frame_size <= KSZ8_LEGAL_PACKET_SIZE)
165 		ctrl2 |= KSZ8863_LEGAL_PACKET_ENABLE;
166 	else if (frame_size > KSZ8863_NORMAL_PACKET_SIZE)
167 		ctrl2 |= KSZ8863_HUGE_PACKET_ENABLE;
168 
169 	return ksz_rmw8(dev, REG_SW_CTRL_2, KSZ8863_LEGAL_PACKET_ENABLE |
170 			KSZ8863_HUGE_PACKET_ENABLE, ctrl2);
171 }
172 
ksz8795_change_mtu(struct ksz_device * dev,int frame_size)173 static int ksz8795_change_mtu(struct ksz_device *dev, int frame_size)
174 {
175 	u8 ctrl1 = 0, ctrl2 = 0;
176 	int ret;
177 
178 	if (frame_size > KSZ8_LEGAL_PACKET_SIZE)
179 		ctrl2 |= SW_LEGAL_PACKET_DISABLE;
180 	if (frame_size > KSZ8863_NORMAL_PACKET_SIZE)
181 		ctrl1 |= SW_HUGE_PACKET;
182 
183 	ret = ksz_rmw8(dev, REG_SW_CTRL_1, SW_HUGE_PACKET, ctrl1);
184 	if (ret)
185 		return ret;
186 
187 	return ksz_rmw8(dev, REG_SW_CTRL_2, SW_LEGAL_PACKET_DISABLE, ctrl2);
188 }
189 
ksz8_change_mtu(struct ksz_device * dev,int port,int mtu)190 int ksz8_change_mtu(struct ksz_device *dev, int port, int mtu)
191 {
192 	u16 frame_size;
193 
194 	if (!dsa_is_cpu_port(dev->ds, port))
195 		return 0;
196 
197 	frame_size = mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
198 
199 	switch (dev->chip_id) {
200 	case KSZ8795_CHIP_ID:
201 	case KSZ8794_CHIP_ID:
202 	case KSZ8765_CHIP_ID:
203 		return ksz8795_change_mtu(dev, frame_size);
204 	case KSZ8463_CHIP_ID:
205 	case KSZ88X3_CHIP_ID:
206 	case KSZ8864_CHIP_ID:
207 	case KSZ8895_CHIP_ID:
208 		return ksz8863_change_mtu(dev, frame_size);
209 	}
210 
211 	return -EOPNOTSUPP;
212 }
213 
ksz8_port_queue_split(struct ksz_device * dev,int port,int queues)214 static int ksz8_port_queue_split(struct ksz_device *dev, int port, int queues)
215 {
216 	u8 mask_4q, mask_2q;
217 	u8 reg_4q, reg_2q;
218 	u8 data_4q = 0;
219 	u8 data_2q = 0;
220 	int ret;
221 
222 	if (ksz_is_ksz88x3(dev)) {
223 		mask_4q = KSZ8873_PORT_4QUEUE_SPLIT_EN;
224 		mask_2q = KSZ8873_PORT_2QUEUE_SPLIT_EN;
225 		reg_4q = REG_PORT_CTRL_0;
226 		reg_2q = REG_PORT_CTRL_2;
227 
228 		/* KSZ8795 family switches have Weighted Fair Queueing (WFQ)
229 		 * enabled by default. Enable it for KSZ8873 family switches
230 		 * too. Default value for KSZ8873 family is strict priority,
231 		 * which should be enabled by using TC_SETUP_QDISC_ETS, not
232 		 * by default.
233 		 */
234 		ret = ksz_rmw8(dev, REG_SW_CTRL_3, WEIGHTED_FAIR_QUEUE_ENABLE,
235 			       WEIGHTED_FAIR_QUEUE_ENABLE);
236 		if (ret)
237 			return ret;
238 	} else if (ksz_is_ksz8463(dev)) {
239 		mask_4q = KSZ8873_PORT_4QUEUE_SPLIT_EN;
240 		mask_2q = KSZ8873_PORT_2QUEUE_SPLIT_EN;
241 		reg_4q = P1CR1;
242 		reg_2q = P1CR1 + 1;
243 	} else {
244 		mask_4q = KSZ8795_PORT_4QUEUE_SPLIT_EN;
245 		mask_2q = KSZ8795_PORT_2QUEUE_SPLIT_EN;
246 		reg_4q = REG_PORT_CTRL_13;
247 		reg_2q = REG_PORT_CTRL_0;
248 
249 		/* TODO: this is legacy from initial KSZ8795 driver, should be
250 		 * moved to appropriate place in the future.
251 		 */
252 		ret = ksz_rmw8(dev, REG_SW_CTRL_19,
253 			       SW_OUT_RATE_LIMIT_QUEUE_BASED,
254 			       SW_OUT_RATE_LIMIT_QUEUE_BASED);
255 		if (ret)
256 			return ret;
257 	}
258 
259 	if (queues == 4)
260 		data_4q = mask_4q;
261 	else if (queues == 2)
262 		data_2q = mask_2q;
263 
264 	ret = ksz_prmw8(dev, port, reg_4q, mask_4q, data_4q);
265 	if (ret)
266 		return ret;
267 
268 	return ksz_prmw8(dev, port, reg_2q, mask_2q, data_2q);
269 }
270 
ksz8_all_queues_split(struct ksz_device * dev,int queues)271 int ksz8_all_queues_split(struct ksz_device *dev, int queues)
272 {
273 	struct dsa_switch *ds = dev->ds;
274 	const struct dsa_port *dp;
275 
276 	dsa_switch_for_each_port(dp, ds) {
277 		int ret = ksz8_port_queue_split(dev, dp->index, queues);
278 
279 		if (ret)
280 			return ret;
281 	}
282 
283 	return 0;
284 }
285 
ksz8_r_mib_cnt(struct ksz_device * dev,int port,u16 addr,u64 * cnt)286 void ksz8_r_mib_cnt(struct ksz_device *dev, int port, u16 addr, u64 *cnt)
287 {
288 	const u32 *masks;
289 	const u16 *regs;
290 	u16 ctrl_addr;
291 	u32 data;
292 	u8 check;
293 	int loop;
294 
295 	masks = dev->info->masks;
296 	regs = dev->info->regs;
297 
298 	ctrl_addr = addr + dev->info->reg_mib_cnt * port;
299 	ctrl_addr |= IND_ACC_TABLE(TABLE_MIB | TABLE_READ);
300 
301 	mutex_lock(&dev->alu_mutex);
302 	ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
303 
304 	/* It is almost guaranteed to always read the valid bit because of
305 	 * slow SPI speed.
306 	 */
307 	for (loop = 2; loop > 0; loop--) {
308 		ksz_read8(dev, regs[REG_IND_MIB_CHECK], &check);
309 
310 		if (check & masks[MIB_COUNTER_VALID]) {
311 			ksz_read32(dev, regs[REG_IND_DATA_LO], &data);
312 			if (check & masks[MIB_COUNTER_OVERFLOW])
313 				*cnt += MIB_COUNTER_VALUE + 1;
314 			*cnt += data & MIB_COUNTER_VALUE;
315 			break;
316 		}
317 	}
318 	mutex_unlock(&dev->alu_mutex);
319 }
320 
ksz8795_r_mib_pkt(struct ksz_device * dev,int port,u16 addr,u64 * dropped,u64 * cnt)321 static void ksz8795_r_mib_pkt(struct ksz_device *dev, int port, u16 addr,
322 			      u64 *dropped, u64 *cnt)
323 {
324 	const u32 *masks;
325 	const u16 *regs;
326 	u16 ctrl_addr;
327 	u32 data;
328 	u8 check;
329 	int loop;
330 
331 	masks = dev->info->masks;
332 	regs = dev->info->regs;
333 
334 	addr -= dev->info->reg_mib_cnt;
335 	ctrl_addr = (KSZ8795_MIB_TOTAL_RX_1 - KSZ8795_MIB_TOTAL_RX_0) * port;
336 	ctrl_addr += addr + KSZ8795_MIB_TOTAL_RX_0;
337 	ctrl_addr |= IND_ACC_TABLE(TABLE_MIB | TABLE_READ);
338 
339 	mutex_lock(&dev->alu_mutex);
340 	ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
341 
342 	/* It is almost guaranteed to always read the valid bit because of
343 	 * slow SPI speed.
