1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2016 by Delphix. All rights reserved.
25 * Copyright 2018 Joyent, Inc.
26 * Copyright 2019 Peter Tribble.
27 */
28
29 #include <sys/machsystm.h>
30 #include <sys/archsystm.h>
31 #include <sys/vm.h>
32 #include <sys/cpu.h>
33 #include <sys/atomic.h>
34 #include <sys/reboot.h>
35 #include <sys/kdi.h>
36 #include <sys/bootconf.h>
37 #include <sys/memlist_plat.h>
38 #include <sys/memlist_impl.h>
39 #include <sys/prom_plat.h>
40 #include <sys/prom_isa.h>
41 #include <sys/autoconf.h>
42 #include <sys/ivintr.h>
43 #include <sys/fpu/fpusystm.h>
44 #include <sys/iommutsb.h>
45 #include <vm/vm_dep.h>
46 #include <vm/seg_dev.h>
47 #include <vm/seg_kmem.h>
48 #include <vm/seg_kpm.h>
49 #include <vm/seg_map.h>
50 #include <vm/seg_kp.h>
51 #include <sys/sysconf.h>
52 #include <vm/hat_sfmmu.h>
53 #include <sys/kobj.h>
54 #include <sys/sun4asi.h>
55 #include <sys/clconf.h>
56 #include <sys/platform_module.h>
57 #include <sys/panic.h>
58 #include <sys/cpu_sgnblk_defs.h>
59 #include <sys/clock.h>
60 #include <sys/cmn_err.h>
61 #include <sys/dumphdr.h>
62 #include <sys/promif.h>
63 #include <sys/prom_debug.h>
64 #include <sys/traptrace.h>
65 #include <sys/memnode.h>
66 #include <sys/mem_cage.h>
67 #include <sys/mmu.h>
68 #include <sys/swap.h>
69
70 extern void setup_trap_table(void);
71 extern int cpu_intrq_setup(struct cpu *);
72 extern void cpu_intrq_register(struct cpu *);
73 extern void contig_mem_init(void);
74 extern caddr_t contig_mem_prealloc(caddr_t, pgcnt_t);
75 extern void mach_dump_buffer_init(void);
76 extern void mach_descrip_init(void);
77 extern void mach_descrip_startup_fini(void);
78 extern void mach_memscrub(void);
79 extern void mach_fpras(void);
80 extern void mach_cpu_halt_idle(void);
81 extern void mach_hw_copy_limit(void);
82 extern void load_mach_drivers(void);
83 extern void load_tod_module(void);
84 #pragma weak load_tod_module
85
86 extern int ndata_alloc_mmfsa(struct memlist *ndata);
87 #pragma weak ndata_alloc_mmfsa
88
89 extern void cif_init(void);
90 #pragma weak cif_init
91
92 extern void parse_idprom(void);
93 extern void add_vx_handler(char *, int, void (*)(cell_t *));
94 extern void mem_config_init(void);
95 extern void memseg_remap_init(void);
96
97 extern void mach_kpm_init(void);
98 extern void pcf_init();
99 extern int size_pse_array(pgcnt_t, int);
100 extern void pg_init();
101
102 /*
103 * External Data:
104 */
105 extern int vac_size; /* cache size in bytes */
106 extern uint_t vac_mask; /* VAC alignment consistency mask */
107 extern uint_t vac_colors;
108
109 /*
110 * Global Data Definitions:
111 */
112
113 /*
114 * XXX - Don't port this to new architectures
115 * A 3rd party volume manager driver (vxdm) depends on the symbol romp.
116 * 'romp' has no use with a prom with an IEEE 1275 client interface.
117 * The driver doesn't use the value, but it depends on the symbol.
118 */
119 void *romp; /* veritas driver won't load without romp 4154976 */
120 /*
121 * Declare these as initialized data so we can patch them.
122 */
123 pgcnt_t physmem = 0; /* memory size in pages, patch if you want less */
124 pgcnt_t segkpsize =
125 btop(SEGKPDEFSIZE); /* size of segkp segment in pages */
126 uint_t segmap_percent = 6; /* Size of segmap segment */
127
128 int use_cache = 1; /* cache not reliable (605 bugs) with MP */
129 int vac_copyback = 1;
130 char *cache_mode = NULL;
131 int use_mix = 1;
132 int prom_debug = 0;
133
134 caddr_t boot_tba; /* %tba at boot - used by kmdb */
135 uint_t tba_taken_over = 0;
136
137 caddr_t s_text; /* start of kernel text segment */
138 caddr_t e_text; /* end of kernel text segment */
139 caddr_t s_data; /* start of kernel data segment */
140 caddr_t e_data; /* end of kernel data segment */
141
142 caddr_t modtext; /* beginning of module text */
143 size_t modtext_sz; /* size of module text */
144 caddr_t moddata; /* beginning of module data reserve */
145 caddr_t e_moddata; /* end of module data reserve */
146
147 /*
148 * End of first block of contiguous kernel in 32-bit virtual address space
149 */
150 caddr_t econtig32; /* end of first blk of contiguous kernel */
151
152 caddr_t ncbase; /* beginning of non-cached segment */
153 caddr_t ncend; /* end of non-cached segment */
154
155 size_t ndata_remain_sz; /* bytes from end of data to 4MB boundary */
156 caddr_t nalloc_base; /* beginning of nucleus allocation */
157 caddr_t nalloc_end; /* end of nucleus allocatable memory */
158 caddr_t valloc_base; /* beginning of kvalloc segment */
159
160 caddr_t kmem64_base; /* base of kernel mem segment in 64-bit space */
161 caddr_t kmem64_end; /* end of kernel mem segment in 64-bit space */
162 size_t kmem64_sz; /* bytes in kernel mem segment, 64-bit space */
163 caddr_t kmem64_aligned_end; /* end of large page, overmaps 64-bit space */
164 int kmem64_szc; /* page size code */
165 uint64_t kmem64_pabase = (uint64_t)-1; /* physical address of kmem64_base */
166
167 uintptr_t shm_alignment; /* VAC address consistency modulus */
168 struct memlist *phys_install; /* Total installed physical memory */
169 struct memlist *phys_avail; /* Available (unreserved) physical memory */
170 struct memlist *virt_avail; /* Available (unmapped?) virtual memory */
171 struct memlist *nopp_list; /* pages with no backing page structs */
172 struct memlist ndata; /* memlist of nucleus allocatable memory */
173 int memexp_flag; /* memory expansion card flag */
174 uint64_t ecache_flushaddr; /* physical address used for flushing E$ */
175 pgcnt_t obp_pages; /* Physical pages used by OBP */
176
177 /*
178 * VM data structures
179 */
180 long page_hashsz; /* Size of page hash table (power of two) */
181 unsigned int page_hashsz_shift; /* log2(page_hashsz) */
182 struct page *pp_base; /* Base of system page struct array */
183 size_t pp_sz; /* Size in bytes of page struct array */
184 struct page **page_hash; /* Page hash table */
185 pad_mutex_t *pse_mutex; /* Locks protecting pp->p_selock */
186 size_t pse_table_size; /* Number of mutexes in pse_mutex[] */
187 int pse_shift; /* log2(pse_table_size) */
188 struct seg ktextseg; /* Segment used for kernel executable image */
189 struct seg kvalloc; /* Segment used for "valloc" mapping */
190 struct seg kpseg; /* Segment used for pageable kernel virt mem */
191 struct seg ktexthole; /* Segment used for nucleus text hole */
192 struct seg kmapseg; /* Segment used for generic kernel mappings */
193 struct seg kpmseg; /* Segment used for physical mapping */
194 struct seg kdebugseg; /* Segment used for the kernel debugger */
195
196 void *kpm_pp_base; /* Base of system kpm_page array */
197 size_t kpm_pp_sz; /* Size of system kpm_page array */
198 pgcnt_t kpm_npages; /* How many kpm pages are managed */
199
200 struct seg *segkp = &kpseg; /* Pageable kernel virtual memory segment */
201 struct seg *segkmap = &kmapseg; /* Kernel generic mapping segment */
202 struct seg *segkpm = &kpmseg; /* 64bit kernel physical mapping segment */
203
204 int segzio_fromheap = 0; /* zio allocations occur from heap */
205 caddr_t segzio_base; /* Base address of segzio */
206 pgcnt_t segziosize = 0; /* size of zio segment in pages */
207
208 /*
209 * A static DR page_t VA map is reserved that can map the page structures
210 * for a domain's entire RA space. The pages that backs this space are
211 * dynamically allocated and need not be physically contiguous. The DR
212 * map size is derived from KPM size.
213 */
214 int ppvm_enable = 0; /* Static virtual map for page structs */
215 page_t *ppvm_base; /* Base of page struct map */
216 pgcnt_t ppvm_size = 0; /* Size of page struct map */
217
218 /*
219 * debugger pages (if allocated)
220 */
221 struct vnode kdebugvp;
222
223 /*
224 * VA range available to the debugger
225 */
226 const caddr_t kdi_segdebugbase = (const caddr_t)SEGDEBUGBASE;
227 const size_t kdi_segdebugsize = SEGDEBUGSIZE;
228
229 /*
230 * Segment for relocated kernel structures in 64-bit large RAM kernels
231 */
232 struct seg kmem64;
233
234 struct memseg *memseg_free;
235
236 struct vnode unused_pages_vp;
237
238 /*
239 * VM data structures allocated early during boot.
240 */
241 size_t pagehash_sz;
242 uint64_t memlist_sz;
243
244 char tbr_wr_addr_inited = 0;
245
246 caddr_t mpo_heap32_buf = NULL;
247 size_t mpo_heap32_bufsz = 0;
248
249 /*
250 * Static Routines:
251 */
252 static int ndata_alloc_memseg(struct memlist *, size_t);
253 static void memlist_new(uint64_t, uint64_t, struct memlist **);
254 static void memlist_add(uint64_t, uint64_t,
255 struct memlist **, struct memlist **);
256 static void kphysm_init(void);
257 static void kvm_init(void);
258 static void install_kmem64_tte(void);
259
260 static void startup_init(void);
261 static void startup_memlist(void);
262 static void startup_modules(void);
263 static void startup_bop_gone(void);
264 static void startup_vm(void);
265 static void startup_end(void);
266 static void setup_cage_params(void);
267 static void startup_create_io_node(void);
268
269 static pgcnt_t npages;
270 static struct memlist *memlist;
271 void *memlist_end;
272
273 static pgcnt_t bop_alloc_pages;
274 static caddr_t hblk_base;
275 uint_t hblk_alloc_dynamic = 0;
276 uint_t hblk1_min = H1MIN;
277
278
279 /*
280 * After receiving a thermal interrupt, this is the number of seconds
281 * to delay before shutting off the system, assuming
282 * shutdown fails. Use /etc/system to change the delay if this isn't
283 * large enough.
284 */
285 int thermal_powerdown_delay = 1200;
286
287 /*
288 * Used to hold off page relocations into the cage until OBP has completed
289 * its boot-time handoff of its resources to the kernel.
290 */
291 int page_relocate_ready = 0;
292
293 /*
294 * Indicate if kmem64 allocation was done in small chunks
295 */
296 int kmem64_smchunks = 0;
297
298 /*
299 * Enable some debugging messages concerning memory usage...
300 */
301 #ifdef DEBUGGING_MEM
302 static int debugging_mem;
303 static void
printmemlist(char * title,struct memlist * list)304 printmemlist(char *title, struct memlist *list)
305 {
306 if (!debugging_mem)
307 return;
308
309 printf("%s\n", title);
310
311 while (list) {
312 prom_printf("\taddr = 0x%x %8x, size = 0x%x %8x\n",
313 (uint32_t)(list->ml_address >> 32),
314 (uint32_t)list->ml_address,
315 (uint32_t)(list->ml_size >> 32),
316 (uint32_t)(list->ml_size));
317 list = list->ml_next;
318 }
319 }
320
321 void
printmemseg(struct memseg * memseg)322 printmemseg(struct memseg *memseg)
323 {
324 if (!debugging_mem)
325 return;
326
327 printf("memseg\n");
328
329 while (memseg) {
330 prom_printf("\tpage = 0x%p, epage = 0x%p, "
331 "pfn = 0x%x, epfn = 0x%x\n",
332 memseg->pages, memseg->epages,
333 memseg->pages_base, memseg->pages_end);
334 memseg = memseg->next;
335 }
336 }
337
338 #define debug_pause(str) halt((str))
339 #define MPRINTF(str) if (debugging_mem) prom_printf((str))
340 #define MPRINTF1(str, a) if (debugging_mem) prom_printf((str), (a))
341 #define MPRINTF2(str, a, b) if (debugging_mem) prom_printf((str), (a), (b))
342 #define MPRINTF3(str, a, b, c) \
343 if (debugging_mem) prom_printf((str), (a), (b), (c))
344 #else /* DEBUGGING_MEM */
345 #define MPRINTF(str)
346 #define MPRINTF1(str, a)
347 #define MPRINTF2(str, a, b)
348 #define MPRINTF3(str, a, b, c)
349 #endif /* DEBUGGING_MEM */
350
351
352 /*
353 *
354 * Kernel's Virtual Memory Layout.
