xref: /linux/include/linux/mm_types.h (revision 8804d970fab45726b3c7cd7f240b31122aa94219)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MM_TYPES_H
3 #define _LINUX_MM_TYPES_H
4 
5 #include <linux/mm_types_task.h>
6 
7 #include <linux/auxvec.h>
8 #include <linux/kref.h>
9 #include <linux/list.h>
10 #include <linux/spinlock.h>
11 #include <linux/rbtree.h>
12 #include <linux/maple_tree.h>
13 #include <linux/rwsem.h>
14 #include <linux/completion.h>
15 #include <linux/cpumask.h>
16 #include <linux/uprobes.h>
17 #include <linux/rcupdate.h>
18 #include <linux/page-flags-layout.h>
19 #include <linux/workqueue.h>
20 #include <linux/seqlock.h>
21 #include <linux/percpu_counter.h>
22 #include <linux/types.h>
23 #include <linux/bitmap.h>
24 
25 #include <asm/mmu.h>
26 
27 #ifndef AT_VECTOR_SIZE_ARCH
28 #define AT_VECTOR_SIZE_ARCH 0
29 #endif
30 #define AT_VECTOR_SIZE (2*(AT_VECTOR_SIZE_ARCH + AT_VECTOR_SIZE_BASE + 1))
31 
32 
33 struct address_space;
34 struct futex_private_hash;
35 struct mem_cgroup;
36 
37 typedef struct {
38 	unsigned long f;
39 } memdesc_flags_t;
40 
41 /*
42  * Each physical page in the system has a struct page associated with
43  * it to keep track of whatever it is we are using the page for at the
44  * moment. Note that we have no way to track which tasks are using
45  * a page, though if it is a pagecache page, rmap structures can tell us
46  * who is mapping it.
47  *
48  * If you allocate the page using alloc_pages(), you can use some of the
49  * space in struct page for your own purposes.  The five words in the main
50  * union are available, except for bit 0 of the first word which must be
51  * kept clear.  Many users use this word to store a pointer to an object
52  * which is guaranteed to be aligned.  If you use the same storage as
53  * page->mapping, you must restore it to NULL before freeing the page.
54  *
55  * The mapcount field must not be used for own purposes.
56  *
57  * If you want to use the refcount field, it must be used in such a way
58  * that other CPUs temporarily incrementing and then decrementing the
59  * refcount does not cause problems.  On receiving the page from
60  * alloc_pages(), the refcount will be positive.
61  *
62  * If you allocate pages of order > 0, you can use some of the fields
63  * in each subpage, but you may need to restore some of their values
64  * afterwards.
65  *
66  * SLUB uses cmpxchg_double() to atomically update its freelist and counters.
67  * That requires that freelist & counters in struct slab be adjacent and
68  * double-word aligned. Because struct slab currently just reinterprets the
69  * bits of struct page, we align all struct pages to double-word boundaries,
70  * and ensure that 'freelist' is aligned within struct slab.
71  */
72 #ifdef CONFIG_HAVE_ALIGNED_STRUCT_PAGE
73 #define _struct_page_alignment	__aligned(2 * sizeof(unsigned long))
74 #else
75 #define _struct_page_alignment	__aligned(sizeof(unsigned long))
76 #endif
77 
78 struct page {
79 	memdesc_flags_t flags;		/* Atomic flags, some possibly
80 					 * updated asynchronously */
81 	/*
82 	 * Five words (20/40 bytes) are available in this union.
83 	 * WARNING: bit 0 of the first word is used for PageTail(). That
84 	 * means the other users of this union MUST NOT use the bit to
85 	 * avoid collision and false-positive PageTail().
86 	 */
87 	union {
88 		struct {	/* Page cache and anonymous pages */
89 			/**
90 			 * @lru: Pageout list, eg. active_list protected by
91 			 * lruvec->lru_lock.  Sometimes used as a generic list
92 			 * by the page owner.
93 			 */
94 			union {
95 				struct list_head lru;
96 
97 				/* Or, free page */
98 				struct list_head buddy_list;
99 				struct list_head pcp_list;
100 				struct llist_node pcp_llist;
101 			};
102 			struct address_space *mapping;
103 			union {
104 				pgoff_t __folio_index;		/* Our offset within mapping. */
105 				unsigned long share;	/* share count for fsdax */
106 			};
107 			/**
108 			 * @private: Mapping-private opaque data.
109 			 * Usually used for buffer_heads if PagePrivate.
110 			 * Used for swp_entry_t if swapcache flag set.
111 			 * Indicates order in the buddy system if PageBuddy
112 			 * or on pcp_llist.
113 			 */
114 			unsigned long private;
115 		};
116 		struct {	/* page_pool used by netstack */
117 			/**
118 			 * @pp_magic: magic value to avoid recycling non
119 			 * page_pool allocated pages.
120 			 */
121 			unsigned long pp_magic;
122 			struct page_pool *pp;
123 			unsigned long _pp_mapping_pad;
124 			unsigned long dma_addr;
125 			atomic_long_t pp_ref_count;
126 		};
127 		struct {	/* Tail pages of compound page */
128 			unsigned long compound_head;	/* Bit zero is set */
129 		};
130 		struct {	/* ZONE_DEVICE pages */
131 			/*
132 			 * The first word is used for compound_head or folio
133 			 * pgmap
134 			 */
135 			void *_unused_pgmap_compound_head;
136 			void *zone_device_data;
137 			/*
138 			 * ZONE_DEVICE private pages are counted as being
139 			 * mapped so the next 3 words hold the mapping, index,
140 			 * and private fields from the source anonymous or
141 			 * page cache page while the page is migrated to device
142 			 * private memory.
143 			 * ZONE_DEVICE MEMORY_DEVICE_FS_DAX pages also
144 			 * use the mapping, index, and private fields when
145 			 * pmem backed DAX files are mapped.
146 			 */
147 		};
148 
149 		/** @rcu_head: You can use this to free a page by RCU. */
150 		struct rcu_head rcu_head;
151 	};
152 
153 	union {		/* This union is 4 bytes in size. */
154 		/*
155 		 * For head pages of typed folios, the value stored here
156 		 * allows for determining what this page is used for. The
157 		 * tail pages of typed folios will not store a type
158 		 * (page_type == _mapcount == -1).
159 		 *
160 		 * See page-flags.h for a list of page types which are currently
161 		 * stored here.
162 		 *
163 		 * Owners of typed folios may reuse the lower 16 bit of the
164 		 * head page page_type field after setting the page type,
165 		 * but must reset these 16 bit to -1 before clearing the
166 		 * page type.
167 		 */
168 		unsigned int page_type;
169 
170 		/*
171 		 * For pages that are part of non-typed folios for which mappings
172 		 * are tracked via the RMAP, encodes the number of times this page
173 		 * is directly referenced by a page table.
174 		 *
175 		 * Note that the mapcount is always initialized to -1, so that
176 		 * transitions both from it and to it can be tracked, using
177 		 * atomic_inc_and_test() and atomic_add_negative(-1).
178 		 */
179 		atomic_t _mapcount;
180 	};
181 
182 	/* Usage count. *DO NOT USE DIRECTLY*. See page_ref.h */
183 	atomic_t _refcount;
184 
185 #ifdef CONFIG_MEMCG
186 	unsigned long memcg_data;
187 #elif defined(CONFIG_SLAB_OBJ_EXT)
188 	unsigned long _unused_slab_obj_exts;
189 #endif
190 
191 	/*
192 	 * On machines where all RAM is mapped into kernel address space,
193 	 * we can simply calculate the virtual address. On machines with
194 	 * highmem some memory is mapped into kernel virtual memory
195 	 * dynamically, so we need a place to store that address.
196 	 * Note that this field could be 16 bits on x86 ... ;)
197 	 *
198 	 * Architectures with slow multiplication can define
199 	 * WANT_PAGE_VIRTUAL in asm/page.h
200 	 */
201 #if defined(WANT_PAGE_VIRTUAL)
202 	void *virtual;			/* Kernel virtual address (NULL if
203 					   not kmapped, ie. highmem) */
204 #endif /* WANT_PAGE_VIRTUAL */
205 
206 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
207 	int _last_cpupid;
208 #endif
209 
210 #ifdef CONFIG_KMSAN
211 	/*
212 	 * KMSAN metadata for this page:
213 	 *  - shadow page: every bit indicates whether the corresponding
214 	 *    bit of the original page is initialized (0) or not (1);
215 	 *  - origin page: every 4 bytes contain an id of the stack trace
216 	 *    where the uninitialized value was created.
217 	 */
218 	struct page *kmsan_shadow;
219 	struct page *kmsan_origin;
220 #endif
221 } _struct_page_alignment;
222 
223 /*
224  * struct encoded_page - a nonexistent type marking this pointer
225  *
226  * An 'encoded_page' pointer is a pointer to a regular 'struct page', but
227  * with the low bits of the pointer indicating extra context-dependent
228  * information. Only used in mmu_gather handling, and this acts as a type
229  * system check on that use.
230  *
231  * We only really have two guaranteed bits in general, although you could
232  * play with 'struct page' alignment (see CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
233  * for more.
234  *
235  * Use the supplied helper functions to endcode/decode the pointer and bits.
236  */
237 struct encoded_page;
238 
239 #define ENCODED_PAGE_BITS			3ul
240 
241 /* Perform rmap removal after we have flushed the TLB. */
242 #define ENCODED_PAGE_BIT_DELAY_RMAP		1ul
243 
244 /*
245  * The next item in an encoded_page array is the "nr_pages" argument, specifying
246  * the number of consecutive pages starting from this page, that all belong to
247  * the same folio. For example, "nr_pages" corresponds to the number of folio
248  * references that must be dropped. If this bit is not set, "nr_pages" is
249  * implicitly 1.
250  */
251 #define ENCODED_PAGE_BIT_NR_PAGES_NEXT		2ul
252 
encode_page(struct page * page,unsigned long flags)253 static __always_inline struct encoded_page *encode_page(struct page *page, unsigned long flags)
254 {
255 	BUILD_BUG_ON(flags > ENCODED_PAGE_BITS);
256 	return (struct encoded_page *)(flags | (unsigned long)page);
257 }
258 
encoded_page_flags(struct encoded_page * page)259 static inline unsigned long encoded_page_flags(struct encoded_page *page)
260 {
261 	return ENCODED_PAGE_BITS & (unsigned long)page;
262 }
263 
encoded_page_ptr(struct encoded_page * page)264 static inline struct page *encoded_page_ptr(struct encoded_page *page)
265 {
266 	return (struct page *)(~ENCODED_PAGE_BITS & (unsigned long)page);
267 }
268 
encode_nr_pages(unsigned long nr)269 static __always_inline struct encoded_page *encode_nr_pages(unsigned long nr)
270 {
271 	VM_WARN_ON_ONCE((nr << 2) >> 2 != nr);
272 	return (struct encoded_page *)(nr << 2);
273 }
274 
encoded_nr_pages(struct encoded_page * page)275 static __always_inline unsigned long encoded_nr_pages(struct encoded_page *page)
276 {
277 	return ((unsigned long)page) >> 2;
278 }
279 
280 /*
281  * A swap entry has to fit into a "unsigned long", as the entry is hidden
282  * in the "index" field of the swapper address space.
