xref: /illumos-gate/usr/src/uts/common/krtld/kobj.c (revision 85f582be36f489f7c23f86c4ec59a3c8382ec260)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 /*
26  * Copyright 2011 Bayard G. Bell <buffer.g.overflow@gmail.com>.
27  * All rights reserved. Use is subject to license terms.
28  * Copyright 2020 Joyent, Inc.
29  * Copyright 2025 MNX Cloud, Inc.
30  */
31 
32 /*
33  * Kernel's linker/loader
34  */
35 
36 #include <sys/types.h>
37 #include <sys/param.h>
38 #include <sys/sysmacros.h>
39 #include <sys/systm.h>
40 #include <sys/user.h>
41 #include <sys/kmem.h>
42 #include <sys/reboot.h>
43 #include <sys/bootconf.h>
44 #include <sys/debug.h>
45 #include <sys/uio.h>
46 #include <sys/file.h>
47 #include <sys/vnode.h>
48 #include <sys/user.h>
49 #include <sys/mman.h>
50 #include <vm/as.h>
51 #include <vm/seg_kp.h>
52 #include <vm/seg_kmem.h>
53 #include <sys/elf.h>
54 #include <sys/elf_notes.h>
55 #include <sys/vmsystm.h>
56 #include <sys/kdi.h>
57 #include <sys/atomic.h>
58 #include <sys/kmdb.h>
59 
60 #include <sys/link.h>
61 #include <sys/kobj.h>
62 #include <sys/ksyms.h>
63 #include <sys/disp.h>
64 #include <sys/modctl.h>
65 #include <sys/varargs.h>
66 #include <sys/kstat.h>
67 #include <sys/kobj_impl.h>
68 #include <sys/fs/decomp.h>
69 #include <sys/callb.h>
70 #include <sys/cmn_err.h>
71 #include <sys/zmod.h>
72 
73 #include <krtld/reloc.h>
74 #include <krtld/kobj_kdi.h>
75 #include <sys/sha1.h>
76 #include <sys/crypto/elfsign.h>
77 
78 #if !defined(_OBP)
79 #include <sys/bootvfs.h>
80 #endif
81 
82 /*
83  * do_symbols() error codes
84  */
85 #define	DOSYM_UNDEF		-1	/* undefined symbol */
86 #define	DOSYM_UNSAFE		-2	/* MT-unsafe driver symbol */
87 
88 #if !defined(_OBP)
89 static void synthetic_bootaux(char *, val_t *);
90 #endif
91 
92 static struct module *load_exec(val_t *, char *);
93 static void load_linker(val_t *);
94 static struct modctl *add_primary(const char *filename, int);
95 static int bind_primary(val_t *, int);
96 static int load_primary(struct module *, int);
97 static int load_kmdb(val_t *);
98 static int get_progbits(struct module *, struct _buf *);
99 static int get_syms(struct module *, struct _buf *);
100 static int get_ctf(struct module *, struct _buf *);
101 static void get_signature(struct module *, struct _buf *);
102 static int do_common(struct module *);
103 static void add_dependent(struct module *, struct module *);
104 static int do_dependents(struct modctl *, char *, size_t);
105 static int do_symbols(struct module *, Elf64_Addr);
106 static void module_assign(struct modctl *, struct module *);
107 static void free_module_data(struct module *);
108 static char *depends_on(struct module *);
109 static char *getmodpath(const char *);
110 static char *basename(char *);
111 static void attr_val(val_t *);
112 static char *find_libmacro(char *);
113 static char *expand_libmacro(char *, char *, char *);
114 static int read_bootflags(void);
115 static int kobj_comp_setup(struct _buf *, struct compinfo *);
116 static int kobj_uncomp_blk(struct _buf *, caddr_t, uint_t);
117 static int kobj_read_blks(struct _buf *, caddr_t, uint_t, uint_t);
118 static int kobj_boot_open(char *, int);
119 static int kobj_boot_close(int);
120 static int kobj_boot_seek(int, off_t, off_t);
121 static int kobj_boot_read(int, caddr_t, size_t);
122 static int kobj_boot_fstat(int, struct bootstat *);
123 static int kobj_boot_compinfo(int, struct compinfo *);
124 
125 static Sym *lookup_one(struct module *, const char *);
126 static void sym_insert(struct module *, char *, symid_t);
127 static Sym *sym_lookup(struct module *, Sym *);
128 
129 static struct kobjopen_tctl *kobjopen_alloc(char *filename);
130 static void kobjopen_free(struct kobjopen_tctl *ltp);
131 static void kobjopen_thread(struct kobjopen_tctl *ltp);
132 static int kobj_is_compressed(intptr_t);
133 
134 extern int kcopy(const void *, void *, size_t);
135 extern int elf_mach_ok(Ehdr *);
136 extern int alloc_gottable(struct module *, caddr_t *, caddr_t *);
137 
138 #if !defined(_OBP)
139 extern int kobj_boot_mountroot(void);
140 #endif
141 
142 extern int modrootloaded;
143 extern int swaploaded;
144 extern int bop_io_quiesced;
145 extern int last_module_id;
146 
147 extern char stubs_base[];
148 extern char stubs_end[];
149 
150 #ifdef KOBJ_DEBUG
151 /*
152  * Values that can be or'd in to kobj_debug and their effects:
153  *
154  *	D_DEBUG		- misc. debugging information.
155  *	D_SYMBOLS	- list symbols and their values as they are entered
156  *			  into the hash table
157  *	D_RELOCATIONS	- display relocation processing information
158  *	D_LOADING	- display information about each module as it
159  *			  is loaded.
160  */
161 int kobj_debug = 0;
162 
163 #define	KOBJ_MARK(s)	if (kobj_debug & D_DEBUG)	\
164 	(_kobj_printf(ops, "%d", __LINE__), _kobj_printf(ops, ": %s\n", s))
165 #else
166 #define	KOBJ_MARK(s)	/* discard */
167 #endif
168 
169 #define	MODPATH_PROPNAME	"module-path"
170 
171 #ifdef MODDIR_SUFFIX
172 static char slash_moddir_suffix_slash[] = MODDIR_SUFFIX "/";
173 #else
174 #define	slash_moddir_suffix_slash	""
175 #endif
176 
177 #define	_moddebug	get_weakish_int(&moddebug)
178 #define	_modrootloaded	get_weakish_int(&modrootloaded)
179 #define	_swaploaded	get_weakish_int(&swaploaded)
180 #define	_ioquiesced	get_weakish_int(&bop_io_quiesced)
181 
182 #define	mod(X)		(struct module *)((X)->modl_modp->mod_mp)
183 
184 void	*romp;		/* rom vector (opaque to us) */
185 struct bootops *ops;	/* bootops vector */
186 void *dbvec;		/* debug vector */
187 
188 /*
189  * kobjopen thread control structure
190  */
191 struct kobjopen_tctl {
192 	ksema_t		sema;
193 	char		*name;		/* name of file */
194 	struct vnode	*vp;		/* vnode return from vn_open() */
195 	int		Errno;		/* error return from vnopen    */
196 };
197 
198 /*
199  * Structure for defining dynamically expandable library macros
200  */
201 
202 struct lib_macro_info {
203 	char	*lmi_list;		/* ptr to list of possible choices */
204 	char	*lmi_macroname;		/* pointer to macro name */
205 	ushort_t lmi_ba_index;		/* index into bootaux vector */
206 	ushort_t lmi_macrolen;		/* macro length */
207 } libmacros[] = {
208 	{ NULL, "CPU", BA_CPU, 0 },
209 	{ NULL, "MMU", BA_MMU, 0 }
210 };
211 
212 #define	NLIBMACROS	sizeof (libmacros) / sizeof (struct lib_macro_info)
213 
214 char *boot_cpu_compatible_list;			/* make $CPU available */
215 
216 char *kobj_module_path;				/* module search path */
217 vmem_t	*text_arena;				/* module text arena */
218 static vmem_t *data_arena;			/* module data & bss arena */
219 static vmem_t *ctf_arena;			/* CTF debug data arena */
220 static struct modctl *kobj_modules = NULL;	/* modules loaded */
221 int kobj_mmu_pagesize;				/* system pagesize */
222 static int lg_pagesize;				/* "large" pagesize */
223 static int kobj_last_module_id = 0;		/* id assignment */
224 static kmutex_t kobj_lock;			/* protects mach memory list */
225 
226 /*
227  * The following functions have been implemented by the kernel.
228  * However, many 3rd party drivers provide their own implementations
229  * of these functions.  When such drivers are loaded, messages
230  * indicating that these symbols have been multiply defined will be
231  * emitted to the console.  To avoid alarming customers for no good
232  * reason, we simply suppress such warnings for the following set of
233  * functions.
234  */
235 static char *suppress_sym_list[] =
236 {
237 	"strstr",
238 	"strncat",
239 	"strlcat",
240 	"strlcpy",
241 	"strspn",
242 	"memcpy",
243 	"memset",
244 	"memmove",
245 	"memcmp",
246 	"memchr",
247 	"__udivdi3",
248 	"__divdi3",
249 	"__umoddi3",
250 	"__moddi3",
251 	NULL		/* This entry must exist */
252 };
253 
254 /* indexed by KOBJ_NOTIFY_* */
255 static kobj_notify_list_t *kobj_notifiers[KOBJ_NOTIFY_MAX + 1];
256 
257 /*
258  * Prefix for statically defined tracing (SDT) DTrace probes.
259  */
260 const char		*sdt_prefix = "__dtrace_probe_";
261 
262 /*
263  * Beginning and end of the kernel's dynamic text/data segments.
264  */
265 static caddr_t _text;
266 static caddr_t _etext;
267 static caddr_t _data;
268 
269 /*
270  * The sparc linker doesn't create a memory location
271  * for a variable named _edata, so _edata can only be
272  * referred to, not modified.  krtld needs a static
273  * variable to modify it - within krtld, of course -
274  * outside of krtld, e_data is used in all kernels.
275  */
276 #if defined(__sparc)
277 static caddr_t _edata;
278 #else
279 extern caddr_t _edata;
280 #endif
281 
282 Addr dynseg = 0;	/* load address of "dynamic" segment */
283 size_t dynsize;		/* "dynamic" segment size */
284 
285 
286 int standalone = 1;			/* an unwholey kernel? */
287 int use_iflush;				/* iflush after relocations */
288 
289 /*
290  * _kobj_printf() and _vkobj_printf()
291  *
292  * Common printf function pointer. Can handle only one conversion
293  * specification in the format string. Some of the functions invoked
294  * through this function pointer cannot handle more that one conversion
295  * specification in the format string.
296  */
297 void (*_kobj_printf)(void *, const char *, ...) __KPRINTFLIKE(2);
298 void (*_vkobj_printf)(void *, const char *, va_list) __KVPRINTFLIKE(2);
299 
300 /*
301  * Standalone function pointers for use within krtld.
302  * Many platforms implement optimized platmod versions of
303  * utilities such as bcopy and any such are not yet available
304  * until the kernel is more completely stitched together.
305  * See kobj_impl.h
306  */
307 void (*kobj_bcopy)(const void *, void *, size_t);
308 void (*kobj_bzero)(void *, size_t);
309 size_t (*kobj_strlcat)(char *, const char *, size_t);
310 
311 static kobj_stat_t kobj_stat;
312 
313 #define	MINALIGN	8	/* at least a double-word */
314 
315 int
get_weakish_int(int * ip)316 get_weakish_int(int *ip)
317 {
318 	if (standalone)
319 		return (0);
320 	return (ip == NULL ? 0 : *ip);
321 }
322 
323 static void *
get_weakish_pointer(void ** ptrp)324 get_weakish_pointer(void **ptrp)
325 {
326 	if (standalone)
327 		return (0);
328 	return (ptrp == NULL ? 0 : *ptrp);
329 }
330 
331 /*
332  * XXX fix dependencies on "kernel"; this should work
333  * for other standalone binaries as well.
334  *
335  * XXX Fix hashing code to use one pointer to
336  * hash entries.
337  *	|----------|
338  *	| nbuckets |
339  *	|----------|
340  *	| nchains  |
341  *	|----------|
342  *	| bucket[] |
343  *	|----------|
344  *	| chain[]  |
345  *	|----------|
346  */
347 
348 /*
349  * Load, bind and relocate all modules that
350  * form the primary kernel. At this point, our
351  * externals have not been relocated.
352  */
353 void
kobj_init(void * romvec,void * dvec,struct bootops * bootvec,val_t * bootaux)354 kobj_init(
355 	void *romvec,
356 	void *dvec,
357 	struct bootops *bootvec,
358 	val_t *bootaux)
359 {
360 	struct module *mp;
361 	struct modctl *modp;
362 	Addr entry;
363 	char filename[MAXPATHLEN];
364 
365 	/*
366 	 * Save these to pass on to
367 	 * the booted standalone.
368 	 */
369 	romp = romvec;
370 	dbvec = dvec;
371 
372 	ops = bootvec;
373 	kobj_setup_standalone_vectors();
374 
375 	KOBJ_MARK("Entered kobj_init()");
376 
377 	(void) BOP_GETPROP(ops, "whoami", filename);
378 
379 	/*
380 	 * We don't support standalone debuggers anymore.  The use of kadb
381 	 * will interfere with the later use of kmdb.  Let the user mend
382 	 * their ways now.  Users will reach this message if they still
383 	 * have the kadb binary on their system (perhaps they used an old
384 	 * bfu, or maybe they intentionally copied it there) and have
385 	 * specified its use in a way that eluded our checking in the boot
386 	 * program.
387 	 */
388 	if (dvec != NULL) {
389 		_kobj_printf(ops, "\nWARNING: Standalone debuggers such as "
390 		    "kadb are no longer supported\n\n");
391 		goto fail;
392 	}
393 
394 #if defined(_OBP)
395 	/*
396 	 * OBP allows us to read both the ramdisk and
397 	 * the underlying root fs when root is a disk.
398 	 * This can lower incidences of unbootable systems
399 	 * when the archive is out-of-date with the /etc
400 	 * state files.
401 	 */
402 	if (BOP_MOUNTROOT() != BOOT_SVC_OK) {
403 		_kobj_printf(ops, "can't mount boot fs\n");
404 		goto fail;
405 	}
406 #else
407 	/* on x86, we always boot with a ramdisk */
408 	if (kobj_boot_mountroot() != 0) {
409 		goto fail;
410 	}
411 
412 	/*
413 	 * Now that the ramdisk is mounted, finish boot property
414 	 * initialization.
415 	 */
416 	read_bootenvrc();
417 
418 #if !defined(_UNIX_KRTLD)
419 	/*
420 	 * 'unix' is linked together with 'krtld' into one executable and
421 	 * the early boot code does -not- hand us any of the dynamic metadata
422 	 * about the executable. In particular, it does not read in, map or
423 	 * otherwise look at the program headers. We fake all that up now.
424 	 *
425 	 * We do this early as DTrace static probes call undefined references.
426 	 * We have to process those relocations before calling any of them.
427 	 *
428 	 * OBP tells kobj_start() where the ELF image is in memory, so it
429 	 * synthesized bootaux before kobj_init() was called
430 	 */
431 	if (bootaux[BA_PHDR].ba_ptr == NULL)
432 		synthetic_bootaux(filename, bootaux);
433 
434 #endif	/* !_UNIX_KRTLD */
435 #endif	/* _OBP */
436 
437 	/*
438 	 * Save the interesting attribute-values
439 	 * (scanned by kobj_boot).
440 	 */
441 	attr_val(bootaux);
442 
443 	/*
444 	 * Set the module search path.
445 	 */
446 	kobj_module_path = getmodpath(filename);
447 
448 	boot_cpu_compatible_list = find_libmacro("CPU");
449 
450 	/*
451 	 * These two modules have actually been
452 	 * loaded by boot, but we finish the job
453 	 * by introducing them into the world of
454 	 * loadable modules.
455 	 */
456 
457 	mp = load_exec(bootaux, filename);
458 	load_linker(bootaux);
459 
460 	/*
461 	 * Load all the primary dependent modules.
462 	 */
463 	if (load_primary(mp, KOBJ_LM_PRIMARY) == -1)
464 		goto fail;
465 
466 	/*
467 	 * Glue it together.
468 	 */
469 	if (bind_primary(bootaux, KOBJ_LM_PRIMARY) == -1)
470 		goto fail;
471 
472 	entry = bootaux[BA_ENTRY].ba_val;
473 
474 	/*
475 	 * Get the boot flags
476 	 */
477 	bootflags(ops);
478 
479 	if (boothowto & RB_VERBOSE)
480 		kobj_lm_dump(KOBJ_LM_PRIMARY);
481 
482 	kobj_kdi_init();
483 
484 	if (boothowto & RB_KMDB) {
485 		if (load_kmdb(bootaux) < 0)
486 			goto fail;
487 	}
488 
489 	/*
490 	 * Post setup.
491 	 */
492 	s_text = _text;
493 	e_text = _etext;
494 	s_data = _data;
495 	e_data = _edata;
496 
497 	kobj_sync_instruction_memory(s_text, e_text - s_text);
498 
499 #ifdef	KOBJ_DEBUG
500 	if (kobj_debug & D_DEBUG)
501 		_kobj_printf(ops,
502 		    "krtld: transferring control to: 0x%lx\n", entry);
503 #endif
504 
505 	/*
506 	 * Make sure the mod system knows about the modules already loaded.
507 	 */
508 	last_module_id = kobj_last_module_id;
509 	bcopy(kobj_modules, &modules, sizeof (modules));
510 	modp = &modules;
511 	do {
512 		if (modp->mod_next == kobj_modules)
513 			modp->mod_next = &modules;
514 		if (modp->mod_prev == kobj_modules)
515 			modp->mod_prev = &modules;
516 	} while ((modp = modp->mod_next) != &modules);
517 
518 	standalone = 0;
519 
520 #ifdef	KOBJ_DEBUG
521 	if (kobj_debug & D_DEBUG)
522 		_kobj_printf(ops,
523 		    "krtld: really transferring control to: 0x%lx\n", entry);
524 #endif
525 
526 	/* restore printf/bcopy/bzero vectors before returning */
527 	kobj_restore_vectors();
528 
529 #if defined(_DBOOT)
530 	/*
531 	 * krtld was called from a dboot ELF section, the embedded
532 	 * dboot code contains the real entry via bootaux
533 	 */
534 	exitto((caddr_t)entry);
535 #else
536 	/*
537 	 * krtld was directly called from startup
538 	 */
539 	return;
540 #endif
541 
542 fail:
543 
544 	_kobj_printf(ops, "krtld: error during initial load/link phase\n");
545 
546 #if !defined(_UNIX_KRTLD)
547 	_kobj_printf(ops, "\n");
548 	_kobj_printf(ops, "krtld could neither locate nor resolve symbols"
549 	    " for:\n");
550 	_kobj_printf(ops, "    %s\n", filename);
551 	_kobj_printf(ops, "in the boot archive. Please verify that this"
552 	    " file\n");
553 	_kobj_printf(ops, "matches what is found in the boot archive.\n");
554 	_kobj_printf(ops, "You may need to boot using the Solaris failsafe to"
555 	    " fix this.\n");
556 	bop_panic("Unable to boot");
557 #endif
558 }
559 
560 #if !defined(_UNIX_KRTLD) && !defined(_OBP)
561 /*
562  * Synthesize additional metadata that describes the executable if
563  * krtld's caller didn't do it.
564  *
565  * (When the dynamic executable has an interpreter, the boot program
566  * does all this for us.  Where we don't have an interpreter, (or a
567  * even a boot program, perhaps) we have to do this for ourselves.)
568  */
569 static void
synthetic_bootaux(char * filename,val_t * bootaux)570 synthetic_bootaux(char *filename, val_t *bootaux)
571 {
572 	Ehdr ehdr;
573 	caddr_t phdrbase;
574 	struct _buf *file;
575 	int i, n;
576 
577 	/*
578 	 * Elf header
579 	 */
580 	KOBJ_MARK("synthetic_bootaux()");
581 	KOBJ_MARK(filename);
582 	file = kobj_open_file(filename);
583 	if (file == (struct _buf *)-1) {
584 		_kobj_printf(ops, "krtld: failed to open '%s'\n", filename);
585 		return;
586 	}
587 	KOBJ_MARK("reading program headers");
588 	if (kobj_read_file(file, (char *)&ehdr, sizeof (ehdr), 0) < 0) {
589 		_kobj_printf(ops, "krtld: %s: failed to read ehder\n",
590 		    filename);
591 		return;
592 	}
593 
594 	/*
595 	 * Program headers
596 	 */
597 	bootaux[BA_PHNUM].ba_val = ehdr.e_phnum;
598 	bootaux[BA_PHENT].ba_val = ehdr.e_phentsize;
599 	n = ehdr.e_phentsize * ehdr.e_phnum;
600 
601 	phdrbase = kobj_alloc(n, KM_WAIT | KM_TMP);
602 
603 	if (kobj_read_file(file, phdrbase, n, ehdr.e_phoff) < 0) {
604 		_kobj_printf(ops, "krtld: %s: failed to read phdrs\n",
605 		    filename);
606 		return;
607 	}
608 	bootaux[BA_PHDR].ba_ptr = phdrbase;
609 	kobj_close_file(file);
610 	KOBJ_MARK("closed file");
611 
612 	/*
613 	 * Find the dynamic section address
614 	 */
615 	for (i = 0; i < ehdr.e_phnum; i++) {
616 		Phdr *phdr = (Phdr *)(phdrbase + ehdr.e_phentsize * i);
617 
618 		if (phdr->p_type == PT_DYNAMIC) {
619 			bootaux[BA_DYNAMIC].ba_ptr = (void *)phdr->p_vaddr;
620 			break;
621 		}
622 	}
623 	KOBJ_MARK("synthetic_bootaux() done");
624 }
625 #endif	/* !_UNIX_KRTLD && !_OBP */
626 
627 /*
628  * Set up any global information derived
629  * from attribute/values in the boot or
630  * aux vector.