355 * /-----------------------\
356 * 0xFFFFFFFF.FFFFFFFF -| |-
357 * | OBP's virtual page |
358 * | tables |
359 * 0xFFFFFFFC.00000000 -|-----------------------|-
360 * : :
361 * : :
362 * -|-----------------------|-
363 * | segzio | (base and size vary)
364 * 0xFFFFFE00.00000000 -|-----------------------|-
365 * | | Ultrasparc I/II support
366 * | segkpm segment | up to 2TB of physical
367 * | (64-bit kernel ONLY) | memory, VAC has 2 colors
368 * | |
369 * 0xFFFFFA00.00000000 -|-----------------------|- 2TB segkpm alignment
370 * : :
371 * : :
372 * 0xFFFFF810.00000000 -|-----------------------|- hole_end
373 * | | ^
374 * | UltraSPARC I/II call | |
375 * | bug requires an extra | |
376 * | 4 GB of space between | |
377 * | hole and used RAM | |
378 * | | |
379 * 0xFFFFF800.00000000 -|-----------------------|- |
380 * | | |
381 * | Virtual Address Hole | UltraSPARC
382 * | on UltraSPARC I/II | I/II * ONLY *
383 * | | |
384 * 0x00000800.00000000 -|-----------------------|- |
385 * | | |
386 * | UltraSPARC I/II call | |
387 * | bug requires an extra | |
388 * | 4 GB of space between | |
389 * | hole and used RAM | |
390 * | | v
391 * 0x000007FF.00000000 -|-----------------------|- hole_start -----
392 * : : ^
393 * : : |
394 * |-----------------------| |
395 * | | |
396 * | ecache flush area | |
397 * | (twice largest e$) | |
398 * | | |
399 * 0x00000XXX.XXX00000 -|-----------------------|- kmem64_ |
400 * | overmapped area | alignend_end |
401 * | (kmem64_alignsize | |
402 * | boundary) | |
403 * 0x00000XXX.XXXXXXXX -|-----------------------|- kmem64_end |
404 * | | |
405 * | 64-bit kernel ONLY | |
406 * | | |
407 * | kmem64 segment | |
408 * | | |
409 * | (Relocated extra HME | Approximately
410 * | block allocations, | 1 TB of virtual
411 * | memnode freelists, | address space
412 * | HME hash buckets, | |
413 * | mml_table, kpmp_table,| |
414 * | page_t array and | |
415 * | hashblock pool to | |
416 * | avoid hard-coded | |
417 * | 32-bit vaddr | |
418 * | limitations) | |
419 * | | v
420 * 0x00000700.00000000 -|-----------------------|- SYSLIMIT (kmem64_base)
421 * | |
422 * | segkmem segment | (SYSLIMIT - SYSBASE = 4TB)
423 * | |
424 * 0x00000300.00000000 -|-----------------------|- SYSBASE
425 * : :
426 * : :
427 * -|-----------------------|-
428 * | |
429 * | segmap segment | SEGMAPSIZE (1/8th physmem,
430 * | | 256G MAX)
431 * 0x000002a7.50000000 -|-----------------------|- SEGMAPBASE
432 * : :
433 * : :
434 * -|-----------------------|-
435 * | |
436 * | segkp | SEGKPSIZE (2GB)
437 * | |
438 * | |
439 * 0x000002a1.00000000 -|-----------------------|- SEGKPBASE
440 * | |
441 * 0x000002a0.00000000 -|-----------------------|- MEMSCRUBBASE
442 * | | (SEGKPBASE - 0x400000)
443 * 0x0000029F.FFE00000 -|-----------------------|- ARGSBASE
444 * | | (MEMSCRUBBASE - NCARGS)
445 * 0x0000029F.FFD80000 -|-----------------------|- PPMAPBASE
446 * | | (ARGSBASE - PPMAPSIZE)
447 * 0x0000029F.FFD00000 -|-----------------------|- PPMAP_FAST_BASE
448 * | |
449 * 0x0000029F.FF980000 -|-----------------------|- PIOMAPBASE
450 * | |
451 * 0x0000029F.FF580000 -|-----------------------|- NARG_BASE
452 * : :
453 * : :
454 * 0x00000000.FFFFFFFF -|-----------------------|- OFW_END_ADDR
455 * | |
456 * | OBP |
457 * | |
458 * 0x00000000.F0000000 -|-----------------------|- OFW_START_ADDR
459 * | kmdb |
460 * 0x00000000.EDD00000 -|-----------------------|- SEGDEBUGBASE
461 * : :
462 * : :
463 * 0x00000000.7c000000 -|-----------------------|- SYSLIMIT32
464 * | |
465 * | segkmem32 segment | (SYSLIMIT32 - SYSBASE32 =
466 * | | ~64MB)
467 * -|-----------------------|
468 * | IVSIZE |
469 * 0x00000000.70004000 -|-----------------------|
470 * | panicbuf |
471 * 0x00000000.70002000 -|-----------------------|
472 * | PAGESIZE |
473 * 0x00000000.70000000 -|-----------------------|- SYSBASE32
474 * | boot-time |
475 * | temporary space |
476 * 0x00000000.4C000000 -|-----------------------|- BOOTTMPBASE
477 * : :
478 * : :
479 * | |
480 * |-----------------------|- econtig32
481 * | vm structures |
482 * 0x00000000.01C00000 |-----------------------|- nalloc_end
483 * | TSBs |
484 * |-----------------------|- end/nalloc_base
485 * | kernel data & bss |
486 * 0x00000000.01800000 -|-----------------------|
487 * : nucleus text hole :
488 * 0x00000000.01400000 -|-----------------------|
489 * : :
490 * |-----------------------|
491 * | module text |
492 * |-----------------------|- e_text/modtext
493 * | kernel text |
494 * |-----------------------|
495 * | trap table (48k) |
496 * 0x00000000.01000000 -|-----------------------|- KERNELBASE
497 * | reserved for trapstat |} TSTAT_TOTAL_SIZE
498 * |-----------------------|
499 * | |
500 * | invalid |
501 * | |
502 * 0x00000000.00000000 _|_______________________|
503 *
504 *
505 *
506 * 32-bit User Virtual Memory Layout.
507 * /-----------------------\
508 * | |
509 * | invalid |
510 * | |
511 * 0xFFC00000 -|-----------------------|- USERLIMIT
512 * | user stack |
513 * : :
514 * : :
515 * : :
516 * | user data |
517 * -|-----------------------|-
518 * | user text |
519 * 0x00002000 -|-----------------------|-
520 * | invalid |
521 * 0x00000000 _|_______________________|
522 *
523 *
524 *
525 * 64-bit User Virtual Memory Layout.
526 * /-----------------------\
527 * | |
528 * | invalid |
529 * | |
530 * 0xFFFFFFFF.80000000 -|-----------------------|- USERLIMIT
531 * | user stack |
532 * : :
533 * : :
534 * : :
535 * | user data |
536 * -|-----------------------|-
537 * | user text |
538 * 0x00000000.01000000 -|-----------------------|-
539 * | invalid |
540 * 0x00000000.00000000 _|_______________________|
541 */
542
543 extern caddr_t ecache_init_scrub_flush_area(caddr_t alloc_base);
544 extern uint64_t ecache_flush_address(void);
545
546 #pragma weak load_platform_modules
547 #pragma weak plat_startup_memlist
548 #pragma weak ecache_init_scrub_flush_area
549 #pragma weak ecache_flush_address
550
551
552 /*
553 * By default the DR Cage is enabled for maximum OS
554 * MPSS performance. Users needing to disable the cage mechanism
555 * can set this variable to zero via /etc/system.
556 * Disabling the cage on systems supporting Dynamic Reconfiguration (DR)
557 * will result in loss of DR functionality.
558 * Platforms wishing to disable kernel Cage by default
559 * should do so in their set_platform_defaults() routine.
560 */
561 int kernel_cage_enable = 1;
562
563 static void
setup_cage_params(void)564 setup_cage_params(void)
565 {
566 void (*func)(void);
567
568 func = (void (*)(void))kobj_getsymvalue("set_platform_cage_params", 0);
569 if (func != NULL) {
570 (*func)();
571 return;
572 }
573
574 if (kernel_cage_enable == 0) {
575 return;
576 }
577 kcage_range_init(phys_avail, KCAGE_DOWN, total_pages / 256);
578
579 if (kcage_on) {
580 cmn_err(CE_NOTE, "!Kernel Cage is ENABLED");
581 } else {
582 cmn_err(CE_NOTE, "!Kernel Cage is DISABLED");
583 }
584
585 }
586
587 /*
588 * Machine-dependent startup code
589 */
590 void
startup(void)591 startup(void)
592 {
593 startup_init();
594 if (&startup_platform)
595 startup_platform();
596 startup_memlist();
597 startup_modules();
598 setup_cage_params();
599 startup_bop_gone();
600 startup_vm();
601 startup_end();
602 }
603
604 struct regs sync_reg_buf;
605 uint64_t sync_tt;
606
607 void
sync_handler(void)608 sync_handler(void)
609 {
610 struct panic_trap_info ti;
611 int i;
612
613 /*
614 * Prevent trying to talk to the other CPUs since they are
615 * sitting in the prom and won't reply.
616 */
617 for (i = 0; i < NCPU; i++) {
618 if ((i != CPU->cpu_id) && CPU_XCALL_READY(i)) {
619 cpu[i]->cpu_flags &= ~CPU_READY;
620 cpu[i]->cpu_flags |= CPU_QUIESCED;
621 CPUSET_DEL(cpu_ready_set, cpu[i]->cpu_id);
622 }
623 }
624
625 /*
626 * Force a serial dump, since there are no CPUs to help.
627 */
628 dump_plat_mincpu = 0;
629
630 /*
631 * We've managed to get here without going through the
632 * normal panic code path. Try and save some useful
633 * information.
634 */
635 if (!panicstr && (curthread->t_panic_trap == NULL)) {
636 ti.trap_type = sync_tt;
637 ti.trap_regs = &sync_reg_buf;
638 ti.trap_addr = NULL;
639 ti.trap_mmu_fsr = 0x0;
640
641 curthread->t_panic_trap = &ti;
642 }
643
644 /*
645 * If we're re-entering the panic path, update the signature
646 * block so that the SC knows we're in the second part of panic.
647 */
648 if (panicstr)
649 CPU_SIGNATURE(OS_SIG, SIGST_EXIT, SIGSUBST_DUMP, -1);
650
651 nopanicdebug = 1; /* do not perform debug_enter() prior to dump */
652 panic("sync initiated");
653 }
654
655
656 static void
startup_init(void)657 startup_init(void)
658 {
659 /*
660 * We want to save the registers while we're still in OBP
661 * so that we know they haven't been fiddled with since.
662 * (In principle, OBP can't change them just because it
663 * makes a callback, but we'd rather not depend on that
664 * behavior.)
665 */
666 char sync_str[] =
667 "warning @ warning off : sync "
668 "%%tl-c %%tstate h# %p x! "
669 "%%g1 h# %p x! %%g2 h# %p x! %%g3 h# %p x! "
670 "%%g4 h# %p x! %%g5 h# %p x! %%g6 h# %p x! "
671 "%%g7 h# %p x! %%o0 h# %p x! %%o1 h# %p x! "
672 "%%o2 h# %p x! %%o3 h# %p x! %%o4 h# %p x! "
673 "%%o5 h# %p x! %%o6 h# %p x! %%o7 h# %p x! "
674 "%%tl-c %%tpc h# %p x! %%tl-c %%tnpc h# %p x! "
675 "%%y h# %p l! %%tl-c %%tt h# %p x! "
676 "sync ; warning !";
677
678 /*
679 * 20 == num of %p substrings
680 * 16 == max num of chars %p will expand to.
681 */
682 char bp[sizeof (sync_str) + 16 * 20];
683
684 /*
685 * Initialize ptl1 stack for the 1st CPU.
686 */
687 ptl1_init_cpu(&cpu0);
688
689 /*
690 * Initialize the address map for cache consistent mappings
691 * to random pages; must be done after vac_size is set.
692 */
693 ppmapinit();
694
695 /*
696 * Initialize the PROM callback handler.
697 */
698 init_vx_handler();
699
700 /*
701 * have prom call sync_callback() to handle the sync and
702 * save some useful information which will be stored in the
703 * core file later.
704 */
705 (void) sprintf((char *)bp, sync_str,
706 (void *)&sync_reg_buf.r_tstate, (void *)&sync_reg_buf.r_g1,
707 (void *)&sync_reg_buf.r_g2, (void *)&sync_reg_buf.r_g3,
708 (void *)&sync_reg_buf.r_g4, (void *)&sync_reg_buf.r_g5,
709 (void *)&sync_reg_buf.r_g6, (void *)&sync_reg_buf.r_g7,
710 (void *)&sync_reg_buf.r_o0, (void *)&sync_reg_buf.r_o1,
711 (void *)&sync_reg_buf.r_o2, (void *)&sync_reg_buf.r_o3,
712 (void *)&sync_reg_buf.r_o4, (void *)&sync_reg_buf.r_o5,
713 (void *)&sync_reg_buf.r_o6, (void *)&sync_reg_buf.r_o7,
714 (void *)&sync_reg_buf.r_pc, (void *)&sync_reg_buf.r_npc,
715 (void *)&sync_reg_buf.r_y, (void *)&sync_tt);
716 prom_interpret(bp, 0, 0, 0, 0, 0);
717 add_vx_handler("sync", 1, (void (*)(cell_t *))sync_handler);
718 }
719
720
721 size_t
calc_pp_sz(pgcnt_t npages)722 calc_pp_sz(pgcnt_t npages)
723 {
724
725 return (npages * sizeof (struct page));
726 }
727
728 size_t
calc_kpmpp_sz(pgcnt_t npages)729 calc_kpmpp_sz(pgcnt_t npages)
730 {
731
732 kpm_pgshft = (kpm_smallpages == 0) ? MMU_PAGESHIFT4M : MMU_PAGESHIFT;
733 kpm_pgsz = 1ull << kpm_pgshft;
734 kpm_pgoff = kpm_pgsz - 1;
735 kpmp2pshft = kpm_pgshft - PAGESHIFT;
736 kpmpnpgs = 1 << kpmp2pshft;
737
738 if (kpm_smallpages == 0) {
739 /*
740 * Avoid fragmentation problems in kphysm_init()
741 * by allocating for all of physical memory
742 */
743 kpm_npages = ptokpmpr(physinstalled);
744 return (kpm_npages * sizeof (kpm_page_t));
745 } else {
746 kpm_npages = npages;
747 return (kpm_npages * sizeof (kpm_spage_t));
748 }
749 }
750
751 size_t
calc_pagehash_sz(pgcnt_t npages)752 calc_pagehash_sz(pgcnt_t npages)
753 {
754 /* LINTED */
755 ASSERT(P2SAMEHIGHBIT((1 << PP_SHIFT), (sizeof (struct page))));
756 /*
757 * The page structure hash table size is a power of 2
758 * such that the average hash chain length is PAGE_HASHAVELEN.
759 */
760 page_hashsz = npages / PAGE_HASHAVELEN;
761 page_hashsz_shift = MAX((AN_VPSHIFT + VNODE_ALIGN_LOG2 + 1),
762 highbit(page_hashsz));
763 page_hashsz = 1 << page_hashsz_shift;
764 return (page_hashsz * sizeof (struct page *));
765 }
766
767 int testkmem64_smchunks = 0;
768
769 int
alloc_kmem64(caddr_t base,caddr_t end)770 alloc_kmem64(caddr_t base, caddr_t end)
771 {
772 int i;
773 caddr_t aligned_end = NULL;
774
775 if (testkmem64_smchunks)
776 return (1);
777
778 /*
779 * Make one large memory alloc after figuring out the 64-bit size. This
780 * will enable use of the largest page size appropriate for the system
781 * architecture.
782 */
783 ASSERT(mmu_exported_pagesize_mask & (1 << TTE8K));
784 ASSERT(IS_P2ALIGNED(base, TTEBYTES(max_bootlp_tteszc)));
785 for (i = max_bootlp_tteszc; i >= TTE8K; i--) {
786 size_t alloc_size, alignsize;
787 #if !defined(C_OBP)
788 unsigned long long pa;
789 #endif /* !C_OBP */
790
791 if ((mmu_exported_pagesize_mask & (1 << i)) == 0)
792 continue;
793 alignsize = TTEBYTES(i);
794 kmem64_szc = i;
795
796 /* limit page size for small memory */
797 if (mmu_btop(alignsize) > (npages >> 2))
798 continue;
799
800 aligned_end = (caddr_t)roundup((uintptr_t)end, alignsize);
801 alloc_size = aligned_end - base;
802 #if !defined(C_OBP)
803 if (prom_allocate_phys(alloc_size, alignsize, &pa) == 0) {
804 if (prom_claim_virt(alloc_size, base) != (caddr_t)-1) {
805 kmem64_pabase = pa;
806 kmem64_aligned_end = aligned_end;
807 install_kmem64_tte();
808 break;
809 } else {
810 prom_free_phys(alloc_size, pa);
811 }
812 }
813 #else /* !C_OBP */
814 if (prom_alloc(base, alloc_size, alignsize) == base) {
815 kmem64_pabase = va_to_pa(kmem64_base);
816 kmem64_aligned_end = aligned_end;
817 break;
818 }
819 #endif /* !C_OBP */
820 if (i == TTE8K) {
821 #ifdef sun4v
822 /* return failure to try small allocations */
823 return (1);
824 #else
825 prom_panic("kmem64 allocation failure");
826 #endif
827 }
828 }
829 ASSERT(aligned_end != NULL);
830 return (0);
831 }
832
833 static prom_memlist_t *boot_physinstalled, *boot_physavail, *boot_virtavail;
834 static size_t boot_physinstalled_len, boot_physavail_len, boot_virtavail_len;
835
836 #if !defined(C_OBP)
837 /*
838 * Install a temporary tte handler in OBP for kmem64 area.
839 *
840 * We map kmem64 area with large pages before the trap table is taken
841 * over. Since OBP makes 8K mappings, it can create 8K tlb entries in
842 * the same area. Duplicate tlb entries with different page sizes
843 * cause unpredicatble behavior. To avoid this, we don't create
844 * kmem64 mappings via BOP_ALLOC (ends up as prom_alloc() call to
845 * OBP). Instead, we manage translations with a temporary va>tte-data
846 * handler (kmem64-tte). This handler is replaced by unix-tte when
847 * the trap table is taken over.
848 *
849 * The temporary handler knows the physical address of the kmem64
850 * area. It uses the prom's pgmap@ Forth word for other addresses.