283  */
284 typedef struct {
285 	unsigned long val;
286 } swp_entry_t;
287 
288 #if defined(CONFIG_MEMCG) || defined(CONFIG_SLAB_OBJ_EXT)
289 /* We have some extra room after the refcount in tail pages. */
290 #define NR_PAGES_IN_LARGE_FOLIO
291 #endif
292 
293 /*
294  * On 32bit, we can cut the required metadata in half, because:
295  * (a) PID_MAX_LIMIT implicitly limits the number of MMs we could ever have,
296  *     so we can limit MM IDs to 15 bit (32767).
297  * (b) We don't expect folios where even a single complete PTE mapping by
298  *     one MM would exceed 15 bits (order-15).
299  */
300 #ifdef CONFIG_64BIT
301 typedef int mm_id_mapcount_t;
302 #define MM_ID_MAPCOUNT_MAX		INT_MAX
303 typedef unsigned int mm_id_t;
304 #else /* !CONFIG_64BIT */
305 typedef short mm_id_mapcount_t;
306 #define MM_ID_MAPCOUNT_MAX		SHRT_MAX
307 typedef unsigned short mm_id_t;
308 #endif /* CONFIG_64BIT */
309 
310 /* We implicitly use the dummy ID for init-mm etc. where we never rmap pages. */
311 #define MM_ID_DUMMY			0
312 #define MM_ID_MIN			(MM_ID_DUMMY + 1)
313 
314 /*
315  * We leave the highest bit of each MM id unused, so we can store a flag
316  * in the highest bit of each folio->_mm_id[].
317  */
318 #define MM_ID_BITS			((sizeof(mm_id_t) * BITS_PER_BYTE) - 1)
319 #define MM_ID_MASK			((1U << MM_ID_BITS) - 1)
320 #define MM_ID_MAX			MM_ID_MASK
321 
322 /*
323  * In order to use bit_spin_lock(), which requires an unsigned long, we
324  * operate on folio->_mm_ids when working on flags.
325  */
326 #define FOLIO_MM_IDS_LOCK_BITNUM	MM_ID_BITS
327 #define FOLIO_MM_IDS_LOCK_BIT		BIT(FOLIO_MM_IDS_LOCK_BITNUM)
328 #define FOLIO_MM_IDS_SHARED_BITNUM	(2 * MM_ID_BITS + 1)
329 #define FOLIO_MM_IDS_SHARED_BIT		BIT(FOLIO_MM_IDS_SHARED_BITNUM)
330 
331 /**
332  * struct folio - Represents a contiguous set of bytes.
333  * @flags: Identical to the page flags.
334  * @lru: Least Recently Used list; tracks how recently this folio was used.
335  * @mlock_count: Number of times this folio has been pinned by mlock().
336  * @mapping: The file this page belongs to, or refers to the anon_vma for
337  *    anonymous memory.
338  * @index: Offset within the file, in units of pages.  For anonymous memory,
339  *    this is the index from the beginning of the mmap.
340  * @share: number of DAX mappings that reference this folio. See
341  *    dax_associate_entry.
342  * @private: Filesystem per-folio data (see folio_attach_private()).
343  * @swap: Used for swp_entry_t if folio_test_swapcache().
344  * @_mapcount: Do not access this member directly.  Use folio_mapcount() to
345  *    find out how many times this folio is mapped by userspace.
346  * @_refcount: Do not access this member directly.  Use folio_ref_count()
347  *    to find how many references there are to this folio.
348  * @memcg_data: Memory Control Group data.
349  * @pgmap: Metadata for ZONE_DEVICE mappings
350  * @virtual: Virtual address in the kernel direct map.
351  * @_last_cpupid: IDs of last CPU and last process that accessed the folio.
352  * @_entire_mapcount: Do not use directly, call folio_entire_mapcount().
353  * @_large_mapcount: Do not use directly, call folio_mapcount().
354  * @_nr_pages_mapped: Do not use outside of rmap and debug code.
355  * @_pincount: Do not use directly, call folio_maybe_dma_pinned().
356  * @_nr_pages: Do not use directly, call folio_nr_pages().
357  * @_mm_id: Do not use outside of rmap code.
358  * @_mm_ids: Do not use outside of rmap code.
359  * @_mm_id_mapcount: Do not use outside of rmap code.
360  * @_hugetlb_subpool: Do not use directly, use accessor in hugetlb.h.
361  * @_hugetlb_cgroup: Do not use directly, use accessor in hugetlb_cgroup.h.
362  * @_hugetlb_cgroup_rsvd: Do not use directly, use accessor in hugetlb_cgroup.h.
363  * @_hugetlb_hwpoison: Do not use directly, call raw_hwp_list_head().
364  * @_deferred_list: Folios to be split under memory pressure.
365  * @_unused_slab_obj_exts: Placeholder to match obj_exts in struct slab.
366  *
367  * A folio is a physically, virtually and logically contiguous set
368  * of bytes.  It is a power-of-two in size, and it is aligned to that
369  * same power-of-two.  It is at least as large as %PAGE_SIZE.  If it is
370  * in the page cache, it is at a file offset which is a multiple of that
371  * power-of-two.  It may be mapped into userspace at an address which is
372  * at an arbitrary page offset, but its kernel virtual address is aligned
373  * to its size.
374  */
375 struct folio {
376 	/* private: don't document the anon union */
377 	union {
378 		struct {
379 	/* public: */
380 			memdesc_flags_t flags;
381 			union {
382 				struct list_head lru;
383 	/* private: avoid cluttering the output */
384 				/* For the Unevictable "LRU list" slot */
385 				struct {
386 					/* Avoid compound_head */
387 					void *__filler;
388 	/* public: */
389 					unsigned int mlock_count;
390 	/* private: */
391 				};
392 	/* public: */
393 				struct dev_pagemap *pgmap;
394 			};
395 			struct address_space *mapping;
396 			union {
397 				pgoff_t index;
398 				unsigned long share;
399 			};
400 			union {
401 				void *private;
402 				swp_entry_t swap;
403 			};
404 			atomic_t _mapcount;
405 			atomic_t _refcount;
406 #ifdef CONFIG_MEMCG
407 			unsigned long memcg_data;
408 #elif defined(CONFIG_SLAB_OBJ_EXT)
409 			unsigned long _unused_slab_obj_exts;
410 #endif
411 #if defined(WANT_PAGE_VIRTUAL)
412 			void *virtual;
413 #endif
414 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
415 			int _last_cpupid;
416 #endif
417 	/* private: the union with struct page is transitional */
418 		};
419 		struct page page;
420 	};
421 	union {
422 		struct {
423 			unsigned long _flags_1;
424 			unsigned long _head_1;
425 			union {
426 				struct {
427 	/* public: */
428 					atomic_t _large_mapcount;
429 					atomic_t _nr_pages_mapped;
430 #ifdef CONFIG_64BIT
431 					atomic_t _entire_mapcount;
432 					atomic_t _pincount;
433 #endif /* CONFIG_64BIT */
434 					mm_id_mapcount_t _mm_id_mapcount[2];
435 					union {
436 						mm_id_t _mm_id[2];
437 						unsigned long _mm_ids;
438 					};
439 	/* private: the union with struct page is transitional */
440 				};
441 				unsigned long _usable_1[4];
442 			};
443 			atomic_t _mapcount_1;
444 			atomic_t _refcount_1;
445 	/* public: */
446 #ifdef NR_PAGES_IN_LARGE_FOLIO
447 			unsigned int _nr_pages;
448 #endif /* NR_PAGES_IN_LARGE_FOLIO */
449 	/* private: the union with struct page is transitional */
450 		};
451 		struct page __page_1;
452 	};
453 	union {
454 		struct {
455 			unsigned long _flags_2;
456 			unsigned long _head_2;
457 	/* public: */
458 			struct list_head _deferred_list;
459 #ifndef CONFIG_64BIT
460 			atomic_t _entire_mapcount;
461 			atomic_t _pincount;
462 #endif /* !CONFIG_64BIT */
463 	/* private: the union with struct page is transitional */
464 		};
465 		struct page __page_2;
466 	};
467 	union {
468 		struct {
469 			unsigned long _flags_3;
470 			unsigned long _head_3;
471 	/* public: */
472 			void *_hugetlb_subpool;
473 			void *_hugetlb_cgroup;
474 			void *_hugetlb_cgroup_rsvd;
475 			void *_hugetlb_hwpoison;
476 	/* private: the union with struct page is transitional */
477 		};
478 		struct page __page_3;
479 	};
480 };
481 
482 #define FOLIO_MATCH(pg, fl)						\
483 	static_assert(offsetof(struct page, pg) == offsetof(struct folio, fl))
484 FOLIO_MATCH(flags, flags);
485 FOLIO_MATCH(lru, lru);
486 FOLIO_MATCH(mapping, mapping);
487 FOLIO_MATCH(compound_head, lru);
488 FOLIO_MATCH(__folio_index, index);
489 FOLIO_MATCH(private, private);
490 FOLIO_MATCH(_mapcount, _mapcount);
491 FOLIO_MATCH(_refcount, _refcount);
492 #ifdef CONFIG_MEMCG
493 FOLIO_MATCH(memcg_data, memcg_data);
494 #endif
495 #if defined(WANT_PAGE_VIRTUAL)
496 FOLIO_MATCH(virtual, virtual);
497 #endif
498 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
499 FOLIO_MATCH(_last_cpupid, _last_cpupid);
500 #endif
501 #undef FOLIO_MATCH
502 #define FOLIO_MATCH(pg, fl)						\
503 	static_assert(offsetof(struct folio, fl) ==			\
504 			offsetof(struct page, pg) + sizeof(struct page))
505 FOLIO_MATCH(flags, _flags_1);
506 FOLIO_MATCH(compound_head, _head_1);
507 FOLIO_MATCH(_mapcount, _mapcount_1);
508 FOLIO_MATCH(_refcount, _refcount_1);
509 #undef FOLIO_MATCH
510 #define FOLIO_MATCH(pg, fl)						\
511 	static_assert(offsetof(struct folio, fl) ==			\
512 			offsetof(struct page, pg) + 2 * sizeof(struct page))
513 FOLIO_MATCH(flags, _flags_2);
514 FOLIO_MATCH(compound_head, _head_2);
515 #undef FOLIO_MATCH
516 #define FOLIO_MATCH(pg, fl)						\
517 	static_assert(offsetof(struct folio, fl) ==			\
518 			offsetof(struct page, pg) + 3 * sizeof(struct page))
519 FOLIO_MATCH(flags, _flags_3);
520 FOLIO_MATCH(compound_head, _head_3);
521 #undef FOLIO_MATCH
522 
523 /**
524  * struct ptdesc -    Memory descriptor for page tables.