631  */
632 static void
attr_val(val_t * bootaux)633 attr_val(val_t *bootaux)
634 {
635 	Phdr *phdr;
636 	int phnum, phsize;
637 	int i;
638 
639 	KOBJ_MARK("attr_val()");
640 	kobj_mmu_pagesize = bootaux[BA_PAGESZ].ba_val;
641 	lg_pagesize = bootaux[BA_LPAGESZ].ba_val;
642 	use_iflush = bootaux[BA_IFLUSH].ba_val;
643 
644 	phdr = (Phdr *)bootaux[BA_PHDR].ba_ptr;
645 	phnum = bootaux[BA_PHNUM].ba_val;
646 	phsize = bootaux[BA_PHENT].ba_val;
647 	for (i = 0; i < phnum; i++) {
648 		phdr = (Phdr *)(bootaux[BA_PHDR].ba_val + i * phsize);
649 
650 		if (phdr->p_type != PT_LOAD) {
651 			continue;
652 		}
653 		/*
654 		 * Bounds of the various segments.
655 		 */
656 		if (!(phdr->p_flags & PF_X)) {
657 #if defined(_RELSEG)
658 			/*
659 			 * sparc kernel puts the dynamic info
660 			 * into a separate segment, which is
661 			 * free'd in bop_fini()
662 			 */
663 			ASSERT(phdr->p_vaddr != 0);
664 			dynseg = phdr->p_vaddr;
665 			dynsize = phdr->p_memsz;
666 #else
667 			ASSERT(phdr->p_vaddr == 0);
668 #endif
669 		} else {
670 			if (phdr->p_flags & PF_W) {
671 				_data = (caddr_t)phdr->p_vaddr;
672 				_edata = _data + phdr->p_memsz;
673 			} else {
674 				_text = (caddr_t)phdr->p_vaddr;
675 				_etext = _text + phdr->p_memsz;
676 			}
677 		}
678 	}
679 
680 	/* To do the kobj_alloc, _edata needs to be set. */
681 	for (i = 0; i < NLIBMACROS; i++) {
682 		if (bootaux[libmacros[i].lmi_ba_index].ba_ptr != NULL) {
683 			libmacros[i].lmi_list = kobj_alloc(
684 			    strlen(bootaux[libmacros[i].lmi_ba_index].ba_ptr) +
685 			    1, KM_WAIT);
686 			(void) strcpy(libmacros[i].lmi_list,
687 			    bootaux[libmacros[i].lmi_ba_index].ba_ptr);
688 		}
689 		libmacros[i].lmi_macrolen = strlen(libmacros[i].lmi_macroname);
690 	}
691 }
692 
693 /*
694  * Set up the booted executable.
695  */
696 static struct module *
load_exec(val_t * bootaux,char * filename)697 load_exec(val_t *bootaux, char *filename)
698 {
699 	struct modctl *cp;
700 	struct module *mp;
701 	Dyn *dyn;
702 	Sym *sp;
703 	int i, lsize, osize, nsize, allocsize;
704 	char *libname, *tmp;
705 	char path[MAXPATHLEN];
706 
707 #ifdef KOBJ_DEBUG
708 	if (kobj_debug & D_DEBUG)
709 		_kobj_printf(ops, "module path '%s'\n", kobj_module_path);
710 #endif
711 
712 	KOBJ_MARK("add_primary");
713 	cp = add_primary(filename, KOBJ_LM_PRIMARY);
714 
715 	KOBJ_MARK("struct module");
716 	mp = kobj_zalloc(sizeof (struct module), KM_WAIT);
717 	cp->mod_mp = mp;
718 
719 	/*
720 	 * We don't have the following information
721 	 * since this module is an executable and not
722 	 * a relocatable .o.
723 	 */
724 	mp->symtbl_section = 0;
725 	mp->shdrs = NULL;
726 	mp->strhdr = NULL;
727 
728 	/*
729 	 * Since this module is the only exception,
730 	 * we cons up some section headers.
731 	 */
732 	KOBJ_MARK("symhdr");
733 	mp->symhdr = kobj_zalloc(sizeof (Shdr), KM_WAIT);
734 
735 	KOBJ_MARK("strhdr");
736 	mp->strhdr = kobj_zalloc(sizeof (Shdr), KM_WAIT);
737 
738 	mp->symhdr->sh_type = SHT_SYMTAB;
739 	mp->strhdr->sh_type = SHT_STRTAB;
740 	/*
741 	 * Scan the dynamic structure.
742 	 */
743 	for (dyn = (Dyn *) bootaux[BA_DYNAMIC].ba_ptr;
744 	    dyn->d_tag != DT_NULL; dyn++) {
745 		switch (dyn->d_tag) {
746 		case DT_SYMTAB:
747 			mp->symspace = mp->symtbl = (char *)dyn->d_un.d_ptr;
748 			mp->symhdr->sh_addr = dyn->d_un.d_ptr;
749 			break;
750 		case DT_HASH:
751 			mp->nsyms = *((uint_t *)dyn->d_un.d_ptr + 1);
752 			mp->hashsize = *(uint_t *)dyn->d_un.d_ptr;
753 			break;
754 		case DT_STRTAB:
755 			mp->strings = (char *)dyn->d_un.d_ptr;
756 			mp->strhdr->sh_addr = dyn->d_un.d_ptr;
757 			break;
758 		case DT_STRSZ:
759 			mp->strhdr->sh_size = dyn->d_un.d_val;
760 			break;
761 		case DT_SYMENT:
762 			mp->symhdr->sh_entsize = dyn->d_un.d_val;
763 			break;
764 		}
765 	}
766 
767 	/*
768 	 * Collapse any DT_NEEDED entries into one string.
769 	 */
770 	nsize = osize = 0;
771 	allocsize = MAXPATHLEN;
772 
773 	KOBJ_MARK("depends_on");
774 	mp->depends_on = kobj_alloc(allocsize, KM_WAIT);
775 
776 	for (dyn = (Dyn *) bootaux[BA_DYNAMIC].ba_ptr;
777 	    dyn->d_tag != DT_NULL; dyn++)
778 		if (dyn->d_tag == DT_NEEDED) {
779 			char *_lib;
780 
781 			libname = mp->strings + dyn->d_un.d_val;
782 			if (strchr(libname, '$') != NULL) {
783 				if ((_lib = expand_libmacro(libname,
784 				    path, path)) != NULL)
785 					libname = _lib;
786 				else
787 					_kobj_printf(ops, "krtld: "
788 					    "load_exec: fail to "
789 					    "expand %s\n", libname);
790 			}
791 			lsize = strlen(libname);
792 			nsize += lsize;
793 			if (nsize + 1 > allocsize) {
794 				KOBJ_MARK("grow depends_on");
795 				tmp = kobj_alloc(allocsize + MAXPATHLEN,
796 				    KM_WAIT);
797 				bcopy(mp->depends_on, tmp, osize);
798 				kobj_free(mp->depends_on, allocsize);
799 				mp->depends_on = tmp;
800 				allocsize += MAXPATHLEN;
801 			}
802 			bcopy(libname, mp->depends_on + osize, lsize);
803 			*(mp->depends_on + nsize) = ' '; /* separate */
804 			nsize++;
805 			osize = nsize;
806 		}
807 	if (nsize) {
808 		mp->depends_on[nsize - 1] = '\0'; /* terminate the string */
809 		/*
810 		 * alloc with exact size and copy whatever it got over
811 		 */
812 		KOBJ_MARK("realloc depends_on");
813 		tmp = kobj_alloc(nsize, KM_WAIT);
814 		bcopy(mp->depends_on, tmp, nsize);
815 		kobj_free(mp->depends_on, allocsize);
816 		mp->depends_on = tmp;
817 	} else {
818 		kobj_free(mp->depends_on, allocsize);
819 		mp->depends_on = NULL;
820 	}
821 
822 	mp->flags = KOBJ_EXEC|KOBJ_PRIM;	/* NOT a relocatable .o */
823 	mp->symhdr->sh_size = mp->nsyms * mp->symhdr->sh_entsize;
824 	/*
825 	 * We allocate our own table since we don't
826 	 * hash undefined references.
827 	 */
828 	KOBJ_MARK("chains");
829 	mp->chains = kobj_zalloc(mp->nsyms * sizeof (symid_t), KM_WAIT);
830 	KOBJ_MARK("buckets");
831 	mp->buckets = kobj_zalloc(mp->hashsize * sizeof (symid_t), KM_WAIT);
832 
833 	mp->text = _text;
834 	mp->data = _data;
835 
836 	mp->text_size = _etext - _text;
837 	mp->data_size = _edata - _data;
838 
839 	cp->mod_text = mp->text;
840 	cp->mod_text_size = mp->text_size;
841 
842 	mp->filename = cp->mod_filename;
843 
844 #ifdef	KOBJ_DEBUG
845 	if (kobj_debug & D_LOADING) {
846 		_kobj_printf(ops, "krtld: file=%s\n", mp->filename);
847 		_kobj_printf(ops, "\ttext: 0x%p", mp->text);
848 		_kobj_printf(ops, " size: 0x%lx\n", mp->text_size);
849 		_kobj_printf(ops, "\tdata: 0x%p", mp->data);
850 		_kobj_printf(ops, " dsize: 0x%lx\n", mp->data_size);
851 	}
852 #endif /* KOBJ_DEBUG */
853 
854 	/*
855 	 * Insert symbols into the hash table.
856 	 */
857 	for (i = 0; i < mp->nsyms; i++) {
858 		sp = (Sym *)(mp->symtbl + i * mp->symhdr->sh_entsize);
859 
860 		if (sp->st_name == 0 || sp->st_shndx == SHN_UNDEF)
861 			continue;
862 #if defined(__sparc)
863 		/*
864 		 * Register symbols are ignored in the kernel
865 		 */
866 		if (ELF_ST_TYPE(sp->st_info) == STT_SPARC_REGISTER)
867 			continue;
868 #endif	/* __sparc */
869 
870 		sym_insert(mp, mp->strings + sp->st_name, i);
871 	}
872 
873 	KOBJ_MARK("load_exec done");
874 	return (mp);
875 }
876 
877 /*
878  * Set up the linker module (if it's compiled in, LDNAME is NULL)
879  */
880 static void
load_linker(val_t * bootaux)881 load_linker(val_t *bootaux)
882 {
883 	struct module *kmp = (struct module *)kobj_modules->mod_mp;
884 	struct module *mp;
885 	struct modctl *cp;
886 	int i;
887 	Shdr *shp;
888 	Sym *sp;
889 	int shsize;
890 	char *dlname = (char *)bootaux[BA_LDNAME].ba_ptr;
891 
892 	/*
893 	 * On some architectures, krtld is compiled into the kernel.
894 	 */
895 	if (dlname == NULL)
896 		return;
897 
898 	cp = add_primary(dlname, KOBJ_LM_PRIMARY);
899 
900 	mp = kobj_zalloc(sizeof (struct module), KM_WAIT);
901 
902 	cp->mod_mp = mp;
903 	mp->hdr = *(Ehdr *)bootaux[BA_LDELF].ba_ptr;
904 	shsize = mp->hdr.e_shentsize * mp->hdr.e_shnum;
905 	mp->shdrs = kobj_alloc(shsize, KM_WAIT);
906 	bcopy(bootaux[BA_LDSHDR].ba_ptr, mp->shdrs, shsize);
907 
908 	for (i = 1; i < (int)mp->hdr.e_shnum; i++) {
909 		shp = (Shdr *)(mp->shdrs + (i * mp->hdr.e_shentsize));
910 
911 		if (shp->sh_flags & SHF_ALLOC) {
912 			if (shp->sh_flags & SHF_WRITE) {
913 				if (mp->data == NULL)
914 					mp->data = (char *)shp->sh_addr;
915 			} else if (mp->text == NULL) {
916 				mp->text = (char *)shp->sh_addr;
917 			}
918 		}
919 		if (shp->sh_type == SHT_SYMTAB) {
920 			mp->symtbl_section = i;
921 			mp->symhdr = shp;
922 			mp->symspace = mp->symtbl = (char *)shp->sh_addr;
923 		}
924 	}
925 	mp->nsyms = mp->symhdr->sh_size / mp->symhdr->sh_entsize;
926 	mp->flags = KOBJ_INTERP|KOBJ_PRIM;
927 	mp->strhdr = (Shdr *)
928 	    (mp->shdrs + mp->symhdr->sh_link * mp->hdr.e_shentsize);
929 	mp->strings = (char *)mp->strhdr->sh_addr;
930 	mp->hashsize = kobj_gethashsize(mp->nsyms);
931 
932 	mp->symsize = mp->symhdr->sh_size + mp->strhdr->sh_size + sizeof (int) +
933 	    (mp->hashsize + mp->nsyms) * sizeof (symid_t);
934 
935 	mp->chains = kobj_zalloc(mp->nsyms * sizeof (symid_t), KM_WAIT);
936 	mp->buckets = kobj_zalloc(mp->hashsize * sizeof (symid_t), KM_WAIT);
937 
938 	mp->bss = bootaux[BA_BSS].ba_val;
939 	mp->bss_align = 0;	/* pre-aligned during allocation */
940 	mp->bss_size = (uintptr_t)_edata - mp->bss;
941 	mp->text_size = _etext - mp->text;
942 	mp->data_size = _edata - mp->data;
943 	mp->filename = cp->mod_filename;
944 	cp->mod_text = mp->text;
945 	cp->mod_text_size = mp->text_size;
946 
947 	/*
948 	 * Now that we've figured out where the linker is,
949 	 * set the limits for the booted object.
950 	 */
951 	kmp->text_size = (size_t)(mp->text - kmp->text);
952 	kmp->data_size = (size_t)(mp->data - kmp->data);
953 	kobj_modules->mod_text_size = kmp->text_size;
954 
955 #ifdef	KOBJ_DEBUG
956 	if (kobj_debug & D_LOADING) {
957 		_kobj_printf(ops, "krtld: file=%s\n", mp->filename);
958 		_kobj_printf(ops, "\ttext:0x%p", mp->text);
959 		_kobj_printf(ops, " size: 0x%lx\n", mp->text_size);
960 		_kobj_printf(ops, "\tdata:0x%p", mp->data);
961 		_kobj_printf(ops, " dsize: 0x%lx\n", mp->data_size);
962 	}
963 #endif /* KOBJ_DEBUG */
964 
965 	/*
966 	 * Insert the symbols into the hash table.
967 	 */
968 	for (i = 0; i < mp->nsyms; i++) {
969 		sp = (Sym *)(mp->symtbl + i * mp->symhdr->sh_entsize);
970 
971 		if (sp->st_name == 0 || sp->st_shndx == SHN_UNDEF)
972 			continue;
973 		if (ELF_ST_BIND(sp->st_info) == STB_GLOBAL) {
974 			if (sp->st_shndx == SHN_COMMON)
975 				sp->st_shndx = SHN_ABS;
976 		}
977 		sym_insert(mp, mp->strings + sp->st_name, i);
978 	}
979 
980 }
981 
982 static kobj_notify_list_t **
kobj_notify_lookup(uint_t type)983 kobj_notify_lookup(uint_t type)
984 {
985 	ASSERT(type != 0 && type < sizeof (kobj_notifiers) /
986 	    sizeof (kobj_notify_list_t *));
987 
988 	return (&kobj_notifiers[type]);
989 }
990 
991 int
kobj_notify_add(kobj_notify_list_t * knp)992 kobj_notify_add(kobj_notify_list_t *knp)
993 {
994 	kobj_notify_list_t **knl;
995 
996 	knl = kobj_notify_lookup(knp->kn_type);
997 
998 	knp->kn_next = NULL;
999 	knp->kn_prev = NULL;
1000 
1001 	mutex_enter(&kobj_lock);
1002 
1003 	if (*knl != NULL) {
1004 		(*knl)->kn_prev = knp;
1005 		knp->kn_next = *knl;
1006 	}
1007 	(*knl) = knp;
1008 
1009 	mutex_exit(&kobj_lock);
1010 	return (0);
1011 }
1012 
1013 int
kobj_notify_remove(kobj_notify_list_t * knp)1014 kobj_notify_remove(kobj_notify_list_t *knp)
1015 {
1016 	kobj_notify_list_t **knl = kobj_notify_lookup(knp->kn_type);
1017 	kobj_notify_list_t *tknp;
1018 
1019 	mutex_enter(&kobj_lock);
1020 
1021 	if ((tknp = knp->kn_next) != NULL)
1022 		tknp->kn_prev = knp->kn_prev;
1023 
1024 	if ((tknp = knp->kn_prev) != NULL)
1025 		tknp->kn_next = knp->kn_next;
1026 	else
1027 		*knl = knp->kn_next;
1028 
1029 	mutex_exit(&kobj_lock);
1030 
1031 	return (0);
1032 }
1033 
1034 /*
1035  * Notify all interested callbacks of a specified change in module state.
1036  */
1037 static void
kobj_notify(int type,struct modctl * modp)1038 kobj_notify(int type, struct modctl *modp)
1039 {
1040 	kobj_notify_list_t *knp;
1041 
1042 	if (modp->mod_loadflags & MOD_NONOTIFY || standalone)
1043 		return;
1044 
1045 	mutex_enter(&kobj_lock);
1046 
1047 	for (knp = *(kobj_notify_lookup(type)); knp != NULL; knp = knp->kn_next)
1048 		knp->kn_func(type, modp);
1049 
1050 	/*
1051 	 * KDI notification must be last (it has to allow for work done by the
1052 	 * other notification callbacks), so we call it manually.
1053 	 */
1054 	kobj_kdi_mod_notify(type, modp);
1055 
1056 	mutex_exit(&kobj_lock);
1057 }
1058 
1059 /*
1060  * Create the module path.
1061  */
1062 static char *
getmodpath(const char * filename)1063 getmodpath(const char *filename)
1064 {
1065 	char *path = kobj_zalloc(MAXPATHLEN, KM_WAIT);
1066 
1067 	/*
1068 	 * Platform code gets first crack, then add
1069 	 * the default components
1070 	 */
1071 	mach_modpath(path, filename);
1072 	if (*path != '\0')
1073 		(void) strcat(path, " ");
1074 	return (strcat(path, MOD_DEFPATH));
1075 }
1076 
1077 static struct modctl *
add_primary(const char * filename,int lmid)1078 add_primary(const char *filename, int lmid)
1079 {
1080 	struct modctl *cp;
1081 
1082 	cp = kobj_zalloc(sizeof (struct modctl), KM_WAIT);
1083 
1084 	cp->mod_filename = kobj_alloc(strlen(filename) + 1, KM_WAIT);
1085 
1086 	/*
1087 	 * For symbol lookup, we assemble our own
1088 	 * modctl list of the primary modules.
1089 	 */
1090 
1091 	(void) strcpy(cp->mod_filename, filename);
1092 	cp->mod_modname = basename(cp->mod_filename);
1093 
1094 	/* set values for modinfo assuming that the load will work */
1095 	cp->mod_prim = 1;
1096 	cp->mod_loaded = 1;
1097 	cp->mod_installed = 1;
1098 	cp->mod_loadcnt = 1;
1099 	cp->mod_loadflags = MOD_NOAUTOUNLOAD;
1100 
1101 	cp->mod_id = kobj_last_module_id++;
1102 
1103 	/*
1104 	 * Link the module in. We'll pass this info on
1105 	 * to the mod squad later.
1106 	 */
1107 	if (kobj_modules == NULL) {
1108 		kobj_modules = cp;
1109 		cp->mod_prev = cp->mod_next = cp;
1110 	} else {
1111 		cp->mod_prev = kobj_modules->mod_prev;
1112 		cp->mod_next = kobj_modules;
1113 		kobj_modules->mod_prev->mod_next = cp;
1114 		kobj_modules->mod_prev = cp;
1115 	}
1116 
1117 	kobj_lm_append(lmid, cp);
1118 
1119 	return (cp);
1120 }
1121 
1122 static int
bind_primary(val_t * bootaux,int lmid)1123 bind_primary(val_t *bootaux, int lmid)
1124 {
1125 	struct modctl_list *linkmap = kobj_lm_lookup(lmid);
1126 	struct modctl_list *lp;
1127 	struct module *mp;
1128 
1129 	/*
1130 	 * Do common symbols.
1131 	 */
1132 	for (lp = linkmap; lp; lp = lp->modl_next) {
1133 		mp = mod(lp);
1134 
1135 		/*
1136 		 * Don't do common section relocations for modules that
1137 		 * don't need it.
1138 		 */
1139 		if (mp->flags & (KOBJ_EXEC|KOBJ_INTERP))
1140 			continue;
1141 
1142 		if (do_common(mp) < 0)
1143 			return (-1);
1144 	}
1145 
1146 	/*
1147 	 * Resolve symbols.
1148 	 */
1149 	for (lp = linkmap; lp; lp = lp->modl_next) {
1150 		mp = mod(lp);
1151 
1152 		if (do_symbols(mp, 0) < 0)
1153 			return (-1);
1154 	}
1155 
1156 	/*
1157 	 * Do relocations.
1158 	 */
1159 	for (lp = linkmap; lp; lp = lp->modl_next) {
1160 		mp = mod(lp);
1161 
1162 		if (mp->flags & KOBJ_EXEC) {
1163 			Dyn *dyn;
1164 			Word relasz = 0, relaent = 0;
1165 			char *rela = NULL;
1166 
1167 			for (dyn = (Dyn *)bootaux[BA_DYNAMIC].ba_ptr;
1168 			    dyn->d_tag != DT_NULL; dyn++) {
1169 				switch (dyn->d_tag) {
1170 				case DT_RELASZ:
1171 				case DT_RELSZ:
1172 					relasz = dyn->d_un.d_val;
1173 					break;
1174 				case DT_RELAENT:
1175 				case DT_RELENT:
1176 					relaent = dyn->d_un.d_val;
1177 					break;
1178 				case DT_RELA:
1179 					rela = (char *)dyn->d_un.d_ptr;
1180 					break;
1181 				case DT_REL:
1182 					rela = (char *)dyn->d_un.d_ptr;
1183 					break;
1184 				}
1185 			}
1186 			if (relasz == 0 ||
1187 			    relaent == 0 || rela == NULL) {
1188 				_kobj_printf(ops, "krtld: bind_primary(): "
1189 				    "no relocation information found for "
1190 				    "module %s\n", mp->filename);
1191 				return (-1);
1192 			}
1193 #ifdef	KOBJ_DEBUG
1194 			if (kobj_debug & D_RELOCATIONS)
1195 				_kobj_printf(ops, "krtld: relocating: file=%s "
1196 				    "KOBJ_EXEC\n", mp->filename);
1197 #endif
1198 			if (do_relocate(mp, rela, relasz/relaent, relaent,
1199 			    (Addr)mp->text) < 0)
1200 				return (-1);
1201 		} else {
1202 			if (do_relocations(mp) < 0)
1203 				return (-1);
1204 		}
1205 
1206 		kobj_sync_instruction_memory(mp->text, mp->text_size);
1207 	}
1208 
1209 	for (lp = linkmap; lp; lp = lp->modl_next) {
1210 		mp = mod(lp);
1211 
1212 		/*
1213 		 * We need to re-read the full symbol table for the boot file,
1214 		 * since we couldn't use the full one before.  We also need to
1215 		 * load the CTF sections of both the boot file and the
1216 		 * interpreter (us).
