xref: /linux/include/linux/kfifo.h (revision d8b78066f4c9c8ec898bd4246fc4db31d476dd88)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * A generic kernel FIFO implementation
4  *
5  * Copyright (C) 2013 Stefani Seibold <stefani@seibold.net>
6  */
7 
8 #ifndef _LINUX_KFIFO_H
9 #define _LINUX_KFIFO_H
10 
11 /*
12  * How to porting drivers to the new generic FIFO API:
13  *
14  * - Modify the declaration of the "struct kfifo *" object into a
15  *   in-place "struct kfifo" object
16  * - Init the in-place object with kfifo_alloc() or kfifo_init()
17  *   Note: The address of the in-place "struct kfifo" object must be
18  *   passed as the first argument to this functions
19  * - Replace the use of __kfifo_put into kfifo_in and __kfifo_get
20  *   into kfifo_out
21  * - Replace the use of kfifo_put into kfifo_in_spinlocked and kfifo_get
22  *   into kfifo_out_spinlocked
23  *   Note: the spinlock pointer formerly passed to kfifo_init/kfifo_alloc
24  *   must be passed now to the kfifo_in_spinlocked and kfifo_out_spinlocked
25  *   as the last parameter
26  * - The formerly __kfifo_* functions are renamed into kfifo_*
27  */
28 
29 /*
30  * Note about locking: There is no locking required until only one reader
31  * and one writer is using the fifo and no kfifo_reset() will be called.
32  * kfifo_reset_out() can be safely used, until it will be only called
33  * in the reader thread.
34  * For multiple writer and one reader there is only a need to lock the writer.
35  * And vice versa for only one writer and multiple reader there is only a need
36  * to lock the reader.
37  */
38 
39 #include <linux/array_size.h>
40 #include <linux/spinlock.h>
41 #include <linux/stddef.h>
42 #include <linux/types.h>
43 
44 #include <asm/barrier.h>
45 #include <asm/errno.h>
46 
47 struct scatterlist;
48 
49 struct __kfifo {
50 	unsigned int	in;
51 	unsigned int	out;
52 	unsigned int	mask;
53 	unsigned int	esize;
54 	void		*data;
55 };
56 
57 #define __STRUCT_KFIFO_COMMON(datatype, recsize, ptrtype) \
58 	union { \
59 		struct __kfifo	kfifo; \
60 		datatype	*type; \
61 		const datatype	*const_type; \
62 		char		(*rectype)[recsize]; \
63 		ptrtype		*ptr; \
64 		ptrtype const	*ptr_const; \
65 	}
66 
67 #define __STRUCT_KFIFO(type, size, recsize, ptrtype) \
68 { \
69 	__STRUCT_KFIFO_COMMON(type, recsize, ptrtype); \
70 	type		buf[((size < 2) || (size & (size - 1))) ? -1 : size]; \
71 }
72 
73 #define STRUCT_KFIFO(type, size) \
74 	struct __STRUCT_KFIFO(type, size, 0, type)
75 
76 #define __STRUCT_KFIFO_PTR(type, recsize, ptrtype) \
77 { \
78 	__STRUCT_KFIFO_COMMON(type, recsize, ptrtype); \
79 	type		buf[0]; \
80 }
81 
82 #define STRUCT_KFIFO_PTR(type) \
83 	struct __STRUCT_KFIFO_PTR(type, 0, type)
84 
85 /*
86  * define compatibility "struct kfifo" for dynamic allocated fifos
87  */
88 struct kfifo __STRUCT_KFIFO_PTR(unsigned char, 0, void);
89 
90 #define STRUCT_KFIFO_REC_1(size) \
91 	struct __STRUCT_KFIFO(unsigned char, size, 1, void)
92 
93 #define STRUCT_KFIFO_REC_2(size) \
94 	struct __STRUCT_KFIFO(unsigned char, size, 2, void)
95 
96 /*
97  * define kfifo_rec types
98  */
99 struct kfifo_rec_ptr_1 __STRUCT_KFIFO_PTR(unsigned char, 1, void);
100 struct kfifo_rec_ptr_2 __STRUCT_KFIFO_PTR(unsigned char, 2, void);
101 
102 /*
103  * helper macro to distinguish between real in place fifo where the fifo
104  * array is a part of the structure and the fifo type where the array is
105  * outside of the fifo structure.