525  * @pt_flags: enum pt_flags plus zone/node/section.
526  * @pt_rcu_head:      For freeing page table pages.
527  * @pt_list:          List of used page tables. Used for s390 gmap shadow pages
528  *                    (which are not linked into the user page tables) and x86
529  *                    pgds.
530  * @_pt_pad_1:        Padding that aliases with page's compound head.
531  * @pmd_huge_pte:     Protected by ptdesc->ptl, used for THPs.
532  * @__page_mapping:   Aliases with page->mapping. Unused for page tables.
533  * @pt_index:         Used for s390 gmap.
534  * @pt_mm:            Used for x86 pgds.
535  * @pt_frag_refcount: For fragmented page table tracking. Powerpc only.
536  * @pt_share_count:   Used for HugeTLB PMD page table share count.
537  * @_pt_pad_2:        Padding to ensure proper alignment.
538  * @ptl:              Lock for the page table.
539  * @__page_type:      Same as page->page_type. Unused for page tables.
540  * @__page_refcount:  Same as page refcount.
541  * @pt_memcg_data:    Memcg data. Tracked for page tables here.
542  *
543  * This struct overlays struct page for now. Do not modify without a good
544  * understanding of the issues.
545  */
546 struct ptdesc {
547 	memdesc_flags_t pt_flags;
548 
549 	union {
550 		struct rcu_head pt_rcu_head;
551 		struct list_head pt_list;
552 		struct {
553 			unsigned long _pt_pad_1;
554 			pgtable_t pmd_huge_pte;
555 		};
556 	};
557 	unsigned long __page_mapping;
558 
559 	union {
560 		pgoff_t pt_index;
561 		struct mm_struct *pt_mm;
562 		atomic_t pt_frag_refcount;
563 #ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING
564 		atomic_t pt_share_count;
565 #endif
566 	};
567 
568 	union {
569 		unsigned long _pt_pad_2;
570 #if ALLOC_SPLIT_PTLOCKS
571 		spinlock_t *ptl;
572 #else
573 		spinlock_t ptl;
574 #endif
575 	};
576 	unsigned int __page_type;
577 	atomic_t __page_refcount;
578 #ifdef CONFIG_MEMCG
579 	unsigned long pt_memcg_data;
580 #endif
581 };
582 
583 #define TABLE_MATCH(pg, pt)						\
584 	static_assert(offsetof(struct page, pg) == offsetof(struct ptdesc, pt))
585 TABLE_MATCH(flags, pt_flags);
586 TABLE_MATCH(compound_head, pt_list);
587 TABLE_MATCH(compound_head, _pt_pad_1);
588 TABLE_MATCH(mapping, __page_mapping);
589 TABLE_MATCH(__folio_index, pt_index);
590 TABLE_MATCH(rcu_head, pt_rcu_head);
591 TABLE_MATCH(page_type, __page_type);
592 TABLE_MATCH(_refcount, __page_refcount);
593 #ifdef CONFIG_MEMCG
594 TABLE_MATCH(memcg_data, pt_memcg_data);
595 #endif
596 #undef TABLE_MATCH
597 static_assert(sizeof(struct ptdesc) <= sizeof(struct page));
598 
599 #define ptdesc_page(pt)			(_Generic((pt),			\
600 	const struct ptdesc *:		(const struct page *)(pt),	\
601 	struct ptdesc *:		(struct page *)(pt)))
602 
603 #define ptdesc_folio(pt)		(_Generic((pt),			\
604 	const struct ptdesc *:		(const struct folio *)(pt),	\
605 	struct ptdesc *:		(struct folio *)(pt)))
606 
607 #define page_ptdesc(p)			(_Generic((p),			\
608 	const struct page *:		(const struct ptdesc *)(p),	\
609 	struct page *:			(struct ptdesc *)(p)))
610 
611 #ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING
ptdesc_pmd_pts_init(struct ptdesc * ptdesc)612 static inline void ptdesc_pmd_pts_init(struct ptdesc *ptdesc)
613 {
614 	atomic_set(&ptdesc->pt_share_count, 0);
615 }
616 
ptdesc_pmd_pts_inc(struct ptdesc * ptdesc)617 static inline void ptdesc_pmd_pts_inc(struct ptdesc *ptdesc)
618 {
619 	atomic_inc(&ptdesc->pt_share_count);
620 }
621 
ptdesc_pmd_pts_dec(struct ptdesc * ptdesc)622 static inline void ptdesc_pmd_pts_dec(struct ptdesc *ptdesc)
623 {
624 	atomic_dec(&ptdesc->pt_share_count);
625 }
626 
ptdesc_pmd_pts_count(const struct ptdesc * ptdesc)627 static inline int ptdesc_pmd_pts_count(const struct ptdesc *ptdesc)
628 {
629 	return atomic_read(&ptdesc->pt_share_count);
630 }
631 
ptdesc_pmd_is_shared(struct ptdesc * ptdesc)632 static inline bool ptdesc_pmd_is_shared(struct ptdesc *ptdesc)
633 {
634 	return !!ptdesc_pmd_pts_count(ptdesc);
635 }
636 #else
ptdesc_pmd_pts_init(struct ptdesc * ptdesc)637 static inline void ptdesc_pmd_pts_init(struct ptdesc *ptdesc)
638 {
639 }
640 #endif
641 
642 /*
643  * Used for sizing the vmemmap region on some architectures
644  */
645 #define STRUCT_PAGE_MAX_SHIFT	(order_base_2(sizeof(struct page)))
646 
647 /*
648  * page_private can be used on tail pages.  However, PagePrivate is only
649  * checked by the VM on the head page.  So page_private on the tail pages
650  * should be used for data that's ancillary to the head page (eg attaching
651  * buffer heads to tail pages after attaching buffer heads to the head page)
652  */
653 #define page_private(page)		((page)->private)
654 
set_page_private(struct page * page,unsigned long private)655 static inline void set_page_private(struct page *page, unsigned long private)
656 {
657 	page->private = private;
658 }
659 
folio_get_private(const struct folio * folio)660 static inline void *folio_get_private(const struct folio *folio)
661 {
662 	return folio->private;
663 }
664 
665 typedef unsigned long vm_flags_t;
666 
667 /*
668  * freeptr_t represents a SLUB freelist pointer, which might be encoded
669  * and not dereferenceable if CONFIG_SLAB_FREELIST_HARDENED is enabled.
670  */
671 typedef struct { unsigned long v; } freeptr_t;
672 
673 /*
674  * A region containing a mapping of a non-memory backed file under NOMMU
675  * conditions.  These are held in a global tree and are pinned by the VMAs that
676  * map parts of them.
677  */
678 struct vm_region {
679 	struct rb_node	vm_rb;		/* link in global region tree */
680 	vm_flags_t	vm_flags;	/* VMA vm_flags */
681 	unsigned long	vm_start;	/* start address of region */
682 	unsigned long	vm_end;		/* region initialised to here */
683 	unsigned long	vm_top;		/* region allocated to here */
684 	unsigned long	vm_pgoff;	/* the offset in vm_file corresponding to vm_start */
685 	struct file	*vm_file;	/* the backing file or NULL */
686 
687 	int		vm_usage;	/* region usage count (access under nommu_region_sem) */
688 	bool		vm_icache_flushed : 1; /* true if the icache has been flushed for
689 						* this region */
690 };
691 
692 #ifdef CONFIG_USERFAULTFD
693 #define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) { NULL, })
694 struct vm_userfaultfd_ctx {
695 	struct userfaultfd_ctx *ctx;
696 };
697 #else /* CONFIG_USERFAULTFD */
698 #define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) {})
699 struct vm_userfaultfd_ctx {};
700 #endif /* CONFIG_USERFAULTFD */
701 
702 struct anon_vma_name {
703 	struct kref kref;
704 	/* The name needs to be at the end because it is dynamically sized. */
705 	char name[];
706 };
707 
708 #ifdef CONFIG_ANON_VMA_NAME
709 /*
710  * mmap_lock should be read-locked when calling anon_vma_name(). Caller should
711  * either keep holding the lock while using the returned pointer or it should
712  * raise anon_vma_name refcount before releasing the lock.
713  */
714 struct anon_vma_name *anon_vma_name(struct vm_area_struct *vma);
715 struct anon_vma_name *anon_vma_name_alloc(const char *name);
716 void anon_vma_name_free(struct kref *kref);
717 #else /* CONFIG_ANON_VMA_NAME */
anon_vma_name(struct vm_area_struct * vma)718 static inline struct anon_vma_name *anon_vma_name(struct vm_area_struct *vma)
719 {
720 	return NULL;
721 }
722 
anon_vma_name_alloc(const char * name)723 static inline struct anon_vma_name *anon_vma_name_alloc(const char *name)
724 {
725 	return NULL;
726 }
727 #endif
728 
729 #define VMA_LOCK_OFFSET	0x40000000
730 #define VMA_REF_LIMIT	(VMA_LOCK_OFFSET - 1)
731 
732 struct vma_numab_state {
733 	/*
734 	 * Initialised as time in 'jiffies' after which VMA
735 	 * should be scanned.  Delays first scan of new VMA by at
736 	 * least sysctl_numa_balancing_scan_delay:
737 	 */
738 	unsigned long next_scan;
739 
740 	/*
741 	 * Time in jiffies when pids_active[] is reset to
742 	 * detect phase change behaviour:
743 	 */
744 	unsigned long pids_active_reset;
745 
746 	/*
747 	 * Approximate tracking of PIDs that trapped a NUMA hinting
748 	 * fault. May produce false positives due to hash collisions.