344 	 */
345 	for (loop = 2; loop > 0; loop--) {
346 		ksz_read8(dev, regs[REG_IND_MIB_CHECK], &check);
347 
348 		if (check & masks[MIB_COUNTER_VALID]) {
349 			ksz_read32(dev, regs[REG_IND_DATA_LO], &data);
350 			if (addr < 2) {
351 				u64 total;
352 
353 				total = check & MIB_TOTAL_BYTES_H;
354 				total <<= 32;
355 				*cnt += total;
356 				*cnt += data;
357 				if (check & masks[MIB_COUNTER_OVERFLOW]) {
358 					total = MIB_TOTAL_BYTES_H + 1;
359 					total <<= 32;
360 					*cnt += total;
361 				}
362 			} else {
363 				if (check & masks[MIB_COUNTER_OVERFLOW])
364 					*cnt += MIB_PACKET_DROPPED + 1;
365 				*cnt += data & MIB_PACKET_DROPPED;
366 			}
367 			break;
368 		}
369 	}
370 	mutex_unlock(&dev->alu_mutex);
371 }
372 
ksz8863_r_mib_pkt(struct ksz_device * dev,int port,u16 addr,u64 * dropped,u64 * cnt)373 static void ksz8863_r_mib_pkt(struct ksz_device *dev, int port, u16 addr,
374 			      u64 *dropped, u64 *cnt)
375 {
376 	u32 *last = (u32 *)dropped;
377 	const u16 *regs;
378 	u16 ctrl_addr;
379 	u32 data;
380 	u32 cur;
381 
382 	regs = dev->info->regs;
383 
384 	addr -= dev->info->reg_mib_cnt;
385 	ctrl_addr = addr ? KSZ8863_MIB_PACKET_DROPPED_TX_0 :
386 			   KSZ8863_MIB_PACKET_DROPPED_RX_0;
387 	if (ksz_is_8895_family(dev) &&
388 	    ctrl_addr == KSZ8863_MIB_PACKET_DROPPED_RX_0)
389 		ctrl_addr = KSZ8895_MIB_PACKET_DROPPED_RX_0;
390 	ctrl_addr += port;
391 	ctrl_addr |= IND_ACC_TABLE(TABLE_MIB | TABLE_READ);
392 
393 	mutex_lock(&dev->alu_mutex);
394 	ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
395 	ksz_read32(dev, regs[REG_IND_DATA_LO], &data);
396 	mutex_unlock(&dev->alu_mutex);
397 
398 	data &= MIB_PACKET_DROPPED;
399 	cur = last[addr];
400 	if (data != cur) {
401 		last[addr] = data;
402 		if (data < cur)
403 			data += MIB_PACKET_DROPPED + 1;
404 		data -= cur;
405 		*cnt += data;
406 	}
407 }
408 
ksz8_r_mib_pkt(struct ksz_device * dev,int port,u16 addr,u64 * dropped,u64 * cnt)409 void ksz8_r_mib_pkt(struct ksz_device *dev, int port, u16 addr,
410 		    u64 *dropped, u64 *cnt)
411 {
412 	if (is_ksz88xx(dev))
413 		ksz8863_r_mib_pkt(dev, port, addr, dropped, cnt);
414 	else
415 		ksz8795_r_mib_pkt(dev, port, addr, dropped, cnt);
416 }
417 
ksz8_freeze_mib(struct ksz_device * dev,int port,bool freeze)418 void ksz8_freeze_mib(struct ksz_device *dev, int port, bool freeze)
419 {
420 	if (is_ksz88xx(dev))
421 		return;
422 
423 	/* enable the port for flush/freeze function */
424 	if (freeze)
425 		ksz_cfg(dev, REG_SW_CTRL_6, BIT(port), true);
426 	ksz_cfg(dev, REG_SW_CTRL_6, SW_MIB_COUNTER_FREEZE, freeze);
427 
428 	/* disable the port after freeze is done */
429 	if (!freeze)
430 		ksz_cfg(dev, REG_SW_CTRL_6, BIT(port), false);
431 }
432 
ksz8_port_init_cnt(struct ksz_device * dev,int port)433 void ksz8_port_init_cnt(struct ksz_device *dev, int port)
434 {
435 	struct ksz_port_mib *mib = &dev->ports[port].mib;
436 	u64 *dropped;
437 
438 	/* For KSZ8795 family. */
439 	if (ksz_is_ksz87xx(dev)) {
440 		/* flush all enabled port MIB counters */
441 		ksz_cfg(dev, REG_SW_CTRL_6, BIT(port), true);
442 		ksz_cfg(dev, REG_SW_CTRL_6, SW_MIB_COUNTER_FLUSH, true);
443 		ksz_cfg(dev, REG_SW_CTRL_6, BIT(port), false);
444 	}
445 
446 	mib->cnt_ptr = 0;
447 
448 	/* Some ports may not have MIB counters before SWITCH_COUNTER_NUM. */
449 	while (mib->cnt_ptr < dev->info->reg_mib_cnt) {
450 		dev->dev_ops->r_mib_cnt(dev, port, mib->cnt_ptr,
451 					&mib->counters[mib->cnt_ptr]);
452 		++mib->cnt_ptr;
453 	}
454 
455 	/* last one in storage */
456 	dropped = &mib->counters[dev->info->mib_cnt];
457 
458 	/* Some ports may not have MIB counters after SWITCH_COUNTER_NUM. */
459 	while (mib->cnt_ptr < dev->info->mib_cnt) {
460 		dev->dev_ops->r_mib_pkt(dev, port, mib->cnt_ptr,
461 					dropped, &mib->counters[mib->cnt_ptr]);
462 		++mib->cnt_ptr;
463 	}
464 }
465 
ksz8_r_table(struct ksz_device * dev,int table,u16 addr,u64 * data)466 static int ksz8_r_table(struct ksz_device *dev, int table, u16 addr, u64 *data)
467 {
468 	const u16 *regs;
469 	u16 ctrl_addr;
470 	int ret;
471 
472 	regs = dev->info->regs;
473 
474 	ctrl_addr = IND_ACC_TABLE(table | TABLE_READ) | addr;
475 
476 	mutex_lock(&dev->alu_mutex);
477 	ret = ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
478 	if (ret)
479 		goto unlock_alu;
480 
481 	ret = ksz_read64(dev, regs[REG_IND_DATA_HI], data);
482 unlock_alu:
483 	mutex_unlock(&dev->alu_mutex);
484 
485 	return ret;
486 }
487 
ksz8_w_table(struct ksz_device * dev,int table,u16 addr,u64 data)488 static int ksz8_w_table(struct ksz_device *dev, int table, u16 addr, u64 data)
489 {
490 	const u16 *regs;
491 	u16 ctrl_addr;
492 	int ret;
493 
494 	regs = dev->info->regs;
495 
496 	ctrl_addr = IND_ACC_TABLE(table) | addr;
497 
498 	mutex_lock(&dev->alu_mutex);
499 	ret = ksz_write64(dev, regs[REG_IND_DATA_HI], data);
500 	if (ret)
501 		goto unlock_alu;
502 
503 	ret = ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
504 unlock_alu:
505 	mutex_unlock(&dev->alu_mutex);
506 
507 	return ret;
508 }
509 
ksz8_valid_dyn_entry(struct ksz_device * dev,u8 * data)510 static int ksz8_valid_dyn_entry(struct ksz_device *dev, u8 *data)
511 {
512 	int timeout = 100;
513 	const u32 *masks;
514 	const u16 *regs;
515 	int ret;
516 
517 	masks = dev->info->masks;
518 	regs = dev->info->regs;
519 
520 	do {
521 		ret = ksz_read8(dev, regs[REG_IND_DATA_CHECK], data);
522 		if (ret)
523 			return ret;
524 
525 		timeout--;
526 	} while ((*data & masks[DYNAMIC_MAC_TABLE_NOT_READY]) && timeout);
527 
528 	/* Entry is not ready for accessing. */
529 	if (*data & masks[DYNAMIC_MAC_TABLE_NOT_READY])
530 		return -ETIMEDOUT;
531 
532 	/* Entry is ready for accessing. */
533 	return ksz_read8(dev, regs[REG_IND_DATA_8], data);
534 }
535 
ksz8_r_dyn_mac_table(struct ksz_device * dev,u16 addr,u8 * mac_addr,u8 * fid,u8 * src_port,u16 * entries)536 static int ksz8_r_dyn_mac_table(struct ksz_device *dev, u16 addr, u8 *mac_addr,
537 				u8 *fid, u8 *src_port, u16 *entries)
538 {
539 	u32 data_hi, data_lo;
540 	const u8 *shifts;
541 	const u32 *masks;
542 	const u16 *regs;
543 	u16 ctrl_addr;
544 	u64 buf = 0;
545 	u8 data;
546 	int cnt;
547 	int ret;
548 
549 	shifts = dev->info->shifts;
550 	masks = dev->info->masks;
551 	regs = dev->info->regs;
552 
553 	ctrl_addr = IND_ACC_TABLE(TABLE_DYNAMIC_MAC | TABLE_READ) | addr;
554 
555 	mutex_lock(&dev->alu_mutex);
556 	ret = ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
557 	if (ret)
558 		goto unlock_alu;
559 
560 	ret = ksz8_valid_dyn_entry(dev, &data);
561 	if (ret)
562 		goto unlock_alu;
563 
564 	if (data & masks[DYNAMIC_MAC_TABLE_MAC_EMPTY]) {
565 		*entries = 0;
566 		goto unlock_alu;
567 	}
568 
569 	ret = ksz_read64(dev, regs[REG_IND_DATA_HI], &buf);
570 	if (ret)
571 		goto unlock_alu;
572 
573 	data_hi = (u32)(buf >> 32);
574 	data_lo = (u32)buf;
575 
576 	/* Check out how many valid entry in the table. */
577 	cnt = data & masks[DYNAMIC_MAC_TABLE_ENTRIES_H];
578 	cnt <<= shifts[DYNAMIC_MAC_ENTRIES_H];
579 	cnt |= (data_hi & masks[DYNAMIC_MAC_TABLE_ENTRIES]) >>
580 		shifts[DYNAMIC_MAC_ENTRIES];
581 	*entries = cnt + 1;
582 
583 	*fid = (data_hi & masks[DYNAMIC_MAC_TABLE_FID]) >>
584 		shifts[DYNAMIC_MAC_FID];
585 	*src_port = (data_hi & masks[DYNAMIC_MAC_TABLE_SRC_PORT]) >>
586 		shifts[DYNAMIC_MAC_SRC_PORT];
587 
588 	mac_addr[5] = (u8)data_lo;
589 	mac_addr[4] = (u8)(data_lo >> 8);
590 	mac_addr[3] = (u8)(data_lo >> 16);
591 	mac_addr[2] = (u8)(data_lo >> 24);
592 
593 	mac_addr[1] = (u8)data_hi;
594 	mac_addr[0] = (u8)(data_hi >> 8);
595 
596 unlock_alu:
597 	mutex_unlock(&dev->alu_mutex);
598 
599 	return ret;
600 }
601 
ksz8_r_sta_mac_table(struct ksz_device * dev,u16 addr,struct alu_struct * alu,bool * valid)602 static int ksz8_r_sta_mac_table(struct ksz_device *dev, u16 addr,
603 				struct alu_struct *alu, bool *valid)
604 {
605 	u32 data_hi, data_lo;
606 	const u8 *shifts;
607 	const u32 *masks;
608 	u64 data;
609 	int ret;
610 
611 	shifts = dev->info->shifts;
612 	masks = dev->info->masks;
613 
614 	ret = ksz8_r_table(dev, TABLE_STATIC_MAC, addr, &data);
615 	if (ret)
616 		return ret;
617 
618 	data_hi = data >> 32;
619 	data_lo = (u32)data;
620 
621 	if (!(data_hi & (masks[STATIC_MAC_TABLE_VALID] |
622 			 masks[STATIC_MAC_TABLE_OVERRIDE]))) {
623 		*valid = false;
624 		return 0;
625 	}
626 
627 	alu->mac[5] = (u8)data_lo;
628 	alu->mac[4] = (u8)(data_lo >> 8);
629 	alu->mac[3] = (u8)(data_lo >> 16);
630 	alu->mac[2] = (u8)(data_lo >> 24);
631 	alu->mac[1] = (u8)data_hi;
632 	alu->mac[0] = (u8)(data_hi >> 8);
633 	alu->port_forward =
634 		(data_hi & masks[STATIC_MAC_TABLE_FWD_PORTS]) >>
635 			shifts[STATIC_MAC_FWD_PORTS];
636 	alu->is_override = (data_hi & masks[STATIC_MAC_TABLE_OVERRIDE]) ? 1 : 0;
637 
638 	/* KSZ8795/KSZ8895 family switches have STATIC_MAC_TABLE_USE_FID and
639 	 * STATIC_MAC_TABLE_FID definitions off by 1 when doing read on the
640 	 * static MAC table compared to doing write.