106  */
107 #define	__is_kfifo_ptr(fifo) \
108 	(sizeof(*fifo) == sizeof(STRUCT_KFIFO_PTR(typeof(*(fifo)->type))))
109 
110 /**
111  * DECLARE_KFIFO_PTR - macro to declare a fifo pointer object
112  * @fifo: name of the declared fifo
113  * @type: type of the fifo elements
114  */
115 #define DECLARE_KFIFO_PTR(fifo, type)	STRUCT_KFIFO_PTR(type) fifo
116 
117 /**
118  * DECLARE_KFIFO - macro to declare a fifo object
119  * @fifo: name of the declared fifo
120  * @type: type of the fifo elements
121  * @size: the number of elements in the fifo, this must be a power of 2
122  */
123 #define DECLARE_KFIFO(fifo, type, size)	STRUCT_KFIFO(type, size) fifo
124 
125 /**
126  * INIT_KFIFO - Initialize a fifo declared by DECLARE_KFIFO
127  * @fifo: name of the declared fifo datatype
128  */
129 #define INIT_KFIFO(fifo) \
130 (void)({ \
131 	typeof(&(fifo)) __tmp = &(fifo); \
132 	struct __kfifo *__kfifo = &__tmp->kfifo; \
133 	__kfifo->in = 0; \
134 	__kfifo->out = 0; \
135 	__kfifo->mask = __is_kfifo_ptr(__tmp) ? 0 : ARRAY_SIZE(__tmp->buf) - 1;\
136 	__kfifo->esize = sizeof(*__tmp->buf); \
137 	__kfifo->data = __is_kfifo_ptr(__tmp) ?  NULL : __tmp->buf; \
138 })
139 
140 /**
141  * DEFINE_KFIFO - macro to define and initialize a fifo
142  * @fifo: name of the declared fifo datatype
143  * @type: type of the fifo elements
144  * @size: the number of elements in the fifo, this must be a power of 2
145  *
146  * Note: the macro can be used for global and local fifo data type variables.
147  */
148 #define DEFINE_KFIFO(fifo, type, size) \
149 	DECLARE_KFIFO(fifo, type, size) = \
150 	(typeof(fifo)) { \
151 		{ \
152 			{ \
153 			.in	= 0, \
154 			.out	= 0, \
155 			.mask	= __is_kfifo_ptr(&(fifo)) ? \
156 				  0 : \
157 				  ARRAY_SIZE((fifo).buf) - 1, \
158 			.esize	= sizeof(*(fifo).buf), \
159 			.data	= __is_kfifo_ptr(&(fifo)) ? \
160 				NULL : \
161 				(fifo).buf, \
162 			} \
163 		} \
164 	}
165 
166 
167 static inline unsigned int __must_check
__kfifo_uint_must_check_helper(unsigned int val)168 __kfifo_uint_must_check_helper(unsigned int val)
169 {
170 	return val;
171 }
172 
173 static inline int __must_check
__kfifo_int_must_check_helper(int val)174 __kfifo_int_must_check_helper(int val)
175 {
176 	return val;
177 }
178 
179 /**
180  * kfifo_initialized - Check if the fifo is initialized
181  * @fifo: address of the fifo to check
182  *
183  * Return %true if fifo is initialized, otherwise %false.
184  * Assumes the fifo was 0 before.
185  */
186 #define kfifo_initialized(fifo) ((fifo)->kfifo.mask)
187 
188 /**
189  * kfifo_esize - returns the size of the element managed by the fifo
190  * @fifo: address of the fifo to be used
191  */
192 #define kfifo_esize(fifo)	((fifo)->kfifo.esize)
193 
194 /**
195  * kfifo_recsize - returns the size of the record length field
196  * @fifo: address of the fifo to be used
197  */
198 #define kfifo_recsize(fifo)	(sizeof(*(fifo)->rectype))
199 
200 /**
201  * kfifo_size - returns the size of the fifo in elements
202  * @fifo: address of the fifo to be used
203  */
204 #define kfifo_size(fifo)	((fifo)->kfifo.mask + 1)
205 
206 /**
207  * kfifo_reset - removes the entire fifo content
208  * @fifo: address of the fifo to be used
209  *
210  * Note: usage of kfifo_reset() is dangerous. It should be only called when the
211  * fifo is exclusived locked or when it is secured that no other thread is
212  * accessing the fifo.