749 	 *
750 	 *   [0] Previous PID tracking
751 	 *   [1] Current PID tracking
752 	 *
753 	 * Window moves after next_pid_reset has expired approximately
754 	 * every VMA_PID_RESET_PERIOD jiffies:
755 	 */
756 	unsigned long pids_active[2];
757 
758 	/* MM scan sequence ID when scan first started after VMA creation */
759 	int start_scan_seq;
760 
761 	/*
762 	 * MM scan sequence ID when the VMA was last completely scanned.
763 	 * A VMA is not eligible for scanning if prev_scan_seq == numa_scan_seq
764 	 */
765 	int prev_scan_seq;
766 };
767 
768 #ifdef __HAVE_PFNMAP_TRACKING
769 struct pfnmap_track_ctx {
770 	struct kref kref;
771 	unsigned long pfn;
772 	unsigned long size;	/* in bytes */
773 };
774 #endif
775 
776 /*
777  * Describes a VMA that is about to be mmap()'ed. Drivers may choose to
778  * manipulate mutable fields which will cause those fields to be updated in the
779  * resultant VMA.
780  *
781  * Helper functions are not required for manipulating any field.
782  */
783 struct vm_area_desc {
784 	/* Immutable state. */
785 	const struct mm_struct *const mm;
786 	struct file *const file; /* May vary from vm_file in stacked callers. */
787 	unsigned long start;
788 	unsigned long end;
789 
790 	/* Mutable fields. Populated with initial state. */
791 	pgoff_t pgoff;
792 	struct file *vm_file;
793 	vm_flags_t vm_flags;
794 	pgprot_t page_prot;
795 
796 	/* Write-only fields. */
797 	const struct vm_operations_struct *vm_ops;
798 	void *private_data;
799 };
800 
801 /*
802  * This struct describes a virtual memory area. There is one of these
803  * per VM-area/task. A VM area is any part of the process virtual memory
804  * space that has a special rule for the page-fault handlers (ie a shared
805  * library, the executable area etc).
806  *
807  * Only explicitly marked struct members may be accessed by RCU readers before
808  * getting a stable reference.
809  *
810  * WARNING: when adding new members, please update vm_area_init_from() to copy
811  * them during vm_area_struct content duplication.
812  */
813 struct vm_area_struct {
814 	/* The first cache line has the info for VMA tree walking. */
815 
816 	union {
817 		struct {
818 			/* VMA covers [vm_start; vm_end) addresses within mm */
819 			unsigned long vm_start;
820 			unsigned long vm_end;
821 		};
822 		freeptr_t vm_freeptr; /* Pointer used by SLAB_TYPESAFE_BY_RCU */
823 	};
824 
825 	/*
826 	 * The address space we belong to.
827 	 * Unstable RCU readers are allowed to read this.
828 	 */
829 	struct mm_struct *vm_mm;
830 	pgprot_t vm_page_prot;          /* Access permissions of this VMA. */
831 
832 	/*
833 	 * Flags, see mm.h.
834 	 * To modify use vm_flags_{init|reset|set|clear|mod} functions.
835 	 */
836 	union {
837 		const vm_flags_t vm_flags;
838 		vm_flags_t __private __vm_flags;
839 	};
840 
841 #ifdef CONFIG_PER_VMA_LOCK
842 	/*
843 	 * Can only be written (using WRITE_ONCE()) while holding both:
844 	 *  - mmap_lock (in write mode)
845 	 *  - vm_refcnt bit at VMA_LOCK_OFFSET is set
846 	 * Can be read reliably while holding one of:
847 	 *  - mmap_lock (in read or write mode)
848 	 *  - vm_refcnt bit at VMA_LOCK_OFFSET is set or vm_refcnt > 1
849 	 * Can be read unreliably (using READ_ONCE()) for pessimistic bailout
850 	 * while holding nothing (except RCU to keep the VMA struct allocated).
851 	 *
852 	 * This sequence counter is explicitly allowed to overflow; sequence
853 	 * counter reuse can only lead to occasional unnecessary use of the
854 	 * slowpath.
855 	 */
856 	unsigned int vm_lock_seq;
857 #endif
858 	/*
859 	 * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma
860 	 * list, after a COW of one of the file pages.	A MAP_SHARED vma
861 	 * can only be in the i_mmap tree.  An anonymous MAP_PRIVATE, stack
862 	 * or brk vma (with NULL file) can only be in an anon_vma list.
863 	 */
864 	struct list_head anon_vma_chain; /* Serialized by mmap_lock &
865 					  * page_table_lock */
866 	struct anon_vma *anon_vma;	/* Serialized by page_table_lock */
867 
868 	/* Function pointers to deal with this struct. */
869 	const struct vm_operations_struct *vm_ops;
870 
871 	/* Information about our backing store: */
872 	unsigned long vm_pgoff;		/* Offset (within vm_file) in PAGE_SIZE
873 					   units */
874 	struct file * vm_file;		/* File we map to (can be NULL). */
875 	void * vm_private_data;		/* was vm_pte (shared mem) */
876 
877 #ifdef CONFIG_SWAP
878 	atomic_long_t swap_readahead_info;
879 #endif
880 #ifndef CONFIG_MMU
881 	struct vm_region *vm_region;	/* NOMMU mapping region */
882 #endif
883 #ifdef CONFIG_NUMA
884 	struct mempolicy *vm_policy;	/* NUMA policy for the VMA */
885 #endif
886 #ifdef CONFIG_NUMA_BALANCING
887 	struct vma_numab_state *numab_state;	/* NUMA Balancing state */
888 #endif
889 #ifdef CONFIG_PER_VMA_LOCK
890 	/* Unstable RCU readers are allowed to read this. */
891 	refcount_t vm_refcnt ____cacheline_aligned_in_smp;
892 #ifdef CONFIG_DEBUG_LOCK_ALLOC
893 	struct lockdep_map vmlock_dep_map;
894 #endif
895 #endif
896 	/*
897 	 * For areas with an address space and backing store,
898 	 * linkage into the address_space->i_mmap interval tree.
899 	 *
900 	 */
901 	struct {
902 		struct rb_node rb;
903 		unsigned long rb_subtree_last;
904 	} shared;
905 #ifdef CONFIG_ANON_VMA_NAME
906 	/*
907 	 * For private and shared anonymous mappings, a pointer to a null
908 	 * terminated string containing the name given to the vma, or NULL if
909 	 * unnamed. Serialized by mmap_lock. Use anon_vma_name to access.
910 	 */
911 	struct anon_vma_name *anon_name;
912 #endif
913 	struct vm_userfaultfd_ctx vm_userfaultfd_ctx;
914 #ifdef __HAVE_PFNMAP_TRACKING
915 	struct pfnmap_track_ctx *pfnmap_track_ctx;
916 #endif
917 } __randomize_layout;
918 
919 #ifdef CONFIG_NUMA
920 #define vma_policy(vma) ((vma)->vm_policy)
921 #else
922 #define vma_policy(vma) NULL
923 #endif
924 
925 #ifdef CONFIG_SCHED_MM_CID
926 struct mm_cid {
927 	u64 time;
928 	int cid;
929 	int recent_cid;
930 };
931 #endif
932 
933 /*
934  * Opaque type representing current mm_struct flag state. Must be accessed via
935  * mm_flags_xxx() helper functions.
936  */
937 #define NUM_MM_FLAG_BITS (64)
938 typedef struct {
939 	DECLARE_BITMAP(__mm_flags, NUM_MM_FLAG_BITS);
940 } __private mm_flags_t;
941 
942 struct kioctx_table;
943 struct iommu_mm_data;
944 struct mm_struct {
945 	struct {
946 		/*
947 		 * Fields which are often written to are placed in a separate
948 		 * cache line.
949 		 */
950 		struct {
951 			/**
952 			 * @mm_count: The number of references to &struct
953 			 * mm_struct (@mm_users count as 1).
954 			 *
955 			 * Use mmgrab()/mmdrop() to modify. When this drops to
956 			 * 0, the &struct mm_struct is freed.
957 			 */
958 			atomic_t mm_count;
959 		} ____cacheline_aligned_in_smp;
960 
961 		struct maple_tree mm_mt;
962 
963 		unsigned long mmap_base;	/* base of mmap area */
964 		unsigned long mmap_legacy_base;	/* base of mmap area in bottom-up allocations */
965 #ifdef CONFIG_HAVE_ARCH_COMPAT_MMAP_BASES
966 		/* Base addresses for compatible mmap() */
967 		unsigned long mmap_compat_base;
968 		unsigned long mmap_compat_legacy_base;
969 #endif
970 		unsigned long task_size;	/* size of task vm space */
971 		pgd_t * pgd;
972 
973 #ifdef CONFIG_MEMBARRIER
974 		/**
975 		 * @membarrier_state: Flags controlling membarrier behavior.
976 		 *
977 		 * This field is close to @pgd to hopefully fit in the same
978 		 * cache-line, which needs to be touched by switch_mm().
979 		 */
980 		atomic_t membarrier_state;
981 #endif
982 
983 		/**
984 		 * @mm_users: The number of users including userspace.
985 		 *
986 		 * Use mmget()/mmget_not_zero()/mmput() to modify. When this
987 		 * drops to 0 (i.e. when the task exits and there are no other
988 		 * temporary reference holders), we also release a reference on
989 		 * @mm_count (which may then free the &struct mm_struct if
990 		 * @mm_count also drops to 0).
991 		 */
992 		atomic_t mm_users;
993 
994 #ifdef CONFIG_SCHED_MM_CID
995 		/**
996 		 * @pcpu_cid: Per-cpu current cid.
997 		 *
998 		 * Keep track of the currently allocated mm_cid for each cpu.
999 		 * The per-cpu mm_cid values are serialized by their respective
1000 		 * runqueue locks.
1001 		 */
1002 		struct mm_cid __percpu *pcpu_cid;
1003 		/*
1004 		 * @mm_cid_next_scan: Next mm_cid scan (in jiffies).
1005 		 *
1006 		 * When the next mm_cid scan is due (in jiffies).
1007 		 */
1008 		unsigned long mm_cid_next_scan;
1009 		/**
1010 		 * @nr_cpus_allowed: Number of CPUs allowed for mm.
1011 		 *
1012 		 * Number of CPUs allowed in the union of all mm's
1013 		 * threads allowed CPUs.
1014 		 */
1015 		unsigned int nr_cpus_allowed;
1016 		/**
1017 		 * @max_nr_cid: Maximum number of allowed concurrency
1018 		 *              IDs allocated.
1019 		 *
1020 		 * Track the highest number of allowed concurrency IDs
1021 		 * allocated for the mm.
1022 		 */
1023 		atomic_t max_nr_cid;
1024 		/**
1025 		 * @cpus_allowed_lock: Lock protecting mm cpus_allowed.
