1 /*
2 * Copyright 2014-2018 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 */
22 #include "amdgpu.h"
23 #include "amdgpu_amdkfd.h"
24 #include "gc/gc_9_0_offset.h"
25 #include "gc/gc_9_0_sh_mask.h"
26 #include "vega10_enum.h"
27 #include "sdma0/sdma0_4_0_offset.h"
28 #include "sdma0/sdma0_4_0_sh_mask.h"
29 #include "sdma1/sdma1_4_0_offset.h"
30 #include "sdma1/sdma1_4_0_sh_mask.h"
31 #include "athub/athub_1_0_offset.h"
32 #include "athub/athub_1_0_sh_mask.h"
33 #include "oss/osssys_4_0_offset.h"
34 #include "oss/osssys_4_0_sh_mask.h"
35 #include "soc15_common.h"
36 #include "v9_structs.h"
37 #include "soc15.h"
38 #include "soc15d.h"
39 #include "gfx_v9_0.h"
40 #include "amdgpu_amdkfd_gfx_v9.h"
41 #include <uapi/linux/kfd_ioctl.h>
42
43 enum hqd_dequeue_request_type {
44 NO_ACTION = 0,
45 DRAIN_PIPE,
46 RESET_WAVES,
47 SAVE_WAVES
48 };
49
kgd_gfx_v9_lock_srbm(struct amdgpu_device * adev,uint32_t mec,uint32_t pipe,uint32_t queue,uint32_t vmid,uint32_t inst)50 static void kgd_gfx_v9_lock_srbm(struct amdgpu_device *adev, uint32_t mec, uint32_t pipe,
51 uint32_t queue, uint32_t vmid, uint32_t inst)
52 {
53 mutex_lock(&adev->srbm_mutex);
54 soc15_grbm_select(adev, mec, pipe, queue, vmid, GET_INST(GC, inst));
55 }
56
kgd_gfx_v9_unlock_srbm(struct amdgpu_device * adev,uint32_t inst)57 static void kgd_gfx_v9_unlock_srbm(struct amdgpu_device *adev, uint32_t inst)
58 {
59 soc15_grbm_select(adev, 0, 0, 0, 0, GET_INST(GC, inst));
60 mutex_unlock(&adev->srbm_mutex);
61 }
62
kgd_gfx_v9_acquire_queue(struct amdgpu_device * adev,uint32_t pipe_id,uint32_t queue_id,uint32_t inst)63 void kgd_gfx_v9_acquire_queue(struct amdgpu_device *adev, uint32_t pipe_id,
64 uint32_t queue_id, uint32_t inst)
65 {
66 uint32_t mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
67 uint32_t pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
68
69 kgd_gfx_v9_lock_srbm(adev, mec, pipe, queue_id, 0, inst);
70 }
71
kgd_gfx_v9_get_queue_mask(struct amdgpu_device * adev,uint32_t pipe_id,uint32_t queue_id)72 uint64_t kgd_gfx_v9_get_queue_mask(struct amdgpu_device *adev,
73 uint32_t pipe_id, uint32_t queue_id)
74 {
75 unsigned int bit = pipe_id * adev->gfx.mec.num_queue_per_pipe +
76 queue_id;
77
78 return 1ull << bit;
79 }
80
kgd_gfx_v9_release_queue(struct amdgpu_device * adev,uint32_t inst)81 void kgd_gfx_v9_release_queue(struct amdgpu_device *adev, uint32_t inst)
82 {
83 kgd_gfx_v9_unlock_srbm(adev, inst);
84 }
85
kgd_gfx_v9_program_sh_mem_settings(struct amdgpu_device * adev,uint32_t vmid,uint32_t sh_mem_config,uint32_t sh_mem_ape1_base,uint32_t sh_mem_ape1_limit,uint32_t sh_mem_bases,uint32_t inst)86 void kgd_gfx_v9_program_sh_mem_settings(struct amdgpu_device *adev, uint32_t vmid,
87 uint32_t sh_mem_config,
88 uint32_t sh_mem_ape1_base,
89 uint32_t sh_mem_ape1_limit,
90 uint32_t sh_mem_bases, uint32_t inst)
91 {
92 kgd_gfx_v9_lock_srbm(adev, 0, 0, 0, vmid, inst);
93
94 WREG32_SOC15_RLC(GC, GET_INST(GC, inst), mmSH_MEM_CONFIG, sh_mem_config);
95 WREG32_SOC15_RLC(GC, GET_INST(GC, inst), mmSH_MEM_BASES, sh_mem_bases);
96 /* APE1 no longer exists on GFX9 */
97
98 kgd_gfx_v9_unlock_srbm(adev, inst);
99 }
100
kgd_gfx_v9_set_pasid_vmid_mapping(struct amdgpu_device * adev,u32 pasid,unsigned int vmid,uint32_t inst)101 int kgd_gfx_v9_set_pasid_vmid_mapping(struct amdgpu_device *adev, u32 pasid,
102 unsigned int vmid, uint32_t inst)
103 {
104 /*
105 * We have to assume that there is no outstanding mapping.
106 * The ATC_VMID_PASID_MAPPING_UPDATE_STATUS bit could be 0 because
107 * a mapping is in progress or because a mapping finished
108 * and the SW cleared it.
109 * So the protocol is to always wait & clear.
110 */
111 uint32_t pasid_mapping = (pasid == 0) ? 0 : (uint32_t)pasid |
112 ATC_VMID0_PASID_MAPPING__VALID_MASK;
113
114 /*
115 * need to do this twice, once for gfx and once for mmhub
116 * for ATC add 16 to VMID for mmhub, for IH different registers.
117 * ATC_VMID0..15 registers are separate from ATC_VMID16..31.