213  */
214 #define kfifo_reset(fifo) \
215 (void)({ \
216 	typeof((fifo) + 1) __tmp = (fifo); \
217 	__tmp->kfifo.in = __tmp->kfifo.out = 0; \
218 })
219 
220 /**
221  * kfifo_reset_out - skip fifo content
222  * @fifo: address of the fifo to be used
223  *
224  * Note: The usage of kfifo_reset_out() is safe until it will be only called
225  * from the reader thread and there is only one concurrent reader. Otherwise
226  * it is dangerous and must be handled in the same way as kfifo_reset().
227  */
228 #define kfifo_reset_out(fifo)	\
229 (void)({ \
230 	typeof((fifo) + 1) __tmp = (fifo); \
231 	__tmp->kfifo.out = __tmp->kfifo.in; \
232 })
233 
234 /**
235  * kfifo_len - returns the number of used elements in the fifo
236  * @fifo: address of the fifo to be used
237  */
238 #define kfifo_len(fifo) \
239 ({ \
240 	typeof((fifo) + 1) __tmpl = (fifo); \
241 	__tmpl->kfifo.in - __tmpl->kfifo.out; \
242 })
243 
244 /**
245  * kfifo_is_empty - returns true if the fifo is empty
246  * @fifo: address of the fifo to be used
247  */
248 #define	kfifo_is_empty(fifo) \
249 ({ \
250 	typeof((fifo) + 1) __tmpq = (fifo); \
251 	__tmpq->kfifo.in == __tmpq->kfifo.out; \
252 })
253 
254 /**
255  * kfifo_is_empty_spinlocked - returns true if the fifo is empty using
256  * a spinlock for locking
257  * @fifo: address of the fifo to be used
258  * @lock: spinlock to be used for locking
259  */
260 #define kfifo_is_empty_spinlocked(fifo, lock) \
261 ({ \
262 	unsigned long __flags; \
263 	bool __ret; \
264 	spin_lock_irqsave(lock, __flags); \
265 	__ret = kfifo_is_empty(fifo); \
266 	spin_unlock_irqrestore(lock, __flags); \
267 	__ret; \
268 })
269 
270 /**
271  * kfifo_is_empty_spinlocked_noirqsave  - returns true if the fifo is empty
272  * using a spinlock for locking, doesn't disable interrupts
273  * @fifo: address of the fifo to be used
274  * @lock: spinlock to be used for locking
275  */
276 #define kfifo_is_empty_spinlocked_noirqsave(fifo, lock) \
277 ({ \
278 	bool __ret; \
279 	spin_lock(lock); \
280 	__ret = kfifo_is_empty(fifo); \
281 	spin_unlock(lock); \
282 	__ret; \
283 })
284 
285 /**
286  * kfifo_is_full - returns true if the fifo is full
287  * @fifo: address of the fifo to be used
288  */
289 #define	kfifo_is_full(fifo) \
290 ({ \
291 	typeof((fifo) + 1) __tmpq = (fifo); \
292 	kfifo_len(__tmpq) > __tmpq->kfifo.mask; \
293 })
294 
295 /**
296  * kfifo_avail - returns the number of unused elements in the fifo
297  * @fifo: address of the fifo to be used
298  */
299 #define	kfifo_avail(fifo) \
300 __kfifo_uint_must_check_helper( \
301 ({ \
302 	typeof((fifo) + 1) __tmpq = (fifo); \
303 	const size_t __recsize = sizeof(*__tmpq->rectype); \
304 	unsigned int __avail = kfifo_size(__tmpq) - kfifo_len(__tmpq); \
305 	(__recsize) ? ((__avail <= __recsize) ? 0 : \
306 	__kfifo_max_r(__avail - __recsize, __recsize)) : \
307 	__avail; \
308 }) \
309 )
310 
311 /**
312  * kfifo_skip_count - skip output data
313  * @fifo: address of the fifo to be used
314  * @count: count of data to skip
315  */