1217 		 */
1218 		if (mp->flags & KOBJ_EXEC) {
1219 			struct _buf *file;
1220 			int n;
1221 
1222 			file = kobj_open_file(mp->filename);
1223 			if (file == (struct _buf *)-1)
1224 				return (-1);
1225 			if (kobj_read_file(file, (char *)&mp->hdr,
1226 			    sizeof (mp->hdr), 0) < 0)
1227 				return (-1);
1228 			n = mp->hdr.e_shentsize * mp->hdr.e_shnum;
1229 			mp->shdrs = kobj_alloc(n, KM_WAIT);
1230 			if (kobj_read_file(file, mp->shdrs, n,
1231 			    mp->hdr.e_shoff) < 0)
1232 				return (-1);
1233 			if (get_syms(mp, file) < 0)
1234 				return (-1);
1235 			if (get_ctf(mp, file) < 0)
1236 				return (-1);
1237 			kobj_close_file(file);
1238 			mp->flags |= KOBJ_RELOCATED;
1239 
1240 		} else if (mp->flags & KOBJ_INTERP) {
1241 			struct _buf *file;
1242 
1243 			/*
1244 			 * The interpreter path fragment in mp->filename
1245 			 * will already have the module directory suffix
1246 			 * in it (if appropriate).
1247 			 */
1248 			file = kobj_open_path(mp->filename, 1, 0);
1249 			if (file == (struct _buf *)-1)
1250 				return (-1);
1251 			if (get_ctf(mp, file) < 0)
1252 				return (-1);
1253 			kobj_close_file(file);
1254 			mp->flags |= KOBJ_RELOCATED;
1255 		}
1256 	}
1257 
1258 	return (0);
1259 }
1260 
1261 static struct modctl *
mod_already_loaded(char * modname)1262 mod_already_loaded(char *modname)
1263 {
1264 	struct modctl *mctl = kobj_modules;
1265 
1266 	do {
1267 		if (strcmp(modname, mctl->mod_filename) == 0)
1268 			return (mctl);
1269 		mctl = mctl->mod_next;
1270 
1271 	} while (mctl != kobj_modules);
1272 
1273 	return (NULL);
1274 }
1275 
1276 /*
1277  * Load all the primary dependent modules.
1278  */
1279 static int
load_primary(struct module * mp,int lmid)1280 load_primary(struct module *mp, int lmid)
1281 {
1282 	struct modctl *cp;
1283 	struct module *dmp;
1284 	char *p, *q;
1285 	char modname[MODMAXNAMELEN];
1286 
1287 	if ((p = mp->depends_on) == NULL)
1288 		return (0);
1289 
1290 	/* CONSTANTCONDITION */
1291 	while (1) {
1292 		/*
1293 		 * Skip space.
1294 		 */
1295 		while (*p && (*p == ' ' || *p == '\t'))
1296 			p++;
1297 		/*
1298 		 * Get module name.
1299 		 */
1300 		q = modname;
1301 		while (*p && *p != ' ' && *p != '\t')
1302 			*q++ = *p++;
1303 
1304 		if (q == modname)
1305 			break;
1306 
1307 		*q = '\0';
1308 		/*
1309 		 * Check for dup dependencies.
1310 		 */
1311 		if (strcmp(modname, "dtracestubs") == 0 ||
1312 		    mod_already_loaded(modname) != NULL)
1313 			continue;
1314 
1315 		cp = add_primary(modname, lmid);
1316 		cp->mod_busy = 1;
1317 		/*
1318 		 * Load it.
1319 		 */
1320 		(void) kobj_load_module(cp, 1);
1321 		cp->mod_busy = 0;
1322 
1323 		if ((dmp = cp->mod_mp) == NULL) {
1324 			cp->mod_loaded = 0;
1325 			cp->mod_installed = 0;
1326 			cp->mod_loadcnt = 0;
1327 			return (-1);
1328 		}
1329 
1330 		add_dependent(mp, dmp);
1331 		dmp->flags |= KOBJ_PRIM;
1332 
1333 		/*
1334 		 * Recurse.
1335 		 */
1336 		if (load_primary(dmp, lmid) == -1) {
1337 			cp->mod_loaded = 0;
1338 			cp->mod_installed = 0;
1339 			cp->mod_loadcnt = 0;
1340 			return (-1);
1341 		}
1342 	}
1343 	return (0);
1344 }
1345 
1346 static int
console_is_usb_serial(void)1347 console_is_usb_serial(void)
1348 {
1349 	char *console;
1350 	int len, ret;
1351 
1352 	if ((len = BOP_GETPROPLEN(ops, "console")) == -1)
1353 		return (0);
1354 
1355 	console = kobj_zalloc(len, KM_WAIT|KM_TMP);
1356 	(void) BOP_GETPROP(ops, "console", console);
1357 	ret = (strcmp(console, "usb-serial") == 0);
1358 	kobj_free(console, len);
1359 
1360 	return (ret);
1361 }
1362 
1363 static int
load_kmdb(val_t * bootaux)1364 load_kmdb(val_t *bootaux)
1365 {
1366 	struct modctl *mctl;
1367 	struct module *mp;
1368 	Sym *sym;
1369 
1370 	if (console_is_usb_serial()) {
1371 		_kobj_printf(ops, "kmdb not loaded "
1372 		    "(unsupported on usb serial console)\n");
1373 		return (0);
1374 	}
1375 
1376 	_kobj_printf(ops, "Loading kmdb...\n");
1377 
1378 	if ((mctl = add_primary("misc/kmdbmod", KOBJ_LM_DEBUGGER)) == NULL)
1379 		return (-1);
1380 
1381 	mctl->mod_busy = 1;
1382 	(void) kobj_load_module(mctl, 1);
1383 	mctl->mod_busy = 0;
1384 
1385 	if ((mp = mctl->mod_mp) == NULL)
1386 		return (-1);
1387 
1388 	mp->flags |= KOBJ_PRIM;
1389 
1390 	if (load_primary(mp, KOBJ_LM_DEBUGGER) < 0)
1391 		return (-1);
1392 
1393 	if (boothowto & RB_VERBOSE)
1394 		kobj_lm_dump(KOBJ_LM_DEBUGGER);
1395 
1396 	if (bind_primary(bootaux, KOBJ_LM_DEBUGGER) < 0)
1397 		return (-1);
1398 
1399 	if ((sym = lookup_one(mctl->mod_mp, "kctl_boot_activate")) == NULL)
1400 		return (-1);
1401 
1402 #ifdef	KOBJ_DEBUG
1403 	if (kobj_debug & D_DEBUG) {
1404 		_kobj_printf(ops, "calling kctl_boot_activate() @ 0x%lx\n",
1405 		    sym->st_value);
1406 		_kobj_printf(ops, "\tops 0x%p\n", ops);
1407 		_kobj_printf(ops, "\tromp 0x%p\n", romp);
1408 	}
1409 #endif
1410 
1411 	if (((kctl_boot_activate_f *)sym->st_value)(ops, romp, 0,
1412 	    (const char **)kobj_kmdb_argv) < 0)
1413 		return (-1);
1414 
1415 	return (0);
1416 }
1417 
1418 /*
1419  * Return a string listing module dependencies.
1420  */
1421 static char *
depends_on(struct module * mp)1422 depends_on(struct module *mp)
1423 {
1424 	Sym *sp;
1425 	char *depstr, *q;
1426 
1427 	/*
1428 	 * The module doesn't have a depends_on value, so let's try it the
1429 	 * old-fashioned way - via "_depends_on"
1430 	 */
1431 	if ((sp = lookup_one(mp, "_depends_on")) == NULL)
1432 		return (NULL);
1433 
1434 	q = (char *)sp->st_value;
1435 
1436 #ifdef KOBJ_DEBUG
1437 	/*
1438 	 * _depends_on is a deprecated interface, so we warn about its use
1439 	 * irrespective of subsequent processing errors. How else are we going
1440 	 * to be able to deco this interface completely?
1441 	 * Changes initially limited to DEBUG because third-party modules
1442 	 * should be flagged to developers before general use base.
1443 	 */
1444 	_kobj_printf(ops,
1445 	    "Warning: %s uses deprecated _depends_on interface.\n",
1446 	    mp->filename);
1447 	_kobj_printf(ops, "Please notify module developer or vendor.\n");
1448 #endif
1449 
1450 	/*
1451 	 * Idiot checks. Make sure it's
1452 	 * in-bounds and NULL terminated.
1453 	 */
1454 	if (kobj_addrcheck(mp, q) || q[sp->st_size - 1] != '\0') {
1455 		_kobj_printf(ops, "Error processing dependency for %s\n",
1456 		    mp->filename);
1457 		return (NULL);
1458 	}
1459 
1460 	depstr = (char *)kobj_alloc(strlen(q) + 1, KM_WAIT);
1461 	(void) strcpy(depstr, q);
1462 
1463 	return (depstr);
1464 }
1465 
1466 void
kobj_getmodinfo(void * xmp,struct modinfo * modinfo)1467 kobj_getmodinfo(void *xmp, struct modinfo *modinfo)
1468 {
1469 	struct module *mp;
1470 	mp = (struct module *)xmp;
1471 
1472 	modinfo->mi_base = mp->text;
1473 	modinfo->mi_size = mp->text_size + mp->data_size;
1474 }
1475 
1476 /*
1477  * kobj_export_ksyms() performs the following services:
1478  *
1479  * (1) Migrates the symbol table from boot/kobj memory to the ksyms arena.
1480  * (2) Removes unneeded symbols to save space.
1481  * (3) Reduces memory footprint by using VM_BESTFIT allocations.
1482  * (4) Makes the symbol table visible to /dev/ksyms.
1483  */
1484 static void
kobj_export_ksyms(struct module * mp)1485 kobj_export_ksyms(struct module *mp)
1486 {
1487 	Sym *esp = (Sym *)(mp->symtbl + mp->symhdr->sh_size);
1488 	Sym *sp, *osp;
1489 	char *name;
1490 	size_t namelen;
1491 	struct module *omp;
1492 	uint_t nsyms;
1493 	size_t symsize = mp->symhdr->sh_entsize;
1494 	size_t locals = 1;
1495 	size_t strsize;
1496 
1497 	/*
1498 	 * Make a copy of the original module structure.
1499 	 */
1500 	omp = kobj_alloc(sizeof (struct module), KM_WAIT);
1501 	bcopy(mp, omp, sizeof (struct module));
1502 
1503 	/*
1504 	 * Compute the sizes of the new symbol table sections.
1505 	 */
1506 	for (nsyms = strsize = 1, osp = (Sym *)omp->symtbl; osp < esp; osp++) {
1507 		if (osp->st_value == 0)
1508 			continue;
1509 		if (sym_lookup(omp, osp) == NULL)
1510 			continue;
1511 		name = omp->strings + osp->st_name;
1512 		namelen = strlen(name);
1513 		if (ELF_ST_BIND(osp->st_info) == STB_LOCAL)
1514 			locals++;
1515 		nsyms++;
1516 		strsize += namelen + 1;
1517 	}
1518 
1519 	mp->nsyms = nsyms;
1520 	mp->hashsize = kobj_gethashsize(mp->nsyms);
1521 
1522 	/*
1523 	 * ksyms_lock must be held as writer during any operation that
1524 	 * modifies ksyms_arena, including allocation from same, and
1525 	 * must not be dropped until the arena is vmem_walk()able.
1526 	 */
1527 	rw_enter(&ksyms_lock, RW_WRITER);
1528 
1529 	/*
1530 	 * Allocate space for the new section headers (symtab and strtab),
1531 	 * symbol table, buckets, chains, and strings.
1532 	 */
1533 	mp->symsize = (2 * sizeof (Shdr)) + (nsyms * symsize) +
1534 	    (mp->hashsize + mp->nsyms) * sizeof (symid_t) + strsize;
1535 
1536 	if (mp->flags & KOBJ_NOKSYMS) {
1537 		mp->symspace = kobj_alloc(mp->symsize, KM_WAIT);
1538 	} else {
1539 		mp->symspace = vmem_alloc(ksyms_arena, mp->symsize,
1540 		    VM_BESTFIT | VM_SLEEP);
1541 	}
1542 	bzero(mp->symspace, mp->symsize);
1543 
1544 	/*
1545 	 * Divvy up symspace.
1546 	 */
1547 	mp->shdrs = mp->symspace;
1548 	mp->symhdr = (Shdr *)mp->shdrs;
1549 	mp->strhdr = (Shdr *)(mp->symhdr + 1);
1550 	mp->symtbl = (char *)(mp->strhdr + 1);
1551 	mp->buckets = (symid_t *)(mp->symtbl + (nsyms * symsize));
1552 	mp->chains = (symid_t *)(mp->buckets + mp->hashsize);
1553 	mp->strings = (char *)(mp->chains + nsyms);
1554 
1555 	/*
1556 	 * Fill in the new section headers (symtab and strtab).
1557 	 */
1558 	mp->hdr.e_shnum = 2;
1559 	mp->symtbl_section = 0;
1560 
1561 	mp->symhdr->sh_type = SHT_SYMTAB;
1562 	mp->symhdr->sh_addr = (Addr)mp->symtbl;
1563 	mp->symhdr->sh_size = nsyms * symsize;
1564 	mp->symhdr->sh_link = 1;
1565 	mp->symhdr->sh_info = locals;
1566 	mp->symhdr->sh_addralign = sizeof (Addr);
1567 	mp->symhdr->sh_entsize = symsize;
1568 
1569 	mp->strhdr->sh_type = SHT_STRTAB;
1570 	mp->strhdr->sh_addr = (Addr)mp->strings;
1571 	mp->strhdr->sh_size = strsize;
1572 	mp->strhdr->sh_addralign = 1;
1573 
1574 	/*
1575 	 * Construct the new symbol table.
1576 	 */
1577 	for (nsyms = strsize = 1, osp = (Sym *)omp->symtbl; osp < esp; osp++) {
1578 		if (osp->st_value == 0)
1579 			continue;
1580 		if (sym_lookup(omp, osp) == NULL)
1581 			continue;
1582 		name = omp->strings + osp->st_name;
1583 		namelen = strlen(name);
1584 		sp = (Sym *)(mp->symtbl + symsize * nsyms);
1585 		bcopy(osp, sp, symsize);
1586 		bcopy(name, mp->strings + strsize, namelen);
1587 		sp->st_name = strsize;
1588 		sym_insert(mp, name, nsyms);
1589 		nsyms++;
1590 		strsize += namelen + 1;
1591 	}
1592 
1593 	rw_exit(&ksyms_lock);
1594 
1595 	/*
1596 	 * Free the old section headers -- we'll never need them again.
1597 	 */
1598 	if (!(mp->flags & KOBJ_PRIM)) {
1599 		uint_t	shn;
1600 		Shdr	*shp;
1601 
1602 		for (shn = 1; shn < omp->hdr.e_shnum; shn++) {
1603 			shp = (Shdr *)(omp->shdrs + shn * omp->hdr.e_shentsize);
1604 			switch (shp->sh_type) {
1605 			case SHT_RELA:
1606 			case SHT_REL:
1607 				if (shp->sh_addr != 0) {
1608 					kobj_free((void *)shp->sh_addr,
1609 					    shp->sh_size);
1610 				}
1611 				break;
1612 			}
1613 		}
1614 		kobj_free(omp->shdrs, omp->hdr.e_shentsize * omp->hdr.e_shnum);
1615 	}
1616 	/*
1617 	 * Discard the old symbol table and our copy of the module strucure.
1618 	 */
1619 	if (!(mp->flags & KOBJ_PRIM))
1620 		kobj_free(omp->symspace, omp->symsize);
1621 	kobj_free(omp, sizeof (struct module));
1622 }
1623 
1624 static void
kobj_export_ctf(struct module * mp)1625 kobj_export_ctf(struct module *mp)
1626 {
1627 	char *data = mp->ctfdata;
1628 	size_t size = mp->ctfsize;
1629 
1630 	if (data != NULL) {
1631 		if (_moddebug & MODDEBUG_NOCTF) {
1632 			mp->ctfdata = NULL;
1633 			mp->ctfsize = 0;
1634 		} else {
1635 			mp->ctfdata = vmem_alloc(ctf_arena, size,
1636 			    VM_BESTFIT | VM_SLEEP);
1637 			bcopy(data, mp->ctfdata, size);
1638 		}
1639 
1640 		if (!(mp->flags & KOBJ_PRIM))
1641 			kobj_free(data, size);
1642 	}
1643 }
1644 
1645 void
kobj_export_module(struct module * mp)1646 kobj_export_module(struct module *mp)
1647 {
1648 	kobj_export_ksyms(mp);
1649 	kobj_export_ctf(mp);
1650 
1651 	mp->flags |= KOBJ_EXPORTED;
1652 }
1653 
1654 static int
process_dynamic(struct module * mp,char * dyndata,char * strdata)1655 process_dynamic(struct module *mp, char *dyndata, char *strdata)
1656 {
1657 	char *path = NULL, *depstr = NULL;
1658 	int allocsize = 0, osize = 0, nsize = 0;
1659 	char *libname, *tmp;
1660 	int lsize;
1661 	Dyn *dynp;
1662 
1663 	for (dynp = (Dyn *)dyndata; dynp && dynp->d_tag != DT_NULL; dynp++) {
1664 		switch (dynp->d_tag) {
1665 		case DT_NEEDED:
1666 			/*
1667 			 * Read the DT_NEEDED entries, expanding the macros they
1668 			 * contain (if any), and concatenating them into a
1669 			 * single space-separated dependency list.
1670 			 */
1671 			libname = (ulong_t)dynp->d_un.d_ptr + strdata;
1672 
1673 			if (strchr(libname, '$') != NULL) {
1674 				char *_lib;
1675 
1676 				if (path == NULL)
1677 					path = kobj_alloc(MAXPATHLEN, KM_WAIT);
1678 				if ((_lib = expand_libmacro(libname, path,
1679 				    path)) != NULL)
1680 					libname = _lib;
1681 				else {
1682 					_kobj_printf(ops, "krtld: "
1683 					    "process_dynamic: failed to expand "
1684 					    "%s\n", libname);
1685 				}
1686 			}
1687 
1688 			lsize = strlen(libname);
1689 			nsize += lsize;
1690 			if (nsize + 1 > allocsize) {
1691 				tmp = kobj_alloc(allocsize + MAXPATHLEN,
1692 				    KM_WAIT);
1693 				if (depstr != NULL) {
1694 					bcopy(depstr, tmp, osize);
1695 					kobj_free(depstr, allocsize);
1696 				}
1697 				depstr = tmp;
1698 				allocsize += MAXPATHLEN;
1699 			}
1700 			bcopy(libname, depstr + osize, lsize);
1701 			*(depstr + nsize) = ' '; /* separator */
1702 			nsize++;
1703 			osize = nsize;
1704 			break;
1705 
1706 		case DT_FLAGS_1:
1707 			if (dynp->d_un.d_val & DF_1_IGNMULDEF)
1708 				mp->flags |= KOBJ_IGNMULDEF;
1709 			if (dynp->d_un.d_val & DF_1_NOKSYMS)
1710 				mp->flags |= KOBJ_NOKSYMS;
1711 
1712 			break;
1713 		}
1714 	}
1715 
1716 	/*
1717 	 * finish up the depends string (if any)
1718 	 */
1719 	if (depstr != NULL) {
1720 		*(depstr + nsize - 1) = '\0'; /* overwrite separator w/term */
1721 		if (path != NULL)
1722 			kobj_free(path, MAXPATHLEN);
1723 
1724 		tmp = kobj_alloc(nsize, KM_WAIT);
1725 		bcopy(depstr, tmp, nsize);
1726 		kobj_free(depstr, allocsize);
1727 		depstr = tmp;
1728 
1729 		mp->depends_on = depstr;
1730 	}
1731 
1732 	return (0);
1733 }
1734 
1735 static int
do_dynamic(struct module * mp,struct _buf * file)1736 do_dynamic(struct module *mp, struct _buf *file)
1737 {
1738 	Shdr *dshp, *dstrp, *shp;
1739 	char *dyndata, *dstrdata;
1740 	int dshn, shn, rc;
1741 
1742 	/* find and validate the dynamic section (if any) */
1743 
1744 	for (dshp = NULL, shn = 1; shn < mp->hdr.e_shnum; shn++) {
1745 		shp = (Shdr *)(mp->shdrs + shn * mp->hdr.e_shentsize);
1746 		switch (shp->sh_type) {
1747 		case SHT_DYNAMIC:
1748 			if (dshp != NULL) {
1749 				_kobj_printf(ops, "krtld: get_dynamic: %s, ",
1750 				    mp->filename);
1751 				_kobj_printf(ops,
1752 				    "multiple dynamic sections\n");
1753 				return (-1);
1754 			} else {
1755 				dshp = shp;
1756 				dshn = shn;
1757 			}
1758 			break;
1759 		}
1760 	}
1761 
1762 	if (dshp == NULL)
1763 		return (0);
1764 
1765 	if (dshp->sh_link > mp->hdr.e_shnum) {
1766 		_kobj_printf(ops, "krtld: get_dynamic: %s, ", mp->filename);
1767 		_kobj_printf(ops, "no section for sh_link %d\n", dshp->sh_link);
1768 		return (-1);
1769 	}
1770 	dstrp = (Shdr *)(mp->shdrs + dshp->sh_link * mp->hdr.e_shentsize);
1771 
1772 	if (dstrp->sh_type != SHT_STRTAB) {
1773 		_kobj_printf(ops, "krtld: get_dynamic: %s, ", mp->filename);
1774 		_kobj_printf(ops, "sh_link not a string table for section %d\n",
1775 		    dshn);
1776 		return (-1);
1777 	}
1778 
1779 	/* read it from disk */
1780 
1781 	dyndata = kobj_alloc(dshp->sh_size, KM_WAIT|KM_TMP);
1782 	if (kobj_read_file(file, dyndata, dshp->sh_size, dshp->sh_offset) < 0) {
1783 		_kobj_printf(ops, "krtld: get_dynamic: %s, ", mp->filename);
1784 		_kobj_printf(ops, "error reading section %d\n", dshn);
1785 
1786 		kobj_free(dyndata, dshp->sh_size);
1787 		return (-1);
1788 	}
1789 
1790 	dstrdata = kobj_alloc(dstrp->sh_size, KM_WAIT|KM_TMP);
1791 	if (kobj_read_file(file, dstrdata, dstrp->sh_size,
1792 	    dstrp->sh_offset) < 0) {
1793 		_kobj_printf(ops, "krtld: get_dynamic: %s, ", mp->filename);
1794 		_kobj_printf(ops, "error reading section %d\n", dshp->sh_link);
1795 
1796 		kobj_free(dyndata, dshp->sh_size);
1797 		kobj_free(dstrdata, dstrp->sh_size);
1798 		return (-1);
1799 	}
1800 
1801 	/* pull the interesting pieces out */
1802 
1803 	rc = process_dynamic(mp, dyndata, dstrdata);
1804 
1805 	kobj_free(dyndata, dshp->sh_size);
1806 	kobj_free(dstrdata, dstrp->sh_size);
1807 
1808 	return (rc);
1809 }
1810 
1811 void
kobj_set_ctf(struct module * mp,caddr_t data,size_t size)1812 kobj_set_ctf(struct module *mp, caddr_t data, size_t size)
1813 {
1814 	if (!standalone) {
1815 		if (mp->ctfdata != NULL) {
1816 			if (vmem_contains(ctf_arena, mp->ctfdata,
1817 			    mp->ctfsize)) {
1818 				vmem_free(ctf_arena, mp->ctfdata, mp->ctfsize);
1819 			} else {
1820 				kobj_free(mp->ctfdata, mp->ctfsize);
1821 			}
1822 		}
1823 	}
1824 
1825 	/*
1826 	 * The order is very important here.  We need to make sure that
1827 	 * consumers, at any given instant, see a consistent state.  We'd
1828 	 * rather they see no CTF data than the address of one buffer and the
1829 	 * size of another.