641 	 */
642 	if (ksz_is_ksz87xx(dev) || ksz_is_8895_family(dev))
643 		data_hi >>= 1;
644 	alu->is_static = true;
645 	alu->is_use_fid = (data_hi & masks[STATIC_MAC_TABLE_USE_FID]) ? 1 : 0;
646 	alu->fid = (data_hi & masks[STATIC_MAC_TABLE_FID]) >>
647 		shifts[STATIC_MAC_FID];
648 
649 	*valid = true;
650 
651 	return 0;
652 }
653 
ksz8_w_sta_mac_table(struct ksz_device * dev,u16 addr,struct alu_struct * alu)654 static int ksz8_w_sta_mac_table(struct ksz_device *dev, u16 addr,
655 				struct alu_struct *alu)
656 {
657 	u32 data_hi, data_lo;
658 	const u8 *shifts;
659 	const u32 *masks;
660 	u64 data;
661 
662 	shifts = dev->info->shifts;
663 	masks = dev->info->masks;
664 
665 	data_lo = ((u32)alu->mac[2] << 24) |
666 		((u32)alu->mac[3] << 16) |
667 		((u32)alu->mac[4] << 8) | alu->mac[5];
668 	data_hi = ((u32)alu->mac[0] << 8) | alu->mac[1];
669 	data_hi |= (u32)alu->port_forward << shifts[STATIC_MAC_FWD_PORTS];
670 
671 	if (alu->is_override)
672 		data_hi |= masks[STATIC_MAC_TABLE_OVERRIDE];
673 	if (alu->is_use_fid) {
674 		data_hi |= masks[STATIC_MAC_TABLE_USE_FID];
675 		data_hi |= (u32)alu->fid << shifts[STATIC_MAC_FID];
676 	}
677 	if (alu->is_static)
678 		data_hi |= masks[STATIC_MAC_TABLE_VALID];
679 	else
680 		data_hi &= ~masks[STATIC_MAC_TABLE_OVERRIDE];
681 
682 	data = (u64)data_hi << 32 | data_lo;
683 
684 	return ksz8_w_table(dev, TABLE_STATIC_MAC, addr, data);
685 }
686 
ksz8_from_vlan(struct ksz_device * dev,u32 vlan,u8 * fid,u8 * member,u8 * valid)687 static void ksz8_from_vlan(struct ksz_device *dev, u32 vlan, u8 *fid,
688 			   u8 *member, u8 *valid)
689 {
690 	const u8 *shifts;
691 	const u32 *masks;
692 
693 	shifts = dev->info->shifts;
694 	masks = dev->info->masks;
695 
696 	*fid = vlan & masks[VLAN_TABLE_FID];
697 	*member = (vlan & masks[VLAN_TABLE_MEMBERSHIP]) >>
698 			shifts[VLAN_TABLE_MEMBERSHIP_S];
699 	*valid = !!(vlan & masks[VLAN_TABLE_VALID]);
700 }
701 
ksz8_to_vlan(struct ksz_device * dev,u8 fid,u8 member,u8 valid,u16 * vlan)702 static void ksz8_to_vlan(struct ksz_device *dev, u8 fid, u8 member, u8 valid,
703 			 u16 *vlan)
704 {
705 	const u8 *shifts;
706 	const u32 *masks;
707 
708 	shifts = dev->info->shifts;
709 	masks = dev->info->masks;
710 
711 	*vlan = fid;
712 	*vlan |= (u16)member << shifts[VLAN_TABLE_MEMBERSHIP_S];
713 	if (valid)
714 		*vlan |= masks[VLAN_TABLE_VALID];
715 }
716 
ksz8_r_vlan_entries(struct ksz_device * dev,u16 addr)717 static void ksz8_r_vlan_entries(struct ksz_device *dev, u16 addr)
718 {
719 	const u8 *shifts;
720 	u64 data;
721 	int i;
722 
723 	shifts = dev->info->shifts;
724 
725 	ksz8_r_table(dev, TABLE_VLAN, addr, &data);
726 	addr *= 4;
727 	for (i = 0; i < 4; i++) {
728 		dev->vlan_cache[addr + i].table[0] = (u16)data;
729 		data >>= shifts[VLAN_TABLE];
730 	}
731 }
732 
ksz8_r_vlan_table(struct ksz_device * dev,u16 vid,u16 * vlan)733 static void ksz8_r_vlan_table(struct ksz_device *dev, u16 vid, u16 *vlan)
734 {
735 	int index;
736 	u16 *data;
737 	u16 addr;
738 	u64 buf;
739 
740 	data = (u16 *)&buf;
741 	addr = vid / 4;
742 	index = vid & 3;
743 	ksz8_r_table(dev, TABLE_VLAN, addr, &buf);
744 	*vlan = data[index];
745 }
746 
ksz8_w_vlan_table(struct ksz_device * dev,u16 vid,u16 vlan)747 static void ksz8_w_vlan_table(struct ksz_device *dev, u16 vid, u16 vlan)
748 {
749 	int index;
750 	u16 *data;
751 	u16 addr;
752 	u64 buf;
753 
754 	data = (u16 *)&buf;
755 	addr = vid / 4;
756 	index = vid & 3;
757 	ksz8_r_table(dev, TABLE_VLAN, addr, &buf);
758 	data[index] = vlan;
759 	dev->vlan_cache[vid].table[0] = vlan;
760 	ksz8_w_table(dev, TABLE_VLAN, addr, buf);
761 }
762 
763 /**
764  * ksz879x_get_loopback - KSZ879x specific function to get loopback
765  *                        configuration status for a specific port
766  * @dev: Pointer to the device structure
767  * @port: Port number to query
768  * @val: Pointer to store the result
769  *
770  * This function reads the SMI registers to determine whether loopback mode
771  * is enabled for a specific port.
772  *
773  * Return: 0 on success, error code on failure.
774  */
ksz879x_get_loopback(struct ksz_device * dev,u16 port,u16 * val)775 static int ksz879x_get_loopback(struct ksz_device *dev, u16 port,
776 				u16 *val)
777 {
778 	u8 stat3;
779 	int ret;
780 
781 	ret = ksz_pread8(dev, port, REG_PORT_STATUS_3, &stat3);
782 	if (ret)
783 		return ret;
784 
785 	if (stat3 & PORT_PHY_LOOPBACK)
786 		*val |= BMCR_LOOPBACK;
787 
788 	return 0;
789 }
790 
791 /**
792  * ksz879x_set_loopback - KSZ879x specific function  to set loopback mode for
793  *			  a specific port
794  * @dev: Pointer to the device structure.
795  * @port: Port number to modify.
796  * @val: Value indicating whether to enable or disable loopback mode.
797  *
798  * This function translates loopback bit of the BMCR register into the
799  * corresponding hardware register bit value and writes it to the SMI interface.
800  *
801  * Return: 0 on success, error code on failure.
802  */
ksz879x_set_loopback(struct ksz_device * dev,u16 port,u16 val)803 static int ksz879x_set_loopback(struct ksz_device *dev, u16 port, u16 val)
804 {
805 	u8 stat3 = 0;
806 
807 	if (val & BMCR_LOOPBACK)
808 		stat3 |= PORT_PHY_LOOPBACK;
809 
810 	return ksz_prmw8(dev, port, REG_PORT_STATUS_3, PORT_PHY_LOOPBACK,
811 			 stat3);
812 }
813 
814 /**
815  * ksz8_r_phy_ctrl - Translates and reads from the SMI interface to a MIIM PHY
816  *		     Control register (Reg. 31).
817  * @dev: The KSZ device instance.
818  * @port: The port number to be read.
819  * @val: The value read from the SMI interface.
820  *
821  * This function reads the SMI interface and translates the hardware register
822  * bit values into their corresponding control settings for a MIIM PHY Control
823  * register.
824  *
825  * Return: 0 on success, error code on failure.
826  */
ksz8_r_phy_ctrl(struct ksz_device * dev,int port,u16 * val)827 static int ksz8_r_phy_ctrl(struct ksz_device *dev, int port, u16 *val)
828 {
829 	const u16 *regs = dev->info->regs;
830 	u8 reg_val;
831 	int ret;
832 
833 	*val = 0;
834 
835 	ret = ksz_pread8(dev, port, regs[P_LINK_STATUS], &reg_val);
836 	if (ret < 0)
837 		return ret;
838 
839 	if (reg_val & PORT_MDIX_STATUS)
840 		*val |= KSZ886X_CTRL_MDIX_STAT;
841 
842 	ret = ksz_pread8(dev, port, REG_PORT_LINK_MD_CTRL, &reg_val);
843 	if (ret < 0)
844 		return ret;
845 
846 	if (reg_val & PORT_FORCE_LINK)
847 		*val |= KSZ886X_CTRL_FORCE_LINK;
848 
849 	if (reg_val & PORT_POWER_SAVING)
850 		*val |= KSZ886X_CTRL_PWRSAVE;
851 
852 	if (reg_val & PORT_PHY_REMOTE_LOOPBACK)
853 		*val |= KSZ886X_CTRL_REMOTE_LOOPBACK;
854 
855 	return 0;
856 }
857 
858 /**
859  * ksz8_r_phy_bmcr - Translates and reads from the SMI interface to a MIIM PHY
860  *		     Basic mode control register (Reg. 0).
861  * @dev: The KSZ device instance.
862  * @port: The port number to be read.
863  * @val: The value read from the SMI interface.
864  *
865  * This function reads the SMI interface and translates the hardware register
866  * bit values into their corresponding control settings for a MIIM PHY Basic
867  * mode control register.
868  *
869  * MIIM Bit Mapping Comparison between KSZ8794 and KSZ8873
870  * -------------------------------------------------------------------
871  * MIIM Bit                    | KSZ8794 Reg/Bit             | KSZ8873 Reg/Bit
872  * ----------------------------+-----------------------------+----------------
873  * Bit 15 - Soft Reset         | 0xF/4                       | Not supported
874  * Bit 14 - Loopback           | 0xD/0 (MAC), 0xF/7 (PHY)    ~ 0xD/0 (PHY)
875  * Bit 13 - Force 100          | 0xC/6                       = 0xC/6
876  * Bit 12 - AN Enable          | 0xC/7 (reverse logic)       ~ 0xC/7
877  * Bit 11 - Power Down         | 0xD/3                       = 0xD/3
878  * Bit 10 - PHY Isolate        | 0xF/5                       | Not supported
879  * Bit 9 - Restart AN          | 0xD/5                       = 0xD/5
880  * Bit 8 - Force Full-Duplex   | 0xC/5                       = 0xC/5
881  * Bit 7 - Collision Test/Res. | Not supported               | Not supported
882  * Bit 6 - Reserved            | Not supported               | Not supported
883  * Bit 5 - Hp_mdix             | 0x9/7                       ~ 0xF/7
884  * Bit 4 - Force MDI           | 0xD/1                       = 0xD/1
885  * Bit 3 - Disable MDIX        | 0xD/2                       = 0xD/2
886  * Bit 2 - Disable Far-End F.  | ????                        | 0xD/4
887  * Bit 1 - Disable Transmit    | 0xD/6                       = 0xD/6
888  * Bit 0 - Disable LED         | 0xD/7                       = 0xD/7
889  * -------------------------------------------------------------------
890  *
891  * Return: 0 on success, error code on failure.