316 #define	kfifo_skip_count(fifo, count) do { \
317 	typeof((fifo) + 1) __tmp = (fifo); \
318 	const size_t __recsize = sizeof(*__tmp->rectype); \
319 	struct __kfifo *__kfifo = &__tmp->kfifo; \
320 	if (__recsize) \
321 		__kfifo_skip_r(__kfifo, __recsize); \
322 	else \
323 		__kfifo->out += (count); \
324 } while(0)
325 
326 /**
327  * kfifo_skip - skip output data
328  * @fifo: address of the fifo to be used
329  */
330 #define	kfifo_skip(fifo)	kfifo_skip_count(fifo, 1)
331 
332 /**
333  * kfifo_peek_len - gets the size of the next fifo record
334  * @fifo: address of the fifo to be used
335  *
336  * This function returns the size of the next fifo record in number of bytes.
337  */
338 #define kfifo_peek_len(fifo) \
339 __kfifo_uint_must_check_helper( \
340 ({ \
341 	typeof((fifo) + 1) __tmp = (fifo); \
342 	const size_t __recsize = sizeof(*__tmp->rectype); \
343 	struct __kfifo *__kfifo = &__tmp->kfifo; \
344 	(!__recsize) ? kfifo_len(__tmp) * sizeof(*__tmp->type) : \
345 	__kfifo_len_r(__kfifo, __recsize); \
346 }) \
347 )
348 
349 /**
350  * kfifo_alloc - dynamically allocates a new fifo buffer
351  * @fifo: pointer to the fifo
352  * @size: the number of elements in the fifo, this must be a power of 2
353  * @gfp_mask: get_free_pages mask, passed to kmalloc()
354  *
355  * This macro dynamically allocates a new fifo buffer.
356  *
357  * The number of elements will be rounded-up to a power of 2.
358  * The fifo will be release with kfifo_free().
359  * Return 0 if no error, otherwise an error code.
360  */
361 #define kfifo_alloc(fifo, size, gfp_mask) \
362 __kfifo_int_must_check_helper( \
363 ({ \
364 	typeof((fifo) + 1) __tmp = (fifo); \
365 	struct __kfifo *__kfifo = &__tmp->kfifo; \
366 	__is_kfifo_ptr(__tmp) ? \
367 	__kfifo_alloc(__kfifo, size, sizeof(*__tmp->type), gfp_mask) : \
368 	-EINVAL; \
369 }) \
370 )
371 
372 /**
373  * kfifo_free - frees the fifo
374  * @fifo: the fifo to be freed
375  */
376 #define kfifo_free(fifo) \
377 ({ \
378 	typeof((fifo) + 1) __tmp = (fifo); \
379 	struct __kfifo *__kfifo = &__tmp->kfifo; \
380 	if (__is_kfifo_ptr(__tmp)) \
381 		__kfifo_free(__kfifo); \
382 })
383 
384 /**
385  * kfifo_init - initialize a fifo using a preallocated buffer
386  * @fifo: the fifo to assign the buffer
387  * @buffer: the preallocated buffer to be used
388  * @size: the size of the internal buffer, this have to be a power of 2
389  *
390  * This macro initializes a fifo using a preallocated buffer.
391  *
392  * The number of elements will be rounded-up to a power of 2.
393  * Return 0 if no error, otherwise an error code.
394  */
395 #define kfifo_init(fifo, buffer, size) \
396 ({ \
397 	typeof((fifo) + 1) __tmp = (fifo); \
398 	struct __kfifo *__kfifo = &__tmp->kfifo; \
399 	__is_kfifo_ptr(__tmp) ? \
400 	__kfifo_init(__kfifo, buffer, size, sizeof(*__tmp->type)) : \
401 	-EINVAL; \
402 })
403 
404 /**
405  * kfifo_put - put data into the fifo
406  * @fifo: address of the fifo to be used
407  * @val: the data to be added
408  *
409  * This macro copies the given value into the fifo.