851 *
852 * We have to use BOP_ALLOC() method for C-OBP platforms because
853 * pgmap@ is not defined in C-OBP. C-OBP is only used on serengeti
854 * sun4u platforms. On sun4u we flush tlb after trap table is taken
855 * over if we use large pages for kernel heap and kmem64. Since sun4u
856 * prom (unlike sun4v) calls va>tte-data first for client address
857 * translation prom's ttes for kmem64 can't get into TLB even if we
858 * later switch to prom's trap table again. C-OBP uses 4M pages for
859 * client mappings when possible so on all platforms we get the
860 * benefit from large mappings for kmem64 area immediately during
861 * boot.
862 *
863 * pseudo code:
864 * if (context != 0) {
865 * return false
866 * } else if (miss_va in range[kmem64_base, kmem64_end)) {
867 * tte = tte_template +
868 * (((miss_va & pagemask) - kmem64_base));
869 * return tte, true
870 * } else {
871 * return pgmap@ result
872 * }
873 */
874 char kmem64_obp_str[] =
875 "h# %lx constant kmem64-base "
876 "h# %lx constant kmem64-end "
877 "h# %lx constant kmem64-pagemask "
878 "h# %lx constant kmem64-template "
879
880 ": kmem64-tte ( addr cnum -- false | tte-data true ) "
881 " if ( addr ) "
882 " drop false exit then ( false ) "
883 " dup kmem64-base kmem64-end within if ( addr ) "
884 " kmem64-pagemask and ( addr' ) "
885 " kmem64-base - ( addr' ) "
886 " kmem64-template + ( tte ) "
887 " true ( tte true ) "
888 " else ( addr ) "
889 " pgmap@ ( tte ) "
890 " dup 0< if true else drop false then ( tte true | false ) "
891 " then ( tte true | false ) "
892 "; "
893
894 "' kmem64-tte is va>tte-data "
895 ;
896
897 static void
install_kmem64_tte()898 install_kmem64_tte()
899 {
900 char b[sizeof (kmem64_obp_str) + (4 * 16)];
901 tte_t tte;
902
903 PRM_DEBUG(kmem64_pabase);
904 PRM_DEBUG(kmem64_szc);
905 sfmmu_memtte(&tte, kmem64_pabase >> MMU_PAGESHIFT,
906 PROC_DATA | HAT_NOSYNC, kmem64_szc);
907 PRM_DEBUG(tte.ll);
908 (void) sprintf(b, kmem64_obp_str,
909 kmem64_base, kmem64_end, TTE_PAGEMASK(kmem64_szc), tte.ll);
910 ASSERT(strlen(b) < sizeof (b));
911 prom_interpret(b, 0, 0, 0, 0, 0);
912 }
913 #endif /* !C_OBP */
914
915 /*
916 * As OBP takes up some RAM when the system boots, pages will already be "lost"
917 * to the system and reflected in npages by the time we see it.
918 *
919 * We only want to allocate kernel structures in the 64-bit virtual address
920 * space on systems with enough RAM to make the overhead of keeping track of
921 * an extra kernel memory segment worthwhile.
922 *
923 * Since OBP has already performed its memory allocations by this point, if we
924 * have more than MINMOVE_RAM_MB MB of RAM left free, go ahead and map
925 * memory in the 64-bit virtual address space; otherwise keep allocations
926 * contiguous with we've mapped so far in the 32-bit virtual address space.
927 */
928 #define MINMOVE_RAM_MB ((size_t)1900)
929 #define MB_TO_BYTES(mb) ((mb) * 1048576ul)
930 #define BYTES_TO_MB(b) ((b) / 1048576ul)
931
932 pgcnt_t tune_npages = (pgcnt_t)
933 (MB_TO_BYTES(MINMOVE_RAM_MB)/ (size_t)MMU_PAGESIZE);
934
935 #pragma weak page_set_colorequiv_arr_cpu
936 extern void page_set_colorequiv_arr_cpu(void);
937 extern void page_set_colorequiv_arr(void);
938
939 static pgcnt_t ramdisk_npages;
940 static struct memlist *old_phys_avail;
941
942 kcage_dir_t kcage_startup_dir = KCAGE_DOWN;
943
944 static void
startup_memlist(void)945 startup_memlist(void)
946 {
947 size_t hmehash_sz, pagelist_sz, tt_sz;
948 size_t psetable_sz;
949 caddr_t alloc_base;
950 caddr_t memspace;
951 struct memlist *cur;
952 size_t syslimit = (size_t)SYSLIMIT;
953 size_t sysbase = (size_t)SYSBASE;
954
955 /*
956 * Initialize enough of the system to allow kmem_alloc to work by
957 * calling boot to allocate its memory until the time that
958 * kvm_init is completed. The page structs are allocated after
959 * rounding up end to the nearest page boundary; the memsegs are
960 * initialized and the space they use comes from the kernel heap.
961 * With appropriate initialization, they can be reallocated later
962 * to a size appropriate for the machine's configuration.
963 *
964 * At this point, memory is allocated for things that will never
965 * need to be freed, this used to be "valloced". This allows a
966 * savings as the pages don't need page structures to describe
967 * them because them will not be managed by the vm system.
968 */
969
970 /*
971 * We're loaded by boot with the following configuration (as
972 * specified in the sun4u/conf/Mapfile):
973 *
974 * text: 4 MB chunk aligned on a 4MB boundary
975 * data & bss: 4 MB chunk aligned on a 4MB boundary
976 *
977 * These two chunks will eventually be mapped by 2 locked 4MB
978 * ttes and will represent the nucleus of the kernel. This gives
979 * us some free space that is already allocated, some or all of
980 * which is made available to kernel module text.
981 *
982 * The free space in the data-bss chunk is used for nucleus
983 * allocatable data structures and we reserve it using the
984 * nalloc_base and nalloc_end variables. This space is currently
985 * being used for hat data structures required for tlb miss
986 * handling operations. We align nalloc_base to a l2 cache
987 * linesize because this is the line size the hardware uses to
988 * maintain cache coherency.
989 * 512K is carved out for module data.
990 */
991
992 moddata = (caddr_t)roundup((uintptr_t)e_data, MMU_PAGESIZE);
993 e_moddata = moddata + MODDATA;
994 nalloc_base = e_moddata;
995
996 nalloc_end = (caddr_t)roundup((uintptr_t)nalloc_base, MMU_PAGESIZE4M);
997 valloc_base = nalloc_base;
998
999 /*
1000 * Calculate the start of the data segment.
1001 */
1002 if (((uintptr_t)e_moddata & MMU_PAGEMASK4M) != (uintptr_t)s_data)
1003 prom_panic("nucleus data overflow");
1004
1005 PRM_DEBUG(moddata);
1006 PRM_DEBUG(nalloc_base);
1007 PRM_DEBUG(nalloc_end);
1008
1009 /*
1010 * Remember any slop after e_text so we can give it to the modules.
1011 */
1012 PRM_DEBUG(e_text);
1013 modtext = (caddr_t)roundup((uintptr_t)e_text, MMU_PAGESIZE);
1014 if (((uintptr_t)e_text & MMU_PAGEMASK4M) != (uintptr_t)s_text)
1015 prom_panic("nucleus text overflow");
1016 modtext_sz = (caddr_t)roundup((uintptr_t)modtext, MMU_PAGESIZE4M) -
1017 modtext;
1018 PRM_DEBUG(modtext);
1019 PRM_DEBUG(modtext_sz);
1020
1021 init_boot_memlists();
1022 copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len,
1023 &boot_physavail, &boot_physavail_len,
1024 &boot_virtavail, &boot_virtavail_len);
1025
1026 /*
1027 * Remember what the physically available highest page is
1028 * so that dumpsys works properly, and find out how much
1029 * memory is installed.
1030 */
1031 installed_top_size_memlist_array(boot_physinstalled,
1032 boot_physinstalled_len, &physmax, &physinstalled);
1033 PRM_DEBUG(physinstalled);
1034 PRM_DEBUG(physmax);
1035
1036 /* Fill out memory nodes config structure */
1037 startup_build_mem_nodes(boot_physinstalled, boot_physinstalled_len);
1038
1039 /*
1040 * npages is the maximum of available physical memory possible.
1041 * (ie. it will never be more than this)
1042 *
1043 * When we boot from a ramdisk, the ramdisk memory isn't free, so
1044 * using phys_avail will underestimate what will end up being freed.
1045 * A better initial guess is just total memory minus the kernel text
1046 */
1047 npages = physinstalled - btop(MMU_PAGESIZE4M);
1048
1049 /*
1050 * First allocate things that can go in the nucleus data page
1051 * (fault status, TSBs, dmv, CPUs)
1052 */
1053 ndata_alloc_init(&ndata, (uintptr_t)nalloc_base, (uintptr_t)nalloc_end);
1054
1055 if ((&ndata_alloc_mmfsa != NULL) && (ndata_alloc_mmfsa(&ndata) != 0))
1056 cmn_err(CE_PANIC, "no more nucleus memory after mfsa alloc");
1057
1058 if (ndata_alloc_tsbs(&ndata, npages) != 0)
1059 cmn_err(CE_PANIC, "no more nucleus memory after tsbs alloc");
1060
1061 if (ndata_alloc_dmv(&ndata) != 0)
1062 cmn_err(CE_PANIC, "no more nucleus memory after dmv alloc");
1063
1064 if (ndata_alloc_page_mutexs(&ndata) != 0)
1065 cmn_err(CE_PANIC,
1066 "no more nucleus memory after page free lists alloc");
1067
1068 if (ndata_alloc_hat(&ndata) != 0)
1069 cmn_err(CE_PANIC, "no more nucleus memory after hat alloc");
1070
1071 if (ndata_alloc_memseg(&ndata, boot_physavail_len) != 0)
1072 cmn_err(CE_PANIC, "no more nucleus memory after memseg alloc");
1073
1074 /*
1075 * WARNING WARNING WARNING WARNING WARNING WARNING WARNING
1076 *
1077 * There are comments all over the SFMMU code warning of dire
1078 * consequences if the TSBs are moved out of 32-bit space. This
1079 * is largely because the asm code uses "sethi %hi(addr)"-type
1080 * instructions which will not provide the expected result if the
1081 * address is a 64-bit one.
1082 *
1083 * WARNING WARNING WARNING WARNING WARNING WARNING WARNING
1084 */
1085 alloc_base = (caddr_t)roundup((uintptr_t)nalloc_end, MMU_PAGESIZE);
1086 PRM_DEBUG(alloc_base);
1087
1088 alloc_base = sfmmu_ktsb_alloc(alloc_base);
1089 alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize);
1090 PRM_DEBUG(alloc_base);
1091
1092 /*
1093 * Allocate IOMMU TSB array. We do this here so that the physical
1094 * memory gets deducted from the PROM's physical memory list.
1095 */
1096 alloc_base = iommu_tsb_init(alloc_base);
1097 alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize);
1098 PRM_DEBUG(alloc_base);
1099
1100 /*
1101 * Allow for an early allocation of physically contiguous memory.
1102 */
1103 alloc_base = contig_mem_prealloc(alloc_base, npages);
1104
1105 /*
1106 * Platforms like Starcat and OPL need special structures assigned in
1107 * 32-bit virtual address space because their probing routines execute
1108 * FCode, and FCode can't handle 64-bit virtual addresses...
1109 */
1110 if (&plat_startup_memlist) {
1111 alloc_base = plat_startup_memlist(alloc_base);
1112 alloc_base = (caddr_t)roundup((uintptr_t)alloc_base,
1113 ecache_alignsize);
1114 PRM_DEBUG(alloc_base);
1115 }
1116
1117 /*
1118 * Save off where the contiguous allocations to date have ended
1119 * in econtig32.
1120 */
1121 econtig32 = alloc_base;
1122 PRM_DEBUG(econtig32);
1123 if (econtig32 > (caddr_t)KERNEL_LIMIT32)
1124 cmn_err(CE_PANIC, "econtig32 too big");
1125
1126 pp_sz = calc_pp_sz(npages);
1127 PRM_DEBUG(pp_sz);
1128 if (kpm_enable) {
1129 kpm_pp_sz = calc_kpmpp_sz(npages);
1130 PRM_DEBUG(kpm_pp_sz);
1131 }
1132
1133 hmehash_sz = calc_hmehash_sz(npages);
1134 PRM_DEBUG(hmehash_sz);
1135
1136 pagehash_sz = calc_pagehash_sz(npages);
1137 PRM_DEBUG(pagehash_sz);
1138
1139 pagelist_sz = calc_free_pagelist_sz();
1140 PRM_DEBUG(pagelist_sz);
1141
1142 #ifdef TRAPTRACE
1143 tt_sz = calc_traptrace_sz();
1144 PRM_DEBUG(tt_sz);
1145 #else
1146 tt_sz = 0;
1147 #endif /* TRAPTRACE */
1148
1149 /*
1150 * Place the array that protects pp->p_selock in the kmem64 wad.
1151 */
1152 pse_shift = size_pse_array(npages, max_ncpus);
1153 PRM_DEBUG(pse_shift);
1154 pse_table_size = 1 << pse_shift;
1155 PRM_DEBUG(pse_table_size);
1156 psetable_sz = roundup(
1157 pse_table_size * sizeof (pad_mutex_t), ecache_alignsize);
1158 PRM_DEBUG(psetable_sz);
1159
1160 /*
1161 * Now allocate the whole wad
1162 */
1163 kmem64_sz = pp_sz + kpm_pp_sz + hmehash_sz + pagehash_sz +
1164 pagelist_sz + tt_sz + psetable_sz;
1165 kmem64_sz = roundup(kmem64_sz, PAGESIZE);
1166 kmem64_base = (caddr_t)syslimit;
1167 kmem64_end = kmem64_base + kmem64_sz;
1168 if (alloc_kmem64(kmem64_base, kmem64_end)) {
1169 /*
1170 * Attempt for kmem64 to allocate one big
1171 * contiguous chunk of memory failed.
1172 * We get here because we are sun4v.
1173 * We will proceed by breaking up
1174 * the allocation into two attempts.
1175 * First, we allocate kpm_pp_sz, hmehash_sz,
1176 * pagehash_sz, pagelist_sz, tt_sz & psetable_sz as
1177 * one contiguous chunk. This is a much smaller
1178 * chunk and we should get it, if not we panic.
1179 * Note that hmehash and tt need to be physically
1180 * (in the real address sense) contiguous.
1181 * Next, we use bop_alloc_chunk() to
1182 * to allocate the page_t structures.
1183 * This will allow the page_t to be allocated
1184 * in multiple smaller chunks.
1185 * In doing so, the assumption that page_t is
1186 * physically contiguous no longer hold, this is ok
1187 * for sun4v but not for sun4u.