1026 		 *
1027 		 * Provide mutual exclusion for mm cpus_allowed and
1028 		 * mm nr_cpus_allowed updates.
1029 		 */
1030 		raw_spinlock_t cpus_allowed_lock;
1031 #endif
1032 #ifdef CONFIG_MMU
1033 		atomic_long_t pgtables_bytes;	/* size of all page tables */
1034 #endif
1035 		int map_count;			/* number of VMAs */
1036 
1037 		spinlock_t page_table_lock; /* Protects page tables and some
1038 					     * counters
1039 					     */
1040 		/*
1041 		 * Typically the current mmap_lock's offset is 56 bytes from
1042 		 * the last cacheline boundary, which is very optimal, as
1043 		 * its two hot fields 'count' and 'owner' sit in 2 different
1044 		 * cachelines, and when mmap_lock is highly contended, both
1045 		 * of the 2 fields will be accessed frequently, current layout
1046 		 * will help to reduce cache bouncing.
1047 		 *
1048 		 * So please be careful with adding new fields before
1049 		 * mmap_lock, which can easily push the 2 fields into one
1050 		 * cacheline.
1051 		 */
1052 		struct rw_semaphore mmap_lock;
1053 
1054 		struct list_head mmlist; /* List of maybe swapped mm's.	These
1055 					  * are globally strung together off
1056 					  * init_mm.mmlist, and are protected
1057 					  * by mmlist_lock
1058 					  */
1059 #ifdef CONFIG_PER_VMA_LOCK
1060 		struct rcuwait vma_writer_wait;
1061 		/*
1062 		 * This field has lock-like semantics, meaning it is sometimes
1063 		 * accessed with ACQUIRE/RELEASE semantics.
1064 		 * Roughly speaking, incrementing the sequence number is
1065 		 * equivalent to releasing locks on VMAs; reading the sequence
1066 		 * number can be part of taking a read lock on a VMA.
1067 		 * Incremented every time mmap_lock is write-locked/unlocked.
1068 		 * Initialized to 0, therefore odd values indicate mmap_lock
1069 		 * is write-locked and even values that it's released.
1070 		 *
1071 		 * Can be modified under write mmap_lock using RELEASE
1072 		 * semantics.
1073 		 * Can be read with no other protection when holding write
1074 		 * mmap_lock.
1075 		 * Can be read with ACQUIRE semantics if not holding write
1076 		 * mmap_lock.
1077 		 */
1078 		seqcount_t mm_lock_seq;
1079 #endif
1080 #ifdef CONFIG_FUTEX_PRIVATE_HASH
1081 		struct mutex			futex_hash_lock;
1082 		struct futex_private_hash	__rcu *futex_phash;
1083 		struct futex_private_hash	*futex_phash_new;
1084 		/* futex-ref */
1085 		unsigned long			futex_batches;
1086 		struct rcu_head			futex_rcu;
1087 		atomic_long_t			futex_atomic;
1088 		unsigned int			__percpu *futex_ref;
1089 #endif
1090 
1091 		unsigned long hiwater_rss; /* High-watermark of RSS usage */
1092 		unsigned long hiwater_vm;  /* High-water virtual memory usage */
1093 
1094 		unsigned long total_vm;	   /* Total pages mapped */
1095 		unsigned long locked_vm;   /* Pages that have PG_mlocked set */
1096 		atomic64_t    pinned_vm;   /* Refcount permanently increased */
1097 		unsigned long data_vm;	   /* VM_WRITE & ~VM_SHARED & ~VM_STACK */
1098 		unsigned long exec_vm;	   /* VM_EXEC & ~VM_WRITE & ~VM_STACK */
1099 		unsigned long stack_vm;	   /* VM_STACK */
1100 		vm_flags_t def_flags;
1101 
1102 		/**
1103 		 * @write_protect_seq: Locked when any thread is write
1104 		 * protecting pages mapped by this mm to enforce a later COW,
1105 		 * for instance during page table copying for fork().
1106 		 */
1107 		seqcount_t write_protect_seq;
1108 
1109 		spinlock_t arg_lock; /* protect the below fields */
1110 
1111 		unsigned long start_code, end_code, start_data, end_data;
1112 		unsigned long start_brk, brk, start_stack;
1113 		unsigned long arg_start, arg_end, env_start, env_end;
1114 
1115 		unsigned long saved_auxv[AT_VECTOR_SIZE]; /* for /proc/PID/auxv */
1116 
1117 #ifdef CONFIG_ARCH_HAS_ELF_CORE_EFLAGS
1118 		/* the ABI-related flags from the ELF header. Used for core dump */
1119 		unsigned long saved_e_flags;
1120 #endif
1121 
1122 		struct percpu_counter rss_stat[NR_MM_COUNTERS];
1123 
1124 		struct linux_binfmt *binfmt;
1125 
1126 		/* Architecture-specific MM context */
1127 		mm_context_t context;
1128 
1129 		mm_flags_t flags; /* Must use mm_flags_* hlpers to access */
1130 
1131 #ifdef CONFIG_AIO
1132 		spinlock_t			ioctx_lock;
1133 		struct kioctx_table __rcu	*ioctx_table;
1134 #endif
1135 #ifdef CONFIG_MEMCG
1136 		/*
1137 		 * "owner" points to a task that is regarded as the canonical
1138 		 * user/owner of this mm. All of the following must be true in
1139 		 * order for it to be changed:
1140 		 *
1141 		 * current == mm->owner
1142 		 * current->mm != mm
1143 		 * new_owner->mm == mm
1144 		 * new_owner->alloc_lock is held
1145 		 */
1146 		struct task_struct __rcu *owner;
1147 #endif
1148 		struct user_namespace *user_ns;
1149 
1150 		/* store ref to file /proc/<pid>/exe symlink points to */
1151 		struct file __rcu *exe_file;
1152 #ifdef CONFIG_MMU_NOTIFIER
1153 		struct mmu_notifier_subscriptions *notifier_subscriptions;
1154 #endif
1155 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !defined(CONFIG_SPLIT_PMD_PTLOCKS)
1156 		pgtable_t pmd_huge_pte; /* protected by page_table_lock */
1157 #endif
1158 #ifdef CONFIG_NUMA_BALANCING
1159 		/*
1160 		 * numa_next_scan is the next time that PTEs will be remapped
1161 		 * PROT_NONE to trigger NUMA hinting faults; such faults gather
1162 		 * statistics and migrate pages to new nodes if necessary.
1163 		 */
1164 		unsigned long numa_next_scan;
1165 
1166 		/* Restart point for scanning and remapping PTEs. */
1167 		unsigned long numa_scan_offset;
1168 
1169 		/* numa_scan_seq prevents two threads remapping PTEs. */
1170 		int numa_scan_seq;
1171 #endif
1172 		/*
1173 		 * An operation with batched TLB flushing is going on. Anything
1174 		 * that can move process memory needs to flush the TLB when
1175 		 * moving a PROT_NONE mapped page.
1176 		 */
1177 		atomic_t tlb_flush_pending;
1178 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
1179 		/* See flush_tlb_batched_pending() */
1180 		atomic_t tlb_flush_batched;
1181 #endif
1182 		struct uprobes_state uprobes_state;
1183 #ifdef CONFIG_PREEMPT_RT
1184 		struct rcu_head delayed_drop;
1185 #endif
1186 #ifdef CONFIG_HUGETLB_PAGE
1187 		atomic_long_t hugetlb_usage;
1188 #endif
1189 		struct work_struct async_put_work;
1190 
1191 #ifdef CONFIG_IOMMU_MM_DATA
1192 		struct iommu_mm_data *iommu_mm;
1193 #endif
1194 #ifdef CONFIG_KSM
1195 		/*
1196 		 * Represent how many pages of this process are involved in KSM
1197 		 * merging (not including ksm_zero_pages).
1198 		 */
1199 		unsigned long ksm_merging_pages;
1200 		/*
1201 		 * Represent how many pages are checked for ksm merging
1202 		 * including merged and not merged.
1203 		 */
1204 		unsigned long ksm_rmap_items;
1205 		/*
1206 		 * Represent how many empty pages are merged with kernel zero
1207 		 * pages when enabling KSM use_zero_pages.
1208 		 */
1209 		atomic_long_t ksm_zero_pages;
1210 #endif /* CONFIG_KSM */
1211 #ifdef CONFIG_LRU_GEN_WALKS_MMU
1212 		struct {
1213 			/* this mm_struct is on lru_gen_mm_list */
1214 			struct list_head list;
1215 			/*
1216 			 * Set when switching to this mm_struct, as a hint of
1217 			 * whether it has been used since the last time per-node
1218 			 * page table walkers cleared the corresponding bits.
1219 			 */
1220 			unsigned long bitmap;
1221 #ifdef CONFIG_MEMCG
1222 			/* points to the memcg of "owner" above */
1223 			struct mem_cgroup *memcg;
1224 #endif
1225 		} lru_gen;
1226 #endif /* CONFIG_LRU_GEN_WALKS_MMU */
1227 #ifdef CONFIG_MM_ID
1228 		mm_id_t mm_id;
1229 #endif /* CONFIG_MM_ID */
1230 	} __randomize_layout;
1231 
1232 	/*
1233 	 * The mm_cpumask needs to be at the end of mm_struct, because it
1234 	 * is dynamically sized based on nr_cpu_ids.
1235 	 */
1236 	unsigned long cpu_bitmap[];
1237 };
1238 
1239 /* Set the first system word of mm flags, non-atomically. */
__mm_flags_set_word(struct mm_struct * mm,unsigned long value)1240 static inline void __mm_flags_set_word(struct mm_struct *mm, unsigned long value)
1241 {
1242 	unsigned long *bitmap = ACCESS_PRIVATE(&mm->flags, __mm_flags);
1243 
1244 	bitmap_copy(bitmap, &value, BITS_PER_LONG);
1245 }
1246 
1247 /* Obtain a read-only view of the bitmap. */
__mm_flags_get_bitmap(const struct mm_struct * mm)1248 static inline const unsigned long *__mm_flags_get_bitmap(const struct mm_struct *mm)
1249 {
1250 	return (const unsigned long *)ACCESS_PRIVATE(&mm->flags, __mm_flags);
1251 }
1252 
1253 /* Read the first system word of mm flags, non-atomically. */
__mm_flags_get_word(const struct mm_struct * mm)1254 static inline unsigned long __mm_flags_get_word(const struct mm_struct *mm)
1255 {
1256 	const unsigned long *bitmap = __mm_flags_get_bitmap(mm);
1257 
1258 	return bitmap_read(bitmap, 0, BITS_PER_LONG);
1259 }
1260 
1261 /*
1262  * Update the first system word of mm flags ONLY, applying the specified mask to
1263  * it, then setting all flags specified by bits.