892  */
ksz8_r_phy_bmcr(struct ksz_device * dev,u16 port,u16 * val)893 static int ksz8_r_phy_bmcr(struct ksz_device *dev, u16 port, u16 *val)
894 {
895 	const u16 *regs = dev->info->regs;
896 	u8 restart, speed, ctrl;
897 	int ret;
898 
899 	*val = 0;
900 
901 	ret = ksz_pread8(dev, port, regs[P_NEG_RESTART_CTRL], &restart);
902 	if (ret)
903 		return ret;
904 
905 	ret = ksz_pread8(dev, port, regs[P_SPEED_STATUS], &speed);
906 	if (ret)
907 		return ret;
908 
909 	ret = ksz_pread8(dev, port, regs[P_FORCE_CTRL], &ctrl);
910 	if (ret)
911 		return ret;
912 
913 	if (ctrl & PORT_FORCE_100_MBIT)
914 		*val |= BMCR_SPEED100;
915 
916 	if (ksz_is_ksz88x3(dev)) {
917 		if (restart & KSZ8873_PORT_PHY_LOOPBACK)
918 			*val |= BMCR_LOOPBACK;
919 
920 		if ((ctrl & PORT_AUTO_NEG_ENABLE))
921 			*val |= BMCR_ANENABLE;
922 	} else {
923 		ret = ksz879x_get_loopback(dev, port, val);
924 		if (ret)
925 			return ret;
926 
927 		if (!(ctrl & PORT_AUTO_NEG_DISABLE))
928 			*val |= BMCR_ANENABLE;
929 	}
930 
931 	if (restart & PORT_POWER_DOWN)
932 		*val |= BMCR_PDOWN;
933 
934 	if (restart & PORT_AUTO_NEG_RESTART)
935 		*val |= BMCR_ANRESTART;
936 
937 	if (ctrl & PORT_FORCE_FULL_DUPLEX)
938 		*val |= BMCR_FULLDPLX;
939 
940 	if (speed & PORT_HP_MDIX)
941 		*val |= KSZ886X_BMCR_HP_MDIX;
942 
943 	if (restart & PORT_FORCE_MDIX)
944 		*val |= KSZ886X_BMCR_FORCE_MDI;
945 
946 	if (restart & PORT_AUTO_MDIX_DISABLE)
947 		*val |= KSZ886X_BMCR_DISABLE_AUTO_MDIX;
948 
949 	if (restart & PORT_TX_DISABLE)
950 		*val |= KSZ886X_BMCR_DISABLE_TRANSMIT;
951 
952 	if (restart & PORT_LED_OFF)
953 		*val |= KSZ886X_BMCR_DISABLE_LED;
954 
955 	return 0;
956 }
957 
ksz8_r_phy(struct ksz_device * dev,u16 phy,u16 reg,u16 * val)958 int ksz8_r_phy(struct ksz_device *dev, u16 phy, u16 reg, u16 *val)
959 {
960 	u8 ctrl, link, val1, val2;
961 	int processed = true;
962 	const u16 *regs;
963 	u16 data = 0;
964 	u16 p = phy;
965 	int ret;
966 
967 	regs = dev->info->regs;
968 
969 	switch (reg) {
970 	case MII_BMCR:
971 		ret = ksz8_r_phy_bmcr(dev, p, &data);
972 		if (ret)
973 			return ret;
974 		break;
975 	case MII_BMSR:
976 		ret = ksz_pread8(dev, p, regs[P_LINK_STATUS], &link);
977 		if (ret)
978 			return ret;
979 
980 		data = BMSR_100FULL |
981 		       BMSR_100HALF |
982 		       BMSR_10FULL |
983 		       BMSR_10HALF |
984 		       BMSR_ANEGCAPABLE;
985 		if (link & PORT_AUTO_NEG_COMPLETE)
986 			data |= BMSR_ANEGCOMPLETE;
987 		if (link & PORT_STAT_LINK_GOOD)
988 			data |= BMSR_LSTATUS;
989 		break;
990 	case MII_PHYSID1:
991 		data = KSZ8795_ID_HI;
992 		break;
993 	case MII_PHYSID2:
994 		if (ksz_is_ksz88x3(dev))
995 			data = KSZ8863_ID_LO;
996 		else
997 			data = KSZ8795_ID_LO;
998 		break;
999 	case MII_ADVERTISE:
1000 		ret = ksz_pread8(dev, p, regs[P_LOCAL_CTRL], &ctrl);
1001 		if (ret)
1002 			return ret;
1003 
1004 		data = ADVERTISE_CSMA;
1005 		if (ctrl & PORT_AUTO_NEG_SYM_PAUSE)
1006 			data |= ADVERTISE_PAUSE_CAP;
1007 		if (ctrl & PORT_AUTO_NEG_100BTX_FD)
1008 			data |= ADVERTISE_100FULL;
1009 		if (ctrl & PORT_AUTO_NEG_100BTX)
1010 			data |= ADVERTISE_100HALF;
1011 		if (ctrl & PORT_AUTO_NEG_10BT_FD)
1012 			data |= ADVERTISE_10FULL;
1013 		if (ctrl & PORT_AUTO_NEG_10BT)
1014 			data |= ADVERTISE_10HALF;
1015 		break;
1016 	case MII_LPA:
1017 		ret = ksz_pread8(dev, p, regs[P_REMOTE_STATUS], &link);
1018 		if (ret)
1019 			return ret;
1020 
1021 		data = LPA_SLCT;
1022 		if (link & PORT_REMOTE_SYM_PAUSE)
1023 			data |= LPA_PAUSE_CAP;
1024 		if (link & PORT_REMOTE_100BTX_FD)
1025 			data |= LPA_100FULL;
1026 		if (link & PORT_REMOTE_100BTX)
1027 			data |= LPA_100HALF;
1028 		if (link & PORT_REMOTE_10BT_FD)
1029 			data |= LPA_10FULL;
1030 		if (link & PORT_REMOTE_10BT)
1031 			data |= LPA_10HALF;
1032 		if (data & ~LPA_SLCT)
1033 			data |= LPA_LPACK;
1034 		break;
1035 	case PHY_REG_LINK_MD:
1036 		ret = ksz_pread8(dev, p, REG_PORT_LINK_MD_CTRL, &val1);
1037 		if (ret)
1038 			return ret;
1039 
1040 		ret = ksz_pread8(dev, p, REG_PORT_LINK_MD_RESULT, &val2);
1041 		if (ret)
1042 			return ret;
1043 
1044 		if (val1 & PORT_START_CABLE_DIAG)
1045 			data |= PHY_START_CABLE_DIAG;
1046 
1047 		if (val1 & PORT_CABLE_10M_SHORT)
1048 			data |= PHY_CABLE_10M_SHORT;
1049 
1050 		data |= FIELD_PREP(PHY_CABLE_DIAG_RESULT_M,
1051 				FIELD_GET(PORT_CABLE_DIAG_RESULT_M, val1));
1052 
1053 		data |= FIELD_PREP(PHY_CABLE_FAULT_COUNTER_M,
1054 				(FIELD_GET(PORT_CABLE_FAULT_COUNTER_H, val1) << 8) |
1055 				FIELD_GET(PORT_CABLE_FAULT_COUNTER_L, val2));
1056 		break;
1057 	case PHY_REG_PHY_CTRL:
1058 		ret = ksz8_r_phy_ctrl(dev, p, &data);
1059 		if (ret)
1060 			return ret;
1061 
1062 		break;
1063 	default:
1064 		processed = false;
1065 		break;
1066 	}
1067 	if (processed)
1068 		*val = data;
1069 
1070 	return 0;
1071 }
1072 
1073 /**
1074  * ksz8_w_phy_ctrl - Translates and writes to the SMI interface from a MIIM PHY
1075  *		     Control register (Reg. 31).
1076  * @dev: The KSZ device instance.
1077  * @port: The port number to be configured.
1078  * @val: The register value to be written.
1079  *
1080  * This function translates control settings from a MIIM PHY Control register
1081  * into their corresponding hardware register bit values for the SMI
1082  * interface.
1083  *
1084  * Return: 0 on success, error code on failure.
1085  */
ksz8_w_phy_ctrl(struct ksz_device * dev,int port,u16 val)1086 static int ksz8_w_phy_ctrl(struct ksz_device *dev, int port, u16 val)
1087 {
1088 	u8 reg_val = 0;
1089 	int ret;
1090 
1091 	if (val & KSZ886X_CTRL_FORCE_LINK)
1092 		reg_val |= PORT_FORCE_LINK;
1093 
1094 	if (val & KSZ886X_CTRL_PWRSAVE)
1095 		reg_val |= PORT_POWER_SAVING;
1096 
1097 	if (val & KSZ886X_CTRL_REMOTE_LOOPBACK)
1098 		reg_val |= PORT_PHY_REMOTE_LOOPBACK;
1099 
1100 	ret = ksz_prmw8(dev, port, REG_PORT_LINK_MD_CTRL, PORT_FORCE_LINK |
1101 			PORT_POWER_SAVING | PORT_PHY_REMOTE_LOOPBACK, reg_val);
1102 	return ret;
1103 }
1104 
1105 /**
1106  * ksz8_w_phy_bmcr - Translates and writes to the SMI interface from a MIIM PHY
1107  *		     Basic mode control register (Reg. 0).
1108  * @dev: The KSZ device instance.
1109  * @port: The port number to be configured.
1110  * @val: The register value to be written.
1111  *
1112  * This function translates control settings from a MIIM PHY Basic mode control
1113  * register into their corresponding hardware register bit values for the SMI
1114  * interface.
1115  *
1116  * MIIM Bit Mapping Comparison between KSZ8794 and KSZ8873
1117  * -------------------------------------------------------------------
1118  * MIIM Bit                    | KSZ8794 Reg/Bit             | KSZ8873 Reg/Bit
1119  * ----------------------------+-----------------------------+----------------
1120  * Bit 15 - Soft Reset         | 0xF/4                       | Not supported
1121  * Bit 14 - Loopback           | 0xD/0 (MAC), 0xF/7 (PHY)    ~ 0xD/0 (PHY)
1122  * Bit 13 - Force 100          | 0xC/6                       = 0xC/6
1123  * Bit 12 - AN Enable          | 0xC/7 (reverse logic)       ~ 0xC/7
1124  * Bit 11 - Power Down         | 0xD/3                       = 0xD/3
1125  * Bit 10 - PHY Isolate        | 0xF/5                       | Not supported
1126  * Bit 9 - Restart AN          | 0xD/5                       = 0xD/5
1127  * Bit 8 - Force Full-Duplex   | 0xC/5                       = 0xC/5
1128  * Bit 7 - Collision Test/Res. | Not supported               | Not supported
1129  * Bit 6 - Reserved            | Not supported               | Not supported
1130  * Bit 5 - Hp_mdix             | 0x9/7                       ~ 0xF/7
1131  * Bit 4 - Force MDI           | 0xD/1                       = 0xD/1
1132  * Bit 3 - Disable MDIX        | 0xD/2                       = 0xD/2
1133  * Bit 2 - Disable Far-End F.  | ????                        | 0xD/4
1134  * Bit 1 - Disable Transmit    | 0xD/6                       = 0xD/6
1135  * Bit 0 - Disable LED         | 0xD/7                       = 0xD/7
1136  * -------------------------------------------------------------------
1137  *
1138  * Return: 0 on success, error code on failure.