1830 	 */
1831 	mp->ctfdata = NULL;
1832 	membar_producer();
1833 	mp->ctfsize = size;
1834 	mp->ctfdata = data;
1835 	membar_producer();
1836 }
1837 
1838 int
kobj_load_module(struct modctl * modp,int use_path)1839 kobj_load_module(struct modctl *modp, int use_path)
1840 {
1841 	char *filename = modp->mod_filename;
1842 	char *modname = modp->mod_modname;
1843 	int i;
1844 	int n;
1845 	struct _buf *file;
1846 	struct module *mp = NULL;
1847 #ifdef MODDIR_SUFFIX
1848 	int no_suffixdir_drv = 0;
1849 #endif
1850 
1851 	mp = kobj_zalloc(sizeof (struct module), KM_WAIT);
1852 
1853 	/*
1854 	 * We need to prevent kmdb's symbols from leaking into /dev/ksyms.
1855 	 * kmdb contains a bunch of symbols with well-known names, symbols
1856 	 * which will mask the real versions, thus causing no end of trouble
1857 	 * for mdb.
1858 	 */
1859 	if (strcmp(modp->mod_modname, "kmdbmod") == 0)
1860 		mp->flags |= KOBJ_NOKSYMS;
1861 
1862 	file = kobj_open_path(filename, use_path, 1);
1863 	if (file == (struct _buf *)-1) {
1864 #ifdef MODDIR_SUFFIX
1865 		file = kobj_open_path(filename, use_path, 0);
1866 #endif
1867 		if (file == (struct _buf *)-1) {
1868 			kobj_free(mp, sizeof (*mp));
1869 			goto bad;
1870 		}
1871 #ifdef MODDIR_SUFFIX
1872 		/*
1873 		 * There is no driver module in the ISA specific (suffix)
1874 		 * subdirectory but there is a module in the parent directory.
1875 		 */
1876 		if (strncmp(filename, "drv/", 4) == 0) {
1877 			no_suffixdir_drv = 1;
1878 		}
1879 #endif
1880 	}
1881 
1882 	mp->filename = kobj_alloc(strlen(file->_name) + 1, KM_WAIT);
1883 	(void) strcpy(mp->filename, file->_name);
1884 
1885 	if (kobj_read_file(file, (char *)&mp->hdr, sizeof (mp->hdr), 0) < 0) {
1886 		_kobj_printf(ops, "kobj_load_module: %s read header failed\n",
1887 		    modname);
1888 		kobj_free(mp->filename, strlen(file->_name) + 1);
1889 		kobj_free(mp, sizeof (*mp));
1890 		goto bad;
1891 	}
1892 	for (i = 0; i < SELFMAG; i++) {
1893 		if (mp->hdr.e_ident[i] != ELFMAG[i]) {
1894 			if (_moddebug & MODDEBUG_ERRMSG)
1895 				_kobj_printf(ops, "%s not an elf module\n",
1896 				    modname);
1897 			kobj_free(mp->filename, strlen(file->_name) + 1);
1898 			kobj_free(mp, sizeof (*mp));
1899 			goto bad;
1900 		}
1901 	}
1902 	/*
1903 	 * It's ELF, but is it our ISA?  Interpreting the header
1904 	 * from a file for a byte-swapped ISA could cause a huge
1905 	 * and unsatisfiable value to be passed to kobj_alloc below
1906 	 * and therefore hang booting.
1907 	 */
1908 	if (!elf_mach_ok(&mp->hdr)) {
1909 		if (_moddebug & MODDEBUG_ERRMSG)
1910 			_kobj_printf(ops, "%s not an elf module for this ISA\n",
1911 			    modname);
1912 		kobj_free(mp->filename, strlen(file->_name) + 1);
1913 		kobj_free(mp, sizeof (*mp));
1914 #ifdef MODDIR_SUFFIX
1915 		/*
1916 		 * The driver mod is not in the ISA specific subdirectory
1917 		 * and the module in the parent directory is not our ISA.
1918 		 * If it is our ISA, for now we will silently succeed.
1919 		 */
1920 		if (no_suffixdir_drv == 1) {
1921 			cmn_err(CE_CONT, "?NOTICE: %s: 64-bit driver module"
1922 			    " not found\n", modname);
1923 		}
1924 #endif
1925 		goto bad;
1926 	}
1927 
1928 	/*
1929 	 * All modules, save for unix, should be relocatable (as opposed to
1930 	 * dynamic).  Dynamic modules come with PLTs and GOTs, which can't
1931 	 * currently be processed by krtld.
1932 	 */
1933 	if (mp->hdr.e_type != ET_REL) {
1934 		if (_moddebug & MODDEBUG_ERRMSG)
1935 			_kobj_printf(ops, "%s isn't a relocatable (ET_REL) "
1936 			    "module\n", modname);
1937 		kobj_free(mp->filename, strlen(file->_name) + 1);
1938 		kobj_free(mp, sizeof (*mp));
1939 		goto bad;
1940 	}
1941 
1942 	n = mp->hdr.e_shentsize * mp->hdr.e_shnum;
1943 	mp->shdrs = kobj_alloc(n, KM_WAIT);
1944 
1945 	if (kobj_read_file(file, mp->shdrs, n, mp->hdr.e_shoff) < 0) {
1946 		_kobj_printf(ops, "kobj_load_module: %s error reading "
1947 		    "section headers\n", modname);
1948 		kobj_free(mp->shdrs, n);
1949 		kobj_free(mp->filename, strlen(file->_name) + 1);
1950 		kobj_free(mp, sizeof (*mp));
1951 		goto bad;
1952 	}
1953 
1954 	kobj_notify(KOBJ_NOTIFY_MODLOADING, modp);
1955 	module_assign(modp, mp);
1956 
1957 	/* read in sections */
1958 	if (get_progbits(mp, file) < 0) {
1959 		_kobj_printf(ops, "%s error reading sections\n", modname);
1960 		goto bad;
1961 	}
1962 
1963 	if (do_dynamic(mp, file) < 0) {
1964 		_kobj_printf(ops, "%s error reading dynamic section\n",
1965 		    modname);
1966 		goto bad;
1967 	}
1968 
1969 	modp->mod_text = mp->text;
1970 	modp->mod_text_size = mp->text_size;
1971 
1972 	/* read in symbols; adjust values for each section's real address */
1973 	if (get_syms(mp, file) < 0) {
1974 		_kobj_printf(ops, "%s error reading symbols\n",
1975 		    modname);
1976 		goto bad;
1977 	}
1978 
1979 	/*
1980 	 * If we didn't dependency information from the dynamic section, look
1981 	 * for it the old-fashioned way.
1982 	 */
1983 	if (mp->depends_on == NULL)
1984 		mp->depends_on = depends_on(mp);
1985 
1986 	if (get_ctf(mp, file) < 0) {
1987 		_kobj_printf(ops, "%s debug information will not "
1988 		    "be available\n", modname);
1989 	}
1990 
1991 	/* primary kernel modules do not have a signature section */
1992 	if (!(mp->flags & KOBJ_PRIM))
1993 		get_signature(mp, file);
1994 
1995 #ifdef	KOBJ_DEBUG
1996 	if (kobj_debug & D_LOADING) {
1997 		_kobj_printf(ops, "krtld: file=%s\n", mp->filename);
1998 		_kobj_printf(ops, "\ttext:0x%p", mp->text);
1999 		_kobj_printf(ops, " size: 0x%lx\n", mp->text_size);
2000 		_kobj_printf(ops, "\tdata:0x%p", mp->data);
2001 		_kobj_printf(ops, " dsize: 0x%lx\n", mp->data_size);
2002 	}
2003 #endif /* KOBJ_DEBUG */
2004 
2005 	/*
2006 	 * For primary kernel modules, we defer
2007 	 * symbol resolution and relocation until
2008 	 * all primary objects have been loaded.
2009 	 */
2010 	if (!standalone) {
2011 		int ddrval, dcrval;
2012 		char *dependent_modname;
2013 		/* load all dependents */
2014 		dependent_modname = kobj_zalloc(MODMAXNAMELEN, KM_WAIT);
2015 		ddrval = do_dependents(modp, dependent_modname, MODMAXNAMELEN);
2016 
2017 		/*
2018 		 * resolve undefined and common symbols,
2019 		 * also allocates common space
2020 		 */
2021 		if ((dcrval = do_common(mp)) < 0) {
2022 			switch (dcrval) {
2023 			case DOSYM_UNSAFE:
2024 				_kobj_printf(ops, "WARNING: mod_load: "
2025 				    "MT-unsafe module '%s' rejected\n",
2026 				    modname);
2027 				break;
2028 			case DOSYM_UNDEF:
2029 				_kobj_printf(ops, "WARNING: mod_load: "
2030 				    "cannot load module '%s'\n",
2031 				    modname);
2032 				if (ddrval == -1) {
2033 					_kobj_printf(ops, "WARNING: %s: ",
2034 					    modname);
2035 					_kobj_printf(ops,
2036 					    "unable to resolve dependency, "
2037 					    "module '%s' not found\n",
2038 					    dependent_modname);
2039 				}
2040 				break;
2041 			}
2042 		}
2043 		kobj_free(dependent_modname, MODMAXNAMELEN);
2044 		if (dcrval < 0)
2045 			goto bad;
2046 
2047 		/* process relocation tables */
2048 		if (do_relocations(mp) < 0) {
2049 			_kobj_printf(ops, "%s error doing relocations\n",
2050 			    modname);
2051 			goto bad;
2052 		}
2053 
2054 		if (mp->destination) {
2055 			off_t	off = (uintptr_t)mp->destination & PAGEOFFSET;
2056 			caddr_t	base = (caddr_t)mp->destination - off;
2057 			size_t	size = P2ROUNDUP(mp->text_size + off, PAGESIZE);
2058 
2059 			hat_unload(kas.a_hat, base, size, HAT_UNLOAD_UNLOCK);
2060 			vmem_free(heap_arena, base, size);
2061 		}
2062 
2063 		/* sync_instruction_memory */
2064 		kobj_sync_instruction_memory(mp->text, mp->text_size);
2065 		kobj_export_module(mp);
2066 		kobj_notify(KOBJ_NOTIFY_MODLOADED, modp);
2067 	}
2068 	kobj_close_file(file);
2069 	return (0);
2070 bad:
2071 	if (file != (struct _buf *)-1)
2072 		kobj_close_file(file);
2073 	if (modp->mod_mp != NULL)
2074 		free_module_data(modp->mod_mp);
2075 
2076 	module_assign(modp, NULL);
2077 	return ((file == (struct _buf *)-1) ? ENOENT : EINVAL);
2078 }
2079 
2080 int
kobj_load_primary_module(struct modctl * modp)2081 kobj_load_primary_module(struct modctl *modp)
2082 {
2083 	struct modctl *dep;
2084 	struct module *mp;
2085 
2086 	if (kobj_load_module(modp, 0) != 0)
2087 		return (-1);
2088 
2089 	dep = NULL;
2090 	mp = modp->mod_mp;
2091 	mp->flags |= KOBJ_PRIM;
2092 
2093 	/* Bind new module to its dependents */
2094 	if (mp->depends_on != NULL && (dep =
2095 	    mod_already_loaded(mp->depends_on)) == NULL) {
2096 #ifdef	KOBJ_DEBUG
2097 		if (kobj_debug & D_DEBUG) {
2098 			_kobj_printf(ops, "krtld: failed to resolve deps "
2099 			    "for primary %s\n", modp->mod_modname);
2100 		}
2101 #endif
2102 		return (-1);
2103 	}
2104 
2105 	if (dep != NULL)
2106 		add_dependent(mp, dep->mod_mp);
2107 
2108 	/*
2109 	 * Relocate it.  This module may not be part of a link map, so we
2110 	 * can't use bind_primary.
2111 	 */
2112 	if (do_common(mp) < 0 || do_symbols(mp, 0) < 0 ||
2113 	    do_relocations(mp) < 0) {
2114 #ifdef	KOBJ_DEBUG
2115 		if (kobj_debug & D_DEBUG) {
2116 			_kobj_printf(ops, "krtld: failed to relocate "
2117 			    "primary %s\n", modp->mod_modname);
2118 		}
2119 #endif
2120 		return (-1);
2121 	}
2122 
2123 	return (0);
2124 }
2125 
2126 static void
module_assign(struct modctl * cp,struct module * mp)2127 module_assign(struct modctl *cp, struct module *mp)
2128 {
2129 	if (standalone) {
2130 		cp->mod_mp = mp;
2131 		return;
2132 	}
2133 	mutex_enter(&mod_lock);
2134 	cp->mod_mp = mp;
2135 	cp->mod_gencount++;
2136 	mutex_exit(&mod_lock);
2137 }
2138 
2139 void
kobj_unload_module(struct modctl * modp)2140 kobj_unload_module(struct modctl *modp)
2141 {
2142 	struct module *mp = modp->mod_mp;
2143 
2144 	if ((_moddebug & MODDEBUG_KEEPTEXT) && mp) {
2145 		_kobj_printf(ops, "text for %s ", mp->filename);
2146 		_kobj_printf(ops, "was at %p\n", mp->text);
2147 		mp->text = NULL;	/* don't actually free it */
2148 	}
2149 
2150 	kobj_notify(KOBJ_NOTIFY_MODUNLOADING, modp);
2151 
2152 	/*
2153 	 * Null out mod_mp first, so consumers (debuggers) know not to look
2154 	 * at the module structure any more.
2155 	 */
2156 	mutex_enter(&mod_lock);
2157 	modp->mod_mp = NULL;
2158 	mutex_exit(&mod_lock);
2159 
2160 	kobj_notify(KOBJ_NOTIFY_MODUNLOADED, modp);
2161 	free_module_data(mp);
2162 }
2163 
2164 static void
free_module_data(struct module * mp)2165 free_module_data(struct module *mp)
2166 {
2167 	struct module_list *lp, *tmp;
2168 	hotinline_desc_t *hid, *next;
2169 	int ksyms_exported = 0;
2170 
2171 	lp = mp->head;
2172 	while (lp) {
2173 		tmp = lp;
2174 		lp = lp->next;
2175 		kobj_free((char *)tmp, sizeof (*tmp));
2176 	}
2177 
2178 	/* release hotinlines */
2179 	hid = mp->hi_calls;
2180 	while (hid != NULL) {
2181 		next = hid->hid_next;
2182 		kobj_free(hid->hid_symname, strlen(hid->hid_symname) + 1);
2183 		kobj_free(hid, sizeof (hotinline_desc_t));
2184 		hid = next;
2185 	}
2186 
2187 	rw_enter(&ksyms_lock, RW_WRITER);
2188 	if (mp->symspace) {
2189 		if (vmem_contains(ksyms_arena, mp->symspace, mp->symsize)) {
2190 			vmem_free(ksyms_arena, mp->symspace, mp->symsize);
2191 			ksyms_exported = 1;
2192 		} else {
2193 			if (mp->flags & KOBJ_NOKSYMS)
2194 				ksyms_exported = 1;
2195 			kobj_free(mp->symspace, mp->symsize);
2196 		}
2197 	}
2198 	rw_exit(&ksyms_lock);
2199 
2200 	if (mp->ctfdata) {
2201 		if (vmem_contains(ctf_arena, mp->ctfdata, mp->ctfsize))
2202 			vmem_free(ctf_arena, mp->ctfdata, mp->ctfsize);
2203 		else
2204 			kobj_free(mp->ctfdata, mp->ctfsize);
2205 	}
2206 
2207 	if (mp->sigdata)
2208 		kobj_free(mp->sigdata, mp->sigsize);
2209 
2210 	/*
2211 	 * We did not get far enough into kobj_export_ksyms() to free allocated
2212 	 * buffers because we encounted error conditions. Free the buffers.
2213 	 */
2214 	if ((ksyms_exported == 0) && (mp->shdrs != NULL)) {
2215 		uint_t shn;
2216 		Shdr *shp;
2217 
2218 		for (shn = 1; shn < mp->hdr.e_shnum; shn++) {
2219 			shp = (Shdr *)(mp->shdrs + shn * mp->hdr.e_shentsize);
2220 			switch (shp->sh_type) {
2221 			case SHT_RELA:
2222 			case SHT_REL:
2223 				if (shp->sh_addr != 0)
2224 					kobj_free((void *)shp->sh_addr,
2225 					    shp->sh_size);
2226 				break;
2227 			}
2228 		}
2229 
2230 		if (!(mp->flags & KOBJ_PRIM)) {
2231 			kobj_free(mp->shdrs,
2232 			    mp->hdr.e_shentsize * mp->hdr.e_shnum);
2233 		}
2234 	}
2235 
2236 	if (mp->bss)
2237 		vmem_free(data_arena, (void *)mp->bss, mp->bss_size);
2238 
2239 	if (mp->fbt_tab)
2240 		kobj_texthole_free(mp->fbt_tab, mp->fbt_size);
2241 
2242 	if (mp->textwin_base)
2243 		kobj_textwin_free(mp);
2244 
2245 	if (mp->sdt_probes != NULL) {
2246 		sdt_probedesc_t *sdp = mp->sdt_probes, *next;
2247 
2248 		while (sdp != NULL) {
2249 			next = sdp->sdpd_next;
2250 			kobj_free(sdp->sdpd_name, strlen(sdp->sdpd_name) + 1);
2251 			kobj_free(sdp, sizeof (sdt_probedesc_t));
2252 			sdp = next;
2253 		}
2254 	}
2255 
2256 	if (mp->sdt_tab)
2257 		kobj_texthole_free(mp->sdt_tab, mp->sdt_size);
2258 	if (mp->text)
2259 		vmem_free(text_arena, mp->text, mp->text_size);
2260 	if (mp->data)
2261 		vmem_free(data_arena, mp->data, mp->data_size);
2262 	if (mp->depends_on)
2263 		kobj_free(mp->depends_on, strlen(mp->depends_on)+1);
2264 	if (mp->filename)
2265 		kobj_free(mp->filename, strlen(mp->filename)+1);
2266 
2267 	kobj_free((char *)mp, sizeof (*mp));
2268 }
2269 
2270 static int
get_progbits(struct module * mp,struct _buf * file)2271 get_progbits(struct module *mp, struct _buf *file)
2272 {
2273 	struct proginfo *tp, *dp, *sdp;
2274 	Shdr *shp;
2275 	reloc_dest_t dest = NULL;
2276 	uintptr_t bits_ptr;
2277 	uintptr_t text = 0, data, textptr;
2278 	uint_t shn;
2279 	int err = -1;
2280 
2281 	tp = kobj_zalloc(sizeof (struct proginfo), KM_WAIT|KM_TMP);
2282 	dp = kobj_zalloc(sizeof (struct proginfo), KM_WAIT|KM_TMP);
2283 	sdp = kobj_zalloc(sizeof (struct proginfo), KM_WAIT|KM_TMP);
2284 	/*
2285 	 * loop through sections to find out how much space we need
2286 	 * for text, data, (also bss that is already assigned)
2287 	 */
2288 	if (get_progbits_size(mp, tp, dp, sdp) < 0)
2289 		goto done;
2290 
2291 	mp->text_size = tp->size;
2292 	mp->data_size = dp->size;
2293 
2294 	if (standalone) {
2295 		caddr_t limit = _data;
2296 
2297 		if (lg_pagesize && _text + lg_pagesize < limit)
2298 			limit = _text + lg_pagesize;
2299 
2300 		mp->text = kobj_segbrk(&_etext, mp->text_size,
2301 		    tp->align, limit);
2302 		/*
2303 		 * If we can't grow the text segment, try the
2304 		 * data segment before failing.
2305 		 */
2306 		if (mp->text == NULL) {
2307 			mp->text = kobj_segbrk(&_edata, mp->text_size,
2308 			    tp->align, 0);
2309 		}
2310 
2311 		mp->data = kobj_segbrk(&_edata, mp->data_size, dp->align, 0);
2312 
2313 		if (mp->text == NULL || mp->data == NULL)
2314 			goto done;
2315 
2316 	} else {
2317 		if (text_arena == NULL)
2318 			kobj_vmem_init(&text_arena, &data_arena);
2319 
2320 		/*
2321 		 * some architectures may want to load the module on a
2322 		 * page that is currently read only. It may not be
2323 		 * possible for those architectures to remap their page
2324 		 * on the fly. So we provide a facility for them to hang
2325 		 * a private hook where the memory they assign the module
2326 		 * is not the actual place where the module loads.