1264  */
__mm_flags_set_mask_bits_word(struct mm_struct * mm,unsigned long mask,unsigned long bits)1265 static inline void __mm_flags_set_mask_bits_word(struct mm_struct *mm,
1266 		unsigned long mask, unsigned long bits)
1267 {
1268 	unsigned long *bitmap = ACCESS_PRIVATE(&mm->flags, __mm_flags);
1269 
1270 	set_mask_bits(bitmap, mask, bits);
1271 }
1272 
1273 #define MM_MT_FLAGS	(MT_FLAGS_ALLOC_RANGE | MT_FLAGS_LOCK_EXTERN | \
1274 			 MT_FLAGS_USE_RCU)
1275 extern struct mm_struct init_mm;
1276 
1277 /* Pointer magic because the dynamic array size confuses some compilers. */
mm_init_cpumask(struct mm_struct * mm)1278 static inline void mm_init_cpumask(struct mm_struct *mm)
1279 {
1280 	unsigned long cpu_bitmap = (unsigned long)mm;
1281 
1282 	cpu_bitmap += offsetof(struct mm_struct, cpu_bitmap);
1283 	cpumask_clear((struct cpumask *)cpu_bitmap);
1284 }
1285 
1286 /* Future-safe accessor for struct mm_struct's cpu_vm_mask. */
mm_cpumask(struct mm_struct * mm)1287 static inline cpumask_t *mm_cpumask(struct mm_struct *mm)
1288 {
1289 	return (struct cpumask *)&mm->cpu_bitmap;
1290 }
1291 
1292 #ifdef CONFIG_LRU_GEN
1293 
1294 struct lru_gen_mm_list {
1295 	/* mm_struct list for page table walkers */
1296 	struct list_head fifo;
1297 	/* protects the list above */
1298 	spinlock_t lock;
1299 };
1300 
1301 #endif /* CONFIG_LRU_GEN */
1302 
1303 #ifdef CONFIG_LRU_GEN_WALKS_MMU
1304 
1305 void lru_gen_add_mm(struct mm_struct *mm);
1306 void lru_gen_del_mm(struct mm_struct *mm);
1307 void lru_gen_migrate_mm(struct mm_struct *mm);
1308 
lru_gen_init_mm(struct mm_struct * mm)1309 static inline void lru_gen_init_mm(struct mm_struct *mm)
1310 {
1311 	INIT_LIST_HEAD(&mm->lru_gen.list);
1312 	mm->lru_gen.bitmap = 0;
1313 #ifdef CONFIG_MEMCG
1314 	mm->lru_gen.memcg = NULL;
1315 #endif
1316 }
1317 
lru_gen_use_mm(struct mm_struct * mm)1318 static inline void lru_gen_use_mm(struct mm_struct *mm)
1319 {
1320 	/*
1321 	 * When the bitmap is set, page reclaim knows this mm_struct has been
1322 	 * used since the last time it cleared the bitmap. So it might be worth
1323 	 * walking the page tables of this mm_struct to clear the accessed bit.
1324 	 */
1325 	WRITE_ONCE(mm->lru_gen.bitmap, -1);
1326 }
1327 
1328 #else /* !CONFIG_LRU_GEN_WALKS_MMU */
1329 
lru_gen_add_mm(struct mm_struct * mm)1330 static inline void lru_gen_add_mm(struct mm_struct *mm)
1331 {
1332 }
1333 
lru_gen_del_mm(struct mm_struct * mm)1334 static inline void lru_gen_del_mm(struct mm_struct *mm)
1335 {
1336 }
1337 
lru_gen_migrate_mm(struct mm_struct * mm)1338 static inline void lru_gen_migrate_mm(struct mm_struct *mm)
1339 {
1340 }
1341 
lru_gen_init_mm(struct mm_struct * mm)1342 static inline void lru_gen_init_mm(struct mm_struct *mm)
1343 {
1344 }
1345 
lru_gen_use_mm(struct mm_struct * mm)1346 static inline void lru_gen_use_mm(struct mm_struct *mm)
1347 {
1348 }
1349 
1350 #endif /* CONFIG_LRU_GEN_WALKS_MMU */
1351 
1352 struct vma_iterator {
1353 	struct ma_state mas;
1354 };
1355 
1356 #define VMA_ITERATOR(name, __mm, __addr)				\
1357 	struct vma_iterator name = {					\
1358 		.mas = {						\
1359 			.tree = &(__mm)->mm_mt,				\
1360 			.index = __addr,				\
1361 			.node = NULL,					\
1362 			.status = ma_start,				\
1363 		},							\
1364 	}
1365 
vma_iter_init(struct vma_iterator * vmi,struct mm_struct * mm,unsigned long addr)1366 static inline void vma_iter_init(struct vma_iterator *vmi,
1367 		struct mm_struct *mm, unsigned long addr)
1368 {
1369 	mas_init(&vmi->mas, &mm->mm_mt, addr);
1370 }
1371 
1372 #ifdef CONFIG_SCHED_MM_CID
1373 
1374 enum mm_cid_state {
1375 	MM_CID_UNSET = -1U,		/* Unset state has lazy_put flag set. */
1376 	MM_CID_LAZY_PUT = (1U << 31),
1377 };
1378 
mm_cid_is_unset(int cid)1379 static inline bool mm_cid_is_unset(int cid)
1380 {
1381 	return cid == MM_CID_UNSET;
1382 }
1383 
mm_cid_is_lazy_put(int cid)1384 static inline bool mm_cid_is_lazy_put(int cid)
1385 {
1386 	return !mm_cid_is_unset(cid) && (cid & MM_CID_LAZY_PUT);
1387 }
1388 
mm_cid_is_valid(int cid)1389 static inline bool mm_cid_is_valid(int cid)
1390 {
1391 	return !(cid & MM_CID_LAZY_PUT);
1392 }
1393 
mm_cid_set_lazy_put(int cid)1394 static inline int mm_cid_set_lazy_put(int cid)
1395 {
1396 	return cid | MM_CID_LAZY_PUT;
1397 }
1398 
mm_cid_clear_lazy_put(int cid)1399 static inline int mm_cid_clear_lazy_put(int cid)
1400 {
1401 	return cid & ~MM_CID_LAZY_PUT;
1402 }
1403 
1404 /*
1405  * mm_cpus_allowed: Union of all mm's threads allowed CPUs.
1406  */
mm_cpus_allowed(struct mm_struct * mm)1407 static inline cpumask_t *mm_cpus_allowed(struct mm_struct *mm)
1408 {
1409 	unsigned long bitmap = (unsigned long)mm;
1410 
1411 	bitmap += offsetof(struct mm_struct, cpu_bitmap);
1412 	/* Skip cpu_bitmap */
1413 	bitmap += cpumask_size();
1414 	return (struct cpumask *)bitmap;
1415 }
1416 
1417 /* Accessor for struct mm_struct's cidmask. */
mm_cidmask(struct mm_struct * mm)1418 static inline cpumask_t *mm_cidmask(struct mm_struct *mm)
1419 {
1420 	unsigned long cid_bitmap = (unsigned long)mm_cpus_allowed(mm);
1421 
1422 	/* Skip mm_cpus_allowed */
1423 	cid_bitmap += cpumask_size();
1424 	return (struct cpumask *)cid_bitmap;
1425 }
1426 
mm_init_cid(struct mm_struct * mm,struct task_struct * p)1427 static inline void mm_init_cid(struct mm_struct *mm, struct task_struct *p)
1428 {
1429 	int i;
1430 
1431 	for_each_possible_cpu(i) {
1432 		struct mm_cid *pcpu_cid = per_cpu_ptr(mm->pcpu_cid, i);
1433 
1434 		pcpu_cid->cid = MM_CID_UNSET;
1435 		pcpu_cid->recent_cid = MM_CID_UNSET;
1436 		pcpu_cid->time = 0;
1437 	}
1438 	mm->nr_cpus_allowed = p->nr_cpus_allowed;
1439 	atomic_set(&mm->max_nr_cid, 0);
1440 	raw_spin_lock_init(&mm->cpus_allowed_lock);
1441 	cpumask_copy(mm_cpus_allowed(mm), &p->cpus_mask);
1442 	cpumask_clear(mm_cidmask(mm));
1443 }
1444 
mm_alloc_cid_noprof(struct mm_struct * mm,struct task_struct * p)1445 static inline int mm_alloc_cid_noprof(struct mm_struct *mm, struct task_struct *p)
1446 {
1447 	mm->pcpu_cid = alloc_percpu_noprof(struct mm_cid);
1448 	if (!mm->pcpu_cid)
1449 		return -ENOMEM;
1450 	mm_init_cid(mm, p);
1451 	return 0;
1452 }
1453 #define mm_alloc_cid(...)	alloc_hooks(mm_alloc_cid_noprof(__VA_ARGS__))
1454 
mm_destroy_cid(struct mm_struct * mm)1455 static inline void mm_destroy_cid(struct mm_struct *mm)
1456 {
1457 	free_percpu(mm->pcpu_cid);
1458 	mm->pcpu_cid = NULL;
1459 }
1460 
mm_cid_size(void)1461 static inline unsigned int mm_cid_size(void)
1462 {
1463 	return 2 * cpumask_size();	/* mm_cpus_allowed(), mm_cidmask(). */
1464 }
1465 
mm_set_cpus_allowed(struct mm_struct * mm,const struct cpumask * cpumask)1466 static inline void mm_set_cpus_allowed(struct mm_struct *mm, const struct cpumask *cpumask)
1467 {
1468 	struct cpumask *mm_allowed = mm_cpus_allowed(mm);
1469 
1470 	if (!mm)
1471 		return;
1472 	/* The mm_cpus_allowed is the union of each thread allowed CPUs masks. */
1473 	raw_spin_lock(&mm->cpus_allowed_lock);
1474 	cpumask_or(mm_allowed, mm_allowed, cpumask);
1475 	WRITE_ONCE(mm->nr_cpus_allowed, cpumask_weight(mm_allowed));
1476 	raw_spin_unlock(&mm->cpus_allowed_lock);
1477 }
1478 #else /* CONFIG_SCHED_MM_CID */
mm_init_cid(struct mm_struct * mm,struct task_struct * p)1479 static inline void mm_init_cid(struct mm_struct *mm, struct task_struct *p) { }
mm_alloc_cid(struct mm_struct * mm,struct task_struct * p)1480 static inline int mm_alloc_cid(struct mm_struct *mm, struct task_struct *p) { return 0; }
mm_destroy_cid(struct mm_struct * mm)1481 static inline void mm_destroy_cid(struct mm_struct *mm) { }
1482 
mm_cid_size(void)1483 static inline unsigned int mm_cid_size(void)
1484 {
1485 	return 0;
1486 }
mm_set_cpus_allowed(struct mm_struct * mm,const struct cpumask * cpumask)1487 static inline void mm_set_cpus_allowed(struct mm_struct *mm, const struct cpumask *cpumask) { }
1488 #endif /* CONFIG_SCHED_MM_CID */
1489 
1490 struct mmu_gather;
1491 extern void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm);
1492 extern void tlb_gather_mmu_fullmm(struct mmu_gather *tlb, struct mm_struct *mm);
1493 extern void tlb_finish_mmu(struct mmu_gather *tlb);
1494 
1495 struct vm_fault;
1496 
1497 /**
1498  * typedef vm_fault_t - Return type for page fault handlers.