1139  */
ksz8_w_phy_bmcr(struct ksz_device * dev,u16 port,u16 val)1140 static int ksz8_w_phy_bmcr(struct ksz_device *dev, u16 port, u16 val)
1141 {
1142 	u8 restart, speed, ctrl, restart_mask;
1143 	const u16 *regs = dev->info->regs;
1144 	int ret;
1145 
1146 	/* Do not support PHY reset function. */
1147 	if (val & BMCR_RESET)
1148 		return 0;
1149 
1150 	speed = 0;
1151 	if (val & KSZ886X_BMCR_HP_MDIX)
1152 		speed |= PORT_HP_MDIX;
1153 
1154 	ret = ksz_prmw8(dev, port, regs[P_SPEED_STATUS], PORT_HP_MDIX, speed);
1155 	if (ret)
1156 		return ret;
1157 
1158 	ctrl = 0;
1159 	if (ksz_is_ksz88x3(dev)) {
1160 		if ((val & BMCR_ANENABLE))
1161 			ctrl |= PORT_AUTO_NEG_ENABLE;
1162 	} else {
1163 		if (!(val & BMCR_ANENABLE))
1164 			ctrl |= PORT_AUTO_NEG_DISABLE;
1165 
1166 		/* Fiber port does not support auto-negotiation. */
1167 		if (dev->ports[port].fiber)
1168 			ctrl |= PORT_AUTO_NEG_DISABLE;
1169 	}
1170 
1171 	if (val & BMCR_SPEED100)
1172 		ctrl |= PORT_FORCE_100_MBIT;
1173 
1174 	if (val & BMCR_FULLDPLX)
1175 		ctrl |= PORT_FORCE_FULL_DUPLEX;
1176 
1177 	ret = ksz_prmw8(dev, port, regs[P_FORCE_CTRL], PORT_FORCE_100_MBIT |
1178 		 /* PORT_AUTO_NEG_ENABLE and PORT_AUTO_NEG_DISABLE are the same
1179 		  * bits
1180 		  */
1181 		 PORT_FORCE_FULL_DUPLEX | PORT_AUTO_NEG_ENABLE, ctrl);
1182 	if (ret)
1183 		return ret;
1184 
1185 	restart = 0;
1186 	restart_mask = PORT_LED_OFF | PORT_TX_DISABLE | PORT_AUTO_NEG_RESTART |
1187 		PORT_POWER_DOWN | PORT_AUTO_MDIX_DISABLE | PORT_FORCE_MDIX;
1188 
1189 	if (val & KSZ886X_BMCR_DISABLE_LED)
1190 		restart |= PORT_LED_OFF;
1191 
1192 	if (val & KSZ886X_BMCR_DISABLE_TRANSMIT)
1193 		restart |= PORT_TX_DISABLE;
1194 
1195 	if (val & BMCR_ANRESTART)
1196 		restart |= PORT_AUTO_NEG_RESTART;
1197 
1198 	if (val & BMCR_PDOWN)
1199 		restart |= PORT_POWER_DOWN;
1200 
1201 	if (val & KSZ886X_BMCR_DISABLE_AUTO_MDIX)
1202 		restart |= PORT_AUTO_MDIX_DISABLE;
1203 
1204 	if (val & KSZ886X_BMCR_FORCE_MDI)
1205 		restart |= PORT_FORCE_MDIX;
1206 
1207 	if (ksz_is_ksz88x3(dev)) {
1208 		restart_mask |= KSZ8873_PORT_PHY_LOOPBACK;
1209 
1210 		if (val & BMCR_LOOPBACK)
1211 			restart |= KSZ8873_PORT_PHY_LOOPBACK;
1212 	} else {
1213 		ret = ksz879x_set_loopback(dev, port, val);
1214 		if (ret)
1215 			return ret;
1216 	}
1217 
1218 	return ksz_prmw8(dev, port, regs[P_NEG_RESTART_CTRL], restart_mask,
1219 			 restart);
1220 }
1221 
ksz8_w_phy(struct ksz_device * dev,u16 phy,u16 reg,u16 val)1222 int ksz8_w_phy(struct ksz_device *dev, u16 phy, u16 reg, u16 val)
1223 {
1224 	const u16 *regs;
1225 	u8 ctrl, data;
1226 	u16 p = phy;
1227 	int ret;
1228 
1229 	regs = dev->info->regs;
1230 
1231 	switch (reg) {
1232 	case MII_BMCR:
1233 		ret = ksz8_w_phy_bmcr(dev, p, val);
1234 		if (ret)
1235 			return ret;
1236 		break;
1237 	case MII_ADVERTISE:
1238 		ret = ksz_pread8(dev, p, regs[P_LOCAL_CTRL], &ctrl);
1239 		if (ret)
1240 			return ret;
1241 
1242 		data = ctrl;
1243 		data &= ~(PORT_AUTO_NEG_SYM_PAUSE |
1244 			  PORT_AUTO_NEG_100BTX_FD |
1245 			  PORT_AUTO_NEG_100BTX |
1246 			  PORT_AUTO_NEG_10BT_FD |
1247 			  PORT_AUTO_NEG_10BT);
1248 		if (val & ADVERTISE_PAUSE_CAP)
1249 			data |= PORT_AUTO_NEG_SYM_PAUSE;
1250 		if (val & ADVERTISE_100FULL)
1251 			data |= PORT_AUTO_NEG_100BTX_FD;
1252 		if (val & ADVERTISE_100HALF)
1253 			data |= PORT_AUTO_NEG_100BTX;
1254 		if (val & ADVERTISE_10FULL)
1255 			data |= PORT_AUTO_NEG_10BT_FD;
1256 		if (val & ADVERTISE_10HALF)
1257 			data |= PORT_AUTO_NEG_10BT;
1258 
1259 		if (data != ctrl) {
1260 			ret = ksz_pwrite8(dev, p, regs[P_LOCAL_CTRL], data);
1261 			if (ret)
1262 				return ret;
1263 		}
1264 		break;
1265 	case PHY_REG_LINK_MD:
1266 		if (val & PHY_START_CABLE_DIAG)
1267 			ksz_port_cfg(dev, p, REG_PORT_LINK_MD_CTRL, PORT_START_CABLE_DIAG, true);
1268 		break;
1269 
1270 	case PHY_REG_PHY_CTRL:
1271 		ret = ksz8_w_phy_ctrl(dev, p, val);
1272 		if (ret)
1273 			return ret;
1274 		break;
1275 	default:
1276 		break;
1277 	}
1278 
1279 	return 0;
1280 }
1281 
ksz8_cfg_port_member(struct ksz_device * dev,int port,u8 member)1282 void ksz8_cfg_port_member(struct ksz_device *dev, int port, u8 member)
1283 {
1284 	int offset = P_MIRROR_CTRL;
1285 	u8 data;
1286 
1287 	if (ksz_is_ksz8463(dev))
1288 		offset = P1CR2;
1289 	ksz_pread8(dev, port, offset, &data);
1290 	data &= ~dev->port_mask;
1291 	data |= (member & dev->port_mask);
1292 	ksz_pwrite8(dev, port, offset, data);
1293 }
1294 
ksz8_flush_dyn_mac_table(struct ksz_device * dev,int port)1295 void ksz8_flush_dyn_mac_table(struct ksz_device *dev, int port)
1296 {
1297 	u8 learn[DSA_MAX_PORTS];
1298 	int first, index, cnt;
1299 	const u16 *regs;
1300 	int reg = S_FLUSH_TABLE_CTRL;
1301 	int mask = SW_FLUSH_DYN_MAC_TABLE;
1302 
1303 	regs = dev->info->regs;
1304 
1305 	if ((uint)port < dev->info->port_cnt) {
1306 		first = port;
1307 		cnt = port + 1;
1308 	} else {
1309 		/* Flush all ports. */
1310 		first = 0;
1311 		cnt = dev->info->port_cnt;
1312 	}
1313 	for (index = first; index < cnt; index++) {
1314 		ksz_pread8(dev, index, regs[P_STP_CTRL], &learn[index]);
1315 		if (!(learn[index] & PORT_LEARN_DISABLE))
1316 			ksz_pwrite8(dev, index, regs[P_STP_CTRL],
1317 				    learn[index] | PORT_LEARN_DISABLE);
1318 	}
1319 	if (ksz_is_ksz8463(dev)) {
1320 		reg = KSZ8463_FLUSH_TABLE_CTRL;
1321 		mask = KSZ8463_FLUSH_DYN_MAC_TABLE;
1322 	}
1323 	ksz_cfg(dev, reg, mask, true);
1324 	for (index = first; index < cnt; index++) {
1325 		if (!(learn[index] & PORT_LEARN_DISABLE))
1326 			ksz_pwrite8(dev, index, regs[P_STP_CTRL], learn[index]);
1327 	}
1328 }
1329 
ksz8_fdb_dump(struct ksz_device * dev,int port,dsa_fdb_dump_cb_t * cb,void * data)1330 int ksz8_fdb_dump(struct ksz_device *dev, int port,
1331 		  dsa_fdb_dump_cb_t *cb, void *data)
1332 {
1333 	u8 mac[ETH_ALEN];
1334 	u8 src_port, fid;
1335 	u16 entries = 0;
1336 	int ret, i;
1337 
1338 	for (i = 0; i < KSZ8_DYN_MAC_ENTRIES; i++) {
1339 		ret = ksz8_r_dyn_mac_table(dev, i, mac, &fid, &src_port,
1340 					   &entries);
1341 		if (ret)
1342 			return ret;
1343 
1344 		if (i >= entries)
1345 			return 0;
1346 
1347 		if (port == src_port) {
1348 			ret = cb(mac, fid, false, data);
1349 			if (ret)
1350 				return ret;
1351 		}
1352 	}
1353 
1354 	return 0;
1355 }
1356 
ksz8_add_sta_mac(struct ksz_device * dev,int port,const unsigned char * addr,u16 vid)1357 static int ksz8_add_sta_mac(struct ksz_device *dev, int port,
1358 			    const unsigned char *addr, u16 vid)
1359 {
1360 	struct alu_struct alu;
1361 	int index, ret;
1362 	int empty = 0;
1363 
1364 	alu.port_forward = 0;
1365 	for (index = 0; index < dev->info->num_statics; index++) {
1366 		bool valid;
1367 
1368 		ret = ksz8_r_sta_mac_table(dev, index, &alu, &valid);
1369 		if (ret)
1370 			return ret;
1371 		if (!valid) {
1372 			/* Remember the first empty entry. */
1373 			if (!empty)
1374 				empty = index + 1;
1375 			continue;
1376 		}
1377 
1378 		if (!memcmp(alu.mac, addr, ETH_ALEN) && alu.fid == vid)
1379 			break;
1380 	}
1381 
1382 	/* no available entry */
1383 	if (index == dev->info->num_statics && !empty)
1384 		return -ENOSPC;
1385 
1386 	/* add entry */
1387 	if (index == dev->info->num_statics) {
1388 		index = empty - 1;
1389 		memset(&alu, 0, sizeof(alu));
1390 		memcpy(alu.mac, addr, ETH_ALEN);
1391 		alu.is_static = true;
1392 	}
1393 	alu.port_forward |= BIT(port);
1394 	if (vid) {
1395 		alu.is_use_fid = true;
1396 
1397 		/* Need a way to map VID to FID. */
1398 		alu.fid = vid;
1399 	}
1400 
1401 	return ksz8_w_sta_mac_table(dev, index, &alu);
1402 }
1403 
ksz8_del_sta_mac(struct ksz_device * dev,int port,const unsigned char * addr,u16 vid)1404 static int ksz8_del_sta_mac(struct ksz_device *dev, int port,
1405 			    const unsigned char *addr, u16 vid)
1406 {
1407 	struct alu_struct alu;
1408 	int index, ret;
1409 
1410 	for (index = 0; index < dev->info->num_statics; index++) {
1411 		bool valid;
1412 
1413 		ret = ksz8_r_sta_mac_table(dev, index, &alu, &valid);
1414 		if (ret)
1415 			return ret;
1416 		if (!valid)
1417 			continue;
1418 
1419 		if (!memcmp(alu.mac, addr, ETH_ALEN) && alu.fid == vid)
1420 			break;
1421 	}
1422 
1423 	/* no available entry */
1424 	if (index == dev->info->num_statics)
1425 		return 0;
1426 
1427 	/* clear port */
1428 	alu.port_forward &= ~BIT(port);
1429 	if (!alu.port_forward)
1430 		alu.is_static = false;
1431 
1432 	return ksz8_w_sta_mac_table(dev, index, &alu);
1433 }
1434 
ksz8_mdb_add(struct ksz_device * dev,int port,const struct switchdev_obj_port_mdb * mdb,struct dsa_db db)1435 int ksz8_mdb_add(struct ksz_device *dev, int port,
1436 		 const struct switchdev_obj_port_mdb *mdb, struct dsa_db db)
1437 {
1438 	return ksz8_add_sta_mac(dev, port, mdb->addr, mdb->vid);
1439 }
1440 