2327 		 *
2328 		 * In this case there are two addresses that deal with the
2329 		 * modload.
2330 		 * 1) the final destination of the module
2331 		 * 2) the address that is used to view the newly
2332 		 * loaded module until all the relocations relative to 1
2333 		 * above are completed.
2334 		 *
2335 		 * That is what dest is used for below.
2336 		 */
2337 		mp->text_size += tp->align;
2338 		mp->data_size += dp->align;
2339 
2340 		mp->text = kobj_text_alloc(text_arena, mp->text_size);
2341 
2342 		/*
2343 		 * a remap is taking place. Align the text ptr relative
2344 		 * to the secondary mapping. That is where the bits will
2345 		 * be read in.
2346 		 */
2347 		if (kvseg.s_base != NULL && !vmem_contains(heaptext_arena,
2348 		    mp->text, mp->text_size)) {
2349 			off_t	off = (uintptr_t)mp->text & PAGEOFFSET;
2350 			size_t	size = P2ROUNDUP(mp->text_size + off, PAGESIZE);
2351 			caddr_t	map = vmem_alloc(heap_arena, size, VM_SLEEP);
2352 			caddr_t orig = mp->text - off;
2353 			pgcnt_t pages = size / PAGESIZE;
2354 
2355 			dest = (reloc_dest_t)(map + off);
2356 			text = ALIGN((uintptr_t)dest, tp->align);
2357 
2358 			while (pages--) {
2359 				hat_devload(kas.a_hat, map, PAGESIZE,
2360 				    hat_getpfnum(kas.a_hat, orig),
2361 				    PROT_READ | PROT_WRITE | PROT_EXEC,
2362 				    HAT_LOAD_NOCONSIST | HAT_LOAD_LOCK);
2363 				map += PAGESIZE;
2364 				orig += PAGESIZE;
2365 			}
2366 			/*
2367 			 * Since we set up a non-cacheable mapping, we need
2368 			 * to flush any old entries in the cache that might
2369 			 * be left around from the read-only mapping.
2370 			 */
2371 			dcache_flushall();
2372 		}
2373 		if (mp->data_size)
2374 			mp->data = vmem_alloc(data_arena, mp->data_size,
2375 			    VM_SLEEP | VM_BESTFIT);
2376 	}
2377 	textptr = (uintptr_t)mp->text;
2378 	textptr = ALIGN(textptr, tp->align);
2379 	mp->destination = dest;
2380 
2381 	/*
2382 	 * This is the case where a remap is not being done.
2383 	 */
2384 	if (text == 0)
2385 		text = ALIGN((uintptr_t)mp->text, tp->align);
2386 	data = ALIGN((uintptr_t)mp->data, dp->align);
2387 
2388 	/* now loop though sections assigning addresses and loading the data */
2389 	for (shn = 1; shn < mp->hdr.e_shnum; shn++) {
2390 		shp = (Shdr *)(mp->shdrs + shn * mp->hdr.e_shentsize);
2391 		if (!(shp->sh_flags & SHF_ALLOC))
2392 			continue;
2393 
2394 		if ((shp->sh_flags & SHF_WRITE) == 0)
2395 			bits_ptr = text;
2396 		else
2397 			bits_ptr = data;
2398 
2399 		bits_ptr = ALIGN(bits_ptr, shp->sh_addralign);
2400 
2401 		if (shp->sh_type == SHT_NOBITS) {
2402 			/*
2403 			 * Zero bss.
2404 			 */
2405 			bzero((caddr_t)bits_ptr, shp->sh_size);
2406 			shp->sh_type = SHT_PROGBITS;
2407 		} else {
2408 			if (kobj_read_file(file, (char *)bits_ptr,
2409 			    shp->sh_size, shp->sh_offset) < 0)
2410 				goto done;
2411 		}
2412 
2413 		if (shp->sh_flags & SHF_WRITE) {
2414 			shp->sh_addr = bits_ptr;
2415 		} else {
2416 			textptr = ALIGN(textptr, shp->sh_addralign);
2417 			shp->sh_addr = textptr;
2418 			textptr += shp->sh_size;
2419 		}
2420 
2421 		bits_ptr += shp->sh_size;
2422 		if ((shp->sh_flags & SHF_WRITE) == 0)
2423 			text = bits_ptr;
2424 		else
2425 			data = bits_ptr;
2426 	}
2427 
2428 	err = 0;
2429 done:
2430 	/*
2431 	 * Free and mark as freed the section headers here so that
2432 	 * free_module_data() does not have to worry about this buffer.
2433 	 *
2434 	 * This buffer is freed here because one of the possible reasons
2435 	 * for error is a section with non-zero sh_addr and in that case
2436 	 * free_module_data() would have no way of recognizing that this
2437 	 * buffer was unallocated.
2438 	 */
2439 	if (err != 0) {
2440 		kobj_free(mp->shdrs, mp->hdr.e_shentsize * mp->hdr.e_shnum);
2441 		mp->shdrs = NULL;
2442 	}
2443 
2444 	(void) kobj_free(tp, sizeof (struct proginfo));
2445 	(void) kobj_free(dp, sizeof (struct proginfo));
2446 	(void) kobj_free(sdp, sizeof (struct proginfo));
2447 
2448 	return (err);
2449 }
2450 
2451 /*
2452  * Go through suppress_sym_list to see if "multiply defined"
2453  * warning of this symbol should be suppressed.  Return 1 if
2454  * warning should be suppressed, 0 otherwise.
2455  */
2456 static int
kobj_suppress_warning(char * symname)2457 kobj_suppress_warning(char *symname)
2458 {
2459 	int	i;
2460 
2461 	for (i = 0; suppress_sym_list[i] != NULL; i++) {
2462 		if (strcmp(suppress_sym_list[i], symname) == 0)
2463 			return (1);
2464 	}
2465 
2466 	return (0);
2467 }
2468 
2469 static int
get_syms(struct module * mp,struct _buf * file)2470 get_syms(struct module *mp, struct _buf *file)
2471 {
2472 	uint_t		shn;
2473 	Shdr	*shp;
2474 	uint_t		i;
2475 	Sym	*sp, *ksp;
2476 	char		*symname;
2477 	int		dosymtab = 0;
2478 
2479 	/*
2480 	 * Find the interesting sections.
2481 	 */
2482 	for (shn = 1; shn < mp->hdr.e_shnum; shn++) {
2483 		shp = (Shdr *)(mp->shdrs + shn * mp->hdr.e_shentsize);
2484 		switch (shp->sh_type) {
2485 		case SHT_SYMTAB:
2486 			mp->symtbl_section = shn;
2487 			mp->symhdr = shp;
2488 			dosymtab++;
2489 			break;
2490 
2491 		case SHT_RELA:
2492 		case SHT_REL:
2493 			/*
2494 			 * Already loaded.
2495 			 */
2496 			if (shp->sh_addr)
2497 				continue;
2498 
2499 			/* KM_TMP since kobj_free'd in do_relocations */
2500 			shp->sh_addr = (Addr)
2501 			    kobj_alloc(shp->sh_size, KM_WAIT|KM_TMP);
2502 
2503 			if (kobj_read_file(file, (char *)shp->sh_addr,
2504 			    shp->sh_size, shp->sh_offset) < 0) {
2505 				_kobj_printf(ops, "krtld: get_syms: %s, ",
2506 				    mp->filename);
2507 				_kobj_printf(ops, "error reading section %d\n",
2508 				    shn);
2509 				return (-1);
2510 			}
2511 			break;
2512 		}
2513 	}
2514 
2515 	/*
2516 	 * This is true for a stripped executable.  In the case of
2517 	 * 'unix' it can be stripped but it still contains the SHT_DYNSYM,
2518 	 * and since that symbol information is still present everything
2519 	 * is just fine.
2520 	 */
2521 	if (!dosymtab) {
2522 		if (mp->flags & KOBJ_EXEC)
2523 			return (0);
2524 		_kobj_printf(ops, "krtld: get_syms: %s ",
2525 		    mp->filename);
2526 		_kobj_printf(ops, "no SHT_SYMTAB symbol table found\n");
2527 		return (-1);
2528 	}
2529 
2530 	/*
2531 	 * get the associated string table header
2532 	 */
2533 	if ((mp->symhdr == 0) || (mp->symhdr->sh_link >= mp->hdr.e_shnum))
2534 		return (-1);
2535 	mp->strhdr = (Shdr *)
2536 	    (mp->shdrs + mp->symhdr->sh_link * mp->hdr.e_shentsize);
2537 
2538 	mp->nsyms = mp->symhdr->sh_size / mp->symhdr->sh_entsize;
2539 	mp->hashsize = kobj_gethashsize(mp->nsyms);
2540 
2541 	/*
2542 	 * Allocate space for the symbol table, buckets, chains, and strings.
2543 	 */
2544 	mp->symsize = mp->symhdr->sh_size +
2545 	    (mp->hashsize + mp->nsyms) * sizeof (symid_t) + mp->strhdr->sh_size;
2546 	mp->symspace = kobj_zalloc(mp->symsize, KM_WAIT|KM_SCRATCH);
2547 
2548 	mp->symtbl = mp->symspace;
2549 	mp->buckets = (symid_t *)(mp->symtbl + mp->symhdr->sh_size);
2550 	mp->chains = mp->buckets + mp->hashsize;
2551 	mp->strings = (char *)(mp->chains + mp->nsyms);
2552 
2553 	if (kobj_read_file(file, mp->symtbl,
2554 	    mp->symhdr->sh_size, mp->symhdr->sh_offset) < 0 ||
2555 	    kobj_read_file(file, mp->strings,
2556 	    mp->strhdr->sh_size, mp->strhdr->sh_offset) < 0)
2557 		return (-1);
2558 
2559 	/*
2560 	 * loop through the symbol table adjusting values to account
2561 	 * for where each section got loaded into memory.  Also
2562 	 * fill in the hash table.
2563 	 */
2564 	for (i = 1; i < mp->nsyms; i++) {
2565 		sp = (Sym *)(mp->symtbl + i * mp->symhdr->sh_entsize);
2566 		if (sp->st_shndx < SHN_LORESERVE) {
2567 			if (sp->st_shndx >= mp->hdr.e_shnum) {
2568 				_kobj_printf(ops, "%s bad shndx ",
2569 				    file->_name);
2570 				_kobj_printf(ops, "in symbol %d\n", i);
2571 				return (-1);
2572 			}
2573 			shp = (Shdr *)
2574 			    (mp->shdrs +
2575 			    sp->st_shndx * mp->hdr.e_shentsize);
2576 			if (!(mp->flags & KOBJ_EXEC))
2577 				sp->st_value += shp->sh_addr;
2578 		}
2579 
2580 		if (sp->st_name == 0 || sp->st_shndx == SHN_UNDEF)
2581 			continue;
2582 		if (sp->st_name >= mp->strhdr->sh_size)
2583 			return (-1);
2584 
2585 		symname = mp->strings + sp->st_name;
2586 
2587 		if (!(mp->flags & KOBJ_EXEC) &&
2588 		    ELF_ST_BIND(sp->st_info) == STB_GLOBAL) {
2589 			ksp = kobj_lookup_all(mp, symname, 0);
2590 
2591 			if (ksp && ELF_ST_BIND(ksp->st_info) == STB_GLOBAL &&
2592 			    !kobj_suppress_warning(symname) &&
2593 			    sp->st_shndx != SHN_UNDEF &&
2594 			    sp->st_shndx != SHN_COMMON &&
2595 			    ksp->st_shndx != SHN_UNDEF &&
2596 			    ksp->st_shndx != SHN_COMMON) {
2597 				/*
2598 				 * Unless this symbol is a stub, it's multiply
2599 				 * defined.  Multiply-defined symbols are
2600 				 * usually bad, but some objects (kmdb) have
2601 				 * a legitimate need to have their own
2602 				 * copies of common functions.
2603 				 */
2604 				if ((standalone ||
2605 				    ksp->st_value < (uintptr_t)stubs_base ||
2606 				    ksp->st_value >= (uintptr_t)stubs_end) &&
2607 				    !(mp->flags & KOBJ_IGNMULDEF)) {
2608 					_kobj_printf(ops,
2609 					    "%s symbol ", file->_name);
2610 					_kobj_printf(ops,
2611 					    "%s multiply defined\n", symname);
2612 				}
2613 			}
2614 		}
2615 
2616 		sym_insert(mp, symname, i);
2617 	}
2618 
2619 	return (0);
2620 }
2621 
2622 static int
get_ctf(struct module * mp,struct _buf * file)2623 get_ctf(struct module *mp, struct _buf *file)
2624 {
2625 	char *shstrtab, *ctfdata;
2626 	size_t shstrlen;
2627 	Shdr *shp;
2628 	uint_t i;
2629 
2630 	if (_moddebug & MODDEBUG_NOCTF)
2631 		return (0); /* do not attempt to even load CTF data */
2632 
2633 	if (mp->hdr.e_shstrndx >= mp->hdr.e_shnum) {
2634 		_kobj_printf(ops, "krtld: get_ctf: %s, ",
2635 		    mp->filename);
2636 		_kobj_printf(ops, "corrupt e_shstrndx %u\n",
2637 		    mp->hdr.e_shstrndx);
2638 		return (-1);
2639 	}
2640 
2641 	shp = (Shdr *)(mp->shdrs + mp->hdr.e_shstrndx * mp->hdr.e_shentsize);
2642 	shstrlen = shp->sh_size;
2643 	shstrtab = kobj_alloc(shstrlen, KM_WAIT|KM_TMP);
2644 
2645 	if (kobj_read_file(file, shstrtab, shstrlen, shp->sh_offset) < 0) {
2646 		_kobj_printf(ops, "krtld: get_ctf: %s, ",
2647 		    mp->filename);
2648 		_kobj_printf(ops, "error reading section %u\n",
2649 		    mp->hdr.e_shstrndx);
2650 		kobj_free(shstrtab, shstrlen);
2651 		return (-1);
2652 	}
2653 
2654 	for (i = 0; i < mp->hdr.e_shnum; i++) {
2655 		shp = (Shdr *)(mp->shdrs + i * mp->hdr.e_shentsize);
2656 
2657 		if (shp->sh_size != 0 && shp->sh_name < shstrlen &&
2658 		    strcmp(shstrtab + shp->sh_name, ".SUNW_ctf") == 0) {
2659 			ctfdata = kobj_alloc(shp->sh_size, KM_WAIT|KM_SCRATCH);
2660 
2661 			if (kobj_read_file(file, ctfdata, shp->sh_size,
2662 			    shp->sh_offset) < 0) {
2663 				_kobj_printf(ops, "krtld: get_ctf: %s, error "
2664 				    "reading .SUNW_ctf data\n", mp->filename);
2665 				kobj_free(ctfdata, shp->sh_size);
2666 				kobj_free(shstrtab, shstrlen);
2667 				return (-1);
2668 			}
2669 
2670 			mp->ctfdata = ctfdata;
2671 			mp->ctfsize = shp->sh_size;
2672 			break;
2673 		}
2674 	}
2675 
2676 	kobj_free(shstrtab, shstrlen);
2677 	return (0);
2678 }
2679 
2680 #define	SHA1_DIGEST_LENGTH	20	/* SHA1 digest length in bytes */
2681 
2682 /*
2683  * Return the hash of the ELF sections that are memory resident.
2684  * i.e. text and data.  We skip a SHT_NOBITS section since it occupies
2685  * no space in the file. We use SHA1 here since libelfsign uses
2686  * it and both places need to use the same algorithm.
2687  */
2688 static void
crypto_es_hash(struct module * mp,char * hash,char * shstrtab)2689 crypto_es_hash(struct module *mp, char *hash, char *shstrtab)
2690 {
2691 	uint_t shn;
2692 	Shdr *shp;
2693 	SHA1_CTX ctx;
2694 
2695 	SHA1Init(&ctx);
2696 
2697 	for (shn = 1; shn < mp->hdr.e_shnum; shn++) {
2698 		shp = (Shdr *)(mp->shdrs + shn * mp->hdr.e_shentsize);
2699 		if (!(shp->sh_flags & SHF_ALLOC) || shp->sh_size == 0)
2700 			continue;
2701 
2702 		/*
2703 		 * The check should ideally be shp->sh_type == SHT_NOBITS.
2704 		 * However, we can't do that check here as get_progbits()
2705 		 * resets the type.
2706 		 */
2707 		if (strcmp(shstrtab + shp->sh_name, ".bss") == 0)
2708 			continue;
2709 #ifdef	KOBJ_DEBUG
2710 		if (kobj_debug & D_DEBUG)
2711 			_kobj_printf(ops,
2712 			    "krtld: crypto_es_hash: updating hash with"
2713 			    " %s data size=%lx\n", shstrtab + shp->sh_name,
2714 			    (size_t)shp->sh_size);
2715 #endif
2716 		ASSERT(shp->sh_addr != 0);
2717 		SHA1Update(&ctx, (const uint8_t *)shp->sh_addr, shp->sh_size);
2718 	}
2719 
2720 	SHA1Final((uchar_t *)hash, &ctx);
2721 }
2722 
2723 /*
2724  * Get the .SUNW_signature section for the module, it it exists.
2725  *
2726  * This section exists only for crypto modules. None of the
2727  * primary modules have this section currently.
2728  */
2729 static void
get_signature(struct module * mp,struct _buf * file)2730 get_signature(struct module *mp, struct _buf *file)
2731 {
2732 	char *shstrtab, *sigdata = NULL;
2733 	size_t shstrlen;
2734 	Shdr *shp;
2735 	uint_t i;
2736 
2737 	if (mp->hdr.e_shstrndx >= mp->hdr.e_shnum) {
2738 		_kobj_printf(ops, "krtld: get_signature: %s, ",
2739 		    mp->filename);
2740 		_kobj_printf(ops, "corrupt e_shstrndx %u\n",
2741 		    mp->hdr.e_shstrndx);
2742 		return;
2743 	}
2744 
2745 	shp = (Shdr *)(mp->shdrs + mp->hdr.e_shstrndx * mp->hdr.e_shentsize);
2746 	shstrlen = shp->sh_size;
2747 	shstrtab = kobj_alloc(shstrlen, KM_WAIT|KM_TMP);
2748 
2749 	if (kobj_read_file(file, shstrtab, shstrlen, shp->sh_offset) < 0) {
2750 		_kobj_printf(ops, "krtld: get_signature: %s, ",
2751 		    mp->filename);
2752 		_kobj_printf(ops, "error reading section %u\n",
2753 		    mp->hdr.e_shstrndx);
2754 		kobj_free(shstrtab, shstrlen);
2755 		return;
2756 	}
2757 
2758 	for (i = 0; i < mp->hdr.e_shnum; i++) {
2759 		shp = (Shdr *)(mp->shdrs + i * mp->hdr.e_shentsize);
2760 		if (shp->sh_size != 0 && shp->sh_name < shstrlen &&
2761 		    strcmp(shstrtab + shp->sh_name,
2762 		    ELF_SIGNATURE_SECTION) == 0) {
2763 			filesig_vers_t filesig_version;
2764 			size_t sigsize = shp->sh_size + SHA1_DIGEST_LENGTH;
2765 			sigdata = kobj_alloc(sigsize, KM_WAIT|KM_SCRATCH);
2766 
2767 			if (kobj_read_file(file, sigdata, shp->sh_size,
2768 			    shp->sh_offset) < 0) {
2769 				_kobj_printf(ops, "krtld: get_signature: %s,"
2770 				    " error reading .SUNW_signature data\n",
2771 				    mp->filename);
2772 				kobj_free(sigdata, sigsize);
2773 				kobj_free(shstrtab, shstrlen);
2774 				return;
2775 			}
2776 			filesig_version = ((struct filesignatures *)sigdata)->
2777 			    filesig_sig.filesig_version;
2778 			if (!(filesig_version == FILESIG_VERSION1 ||
2779 			    filesig_version == FILESIG_VERSION3)) {
2780 				/* skip versions we don't understand */
2781 				kobj_free(sigdata, sigsize);
2782 				kobj_free(shstrtab, shstrlen);
2783 				return;
2784 			}
2785 
2786 			mp->sigdata = sigdata;
2787 			mp->sigsize = sigsize;
2788 			break;
2789 		}
2790 	}
2791 
2792 	if (sigdata != NULL) {
2793 		crypto_es_hash(mp, sigdata + shp->sh_size, shstrtab);
2794 	}
2795 
2796 	kobj_free(shstrtab, shstrlen);
2797 }
2798 
2799 static void
add_dependent(struct module * mp,struct module * dep)2800 add_dependent(struct module *mp, struct module *dep)
2801 {
2802 	struct module_list *lp;
2803 
2804 	for (lp = mp->head; lp; lp = lp->next) {
2805 		if (lp->mp == dep)
2806 			return;	/* already on the list */
2807 	}
2808 
2809 	if (lp == NULL) {
2810 		lp = kobj_zalloc(sizeof (*lp), KM_WAIT);
2811 
2812 		lp->mp = dep;
2813 		lp->next = NULL;
2814 		if (mp->tail)
2815 			mp->tail->next = lp;
2816 		else
2817 			mp->head = lp;
2818 		mp->tail = lp;
2819 	}
2820 }
2821 
2822 static int
do_dependents(struct modctl * modp,char * modname,size_t modnamelen)2823 do_dependents(struct modctl *modp, char *modname, size_t modnamelen)
2824 {
2825 	struct module *mp;
2826 	struct modctl *req;
2827 	char *d, *p, *q;
2828 	int c;
2829 	char *err_modname = NULL;
2830 
2831 	mp = modp->mod_mp;
2832 
2833 	if ((p = mp->depends_on) == NULL)
2834 		return (0);
2835 
2836 	for (;;) {
2837 		/*
2838 		 * Skip space.
2839 		 */
2840 		while (*p && (*p == ' ' || *p == '\t'))
2841 			p++;
2842 		/*
2843 		 * Get module name.