410  * It returns 0 if the fifo was full. Otherwise it returns the number
411  * processed elements.
412  *
413  * Note that with only one concurrent reader and one concurrent
414  * writer, you don't need extra locking to use these macro.
415  */
416 #define	kfifo_put(fifo, val) \
417 ({ \
418 	typeof((fifo) + 1) __tmp = (fifo); \
419 	typeof(*__tmp->const_type) __val = (val); \
420 	unsigned int __ret; \
421 	size_t __recsize = sizeof(*__tmp->rectype); \
422 	struct __kfifo *__kfifo = &__tmp->kfifo; \
423 	if (__recsize) \
424 		__ret = __kfifo_in_r(__kfifo, &__val, sizeof(__val), \
425 			__recsize); \
426 	else { \
427 		__ret = !kfifo_is_full(__tmp); \
428 		if (__ret) { \
429 			(__is_kfifo_ptr(__tmp) ? \
430 			((typeof(__tmp->type))__kfifo->data) : \
431 			(__tmp->buf) \
432 			)[__kfifo->in & __tmp->kfifo.mask] = \
433 				*(typeof(__tmp->type))&__val; \
434 			smp_wmb(); \
435 			__kfifo->in++; \
436 		} \
437 	} \
438 	__ret; \
439 })
440 
441 /**
442  * kfifo_get - get data from the fifo
443  * @fifo: address of the fifo to be used
444  * @val: address where to store the data
445  *
446  * This macro reads the data from the fifo.
447  * It returns 0 if the fifo was empty. Otherwise it returns the number
448  * processed elements.
449  *
450  * Note that with only one concurrent reader and one concurrent
451  * writer, you don't need extra locking to use these macro.
452  */
453 #define	kfifo_get(fifo, val) \
454 __kfifo_uint_must_check_helper( \
455 ({ \
456 	typeof((fifo) + 1) __tmp = (fifo); \
457 	typeof(__tmp->ptr) __val = (val); \
458 	unsigned int __ret; \
459 	const size_t __recsize = sizeof(*__tmp->rectype); \
460 	struct __kfifo *__kfifo = &__tmp->kfifo; \
461 	if (__recsize) \
462 		__ret = __kfifo_out_r(__kfifo, __val, sizeof(*__val), \
463 			__recsize); \
464 	else { \
465 		__ret = !kfifo_is_empty(__tmp); \
466 		if (__ret) { \
467 			*(typeof(__tmp->type))__val = \
468 				(__is_kfifo_ptr(__tmp) ? \
469 				((typeof(__tmp->type))__kfifo->data) : \
470 				(__tmp->buf) \
471 				)[__kfifo->out & __tmp->kfifo.mask]; \
472 			smp_wmb(); \
473 			__kfifo->out++; \
474 		} \
475 	} \
476 	__ret; \
477 }) \
478 )
479 
480 /**
481  * kfifo_peek - get data from the fifo without removing
482  * @fifo: address of the fifo to be used
483  * @val: address where to store the data
484  *
485  * This reads the data from the fifo without removing it from the fifo.
486  * It returns 0 if the fifo was empty. Otherwise it returns the number
487  * processed elements.
488  *
489  * Note that with only one concurrent reader and one concurrent
490  * writer, you don't need extra locking to use these macro.