ksz8_mdb_del(struct ksz_device * dev,int port,const struct switchdev_obj_port_mdb * mdb,struct dsa_db db)1441 int ksz8_mdb_del(struct ksz_device *dev, int port,
1442 		 const struct switchdev_obj_port_mdb *mdb, struct dsa_db db)
1443 {
1444 	return ksz8_del_sta_mac(dev, port, mdb->addr, mdb->vid);
1445 }
1446 
ksz8_fdb_add(struct ksz_device * dev,int port,const unsigned char * addr,u16 vid,struct dsa_db db)1447 int ksz8_fdb_add(struct ksz_device *dev, int port, const unsigned char *addr,
1448 		 u16 vid, struct dsa_db db)
1449 {
1450 	return ksz8_add_sta_mac(dev, port, addr, vid);
1451 }
1452 
ksz8_fdb_del(struct ksz_device * dev,int port,const unsigned char * addr,u16 vid,struct dsa_db db)1453 int ksz8_fdb_del(struct ksz_device *dev, int port, const unsigned char *addr,
1454 		 u16 vid, struct dsa_db db)
1455 {
1456 	return ksz8_del_sta_mac(dev, port, addr, vid);
1457 }
1458 
ksz8_port_vlan_filtering(struct ksz_device * dev,int port,bool flag,struct netlink_ext_ack * extack)1459 int ksz8_port_vlan_filtering(struct ksz_device *dev, int port, bool flag,
1460 			     struct netlink_ext_ack *extack)
1461 {
1462 	if (ksz_is_ksz88x3(dev) || ksz_is_ksz8463(dev))
1463 		return -ENOTSUPP;
1464 
1465 	/* Discard packets with VID not enabled on the switch */
1466 	ksz_cfg(dev, S_MIRROR_CTRL, SW_VLAN_ENABLE, flag);
1467 
1468 	/* Discard packets with VID not enabled on the ingress port */
1469 	for (port = 0; port < dev->phy_port_cnt; ++port)
1470 		ksz_port_cfg(dev, port, REG_PORT_CTRL_2, PORT_INGRESS_FILTER,
1471 			     flag);
1472 
1473 	return 0;
1474 }
1475 
ksz8_port_enable_pvid(struct ksz_device * dev,int port,bool state)1476 static void ksz8_port_enable_pvid(struct ksz_device *dev, int port, bool state)
1477 {
1478 	if (ksz_is_ksz88x3(dev) || ksz_is_ksz8463(dev)) {
1479 		int reg = REG_SW_INSERT_SRC_PVID;
1480 
1481 		if (ksz_is_ksz8463(dev))
1482 			reg = KSZ8463_REG_SW_CTRL_9;
1483 		ksz_cfg(dev, reg, 0x03 << (4 - 2 * port), state);
1484 	} else {
1485 		ksz_pwrite8(dev, port, REG_PORT_CTRL_12, state ? 0x0f : 0x00);
1486 	}
1487 }
1488 
ksz8_port_vlan_add(struct ksz_device * dev,int port,const struct switchdev_obj_port_vlan * vlan,struct netlink_ext_ack * extack)1489 int ksz8_port_vlan_add(struct ksz_device *dev, int port,
1490 		       const struct switchdev_obj_port_vlan *vlan,
1491 		       struct netlink_ext_ack *extack)
1492 {
1493 	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
1494 	struct ksz_port *p = &dev->ports[port];
1495 	u16 data, new_pvid = 0;
1496 	u8 fid, member, valid;
1497 
1498 	if (ksz_is_ksz88x3(dev) || ksz_is_ksz8463(dev))
1499 		return -ENOTSUPP;
1500 
1501 	/* If a VLAN is added with untagged flag different from the
1502 	 * port's Remove Tag flag, we need to change the latter.
1503 	 * Ignore VID 0, which is always untagged.
1504 	 * Ignore CPU port, which will always be tagged.
1505 	 */
1506 	if (untagged != p->remove_tag && vlan->vid != 0 &&
1507 	    port != dev->cpu_port) {
1508 		unsigned int vid;
1509 
1510 		/* Reject attempts to add a VLAN that requires the
1511 		 * Remove Tag flag to be changed, unless there are no
1512 		 * other VLANs currently configured.
1513 		 */
1514 		for (vid = 1; vid < dev->info->num_vlans; ++vid) {
1515 			/* Skip the VID we are going to add or reconfigure */
1516 			if (vid == vlan->vid)
1517 				continue;
1518 
1519 			ksz8_from_vlan(dev, dev->vlan_cache[vid].table[0],
1520 				       &fid, &member, &valid);
1521 			if (valid && (member & BIT(port)))
1522 				return -EINVAL;
1523 		}
1524 
1525 		ksz_port_cfg(dev, port, P_TAG_CTRL, PORT_REMOVE_TAG, untagged);
1526 		p->remove_tag = untagged;
1527 	}
1528 
1529 	ksz8_r_vlan_table(dev, vlan->vid, &data);
1530 	ksz8_from_vlan(dev, data, &fid, &member, &valid);
1531 
1532 	/* First time to setup the VLAN entry. */
1533 	if (!valid) {
1534 		/* Need to find a way to map VID to FID. */
1535 		fid = 1;
1536 		valid = 1;
1537 	}
1538 	member |= BIT(port);
1539 
1540 	ksz8_to_vlan(dev, fid, member, valid, &data);
1541 	ksz8_w_vlan_table(dev, vlan->vid, data);
1542 
1543 	/* change PVID */
1544 	if (vlan->flags & BRIDGE_VLAN_INFO_PVID)
1545 		new_pvid = vlan->vid;
1546 
1547 	if (new_pvid) {
1548 		u16 vid;
1549 
1550 		ksz_pread16(dev, port, REG_PORT_CTRL_VID, &vid);
1551 		vid &= ~VLAN_VID_MASK;
1552 		vid |= new_pvid;
1553 		ksz_pwrite16(dev, port, REG_PORT_CTRL_VID, vid);
1554 
1555 		ksz8_port_enable_pvid(dev, port, true);
1556 	}
1557 
1558 	return 0;
1559 }
1560 
ksz8_port_vlan_del(struct ksz_device * dev,int port,const struct switchdev_obj_port_vlan * vlan)1561 int ksz8_port_vlan_del(struct ksz_device *dev, int port,
1562 		       const struct switchdev_obj_port_vlan *vlan)
1563 {
1564 	u16 data, pvid;
1565 	u8 fid, member, valid;
1566 
1567 	if (ksz_is_ksz88x3(dev) || ksz_is_ksz8463(dev))
1568 		return -ENOTSUPP;
1569 
1570 	ksz_pread16(dev, port, REG_PORT_CTRL_VID, &pvid);
1571 	pvid = pvid & 0xFFF;
1572 
1573 	ksz8_r_vlan_table(dev, vlan->vid, &data);
1574 	ksz8_from_vlan(dev, data, &fid, &member, &valid);
1575 
1576 	member &= ~BIT(port);
1577 
1578 	/* Invalidate the entry if no more member. */
1579 	if (!member) {
1580 		fid = 0;
1581 		valid = 0;
1582 	}
1583 
1584 	ksz8_to_vlan(dev, fid, member, valid, &data);
1585 	ksz8_w_vlan_table(dev, vlan->vid, data);
1586 
1587 	if (pvid == vlan->vid)
1588 		ksz8_port_enable_pvid(dev, port, false);
1589 
1590 	return 0;
1591 }
1592 
ksz8_port_mirror_add(struct ksz_device * dev,int port,struct dsa_mall_mirror_tc_entry * mirror,bool ingress,struct netlink_ext_ack * extack)1593 int ksz8_port_mirror_add(struct ksz_device *dev, int port,
1594 			 struct dsa_mall_mirror_tc_entry *mirror,
1595 			 bool ingress, struct netlink_ext_ack *extack)
1596 {
1597 	int offset = P_MIRROR_CTRL;
1598 
1599 	if (ksz_is_ksz8463(dev))
1600 		offset = P1CR2;
1601 	if (ingress) {
1602 		ksz_port_cfg(dev, port, offset, PORT_MIRROR_RX, true);
1603 		dev->mirror_rx |= BIT(port);
1604 	} else {
1605 		ksz_port_cfg(dev, port, offset, PORT_MIRROR_TX, true);
1606 		dev->mirror_tx |= BIT(port);
1607 	}
1608 
1609 	ksz_port_cfg(dev, port, offset, PORT_MIRROR_SNIFFER, false);
1610 
1611 	/* configure mirror port */
1612 	if (dev->mirror_rx || dev->mirror_tx)
1613 		ksz_port_cfg(dev, mirror->to_local_port, offset,
1614 			     PORT_MIRROR_SNIFFER, true);
1615 
1616 	return 0;
1617 }
1618 
ksz8_port_mirror_del(struct ksz_device * dev,int port,struct dsa_mall_mirror_tc_entry * mirror)1619 void ksz8_port_mirror_del(struct ksz_device *dev, int port,
1620 			  struct dsa_mall_mirror_tc_entry *mirror)
1621 {
1622 	int offset = P_MIRROR_CTRL;
1623 	u8 data;
1624 
1625 	if (ksz_is_ksz8463(dev))
1626 		offset = P1CR2;
1627 	if (mirror->ingress) {
1628 		ksz_port_cfg(dev, port, offset, PORT_MIRROR_RX, false);
1629 		dev->mirror_rx &= ~BIT(port);
1630 	} else {
1631 		ksz_port_cfg(dev, port, offset, PORT_MIRROR_TX, false);
1632 		dev->mirror_tx &= ~BIT(port);
1633 	}
1634 
1635 	ksz_pread8(dev, port, offset, &data);
1636 
1637 	if (!dev->mirror_rx && !dev->mirror_tx)
1638 		ksz_port_cfg(dev, mirror->to_local_port, offset,
1639 			     PORT_MIRROR_SNIFFER, false);
1640 }
1641 
ksz8795_cpu_interface_select(struct ksz_device * dev,int port)1642 static void ksz8795_cpu_interface_select(struct ksz_device *dev, int port)
1643 {
1644 	struct ksz_port *p = &dev->ports[port];
1645 
1646 	if (!ksz_is_ksz87xx(dev))
1647 		return;
1648 
1649 	if (!p->interface && dev->compat_interface) {
1650 		dev_warn(dev->dev,
1651 			 "Using legacy switch \"phy-mode\" property, because it is missing on port %d node. "
1652 			 "Please update your device tree.\n",
1653 			 port);
1654 		p->interface = dev->compat_interface;
1655 	}
1656 }
1657 
ksz8_port_setup(struct ksz_device * dev,int port,bool cpu_port)1658 void ksz8_port_setup(struct ksz_device *dev, int port, bool cpu_port)
1659 {
1660 	const u16 *regs = dev->info->regs;
1661 	struct dsa_switch *ds = dev->ds;
1662 	const u32 *masks;
1663 	int offset;
1664 	u8 member;
1665 
1666 	masks = dev->info->masks;
1667 
1668 	/* enable broadcast storm limit */
1669 	offset = P_BCAST_STORM_CTRL;
1670 	if (ksz_is_ksz8463(dev))
1671 		offset = P1CR1;
1672 	ksz_port_cfg(dev, port, offset, PORT_BROADCAST_STORM, true);
1673 
1674 	ksz8_port_queue_split(dev, port, dev->info->num_tx_queues);
1675 
1676 	/* replace priority */
1677 	offset = P_802_1P_CTRL;
1678 	if (ksz_is_ksz8463(dev))
1679 		offset = P1CR2;
1680 	ksz_port_cfg(dev, port, offset,
1681 		     masks[PORT_802_1P_REMAPPING], false);
1682 
1683 	if (cpu_port)
1684 		member = dsa_user_ports(ds);
1685 	else
1686 		member = BIT(dsa_upstream_port(ds, port));
1687 
1688 	ksz8_cfg_port_member(dev, port, member);
1689 
1690 	/* Disable all WoL options by default. Otherwise
1691 	 * ksz_switch_macaddr_get/put logic will not work properly.