118 */
119
120 WREG32(SOC15_REG_OFFSET(ATHUB, 0, mmATC_VMID0_PASID_MAPPING) + vmid,
121 pasid_mapping);
122
123 while (!(RREG32(SOC15_REG_OFFSET(
124 ATHUB, 0,
125 mmATC_VMID_PASID_MAPPING_UPDATE_STATUS)) &
126 (1U << vmid)))
127 cpu_relax();
128
129 WREG32(SOC15_REG_OFFSET(ATHUB, 0,
130 mmATC_VMID_PASID_MAPPING_UPDATE_STATUS),
131 1U << vmid);
132
133 /* Mapping vmid to pasid also for IH block */
134 WREG32(SOC15_REG_OFFSET(OSSSYS, 0, mmIH_VMID_0_LUT) + vmid,
135 pasid_mapping);
136
137 WREG32(SOC15_REG_OFFSET(ATHUB, 0, mmATC_VMID16_PASID_MAPPING) + vmid,
138 pasid_mapping);
139
140 while (!(RREG32(SOC15_REG_OFFSET(
141 ATHUB, 0,
142 mmATC_VMID_PASID_MAPPING_UPDATE_STATUS)) &
143 (1U << (vmid + 16))))
144 cpu_relax();
145
146 WREG32(SOC15_REG_OFFSET(ATHUB, 0,
147 mmATC_VMID_PASID_MAPPING_UPDATE_STATUS),
148 1U << (vmid + 16));
149
150 /* Mapping vmid to pasid also for IH block */
151 WREG32(SOC15_REG_OFFSET(OSSSYS, 0, mmIH_VMID_0_LUT_MM) + vmid,
152 pasid_mapping);
153 return 0;
154 }
155
156 /* TODO - RING0 form of field is obsolete, seems to date back to SI
157 * but still works
158 */
159
kgd_gfx_v9_init_interrupts(struct amdgpu_device * adev,uint32_t pipe_id,uint32_t inst)160 int kgd_gfx_v9_init_interrupts(struct amdgpu_device *adev, uint32_t pipe_id,
161 uint32_t inst)
162 {
163 uint32_t mec;
164 uint32_t pipe;
165
166 mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
167 pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
168
169 kgd_gfx_v9_lock_srbm(adev, mec, pipe, 0, 0, inst);
170
171 WREG32_SOC15(GC, GET_INST(GC, inst), mmCPC_INT_CNTL,
172 CP_INT_CNTL_RING0__TIME_STAMP_INT_ENABLE_MASK |
173 CP_INT_CNTL_RING0__OPCODE_ERROR_INT_ENABLE_MASK);
174
175 kgd_gfx_v9_unlock_srbm(adev, inst);
176
177 return 0;
178 }
179
get_sdma_rlc_reg_offset(struct amdgpu_device * adev,unsigned int engine_id,unsigned int queue_id)180 static uint32_t get_sdma_rlc_reg_offset(struct amdgpu_device *adev,
181 unsigned int engine_id,
182 unsigned int queue_id)
183 {
184 uint32_t sdma_engine_reg_base = 0;
185 uint32_t sdma_rlc_reg_offset;
186
187 switch (engine_id) {
188 default:
189 dev_warn(adev->dev,
190 "Invalid sdma engine id (%d), using engine id 0\n",
191 engine_id);
192 fallthrough;
193 case 0:
194 sdma_engine_reg_base = SOC15_REG_OFFSET(SDMA0, 0,
195 mmSDMA0_RLC0_RB_CNTL) - mmSDMA0_RLC0_RB_CNTL;
196 break;
197 case 1:
198 sdma_engine_reg_base = SOC15_REG_OFFSET(SDMA1, 0,
199 mmSDMA1_RLC0_RB_CNTL) - mmSDMA0_RLC0_RB_CNTL;
200 break;
201 }
202
203 sdma_rlc_reg_offset = sdma_engine_reg_base
204 + queue_id * (mmSDMA0_RLC1_RB_CNTL - mmSDMA0_RLC0_RB_CNTL);
205
206 pr_debug("RLC register offset for SDMA%d RLC%d: 0x%x\n", engine_id,
207 queue_id, sdma_rlc_reg_offset);
208
209 return sdma_rlc_reg_offset;
210 }
211
get_mqd(void * mqd)212 static inline struct v9_mqd *get_mqd(void *mqd)
213 {
214 return (struct v9_mqd *)mqd;
215 }
216
get_sdma_mqd(void * mqd)217 static inline struct v9_sdma_mqd *get_sdma_mqd(void *mqd)
218 {
219 return (struct v9_sdma_mqd *)mqd;
220 }
221
kgd_gfx_v9_hqd_load(struct amdgpu_device * adev,void * mqd,uint32_t pipe_id,uint32_t queue_id,uint32_t __user * wptr,uint32_t wptr_shift,uint32_t wptr_mask,struct mm_struct * mm,uint32_t inst)222 int kgd_gfx_v9_hqd_load(struct amdgpu_device *adev, void *mqd,
223 uint32_t pipe_id, uint32_t queue_id,
224 uint32_t __user *wptr, uint32_t wptr_shift,
225 uint32_t wptr_mask, struct mm_struct *mm,
226 uint32_t inst)
227 {
228 struct v9_mqd *m;
229 uint32_t *mqd_hqd;
230 uint32_t reg, hqd_base, data;
231
232 m = get_mqd(mqd);
233
234 kgd_gfx_v9_acquire_queue(adev, pipe_id, queue_id, inst);
235
236 /* HQD registers extend from CP_MQD_BASE_ADDR to CP_HQD_EOP_WPTR_MEM. */
237 mqd_hqd = &m->cp_mqd_base_addr_lo;
238 hqd_base = SOC15_REG_OFFSET(GC, GET_INST(GC, inst), mmCP_MQD_BASE_ADDR);
239
240 for (reg = hqd_base;
241 reg <= SOC15_REG_OFFSET(GC, GET_INST(GC, inst), mmCP_HQD_PQ_WPTR_HI); reg++)
242 WREG32_XCC(reg, mqd_hqd[reg - hqd_base], inst);
243
244
245 /* Activate doorbell logic before triggering WPTR poll. */
246 data = REG_SET_FIELD(m->cp_hqd_pq_doorbell_control,
247 CP_HQD_PQ_DOORBELL_CONTROL, DOORBELL_EN, 1);
248 WREG32_SOC15_RLC(GC, GET_INST(GC, inst), mmCP_HQD_PQ_DOORBELL_CONTROL, data);
249
250 if (wptr) {
251 /* Don't read wptr with get_user because the user
252 * context may not be accessible (if this function
253 * runs in a work queue). Instead trigger a one-shot
254 * polling read from memory in the CP. This assumes
255 * that wptr is GPU-accessible in the queue's VMID via
256 * ATC or SVM. WPTR==RPTR before starting the poll so
257 * the CP starts fetching new commands from the right
258 * place.
259 *
260 * Guessing a 64-bit WPTR from a 32-bit RPTR is a bit
261 * tricky. Assume that the queue didn't overflow. The
262 * number of valid bits in the 32-bit RPTR depends on
263 * the queue size. The remaining bits are taken from
264 * the saved 64-bit WPTR. If the WPTR wrapped, add the
265 * queue size.
266 */
267 uint32_t queue_size =
268 2 << REG_GET_FIELD(m->cp_hqd_pq_control,
269 CP_HQD_PQ_CONTROL, QUEUE_SIZE);
270 uint64_t guessed_wptr = m->cp_hqd_pq_rptr & (queue_size - 1);
271
272 if ((m->cp_hqd_pq_wptr_lo & (queue_size - 1)) < guessed_wptr)
273 guessed_wptr += queue_size;
274 guessed_wptr += m->cp_hqd_pq_wptr_lo & ~(queue_size - 1);
275 guessed_wptr += (uint64_t)m->cp_hqd_pq_wptr_hi << 32;
276
277 WREG32_SOC15_RLC(GC, GET_INST(GC, inst), mmCP_HQD_PQ_WPTR_LO,
278 lower_32_bits(guessed_wptr));
279 WREG32_SOC15_RLC(GC, GET_INST(GC, inst), mmCP_HQD_PQ_WPTR_HI,
280 upper_32_bits(guessed_wptr));
281 WREG32_SOC15_RLC(GC, GET_INST(GC, inst), mmCP_HQD_PQ_WPTR_POLL_ADDR,
282 lower_32_bits((uintptr_t)wptr));
283 WREG32_SOC15_RLC(GC, GET_INST(GC, inst), mmCP_HQD_PQ_WPTR_POLL_ADDR_HI,
284 upper_32_bits((uintptr_t)wptr));
285 WREG32_SOC15_RLC(GC, GET_INST(GC, inst), mmCP_PQ_WPTR_POLL_CNTL1,
286 (uint32_t)kgd_gfx_v9_get_queue_mask(adev, pipe_id, queue_id));
287 }
288
289 /* Start the EOP fetcher */
290 WREG32_SOC15_RLC(GC, GET_INST(GC, inst), mmCP_HQD_EOP_RPTR,
291 REG_SET_FIELD(m->cp_hqd_eop_rptr, CP_HQD_EOP_RPTR, INIT_FETCHER, 1));
292
293 data = REG_SET_FIELD(m->cp_hqd_active, CP_HQD_ACTIVE, ACTIVE, 1);
294 WREG32_SOC15_RLC(GC, GET_INST(GC, inst), mmCP_HQD_ACTIVE, data);
295
296 kgd_gfx_v9_release_queue(adev, inst);
297
298 return 0;
299 }
300