491  */
492 #define	kfifo_peek(fifo, val) \
493 __kfifo_uint_must_check_helper( \
494 ({ \
495 	typeof((fifo) + 1) __tmp = (fifo); \
496 	typeof(__tmp->ptr) __val = (val); \
497 	unsigned int __ret; \
498 	const size_t __recsize = sizeof(*__tmp->rectype); \
499 	struct __kfifo *__kfifo = &__tmp->kfifo; \
500 	if (__recsize) \
501 		__ret = __kfifo_out_peek_r(__kfifo, __val, sizeof(*__val), \
502 			__recsize); \
503 	else { \
504 		__ret = !kfifo_is_empty(__tmp); \
505 		if (__ret) { \
506 			*(typeof(__tmp->type))__val = \
507 				(__is_kfifo_ptr(__tmp) ? \
508 				((typeof(__tmp->type))__kfifo->data) : \
509 				(__tmp->buf) \
510 				)[__kfifo->out & __tmp->kfifo.mask]; \
511 			smp_wmb(); \
512 		} \
513 	} \
514 	__ret; \
515 }) \
516 )
517 
518 /**
519  * kfifo_in - put data into the fifo
520  * @fifo: address of the fifo to be used
521  * @buf: the data to be added
522  * @n: number of elements to be added
523  *
524  * This macro copies the given buffer into the fifo and returns the
525  * number of copied elements.
526  *
527  * Note that with only one concurrent reader and one concurrent
528  * writer, you don't need extra locking to use these macro.
529  */
530 #define	kfifo_in(fifo, buf, n) \
531 ({ \
532 	typeof((fifo) + 1) __tmp = (fifo); \
533 	typeof(__tmp->ptr_const) __buf = (buf); \
534 	unsigned long __n = (n); \
535 	const size_t __recsize = sizeof(*__tmp->rectype); \
536 	struct __kfifo *__kfifo = &__tmp->kfifo; \
537 	(__recsize) ?\
538 	__kfifo_in_r(__kfifo, __buf, __n, __recsize) : \
539 	__kfifo_in(__kfifo, __buf, __n); \
540 })
541 
542 /**
543  * kfifo_in_spinlocked - put data into the fifo using a spinlock for locking
544  * @fifo: address of the fifo to be used
545  * @buf: the data to be added
546  * @n: number of elements to be added
547  * @lock: pointer to the spinlock to use for locking
548  *
549  * This macro copies the given values buffer into the fifo and returns the
550  * number of copied elements.
551  */
552 #define	kfifo_in_spinlocked(fifo, buf, n, lock) \
553 ({ \
554 	unsigned long __flags; \
555 	unsigned int __ret; \
556 	spin_lock_irqsave(lock, __flags); \
557 	__ret = kfifo_in(fifo, buf, n); \
558 	spin_unlock_irqrestore(lock, __flags); \
559 	__ret; \
560 })
561 
562 /**
563  * kfifo_in_spinlocked_noirqsave - put data into fifo using a spinlock for
564  * locking, don't disable interrupts
565  * @fifo: address of the fifo to be used
566  * @buf: the data to be added
567  * @n: number of elements to be added
568  * @lock: pointer to the spinlock to use for locking
569  *
570  * This is a variant of kfifo_in_spinlocked() but uses spin_lock/unlock()
571  * for locking and doesn't disable interrupts.
572  */
573 #define kfifo_in_spinlocked_noirqsave(fifo, buf, n, lock) \
574 ({ \
575 	unsigned int __ret; \
576 	spin_lock(lock); \
577 	__ret = kfifo_in(fifo, buf, n); \
578 	spin_unlock(lock); \
579 	__ret; \
580 })
581 
582 /* alias for kfifo_in_spinlocked, will be removed in a future release */
583 #define kfifo_in_locked(fifo, buf, n, lock) \
584 		kfifo_in_spinlocked(fifo, buf, n, lock)
585 
586 /**
587  * kfifo_out - get data from the fifo
588  * @fifo: address of the fifo to be used
589  * @buf: pointer to the storage buffer
590  * @n: max. number of elements to get
591  *
592  * This macro gets some data from the fifo and returns the numbers of elements
593  * copied.
594  *
595  * Note that with only one concurrent reader and one concurrent
596  * writer, you don't need extra locking to use these macro.