2844 		 */
2845 		d = p;
2846 		q = modname;
2847 		c = 0;
2848 		while (*p && *p != ' ' && *p != '\t') {
2849 			if (c < modnamelen - 1) {
2850 				*q++ = *p;
2851 				c++;
2852 			}
2853 			p++;
2854 		}
2855 
2856 		if (q == modname)
2857 			break;
2858 
2859 		if (c == modnamelen - 1) {
2860 			char *dep = kobj_alloc(p - d + 1, KM_WAIT|KM_TMP);
2861 
2862 			(void) strncpy(dep, d,  p - d + 1);
2863 			dep[p - d] = '\0';
2864 
2865 			_kobj_printf(ops, "%s: dependency ", modp->mod_modname);
2866 			_kobj_printf(ops, "'%s' too long ", dep);
2867 			_kobj_printf(ops, "(max %d chars)\n", (int)modnamelen);
2868 
2869 			kobj_free(dep, p - d + 1);
2870 
2871 			return (-1);
2872 		}
2873 
2874 		*q = '\0';
2875 		if ((req = mod_load_requisite(modp, modname)) == NULL) {
2876 #ifndef	KOBJ_DEBUG
2877 			if (_moddebug & MODDEBUG_LOADMSG) {
2878 #endif	/* KOBJ_DEBUG */
2879 				_kobj_printf(ops,
2880 				    "%s: unable to resolve dependency, ",
2881 				    modp->mod_modname);
2882 				_kobj_printf(ops, "cannot load module '%s'\n",
2883 				    modname);
2884 #ifndef	KOBJ_DEBUG
2885 			}
2886 #endif	/* KOBJ_DEBUG */
2887 			if (err_modname == NULL) {
2888 				/*
2889 				 * This must be the same size as the modname
2890 				 * one.
2891 				 */
2892 				err_modname = kobj_zalloc(MODMAXNAMELEN,
2893 				    KM_WAIT);
2894 
2895 				/*
2896 				 * We can use strcpy() here without fearing
2897 				 * the NULL terminator because the size of
2898 				 * err_modname is the same as one of modname,
2899 				 * and it's filled with zeros.
2900 				 */
2901 				(void) strcpy(err_modname, modname);
2902 			}
2903 			continue;
2904 		}
2905 
2906 		add_dependent(mp, req->mod_mp);
2907 		mod_release_mod(req);
2908 
2909 	}
2910 
2911 	if (err_modname != NULL) {
2912 		/*
2913 		 * Copy the first module name where you detect an error to keep
2914 		 * its behavior the same as before.
2915 		 * This way keeps minimizing the memory use for error
2916 		 * modules, and this might be important at boot time because
2917 		 * the memory usage is a crucial factor for booting in most
2918 		 * cases. You can expect more verbose messages when using
2919 		 * a debug kernel or setting a bit in moddebug.
2920 		 */
2921 		bzero(modname, MODMAXNAMELEN);
2922 		(void) strcpy(modname, err_modname);
2923 		kobj_free(err_modname, MODMAXNAMELEN);
2924 		return (-1);
2925 	}
2926 
2927 	return (0);
2928 }
2929 
2930 static int
do_common(struct module * mp)2931 do_common(struct module *mp)
2932 {
2933 	int err;
2934 
2935 	/*
2936 	 * first time through, assign all symbols defined in other
2937 	 * modules, and count up how much common space will be needed
2938 	 * (bss_size and bss_align)
2939 	 */
2940 	if ((err = do_symbols(mp, 0)) < 0)
2941 		return (err);
2942 	/*
2943 	 * increase bss_size by the maximum delta that could be
2944 	 * computed by the ALIGN below
2945 	 */
2946 	mp->bss_size += mp->bss_align;
2947 	if (mp->bss_size) {
2948 		if (standalone)
2949 			mp->bss = (uintptr_t)kobj_segbrk(&_edata, mp->bss_size,
2950 			    MINALIGN, 0);
2951 		else
2952 			mp->bss = (uintptr_t)vmem_alloc(data_arena,
2953 			    mp->bss_size, VM_SLEEP | VM_BESTFIT);
2954 		bzero((void *)mp->bss, mp->bss_size);
2955 		/* now assign addresses to all common symbols */
2956 		if ((err = do_symbols(mp, ALIGN(mp->bss, mp->bss_align))) < 0)
2957 			return (err);
2958 	}
2959 	return (0);
2960 }
2961 
2962 static int
do_symbols(struct module * mp,Elf64_Addr bss_base)2963 do_symbols(struct module *mp, Elf64_Addr bss_base)
2964 {
2965 	int bss_align;
2966 	uintptr_t bss_ptr;
2967 	int err;
2968 	int i;
2969 	Sym *sp, *sp1;
2970 	char *name;
2971 	int assign;
2972 	int resolved = 1;
2973 
2974 	/*
2975 	 * Nothing left to do (optimization).
2976 	 */
2977 	if (mp->flags & KOBJ_RESOLVED)
2978 		return (0);
2979 
2980 	assign = (bss_base) ? 1 : 0;
2981 	bss_ptr = bss_base;
2982 	bss_align = 0;
2983 	err = 0;
2984 
2985 	for (i = 1; i < mp->nsyms; i++) {
2986 		sp = (Sym *)(mp->symtbl + mp->symhdr->sh_entsize * i);
2987 		/*
2988 		 * we know that st_name is in bounds, since get_sections
2989 		 * has already checked all of the symbols
2990 		 */
2991 		name = mp->strings + sp->st_name;
2992 		if (sp->st_shndx != SHN_UNDEF && sp->st_shndx != SHN_COMMON)
2993 			continue;
2994 #if defined(__sparc)
2995 		/*
2996 		 * Register symbols are ignored in the kernel
2997 		 */
2998 		if (ELF_ST_TYPE(sp->st_info) == STT_SPARC_REGISTER) {
2999 			if (*name != '\0') {
3000 				_kobj_printf(ops, "%s: named REGISTER symbol ",
3001 				    mp->filename);
3002 				_kobj_printf(ops, "not supported '%s'\n",
3003 				    name);
3004 				err = DOSYM_UNDEF;
3005 			}
3006 			continue;
3007 		}
3008 #endif	/* __sparc */
3009 		/*
3010 		 * TLS symbols are ignored in the kernel
3011 		 */
3012 		if (ELF_ST_TYPE(sp->st_info) == STT_TLS) {
3013 			_kobj_printf(ops, "%s: TLS symbol ",
3014 			    mp->filename);
3015 			_kobj_printf(ops, "not supported '%s'\n",
3016 			    name);
3017 			err = DOSYM_UNDEF;
3018 			continue;
3019 		}
3020 
3021 		if (ELF_ST_BIND(sp->st_info) != STB_LOCAL) {
3022 			if ((sp1 = kobj_lookup_all(mp, name, 0)) != NULL) {
3023 				sp->st_shndx = SHN_ABS;
3024 				sp->st_value = sp1->st_value;
3025 				continue;
3026 			}
3027 		}
3028 
3029 		if (sp->st_shndx == SHN_UNDEF) {
3030 			resolved = 0;
3031 
3032 			/*
3033 			 * Skip over sdt probes and smap calls,
3034 			 * they're relocated later.
3035 			 */
3036 			if (strncmp(name, sdt_prefix, strlen(sdt_prefix)) == 0)
3037 				continue;
3038 #if defined(__x86)
3039 			if (strcmp(name, "smap_enable") == 0 ||
3040 			    strcmp(name, "smap_disable") == 0)
3041 				continue;
3042 #endif /* defined(__x86) */
3043 
3044 
3045 			/*
3046 			 * If it's not a weak reference and it's
3047 			 * not a primary object, it's an error.
3048 			 * (Primary objects may take more than
3049 			 * one pass to resolve)
3050 			 */
3051 			if (!(mp->flags & KOBJ_PRIM) &&
3052 			    ELF_ST_BIND(sp->st_info) != STB_WEAK) {
3053 				_kobj_printf(ops, "%s: undefined symbol",
3054 				    mp->filename);
3055 				_kobj_printf(ops, " '%s'\n", name);
3056 				/*
3057 				 * Try to determine whether this symbol
3058 				 * represents a dependency on obsolete
3059 				 * unsafe driver support.  This is just
3060 				 * to make the warning more informative.
3061 				 */
3062 				if (strcmp(name, "sleep") == 0 ||
3063 				    strcmp(name, "unsleep") == 0 ||
3064 				    strcmp(name, "wakeup") == 0 ||
3065 				    strcmp(name, "bsd_compat_ioctl") == 0 ||
3066 				    strcmp(name, "unsafe_driver") == 0 ||
3067 				    strncmp(name, "spl", 3) == 0 ||
3068 				    strncmp(name, "i_ddi_spl", 9) == 0)
3069 					err = DOSYM_UNSAFE;
3070 				if (err == 0)
3071 					err = DOSYM_UNDEF;
3072 			}
3073 			continue;
3074 		}
3075 		/*
3076 		 * It's a common symbol - st_value is the
3077 		 * required alignment.
3078 		 */
3079 		if (sp->st_value > bss_align)
3080 			bss_align = sp->st_value;
3081 		bss_ptr = ALIGN(bss_ptr, sp->st_value);
3082 		if (assign) {
3083 			sp->st_shndx = SHN_ABS;
3084 			sp->st_value = bss_ptr;
3085 		}
3086 		bss_ptr += sp->st_size;
3087 	}
3088 	if (err)
3089 		return (err);
3090 	if (assign == 0 && mp->bss == 0) {
3091 		mp->bss_align = bss_align;
3092 		mp->bss_size = bss_ptr;
3093 	} else if (resolved) {
3094 		mp->flags |= KOBJ_RESOLVED;
3095 	}
3096 
3097 	return (0);
3098 }
3099 
3100 uint_t
kobj_hash_name(const char * p)3101 kobj_hash_name(const char *p)
3102 {
3103 	uint_t g;
3104 	uint_t hval;
3105 
3106 	hval = 0;
3107 	while (*p) {
3108 		hval = (hval << 4) + *p++;
3109 		if ((g = (hval & 0xf0000000)) != 0)
3110 			hval ^= g >> 24;
3111 		hval &= ~g;
3112 	}
3113 	return (hval);
3114 }
3115 
3116 /* look for name in all modules */
3117 uintptr_t
kobj_getsymvalue(char * name,int kernelonly)3118 kobj_getsymvalue(char *name, int kernelonly)
3119 {
3120 	Sym		*sp;
3121 	struct modctl	*modp;
3122 	struct module	*mp;
3123 	uintptr_t	value = 0;
3124 
3125 	if ((sp = kobj_lookup_kernel(name)) != NULL)
3126 		return ((uintptr_t)sp->st_value);
3127 
3128 	if (kernelonly)
3129 		return (0);	/* didn't find it in the kernel so give up */
3130 
3131 	mutex_enter(&mod_lock);
3132 	modp = &modules;
3133 	do {
3134 		mp = (struct module *)modp->mod_mp;
3135 		if (mp && !(mp->flags & KOBJ_PRIM) && modp->mod_loaded &&
3136 		    (sp = lookup_one(mp, name))) {
3137 			value = (uintptr_t)sp->st_value;
3138 			break;
3139 		}
3140 	} while ((modp = modp->mod_next) != &modules);
3141 	mutex_exit(&mod_lock);
3142 	return (value);
3143 }
3144 
3145 /* look for a symbol near value. */
3146 char *
kobj_getsymname(uintptr_t value,ulong_t * offset)3147 kobj_getsymname(uintptr_t value, ulong_t *offset)
3148 {
3149 	char *name = NULL;
3150 	struct modctl *modp;
3151 
3152 	struct modctl_list *lp;
3153 	struct module *mp;
3154 
3155 	/*
3156 	 * Trap handler got us there, but we may not have whole kernel yet.
3157 	 */
3158 	if (standalone)
3159 		return (NULL);
3160 
3161 	/*
3162 	 * Loop through the primary kernel modules.
3163 	 */
3164 	for (lp = kobj_lm_lookup(KOBJ_LM_PRIMARY); lp; lp = lp->modl_next) {
3165 		mp = mod(lp);
3166 
3167 		if ((name = kobj_searchsym(mp, value, offset)) != NULL)
3168 			return (name);
3169 	}
3170 
3171 	mutex_enter(&mod_lock);
3172 	modp = &modules;
3173 	do {
3174 		mp = (struct module *)modp->mod_mp;
3175 		if (mp && !(mp->flags & KOBJ_PRIM) && modp->mod_loaded &&
3176 		    (name = kobj_searchsym(mp, value, offset)))
3177 			break;
3178 	} while ((modp = modp->mod_next) != &modules);
3179 	mutex_exit(&mod_lock);
3180 	return (name);
3181 }
3182 
3183 /* return address of symbol and size */
3184 
3185 uintptr_t
kobj_getelfsym(char * name,void * mp,int * size)3186 kobj_getelfsym(char *name, void *mp, int *size)
3187 {
3188 	Sym *sp;
3189 
3190 	if (mp == NULL)
3191 		sp = kobj_lookup_kernel(name);
3192 	else
3193 		sp = lookup_one(mp, name);
3194 
3195 	if (sp == NULL)
3196 		return (0);
3197 
3198 	*size = (int)sp->st_size;
3199 	return ((uintptr_t)sp->st_value);
3200 }
3201 
3202 uintptr_t
kobj_lookup(struct module * mod,const char * name)3203 kobj_lookup(struct module *mod, const char *name)
3204 {
3205 	Sym *sp;
3206 
3207 	sp = lookup_one(mod, name);
3208 
3209 	if (sp == NULL)
3210 		return (0);
3211 
3212 	return ((uintptr_t)sp->st_value);
3213 }
3214 
3215 char *
kobj_searchsym(struct module * mp,uintptr_t value,ulong_t * offset)3216 kobj_searchsym(struct module *mp, uintptr_t value, ulong_t *offset)
3217 {
3218 	Sym *symtabptr;
3219 	char *strtabptr;
3220 	int symnum;
3221 	Sym *sym;
3222 	Sym *cursym;
3223 	uintptr_t curval;
3224 
3225 	*offset = (ulong_t)-1l;		/* assume not found */
3226 	cursym  = NULL;
3227 
3228 	if (kobj_addrcheck(mp, (void *)value) != 0)
3229 		return (NULL);		/* not in this module */
3230 
3231 	strtabptr  = mp->strings;
3232 	symtabptr  = (Sym *)mp->symtbl;
3233 
3234 	/*
3235 	 * Scan the module's symbol table for a symbol <= value
3236 	 */
3237 	for (symnum = 1, sym = symtabptr + 1;
3238 	    symnum < mp->nsyms; symnum++, sym = (Sym *)
3239 	    ((uintptr_t)sym + mp->symhdr->sh_entsize)) {
3240 		if (ELF_ST_BIND(sym->st_info) != STB_GLOBAL) {
3241 			if (ELF_ST_BIND(sym->st_info) != STB_LOCAL)
3242 				continue;
3243 			if (ELF_ST_TYPE(sym->st_info) != STT_OBJECT &&
3244 			    ELF_ST_TYPE(sym->st_info) != STT_FUNC)
3245 				continue;
3246 		}
3247 
3248 		curval = (uintptr_t)sym->st_value;
3249 
3250 		if (curval > value)
3251 			continue;
3252 
3253 		/*
3254 		 * If one or both are functions...
3255 		 */
3256 		if (ELF_ST_TYPE(sym->st_info) == STT_FUNC || (cursym != NULL &&
3257 		    ELF_ST_TYPE(cursym->st_info) == STT_FUNC)) {
3258 			/* Ignore if the address is out of the bounds */
3259 			if (value - sym->st_value >= sym->st_size)
3260 				continue;
3261 
3262 			if (cursym != NULL &&
3263 			    ELF_ST_TYPE(cursym->st_info) == STT_FUNC) {
3264 				/* Prefer the function to the non-function */
3265 				if (ELF_ST_TYPE(sym->st_info) != STT_FUNC)
3266 					continue;
3267 
3268 				/* Prefer the larger of the two functions */
3269 				if (sym->st_size <= cursym->st_size)
3270 					continue;
3271 			}
3272 		} else if (value - curval >= *offset) {
3273 			continue;
3274 		}
3275 
3276 		*offset = (ulong_t)(value - curval);
3277 		cursym = sym;
3278 	}
3279 	if (cursym == NULL)
3280 		return (NULL);
3281 
3282 	return (strtabptr + cursym->st_name);
3283 }
3284 
3285 Sym *
kobj_lookup_all(struct module * mp,char * name,int include_self)3286 kobj_lookup_all(struct module *mp, char *name, int include_self)
3287 {
3288 	Sym *sp;
3289 	struct module_list *mlp;
3290 	struct modctl_list *clp;
3291 	struct module *mmp;
3292 
3293 	if (include_self && (sp = lookup_one(mp, name)) != NULL)
3294 		return (sp);
3295 
3296 	for (mlp = mp->head; mlp; mlp = mlp->next) {
3297 		if ((sp = lookup_one(mlp->mp, name)) != NULL &&
3298 		    ELF_ST_BIND(sp->st_info) != STB_LOCAL)
3299 			return (sp);
3300 	}
3301 
3302 	/*
3303 	 * Loop through the primary kernel modules.
3304 	 */
3305 	for (clp = kobj_lm_lookup(KOBJ_LM_PRIMARY); clp; clp = clp->modl_next) {
3306 		mmp = mod(clp);
3307 
3308 		if (mmp == NULL || mp == mmp)
3309 			continue;
3310 
3311 		if ((sp = lookup_one(mmp, name)) != NULL &&
3312 		    ELF_ST_BIND(sp->st_info) != STB_LOCAL)
3313 			return (sp);
3314 	}
3315 	return (NULL);
3316 }
3317 
3318 Sym *
kobj_lookup_kernel(const char * name)3319 kobj_lookup_kernel(const char *name)
3320 {
3321 	struct modctl_list *lp;
3322 	struct module *mp;
3323 	Sym *sp;
3324 
3325 	/*
3326 	 * Loop through the primary kernel modules.
3327 	 */
3328 	for (lp = kobj_lm_lookup(KOBJ_LM_PRIMARY); lp; lp = lp->modl_next) {
3329 		mp = mod(lp);
3330 
3331 		if (mp == NULL)
3332 			continue;
3333 
3334 		if ((sp = lookup_one(mp, name)) != NULL)
3335 			return (sp);
3336 	}
3337 	return (NULL);
3338 }
3339 
3340 static Sym *
lookup_one(struct module * mp,const char * name)3341 lookup_one(struct module *mp, const char *name)
3342 {
3343 	symid_t *ip;
3344 	char *name1;
3345 	Sym *sp;
3346 
3347 	for (ip = &mp->buckets[kobj_hash_name(name) % mp->hashsize]; *ip;
3348 	    ip = &mp->chains[*ip]) {
3349 		sp = (Sym *)(mp->symtbl +
3350 		    mp->symhdr->sh_entsize * *ip);
3351 		name1 = mp->strings + sp->st_name;
3352 		if (strcmp(name, name1) == 0 &&
3353 		    ELF_ST_TYPE(sp->st_info) != STT_FILE &&
3354 		    sp->st_shndx != SHN_UNDEF &&
3355 		    sp->st_shndx != SHN_COMMON)
3356 			return (sp);
3357 	}
3358 	return (NULL);
3359 }
3360 
3361 /*
3362  * Lookup a given symbol pointer in the module's symbol hash.  If the symbol
3363  * is hashed, return the symbol pointer; otherwise return NULL.
3364  */
3365 static Sym *
sym_lookup(struct module * mp,Sym * ksp)3366 sym_lookup(struct module *mp, Sym *ksp)
3367 {
3368 	char *name = mp->strings + ksp->st_name;
3369 	symid_t *ip;
3370 	Sym *sp;
3371 
3372 	for (ip = &mp->buckets[kobj_hash_name(name) % mp->hashsize]; *ip;
3373 	    ip = &mp->chains[*ip]) {
3374 		sp = (Sym *)(mp->symtbl + mp->symhdr->sh_entsize * *ip);
3375 		if (sp == ksp)
3376 			return (ksp);
3377 	}
3378 	return (NULL);
3379 }
3380 
3381 static void
sym_insert(struct module * mp,char * name,symid_t index)3382 sym_insert(struct module *mp, char *name, symid_t index)
3383 {
3384 	symid_t *ip;
3385 
3386 #ifdef KOBJ_DEBUG
3387 	if (kobj_debug & D_SYMBOLS) {
3388 		static struct module *lastmp = NULL;
3389 		Sym *sp;
3390 		if (lastmp != mp) {
3391 			_kobj_printf(ops,
3392 			    "krtld: symbol entry: file=%s\n",
3393 			    mp->filename);
3394 			_kobj_printf(ops,
3395 			    "krtld:\tsymndx\tvalue\t\t"
3396 			    "symbol name\n");
3397 			lastmp = mp;
3398 		}
3399 		sp = (Sym *)(mp->symtbl +
3400 		    index * mp->symhdr->sh_entsize);
3401 		_kobj_printf(ops, "krtld:\t[%3d]", index);
3402 		_kobj_printf(ops, "\t0x%lx", sp->st_value);
3403 		_kobj_printf(ops, "\t%s\n", name);
3404 	}
3405 #endif
3406 
3407 	for (ip = &mp->buckets[kobj_hash_name(name) % mp->hashsize]; *ip;
3408 	    ip = &mp->chains[*ip]) {
3409 		;
3410 	}
3411 	*ip = index;
3412 }
3413 
3414 struct modctl *
kobj_boot_mod_lookup(const char * modname)3415 kobj_boot_mod_lookup(const char *modname)
3416 {
3417 	struct modctl *mctl = kobj_modules;
3418 
3419 	do {
3420 		if (strcmp(modname, mctl->mod_modname) == 0)
3421 			return (mctl);
3422 	} while ((mctl = mctl->mod_next) != kobj_modules);
3423 
3424 	return (NULL);
3425 }
3426 
3427 /*
3428  * Determine if the module exists.
3429  */
3430 int
kobj_path_exists(char * name,int use_path)3431 kobj_path_exists(char *name, int use_path)
3432 {
3433 	struct _buf *file;
3434 
3435 	file = kobj_open_path(name, use_path, 1);
3436 #ifdef	MODDIR_SUFFIX
3437 	if (file == (struct _buf *)-1)
3438 		file = kobj_open_path(name, use_path, 0);
3439 #endif	/* MODDIR_SUFFIX */
3440 	if (file == (struct _buf *)-1)
3441 		return (0);
3442 	kobj_close_file(file);
3443 	return (1);
3444 }
3445 
3446 /*
3447  * fullname is dynamically allocated to be able to hold the
3448  * maximum size string that can be constructed from name.
3449  * path is exactly like the shell PATH variable.