kgd_gfx_v9_hiq_mqd_load(struct amdgpu_device * adev,void * mqd,uint32_t pipe_id,uint32_t queue_id,uint32_t doorbell_off,uint32_t inst)301 int kgd_gfx_v9_hiq_mqd_load(struct amdgpu_device *adev, void *mqd,
302 uint32_t pipe_id, uint32_t queue_id,
303 uint32_t doorbell_off, uint32_t inst)
304 {
305 struct amdgpu_ring *kiq_ring = &adev->gfx.kiq[inst].ring;
306 struct v9_mqd *m;
307 uint32_t mec, pipe;
308 int r;
309
310 m = get_mqd(mqd);
311
312 kgd_gfx_v9_acquire_queue(adev, pipe_id, queue_id, inst);
313
314 mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
315 pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
316
317 pr_debug("kfd: set HIQ, mec:%d, pipe:%d, queue:%d.\n",
318 mec, pipe, queue_id);
319
320 spin_lock(&adev->gfx.kiq[inst].ring_lock);
321 r = amdgpu_ring_alloc(kiq_ring, 7);
322 if (r) {
323 pr_err("Failed to alloc KIQ (%d).\n", r);
324 goto out_unlock;
325 }
326
327 amdgpu_ring_write(kiq_ring, PACKET3(PACKET3_MAP_QUEUES, 5));
328 amdgpu_ring_write(kiq_ring,
329 PACKET3_MAP_QUEUES_QUEUE_SEL(0) | /* Queue_Sel */
330 PACKET3_MAP_QUEUES_VMID(m->cp_hqd_vmid) | /* VMID */
331 PACKET3_MAP_QUEUES_QUEUE(queue_id) |
332 PACKET3_MAP_QUEUES_PIPE(pipe) |
333 PACKET3_MAP_QUEUES_ME((mec - 1)) |
334 PACKET3_MAP_QUEUES_QUEUE_TYPE(0) | /*queue_type: normal compute queue */
335 PACKET3_MAP_QUEUES_ALLOC_FORMAT(0) | /* alloc format: all_on_one_pipe */
336 PACKET3_MAP_QUEUES_ENGINE_SEL(1) | /* engine_sel: hiq */
337 PACKET3_MAP_QUEUES_NUM_QUEUES(1)); /* num_queues: must be 1 */
338 amdgpu_ring_write(kiq_ring,
339 PACKET3_MAP_QUEUES_DOORBELL_OFFSET(doorbell_off));
340 amdgpu_ring_write(kiq_ring, m->cp_mqd_base_addr_lo);
341 amdgpu_ring_write(kiq_ring, m->cp_mqd_base_addr_hi);
342 amdgpu_ring_write(kiq_ring, m->cp_hqd_pq_wptr_poll_addr_lo);
343 amdgpu_ring_write(kiq_ring, m->cp_hqd_pq_wptr_poll_addr_hi);
344 amdgpu_ring_commit(kiq_ring);
345
346 out_unlock:
347 spin_unlock(&adev->gfx.kiq[inst].ring_lock);
348 kgd_gfx_v9_release_queue(adev, inst);
349
350 return r;
351 }
352
kgd_gfx_v9_hqd_dump(struct amdgpu_device * adev,uint32_t pipe_id,uint32_t queue_id,uint32_t (** dump)[2],uint32_t * n_regs,uint32_t inst)353 int kgd_gfx_v9_hqd_dump(struct amdgpu_device *adev,
354 uint32_t pipe_id, uint32_t queue_id,
355 uint32_t (**dump)[2], uint32_t *n_regs, uint32_t inst)
356 {
357 uint32_t i = 0, reg;
358 #define HQD_N_REGS 56
359 #define DUMP_REG(addr) do { \
360 if (WARN_ON_ONCE(i >= HQD_N_REGS)) \
361 break; \
362 (*dump)[i][0] = (addr) << 2; \
363 (*dump)[i++][1] = RREG32(addr); \
364 } while (0)
365
366 *dump = kmalloc_array(HQD_N_REGS, sizeof(**dump), GFP_KERNEL);
367 if (*dump == NULL)
368 return -ENOMEM;
369
370 kgd_gfx_v9_acquire_queue(adev, pipe_id, queue_id, inst);
371
372 for (reg = SOC15_REG_OFFSET(GC, GET_INST(GC, inst), mmCP_MQD_BASE_ADDR);
373 reg <= SOC15_REG_OFFSET(GC, GET_INST(GC, inst), mmCP_HQD_PQ_WPTR_HI); reg++)
374 DUMP_REG(reg);
375
376 kgd_gfx_v9_release_queue(adev, inst);
377
378 WARN_ON_ONCE(i != HQD_N_REGS);
379 *n_regs = i;
380
381 return 0;
382 }
383
kgd_hqd_sdma_load(struct amdgpu_device * adev,void * mqd,uint32_t __user * wptr,struct mm_struct * mm)384 static int kgd_hqd_sdma_load(struct amdgpu_device *adev, void *mqd,
385 uint32_t __user *wptr, struct mm_struct *mm)
386 {
387 struct v9_sdma_mqd *m;
388 uint32_t sdma_rlc_reg_offset;
389 unsigned long end_jiffies;
390 uint32_t data;
391 uint64_t data64;
392 uint64_t __user *wptr64 = (uint64_t __user *)wptr;
393
394 m = get_sdma_mqd(mqd);
395 sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(adev, m->sdma_engine_id,
396 m->sdma_queue_id);
397
398 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL,
399 m->sdmax_rlcx_rb_cntl & (~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK));
400
401 end_jiffies = msecs_to_jiffies(2000) + jiffies;
402 while (true) {
403 data = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_CONTEXT_STATUS);
404 if (data & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
405 break;
406 if (time_after(jiffies, end_jiffies)) {
407 pr_err("SDMA RLC not idle in %s\n", __func__);
408 return -ETIME;
409 }
410 usleep_range(500, 1000);
411 }
412
413 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_DOORBELL_OFFSET,
414 m->sdmax_rlcx_doorbell_offset);
415
416 data = REG_SET_FIELD(m->sdmax_rlcx_doorbell, SDMA0_RLC0_DOORBELL,
417 ENABLE, 1);
418 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_DOORBELL, data);
419 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR,
420 m->sdmax_rlcx_rb_rptr);
421 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_HI,
422 m->sdmax_rlcx_rb_rptr_hi);
423
424 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_MINOR_PTR_UPDATE, 1);
425 if (read_user_wptr(mm, wptr64, data64)) {
426 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR,
427 lower_32_bits(data64));
428 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR_HI,
429 upper_32_bits(data64));
430 } else {
431 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR,
432 m->sdmax_rlcx_rb_rptr);
433 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR_HI,
434 m->sdmax_rlcx_rb_rptr_hi);
435 }
436 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_MINOR_PTR_UPDATE, 0);
437
438 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_BASE, m->sdmax_rlcx_rb_base);
439 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_BASE_HI,
440 m->sdmax_rlcx_rb_base_hi);
441 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_ADDR_LO,
442 m->sdmax_rlcx_rb_rptr_addr_lo);
443 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_ADDR_HI,
444 m->sdmax_rlcx_rb_rptr_addr_hi);
445
446 data = REG_SET_FIELD(m->sdmax_rlcx_rb_cntl, SDMA0_RLC0_RB_CNTL,
447 RB_ENABLE, 1);
448 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL, data);
449
450 return 0;
451 }
452
kgd_hqd_sdma_dump(struct amdgpu_device * adev,uint32_t engine_id,uint32_t queue_id,uint32_t (** dump)[2],uint32_t * n_regs)453 static int kgd_hqd_sdma_dump(struct amdgpu_device *adev,
454 uint32_t engine_id, uint32_t queue_id,
455 uint32_t (**dump)[2], uint32_t *n_regs)
456 {
457 uint32_t sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(adev,
458 engine_id, queue_id);
459 uint32_t i = 0, reg;
460 #undef HQD_N_REGS
461 #define HQD_N_REGS (19+6+7+10)
462
463 *dump = kmalloc_array(HQD_N_REGS, sizeof(**dump), GFP_KERNEL);
464 if (*dump == NULL)
465 return -ENOMEM;
466
467 for (reg = mmSDMA0_RLC0_RB_CNTL; reg <= mmSDMA0_RLC0_DOORBELL; reg++)
468 DUMP_REG(sdma_rlc_reg_offset + reg);
469 for (reg = mmSDMA0_RLC0_STATUS; reg <= mmSDMA0_RLC0_CSA_ADDR_HI; reg++)