1499  *
1500  * Page fault handlers return a bitmask of %VM_FAULT values.
1501  */
1502 typedef __bitwise unsigned int vm_fault_t;
1503 
1504 /**
1505  * enum vm_fault_reason - Page fault handlers return a bitmask of
1506  * these values to tell the core VM what happened when handling the
1507  * fault. Used to decide whether a process gets delivered SIGBUS or
1508  * just gets major/minor fault counters bumped up.
1509  *
1510  * @VM_FAULT_OOM:		Out Of Memory
1511  * @VM_FAULT_SIGBUS:		Bad access
1512  * @VM_FAULT_MAJOR:		Page read from storage
1513  * @VM_FAULT_HWPOISON:		Hit poisoned small page
1514  * @VM_FAULT_HWPOISON_LARGE:	Hit poisoned large page. Index encoded
1515  *				in upper bits
1516  * @VM_FAULT_SIGSEGV:		segmentation fault
1517  * @VM_FAULT_NOPAGE:		->fault installed the pte, not return page
1518  * @VM_FAULT_LOCKED:		->fault locked the returned page
1519  * @VM_FAULT_RETRY:		->fault blocked, must retry
1520  * @VM_FAULT_FALLBACK:		huge page fault failed, fall back to small
1521  * @VM_FAULT_DONE_COW:		->fault has fully handled COW
1522  * @VM_FAULT_NEEDDSYNC:		->fault did not modify page tables and needs
1523  *				fsync() to complete (for synchronous page faults
1524  *				in DAX)
1525  * @VM_FAULT_COMPLETED:		->fault completed, meanwhile mmap lock released
1526  * @VM_FAULT_HINDEX_MASK:	mask HINDEX value
1527  *
1528  */
1529 enum vm_fault_reason {
1530 	VM_FAULT_OOM            = (__force vm_fault_t)0x000001,
1531 	VM_FAULT_SIGBUS         = (__force vm_fault_t)0x000002,
1532 	VM_FAULT_MAJOR          = (__force vm_fault_t)0x000004,
1533 	VM_FAULT_HWPOISON       = (__force vm_fault_t)0x000010,
1534 	VM_FAULT_HWPOISON_LARGE = (__force vm_fault_t)0x000020,
1535 	VM_FAULT_SIGSEGV        = (__force vm_fault_t)0x000040,
1536 	VM_FAULT_NOPAGE         = (__force vm_fault_t)0x000100,
1537 	VM_FAULT_LOCKED         = (__force vm_fault_t)0x000200,
1538 	VM_FAULT_RETRY          = (__force vm_fault_t)0x000400,
1539 	VM_FAULT_FALLBACK       = (__force vm_fault_t)0x000800,
1540 	VM_FAULT_DONE_COW       = (__force vm_fault_t)0x001000,
1541 	VM_FAULT_NEEDDSYNC      = (__force vm_fault_t)0x002000,
1542 	VM_FAULT_COMPLETED      = (__force vm_fault_t)0x004000,
1543 	VM_FAULT_HINDEX_MASK    = (__force vm_fault_t)0x0f0000,
1544 };
1545 
1546 /* Encode hstate index for a hwpoisoned large page */
1547 #define VM_FAULT_SET_HINDEX(x) ((__force vm_fault_t)((x) << 16))
1548 #define VM_FAULT_GET_HINDEX(x) (((__force unsigned int)(x) >> 16) & 0xf)
1549 
1550 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS |	\
1551 			VM_FAULT_SIGSEGV | VM_FAULT_HWPOISON |	\
1552 			VM_FAULT_HWPOISON_LARGE | VM_FAULT_FALLBACK)
1553 
1554 #define VM_FAULT_RESULT_TRACE \
1555 	{ VM_FAULT_OOM,                 "OOM" },	\
1556 	{ VM_FAULT_SIGBUS,              "SIGBUS" },	\
1557 	{ VM_FAULT_MAJOR,               "MAJOR" },	\
1558 	{ VM_FAULT_HWPOISON,            "HWPOISON" },	\
1559 	{ VM_FAULT_HWPOISON_LARGE,      "HWPOISON_LARGE" },	\
1560 	{ VM_FAULT_SIGSEGV,             "SIGSEGV" },	\
1561 	{ VM_FAULT_NOPAGE,              "NOPAGE" },	\
1562 	{ VM_FAULT_LOCKED,              "LOCKED" },	\
1563 	{ VM_FAULT_RETRY,               "RETRY" },	\
1564 	{ VM_FAULT_FALLBACK,            "FALLBACK" },	\
1565 	{ VM_FAULT_DONE_COW,            "DONE_COW" },	\
1566 	{ VM_FAULT_NEEDDSYNC,           "NEEDDSYNC" },	\
1567 	{ VM_FAULT_COMPLETED,           "COMPLETED" }
1568 
1569 struct vm_special_mapping {
1570 	const char *name;	/* The name, e.g. "[vdso]". */
1571 
1572 	/*
1573 	 * If .fault is not provided, this points to a
1574 	 * NULL-terminated array of pages that back the special mapping.
1575 	 *
1576 	 * This must not be NULL unless .fault is provided.
1577 	 */
1578 	struct page **pages;
1579 
1580 	/*
1581 	 * If non-NULL, then this is called to resolve page faults
1582 	 * on the special mapping.  If used, .pages is not checked.
1583 	 */
1584 	vm_fault_t (*fault)(const struct vm_special_mapping *sm,
1585 				struct vm_area_struct *vma,
1586 				struct vm_fault *vmf);
1587 
1588 	int (*mremap)(const struct vm_special_mapping *sm,
1589 		     struct vm_area_struct *new_vma);
1590 
1591 	void (*close)(const struct vm_special_mapping *sm,
1592 		      struct vm_area_struct *vma);
1593 };
1594 
1595 enum tlb_flush_reason {
1596 	TLB_FLUSH_ON_TASK_SWITCH,
1597 	TLB_REMOTE_SHOOTDOWN,
1598 	TLB_LOCAL_SHOOTDOWN,
1599 	TLB_LOCAL_MM_SHOOTDOWN,
1600 	TLB_REMOTE_SEND_IPI,
1601 	TLB_REMOTE_WRONG_CPU,
1602 	NR_TLB_FLUSH_REASONS,
1603 };
1604 
1605 /**
1606  * enum fault_flag - Fault flag definitions.
1607  * @FAULT_FLAG_WRITE: Fault was a write fault.
1608  * @FAULT_FLAG_MKWRITE: Fault was mkwrite of existing PTE.
1609  * @FAULT_FLAG_ALLOW_RETRY: Allow to retry the fault if blocked.
1610  * @FAULT_FLAG_RETRY_NOWAIT: Don't drop mmap_lock and wait when retrying.
1611  * @FAULT_FLAG_KILLABLE: The fault task is in SIGKILL killable region.
1612  * @FAULT_FLAG_TRIED: The fault has been tried once.
1613  * @FAULT_FLAG_USER: The fault originated in userspace.
1614  * @FAULT_FLAG_REMOTE: The fault is not for current task/mm.
1615  * @FAULT_FLAG_INSTRUCTION: The fault was during an instruction fetch.
1616  * @FAULT_FLAG_INTERRUPTIBLE: The fault can be interrupted by non-fatal signals.
1617  * @FAULT_FLAG_UNSHARE: The fault is an unsharing request to break COW in a
1618  *                      COW mapping, making sure that an exclusive anon page is
1619  *                      mapped after the fault.
1620  * @FAULT_FLAG_ORIG_PTE_VALID: whether the fault has vmf->orig_pte cached.
1621  *                        We should only access orig_pte if this flag set.
1622  * @FAULT_FLAG_VMA_LOCK: The fault is handled under VMA lock.
1623  *
1624  * About @FAULT_FLAG_ALLOW_RETRY and @FAULT_FLAG_TRIED: we can specify
1625  * whether we would allow page faults to retry by specifying these two
1626  * fault flags correctly.  Currently there can be three legal combinations:
1627  *
1628  * (a) ALLOW_RETRY and !TRIED:  this means the page fault allows retry, and
1629  *                              this is the first try
1630  *
1631  * (b) ALLOW_RETRY and TRIED:   this means the page fault allows retry, and
1632  *                              we've already tried at least once
1633  *
1634  * (c) !ALLOW_RETRY and !TRIED: this means the page fault does not allow retry
1635  *
1636  * The unlisted combination (!ALLOW_RETRY && TRIED) is illegal and should never
1637  * be used.  Note that page faults can be allowed to retry for multiple times,
1638  * in which case we'll have an initial fault with flags (a) then later on
1639  * continuous faults with flags (b).  We should always try to detect pending
1640  * signals before a retry to make sure the continuous page faults can still be
1641  * interrupted if necessary.
1642  *
1643  * The combination FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE is illegal.
1644  * FAULT_FLAG_UNSHARE is ignored and treated like an ordinary read fault when
1645  * applied to mappings that are not COW mappings.