1188 */
1189 size_t tmp_size;
1190 caddr_t tmp_base;
1191
1192 pp_sz = roundup(pp_sz, PAGESIZE);
1193
1194 /*
1195 * Allocate kpm_pp_sz, hmehash_sz,
1196 * pagehash_sz, pagelist_sz, tt_sz & psetable_sz
1197 */
1198 tmp_base = kmem64_base + pp_sz;
1199 tmp_size = roundup(kpm_pp_sz + hmehash_sz + pagehash_sz +
1200 pagelist_sz + tt_sz + psetable_sz, PAGESIZE);
1201 if (prom_alloc(tmp_base, tmp_size, PAGESIZE) == 0)
1202 prom_panic("kmem64 prom_alloc contig failed");
1203 PRM_DEBUG(tmp_base);
1204 PRM_DEBUG(tmp_size);
1205
1206 /*
1207 * Allocate the page_ts
1208 */
1209 if (bop_alloc_chunk(kmem64_base, pp_sz, PAGESIZE) == 0)
1210 prom_panic("kmem64 bop_alloc_chunk page_t failed");
1211 PRM_DEBUG(kmem64_base);
1212 PRM_DEBUG(pp_sz);
1213
1214 kmem64_aligned_end = kmem64_base + pp_sz + tmp_size;
1215 ASSERT(kmem64_aligned_end >= kmem64_end);
1216
1217 kmem64_smchunks = 1;
1218 } else {
1219
1220 /*
1221 * We need to adjust pp_sz for the normal
1222 * case where kmem64 can allocate one large chunk
1223 */
1224 if (kpm_smallpages == 0) {
1225 npages -= kmem64_sz / (PAGESIZE + sizeof (struct page));
1226 } else {
1227 npages -= kmem64_sz / (PAGESIZE + sizeof (struct page) +
1228 sizeof (kpm_spage_t));
1229 }
1230 pp_sz = npages * sizeof (struct page);
1231 }
1232
1233 if (kmem64_aligned_end > (hole_start ? hole_start : kpm_vbase))
1234 cmn_err(CE_PANIC, "not enough kmem64 space");
1235 PRM_DEBUG(kmem64_base);
1236 PRM_DEBUG(kmem64_end);
1237 PRM_DEBUG(kmem64_aligned_end);
1238
1239 /*
1240 * ... and divy it up
1241 */
1242 alloc_base = kmem64_base;
1243
1244 pp_base = (page_t *)alloc_base;
1245 alloc_base += pp_sz;
1246 alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize);
1247 PRM_DEBUG(pp_base);
1248 PRM_DEBUG(npages);
1249
1250 if (kpm_enable) {
1251 kpm_pp_base = alloc_base;
1252 if (kpm_smallpages == 0) {
1253 /* kpm_npages based on physinstalled, don't reset */
1254 kpm_pp_sz = kpm_npages * sizeof (kpm_page_t);
1255 } else {
1256 kpm_npages = ptokpmpr(npages);
1257 kpm_pp_sz = kpm_npages * sizeof (kpm_spage_t);
1258 }
1259 alloc_base += kpm_pp_sz;
1260 alloc_base =
1261 (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize);
1262 PRM_DEBUG(kpm_pp_base);
1263 }
1264
1265 alloc_base = alloc_hmehash(alloc_base);
1266 alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize);
1267 PRM_DEBUG(alloc_base);
1268
1269 page_hash = (page_t **)alloc_base;
1270 alloc_base += pagehash_sz;
1271 alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize);
1272 PRM_DEBUG(page_hash);
1273
1274 alloc_base = alloc_page_freelists(alloc_base);
1275 alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize);
1276 PRM_DEBUG(alloc_base);
1277
1278 #ifdef TRAPTRACE
1279 ttrace_buf = alloc_base;
1280 alloc_base += tt_sz;
1281 alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize);
1282 PRM_DEBUG(alloc_base);
1283 #endif /* TRAPTRACE */
1284
1285 pse_mutex = (pad_mutex_t *)alloc_base;
1286 alloc_base += psetable_sz;
1287 alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize);
1288 PRM_DEBUG(alloc_base);
1289
1290 /*
1291 * Note that if we use small chunk allocations for
1292 * kmem64, we need to ensure kmem64_end is the same as
1293 * kmem64_aligned_end to prevent subsequent logic from
1294 * trying to reuse the overmapping.
1295 * Otherwise we adjust kmem64_end to what we really allocated.
1296 */
1297 if (kmem64_smchunks) {
1298 kmem64_end = kmem64_aligned_end;
1299 } else {
1300 kmem64_end = (caddr_t)roundup((uintptr_t)alloc_base, PAGESIZE);
1301 }
1302 kmem64_sz = kmem64_end - kmem64_base;
1303
1304 if (&ecache_init_scrub_flush_area) {
1305 alloc_base = ecache_init_scrub_flush_area(kmem64_aligned_end);
1306 ASSERT(alloc_base <= (hole_start ? hole_start : kpm_vbase));
1307 }
1308
1309 /*
1310 * If physmem is patched to be non-zero, use it instead of
1311 * the monitor value unless physmem is larger than the total
1312 * amount of memory on hand.
1313 */
1314 if (physmem == 0 || physmem > npages)
1315 physmem = npages;
1316
1317 /*
1318 * root_is_ramdisk is set via /etc/system when the ramdisk miniroot
1319 * is mounted as root. This memory is held down by OBP and unlike
1320 * the stub boot_archive is never released.
1321 *
1322 * In order to get things sized correctly on lower memory
1323 * machines (where the memory used by the ramdisk represents
1324 * a significant portion of memory), physmem is adjusted.
1325 *
1326 * This is done by subtracting the ramdisk_size which is set
1327 * to the size of the ramdisk (in Kb) in /etc/system at the
1328 * time the miniroot archive is constructed.
1329 */
1330 if (root_is_ramdisk == B_TRUE) {
1331 ramdisk_npages = (ramdisk_size * 1024) / PAGESIZE;
1332 physmem -= ramdisk_npages;
1333 }
1334
1335 if (kpm_enable && (ndata_alloc_kpm(&ndata, kpm_npages) != 0))
1336 cmn_err(CE_PANIC, "no more nucleus memory after kpm alloc");
1337
1338 /*
1339 * Allocate space for the interrupt vector table.
1340 */
1341 memspace = prom_alloc((caddr_t)intr_vec_table, IVSIZE, MMU_PAGESIZE);
1342 if (memspace != (caddr_t)intr_vec_table)
1343 prom_panic("interrupt vector table allocation failure");
1344
1345 /*
1346 * Between now and when we finish copying in the memory lists,
1347 * allocations happen so the space gets fragmented and the
1348 * lists longer. Leave enough space for lists twice as
1349 * long as we have now; then roundup to a pagesize.
1350 */
1351 memlist_sz = sizeof (struct memlist) * (prom_phys_installed_len() +
1352 prom_phys_avail_len() + prom_virt_avail_len());
1353 memlist_sz *= 2;
1354 memlist_sz = roundup(memlist_sz, PAGESIZE);
1355 memspace = ndata_alloc(&ndata, memlist_sz, ecache_alignsize);
1356 if (memspace == NULL)
1357 cmn_err(CE_PANIC, "no more nucleus memory after memlist alloc");
1358
1359 memlist = (struct memlist *)memspace;
1360 memlist_end = (char *)memspace + memlist_sz;
1361 PRM_DEBUG(memlist);
1362 PRM_DEBUG(memlist_end);
1363
1364 PRM_DEBUG(sysbase);
1365 PRM_DEBUG(syslimit);
1366 kernelheap_init((void *)sysbase, (void *)syslimit,
1367 (caddr_t)sysbase + PAGESIZE, NULL, NULL);
1368
1369 /*
1370 * Take the most current snapshot we can by calling mem-update.
1371 */
1372 copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len,
1373 &boot_physavail, &boot_physavail_len,
1374 &boot_virtavail, &boot_virtavail_len);
1375
1376 /*
1377 * Remove the space used by prom_alloc from the kernel heap
1378 * plus the area actually used by the OBP (if any)
1379 * ignoring virtual addresses in virt_avail, above syslimit.
1380 */
1381 virt_avail = memlist;
1382 copy_memlist(boot_virtavail, boot_virtavail_len, &memlist);
1383
1384 for (cur = virt_avail; cur->ml_next; cur = cur->ml_next) {
1385 uint64_t range_base, range_size;
1386
1387 if ((range_base = cur->ml_address + cur->ml_size) <
1388 (uint64_t)sysbase)
1389 continue;
1390 if (range_base >= (uint64_t)syslimit)
1391 break;
1392 /*
1393 * Limit the range to end at syslimit.
1394 */
1395 range_size = MIN(cur->ml_next->ml_address,
1396 (uint64_t)syslimit) - range_base;
1397 (void) vmem_xalloc(heap_arena, (size_t)range_size, PAGESIZE,
1398 0, 0, (void *)range_base, (void *)(range_base + range_size),
1399 VM_NOSLEEP | VM_BESTFIT | VM_PANIC);
1400 }
1401
1402 phys_avail = memlist;
1403 copy_memlist(boot_physavail, boot_physavail_len, &memlist);
1404
1405 /*
1406 * Add any extra memory at the end of the ndata region if there's at
1407 * least a page to add. There might be a few more pages available in
1408 * the middle of the ndata region, but for now they are ignored.
1409 */
1410 nalloc_base = ndata_extra_base(&ndata, MMU_PAGESIZE, nalloc_end);
1411 if (nalloc_base == NULL)
1412 nalloc_base = nalloc_end;
1413 ndata_remain_sz = nalloc_end - nalloc_base;
1414
1415 /*
1416 * Copy physinstalled list into kernel space.
1417 */
1418 phys_install = memlist;
1419 copy_memlist(boot_physinstalled, boot_physinstalled_len, &memlist);
1420
1421 /*
1422 * Create list of physical addrs we don't need pp's for:
1423 * kernel text 4M page
1424 * kernel data 4M page - ndata_remain_sz
1425 * kmem64 pages
1426 *
1427 * NB if adding any pages here, make sure no kpm page
1428 * overlaps can occur (see ASSERTs in kphysm_memsegs)
1429 */
1430 nopp_list = memlist;
1431 memlist_new(va_to_pa(s_text), MMU_PAGESIZE4M, &memlist);
1432 memlist_add(va_to_pa(s_data), MMU_PAGESIZE4M - ndata_remain_sz,
1433 &memlist, &nopp_list);
1434
1435 /* Don't add to nopp_list if kmem64 was allocated in smchunks */
1436 if (!kmem64_smchunks)
1437 memlist_add(kmem64_pabase, kmem64_sz, &memlist, &nopp_list);
1438
1439 if ((caddr_t)memlist > (memspace + memlist_sz))
1440 prom_panic("memlist overflow");
1441
1442 /*
1443 * Size the pcf array based on the number of cpus in the box at
1444 * boot time.
1445 */
1446 pcf_init();
1447
1448 /*
1449 * Initialize the page structures from the memory lists.
1450 */
1451 kphysm_init();
1452
1453 availrmem_initial = availrmem = freemem;
1454 PRM_DEBUG(availrmem);
1455
1456 /*
1457 * Some of the locks depend on page_hashsz being set!
1458 * kmem_init() depends on this; so, keep it here.
1459 */
1460 page_lock_init();
1461
1462 /*
1463 * Initialize kernel memory allocator.
1464 */
1465 kmem_init();
1466
1467 /*
1468 * Factor in colorequiv to check additional 'equivalent' bins
1469 */
1470 if (&page_set_colorequiv_arr_cpu != NULL)
1471 page_set_colorequiv_arr_cpu();
1472 else
1473 page_set_colorequiv_arr();
1474
1475 /*
1476 * Initialize bp_mapin().
1477 */
1478 bp_init(shm_alignment, HAT_STRICTORDER);
1479
1480 /*
1481 * Reserve space for MPO mblock structs from the 32-bit heap.
1482 */
1483
1484 if (mpo_heap32_bufsz > (size_t)0) {
1485 (void) vmem_xalloc(heap32_arena, mpo_heap32_bufsz,
1486 PAGESIZE, 0, 0, mpo_heap32_buf,
1487 mpo_heap32_buf + mpo_heap32_bufsz,
1488 VM_NOSLEEP | VM_BESTFIT | VM_PANIC);
1489 }
1490 mem_config_init();
1491 }
1492
1493 static void
startup_modules(void)1494 startup_modules(void)
1495 {
1496 int nhblk1, nhblk8;
1497 size_t nhblksz;
1498 pgcnt_t pages_per_hblk;
1499 size_t hme8blk_sz, hme1blk_sz;
1500
1501 /*
1502 * The system file /etc/system was read already under startup_memlist.
1503 */
1504 if (&set_platform_defaults)
1505 set_platform_defaults();
1506
1507 /*
1508 * Calculate default settings of system parameters based upon
1509 * maxusers, yet allow to be overridden via the /etc/system file.
1510 */
1511 param_calc(0);
1512
1513 mod_setup();
1514
1515 /*
1516 * Initialize system parameters
1517 */
1518 param_init();
1519
1520 /*
1521 * maxmem is the amount of physical memory we're playing with.
1522 */
1523 maxmem = physmem;
1524
1525 /* Set segkp limits. */
1526 ncbase = kdi_segdebugbase;
1527 ncend = kdi_segdebugbase;
1528
1529 /*
1530 * Initialize the hat layer.
1531 */
1532 hat_init();
1533
1534 /*
1535 * Initialize segment management stuff.
1536 */
1537 seg_init();
1538
1539 /*
1540 * Create the va>tte handler, so the prom can understand
1541 * kernel translations. The handler is installed later, just
1542 * as we are about to take over the trap table from the prom.
1543 */
1544 create_va_to_tte();
1545
1546 /*
1547 * Load the forthdebugger (optional)
1548 */
1549 forthdebug_init();
1550
1551 /*
1552 * Create OBP node for console input callbacks
1553 * if it is needed.
1554 */
1555 startup_create_io_node();
1556
1557 if (modloadonly("fs", "specfs") == -1)
1558 halt("Can't load specfs");
1559
1560 if (modloadonly("fs", "devfs") == -1)
1561 halt("Can't load devfs");
1562
1563 if (modloadonly("fs", "procfs") == -1)
1564 halt("Can't load procfs");
1565
1566 if (modloadonly("misc", "swapgeneric") == -1)
1567 halt("Can't load swapgeneric");
1568
1569 (void) modloadonly("sys", "lbl_edition");
1570
1571 dispinit();
1572
1573 /*
1574 * Infer meanings to the members of the idprom buffer.
1575 */
1576 parse_idprom();
1577
1578 /* Read cluster configuration data. */
1579 clconf_init();
1580
1581 setup_ddi();
1582
1583 /*
1584 * Lets take this opportunity to load the root device.
1585 */
1586 if (loadrootmodules() != 0)
1587 debug_enter("Can't load the root filesystem");
1588
1589 /*
1590 * Load tod driver module for the tod part found on this system.
1591 * Recompute the cpu frequency/delays based on tod as tod part
1592 * tends to keep time more accurately.
1593 */
1594 if (&load_tod_module)
1595 load_tod_module();
1596
1597 /*
1598 * Allow platforms to load modules which might
1599 * be needed after bootops are gone.
1600 */
1601 if (&load_platform_modules)
1602 load_platform_modules();
1603
1604 setcpudelay();
1605
1606 copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len,
1607 &boot_physavail, &boot_physavail_len,
1608 &boot_virtavail, &boot_virtavail_len);
1609
1610 /*
1611 * Calculation and allocation of hmeblks needed to remap
1612 * the memory allocated by PROM till now.
1613 * Overestimate the number of hblk1 elements by assuming
1614 * worst case of TTE64K mappings.
1615 * sfmmu_hblk_alloc will panic if this calculation is wrong.
1616 */
1617 bop_alloc_pages = btopr(kmem64_end - kmem64_base);
1618 pages_per_hblk = btop(HMEBLK_SPAN(TTE64K));
1619 bop_alloc_pages = roundup(bop_alloc_pages, pages_per_hblk);
1620 nhblk1 = bop_alloc_pages / pages_per_hblk + hblk1_min;
1621
1622 bop_alloc_pages = size_virtalloc(boot_virtavail, boot_virtavail_len);
1623
1624 /* sfmmu_init_nucleus_hblks expects properly aligned data structures */
1625 hme8blk_sz = roundup(HME8BLK_SZ, sizeof (int64_t));
1626 hme1blk_sz = roundup(HME1BLK_SZ, sizeof (int64_t));
1627
1628 bop_alloc_pages += btopr(nhblk1 * hme1blk_sz);
1629
1630 pages_per_hblk = btop(HMEBLK_SPAN(TTE8K));
1631 nhblk8 = 0;
1632 while (bop_alloc_pages > 1) {
1633 bop_alloc_pages = roundup(bop_alloc_pages, pages_per_hblk);
1634 nhblk8 += bop_alloc_pages /= pages_per_hblk;
1635 bop_alloc_pages *= hme8blk_sz;
1636 bop_alloc_pages = btopr(bop_alloc_pages);
1637 }
1638 nhblk8 += 2;
1639
1640 /*
1641 * Since hblk8's can hold up to 64k of mappings aligned on a 64k
1642 * boundary, the number of hblk8's needed to map the entries in the
1643 * boot_virtavail list needs to be adjusted to take this into
1644 * consideration. Thus, we need to add additional hblk8's since it
1645 * is possible that an hblk8 will not have all 8 slots used due to
1646 * alignment constraints. Since there were boot_virtavail_len entries
1647 * in that list, we need to add that many hblk8's to the number
1648 * already calculated to make sure we don't underestimate.