470 DUMP_REG(sdma_rlc_reg_offset + reg);
471 for (reg = mmSDMA0_RLC0_IB_SUB_REMAIN;
472 reg <= mmSDMA0_RLC0_MINOR_PTR_UPDATE; reg++)
473 DUMP_REG(sdma_rlc_reg_offset + reg);
474 for (reg = mmSDMA0_RLC0_MIDCMD_DATA0;
475 reg <= mmSDMA0_RLC0_MIDCMD_CNTL; reg++)
476 DUMP_REG(sdma_rlc_reg_offset + reg);
477
478 WARN_ON_ONCE(i != HQD_N_REGS);
479 *n_regs = i;
480
481 return 0;
482 }
483
kgd_gfx_v9_hqd_is_occupied(struct amdgpu_device * adev,uint64_t queue_address,uint32_t pipe_id,uint32_t queue_id,uint32_t inst)484 bool kgd_gfx_v9_hqd_is_occupied(struct amdgpu_device *adev,
485 uint64_t queue_address, uint32_t pipe_id,
486 uint32_t queue_id, uint32_t inst)
487 {
488 uint32_t act;
489 bool retval = false;
490 uint32_t low, high;
491
492 kgd_gfx_v9_acquire_queue(adev, pipe_id, queue_id, inst);
493 act = RREG32_SOC15(GC, GET_INST(GC, inst), mmCP_HQD_ACTIVE);
494 if (act) {
495 low = lower_32_bits(queue_address >> 8);
496 high = upper_32_bits(queue_address >> 8);
497
498 if (low == RREG32_SOC15(GC, GET_INST(GC, inst), mmCP_HQD_PQ_BASE) &&
499 high == RREG32_SOC15(GC, GET_INST(GC, inst), mmCP_HQD_PQ_BASE_HI))
500 retval = true;
501 }
502 kgd_gfx_v9_release_queue(adev, inst);
503 return retval;
504 }
505
kgd_hqd_sdma_is_occupied(struct amdgpu_device * adev,void * mqd)506 static bool kgd_hqd_sdma_is_occupied(struct amdgpu_device *adev, void *mqd)
507 {
508 struct v9_sdma_mqd *m;
509 uint32_t sdma_rlc_reg_offset;
510 uint32_t sdma_rlc_rb_cntl;
511
512 m = get_sdma_mqd(mqd);
513 sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(adev, m->sdma_engine_id,
514 m->sdma_queue_id);
515
516 sdma_rlc_rb_cntl = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL);
517
518 if (sdma_rlc_rb_cntl & SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK)
519 return true;
520
521 return false;
522 }
523
kgd_gfx_v9_hqd_destroy(struct amdgpu_device * adev,void * mqd,enum kfd_preempt_type reset_type,unsigned int utimeout,uint32_t pipe_id,uint32_t queue_id,uint32_t inst)524 int kgd_gfx_v9_hqd_destroy(struct amdgpu_device *adev, void *mqd,
525 enum kfd_preempt_type reset_type,
526 unsigned int utimeout, uint32_t pipe_id,
527 uint32_t queue_id, uint32_t inst)
528 {
529 enum hqd_dequeue_request_type type;
530 unsigned long end_jiffies;
531 uint32_t temp;
532 struct v9_mqd *m = get_mqd(mqd);
533
534 if (amdgpu_in_reset(adev))
535 return -EIO;
536
537 kgd_gfx_v9_acquire_queue(adev, pipe_id, queue_id, inst);
538
539 if (m->cp_hqd_vmid == 0)
540 WREG32_FIELD15_RLC(GC, GET_INST(GC, inst), RLC_CP_SCHEDULERS, scheduler1, 0);
541
542 switch (reset_type) {
543 case KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN:
544 type = DRAIN_PIPE;
545 break;
546 case KFD_PREEMPT_TYPE_WAVEFRONT_RESET:
547 type = RESET_WAVES;
548 break;
549 case KFD_PREEMPT_TYPE_WAVEFRONT_SAVE:
550 type = SAVE_WAVES;
551 break;
552 default:
553 type = DRAIN_PIPE;
554 break;
555 }
556
557 WREG32_SOC15_RLC(GC, GET_INST(GC, inst), mmCP_HQD_DEQUEUE_REQUEST, type);
558
559 end_jiffies = (utimeout * HZ / 1000) + jiffies;
560 while (true) {
561 temp = RREG32_SOC15(GC, GET_INST(GC, inst), mmCP_HQD_ACTIVE);
562 if (!(temp & CP_HQD_ACTIVE__ACTIVE_MASK))
563 break;
564 if (time_after(jiffies, end_jiffies)) {
565 pr_err("cp queue preemption time out.\n");
566 kgd_gfx_v9_release_queue(adev, inst);
567 return -ETIME;
568 }
569 usleep_range(500, 1000);
570 }
571
572 kgd_gfx_v9_release_queue(adev, inst);
573 return 0;
574 }
575
kgd_hqd_sdma_destroy(struct amdgpu_device * adev,void * mqd,unsigned int utimeout)576 static int kgd_hqd_sdma_destroy(struct amdgpu_device *adev, void *mqd,
577 unsigned int utimeout)
578 {
579 struct v9_sdma_mqd *m;
580 uint32_t sdma_rlc_reg_offset;
581 uint32_t temp;
582 unsigned long end_jiffies = (utimeout * HZ / 1000) + jiffies;
583
584 m = get_sdma_mqd(mqd);
585 sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(adev, m->sdma_engine_id,
586 m->sdma_queue_id);
587
588 temp = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL);
589 temp = temp & ~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK;
590 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL, temp);
591
592 while (true) {
593 temp = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_CONTEXT_STATUS);
594 if (temp & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
595 break;
596 if (time_after(jiffies, end_jiffies)) {
597 pr_err("SDMA RLC not idle in %s\n", __func__);
598 return -ETIME;
599 }
600 usleep_range(500, 1000);
601 }
602
603 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_DOORBELL, 0);
604 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL,
605 RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL) |
606 SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK);
607
608 m->sdmax_rlcx_rb_rptr = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR);
609 m->sdmax_rlcx_rb_rptr_hi =
610 RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_HI);
611
612 return 0;
613 }
614
kgd_gfx_v9_get_atc_vmid_pasid_mapping_info(struct amdgpu_device * adev,uint8_t vmid,uint16_t * p_pasid)615 bool kgd_gfx_v9_get_atc_vmid_pasid_mapping_info(struct amdgpu_device *adev,
616 uint8_t vmid, uint16_t *p_pasid)
617 {
618 uint32_t value;
619
620 value = RREG32(SOC15_REG_OFFSET(ATHUB, 0, mmATC_VMID0_PASID_MAPPING)
621 + vmid);
622 *p_pasid = value & ATC_VMID0_PASID_MAPPING__PASID_MASK;
623
624 return !!(value & ATC_VMID0_PASID_MAPPING__VALID_MASK);
625 }
626
kgd_gfx_v9_wave_control_execute(struct amdgpu_device * adev,uint32_t gfx_index_val,uint32_t sq_cmd,uint32_t inst)627 int kgd_gfx_v9_wave_control_execute(struct amdgpu_device *adev,
628 uint32_t gfx_index_val,
629 uint32_t sq_cmd, uint32_t inst)
630 {
631 uint32_t data = 0;
632
633 mutex_lock(&adev->grbm_idx_mutex);
634
635 WREG32_SOC15_RLC_SHADOW(GC, GET_INST(GC, inst), mmGRBM_GFX_INDEX, gfx_index_val);
636 WREG32_SOC15(GC, GET_INST(GC, inst), mmSQ_CMD, sq_cmd);
637
638 data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
639 INSTANCE_BROADCAST_WRITES, 1);
640 data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
641 SH_BROADCAST_WRITES, 1);
642 data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
643 SE_BROADCAST_WRITES, 1);
644
645 WREG32_SOC15_RLC_SHADOW(GC, GET_INST(GC, inst), mmGRBM_GFX_INDEX, data);
646 mutex_unlock(&adev->grbm_idx_mutex);
647
648 return 0;
649 }
650
651 /*
652 * GFX9 helper for wave launch stall requirements on debug trap setting.