3450  */
3451 struct _buf *
kobj_open_path(char * name,int use_path,int use_moddir_suffix)3452 kobj_open_path(char *name, int use_path, int use_moddir_suffix)
3453 {
3454 	char *p, *q;
3455 	char *pathp;
3456 	char *pathpsave;
3457 	char *fullname;
3458 	int maxpathlen;
3459 	struct _buf *file;
3460 
3461 #if !defined(MODDIR_SUFFIX)
3462 	use_moddir_suffix = B_FALSE;
3463 #endif
3464 
3465 	if (!use_path)
3466 		pathp = "";		/* use name as specified */
3467 	else
3468 		pathp = kobj_module_path;
3469 					/* use configured default path */
3470 
3471 	pathpsave = pathp;		/* keep this for error reporting */
3472 
3473 	/*
3474 	 * Allocate enough space for the largest possible fullname.
3475 	 * since path is of the form <directory> : <directory> : ...
3476 	 * we're potentially allocating a little more than we need to
3477 	 * but we'll allocate the exact amount when we find the right directory.
3478 	 * (The + 3 below is one for NULL terminator and one for the '/'
3479 	 * we might have to add at the beginning of path and one for
3480 	 * the '/' between path and name.)
3481 	 */
3482 	maxpathlen = strlen(pathp) + strlen(name) + 3;
3483 	/* sizeof includes null */
3484 	maxpathlen += sizeof (slash_moddir_suffix_slash) - 1;
3485 	fullname = kobj_zalloc(maxpathlen, KM_WAIT);
3486 
3487 	for (;;) {
3488 		p = fullname;
3489 		if (*pathp != '\0' && *pathp != '/')
3490 			*p++ = '/';	/* path must start with '/' */
3491 		while (*pathp && *pathp != ':' && *pathp != ' ')
3492 			*p++ = *pathp++;
3493 		if (p != fullname && p[-1] != '/')
3494 			*p++ = '/';
3495 		if (use_moddir_suffix) {
3496 			char *b = basename(name);
3497 			char *s;
3498 
3499 			/* copy everything up to the base name */
3500 			q = name;
3501 			while (q != b && *q)
3502 				*p++ = *q++;
3503 			s = slash_moddir_suffix_slash;
3504 			while (*s)
3505 				*p++ = *s++;
3506 			/* copy the rest */
3507 			while (*b)
3508 				*p++ = *b++;
3509 		} else {
3510 			q = name;
3511 			while (*q)
3512 				*p++ = *q++;
3513 		}
3514 		*p = 0;
3515 		if ((file = kobj_open_file(fullname)) != (struct _buf *)-1) {
3516 			kobj_free(fullname, maxpathlen);
3517 			return (file);
3518 		}
3519 		while (*pathp == ' ' || *pathp == ':')
3520 			pathp++;
3521 		if (*pathp == 0)
3522 			break;
3523 
3524 	}
3525 	kobj_free(fullname, maxpathlen);
3526 	if (_moddebug & MODDEBUG_ERRMSG) {
3527 		_kobj_printf(ops, "can't open %s,", name);
3528 		_kobj_printf(ops, " path is %s\n", pathpsave);
3529 	}
3530 	return ((struct _buf *)-1);
3531 }
3532 
3533 intptr_t
kobj_open(char * filename)3534 kobj_open(char *filename)
3535 {
3536 	struct vnode *vp;
3537 	int fd;
3538 
3539 	if (_modrootloaded) {
3540 		struct kobjopen_tctl *ltp = kobjopen_alloc(filename);
3541 		int Errno;
3542 
3543 		/*
3544 		 * Hand off the open to a thread who has a
3545 		 * stack size capable handling the request.
3546 		 */
3547 		if (curthread != &t0) {
3548 			(void) thread_create(NULL, DEFAULTSTKSZ * 2,
3549 			    kobjopen_thread, ltp, 0, &p0, TS_RUN, maxclsyspri);
3550 			sema_p(&ltp->sema);
3551 			Errno = ltp->Errno;
3552 			vp = ltp->vp;
3553 		} else {
3554 			/*
3555 			 * 1098067: module creds should not be those of the
3556 			 * caller
3557 			 */
3558 			cred_t *saved_cred = curthread->t_cred;
3559 			curthread->t_cred = kcred;
3560 			Errno = vn_openat(filename, UIO_SYSSPACE, FREAD, 0, &vp,
3561 			    0, 0, rootdir, -1);
3562 			curthread->t_cred = saved_cred;
3563 		}
3564 		kobjopen_free(ltp);
3565 
3566 		if (Errno) {
3567 			if (_moddebug & MODDEBUG_ERRMSG) {
3568 				_kobj_printf(ops,
3569 				    "kobj_open: vn_open of %s fails, ",
3570 				    filename);
3571 				_kobj_printf(ops, "Errno = %d\n", Errno);
3572 			}
3573 			return (-1);
3574 		} else {
3575 			if (_moddebug & MODDEBUG_ERRMSG) {
3576 				_kobj_printf(ops, "kobj_open: '%s'", filename);
3577 				_kobj_printf(ops, " vp = %p\n", vp);
3578 			}
3579 			return ((intptr_t)vp);
3580 		}
3581 	} else {
3582 		fd = kobj_boot_open(filename, 0);
3583 
3584 		if (_moddebug & MODDEBUG_ERRMSG) {
3585 			if (fd < 0)
3586 				_kobj_printf(ops,
3587 				    "kobj_open: can't open %s\n", filename);
3588 			else {
3589 				_kobj_printf(ops, "kobj_open: '%s'", filename);
3590 				_kobj_printf(ops, " descr = 0x%x\n", fd);
3591 			}
3592 		}
3593 		return ((intptr_t)fd);
3594 	}
3595 }
3596 
3597 /*
3598  * Calls to kobj_open() are handled off to this routine as a separate thread.
3599  */
3600 static void
kobjopen_thread(struct kobjopen_tctl * ltp)3601 kobjopen_thread(struct kobjopen_tctl *ltp)
3602 {
3603 	kmutex_t	cpr_lk;
3604 	callb_cpr_t	cpr_i;
3605 
3606 	mutex_init(&cpr_lk, NULL, MUTEX_DEFAULT, NULL);
3607 	CALLB_CPR_INIT(&cpr_i, &cpr_lk, callb_generic_cpr, "kobjopen");
3608 	ltp->Errno = vn_open(ltp->name, UIO_SYSSPACE, FREAD, 0, &(ltp->vp),
3609 	    0, 0);
3610 	sema_v(&ltp->sema);
3611 	mutex_enter(&cpr_lk);
3612 	CALLB_CPR_EXIT(&cpr_i);
3613 	mutex_destroy(&cpr_lk);
3614 	thread_exit();
3615 }
3616 
3617 /*
3618  * allocate and initialize a kobjopen thread structure
3619  */
3620 static struct kobjopen_tctl *
kobjopen_alloc(char * filename)3621 kobjopen_alloc(char *filename)
3622 {
3623 	struct kobjopen_tctl *ltp = kmem_zalloc(sizeof (*ltp), KM_SLEEP);
3624 
3625 	ASSERT(filename != NULL);
3626 
3627 	ltp->name = kmem_alloc(strlen(filename) + 1, KM_SLEEP);
3628 	bcopy(filename, ltp->name, strlen(filename) + 1);
3629 	sema_init(&ltp->sema, 0, NULL, SEMA_DEFAULT, NULL);
3630 	return (ltp);
3631 }
3632 
3633 /*
3634  * free a kobjopen thread control structure
3635  */
3636 static void
kobjopen_free(struct kobjopen_tctl * ltp)3637 kobjopen_free(struct kobjopen_tctl *ltp)
3638 {
3639 	sema_destroy(&ltp->sema);
3640 	kmem_free(ltp->name, strlen(ltp->name) + 1);
3641 	kmem_free(ltp, sizeof (*ltp));
3642 }
3643 
3644 int
kobj_read(intptr_t descr,char * buf,uint_t size,uint_t offset)3645 kobj_read(intptr_t descr, char *buf, uint_t size, uint_t offset)
3646 {
3647 	int stat;
3648 	ssize_t resid;
3649 
3650 	if (_modrootloaded) {
3651 		if ((stat = vn_rdwr(UIO_READ, (struct vnode *)descr, buf, size,
3652 		    (offset_t)offset, UIO_SYSSPACE, 0, (rlim64_t)0, CRED(),
3653 		    &resid)) != 0) {
3654 			_kobj_printf(ops,
3655 			    "vn_rdwr failed with error 0x%x\n", stat);
3656 			return (-1);
3657 		}
3658 		return (size - resid);
3659 	} else {
3660 		int count = 0;
3661 
3662 		if (kobj_boot_seek((int)descr, (off_t)0, offset) != 0) {
3663 			_kobj_printf(ops,
3664 			    "kobj_read: seek 0x%x failed\n", offset);
3665 			return (-1);
3666 		}
3667 
3668 		count = kobj_boot_read((int)descr, buf, size);
3669 		if (count < size) {
3670 			if (_moddebug & MODDEBUG_ERRMSG) {
3671 				_kobj_printf(ops,
3672 				    "kobj_read: req %d bytes, ", size);
3673 				_kobj_printf(ops, "got %d\n", count);
3674 			}
3675 		}
3676 		return (count);
3677 	}
3678 }
3679 
3680 void
kobj_close(intptr_t descr)3681 kobj_close(intptr_t descr)
3682 {
3683 	if (_moddebug & MODDEBUG_ERRMSG)
3684 		_kobj_printf(ops, "kobj_close: 0x%lx\n", descr);
3685 
3686 	if (_modrootloaded) {
3687 		struct vnode *vp = (struct vnode *)descr;
3688 		(void) VOP_CLOSE(vp, FREAD, 1, (offset_t)0, CRED(), NULL);
3689 		VN_RELE(vp);
3690 	} else
3691 		(void) kobj_boot_close((int)descr);
3692 }
3693 
3694 int
kobj_fstat(intptr_t descr,struct bootstat * buf)3695 kobj_fstat(intptr_t descr, struct bootstat *buf)
3696 {
3697 	if (buf == NULL)
3698 		return (-1);
3699 
3700 	if (_modrootloaded) {
3701 		vattr_t vattr;
3702 		struct vnode *vp = (struct vnode *)descr;
3703 		if (VOP_GETATTR(vp, &vattr, 0, kcred, NULL) != 0)
3704 			return (-1);
3705 
3706 		/*
3707 		 * The vattr and bootstat structures are similar, but not
3708 		 * identical.  We do our best to fill in the bootstat structure
3709 		 * from the contents of vattr (transfering only the ones that
3710 		 * are obvious.
3711 		 */
3712 
3713 		buf->st_mode = (uint32_t)vattr.va_mode;
3714 		buf->st_nlink = (uint32_t)vattr.va_nlink;
3715 		buf->st_uid = (int32_t)vattr.va_uid;
3716 		buf->st_gid = (int32_t)vattr.va_gid;
3717 		buf->st_rdev = (uint64_t)vattr.va_rdev;
3718 		buf->st_size = (uint64_t)vattr.va_size;
3719 		buf->st_atim.tv_sec = (int64_t)vattr.va_atime.tv_sec;
3720 		buf->st_atim.tv_nsec = (int64_t)vattr.va_atime.tv_nsec;
3721 		buf->st_mtim.tv_sec = (int64_t)vattr.va_mtime.tv_sec;
3722 		buf->st_mtim.tv_nsec = (int64_t)vattr.va_mtime.tv_nsec;
3723 		buf->st_ctim.tv_sec = (int64_t)vattr.va_ctime.tv_sec;
3724 		buf->st_ctim.tv_nsec = (int64_t)vattr.va_ctime.tv_nsec;
3725 		buf->st_blksize = (int32_t)vattr.va_blksize;
3726 		buf->st_blocks = (int64_t)vattr.va_nblocks;
3727 
3728 		return (0);
3729 	}
3730 
3731 	return (kobj_boot_fstat((int)descr, buf));
3732 }
3733 
3734 
3735 struct _buf *
kobj_open_file(char * name)3736 kobj_open_file(char *name)
3737 {
3738 	struct _buf *file;
3739 	struct compinfo cbuf;
3740 	intptr_t fd;
3741 
3742 	if ((fd = kobj_open(name)) == -1) {
3743 		return ((struct _buf *)-1);
3744 	}
3745 
3746 	file = kobj_zalloc(sizeof (struct _buf), KM_WAIT|KM_TMP);
3747 	file->_fd = fd;
3748 	file->_name = kobj_alloc(strlen(name)+1, KM_WAIT|KM_TMP);
3749 	file->_cnt = file->_size = file->_off = 0;
3750 	file->_ln = 1;
3751 	file->_ptr = file->_base;
3752 	(void) strcpy(file->_name, name);
3753 
3754 	/*
3755 	 * Before root is mounted, we must check
3756 	 * for a compressed file and do our own
3757 	 * buffering.
3758 	 */
3759 	if (_modrootloaded) {
3760 		file->_base = kobj_zalloc(MAXBSIZE, KM_WAIT);
3761 		file->_bsize = MAXBSIZE;
3762 
3763 		/* Check if the file is compressed */
3764 		file->_iscmp = kobj_is_compressed(fd);
3765 	} else {
3766 		if (kobj_boot_compinfo(fd, &cbuf) != 0) {
3767 			kobj_close_file(file);
3768 			return ((struct _buf *)-1);
3769 		}
3770 		file->_iscmp = cbuf.iscmp;
3771 		if (file->_iscmp) {
3772 			if (kobj_comp_setup(file, &cbuf) != 0) {
3773 				kobj_close_file(file);
3774 				return ((struct _buf *)-1);
3775 			}
3776 		} else {
3777 			file->_base = kobj_zalloc(cbuf.blksize, KM_WAIT|KM_TMP);
3778 			file->_bsize = cbuf.blksize;
3779 		}
3780 	}
3781 	return (file);
3782 }
3783 
3784 static int
kobj_comp_setup(struct _buf * file,struct compinfo * cip)3785 kobj_comp_setup(struct _buf *file, struct compinfo *cip)
3786 {
3787 	struct comphdr *hdr;
3788 
3789 	/*
3790 	 * read the compressed image into memory,
3791 	 * so we can deompress from there
3792 	 */
3793 	file->_dsize = cip->fsize;
3794 	file->_dbuf = kobj_alloc(cip->fsize, KM_WAIT|KM_TMP);
3795 	if (kobj_read(file->_fd, file->_dbuf, cip->fsize, 0) != cip->fsize) {
3796 		kobj_free(file->_dbuf, cip->fsize);
3797 		return (-1);
3798 	}
3799 
3800 	hdr = kobj_comphdr(file);
3801 	if (hdr->ch_magic != CH_MAGIC_ZLIB || hdr->ch_version != CH_VERSION ||
3802 	    hdr->ch_algorithm != CH_ALG_ZLIB || hdr->ch_fsize == 0 ||
3803 	    !ISP2(hdr->ch_blksize)) {
3804 		kobj_free(file->_dbuf, cip->fsize);
3805 		return (-1);
3806 	}
3807 	file->_base = kobj_alloc(hdr->ch_blksize, KM_WAIT|KM_TMP);
3808 	file->_bsize = hdr->ch_blksize;
3809 	return (0);
3810 }
3811 
3812 void
kobj_close_file(struct _buf * file)3813 kobj_close_file(struct _buf *file)
3814 {
3815 	kobj_close(file->_fd);
3816 	if (file->_base != NULL)
3817 		kobj_free(file->_base, file->_bsize);
3818 	if (file->_dbuf != NULL)
3819 		kobj_free(file->_dbuf, file->_dsize);
3820 	kobj_free(file->_name, strlen(file->_name)+1);
3821 	kobj_free(file, sizeof (struct _buf));
3822 }
3823 
3824 int
kobj_read_file(struct _buf * file,char * buf,uint_t size,uint_t off)3825 kobj_read_file(struct _buf *file, char *buf, uint_t size, uint_t off)
3826 {
3827 	int b_size, c_size;
3828 	int b_off;	/* Offset into buffer for start of bcopy */
3829 	int count = 0;
3830 	int page_addr;
3831 
3832 	if (_moddebug & MODDEBUG_ERRMSG) {
3833 		_kobj_printf(ops, "kobj_read_file: size=%x,", size);
3834 		_kobj_printf(ops, " offset=%x at", off);
3835 		_kobj_printf(ops, " buf=%lx\n", (uintptr_t)buf);
3836 	}
3837 
3838 	/*
3839 	 * Handle compressed (gzip for now) file here. First get the
3840 	 * compressed size, then read the image into memory and finally
3841 	 * call zlib to decompress the image at the supplied memory buffer.
3842 	 */
3843 	if (file->_iscmp == CH_MAGIC_GZIP) {
3844 		ulong_t dlen;
3845 		vattr_t vattr;
3846 		struct vnode *vp = (struct vnode *)file->_fd;
3847 		ssize_t resid;
3848 		int err = 0;
3849 
3850 		if (VOP_GETATTR(vp, &vattr, 0, kcred, NULL) != 0)
3851 			return (-1);
3852 
3853 		file->_dbuf = kobj_alloc(vattr.va_size, KM_WAIT|KM_TMP);
3854 		file->_dsize = vattr.va_size;
3855 
3856 		/* Read the compressed file into memory */
3857 		if ((err = vn_rdwr(UIO_READ, vp, file->_dbuf, vattr.va_size,
3858 		    (offset_t)(0), UIO_SYSSPACE, 0, (rlim64_t)0, CRED(),
3859 		    &resid)) != 0) {
3860 
3861 			_kobj_printf(ops, "kobj_read_file :vn_rdwr() failed, "
3862 			    "error code 0x%x\n", err);
3863 			return (-1);
3864 		}
3865 
3866 		dlen = size;
3867 
3868 		/* Decompress the image at the supplied memory buffer */
3869 		if ((err = z_uncompress(buf, &dlen, file->_dbuf,
3870 		    vattr.va_size)) != Z_OK) {
3871 			_kobj_printf(ops, "kobj_read_file: z_uncompress "
3872 			    "failed, error code : 0x%x\n", err);
3873 			return (-1);
3874 		}
3875 
3876 		if (dlen != size) {
3877 			_kobj_printf(ops, "kobj_read_file: z_uncompress "
3878 			    "failed to uncompress (size returned 0x%lx , "
3879 			    "expected size: 0x%x)\n", dlen, size);
3880 			return (-1);
3881 		}
3882 
3883 		return (0);
3884 	}
3885 
3886 	while (size) {
3887 		page_addr = F_PAGE(file, off);
3888 		b_size = file->_size;
3889 		/*
3890 		 * If we have the filesystem page the caller's referring to
3891 		 * and we have something in the buffer,
3892 		 * satisfy as much of the request from the buffer as we can.
3893 		 */
3894 		if (page_addr == file->_off && b_size > 0) {
3895 			b_off = B_OFFSET(file, off);
3896 			c_size = b_size - b_off;
3897 			/*
3898 			 * If there's nothing to copy, we're at EOF.
3899 			 */
3900 			if (c_size <= 0)
3901 				break;
3902 			if (c_size > size)
3903 				c_size = size;
3904 			if (buf) {
3905 				if (_moddebug & MODDEBUG_ERRMSG)
3906 					_kobj_printf(ops, "copying %x bytes\n",
3907 					    c_size);
3908 				bcopy(file->_base+b_off, buf, c_size);
3909 				size -= c_size;
3910 				off += c_size;
3911 				buf += c_size;
3912 				count += c_size;
3913 			} else {
3914 				_kobj_printf(ops, "kobj_read: system error");
3915 				count = -1;
3916 				break;
3917 			}
3918 		} else {
3919 			/*
3920 			 * If the caller's offset is page aligned and
3921 			 * the caller want's at least a filesystem page and
3922 			 * the caller provided a buffer,
3923 			 * read directly into the caller's buffer.
3924 			 */
3925 			if (page_addr == off &&
3926 			    (c_size = F_BLKS(file, size)) && buf) {
3927 				c_size = kobj_read_blks(file, buf, c_size,
3928 				    page_addr);
3929 				if (c_size < 0) {
3930 					count = -1;
3931 					break;
3932 				}
3933 				count += c_size;
3934 				if (c_size != F_BLKS(file, size))
3935 					break;
3936 				size -= c_size;
3937 				off += c_size;
3938 				buf += c_size;
3939 			/*
3940 			 * Otherwise, read into our buffer and copy next time
3941 			 * around the loop.
3942 			 */
3943 			} else {
3944 				file->_off = page_addr;
3945 				c_size = kobj_read_blks(file, file->_base,
3946 				    file->_bsize, page_addr);
3947 				file->_ptr = file->_base;
3948 				file->_cnt = c_size;
3949 				file->_size = c_size;
3950 				/*
3951 				 * If a _filbuf call or nothing read, break.