1692 	 * CPU port 4 has no WoL functionality.
1693 	 */
1694 	if (ksz_is_ksz87xx(dev) && !cpu_port)
1695 		ksz8_pme_pwrite8(dev, port, regs[REG_PORT_PME_CTRL], 0);
1696 }
1697 
ksz88x3_config_rmii_clk(struct ksz_device * dev)1698 static void ksz88x3_config_rmii_clk(struct ksz_device *dev)
1699 {
1700 	struct dsa_port *cpu_dp = dsa_to_port(dev->ds, dev->cpu_port);
1701 	bool rmii_clk_internal;
1702 
1703 	if (!ksz_is_ksz88x3(dev))
1704 		return;
1705 
1706 	rmii_clk_internal = of_property_read_bool(cpu_dp->dn,
1707 						  "microchip,rmii-clk-internal");
1708 
1709 	ksz_cfg(dev, KSZ88X3_REG_FVID_AND_HOST_MODE,
1710 		KSZ88X3_PORT3_RMII_CLK_INTERNAL, rmii_clk_internal);
1711 }
1712 
ksz8_config_cpu_port(struct dsa_switch * ds)1713 void ksz8_config_cpu_port(struct dsa_switch *ds)
1714 {
1715 	struct ksz_device *dev = ds->priv;
1716 	struct ksz_port *p;
1717 	const u32 *masks;
1718 	const u16 *regs;
1719 	u8 remote;
1720 	u8 fiber_ports = 0;
1721 	int i;
1722 
1723 	masks = dev->info->masks;
1724 	regs = dev->info->regs;
1725 
1726 	ksz_cfg(dev, regs[S_TAIL_TAG_CTRL], masks[SW_TAIL_TAG_ENABLE], true);
1727 
1728 	ksz8_port_setup(dev, dev->cpu_port, true);
1729 
1730 	ksz8795_cpu_interface_select(dev, dev->cpu_port);
1731 	ksz88x3_config_rmii_clk(dev);
1732 
1733 	for (i = 0; i < dev->phy_port_cnt; i++) {
1734 		ksz_port_stp_state_set(ds, i, BR_STATE_DISABLED);
1735 	}
1736 	for (i = 0; i < dev->phy_port_cnt; i++) {
1737 		p = &dev->ports[i];
1738 
1739 		/* For KSZ8795 family. */
1740 		if (ksz_is_ksz87xx(dev)) {
1741 			ksz_pread8(dev, i, regs[P_REMOTE_STATUS], &remote);
1742 			if (remote & KSZ8_PORT_FIBER_MODE)
1743 				p->fiber = 1;
1744 		}
1745 		if (p->fiber)
1746 			ksz_port_cfg(dev, i, regs[P_STP_CTRL],
1747 				     PORT_FORCE_FLOW_CTRL, true);
1748 		else
1749 			ksz_port_cfg(dev, i, regs[P_STP_CTRL],
1750 				     PORT_FORCE_FLOW_CTRL, false);
1751 		if (p->fiber)
1752 			fiber_ports |= (1 << i);
1753 	}
1754 	if (ksz_is_ksz8463(dev)) {
1755 		/* Setup fiber ports. */
1756 		if (fiber_ports) {
1757 			fiber_ports &= 3;
1758 			regmap_update_bits(ksz_regmap_16(dev),
1759 					   KSZ8463_REG_CFG_CTRL,
1760 					   fiber_ports << PORT_COPPER_MODE_S,
1761 					   0);
1762 			regmap_update_bits(ksz_regmap_16(dev),
1763 					   KSZ8463_REG_DSP_CTRL_6,
1764 					   COPPER_RECEIVE_ADJUSTMENT, 0);
1765 		}
1766 
1767 		/* Turn off PTP function as the switch's proprietary way of
1768 		 * handling timestamp is not supported in current Linux PTP
1769 		 * stack implementation.
1770 		 */
1771 		regmap_update_bits(ksz_regmap_16(dev),
1772 				   KSZ8463_PTP_MSG_CONF1,
1773 				   PTP_ENABLE, 0);
1774 		regmap_update_bits(ksz_regmap_16(dev),
1775 				   KSZ8463_PTP_CLK_CTRL,
1776 				   PTP_CLK_ENABLE, 0);
1777 	}
1778 }
1779 
1780 /**
1781  * ksz8_phy_port_link_up - Configures ports with integrated PHYs
1782  * @dev: The KSZ device instance.
1783  * @port: The port number to configure.
1784  * @duplex: The desired duplex mode.
1785  * @tx_pause: If true, enables transmit pause.
1786  * @rx_pause: If true, enables receive pause.
1787  *
1788  * Description:
1789  * The function configures flow control settings for a given port based on the
1790  * desired settings and current duplex mode.
1791  *
1792  * According to the KSZ8873 datasheet, the PORT_FORCE_FLOW_CTRL bit in the
1793  * Port Control 2 register (0x1A for Port 1, 0x22 for Port 2, 0x32 for Port 3)
1794  * determines how flow control is handled on the port:
1795  *    "1 = will always enable full-duplex flow control on the port, regardless
1796  *         of AN result.
1797  *     0 = full-duplex flow control is enabled based on AN result."
1798  *
1799  * This means that the flow control behavior depends on the state of this bit:
1800  * - If PORT_FORCE_FLOW_CTRL is set to 1, the switch will ignore AN results and
1801  *   force flow control on the port.
1802  * - If PORT_FORCE_FLOW_CTRL is set to 0, the switch will enable or disable
1803  *   flow control based on the AN results.
1804  *
1805  * However, there is a potential limitation in this configuration. It is
1806  * currently not possible to force disable flow control on a port if we still
1807  * advertise pause support. While such a configuration is not currently
1808  * supported by Linux, and may not make practical sense, it's important to be
1809  * aware of this limitation when working with the KSZ8873 and similar devices.
1810  */
ksz8_phy_port_link_up(struct ksz_device * dev,int port,int duplex,bool tx_pause,bool rx_pause)1811 static void ksz8_phy_port_link_up(struct ksz_device *dev, int port, int duplex,
1812 				  bool tx_pause, bool rx_pause)
1813 {
1814 	const u16 *regs = dev->info->regs;
1815 	u8 sctrl = 0;
1816 
1817 	/* The KSZ8795 switch differs from the KSZ8873 by supporting
1818 	 * asymmetric pause control. However, since a single bit is used to
1819 	 * control both RX and TX pause, we can't enforce asymmetric pause
1820 	 * control - both TX and RX pause will be either enabled or disabled
1821 	 * together.
1822 	 *
1823 	 * If auto-negotiation is enabled, we usually allow the flow control to
1824 	 * be determined by the auto-negotiation process based on the
1825 	 * capabilities of both link partners. However, for KSZ8873, the
1826 	 * PORT_FORCE_FLOW_CTRL bit may be set by the hardware bootstrap,
1827 	 * ignoring the auto-negotiation result. Thus, even in auto-negotiation
1828 	 * mode, we need to ensure that the PORT_FORCE_FLOW_CTRL bit is
1829 	 * properly cleared.
1830 	 *
1831 	 * In the absence of pause auto-negotiation, we will enforce symmetric
1832 	 * pause control for both variants of switches - KSZ8873 and KSZ8795.
1833 	 *
1834 	 * Autoneg Pause Autoneg      rx,tx	PORT_FORCE_FLOW_CTRL
1835 	 * 1		1		x	0
1836 	 * 0		1		x	0 (flow control probably disabled)
1837 	 * x		0		1	1 (flow control force enabled)
1838 	 * 1		0		0	0 (flow control still depends on
1839 	 *					   aneg result due to hardware)
1840 	 * 0		0		0	0 (flow control probably disabled)
1841 	 */
1842 	if (dev->ports[port].manual_flow && tx_pause)
1843 		sctrl |= PORT_FORCE_FLOW_CTRL;
1844 
1845 	ksz_prmw8(dev, port, regs[P_STP_CTRL], PORT_FORCE_FLOW_CTRL, sctrl);
1846 }
1847 
1848 /**
1849  * ksz8_cpu_port_link_up - Configures the CPU port of the switch.
1850  * @dev: The KSZ device instance.
1851  * @speed: The desired link speed.
1852  * @duplex: The desired duplex mode.
1853  * @tx_pause: If true, enables transmit pause.
1854  * @rx_pause: If true, enables receive pause.
1855  *
1856  * Description:
1857  * The function configures flow control and speed settings for the CPU
1858  * port of the switch based on the desired settings, current duplex mode, and
1859  * speed.
1860  */
ksz8_cpu_port_link_up(struct ksz_device * dev,int speed,int duplex,bool tx_pause,bool rx_pause)1861 static void ksz8_cpu_port_link_up(struct ksz_device *dev, int speed, int duplex,
1862 				  bool tx_pause, bool rx_pause)
1863 {
1864 	const u16 *regs = dev->info->regs;
1865 	u8 ctrl = 0;
1866 
1867 	/* SW_FLOW_CTRL, SW_HALF_DUPLEX, and SW_10_MBIT bits are bootstrappable
1868 	 * at least on KSZ8873. They can have different values depending on your
1869 	 * board setup.