653 *
654 * vmid:
655 * Target VMID to stall/unstall.
656 *
657 * stall:
658 * 0-unstall wave launch (enable), 1-stall wave launch (disable).
659 * After wavefront launch has been stalled, allocated waves must drain from
660 * SPI in order for debug trap settings to take effect on those waves.
661 * This is roughly a ~96 clock cycle wait on SPI where a read on
662 * SPI_GDBG_WAVE_CNTL translates to ~32 clock cycles.
663 * KGD_GFX_V9_WAVE_LAUNCH_SPI_DRAIN_LATENCY indicates the number of reads required.
664 *
665 * NOTE: We can afford to clear the entire STALL_VMID field on unstall
666 * because GFX9.4.1 cannot support multi-process debugging due to trap
667 * configuration and masking being limited to global scope. Always assume
668 * single process conditions.
669 */
670 #define KGD_GFX_V9_WAVE_LAUNCH_SPI_DRAIN_LATENCY 3
kgd_gfx_v9_set_wave_launch_stall(struct amdgpu_device * adev,uint32_t vmid,bool stall)671 void kgd_gfx_v9_set_wave_launch_stall(struct amdgpu_device *adev,
672 uint32_t vmid,
673 bool stall)
674 {
675 int i;
676 uint32_t data = RREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_WAVE_CNTL));
677
678 if (amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(9, 4, 1))
679 data = REG_SET_FIELD(data, SPI_GDBG_WAVE_CNTL, STALL_VMID,
680 stall ? 1 << vmid : 0);
681 else
682 data = REG_SET_FIELD(data, SPI_GDBG_WAVE_CNTL, STALL_RA,
683 stall ? 1 : 0);
684
685 WREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_WAVE_CNTL), data);
686
687 if (!stall)
688 return;
689
690 for (i = 0; i < KGD_GFX_V9_WAVE_LAUNCH_SPI_DRAIN_LATENCY; i++)
691 RREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_WAVE_CNTL));
692 }
693
694 /*
695 * restore_dbg_registers is ignored here but is a general interface requirement
696 * for devices that support GFXOFF and where the RLC save/restore list
697 * does not support hw registers for debugging i.e. the driver has to manually
698 * initialize the debug mode registers after it has disabled GFX off during the
699 * debug session.
700 */
kgd_gfx_v9_enable_debug_trap(struct amdgpu_device * adev,bool restore_dbg_registers,uint32_t vmid)701 uint32_t kgd_gfx_v9_enable_debug_trap(struct amdgpu_device *adev,
702 bool restore_dbg_registers,
703 uint32_t vmid)
704 {
705 mutex_lock(&adev->grbm_idx_mutex);
706
707 kgd_gfx_v9_set_wave_launch_stall(adev, vmid, true);
708
709 WREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_TRAP_MASK), 0);
710
711 kgd_gfx_v9_set_wave_launch_stall(adev, vmid, false);
712
713 mutex_unlock(&adev->grbm_idx_mutex);
714
715 return 0;
716 }
717
718 /*
719 * keep_trap_enabled is ignored here but is a general interface requirement
720 * for devices that support multi-process debugging where the performance
721 * overhead from trap temporary setup needs to be bypassed when the debug
722 * session has ended.
723 */
kgd_gfx_v9_disable_debug_trap(struct amdgpu_device * adev,bool keep_trap_enabled,uint32_t vmid)724 uint32_t kgd_gfx_v9_disable_debug_trap(struct amdgpu_device *adev,
725 bool keep_trap_enabled,
726 uint32_t vmid)
727 {
728 mutex_lock(&adev->grbm_idx_mutex);
729
730 kgd_gfx_v9_set_wave_launch_stall(adev, vmid, true);
731
732 WREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_TRAP_MASK), 0);
733
734 kgd_gfx_v9_set_wave_launch_stall(adev, vmid, false);
735
736 mutex_unlock(&adev->grbm_idx_mutex);
737
738 return 0;
739 }
740
kgd_gfx_v9_validate_trap_override_request(struct amdgpu_device * adev,uint32_t trap_override,uint32_t * trap_mask_supported)741 int kgd_gfx_v9_validate_trap_override_request(struct amdgpu_device *adev,
742 uint32_t trap_override,
743 uint32_t *trap_mask_supported)
744 {
745 *trap_mask_supported &= KFD_DBG_TRAP_MASK_DBG_ADDRESS_WATCH;
746
747 /* The SPI_GDBG_TRAP_MASK register is global and affects all
748 * processes. Only allow OR-ing the address-watch bit, since
749 * this only affects processes under the debugger. Other bits
750 * should stay 0 to avoid the debugger interfering with other
751 * processes.
752 */
753 if (trap_override != KFD_DBG_TRAP_OVERRIDE_OR)
754 return -EINVAL;
755
756 return 0;
757 }
758
kgd_gfx_v9_set_wave_launch_trap_override(struct amdgpu_device * adev,uint32_t vmid,uint32_t trap_override,uint32_t trap_mask_bits,uint32_t trap_mask_request,uint32_t * trap_mask_prev,uint32_t kfd_dbg_cntl_prev)759 uint32_t kgd_gfx_v9_set_wave_launch_trap_override(struct amdgpu_device *adev,
760 uint32_t vmid,
761 uint32_t trap_override,
762 uint32_t trap_mask_bits,
763 uint32_t trap_mask_request,
764 uint32_t *trap_mask_prev,
765 uint32_t kfd_dbg_cntl_prev)
766 {
767 uint32_t data, wave_cntl_prev;
768
769 mutex_lock(&adev->grbm_idx_mutex);
770
771 wave_cntl_prev = RREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_WAVE_CNTL));
772
773 kgd_gfx_v9_set_wave_launch_stall(adev, vmid, true);
774
775 data = RREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_TRAP_MASK));
776 *trap_mask_prev = REG_GET_FIELD(data, SPI_GDBG_TRAP_MASK, EXCP_EN);
777
778 trap_mask_bits = (trap_mask_bits & trap_mask_request) |
779 (*trap_mask_prev & ~trap_mask_request);
780
781 data = REG_SET_FIELD(data, SPI_GDBG_TRAP_MASK, EXCP_EN, trap_mask_bits);
782 data = REG_SET_FIELD(data, SPI_GDBG_TRAP_MASK, REPLACE, trap_override);
783 WREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_TRAP_MASK), data);
784
785 /* We need to preserve wave launch mode stall settings. */
786 WREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_WAVE_CNTL), wave_cntl_prev);
787
788 mutex_unlock(&adev->grbm_idx_mutex);
789
790 return 0;
791 }
792
kgd_gfx_v9_set_wave_launch_mode(struct amdgpu_device * adev,uint8_t wave_launch_mode,uint32_t vmid)793 uint32_t kgd_gfx_v9_set_wave_launch_mode(struct amdgpu_device *adev,
794 uint8_t wave_launch_mode,
795 uint32_t vmid)
796 {
797 uint32_t data = 0;
798 bool is_mode_set = !!wave_launch_mode;
799
800 mutex_lock(&adev->grbm_idx_mutex);
801
802 kgd_gfx_v9_set_wave_launch_stall(adev, vmid, true);
803
804 data = REG_SET_FIELD(data, SPI_GDBG_WAVE_CNTL2,
805 VMID_MASK, is_mode_set ? 1 << vmid : 0);
806 data = REG_SET_FIELD(data, SPI_GDBG_WAVE_CNTL2,
807 MODE, is_mode_set ? wave_launch_mode : 0);
808 WREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_WAVE_CNTL2), data);
809
810 kgd_gfx_v9_set_wave_launch_stall(adev, vmid, false);
811