1649 */
1650 nhblk8 += boot_virtavail_len;
1651 nhblksz = nhblk8 * hme8blk_sz + nhblk1 * hme1blk_sz;
1652
1653 /* Allocate in pagesize chunks */
1654 nhblksz = roundup(nhblksz, MMU_PAGESIZE);
1655 hblk_base = kmem_zalloc(nhblksz, KM_SLEEP);
1656 sfmmu_init_nucleus_hblks(hblk_base, nhblksz, nhblk8, nhblk1);
1657 }
1658
1659 static void
startup_bop_gone(void)1660 startup_bop_gone(void)
1661 {
1662
1663 /*
1664 * Destroy the MD initialized at startup
1665 * The startup initializes the MD framework
1666 * using prom and BOP alloc free it now.
1667 */
1668 mach_descrip_startup_fini();
1669
1670 /*
1671 * We're done with prom allocations.
1672 */
1673 bop_fini();
1674
1675 copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len,
1676 &boot_physavail, &boot_physavail_len,
1677 &boot_virtavail, &boot_virtavail_len);
1678
1679 /*
1680 * setup physically contiguous area twice as large as the ecache.
1681 * this is used while doing displacement flush of ecaches
1682 */
1683 if (&ecache_flush_address) {
1684 ecache_flushaddr = ecache_flush_address();
1685 if (ecache_flushaddr == (uint64_t)-1) {
1686 cmn_err(CE_PANIC,
1687 "startup: no memory to set ecache_flushaddr");
1688 }
1689 }
1690
1691 /*
1692 * Virtual available next.
1693 */
1694 ASSERT(virt_avail != NULL);
1695 memlist_free_list(virt_avail);
1696 virt_avail = memlist;
1697 copy_memlist(boot_virtavail, boot_virtavail_len, &memlist);
1698
1699 }
1700
1701
1702 /*
1703 * startup_fixup_physavail - called from mach_sfmmu.c after the final
1704 * allocations have been performed. We can't call it in startup_bop_gone
1705 * since later operations can cause obp to allocate more memory.
1706 */
1707 void
startup_fixup_physavail(void)1708 startup_fixup_physavail(void)
1709 {
1710 struct memlist *cur;
1711 size_t kmem64_overmap_size = kmem64_aligned_end - kmem64_end;
1712
1713 PRM_DEBUG(kmem64_overmap_size);
1714
1715 /*
1716 * take the most current snapshot we can by calling mem-update
1717 */
1718 copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len,
1719 &boot_physavail, &boot_physavail_len,
1720 &boot_virtavail, &boot_virtavail_len);
1721
1722 /*
1723 * Copy phys_avail list, again.
1724 * Both the kernel/boot and the prom have been allocating
1725 * from the original list we copied earlier.
1726 */
1727 cur = memlist;
1728 copy_memlist(boot_physavail, boot_physavail_len, &memlist);
1729
1730 /*
1731 * Add any unused kmem64 memory from overmapped page
1732 * (Note: va_to_pa does not work for kmem64_end)
1733 */
1734 if (kmem64_overmap_size) {
1735 memlist_add(kmem64_pabase + (kmem64_end - kmem64_base),
1736 kmem64_overmap_size, &memlist, &cur);
1737 }
1738
1739 /*
1740 * Add any extra memory after e_data we added to the phys_avail list
1741 * back to the old list.
1742 */
1743 if (ndata_remain_sz >= MMU_PAGESIZE)
1744 memlist_add(va_to_pa(nalloc_base),
1745 (uint64_t)ndata_remain_sz, &memlist, &cur);
1746
1747 /*
1748 * There isn't any bounds checking on the memlist area
1749 * so ensure it hasn't overgrown.
1750 */
1751 if ((caddr_t)memlist > (caddr_t)memlist_end)
1752 cmn_err(CE_PANIC, "startup: memlist size exceeded");
1753
1754 /*
1755 * The kernel removes the pages that were allocated for it from
1756 * the freelist, but we now have to find any -extra- pages that
1757 * the prom has allocated for it's own book-keeping, and remove
1758 * them from the freelist too. sigh.
1759 */
1760 sync_memlists(phys_avail, cur);
1761
1762 ASSERT(phys_avail != NULL);
1763
1764 old_phys_avail = phys_avail;
1765 phys_avail = cur;
1766 }
1767
1768 void
update_kcage_ranges(uint64_t addr,uint64_t len)1769 update_kcage_ranges(uint64_t addr, uint64_t len)
1770 {
1771 pfn_t base = btop(addr);
1772 pgcnt_t num = btop(len);
1773 int rv;
1774
1775 rv = kcage_range_add(base, num, kcage_startup_dir);
1776
1777 if (rv == ENOMEM) {
1778 cmn_err(CE_WARN, "%ld megabytes not available to kernel cage",
1779 (len == 0 ? 0 : BYTES_TO_MB(len)));
1780 } else if (rv != 0) {
1781 /* catch this in debug kernels */
1782 ASSERT(0);
1783
1784 cmn_err(CE_WARN, "unexpected kcage_range_add"
1785 " return value %d", rv);
1786 }
1787 }
1788
1789 static void
startup_vm(void)1790 startup_vm(void)
1791 {
1792 size_t i;
1793 struct segmap_crargs a;
1794 struct segkpm_crargs b;
1795
1796 uint64_t avmem;
1797 caddr_t va;
1798 pgcnt_t max_phys_segkp;
1799 int mnode;
1800
1801 extern int use_brk_lpg, use_stk_lpg;
1802
1803 /*
1804 * get prom's mappings, create hments for them and switch
1805 * to the kernel context.
1806 */
1807 hat_kern_setup();
1808
1809 /*
1810 * Take over trap table
1811 */
1812 setup_trap_table();
1813
1814 /*
1815 * Install the va>tte handler, so that the prom can handle
1816 * misses and understand the kernel table layout in case
1817 * we need call into the prom.
1818 */
1819 install_va_to_tte();
1820
1821 /*
1822 * Set a flag to indicate that the tba has been taken over.
1823 */
1824 tba_taken_over = 1;
1825
1826 /* initialize MMU primary context register */
1827 mmu_init_kcontext();
1828
1829 /*
1830 * The boot cpu can now take interrupts, x-calls, x-traps
1831 */
1832 CPUSET_ADD(cpu_ready_set, CPU->cpu_id);
1833 CPU->cpu_flags |= (CPU_READY | CPU_ENABLE | CPU_EXISTS);
1834
1835 /*
1836 * Set a flag to tell write_scb_int() that it can access V_TBR_WR_ADDR.
1837 */
1838 tbr_wr_addr_inited = 1;
1839
1840 /*
1841 * Initialize VM system, and map kernel address space.
1842 */
1843 kvm_init();
1844
1845 ASSERT(old_phys_avail != NULL && phys_avail != NULL);
1846 if (kernel_cage_enable) {
1847 diff_memlists(phys_avail, old_phys_avail, update_kcage_ranges);
1848 }
1849 memlist_free_list(old_phys_avail);
1850
1851 /*
1852 * If the following is true, someone has patched
1853 * phsymem to be less than the number of pages that
1854 * the system actually has. Remove pages until system
1855 * memory is limited to the requested amount. Since we
1856 * have allocated page structures for all pages, we
1857 * correct the amount of memory we want to remove
1858 * by the size of the memory used to hold page structures
1859 * for the non-used pages.
1860 */
1861 if (physmem + ramdisk_npages < npages) {
1862 pgcnt_t diff, off;
1863 struct page *pp;
1864 struct seg kseg;
1865
1866 cmn_err(CE_WARN, "limiting physmem to %ld pages", physmem);
1867
1868 off = 0;
1869 diff = npages - (physmem + ramdisk_npages);
1870 diff -= mmu_btopr(diff * sizeof (struct page));
1871 kseg.s_as = &kas;
1872 while (diff--) {
1873 pp = page_create_va(&unused_pages_vp, (offset_t)off,
1874 MMU_PAGESIZE, PG_WAIT | PG_EXCL,
1875 &kseg, (caddr_t)off);
1876 if (pp == NULL)
1877 cmn_err(CE_PANIC, "limited physmem too much!");
1878 page_io_unlock(pp);
1879 page_downgrade(pp);
1880 availrmem--;
1881 off += MMU_PAGESIZE;
1882 }
1883 }
1884
1885 /*
1886 * When printing memory, show the total as physmem less
1887 * that stolen by a debugger.
1888 */
1889 cmn_err(CE_CONT, "?mem = %ldK (0x%lx000)\n",
1890 (ulong_t)(physinstalled) << (PAGESHIFT - 10),
1891 (ulong_t)(physinstalled) << (PAGESHIFT - 12));
1892
1893 avmem = (uint64_t)freemem << PAGESHIFT;
1894 cmn_err(CE_CONT, "?avail mem = %lld\n", (unsigned long long)avmem);
1895
1896 /*
1897 * For small memory systems disable automatic large pages.
1898 */
1899 if (physmem < privm_lpg_min_physmem) {
1900 use_brk_lpg = 0;
1901 use_stk_lpg = 0;
1902 }
1903
1904 /*
1905 * Perform platform specific freelist processing
1906 */
1907 if (&plat_freelist_process) {
1908 for (mnode = 0; mnode < max_mem_nodes; mnode++)
1909 if (mem_node_config[mnode].exists)
1910 plat_freelist_process(mnode);
1911 }
1912
1913 /*
1914 * Initialize the segkp segment type. We position it
1915 * after the configured tables and buffers (whose end
1916 * is given by econtig) and before V_WKBASE_ADDR.
1917 * Also in this area is segkmap (size SEGMAPSIZE).
1918 */
1919
1920 /* XXX - cache alignment? */
1921 va = (caddr_t)SEGKPBASE;
1922 ASSERT(((uintptr_t)va & PAGEOFFSET) == 0);
1923
1924 max_phys_segkp = (physmem * 2);
1925
1926 if (segkpsize < btop(SEGKPMINSIZE) || segkpsize > btop(SEGKPMAXSIZE)) {
1927 segkpsize = btop(SEGKPDEFSIZE);
1928 cmn_err(CE_WARN, "Illegal value for segkpsize. "
1929 "segkpsize has been reset to %ld pages", segkpsize);
1930 }
1931
1932 i = ptob(MIN(segkpsize, max_phys_segkp));
1933
1934 rw_enter(&kas.a_lock, RW_WRITER);
1935 if (seg_attach(&kas, va, i, segkp) < 0)
1936 cmn_err(CE_PANIC, "startup: cannot attach segkp");
1937 if (segkp_create(segkp) != 0)
1938 cmn_err(CE_PANIC, "startup: segkp_create failed");
1939 rw_exit(&kas.a_lock);
1940
1941 /*
1942 * kpm segment
1943 */
1944 segmap_kpm = kpm_enable &&
1945 segmap_kpm && PAGESIZE == MAXBSIZE;
1946
1947 if (kpm_enable) {
1948 rw_enter(&kas.a_lock, RW_WRITER);
1949
1950 /*
1951 * The segkpm virtual range range is larger than the
1952 * actual physical memory size and also covers gaps in
1953 * the physical address range for the following reasons:
1954 * . keep conversion between segkpm and physical addresses
1955 * simple, cheap and unambiguous.
1956 * . avoid extension/shrink of the the segkpm in case of DR.
1957 * . avoid complexity for handling of virtual addressed
1958 * caches, segkpm and the regular mapping scheme must be
1959 * kept in sync wrt. the virtual color of mapped pages.
1960 * Any accesses to virtual segkpm ranges not backed by
1961 * physical memory will fall through the memseg pfn hash
1962 * and will be handled in segkpm_fault.
1963 * Additional kpm_size spaces needed for vac alias prevention.
1964 */
1965 if (seg_attach(&kas, kpm_vbase, kpm_size * vac_colors,
1966 segkpm) < 0)
1967 cmn_err(CE_PANIC, "cannot attach segkpm");
1968
1969 b.prot = PROT_READ | PROT_WRITE;
1970 b.nvcolors = shm_alignment >> MMU_PAGESHIFT;
1971
1972 if (segkpm_create(segkpm, (caddr_t)&b) != 0)
1973 panic("segkpm_create segkpm");
1974
1975 rw_exit(&kas.a_lock);
1976
1977 mach_kpm_init();
1978 }
1979
1980 va = kpm_vbase + (kpm_size * vac_colors);
1981
1982 if (!segzio_fromheap) {
1983 size_t size;
1984 size_t physmem_b = mmu_ptob(physmem);
1985
1986 /* size is in bytes, segziosize is in pages */
1987 if (segziosize == 0) {
1988 size = physmem_b;
1989 } else {
1990 size = mmu_ptob(segziosize);
1991 }
1992
1993 if (size < SEGZIOMINSIZE) {
1994 size = SEGZIOMINSIZE;
1995 } else if (size > SEGZIOMAXSIZE) {
1996 size = SEGZIOMAXSIZE;
1997 /*
1998 * On 64-bit x86, we only have 2TB of KVA. This exists
1999 * for parity with x86.
2000 *
2001 * SEGZIOMAXSIZE is capped at 512gb so that segzio
2002 * doesn't consume all of KVA. However, if we have a
2003 * system that has more thant 512gb of physical memory,
2004 * we can actually consume about half of the difference
2005 * between 512gb and the rest of the available physical
2006 * memory.
2007 */
2008 if (physmem_b > SEGZIOMAXSIZE) {
2009 size += (physmem_b - SEGZIOMAXSIZE) / 2;
2010 }
2011 }
2012 segziosize = mmu_btop(roundup(size, MMU_PAGESIZE));
2013 /* put the base of the ZIO segment after the kpm segment */
2014 segzio_base = va;
2015 va += mmu_ptob(segziosize);
2016 PRM_DEBUG(segziosize);
2017 PRM_DEBUG(segzio_base);
2018
2019 /*
2020 * On some platforms, kvm_init is called after the kpm
2021 * sizes have been determined. On SPARC, kvm_init is called
2022 * before, so we have to attach the kzioseg after kvm is
2023 * initialized, otherwise we'll try to allocate from the boot
2024 * area since the kernel heap hasn't yet been configured.
2025 */
2026 rw_enter(&kas.a_lock, RW_WRITER);
2027
2028 (void) seg_attach(&kas, segzio_base, mmu_ptob(segziosize),
2029 &kzioseg);
2030 (void) segkmem_create(&kzioseg);
2031
2032 /* create zio area covering new segment */
2033 segkmem_zio_init(segzio_base, mmu_ptob(segziosize));
2034
2035 rw_exit(&kas.a_lock);
2036 }
2037
2038 if (ppvm_enable) {
2039 caddr_t ppvm_max;
2040
2041 /*
2042 * ppvm refers to the static VA space used to map
2043 * the page_t's for dynamically added memory.
2044 *
2045 * ppvm_base should not cross a potential VA hole.
2046 *
2047 * ppvm_size should be large enough to map the
2048 * page_t's needed to manage all of KPM range.