3952 				 */
3953 				if (buf == NULL || c_size <= 0) {
3954 					count = c_size;
3955 					break;
3956 				}
3957 			}
3958 			if (_moddebug & MODDEBUG_ERRMSG)
3959 				_kobj_printf(ops, "read %x bytes\n", c_size);
3960 		}
3961 	}
3962 	if (_moddebug & MODDEBUG_ERRMSG)
3963 		_kobj_printf(ops, "count = %x\n", count);
3964 
3965 	return (count);
3966 }
3967 
3968 static int
kobj_read_blks(struct _buf * file,char * buf,uint_t size,uint_t off)3969 kobj_read_blks(struct _buf *file, char *buf, uint_t size, uint_t off)
3970 {
3971 	int ret;
3972 
3973 	ASSERT(B_OFFSET(file, size) == 0 && B_OFFSET(file, off) == 0);
3974 	if (file->_iscmp) {
3975 		uint_t blks;
3976 		int nret;
3977 
3978 		ret = 0;
3979 		for (blks = size / file->_bsize; blks != 0; blks--) {
3980 			nret = kobj_uncomp_blk(file, buf, off);
3981 			if (nret == -1)
3982 				return (-1);
3983 			buf += nret;
3984 			off += nret;
3985 			ret += nret;
3986 			if (nret < file->_bsize)
3987 				break;
3988 		}
3989 	} else
3990 		ret = kobj_read(file->_fd, buf, size, off);
3991 	return (ret);
3992 }
3993 
3994 static int
kobj_uncomp_blk(struct _buf * file,char * buf,uint_t off)3995 kobj_uncomp_blk(struct _buf *file, char *buf, uint_t off)
3996 {
3997 	struct comphdr *hdr = kobj_comphdr(file);
3998 	ulong_t dlen, slen;
3999 	caddr_t src;
4000 	int i;
4001 
4002 	dlen = file->_bsize;
4003 	i = off / file->_bsize;
4004 	src = file->_dbuf + hdr->ch_blkmap[i];
4005 	if (i == hdr->ch_fsize / file->_bsize)
4006 		slen = file->_dsize - hdr->ch_blkmap[i];
4007 	else
4008 		slen = hdr->ch_blkmap[i + 1] - hdr->ch_blkmap[i];
4009 	if (z_uncompress(buf, &dlen, src, slen) != Z_OK)
4010 		return (-1);
4011 	return (dlen);
4012 }
4013 
4014 int
kobj_filbuf(struct _buf * f)4015 kobj_filbuf(struct _buf *f)
4016 {
4017 	if (kobj_read_file(f, NULL, f->_bsize, f->_off + f->_size) > 0)
4018 		return (kobj_getc(f));
4019 	return (-1);
4020 }
4021 
4022 void
kobj_free(void * address,size_t size)4023 kobj_free(void *address, size_t size)
4024 {
4025 	if (standalone)
4026 		return;
4027 
4028 	kmem_free(address, size);
4029 	kobj_stat.nfree_calls++;
4030 	kobj_stat.nfree += size;
4031 }
4032 
4033 void *
kobj_zalloc(size_t size,int flag)4034 kobj_zalloc(size_t size, int flag)
4035 {
4036 	void *v;
4037 
4038 	if ((v = kobj_alloc(size, flag)) != 0) {
4039 		bzero(v, size);
4040 	}
4041 
4042 	return (v);
4043 }
4044 
4045 void *
kobj_alloc(size_t size,int flag)4046 kobj_alloc(size_t size, int flag)
4047 {
4048 	/*
4049 	 * If we are running standalone in the
4050 	 * linker, we ask boot for memory.
4051 	 * Either it's temporary memory that we lose
4052 	 * once boot is mapped out or we allocate it
4053 	 * permanently using the dynamic data segment.
4054 	 */
4055 	if (standalone) {
4056 #if defined(_OBP)
4057 		if (flag & (KM_TMP | KM_SCRATCH))
4058 			return (bop_temp_alloc(size, MINALIGN));
4059 #else
4060 		if (flag & (KM_TMP | KM_SCRATCH))
4061 			return (BOP_ALLOC(ops, 0, size, MINALIGN));
4062 #endif
4063 		return (kobj_segbrk(&_edata, size, MINALIGN, 0));
4064 	}
4065 
4066 	kobj_stat.nalloc_calls++;
4067 	kobj_stat.nalloc += size;
4068 
4069 	return (kmem_alloc(size, (flag & KM_NOWAIT) ? KM_NOSLEEP : KM_SLEEP));
4070 }
4071 
4072 /*
4073  * Allow the "mod" system to sync up with the work
4074  * already done by kobj during the initial loading
4075  * of the kernel.  This also gives us a chance
4076  * to reallocate memory that belongs to boot.
4077  */
4078 void
kobj_sync(void)4079 kobj_sync(void)
4080 {
4081 	struct modctl_list *lp, **lpp;
4082 
4083 	/*
4084 	 * The module path can be set in /etc/system via 'moddir' commands
4085 	 */
4086 	if (default_path != NULL)
4087 		kobj_module_path = default_path;
4088 	else
4089 		default_path = kobj_module_path;
4090 
4091 	ksyms_arena = vmem_create("ksyms", NULL, 0, sizeof (uint64_t),
4092 	    segkmem_alloc, segkmem_free, heap_arena, 0, VM_SLEEP);
4093 
4094 	ctf_arena = vmem_create("ctf", NULL, 0, sizeof (uint_t),
4095 	    segkmem_alloc, segkmem_free, heap_arena, 0, VM_SLEEP);
4096 
4097 	/*
4098 	 * Move symbol tables from boot memory to ksyms_arena.
4099 	 */
4100 	for (lpp = kobj_linkmaps; *lpp != NULL; lpp++) {
4101 		for (lp = *lpp; lp != NULL; lp = lp->modl_next)
4102 			kobj_export_module(mod(lp));
4103 	}
4104 }
4105 
4106 caddr_t
kobj_segbrk(caddr_t * spp,size_t size,size_t align,caddr_t limit)4107 kobj_segbrk(caddr_t *spp, size_t size, size_t align, caddr_t limit)
4108 {
4109 	uintptr_t va, pva;
4110 	size_t alloc_pgsz = kobj_mmu_pagesize;
4111 	size_t alloc_align = BO_NO_ALIGN;
4112 	size_t alloc_size;
4113 
4114 	/*
4115 	 * If we are using "large" mappings for the kernel,
4116 	 * request aligned memory from boot using the
4117 	 * "large" pagesize.
4118 	 */
4119 	if (lg_pagesize) {
4120 		alloc_align = lg_pagesize;
4121 		alloc_pgsz = lg_pagesize;
4122 	}
4123 
4124 #if defined(__sparc)
4125 	/* account for redzone */
4126 	if (limit)
4127 		limit -= alloc_pgsz;
4128 #endif	/* __sparc */
4129 
4130 	va = ALIGN((uintptr_t)*spp, align);
4131 	pva = P2ROUNDUP((uintptr_t)*spp, alloc_pgsz);
4132 	/*
4133 	 * Need more pages?
4134 	 */
4135 	if (va + size > pva) {
4136 		uintptr_t npva;
4137 
4138 		alloc_size = P2ROUNDUP(size - (pva - va), alloc_pgsz);
4139 		/*
4140 		 * Check for overlapping segments.
4141 		 */
4142 		if (limit && limit <= *spp + alloc_size) {
4143 			return ((caddr_t)0);
4144 		}
4145 
4146 		npva = (uintptr_t)BOP_ALLOC(ops, (caddr_t)pva,
4147 		    alloc_size, alloc_align);
4148 
4149 		if (npva == 0) {
4150 			_kobj_printf(ops, "BOP_ALLOC failed, 0x%lx bytes",
4151 			    alloc_size);
4152 			_kobj_printf(ops, " aligned %lx", alloc_align);
4153 			_kobj_printf(ops, " at 0x%lx\n", pva);
4154 			return (NULL);
4155 		}
4156 	}
4157 	*spp = (caddr_t)(va + size);
4158 
4159 	return ((caddr_t)va);
4160 }
4161 
4162 /*
4163  * Calculate the number of output hash buckets.
4164  * We use the next prime larger than n / 4,
4165  * so the average hash chain is about 4 entries.
4166  * More buckets would just be a waste of memory.
4167  */
4168 uint_t
kobj_gethashsize(uint_t n)4169 kobj_gethashsize(uint_t n)
4170 {
4171 	int f;
4172 	int hsize = MAX(n / 4, 2);
4173 
4174 	for (f = 2; f * f <= hsize; f++)
4175 		if (hsize % f == 0)
4176 			hsize += f = 1;
4177 
4178 	return (hsize);
4179 }
4180 
4181 /*
4182  * Get the file size.
4183  *
4184  * Before root is mounted, files are compressed in the boot_archive ramdisk
4185  * (in the memory). kobj_fstat would return the compressed file size.
4186  * In order to get the uncompressed file size, read the file to the end and
4187  * count its size.
4188  */
4189 int
kobj_get_filesize(struct _buf * file,uint64_t * size)4190 kobj_get_filesize(struct _buf *file, uint64_t *size)
4191 {
4192 	int err = 0;
4193 	ssize_t resid;
4194 	uint32_t buf;
4195 
4196 	if (_modrootloaded) {
4197 		struct bootstat bst;
4198 
4199 		if (kobj_fstat(file->_fd, &bst) != 0)
4200 			return (EIO);
4201 		*size = bst.st_size;
4202 
4203 		if (file->_iscmp == CH_MAGIC_GZIP) {
4204 			/*
4205 			 * Read the last 4 bytes of the compressed (gzip)
4206 			 * image to get the size of its uncompressed
4207 			 * version.
4208 			 */
4209 			if ((err = vn_rdwr(UIO_READ, (struct vnode *)file->_fd,
4210 			    (char *)(&buf), 4, (offset_t)(*size - 4),
4211 			    UIO_SYSSPACE, 0, (rlim64_t)0, CRED(), &resid))
4212 			    != 0) {
4213 				_kobj_printf(ops, "kobj_get_filesize: "
4214 				    "vn_rdwr() failed with error 0x%x\n", err);
4215 				return (-1);
4216 			}
4217 
4218 			*size =  (uint64_t)buf;
4219 		}
4220 	} else {
4221 
4222 #if defined(_OBP)
4223 		struct bootstat bsb;
4224 
4225 		if (file->_iscmp) {
4226 			struct comphdr *hdr = kobj_comphdr(file);
4227 
4228 			*size = hdr->ch_fsize;
4229 		} else if (kobj_boot_fstat(file->_fd, &bsb) != 0)
4230 			return (EIO);
4231 		else
4232 			*size = bsb.st_size;
4233 #else
4234 		char *buf;
4235 		int count;
4236 		uint64_t offset = 0;
4237 
4238 		buf = kmem_alloc(MAXBSIZE, KM_SLEEP);
4239 		do {
4240 			count = kobj_read_file(file, buf, MAXBSIZE, offset);
4241 			if (count < 0) {
4242 				kmem_free(buf, MAXBSIZE);
4243 				return (EIO);
4244 			}
4245 			offset += count;
4246 		} while (count == MAXBSIZE);
4247 		kmem_free(buf, MAXBSIZE);
4248 
4249 		*size = offset;
4250 #endif
4251 	}
4252 
4253 	return (0);
4254 }
4255 
4256 static char *
basename(char * s)4257 basename(char *s)
4258 {
4259 	char *p, *q;
4260 
4261 	q = NULL;
4262 	p = s;
4263 	do {
4264 		if (*p == '/')
4265 			q = p;
4266 	} while (*p++);
4267 	return (q ? q + 1 : s);
4268 }
4269 
4270 void
kobj_stat_get(kobj_stat_t * kp)4271 kobj_stat_get(kobj_stat_t *kp)
4272 {
4273 	*kp = kobj_stat;
4274 }
4275 
4276 int
kobj_getpagesize()4277 kobj_getpagesize()
4278 {
4279 	return (lg_pagesize);
4280 }
4281 
4282 void
kobj_textwin_alloc(struct module * mp)4283 kobj_textwin_alloc(struct module *mp)
4284 {
4285 	ASSERT(MUTEX_HELD(&mod_lock));
4286 
4287 	if (mp->textwin != NULL)
4288 		return;
4289 
4290 	/*
4291 	 * If the text is not contained in the heap, then it is not contained
4292 	 * by a writable mapping.  (Specifically, it's on the nucleus page.)
4293 	 * We allocate a read/write mapping for this module's text to allow
4294 	 * the text to be patched without calling hot_patch_kernel_text()
4295 	 * (which is quite slow).
4296 	 */
4297 	if (!vmem_contains(heaptext_arena, mp->text, mp->text_size)) {
4298 		uintptr_t text = (uintptr_t)mp->text;
4299 		uintptr_t size = (uintptr_t)mp->text_size;
4300 		uintptr_t i;
4301 		caddr_t va;
4302 		size_t sz = ((text + size + PAGESIZE - 1) & PAGEMASK) -
4303 		    (text & PAGEMASK);
4304 
4305 		va = mp->textwin_base = vmem_alloc(heap_arena, sz, VM_SLEEP);
4306 
4307 		for (i = text & PAGEMASK; i < text + size; i += PAGESIZE) {
4308 			hat_devload(kas.a_hat, va, PAGESIZE,
4309 			    hat_getpfnum(kas.a_hat, (caddr_t)i),
4310 			    PROT_READ | PROT_WRITE,
4311 			    HAT_LOAD_LOCK | HAT_LOAD_NOCONSIST);
4312 			va += PAGESIZE;
4313 		}
4314 
4315 		mp->textwin = mp->textwin_base + (text & PAGEOFFSET);
4316 	} else {
4317 		mp->textwin = mp->text;
4318 	}
4319 }
4320 
4321 void
kobj_textwin_free(struct module * mp)4322 kobj_textwin_free(struct module *mp)
4323 {
4324 	uintptr_t text = (uintptr_t)mp->text;
4325 	uintptr_t tsize = (uintptr_t)mp->text_size;
4326 	size_t size = (((text + tsize + PAGESIZE - 1) & PAGEMASK) -
4327 	    (text & PAGEMASK));
4328 
4329 	mp->textwin = NULL;
4330 
4331 	if (mp->textwin_base == NULL)
4332 		return;
4333 
4334 	hat_unload(kas.a_hat, mp->textwin_base, size, HAT_UNLOAD_UNLOCK);
4335 	vmem_free(heap_arena, mp->textwin_base, size);
4336 	mp->textwin_base = NULL;
4337 }
4338 
4339 static char *
find_libmacro(char * name)4340 find_libmacro(char *name)
4341 {
4342 	int lmi;
4343 
4344 	for (lmi = 0; lmi < NLIBMACROS; lmi++) {
4345 		if (strcmp(name, libmacros[lmi].lmi_macroname) == 0)
4346 			return (libmacros[lmi].lmi_list);
4347 	}
4348 	return (NULL);
4349 }
4350 
4351 /*
4352  * Check for $MACRO in tail (string to expand) and expand it in path at pathend
4353  * returns path if successful, else NULL
4354  * Support multiple $MACROs expansion and the first valid path will be returned
4355  * Caller's responsibility to provide enough space in path to expand
4356  */
4357 char *
expand_libmacro(char * tail,char * path,char * pathend)4358 expand_libmacro(char *tail, char *path, char *pathend)
4359 {
4360 	char c, *p, *p1, *p2, *path2, *endp;
4361 	int diff, lmi, macrolen, valid_macro, more_macro;
4362 	struct _buf *file;
4363 
4364 	/*
4365 	 * check for $MACROS between nulls or slashes
4366 	 */
4367 	p = strchr(tail, '$');
4368 	if (p == NULL)
4369 		return (NULL);
4370 	for (lmi = 0; lmi < NLIBMACROS; lmi++) {
4371 		macrolen = libmacros[lmi].lmi_macrolen;
4372 		if (strncmp(p + 1, libmacros[lmi].lmi_macroname, macrolen) == 0)
4373 			break;
4374 	}
4375 
4376 	valid_macro = 0;
4377 	if (lmi < NLIBMACROS) {
4378 		/*
4379 		 * The following checks are used to restrict expansion of
4380 		 * macros to those that form a full directory/file name
4381 		 * and to keep the behavior same as before.  If this
4382 		 * restriction is removed or no longer valid in the future,
4383 		 * the checks below can be deleted.
4384 		 */
4385 		if ((p == tail) || (*(p - 1) == '/')) {
4386 			c = *(p + macrolen + 1);
4387 			if (c == '/' || c == '\0')
4388 				valid_macro = 1;
4389 		}
4390 	}
4391 
4392 	if (!valid_macro) {
4393 		p2 = strchr(p, '/');
4394 		/*
4395 		 * if no more macro to expand, then just copy whatever left
4396 		 * and check whether it exists
4397 		 */
4398 		if (p2 == NULL || strchr(p2, '$') == NULL) {
4399 			(void) strcpy(pathend, tail);
4400 			if ((file = kobj_open_path(path, 1, 1)) !=
4401 			    (struct _buf *)-1) {
4402 				kobj_close_file(file);
4403 				return (path);
4404 			} else
4405 				return (NULL);
4406 		} else {
4407 			/*
4408 			 * copy all chars before '/' and call expand_libmacro()
4409 			 * again
4410 			 */
4411 			diff = p2 - tail;
4412 			bcopy(tail, pathend, diff);
4413 			pathend += diff;
4414 			*(pathend) = '\0';
4415 			return (expand_libmacro(p2, path, pathend));
4416 		}
4417 	}
4418 
4419 	more_macro = 0;
4420 	if (c != '\0') {
4421 		endp = p + macrolen + 1;
4422 		if (strchr(endp, '$') != NULL)
4423 			more_macro = 1;
4424 	} else
4425 		endp = NULL;
4426 
4427 	/*
4428 	 * copy lmi_list and split it into components.
4429 	 * then put the part of tail before $MACRO into path
4430 	 * at pathend
4431 	 */
4432 	diff = p - tail;
4433 	if (diff > 0)
4434 		bcopy(tail, pathend, diff);
4435 	path2 = pathend + diff;
4436 	p1 = libmacros[lmi].lmi_list;
4437 	while (p1 && (*p1 != '\0')) {
4438 		p2 = strchr(p1, ':');
4439 		if (p2) {
4440 			diff = p2 - p1;
4441 			bcopy(p1, path2, diff);
4442 			*(path2 + diff) = '\0';
4443 		} else {
4444 			diff = strlen(p1);
4445 			bcopy(p1, path2, diff + 1);
4446 		}
4447 		/* copy endp only if there isn't any more macro to expand */
4448 		if (!more_macro && (endp != NULL))
4449 			(void) strcat(path2, endp);
4450 		file = kobj_open_path(path, 1, 1);
4451 		if (file != (struct _buf *)-1) {
4452 			kobj_close_file(file);
4453 			/*
4454 			 * if more macros to expand then call expand_libmacro(),
4455 			 * else return path which has the whole path
4456 			 */
4457 			if (!more_macro || (expand_libmacro(endp, path,
4458 			    path2 + diff) != NULL)) {
4459 				return (path);
4460 			}
4461 		}
4462 		if (p2)
4463 			p1 = ++p2;
4464 		else
4465 			return (NULL);
4466 	}
4467 	return (NULL);
4468 }
4469 
4470 char *kobj_file_buf;
4471 int kobj_file_bufsize;
4472 
4473 /*
4474  * This code is for the purpose of manually recording which files
4475  * needs to go into the boot archive on any given system.
4476  *
4477  * To enable the code, set kobj_file_bufsize in /etc/system
4478  * and reboot the system, then use mdb to look at kobj_file_buf.
4479  */
4480 static void
kobj_record_file(char * filename)4481 kobj_record_file(char *filename)
4482 {
4483 	static char *buf;
4484 	static int size = 0;
4485 	int n;
4486 
4487 	if (kobj_file_bufsize == 0)	/* don't bother */
4488 		return;
4489 
4490 	if (kobj_file_buf == NULL) {	/* allocate buffer */
4491 		size = kobj_file_bufsize;
4492 		buf = kobj_file_buf = kobj_alloc(size, KM_WAIT|KM_TMP);
4493 	}
4494 
4495 	n = snprintf(buf, size, "%s\n", filename);
4496 	if (n > size)
4497 		n = size;
4498 	size -= n;
4499 	buf += n;
4500 }
4501 
4502 static int
kobj_boot_fstat(int fd,struct bootstat * stp)4503 kobj_boot_fstat(int fd, struct bootstat *stp)
4504 {
4505 #if defined(_OBP)
4506 	if (!standalone && _ioquiesced)
4507 		return (-1);
4508 	return (BOP_FSTAT(ops, fd, stp));
4509 #else
4510 	return (BRD_FSTAT(bfs_ops, fd, stp));
4511 #endif
4512 }
4513 
4514 static int
kobj_boot_open(char * filename,int flags)4515 kobj_boot_open(char *filename, int flags)
4516 {
4517 #if defined(_OBP)
4518 
4519 	/*
4520 	 * If io via bootops is quiesced, it means boot is no longer
4521 	 * available to us.  We make it look as if we can't open the
4522 	 * named file - which is reasonably accurate.
4523 	 */
4524 	if (!standalone && _ioquiesced)
4525 		return (-1);
4526 
4527 	kobj_record_file(filename);
4528 	return (BOP_OPEN(filename, flags));
4529 #else /* x86 */
4530 	kobj_record_file(filename);
4531 	return (BRD_OPEN(bfs_ops, filename, flags));
4532 #endif
4533 }
4534 
4535 static int
kobj_boot_close(int fd)4536 kobj_boot_close(int fd)
4537 {
4538 #if defined(_OBP)
4539 	if (!standalone && _ioquiesced)
4540 		return (-1);
4541 
4542 	return (BOP_CLOSE(fd));
4543 #else /* x86 */
4544 	return (BRD_CLOSE(bfs_ops, fd));
4545 #endif
4546 }
4547 
4548 /*ARGSUSED*/
4549 static int
kobj_boot_seek(int fd,off_t hi,off_t lo)4550 kobj_boot_seek(int fd, off_t hi, off_t lo)
4551 {
4552 #if defined(_OBP)
4553 	return (BOP_SEEK(fd, lo) == -1 ? -1 : 0);
4554 #else
4555 	return (BRD_SEEK(bfs_ops, fd, lo, SEEK_SET));
4556 #endif
4557 }
4558 
4559 static int
kobj_boot_read(int fd,caddr_t buf,size_t size)4560 kobj_boot_read(int fd, caddr_t buf, size_t size)
4561 {
4562 #if defined(_OBP)
4563 	return (BOP_READ(fd, buf, size));
4564 #else
4565 	return (BRD_READ(bfs_ops, fd, buf, size));
4566 #endif
4567 }
4568 
4569 static int
kobj_boot_compinfo(int fd,struct compinfo * cb)4570 kobj_boot_compinfo(int fd, struct compinfo *cb)
4571 {
4572 	return (boot_compinfo(fd, cb));
4573 }
4574 
4575 /*
4576  * Check if the file is compressed (for now we handle only gzip).
4577  * It returns CH_MAGIC_GZIP if the file is compressed and 0 otherwise.
4578  */
4579 static int
kobj_is_compressed(intptr_t fd)4580 kobj_is_compressed(intptr_t fd)
4581 {
4582 	struct vnode *vp = (struct vnode *)fd;
4583 	ssize_t resid;
4584 	uint16_t magic_buf;
4585 	int err = 0;
4586 
4587 	if ((err = vn_rdwr(UIO_READ, vp, (caddr_t)((intptr_t)&magic_buf),
4588 	    sizeof (magic_buf), (offset_t)(0),
4589 	    UIO_SYSSPACE, 0, (rlim64_t)0, CRED(), &resid)) != 0) {
4590 
4591 		_kobj_printf(ops, "kobj_is_compressed: vn_rdwr() failed, "
4592 		    "error code 0x%x\n", err);
4593 		return (0);
4594 	}
4595 
4596 	if (magic_buf == CH_MAGIC_GZIP)
4597 		return (CH_MAGIC_GZIP);
4598 
4599 	return (0);
4600 }
4601