812 mutex_unlock(&adev->grbm_idx_mutex);
813
814 return 0;
815 }
816
817 #define TCP_WATCH_STRIDE (mmTCP_WATCH1_ADDR_H - mmTCP_WATCH0_ADDR_H)
kgd_gfx_v9_set_address_watch(struct amdgpu_device * adev,uint64_t watch_address,uint32_t watch_address_mask,uint32_t watch_id,uint32_t watch_mode,uint32_t debug_vmid,uint32_t inst)818 uint32_t kgd_gfx_v9_set_address_watch(struct amdgpu_device *adev,
819 uint64_t watch_address,
820 uint32_t watch_address_mask,
821 uint32_t watch_id,
822 uint32_t watch_mode,
823 uint32_t debug_vmid,
824 uint32_t inst)
825 {
826 uint32_t watch_address_high;
827 uint32_t watch_address_low;
828 uint32_t watch_address_cntl;
829
830 watch_address_cntl = 0;
831
832 watch_address_low = lower_32_bits(watch_address);
833 watch_address_high = upper_32_bits(watch_address) & 0xffff;
834
835 watch_address_cntl = REG_SET_FIELD(watch_address_cntl,
836 TCP_WATCH0_CNTL,
837 VMID,
838 debug_vmid);
839 watch_address_cntl = REG_SET_FIELD(watch_address_cntl,
840 TCP_WATCH0_CNTL,
841 MODE,
842 watch_mode);
843 watch_address_cntl = REG_SET_FIELD(watch_address_cntl,
844 TCP_WATCH0_CNTL,
845 MASK,
846 watch_address_mask >> 6);
847
848 /* Turning off this watch point until we set all the registers */
849 watch_address_cntl = REG_SET_FIELD(watch_address_cntl,
850 TCP_WATCH0_CNTL,
851 VALID,
852 0);
853
854 WREG32_RLC((SOC15_REG_OFFSET(GC, 0, mmTCP_WATCH0_CNTL) +
855 (watch_id * TCP_WATCH_STRIDE)),
856 watch_address_cntl);
857
858 WREG32_RLC((SOC15_REG_OFFSET(GC, 0, mmTCP_WATCH0_ADDR_H) +
859 (watch_id * TCP_WATCH_STRIDE)),
860 watch_address_high);
861
862 WREG32_RLC((SOC15_REG_OFFSET(GC, 0, mmTCP_WATCH0_ADDR_L) +
863 (watch_id * TCP_WATCH_STRIDE)),
864 watch_address_low);
865
866 /* Enable the watch point */
867 watch_address_cntl = REG_SET_FIELD(watch_address_cntl,
868 TCP_WATCH0_CNTL,
869 VALID,
870 1);
871
872 WREG32_RLC((SOC15_REG_OFFSET(GC, 0, mmTCP_WATCH0_CNTL) +
873 (watch_id * TCP_WATCH_STRIDE)),
874 watch_address_cntl);
875
876 return 0;
877 }
878
kgd_gfx_v9_clear_address_watch(struct amdgpu_device * adev,uint32_t watch_id)879 uint32_t kgd_gfx_v9_clear_address_watch(struct amdgpu_device *adev,
880 uint32_t watch_id)
881 {
882 uint32_t watch_address_cntl;
883
884 watch_address_cntl = 0;
885
886 WREG32_RLC((SOC15_REG_OFFSET(GC, 0, mmTCP_WATCH0_CNTL) +
887 (watch_id * TCP_WATCH_STRIDE)),
888 watch_address_cntl);
889
890 return 0;
891 }
892
893 /* kgd_gfx_v9_get_iq_wait_times: Returns the mmCP_IQ_WAIT_TIME1/2 values
894 * The values read are:
895 * ib_offload_wait_time -- Wait Count for Indirect Buffer Offloads.
896 * atomic_offload_wait_time -- Wait Count for L2 and GDS Atomics Offloads.
897 * wrm_offload_wait_time -- Wait Count for WAIT_REG_MEM Offloads.
898 * gws_wait_time -- Wait Count for Global Wave Syncs.
899 * que_sleep_wait_time -- Wait Count for Dequeue Retry.
900 * sch_wave_wait_time -- Wait Count for Scheduling Wave Message.
901 * sem_rearm_wait_time -- Wait Count for Semaphore re-arm.
902 * deq_retry_wait_time -- Wait Count for Global Wave Syncs.
903 */
kgd_gfx_v9_get_iq_wait_times(struct amdgpu_device * adev,uint32_t * wait_times,uint32_t inst)904 void kgd_gfx_v9_get_iq_wait_times(struct amdgpu_device *adev,
905 uint32_t *wait_times,
906 uint32_t inst)
907
908 {
909 *wait_times = RREG32_SOC15_RLC(GC, GET_INST(GC, inst),
910 mmCP_IQ_WAIT_TIME2);
911 }
912
kgd_gfx_v9_set_vm_context_page_table_base(struct amdgpu_device * adev,uint32_t vmid,uint64_t page_table_base)913 void kgd_gfx_v9_set_vm_context_page_table_base(struct amdgpu_device *adev,
914 uint32_t vmid, uint64_t page_table_base)
915 {
916 if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid)) {
917 pr_err("trying to set page table base for wrong VMID %u\n",
918 vmid);
919 return;
920 }
921
922 adev->mmhub.funcs->setup_vm_pt_regs(adev, vmid, page_table_base);
923
924 adev->gfxhub.funcs->setup_vm_pt_regs(adev, vmid, page_table_base);
925 }
926
lock_spi_csq_mutexes(struct amdgpu_device * adev)927 static void lock_spi_csq_mutexes(struct amdgpu_device *adev)
928 {
929 mutex_lock(&adev->srbm_mutex);
930 mutex_lock(&adev->grbm_idx_mutex);
931
932 }
933
unlock_spi_csq_mutexes(struct amdgpu_device * adev)934 static void unlock_spi_csq_mutexes(struct amdgpu_device *adev)
935 {
936 mutex_unlock(&adev->grbm_idx_mutex);
937 mutex_unlock(&adev->srbm_mutex);
938 }
939
940 /**
941 * get_wave_count: Read device registers to get number of waves in flight for
942 * a particular queue. The method also returns the VMID associated with the
943 * queue.
944 *
945 * @adev: Handle of device whose registers are to be read
946 * @queue_idx: Index of queue in the queue-map bit-field
947 * @queue_cnt: Stores the wave count and doorbell offset for an active queue
948 * @inst: xcc's instance number on a multi-XCC setup
949 */
get_wave_count(struct amdgpu_device * adev,int queue_idx,struct kfd_cu_occupancy * queue_cnt,uint32_t inst)950 static void get_wave_count(struct amdgpu_device *adev, int queue_idx,
951 struct kfd_cu_occupancy *queue_cnt, uint32_t inst)
952 {
953 int pipe_idx;
954 int queue_slot;
955 unsigned int reg_val;
956 unsigned int wave_cnt;
957 /*
958 * Program GRBM with appropriate MEID, PIPEID, QUEUEID and VMID
959 * parameters to read out waves in flight. Get VMID if there are
960 * non-zero waves in flight.
961 */
962 pipe_idx = queue_idx / adev->gfx.mec.num_queue_per_pipe;
963 queue_slot = queue_idx % adev->gfx.mec.num_queue_per_pipe;
964 soc15_grbm_select(adev, 1, pipe_idx, queue_slot, 0, GET_INST(GC, inst));
965 reg_val = RREG32_SOC15_IP(GC, SOC15_REG_OFFSET(GC, GET_INST(GC, inst),
966 mmSPI_CSQ_WF_ACTIVE_COUNT_0) + queue_slot);
967 wave_cnt = reg_val & SPI_CSQ_WF_ACTIVE_COUNT_0__COUNT_MASK;
968 if (wave_cnt != 0) {
969 queue_cnt->wave_cnt += wave_cnt;
970 queue_cnt->doorbell_off =
971 (RREG32_SOC15(GC, GET_INST(GC, inst), mmCP_HQD_PQ_DOORBELL_CONTROL) &
972 CP_HQD_PQ_DOORBELL_CONTROL__DOORBELL_OFFSET_MASK) >>
973 CP_HQD_PQ_DOORBELL_CONTROL__DOORBELL_OFFSET__SHIFT;
974 }
975 }
976
977 /**
978 * kgd_gfx_v9_get_cu_occupancy: Reads relevant registers associated with each
979 * shader engine and aggregates the number of waves that are in flight for the
980 * process whose pasid is provided as a parameter. The process could have ZERO
981 * or more queues running and submitting waves to compute units.