2049 */
2050 ppvm_size =
2051 roundup(mmu_btop(kpm_size * vac_colors) * sizeof (page_t),
2052 MMU_PAGESIZE);
2053 ppvm_max = (caddr_t)(0ull - ppvm_size);
2054 ppvm_base = (page_t *)va;
2055
2056 if ((caddr_t)ppvm_base <= hole_end) {
2057 cmn_err(CE_WARN,
2058 "Memory DR disabled: invalid DR map base: 0x%p\n",
2059 (void *)ppvm_base);
2060 ppvm_enable = 0;
2061 } else if ((caddr_t)ppvm_base > ppvm_max) {
2062 uint64_t diff = (caddr_t)ppvm_base - ppvm_max;
2063
2064 cmn_err(CE_WARN,
2065 "Memory DR disabled: insufficient DR map size:"
2066 " 0x%lx (needed 0x%lx)\n",
2067 ppvm_size - diff, ppvm_size);
2068 ppvm_enable = 0;
2069 }
2070 PRM_DEBUG(ppvm_size);
2071 PRM_DEBUG(ppvm_base);
2072 }
2073
2074 /*
2075 * Now create generic mapping segment. This mapping
2076 * goes SEGMAPSIZE beyond SEGMAPBASE. But if the total
2077 * virtual address is greater than the amount of free
2078 * memory that is available, then we trim back the
2079 * segment size to that amount
2080 */
2081 va = (caddr_t)SEGMAPBASE;
2082
2083 /*
2084 * 1201049: segkmap base address must be MAXBSIZE aligned
2085 */
2086 ASSERT(((uintptr_t)va & MAXBOFFSET) == 0);
2087
2088 /*
2089 * Set size of segmap to percentage of freemem at boot,
2090 * but stay within the allowable range
2091 * Note we take percentage before converting from pages
2092 * to bytes to avoid an overflow on 32-bit kernels.
2093 */
2094 i = mmu_ptob((freemem * segmap_percent) / 100);
2095
2096 if (i < MINMAPSIZE)
2097 i = MINMAPSIZE;
2098
2099 if (i > MIN(SEGMAPSIZE, mmu_ptob(freemem)))
2100 i = MIN(SEGMAPSIZE, mmu_ptob(freemem));
2101
2102 i &= MAXBMASK; /* 1201049: segkmap size must be MAXBSIZE aligned */
2103
2104 rw_enter(&kas.a_lock, RW_WRITER);
2105 if (seg_attach(&kas, va, i, segkmap) < 0)
2106 cmn_err(CE_PANIC, "cannot attach segkmap");
2107
2108 a.prot = PROT_READ | PROT_WRITE;
2109 a.shmsize = shm_alignment;
2110 a.nfreelist = 0; /* use segmap driver defaults */
2111
2112 if (segmap_create(segkmap, (caddr_t)&a) != 0)
2113 panic("segmap_create segkmap");
2114 rw_exit(&kas.a_lock);
2115
2116 segdev_init();
2117 }
2118
2119 static void
startup_end(void)2120 startup_end(void)
2121 {
2122 if ((caddr_t)memlist > (caddr_t)memlist_end)
2123 panic("memlist overflow 2");
2124 memlist_free_block((caddr_t)memlist,
2125 ((caddr_t)memlist_end - (caddr_t)memlist));
2126 memlist = NULL;
2127
2128 /* enable page_relocation since OBP is now done */
2129 page_relocate_ready = 1;
2130
2131 /*
2132 * Perform tasks that get done after most of the VM
2133 * initialization has been done but before the clock
2134 * and other devices get started.
2135 */
2136 kern_setup1();
2137
2138 /*
2139 * Perform CPC initialization for this CPU.
2140 */
2141 kcpc_hw_init();
2142
2143 /*
2144 * Intialize the VM arenas for allocating physically
2145 * contiguus memory chunk for interrupt queues snd
2146 * allocate/register boot cpu's queues, if any and
2147 * allocate dump buffer for sun4v systems to store
2148 * extra crash information during crash dump
2149 */
2150 contig_mem_init();
2151 mach_descrip_init();
2152
2153 if (cpu_intrq_setup(CPU)) {
2154 cmn_err(CE_PANIC, "cpu%d: setup failed", CPU->cpu_id);
2155 }
2156 cpu_intrq_register(CPU);
2157 mach_htraptrace_setup(CPU->cpu_id);
2158 mach_htraptrace_configure(CPU->cpu_id);
2159 mach_dump_buffer_init();
2160
2161 /*
2162 * Initialize interrupt related stuff
2163 */
2164 cpu_intr_alloc(CPU, NINTR_THREADS);
2165
2166 (void) splzs(); /* allow hi clock ints but not zs */
2167
2168 /*
2169 * Initialize errors.
2170 */
2171 error_init();
2172
2173 /*
2174 * Note that we may have already used kernel bcopy before this
2175 * point - but if you really care about this, adb the use_hw_*
2176 * variables to 0 before rebooting.
2177 */
2178 mach_hw_copy_limit();
2179
2180 /*
2181 * Install the "real" preemption guards before DDI services
2182 * are available.
2183 */
2184 (void) prom_set_preprom(kern_preprom);
2185 (void) prom_set_postprom(kern_postprom);
2186 CPU->cpu_m.mutex_ready = 1;
2187
2188 /*
2189 * Initialize segnf (kernel support for non-faulting loads).
2190 */
2191 segnf_init();
2192
2193 /*
2194 * Configure the root devinfo node.
2195 */
2196 configure(); /* set up devices */
2197 mach_cpu_halt_idle();
2198 }
2199
2200
2201 void
post_startup(void)2202 post_startup(void)
2203 {
2204 #ifdef PTL1_PANIC_DEBUG
2205 extern void init_ptl1_thread(void);
2206 #endif /* PTL1_PANIC_DEBUG */
2207 extern void abort_sequence_init(void);
2208
2209 /*
2210 * Set the system wide, processor-specific flags to be passed
2211 * to userland via the aux vector for performance hints and
2212 * instruction set extensions.
2213 */
2214 bind_hwcap();
2215
2216 /*
2217 * Startup memory scrubber (if any)
2218 */
2219 mach_memscrub();
2220
2221 /*
2222 * Allocate soft interrupt to handle abort sequence.
2223 */
2224 abort_sequence_init();
2225
2226 /*
2227 * Configure the rest of the system.
2228 * Perform forceloading tasks for /etc/system.
2229 */
2230 (void) mod_sysctl(SYS_FORCELOAD, NULL);
2231 /*
2232 * ON4.0: Force /proc module in until clock interrupt handle fixed
2233 * ON4.0: This must be fixed or restated in /etc/systems.
2234 */
2235 (void) modload("fs", "procfs");
2236
2237 /* load machine class specific drivers */
2238 load_mach_drivers();
2239
2240 /* load platform specific drivers */
2241 if (&load_platform_drivers)
2242 load_platform_drivers();
2243
2244 /* load vis simulation module, if we are running w/fpu off */
2245 if (!fpu_exists) {
2246 if (modload("misc", "vis") == -1)
2247 halt("Can't load vis");
2248 }
2249
2250 mach_fpras();
2251
2252 maxmem = freemem;
2253
2254 pg_init();
2255
2256 #ifdef PTL1_PANIC_DEBUG
2257 init_ptl1_thread();
2258 #endif /* PTL1_PANIC_DEBUG */
2259 }
2260
2261 #ifdef PTL1_PANIC_DEBUG
2262 int ptl1_panic_test = 0;
2263 int ptl1_panic_xc_one_test = 0;
2264 int ptl1_panic_xc_all_test = 0;
2265 int ptl1_panic_xt_one_test = 0;
2266 int ptl1_panic_xt_all_test = 0;
2267 kthread_id_t ptl1_thread_p = NULL;
2268 kcondvar_t ptl1_cv;
2269 kmutex_t ptl1_mutex;
2270 int ptl1_recurse_count_threshold = 0x40;
2271 int ptl1_recurse_trap_threshold = 0x3d;
2272 extern void ptl1_recurse(int, int);
2273 extern void ptl1_panic_xt(int, int);
2274
2275 /*
2276 * Called once per second by timeout() to wake up
2277 * the ptl1_panic thread to see if it should cause
2278 * a trap to the ptl1_panic() code.
2279 */
2280 /* ARGSUSED */
2281 static void
ptl1_wakeup(void * arg)2282 ptl1_wakeup(void *arg)
2283 {
2284 mutex_enter(&ptl1_mutex);
2285 cv_signal(&ptl1_cv);
2286 mutex_exit(&ptl1_mutex);
2287 }
2288
2289 /*
2290 * ptl1_panic cross call function:
2291 * Needed because xc_one() and xc_some() can pass
2292 * 64 bit args but ptl1_recurse() expects ints.
2293 */
2294 static void
ptl1_panic_xc(void)2295 ptl1_panic_xc(void)
2296 {
2297 ptl1_recurse(ptl1_recurse_count_threshold,
2298 ptl1_recurse_trap_threshold);
2299 }
2300
2301 /*
2302 * The ptl1 thread waits for a global flag to be set
2303 * and uses the recurse thresholds to set the stack depth
2304 * to cause a ptl1_panic() directly via a call to ptl1_recurse
2305 * or indirectly via the cross call and cross trap functions.
2306 *
2307 * This is useful testing stack overflows and normal
2308 * ptl1_panic() states with a know stack frame.
2309 *
2310 * ptl1_recurse() is an asm function in ptl1_panic.s that
2311 * sets the {In, Local, Out, and Global} registers to a
2312 * know state on the stack and just prior to causing a
2313 * test ptl1_panic trap.
2314 */
2315 static void
ptl1_thread(void)2316 ptl1_thread(void)
2317 {
2318 mutex_enter(&ptl1_mutex);
2319 while (ptl1_thread_p) {
2320 cpuset_t other_cpus;
2321 int cpu_id;
2322 int my_cpu_id;
2323 int target_cpu_id;
2324 int target_found;
2325
2326 if (ptl1_panic_test) {
2327 ptl1_recurse(ptl1_recurse_count_threshold,
2328 ptl1_recurse_trap_threshold);
2329 }
2330
2331 /*
2332 * Find potential targets for x-call and x-trap,
2333 * if any exist while preempt is disabled we
2334 * start a ptl1_panic if requested via a
2335 * globals.
2336 */
2337 kpreempt_disable();
2338 my_cpu_id = CPU->cpu_id;
2339 other_cpus = cpu_ready_set;
2340 CPUSET_DEL(other_cpus, CPU->cpu_id);
2341 target_found = 0;
2342 if (!CPUSET_ISNULL(other_cpus)) {
2343 /*
2344 * Pick the first one
2345 */
2346 for (cpu_id = 0; cpu_id < NCPU; cpu_id++) {
2347 if (cpu_id == my_cpu_id)
2348 continue;
2349
2350 if (CPU_XCALL_READY(cpu_id)) {
2351 target_cpu_id = cpu_id;
2352 target_found = 1;
2353 break;
2354 }
2355 }
2356 ASSERT(target_found);
2357
2358 if (ptl1_panic_xc_one_test) {
2359 xc_one(target_cpu_id,
2360 (xcfunc_t *)ptl1_panic_xc, 0, 0);
2361 }
2362 if (ptl1_panic_xc_all_test) {
2363 xc_some(other_cpus,
2364 (xcfunc_t *)ptl1_panic_xc, 0, 0);
2365 }
2366 if (ptl1_panic_xt_one_test) {
2367 xt_one(target_cpu_id,
2368 (xcfunc_t *)ptl1_panic_xt, 0, 0);
2369 }
2370 if (ptl1_panic_xt_all_test) {
2371 xt_some(other_cpus,
2372 (xcfunc_t *)ptl1_panic_xt, 0, 0);
2373 }
2374 }
2375 kpreempt_enable();
2376 (void) timeout(ptl1_wakeup, NULL, hz);
2377 (void) cv_wait(&ptl1_cv, &ptl1_mutex);
2378 }
2379 mutex_exit(&ptl1_mutex);
2380 }
2381
2382 /*
2383 * Called during early startup to create the ptl1_thread
2384 */
2385 void
init_ptl1_thread(void)2386 init_ptl1_thread(void)
2387 {
2388 ptl1_thread_p = thread_create(NULL, 0, ptl1_thread, NULL, 0,
2389 &p0, TS_RUN, 0);
2390 }
2391 #endif /* PTL1_PANIC_DEBUG */
2392
2393
2394 static void
memlist_new(uint64_t start,uint64_t len,struct memlist ** memlistp)2395 memlist_new(uint64_t start, uint64_t len, struct memlist **memlistp)
2396 {
2397 struct memlist *new;
2398
2399 new = *memlistp;
2400 new->ml_address = start;
2401 new->ml_size = len;
2402 *memlistp = new + 1;
2403 }
2404
2405 /*
2406 * Add to a memory list.
2407 * start = start of new memory segment
2408 * len = length of new memory segment in bytes
2409 * memlistp = pointer to array of available memory segment structures
2410 * curmemlistp = memory list to which to add segment.
2411 */
2412 static void
memlist_add(uint64_t start,uint64_t len,struct memlist ** memlistp,struct memlist ** curmemlistp)2413 memlist_add(uint64_t start, uint64_t len, struct memlist **memlistp,
2414 struct memlist **curmemlistp)
2415 {
2416 struct memlist *new = *memlistp;
2417
2418 memlist_new(start, len, memlistp);
2419 memlist_insert(new, curmemlistp);
2420 }
2421
2422 static int
ndata_alloc_memseg(struct memlist * ndata,size_t avail)2423 ndata_alloc_memseg(struct memlist *ndata, size_t avail)
2424 {
2425 int nseg;
2426 size_t memseg_sz;
2427 struct memseg *msp;
2428
2429 /*
2430 * The memseg list is for the chunks of physical memory that
2431 * will be managed by the vm system. The number calculated is
2432 * a guess as boot may fragment it more when memory allocations
2433 * are made before kphysm_init().
2434 */
2435 memseg_sz = (avail + 10) * sizeof (struct memseg);
2436 memseg_sz = roundup(memseg_sz, PAGESIZE);
2437 nseg = memseg_sz / sizeof (struct memseg);
2438 msp = ndata_alloc(ndata, memseg_sz, ecache_alignsize);
2439 if (msp == NULL)
2440 return (1);
2441 PRM_DEBUG(memseg_free);
2442
2443 while (nseg--) {
2444 msp->next = memseg_free;
2445 memseg_free = msp;
2446 msp++;
2447 }
2448 return (0);
2449 }
2450
2451 /*
2452 * In the case of architectures that support dynamic addition of
2453 * memory at run-time there are two cases where memsegs need to
2454 * be initialized and added to the memseg list.
2455 * 1) memsegs that are constructed at startup.
2456 * 2) memsegs that are constructed at run-time on
2457 * hot-plug capable architectures.
2458 * This code was originally part of the function kphysm_init().
2459 */
2460
2461 static void
memseg_list_add(struct memseg * memsegp)2462 memseg_list_add(struct memseg *memsegp)
2463 {
2464 struct memseg **prev_memsegp;
2465 pgcnt_t num;
2466
2467 /* insert in memseg list, decreasing number of pages order */
2468
2469 num = MSEG_NPAGES(memsegp);
2470
2471 for (prev_memsegp = &memsegs; *prev_memsegp;
2472 prev_memsegp = &((*prev_memsegp)->next)) {
2473 if (num > MSEG_NPAGES(*prev_memsegp))
2474 break;
2475 }
2476
2477 memsegp->next = *prev_memsegp;
2478 *prev_memsegp = memsegp;
2479
2480 if (kpm_enable) {
2481 memsegp->nextpa = (memsegp->next) ?
2482 va_to_pa(memsegp->next) : MSEG_NULLPTR_PA;
2483
2484 if (prev_memsegp != &memsegs) {
2485 struct memseg *msp;
2486 msp = (struct memseg *)((caddr_t)prev_memsegp -
2487 offsetof(struct memseg, next));
2488 msp->nextpa = va_to_pa(memsegp);
2489 } else {
2490 memsegspa = va_to_pa(memsegs);
2491 }
2492 }
2493 }
2494
2495 /*
2496 * PSM add_physmem_cb(). US-II and newer processors have some
2497 * flavor of the prefetch capability implemented. We exploit
2498 * this capability for optimum performance.