1646  */
1647 enum fault_flag {
1648 	FAULT_FLAG_WRITE =		1 << 0,
1649 	FAULT_FLAG_MKWRITE =		1 << 1,
1650 	FAULT_FLAG_ALLOW_RETRY =	1 << 2,
1651 	FAULT_FLAG_RETRY_NOWAIT = 	1 << 3,
1652 	FAULT_FLAG_KILLABLE =		1 << 4,
1653 	FAULT_FLAG_TRIED = 		1 << 5,
1654 	FAULT_FLAG_USER =		1 << 6,
1655 	FAULT_FLAG_REMOTE =		1 << 7,
1656 	FAULT_FLAG_INSTRUCTION =	1 << 8,
1657 	FAULT_FLAG_INTERRUPTIBLE =	1 << 9,
1658 	FAULT_FLAG_UNSHARE =		1 << 10,
1659 	FAULT_FLAG_ORIG_PTE_VALID =	1 << 11,
1660 	FAULT_FLAG_VMA_LOCK =		1 << 12,
1661 };
1662 
1663 typedef unsigned int __bitwise zap_flags_t;
1664 
1665 /* Flags for clear_young_dirty_ptes(). */
1666 typedef int __bitwise cydp_t;
1667 
1668 /* Clear the access bit */
1669 #define CYDP_CLEAR_YOUNG		((__force cydp_t)BIT(0))
1670 
1671 /* Clear the dirty bit */
1672 #define CYDP_CLEAR_DIRTY		((__force cydp_t)BIT(1))
1673 
1674 /*
1675  * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each
1676  * other. Here is what they mean, and how to use them:
1677  *
1678  *
1679  * FIXME: For pages which are part of a filesystem, mappings are subject to the
1680  * lifetime enforced by the filesystem and we need guarantees that longterm
1681  * users like RDMA and V4L2 only establish mappings which coordinate usage with
1682  * the filesystem.  Ideas for this coordination include revoking the longterm
1683  * pin, delaying writeback, bounce buffer page writeback, etc.  As FS DAX was
1684  * added after the problem with filesystems was found FS DAX VMAs are
1685  * specifically failed.  Filesystem pages are still subject to bugs and use of
1686  * FOLL_LONGTERM should be avoided on those pages.
1687  *
1688  * In the CMA case: long term pins in a CMA region would unnecessarily fragment
1689  * that region.  And so, CMA attempts to migrate the page before pinning, when
1690  * FOLL_LONGTERM is specified.
1691  *
1692  * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount,
1693  * but an additional pin counting system) will be invoked. This is intended for
1694  * anything that gets a page reference and then touches page data (for example,
1695  * Direct IO). This lets the filesystem know that some non-file-system entity is
1696  * potentially changing the pages' data. In contrast to FOLL_GET (whose pages
1697  * are released via put_page()), FOLL_PIN pages must be released, ultimately, by
1698  * a call to unpin_user_page().
1699  *
1700  * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different
1701  * and separate refcounting mechanisms, however, and that means that each has
1702  * its own acquire and release mechanisms:
1703  *
1704  *     FOLL_GET: get_user_pages*() to acquire, and put_page() to release.
1705  *
1706  *     FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release.
1707  *
1708  * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call.
1709  * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based
1710  * calls applied to them, and that's perfectly OK. This is a constraint on the
1711  * callers, not on the pages.)
1712  *
1713  * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never
1714  * directly by the caller. That's in order to help avoid mismatches when
1715  * releasing pages: get_user_pages*() pages must be released via put_page(),
1716  * while pin_user_pages*() pages must be released via unpin_user_page().
1717  *
1718  * Please see Documentation/core-api/pin_user_pages.rst for more information.
1719  */
1720 
1721 enum {
1722 	/* check pte is writable */
1723 	FOLL_WRITE = 1 << 0,
1724 	/* do get_page on page */
1725 	FOLL_GET = 1 << 1,
1726 	/* give error on hole if it would be zero */
1727 	FOLL_DUMP = 1 << 2,
1728 	/* get_user_pages read/write w/o permission */
1729 	FOLL_FORCE = 1 << 3,
1730 	/*
1731 	 * if a disk transfer is needed, start the IO and return without waiting
1732 	 * upon it
1733 	 */
1734 	FOLL_NOWAIT = 1 << 4,
1735 	/* do not fault in pages */
1736 	FOLL_NOFAULT = 1 << 5,
1737 	/* check page is hwpoisoned */
1738 	FOLL_HWPOISON = 1 << 6,
1739 	/* don't do file mappings */
1740 	FOLL_ANON = 1 << 7,
1741 	/*
1742 	 * FOLL_LONGTERM indicates that the page will be held for an indefinite
1743 	 * time period _often_ under userspace control.  This is in contrast to
1744 	 * iov_iter_get_pages(), whose usages are transient.
1745 	 */
1746 	FOLL_LONGTERM = 1 << 8,
1747 	/* split huge pmd before returning */
1748 	FOLL_SPLIT_PMD = 1 << 9,
1749 	/* allow returning PCI P2PDMA pages */
1750 	FOLL_PCI_P2PDMA = 1 << 10,
1751 	/* allow interrupts from generic signals */
1752 	FOLL_INTERRUPTIBLE = 1 << 11,
1753 	/*
1754 	 * Always honor (trigger) NUMA hinting faults.
1755 	 *
1756 	 * FOLL_WRITE implicitly honors NUMA hinting faults because a
1757 	 * PROT_NONE-mapped page is not writable (exceptions with FOLL_FORCE
1758 	 * apply). get_user_pages_fast_only() always implicitly honors NUMA
1759 	 * hinting faults.
1760 	 */
1761 	FOLL_HONOR_NUMA_FAULT = 1 << 12,
1762 
1763 	/* See also internal only FOLL flags in mm/internal.h */
1764 };
1765 
1766 /* mm flags */
1767 
1768 /*
1769  * The first two bits represent core dump modes for set-user-ID,
1770  * the modes are SUID_DUMP_* defined in linux/sched/coredump.h
1771  */
1772 #define MMF_DUMPABLE_BITS 2
1773 #define MMF_DUMPABLE_MASK (BIT(MMF_DUMPABLE_BITS) - 1)
1774 /* coredump filter bits */
1775 #define MMF_DUMP_ANON_PRIVATE	2
1776 #define MMF_DUMP_ANON_SHARED	3
1777 #define MMF_DUMP_MAPPED_PRIVATE	4
1778 #define MMF_DUMP_MAPPED_SHARED	5
1779 #define MMF_DUMP_ELF_HEADERS	6
1780 #define MMF_DUMP_HUGETLB_PRIVATE 7
1781 #define MMF_DUMP_HUGETLB_SHARED  8
1782 #define MMF_DUMP_DAX_PRIVATE	9
1783 #define MMF_DUMP_DAX_SHARED	10
1784 
1785 #define MMF_DUMP_FILTER_SHIFT	MMF_DUMPABLE_BITS
1786 #define MMF_DUMP_FILTER_BITS	9
1787 #define MMF_DUMP_FILTER_MASK \
1788 	((BIT(MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
1789 #define MMF_DUMP_FILTER_DEFAULT \
1790 	(BIT(MMF_DUMP_ANON_PRIVATE) | BIT(MMF_DUMP_ANON_SHARED) | \
1791 	 BIT(MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
1792 
1793 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
1794 # define MMF_DUMP_MASK_DEFAULT_ELF	BIT(MMF_DUMP_ELF_HEADERS)
1795 #else
1796 # define MMF_DUMP_MASK_DEFAULT_ELF	0
1797 #endif
1798 					/* leave room for more dump flags */
1799 #define MMF_VM_MERGEABLE	16	/* KSM may merge identical pages */
1800 #define MMF_VM_HUGEPAGE		17	/* set when mm is available for khugepaged */
1801 
1802 #define MMF_HUGE_ZERO_FOLIO	18      /* mm has ever used the global huge zero folio */
1803 
1804 #define MMF_HAS_UPROBES		19	/* has uprobes */
1805 #define MMF_RECALC_UPROBES	20	/* MMF_HAS_UPROBES can be wrong */
1806 #define MMF_OOM_SKIP		21	/* mm is of no interest for the OOM killer */
1807 #define MMF_UNSTABLE		22	/* mm is unstable for copy_from_user */
1808 #define MMF_DISABLE_THP_EXCEPT_ADVISED	23	/* no THP except when advised (e.g., VM_HUGEPAGE) */
1809 #define MMF_DISABLE_THP_COMPLETELY	24	/* no THP for all VMAs */
1810 #define MMF_DISABLE_THP_MASK	(BIT(MMF_DISABLE_THP_COMPLETELY) | \
1811 				 BIT(MMF_DISABLE_THP_EXCEPT_ADVISED))
1812 #define MMF_OOM_REAP_QUEUED	25	/* mm was queued for oom_reaper */
1813 #define MMF_MULTIPROCESS	26	/* mm is shared between processes */
1814 /*
1815  * MMF_HAS_PINNED: Whether this mm has pinned any pages.  This can be either
1816  * replaced in the future by mm.pinned_vm when it becomes stable, or grow into
1817  * a counter on its own. We're aggresive on this bit for now: even if the
1818  * pinned pages were unpinned later on, we'll still keep this bit set for the
1819  * lifecycle of this mm, just for simplicity.
1820  */
1821 #define MMF_HAS_PINNED		27	/* FOLL_PIN has run, never cleared */
1822 
1823 #define MMF_HAS_MDWE		28
1824 #define MMF_HAS_MDWE_MASK	BIT(MMF_HAS_MDWE)
1825 
1826 #define MMF_HAS_MDWE_NO_INHERIT	29
1827 
1828 #define MMF_VM_MERGE_ANY	30
1829 #define MMF_VM_MERGE_ANY_MASK	BIT(MMF_VM_MERGE_ANY)
1830 
1831 #define MMF_TOPDOWN		31	/* mm searches top down by default */
1832 #define MMF_TOPDOWN_MASK	BIT(MMF_TOPDOWN)
1833 
1834 #define MMF_INIT_LEGACY_MASK	(MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK |\
1835 				 MMF_DISABLE_THP_MASK | MMF_HAS_MDWE_MASK |\
1836 				 MMF_VM_MERGE_ANY_MASK | MMF_TOPDOWN_MASK)
1837 
1838 /* Legacy flags must fit within 32 bits. */
1839 static_assert((u64)MMF_INIT_LEGACY_MASK <= (u64)UINT_MAX);
1840 
1841 /*
1842  * Initialise legacy flags according to masks, propagating selected flags on
1843  * fork. Further flag manipulation can be performed by the caller.
1844  */
mmf_init_legacy_flags(unsigned long flags)1845 static inline unsigned long mmf_init_legacy_flags(unsigned long flags)
1846 {
1847 	if (flags & (1UL << MMF_HAS_MDWE_NO_INHERIT))
1848 		flags &= ~((1UL << MMF_HAS_MDWE) |
1849 			   (1UL << MMF_HAS_MDWE_NO_INHERIT));
1850 	return flags & MMF_INIT_LEGACY_MASK;
1851 }
1852 
1853 #endif /* _LINUX_MM_TYPES_H */
1854