982 *
983 * @adev: Handle of device from which to get number of waves in flight
984 * @cu_occupancy: Array that gets filled with wave_cnt and doorbell offset
985 * for comparison later.
986 * @max_waves_per_cu: Output parameter updated with maximum number of waves
987 * possible per Compute Unit
988 * @inst: xcc's instance number on a multi-XCC setup
989 *
990 * Note: It's possible that the device has too many queues (oversubscription)
991 * in which case a VMID could be remapped to a different PASID. This could lead
992 * to an inaccurate wave count. Following is a high-level sequence:
993 * Time T1: vmid = getVmid(); vmid is associated with Pasid P1
994 * Time T2: passId = getPasId(vmid); vmid is associated with Pasid P2
995 * In the sequence above wave count obtained from time T1 will be incorrectly
996 * lost or added to total wave count.
997 *
998 * The registers that provide the waves in flight are:
999 *
1000 * SPI_CSQ_WF_ACTIVE_STATUS - bit-map of queues per pipe. The bit is ON if a
1001 * queue is slotted, OFF if there is no queue. A process could have ZERO or
1002 * more queues slotted and submitting waves to be run on compute units. Even
1003 * when there is a queue it is possible there could be zero wave fronts, this
1004 * can happen when queue is waiting on top-of-pipe events - e.g. waitRegMem
1005 * command
1006 *
1007 * For each bit that is ON from above:
1008 *
1009 * Read (SPI_CSQ_WF_ACTIVE_COUNT_0 + queue_idx) register. It provides the
1010 * number of waves that are in flight for the queue at specified index. The
1011 * index ranges from 0 to 7.
1012 *
1013 * If non-zero waves are in flight, store the corresponding doorbell offset
1014 * of the queue, along with the wave count.
1015 *
1016 * Determine if the queue belongs to the process by comparing the doorbell
1017 * offset against the process's queues. If it matches, aggregate the wave
1018 * count for the process.
1019 *
1020 * Reading registers referenced above involves programming GRBM appropriately
1021 */
kgd_gfx_v9_get_cu_occupancy(struct amdgpu_device * adev,struct kfd_cu_occupancy * cu_occupancy,int * max_waves_per_cu,uint32_t inst)1022 void kgd_gfx_v9_get_cu_occupancy(struct amdgpu_device *adev,
1023 struct kfd_cu_occupancy *cu_occupancy,
1024 int *max_waves_per_cu, uint32_t inst)
1025 {
1026 int qidx;
1027 int se_idx;
1028 int se_cnt;
1029 int queue_map;
1030 int max_queue_cnt;
1031 DECLARE_BITMAP(cp_queue_bitmap, AMDGPU_MAX_QUEUES);
1032
1033 lock_spi_csq_mutexes(adev);
1034 soc15_grbm_select(adev, 1, 0, 0, 0, GET_INST(GC, inst));
1035
1036 /*
1037 * Iterate through the shader engines and arrays of the device
1038 * to get number of waves in flight
1039 */
1040 bitmap_complement(cp_queue_bitmap, adev->gfx.mec_bitmap[0].queue_bitmap,
1041 AMDGPU_MAX_QUEUES);
1042 max_queue_cnt = adev->gfx.mec.num_pipe_per_mec *
1043 adev->gfx.mec.num_queue_per_pipe;
1044 se_cnt = adev->gfx.config.max_shader_engines;
1045 for (se_idx = 0; se_idx < se_cnt; se_idx++) {
1046 amdgpu_gfx_select_se_sh(adev, se_idx, 0, 0xffffffff, inst);
1047 queue_map = RREG32_SOC15(GC, GET_INST(GC, inst), mmSPI_CSQ_WF_ACTIVE_STATUS);
1048
1049 /*
1050 * Assumption: queue map encodes following schema: four
1051 * pipes per each micro-engine, with each pipe mapping
1052 * eight queues. This schema is true for GFX9 devices
1053 * and must be verified for newer device families
1054 */
1055 for (qidx = 0; qidx < max_queue_cnt; qidx++) {
1056 /* Skip qeueus that are not associated with
1057 * compute functions
1058 */
1059 if (!test_bit(qidx, cp_queue_bitmap))
1060 continue;
1061
1062 if (!(queue_map & (1 << qidx)))
1063 continue;
1064
1065 /* Get number of waves in flight and aggregate them */
1066 get_wave_count(adev, qidx, &cu_occupancy[qidx],
1067 inst);
1068 }
1069 }
1070
1071 amdgpu_gfx_select_se_sh(adev, 0xffffffff, 0xffffffff, 0xffffffff, inst);
1072 soc15_grbm_select(adev, 0, 0, 0, 0, GET_INST(GC, inst));
1073 unlock_spi_csq_mutexes(adev);
1074
1075 /* Update the output parameters and return */
1076 *max_waves_per_cu = adev->gfx.cu_info.simd_per_cu *
1077 adev->gfx.cu_info.max_waves_per_simd;
1078 }
1079
kgd_gfx_v9_build_grace_period_packet_info(struct amdgpu_device * adev,uint32_t wait_times,uint32_t grace_period,uint32_t * reg_offset,uint32_t * reg_data)1080 void kgd_gfx_v9_build_grace_period_packet_info(struct amdgpu_device *adev,
1081 uint32_t wait_times,
1082 uint32_t grace_period,
1083 uint32_t *reg_offset,
1084 uint32_t *reg_data)
1085 {
1086 *reg_data = wait_times;
1087
1088 /*
1089 * The CP cannot handle a 0 grace period input and will result in
1090 * an infinite grace period being set so set to 1 to prevent this.