2499 */
2500 #define PREFETCH_BYTES 64
2501
2502 void
add_physmem_cb(page_t * pp,pfn_t pnum)2503 add_physmem_cb(page_t *pp, pfn_t pnum)
2504 {
2505 extern void prefetch_page_w(void *);
2506
2507 pp->p_pagenum = pnum;
2508
2509 /*
2510 * Prefetch one more page_t into E$. To prevent future
2511 * mishaps with the sizeof(page_t) changing on us, we
2512 * catch this on debug kernels if we can't bring in the
2513 * entire hpage with 2 PREFETCH_BYTES reads. See
2514 * also, sun4u/cpu/cpu_module.c
2515 */
2516 /*LINTED*/
2517 ASSERT(sizeof (page_t) <= 2*PREFETCH_BYTES);
2518 prefetch_page_w((char *)pp);
2519 }
2520
2521 /*
2522 * Find memseg with given pfn
2523 */
2524 static struct memseg *
memseg_find(pfn_t base,pfn_t * next)2525 memseg_find(pfn_t base, pfn_t *next)
2526 {
2527 struct memseg *seg;
2528
2529 if (next != NULL)
2530 *next = LONG_MAX;
2531 for (seg = memsegs; seg != NULL; seg = seg->next) {
2532 if (base >= seg->pages_base && base < seg->pages_end)
2533 return (seg);
2534 if (next != NULL && seg->pages_base > base &&
2535 seg->pages_base < *next)
2536 *next = seg->pages_base;
2537 }
2538 return (NULL);
2539 }
2540
2541 /*
2542 * Put page allocated by OBP on prom_ppages
2543 */
2544 static void
kphysm_erase(uint64_t addr,uint64_t len)2545 kphysm_erase(uint64_t addr, uint64_t len)
2546 {
2547 struct page *pp;
2548 struct memseg *seg;
2549 pfn_t base = btop(addr), next;
2550 pgcnt_t num = btop(len);
2551
2552 while (num != 0) {
2553 pgcnt_t off, left;
2554
2555 seg = memseg_find(base, &next);
2556 if (seg == NULL) {
2557 if (next == LONG_MAX)
2558 break;
2559 left = MIN(next - base, num);
2560 base += left, num -= left;
2561 continue;
2562 }
2563 off = base - seg->pages_base;
2564 pp = seg->pages + off;
2565 left = num - MIN(num, (seg->pages_end - seg->pages_base) - off);
2566 while (num != left) {
2567 /*
2568 * init it, lock it, and hashin on prom_pages vp.
2569 *
2570 * Mark it as NONRELOC to let DR know the page
2571 * is locked long term, otherwise DR hangs when
2572 * trying to remove those pages.
2573 *
2574 * XXX vnode offsets on the prom_ppages vnode
2575 * are page numbers (gack) for >32 bit
2576 * physical memory machines.
2577 */
2578 PP_SETNORELOC(pp);
2579 add_physmem_cb(pp, base);
2580 if (page_trylock(pp, SE_EXCL) == 0)
2581 cmn_err(CE_PANIC, "prom page locked");
2582 (void) page_hashin(pp, &promvp,
2583 (offset_t)base, NULL);
2584 (void) page_pp_lock(pp, 0, 1);
2585 pp++, base++, num--;
2586 }
2587 }
2588 }
2589
2590 static page_t *ppnext;
2591 static pgcnt_t ppleft;
2592
2593 static void *kpm_ppnext;
2594 static pgcnt_t kpm_ppleft;
2595
2596 /*
2597 * Create a memseg
2598 */
2599 static void
kphysm_memseg(uint64_t addr,uint64_t len)2600 kphysm_memseg(uint64_t addr, uint64_t len)
2601 {
2602 pfn_t base = btop(addr);
2603 pgcnt_t num = btop(len);
2604 struct memseg *seg;
2605
2606 seg = memseg_free;
2607 memseg_free = seg->next;
2608 ASSERT(seg != NULL);
2609
2610 seg->pages = ppnext;
2611 seg->epages = ppnext + num;
2612 seg->pages_base = base;
2613 seg->pages_end = base + num;
2614 ppnext += num;
2615 ppleft -= num;
2616
2617 if (kpm_enable) {
2618 pgcnt_t kpnum = ptokpmpr(num);
2619
2620 if (kpnum > kpm_ppleft)
2621 panic("kphysm_memseg: kpm_pp overflow");
2622 seg->pagespa = va_to_pa(seg->pages);
2623 seg->epagespa = va_to_pa(seg->epages);
2624 seg->kpm_pbase = kpmptop(ptokpmp(base));
2625 seg->kpm_nkpmpgs = kpnum;
2626 /*
2627 * In the kpm_smallpage case, the kpm array
2628 * is 1-1 wrt the page array
2629 */
2630 if (kpm_smallpages) {
2631 kpm_spage_t *kpm_pp = kpm_ppnext;
2632
2633 kpm_ppnext = kpm_pp + kpnum;
2634 seg->kpm_spages = kpm_pp;
2635 seg->kpm_pagespa = va_to_pa(seg->kpm_spages);
2636 } else {
2637 kpm_page_t *kpm_pp = kpm_ppnext;
2638
2639 kpm_ppnext = kpm_pp + kpnum;
2640 seg->kpm_pages = kpm_pp;
2641 seg->kpm_pagespa = va_to_pa(seg->kpm_pages);
2642 /* ASSERT no kpm overlaps */
2643 ASSERT(
2644 memseg_find(base - pmodkpmp(base), NULL) == NULL);
2645 ASSERT(memseg_find(
2646 roundup(base + num, kpmpnpgs) - 1, NULL) == NULL);
2647 }
2648 kpm_ppleft -= kpnum;
2649 }
2650
2651 memseg_list_add(seg);
2652 }
2653
2654 /*
2655 * Add range to free list
2656 */
2657 void
kphysm_add(uint64_t addr,uint64_t len,int reclaim)2658 kphysm_add(uint64_t addr, uint64_t len, int reclaim)
2659 {
2660 struct page *pp;
2661 struct memseg *seg;
2662 pfn_t base = btop(addr);
2663 pgcnt_t num = btop(len);
2664
2665 seg = memseg_find(base, NULL);
2666 ASSERT(seg != NULL);
2667 pp = seg->pages + (base - seg->pages_base);
2668
2669 if (reclaim) {
2670 struct page *rpp = pp;
2671 struct page *lpp = pp + num;
2672
2673 /*
2674 * page should be locked on prom_ppages
2675 * unhash and unlock it
2676 */
2677 while (rpp < lpp) {
2678 ASSERT(PAGE_EXCL(rpp) && rpp->p_vnode == &promvp);
2679 ASSERT(PP_ISNORELOC(rpp));
2680 PP_CLRNORELOC(rpp);
2681 page_pp_unlock(rpp, 0, 1);
2682 page_hashout(rpp, NULL);
2683 page_unlock(rpp);
2684 rpp++;
2685 }
2686 }
2687
2688 /*
2689 * add_physmem() initializes the PSM part of the page
2690 * struct by calling the PSM back with add_physmem_cb().
2691 * In addition it coalesces pages into larger pages as
2692 * it initializes them.
2693 */
2694 add_physmem(pp, num, base);
2695 }
2696
2697 /*
2698 * kphysm_init() tackles the problem of initializing physical memory.
2699 */
2700 static void
kphysm_init(void)2701 kphysm_init(void)
2702 {
2703 struct memlist *pmem;
2704
2705 ASSERT(page_hash != NULL && page_hashsz != 0);
2706
2707 ppnext = pp_base;
2708 ppleft = npages;
2709 kpm_ppnext = kpm_pp_base;
2710 kpm_ppleft = kpm_npages;
2711
2712 /*
2713 * installed pages not on nopp_memlist go in memseg list
2714 */
2715 diff_memlists(phys_install, nopp_list, kphysm_memseg);
2716
2717 /*
2718 * Free the avail list
2719 */
2720 for (pmem = phys_avail; pmem != NULL; pmem = pmem->ml_next)
2721 kphysm_add(pmem->ml_address, pmem->ml_size, 0);
2722
2723 /*
2724 * Erase pages that aren't available
2725 */
2726 diff_memlists(phys_install, phys_avail, kphysm_erase);
2727
2728 build_pfn_hash();
2729 }
2730
2731 /*
2732 * Kernel VM initialization.
2733 * Assumptions about kernel address space ordering:
2734 * (1) gap (user space)
2735 * (2) kernel text
2736 * (3) kernel data/bss
2737 * (4) gap
2738 * (5) kernel data structures
2739 * (6) gap
2740 * (7) debugger (optional)
2741 * (8) monitor
2742 * (9) gap (possibly null)
2743 * (10) dvma
2744 * (11) devices
2745 */
2746 static void
kvm_init(void)2747 kvm_init(void)
2748 {
2749 /*
2750 * Put the kernel segments in kernel address space.
2751 */
2752 rw_enter(&kas.a_lock, RW_WRITER);
2753 as_avlinit(&kas);
2754
2755 (void) seg_attach(&kas, (caddr_t)KERNELBASE,
2756 (size_t)(e_moddata - KERNELBASE), &ktextseg);
2757 (void) segkmem_create(&ktextseg);
2758
2759 (void) seg_attach(&kas, (caddr_t)(KERNELBASE + MMU_PAGESIZE4M),
2760 (size_t)(MMU_PAGESIZE4M), &ktexthole);
2761 (void) segkmem_create(&ktexthole);
2762
2763 (void) seg_attach(&kas, (caddr_t)valloc_base,
2764 (size_t)(econtig32 - valloc_base), &kvalloc);
2765 (void) segkmem_create(&kvalloc);
2766
2767 if (kmem64_base) {
2768 (void) seg_attach(&kas, (caddr_t)kmem64_base,
2769 (size_t)(kmem64_end - kmem64_base), &kmem64);
2770 (void) segkmem_create(&kmem64);
2771 }
2772
2773 /*
2774 * We're about to map out /boot. This is the beginning of the
2775 * system resource management transition. We can no longer
2776 * call into /boot for I/O or memory allocations.
2777 */
2778 (void) seg_attach(&kas, kernelheap, ekernelheap - kernelheap, &kvseg);
2779 (void) segkmem_create(&kvseg);
2780 hblk_alloc_dynamic = 1;
2781
2782 /*
2783 * we need to preallocate pages for DR operations before enabling large
2784 * page kernel heap because of memseg_remap_init() hat_unload() hack.
2785 */
2786 memseg_remap_init();
2787
2788 /* at this point we are ready to use large page heap */
2789 segkmem_heap_lp_init();
2790
2791 (void) seg_attach(&kas, (caddr_t)SYSBASE32, SYSLIMIT32 - SYSBASE32,
2792 &kvseg32);
2793 (void) segkmem_create(&kvseg32);
2794
2795 /*
2796 * Create a segment for the debugger.
2797 */
2798 (void) seg_attach(&kas, kdi_segdebugbase, kdi_segdebugsize, &kdebugseg);
2799 (void) segkmem_create(&kdebugseg);
2800
2801 rw_exit(&kas.a_lock);
2802 }
2803
2804 char obp_tte_str[] =
2805 "h# %x constant MMU_PAGESHIFT "
2806 "h# %x constant TTE8K "
2807 "h# %x constant SFHME_SIZE "
2808 "h# %x constant SFHME_TTE "
2809 "h# %x constant HMEBLK_TAG "
2810 "h# %x constant HMEBLK_NEXT "
2811 "h# %x constant HMEBLK_MISC "
2812 "h# %x constant HMEBLK_HME1 "
2813 "h# %x constant NHMENTS "
2814 "h# %x constant HBLK_SZMASK "
2815 "h# %x constant HBLK_RANGE_SHIFT "
2816 "h# %x constant HMEBP_HBLK "
2817 "h# %x constant HMEBLK_ENDPA "
2818 "h# %x constant HMEBUCKET_SIZE "
2819 "h# %x constant HTAG_SFMMUPSZ "
2820 "h# %x constant HTAG_BSPAGE_SHIFT "
2821 "h# %x constant HTAG_REHASH_SHIFT "
2822 "h# %x constant SFMMU_INVALID_SHMERID "
2823 "h# %x constant mmu_hashcnt "
2824 "h# %p constant uhme_hash "
2825 "h# %p constant khme_hash "
2826 "h# %x constant UHMEHASH_SZ "
2827 "h# %x constant KHMEHASH_SZ "
2828 "h# %p constant KCONTEXT "
2829 "h# %p constant KHATID "
2830 "h# %x constant ASI_MEM "
2831
2832 ": PHYS-X@ ( phys -- data ) "
2833 " ASI_MEM spacex@ "
2834 "; "
2835
2836 ": PHYS-W@ ( phys -- data ) "
2837 " ASI_MEM spacew@ "
2838 "; "
2839
2840 ": PHYS-L@ ( phys -- data ) "
2841 " ASI_MEM spaceL@ "
2842 "; "
2843
2844 ": TTE_PAGE_SHIFT ( ttesz -- hmeshift ) "
2845 " 3 * MMU_PAGESHIFT + "
2846 "; "
2847
2848 ": TTE_IS_VALID ( ttep -- flag ) "
2849 " PHYS-X@ 0< "
2850 "; "
2851
2852 ": HME_HASH_SHIFT ( ttesz -- hmeshift ) "
2853 " dup TTE8K = if "
2854 " drop HBLK_RANGE_SHIFT "
2855 " else "
2856 " TTE_PAGE_SHIFT "
2857 " then "
2858 "; "
2859
2860 ": HME_HASH_BSPAGE ( addr hmeshift -- bspage ) "
2861 " tuck >> swap MMU_PAGESHIFT - << "
2862 "; "
2863
2864 ": HME_HASH_FUNCTION ( sfmmup addr hmeshift -- hmebp ) "
2865 " >> over xor swap ( hash sfmmup ) "
2866 " KHATID <> if ( hash ) "
2867 " UHMEHASH_SZ and ( bucket ) "
2868 " HMEBUCKET_SIZE * uhme_hash + ( hmebp ) "
2869 " else ( hash ) "
2870 " KHMEHASH_SZ and ( bucket ) "
2871 " HMEBUCKET_SIZE * khme_hash + ( hmebp ) "
2872 " then ( hmebp ) "
2873 "; "
2874
2875 ": HME_HASH_TABLE_SEARCH "
2876 " ( sfmmup hmebp hblktag -- sfmmup null | sfmmup hmeblkp ) "
2877 " >r hmebp_hblk + phys-x@ begin ( sfmmup hmeblkp ) ( r: hblktag ) "
2878 " dup HMEBLK_ENDPA <> if ( sfmmup hmeblkp ) ( r: hblktag ) "
2879 " dup hmeblk_tag + phys-x@ r@ = if ( sfmmup hmeblkp ) "
2880 " dup hmeblk_tag + 8 + phys-x@ 2 pick = if "
2881 " true ( sfmmup hmeblkp true ) ( r: hblktag ) "
2882 " else "
2883 " hmeblk_next + phys-x@ false "
2884 " ( sfmmup hmeblkp false ) ( r: hblktag ) "
2885 " then "
2886 " else "
2887 " hmeblk_next + phys-x@ false "
2888 " ( sfmmup hmeblkp false ) ( r: hblktag ) "
2889 " then "
2890 " else "
2891 " drop 0 true "
2892 " then "
2893 " until r> drop "
2894 "; "
2895
2896 ": HME_HASH_TAG ( sfmmup rehash addr -- hblktag ) "
2897 " over HME_HASH_SHIFT HME_HASH_BSPAGE ( sfmmup rehash bspage ) "
2898 " HTAG_BSPAGE_SHIFT << ( sfmmup rehash htag-bspage )"
2899 " swap HTAG_REHASH_SHIFT << or ( sfmmup htag-bspage-rehash )"
2900 " SFMMU_INVALID_SHMERID or nip ( hblktag ) "
2901 "; "
2902
2903 ": HBLK_TO_TTEP ( hmeblkp addr -- ttep ) "
2904 " over HMEBLK_MISC + PHYS-L@ HBLK_SZMASK and ( hmeblkp addr ttesz ) "
2905 " TTE8K = if ( hmeblkp addr ) "
2906 " MMU_PAGESHIFT >> NHMENTS 1- and ( hmeblkp hme-index ) "
2907 " else ( hmeblkp addr ) "
2908 " drop 0 ( hmeblkp 0 ) "
2909 " then ( hmeblkp hme-index ) "
2910 " SFHME_SIZE * + HMEBLK_HME1 + ( hmep ) "
2911 " SFHME_TTE + ( ttep ) "
2912 "; "
2913
2914 ": unix-tte ( addr cnum -- false | tte-data true ) "
2915 " KCONTEXT = if ( addr ) "
2916 " KHATID ( addr khatid ) "
2917 " else ( addr ) "
2918 " drop false exit ( false ) "
2919 " then "
2920 " ( addr khatid ) "
2921 " mmu_hashcnt 1+ 1 do ( addr sfmmup ) "
2922 " 2dup swap i HME_HASH_SHIFT "
2923 "( addr sfmmup sfmmup addr hmeshift ) "
2924 " HME_HASH_FUNCTION ( addr sfmmup hmebp ) "
2925 " over i 4 pick "
2926 "( addr sfmmup hmebp sfmmup rehash addr ) "
2927 " HME_HASH_TAG ( addr sfmmup hmebp hblktag ) "
2928 " HME_HASH_TABLE_SEARCH "
2929 "( addr sfmmup { null | hmeblkp } ) "
2930 " ?dup if ( addr sfmmup hmeblkp ) "
2931 " nip swap HBLK_TO_TTEP ( ttep ) "
2932 " dup TTE_IS_VALID if ( valid-ttep ) "
2933 " PHYS-X@ true ( tte-data true ) "
2934 " else ( invalid-tte ) "
2935 " drop false ( false ) "
2936 " then ( false | tte-data true ) "
2937 " unloop exit ( false | tte-data true ) "
2938 " then ( addr sfmmup ) "
2939 " loop ( addr sfmmup ) "
2940 " 2drop false ( false ) "
2941 "; "
2942 ;
2943
2944 void
create_va_to_tte(void)2945 create_va_to_tte(void)
2946 {
2947 char *bp;
2948 extern int khmehash_num, uhmehash_num;
2949 extern struct hmehash_bucket *khme_hash, *uhme_hash;
2950
2951 #define OFFSET(type, field) ((uintptr_t)(&((type *)0)->field))
2952
2953 bp = (char *)kobj_zalloc(MMU_PAGESIZE, KM_SLEEP);
2954
2955 /*
2956 * Teach obp how to parse our sw ttes.