1870 	 */
1871 	if (tx_pause || rx_pause)
1872 		ctrl |= SW_FLOW_CTRL;
1873 
1874 	if (duplex == DUPLEX_HALF)
1875 		ctrl |= SW_HALF_DUPLEX;
1876 
1877 	/* This hardware only supports SPEED_10 and SPEED_100. For SPEED_10
1878 	 * we need to set the SW_10_MBIT bit. Otherwise, we can leave it 0.
1879 	 */
1880 	if (speed == SPEED_10)
1881 		ctrl |= SW_10_MBIT;
1882 
1883 	ksz_rmw8(dev, regs[S_BROADCAST_CTRL], SW_HALF_DUPLEX | SW_FLOW_CTRL |
1884 		 SW_10_MBIT, ctrl);
1885 }
1886 
ksz8_phylink_mac_link_up(struct phylink_config * config,struct phy_device * phydev,unsigned int mode,phy_interface_t interface,int speed,int duplex,bool tx_pause,bool rx_pause)1887 void ksz8_phylink_mac_link_up(struct phylink_config *config,
1888 			      struct phy_device *phydev, unsigned int mode,
1889 			      phy_interface_t interface, int speed, int duplex,
1890 			      bool tx_pause, bool rx_pause)
1891 {
1892 	struct dsa_port *dp = dsa_phylink_to_port(config);
1893 	struct ksz_device *dev = dp->ds->priv;
1894 	int port = dp->index;
1895 
1896 	/* If the port is the CPU port, apply special handling. Only the CPU
1897 	 * port is configured via global registers.
1898 	 */
1899 	if (dev->cpu_port == port)
1900 		ksz8_cpu_port_link_up(dev, speed, duplex, tx_pause, rx_pause);
1901 	else if (dev->info->internal_phy[port])
1902 		ksz8_phy_port_link_up(dev, port, duplex, tx_pause, rx_pause);
1903 }
1904 
ksz8_handle_global_errata(struct dsa_switch * ds)1905 static int ksz8_handle_global_errata(struct dsa_switch *ds)
1906 {
1907 	struct ksz_device *dev = ds->priv;
1908 	int ret = 0;
1909 
1910 	/* KSZ87xx Errata DS80000687C.
1911 	 * Module 2: Link drops with some EEE link partners.
1912 	 *   An issue with the EEE next page exchange between the
1913 	 *   KSZ879x/KSZ877x/KSZ876x and some EEE link partners may result in
1914 	 *   the link dropping.
1915 	 */
1916 	if (dev->info->ksz87xx_eee_link_erratum)
1917 		ret = ksz8_ind_write8(dev, TABLE_EEE, REG_IND_EEE_GLOB2_HI, 0);
1918 
1919 	return ret;
1920 }
1921 
ksz8_enable_stp_addr(struct ksz_device * dev)1922 int ksz8_enable_stp_addr(struct ksz_device *dev)
1923 {
1924 	struct alu_struct alu;
1925 
1926 	/* Setup STP address for STP operation. */
1927 	memset(&alu, 0, sizeof(alu));
1928 	ether_addr_copy(alu.mac, eth_stp_addr);
1929 	alu.is_static = true;
1930 	alu.is_override = true;
1931 	alu.port_forward = dev->info->cpu_ports;
1932 
1933 	return ksz8_w_sta_mac_table(dev, 0, &alu);
1934 }
1935 
ksz8_setup(struct dsa_switch * ds)1936 int ksz8_setup(struct dsa_switch *ds)
1937 {
1938 	struct ksz_device *dev = ds->priv;
1939 	const u16 *regs = dev->info->regs;
1940 	int i, ret = 0;
1941 
1942 	ds->mtu_enforcement_ingress = true;
1943 
1944 	/* We rely on software untagging on the CPU port, so that we
1945 	 * can support both tagged and untagged VLANs
1946 	 */
1947 	ds->untag_bridge_pvid = true;
1948 
1949 	/* VLAN filtering is partly controlled by the global VLAN
1950 	 * Enable flag
1951 	 */
1952 	ds->vlan_filtering_is_global = true;
1953 
1954 	/* Enable automatic fast aging when link changed detected. */
1955 	ksz_cfg(dev, S_LINK_AGING_CTRL, SW_LINK_AUTO_AGING, true);
1956 
1957 	/* Enable aggressive back off algorithm in half duplex mode. */
1958 	regmap_update_bits(ksz_regmap_8(dev), REG_SW_CTRL_1,
1959 			   SW_AGGR_BACKOFF, SW_AGGR_BACKOFF);
1960 
1961 	/*
1962 	 * Make sure unicast VLAN boundary is set as default and
1963 	 * enable no excessive collision drop.
1964 	 */
1965 	regmap_update_bits(ksz_regmap_8(dev), REG_SW_CTRL_2,
1966 			   UNICAST_VLAN_BOUNDARY | NO_EXC_COLLISION_DROP,
1967 			   UNICAST_VLAN_BOUNDARY | NO_EXC_COLLISION_DROP);
1968 
1969 	ksz_cfg(dev, S_REPLACE_VID_CTRL, SW_REPLACE_VID, false);
1970 
1971 	ksz_cfg(dev, S_MIRROR_CTRL, SW_MIRROR_RX_TX, false);
1972 
1973 	if (!ksz_is_ksz88x3(dev) && !ksz_is_ksz8463(dev))
1974 		ksz_cfg(dev, REG_SW_CTRL_19, SW_INS_TAG_ENABLE, true);
1975 
1976 	for (i = 0; i < (dev->info->num_vlans / 4); i++)
1977 		ksz8_r_vlan_entries(dev, i);
1978 
1979 	/* Make sure PME (WoL) is not enabled. If requested, it will
1980 	 * be enabled by ksz_wol_pre_shutdown(). Otherwise, some PMICs
1981 	 * do not like PME events changes before shutdown. PME only
1982 	 * available on KSZ87xx family.
1983 	 */
1984 	if (ksz_is_ksz87xx(dev)) {
1985 		ret = ksz8_pme_write8(dev, regs[REG_SW_PME_CTRL], 0);
1986 		if (!ret)
1987 			ret = ksz_rmw8(dev, REG_INT_ENABLE, INT_PME, 0);
1988 	}
1989 
1990 	if (!ret)
1991 		return ksz8_handle_global_errata(ds);
1992 	else
1993 		return ret;
1994 }
1995 
ksz8_get_caps(struct ksz_device * dev,int port,struct phylink_config * config)1996 void ksz8_get_caps(struct ksz_device *dev, int port,
1997 		   struct phylink_config *config)
1998 {
1999 	config->mac_capabilities = MAC_10 | MAC_100;
2000 
2001 	/* Silicon Errata Sheet (DS80000830A):
2002 	 * "Port 1 does not respond to received flow control PAUSE frames"
2003 	 * So, disable Pause support on "Port 1" (port == 0) for all ksz88x3
2004 	 * switches.
2005 	 */
2006 	if (!ksz_is_ksz88x3(dev) || port)
2007 		config->mac_capabilities |= MAC_SYM_PAUSE;
2008 
2009 	/* Asym pause is not supported on KSZ8863 and KSZ8873 */
2010 	if (!ksz_is_ksz88x3(dev))
2011 		config->mac_capabilities |= MAC_ASYM_PAUSE;
2012 }
2013 
ksz8_get_port_addr(int port,int offset)2014 u32 ksz8_get_port_addr(int port, int offset)
2015 {
2016 	return PORT_CTRL_ADDR(port, offset);
2017 }
2018 
ksz8463_get_port_addr(int port,int offset)2019 u32 ksz8463_get_port_addr(int port, int offset)
2020 {
2021 	return offset + 0x18 * port;
2022 }
2023 
ksz8463_get_phy_addr(u16 phy,u16 reg,u16 offset)2024 static u16 ksz8463_get_phy_addr(u16 phy, u16 reg, u16 offset)
2025 {
2026 	return offset + reg * 2 + phy * (P2MBCR - P1MBCR);
2027 }
2028 
ksz8463_r_phy(struct ksz_device * dev,u16 phy,u16 reg,u16 * val)2029 int ksz8463_r_phy(struct ksz_device *dev, u16 phy, u16 reg, u16 *val)
2030 {
2031 	u16 sw_reg = 0;
2032 	u16 data = 0;
2033 	int ret;
2034 
2035 	if (phy > 1)
2036 		return -ENOSPC;
2037 	switch (reg) {
2038 	case MII_PHYSID1:
2039 		sw_reg = ksz8463_get_phy_addr(phy, 0, PHY1IHR);
2040 		break;
2041 	case MII_PHYSID2:
2042 		sw_reg = ksz8463_get_phy_addr(phy, 0, PHY1ILR);
2043 		break;
2044 	case MII_BMCR:
2045 	case MII_BMSR:
2046 	case MII_ADVERTISE:
2047 	case MII_LPA:
2048 		sw_reg = ksz8463_get_phy_addr(phy, reg, P1MBCR);
2049 		break;
2050 	case MII_TPISTATUS:
2051 		/* This register holds the PHY interrupt status for simulated
2052 		 * Micrel KSZ PHY.
2053 		 */
2054 		data = 0x0505;
2055 		break;
2056 	default:
2057 		break;
2058 	}
2059 	if (sw_reg) {
2060 		ret = ksz_read16(dev, sw_reg, &data);
2061 		if (ret)
2062 			return ret;
2063 	}
2064 	*val = data;
2065 
2066 	return 0;
2067 }
2068 
ksz8463_w_phy(struct ksz_device * dev,u16 phy,u16 reg,u16 val)2069 int ksz8463_w_phy(struct ksz_device *dev, u16 phy, u16 reg, u16 val)
2070 {
2071 	u16 sw_reg = 0;
2072 	int ret;
2073 
2074 	if (phy > 1)
2075 		return -ENOSPC;
2076 
2077 	/* No write to fiber port. */
2078 	if (dev->ports[phy].fiber)
2079 		return 0;
2080 	switch (reg) {
2081 	case MII_BMCR:
2082 	case MII_ADVERTISE:
2083 		sw_reg = ksz8463_get_phy_addr(phy, reg, P1MBCR);
2084 		break;
2085 	default:
2086 		break;
2087 	}
2088 	if (sw_reg) {
2089 		ret = ksz_write16(dev, sw_reg, val);
2090 		if (ret)
2091 			return ret;
2092 	}
2093 
2094 	return 0;
2095 }
2096 
ksz8_switch_init(struct ksz_device * dev)2097 int ksz8_switch_init(struct ksz_device *dev)
2098 {
2099 	dev->cpu_port = fls(dev->info->cpu_ports) - 1;
2100 	dev->phy_port_cnt = dev->info->port_cnt - 1;
2101 	dev->port_mask = (BIT(dev->phy_port_cnt) - 1) | dev->info->cpu_ports;
2102 
2103 	return 0;
2104 }
2105 
ksz8_switch_exit(struct ksz_device * dev)2106 void ksz8_switch_exit(struct ksz_device *dev)
2107 {
2108 	ksz8_reset_switch(dev);
2109 }
2110 
2111 MODULE_AUTHOR("Tristram Ha <Tristram.Ha@microchip.com>");
2112 MODULE_DESCRIPTION("Microchip KSZ8795 Series Switch DSA Driver");
2113 MODULE_LICENSE("GPL");
2114