1091 */
1092 if (grace_period == 0)
1093 grace_period = 1;
1094
1095 *reg_data = REG_SET_FIELD(*reg_data,
1096 CP_IQ_WAIT_TIME2,
1097 SCH_WAVE,
1098 grace_period);
1099
1100 *reg_offset = SOC15_REG_OFFSET(GC, 0, mmCP_IQ_WAIT_TIME2);
1101 }
1102
kgd_gfx_v9_program_trap_handler_settings(struct amdgpu_device * adev,uint32_t vmid,uint64_t tba_addr,uint64_t tma_addr,uint32_t inst)1103 void kgd_gfx_v9_program_trap_handler_settings(struct amdgpu_device *adev,
1104 uint32_t vmid, uint64_t tba_addr, uint64_t tma_addr, uint32_t inst)
1105 {
1106 kgd_gfx_v9_lock_srbm(adev, 0, 0, 0, vmid, inst);
1107
1108 /*
1109 * Program TBA registers
1110 */
1111 WREG32_SOC15(GC, GET_INST(GC, inst), mmSQ_SHADER_TBA_LO,
1112 lower_32_bits(tba_addr >> 8));
1113 WREG32_SOC15(GC, GET_INST(GC, inst), mmSQ_SHADER_TBA_HI,
1114 upper_32_bits(tba_addr >> 8));
1115
1116 /*
1117 * Program TMA registers
1118 */
1119 WREG32_SOC15(GC, GET_INST(GC, inst), mmSQ_SHADER_TMA_LO,
1120 lower_32_bits(tma_addr >> 8));
1121 WREG32_SOC15(GC, GET_INST(GC, inst), mmSQ_SHADER_TMA_HI,
1122 upper_32_bits(tma_addr >> 8));
1123
1124 kgd_gfx_v9_unlock_srbm(adev, inst);
1125 }
1126
kgd_gfx_v9_hqd_get_pq_addr(struct amdgpu_device * adev,uint32_t pipe_id,uint32_t queue_id,uint32_t inst)1127 uint64_t kgd_gfx_v9_hqd_get_pq_addr(struct amdgpu_device *adev,
1128 uint32_t pipe_id, uint32_t queue_id,
1129 uint32_t inst)
1130 {
1131 uint32_t low, high;
1132 uint64_t queue_addr = 0;
1133
1134 kgd_gfx_v9_acquire_queue(adev, pipe_id, queue_id, inst);
1135 amdgpu_gfx_rlc_enter_safe_mode(adev, inst);
1136
1137 if (!RREG32_SOC15(GC, GET_INST(GC, inst), mmCP_HQD_ACTIVE))
1138 goto unlock_out;
1139
1140 low = RREG32_SOC15(GC, GET_INST(GC, inst), mmCP_HQD_PQ_BASE);
1141 high = RREG32_SOC15(GC, GET_INST(GC, inst), mmCP_HQD_PQ_BASE_HI);
1142
1143 /* only concerned with user queues. */
1144 if (!high)
1145 goto unlock_out;
1146
1147 queue_addr = (((queue_addr | high) << 32) | low) << 8;
1148
1149 unlock_out:
1150 amdgpu_gfx_rlc_exit_safe_mode(adev, inst);
1151 kgd_gfx_v9_release_queue(adev, inst);
1152
1153 return queue_addr;
1154 }
1155
1156 /* assume queue acquired */
kgd_gfx_v9_hqd_dequeue_wait(struct amdgpu_device * adev,uint32_t inst,unsigned int utimeout)1157 static int kgd_gfx_v9_hqd_dequeue_wait(struct amdgpu_device *adev, uint32_t inst,
1158 unsigned int utimeout)
1159 {
1160 unsigned long end_jiffies = (utimeout * HZ / 1000) + jiffies;
1161
1162 while (true) {
1163 uint32_t temp = RREG32_SOC15(GC, GET_INST(GC, inst), mmCP_HQD_ACTIVE);
1164
1165 if (!(temp & CP_HQD_ACTIVE__ACTIVE_MASK))
1166 return 0;
1167
1168 if (time_after(jiffies, end_jiffies))
1169 return -ETIME;
1170
1171 usleep_range(500, 1000);
1172 }
1173 }
1174
kgd_gfx_v9_hqd_reset(struct amdgpu_device * adev,uint32_t pipe_id,uint32_t queue_id,uint32_t inst,unsigned int utimeout)1175 uint64_t kgd_gfx_v9_hqd_reset(struct amdgpu_device *adev,
1176 uint32_t pipe_id, uint32_t queue_id,
1177 uint32_t inst, unsigned int utimeout)
1178 {
1179 uint32_t low, high, pipe_reset_data = 0;
1180 uint64_t queue_addr = 0;
1181
1182 kgd_gfx_v9_acquire_queue(adev, pipe_id, queue_id, inst);
1183 amdgpu_gfx_rlc_enter_safe_mode(adev, inst);
1184
1185 if (!RREG32_SOC15(GC, GET_INST(GC, inst), mmCP_HQD_ACTIVE))
1186 goto unlock_out;
1187
1188 low = RREG32_SOC15(GC, GET_INST(GC, inst), mmCP_HQD_PQ_BASE);
1189 high = RREG32_SOC15(GC, GET_INST(GC, inst), mmCP_HQD_PQ_BASE_HI);
1190
1191 /* only concerned with user queues. */
1192 if (!high)
1193 goto unlock_out;
1194
1195 queue_addr = (((queue_addr | high) << 32) | low) << 8;
1196
1197 pr_debug("Attempting queue reset on XCC %i pipe id %i queue id %i\n",
1198 inst, pipe_id, queue_id);
1199
1200 /* assume previous dequeue request issued will take affect after reset */
1201 WREG32_SOC15(GC, GET_INST(GC, inst), mmSPI_COMPUTE_QUEUE_RESET, 0x1);
1202
1203 if (!kgd_gfx_v9_hqd_dequeue_wait(adev, inst, utimeout))
1204 goto unlock_out;
1205
1206 pr_debug("Attempting pipe reset on XCC %i pipe id %i\n", inst, pipe_id);
1207
1208 pipe_reset_data = REG_SET_FIELD(pipe_reset_data, CP_MEC_CNTL, MEC_ME1_PIPE0_RESET, 1);
1209 pipe_reset_data = pipe_reset_data << pipe_id;
1210
1211 WREG32_SOC15(GC, GET_INST(GC, inst), mmCP_MEC_CNTL, pipe_reset_data);
1212 WREG32_SOC15(GC, GET_INST(GC, inst), mmCP_MEC_CNTL, 0);
1213
1214 if (kgd_gfx_v9_hqd_dequeue_wait(adev, inst, utimeout))
1215 queue_addr = 0;
1216
1217 unlock_out:
1218 pr_debug("queue reset on XCC %i pipe id %i queue id %i %s\n",
1219 inst, pipe_id, queue_id, !!queue_addr ? "succeeded!" : "failed!");
1220 amdgpu_gfx_rlc_exit_safe_mode(adev, inst);
1221 kgd_gfx_v9_release_queue(adev, inst);
1222
1223 return queue_addr;
1224 }
1225
1226 const struct kfd2kgd_calls gfx_v9_kfd2kgd = {
1227 .program_sh_mem_settings = kgd_gfx_v9_program_sh_mem_settings,
1228 .set_pasid_vmid_mapping = kgd_gfx_v9_set_pasid_vmid_mapping,
1229 .init_interrupts = kgd_gfx_v9_init_interrupts,
1230 .hqd_load = kgd_gfx_v9_hqd_load,
1231 .hiq_mqd_load = kgd_gfx_v9_hiq_mqd_load,
1232 .hqd_sdma_load = kgd_hqd_sdma_load,
1233 .hqd_dump = kgd_gfx_v9_hqd_dump,
1234 .hqd_sdma_dump = kgd_hqd_sdma_dump,
1235 .hqd_is_occupied = kgd_gfx_v9_hqd_is_occupied,
1236 .hqd_sdma_is_occupied = kgd_hqd_sdma_is_occupied,
1237 .hqd_destroy = kgd_gfx_v9_hqd_destroy,
1238 .hqd_sdma_destroy = kgd_hqd_sdma_destroy,
1239 .wave_control_execute = kgd_gfx_v9_wave_control_execute,
1240 .get_atc_vmid_pasid_mapping_info =
1241 kgd_gfx_v9_get_atc_vmid_pasid_mapping_info,
1242 .set_vm_context_page_table_base = kgd_gfx_v9_set_vm_context_page_table_base,
1243 .enable_debug_trap = kgd_gfx_v9_enable_debug_trap,
1244 .disable_debug_trap = kgd_gfx_v9_disable_debug_trap,
1245 .validate_trap_override_request = kgd_gfx_v9_validate_trap_override_request,
1246 .set_wave_launch_trap_override = kgd_gfx_v9_set_wave_launch_trap_override,
1247 .set_wave_launch_mode = kgd_gfx_v9_set_wave_launch_mode,
1248 .set_address_watch = kgd_gfx_v9_set_address_watch,
1249 .clear_address_watch = kgd_gfx_v9_clear_address_watch,
1250 .get_iq_wait_times = kgd_gfx_v9_get_iq_wait_times,
1251 .build_grace_period_packet_info = kgd_gfx_v9_build_grace_period_packet_info,
1252 .get_cu_occupancy = kgd_gfx_v9_get_cu_occupancy,
1253 .program_trap_handler_settings = kgd_gfx_v9_program_trap_handler_settings,
1254 .hqd_get_pq_addr = kgd_gfx_v9_hqd_get_pq_addr,
1255 .hqd_reset = kgd_gfx_v9_hqd_reset
1256 };
1257