2957 */
2958 (void) sprintf(bp, obp_tte_str,
2959 MMU_PAGESHIFT,
2960 TTE8K,
2961 sizeof (struct sf_hment),
2962 OFFSET(struct sf_hment, hme_tte),
2963 OFFSET(struct hme_blk, hblk_tag),
2964 OFFSET(struct hme_blk, hblk_nextpa),
2965 OFFSET(struct hme_blk, hblk_misc),
2966 OFFSET(struct hme_blk, hblk_hme),
2967 NHMENTS,
2968 HBLK_SZMASK,
2969 HBLK_RANGE_SHIFT,
2970 OFFSET(struct hmehash_bucket, hmeh_nextpa),
2971 HMEBLK_ENDPA,
2972 sizeof (struct hmehash_bucket),
2973 HTAG_SFMMUPSZ,
2974 HTAG_BSPAGE_SHIFT,
2975 HTAG_REHASH_SHIFT,
2976 SFMMU_INVALID_SHMERID,
2977 mmu_hashcnt,
2978 (caddr_t)va_to_pa((caddr_t)uhme_hash),
2979 (caddr_t)va_to_pa((caddr_t)khme_hash),
2980 UHMEHASH_SZ,
2981 KHMEHASH_SZ,
2982 KCONTEXT,
2983 KHATID,
2984 ASI_MEM);
2985 prom_interpret(bp, 0, 0, 0, 0, 0);
2986
2987 kobj_free(bp, MMU_PAGESIZE);
2988 }
2989
2990 void
install_va_to_tte(void)2991 install_va_to_tte(void)
2992 {
2993 /*
2994 * advise prom that it can use unix-tte
2995 */
2996 prom_interpret("' unix-tte is va>tte-data", 0, 0, 0, 0, 0);
2997 }
2998
2999 /*
3000 * Here we add "device-type=console" for /os-io node, for currently
3001 * our kernel console output only supports displaying text and
3002 * performing cursor-positioning operations (through kernel framebuffer
3003 * driver) and it doesn't support other functionalities required for a
3004 * standard "display" device as specified in 1275 spec. The main missing
3005 * interface defined by the 1275 spec is "draw-logo".
3006 * also see the comments above prom_stdout_is_framebuffer().
3007 */
3008 static char *create_node =
3009 "\" /\" find-device "
3010 "new-device "
3011 "\" os-io\" device-name "
3012 "\" "OBP_DISPLAY_CONSOLE"\" device-type "
3013 ": cb-r/w ( adr,len method$ -- #read/#written ) "
3014 " 2>r swap 2 2r> ['] $callback catch if "
3015 " 2drop 3drop 0 "
3016 " then "
3017 "; "
3018 ": read ( adr,len -- #read ) "
3019 " \" read\" ['] cb-r/w catch if 2drop 2drop -2 exit then "
3020 " ( retN ... ret1 N ) "
3021 " ?dup if "
3022 " swap >r 1- 0 ?do drop loop r> "
3023 " else "
3024 " -2 "
3025 " then "
3026 "; "
3027 ": write ( adr,len -- #written ) "
3028 " \" write\" ['] cb-r/w catch if 2drop 2drop 0 exit then "
3029 " ( retN ... ret1 N ) "
3030 " ?dup if "
3031 " swap >r 1- 0 ?do drop loop r> "
3032 " else "
3033 " 0 "
3034 " then "
3035 "; "
3036 ": poll-tty ( -- ) ; "
3037 ": install-abort ( -- ) ['] poll-tty d# 10 alarm ; "
3038 ": remove-abort ( -- ) ['] poll-tty 0 alarm ; "
3039 ": cb-give/take ( $method -- ) "
3040 " 0 -rot ['] $callback catch ?dup if "
3041 " >r 2drop 2drop r> throw "
3042 " else "
3043 " 0 ?do drop loop "
3044 " then "
3045 "; "
3046 ": give ( -- ) \" exit-input\" cb-give/take ; "
3047 ": take ( -- ) \" enter-input\" cb-give/take ; "
3048 ": open ( -- ok? ) true ; "
3049 ": close ( -- ) ; "
3050 "finish-device "
3051 "device-end ";
3052
3053 /*
3054 * Create the OBP input/output node (FCode serial driver).
3055 * It is needed for both USB console keyboard and for
3056 * the kernel terminal emulator. It is too early to check for a
3057 * kernel console compatible framebuffer now, so we create this
3058 * so that we're ready if we need to enable kernel terminal emulation.
3059 *
3060 * When the USB software takes over the input device at the time
3061 * consconfig runs, OBP's stdin is redirected to this node.
3062 * Whenever the FORTH user interface is used after this switch,
3063 * the node will call back into the kernel for console input.
3064 * If a serial device such as ttya or a UART with a Type 5 keyboard
3065 * attached is used, OBP takes over the serial device when the system
3066 * goes to the debugger after the system is booted. This sharing
3067 * of the relatively simple serial device is difficult but possible.
3068 * Sharing the USB host controller is impossible due its complexity.
3069 *
3070 * Similarly to USB keyboard input redirection, after consconfig_dacf
3071 * configures a kernel console framebuffer as the standard output
3072 * device, OBP's stdout is switched to to vector through the
3073 * /os-io node into the kernel terminal emulator.
3074 */
3075 static void
startup_create_io_node(void)3076 startup_create_io_node(void)
3077 {
3078 prom_interpret(create_node, 0, 0, 0, 0, 0);
3079 }
3080
3081
3082 /*
3083 * Must be defined in platform dependent code.
3084 */
3085 extern caddr_t modtext;
3086 extern size_t modtext_sz;
3087 extern caddr_t moddata;
3088
3089 #define HEAPTEXT_ARENA(addr) \
3090 ((uintptr_t)(addr) < KERNELBASE + 2 * MMU_PAGESIZE4M ? 0 : \
3091 (((uintptr_t)(addr) - HEAPTEXT_BASE) / \
3092 (HEAPTEXT_MAPPED + HEAPTEXT_UNMAPPED) + 1))
3093
3094 #define HEAPTEXT_OVERSIZED(addr) \
3095 ((uintptr_t)(addr) >= HEAPTEXT_BASE + HEAPTEXT_SIZE - HEAPTEXT_OVERSIZE)
3096
3097 #define HEAPTEXT_IN_NUCLEUSDATA(addr) \
3098 (((uintptr_t)(addr) >= KERNELBASE + 2 * MMU_PAGESIZE4M) && \
3099 ((uintptr_t)(addr) < KERNELBASE + 3 * MMU_PAGESIZE4M))
3100
3101 vmem_t *texthole_source[HEAPTEXT_NARENAS];
3102 vmem_t *texthole_arena[HEAPTEXT_NARENAS];
3103 kmutex_t texthole_lock;
3104
3105 char kern_bootargs[OBP_MAXPATHLEN];
3106 char kern_bootfile[OBP_MAXPATHLEN];
3107
3108 void
kobj_vmem_init(vmem_t ** text_arena,vmem_t ** data_arena)3109 kobj_vmem_init(vmem_t **text_arena, vmem_t **data_arena)
3110 {
3111 uintptr_t addr, limit;
3112
3113 addr = HEAPTEXT_BASE;
3114 limit = addr + HEAPTEXT_SIZE - HEAPTEXT_OVERSIZE;
3115
3116 /*
3117 * Before we initialize the text_arena, we want to punch holes in the
3118 * underlying heaptext_arena. This guarantees that for any text
3119 * address we can find a text hole less than HEAPTEXT_MAPPED away.
3120 */
3121 for (; addr + HEAPTEXT_UNMAPPED <= limit;
3122 addr += HEAPTEXT_MAPPED + HEAPTEXT_UNMAPPED) {
3123 (void) vmem_xalloc(heaptext_arena, HEAPTEXT_UNMAPPED, PAGESIZE,
3124 0, 0, (void *)addr, (void *)(addr + HEAPTEXT_UNMAPPED),
3125 VM_NOSLEEP | VM_BESTFIT | VM_PANIC);
3126 }
3127
3128 /*
3129 * Allocate one page at the oversize to break up the text region
3130 * from the oversized region.
3131 */
3132 (void) vmem_xalloc(heaptext_arena, PAGESIZE, PAGESIZE, 0, 0,
3133 (void *)limit, (void *)(limit + PAGESIZE),
3134 VM_NOSLEEP | VM_BESTFIT | VM_PANIC);
3135
3136 *text_arena = vmem_create("module_text", modtext_sz ? modtext : NULL,
3137 modtext_sz, sizeof (uintptr_t), segkmem_alloc, segkmem_free,
3138 heaptext_arena, 0, VM_SLEEP);
3139 *data_arena = vmem_create("module_data", moddata, MODDATA, 1,
3140 segkmem_alloc, segkmem_free, heap32_arena, 0, VM_SLEEP);
3141 }
3142
3143 caddr_t
kobj_text_alloc(vmem_t * arena,size_t size)3144 kobj_text_alloc(vmem_t *arena, size_t size)
3145 {
3146 caddr_t rval, better;
3147
3148 /*
3149 * First, try a sleeping allocation.
3150 */
3151 rval = vmem_alloc(arena, size, VM_SLEEP | VM_BESTFIT);
3152
3153 if (size >= HEAPTEXT_MAPPED || !HEAPTEXT_OVERSIZED(rval))
3154 return (rval);
3155
3156 /*
3157 * We didn't get the area that we wanted. We're going to try to do an
3158 * allocation with explicit constraints.
3159 */
3160 better = vmem_xalloc(arena, size, sizeof (uintptr_t), 0, 0, NULL,
3161 (void *)(HEAPTEXT_BASE + HEAPTEXT_SIZE - HEAPTEXT_OVERSIZE),
3162 VM_NOSLEEP | VM_BESTFIT);
3163
3164 if (better != NULL) {
3165 /*
3166 * That worked. Free our first attempt and return.
3167 */
3168 vmem_free(arena, rval, size);
3169 return (better);
3170 }
3171
3172 /*
3173 * That didn't work; we'll have to return our first attempt.
3174 */
3175 return (rval);
3176 }
3177
3178 caddr_t
kobj_texthole_alloc(caddr_t addr,size_t size)3179 kobj_texthole_alloc(caddr_t addr, size_t size)
3180 {
3181 int arena = HEAPTEXT_ARENA(addr);
3182 char c[30];
3183 uintptr_t base;
3184
3185 if (HEAPTEXT_OVERSIZED(addr) || HEAPTEXT_IN_NUCLEUSDATA(addr)) {
3186 /*
3187 * If this is an oversized allocation or it is allocated in
3188 * the nucleus data page, there is no text hole available for
3189 * it; return NULL.
3190 */
3191 return (NULL);
3192 }
3193
3194 mutex_enter(&texthole_lock);
3195
3196 if (texthole_arena[arena] == NULL) {
3197 ASSERT(texthole_source[arena] == NULL);
3198
3199 if (arena == 0) {
3200 texthole_source[0] = vmem_create("module_text_holesrc",
3201 (void *)(KERNELBASE + MMU_PAGESIZE4M),
3202 MMU_PAGESIZE4M, PAGESIZE, NULL, NULL, NULL,
3203 0, VM_SLEEP);
3204 } else {
3205 base = HEAPTEXT_BASE +
3206 (arena - 1) * (HEAPTEXT_MAPPED + HEAPTEXT_UNMAPPED);
3207
3208 (void) snprintf(c, sizeof (c),
3209 "heaptext_holesrc_%d", arena);
3210
3211 texthole_source[arena] = vmem_create(c, (void *)base,
3212 HEAPTEXT_UNMAPPED, PAGESIZE, NULL, NULL, NULL,
3213 0, VM_SLEEP);
3214 }
3215
3216 (void) snprintf(c, sizeof (c), "heaptext_hole_%d", arena);
3217
3218 texthole_arena[arena] = vmem_create(c, NULL, 0,
3219 sizeof (uint32_t), segkmem_alloc_permanent, segkmem_free,
3220 texthole_source[arena], 0, VM_SLEEP);
3221 }
3222
3223 mutex_exit(&texthole_lock);
3224
3225 ASSERT(texthole_arena[arena] != NULL);
3226 ASSERT(arena >= 0 && arena < HEAPTEXT_NARENAS);
3227 return (vmem_alloc(texthole_arena[arena], size,
3228 VM_BESTFIT | VM_NOSLEEP));
3229 }
3230
3231 void
kobj_texthole_free(caddr_t addr,size_t size)3232 kobj_texthole_free(caddr_t addr, size_t size)
3233 {
3234 int arena = HEAPTEXT_ARENA(addr);
3235
3236 ASSERT(arena >= 0 && arena < HEAPTEXT_NARENAS);
3237 ASSERT(texthole_arena[arena] != NULL);
3238 vmem_free(texthole_arena[arena], addr, size);
3239 }
3240
3241 void
release_bootstrap(void)3242 release_bootstrap(void)
3243 {
3244 if (&cif_init)
3245 cif_init();
3246 }
3247