597  */
598 #define	kfifo_out(fifo, buf, n) \
599 __kfifo_uint_must_check_helper( \
600 ({ \
601 	typeof((fifo) + 1) __tmp = (fifo); \
602 	typeof(__tmp->ptr) __buf = (buf); \
603 	unsigned long __n = (n); \
604 	const size_t __recsize = sizeof(*__tmp->rectype); \
605 	struct __kfifo *__kfifo = &__tmp->kfifo; \
606 	(__recsize) ?\
607 	__kfifo_out_r(__kfifo, __buf, __n, __recsize) : \
608 	__kfifo_out(__kfifo, __buf, __n); \
609 }) \
610 )
611 
612 /**
613  * kfifo_out_spinlocked - get data from the fifo using a spinlock for locking
614  * @fifo: address of the fifo to be used
615  * @buf: pointer to the storage buffer
616  * @n: max. number of elements to get
617  * @lock: pointer to the spinlock to use for locking
618  *
619  * This macro gets the data from the fifo and returns the numbers of elements
620  * copied.
621  */
622 #define	kfifo_out_spinlocked(fifo, buf, n, lock) \
623 __kfifo_uint_must_check_helper( \
624 ({ \
625 	unsigned long __flags; \
626 	unsigned int __ret; \
627 	spin_lock_irqsave(lock, __flags); \
628 	__ret = kfifo_out(fifo, buf, n); \
629 	spin_unlock_irqrestore(lock, __flags); \
630 	__ret; \
631 }) \
632 )
633 
634 /**
635  * kfifo_out_spinlocked_noirqsave - get data from the fifo using a spinlock
636  * for locking, don't disable interrupts
637  * @fifo: address of the fifo to be used
638  * @buf: pointer to the storage buffer
639  * @n: max. number of elements to get
640  * @lock: pointer to the spinlock to use for locking
641  *
642  * This is a variant of kfifo_out_spinlocked() which uses spin_lock/unlock()
643  * for locking and doesn't disable interrupts.
644  */
645 #define kfifo_out_spinlocked_noirqsave(fifo, buf, n, lock) \
646 __kfifo_uint_must_check_helper( \
647 ({ \
648 	unsigned int __ret; \
649 	spin_lock(lock); \
650 	__ret = kfifo_out(fifo, buf, n); \
651 	spin_unlock(lock); \
652 	__ret; \
653 }) \
654 )
655 
656 /* alias for kfifo_out_spinlocked, will be removed in a future release */
657 #define kfifo_out_locked(fifo, buf, n, lock) \
658 		kfifo_out_spinlocked(fifo, buf, n, lock)
659 
660 /**
661  * kfifo_from_user - puts some data from user space into the fifo
662  * @fifo: address of the fifo to be used
663  * @from: pointer to the data to be added
664  * @len: the length of the data to be added
665  * @copied: pointer to output variable to store the number of copied bytes
666  *
667  * This macro copies at most @len bytes from the @from into the
668  * fifo, depending of the available space and returns -EFAULT/0.
669  *
670  * Note that with only one concurrent reader and one concurrent
671  * writer, you don't need extra locking to use these macro.
672  */
673 #define	kfifo_from_user(fifo, from, len, copied) \
674 __kfifo_uint_must_check_helper( \
675 ({ \
676 	typeof((fifo) + 1) __tmp = (fifo); \
677 	const void __user *__from = (from); \
678 	unsigned int __len = (len); \
679 	unsigned int *__copied = (copied); \
680 	const size_t __recsize = sizeof(*__tmp->rectype); \
681 	struct __kfifo *__kfifo = &__tmp->kfifo; \
682 	(__recsize) ? \
683 	__kfifo_from_user_r(__kfifo, __from, __len,  __copied, __recsize) : \
684 	__kfifo_from_user(__kfifo, __from, __len, __copied); \
685 }) \
686 )
687 
688 /**
689  * kfifo_to_user - copies data from the fifo into user space
690  * @fifo: address of the fifo to be used
691  * @to: where the data must be copied
692  * @len: the size of the destination buffer
693  * @copied: pointer to output variable to store the number of copied bytes
694  *
695  * This macro copies at most @len bytes from the fifo into the
696  * @to buffer and returns -EFAULT/0.
697  *
698  * Note that with only one concurrent reader and one concurrent
699  * writer, you don't need extra locking to use these macro.
700  */
701 #define	kfifo_to_user(fifo, to, len, copied) \
702 __kfifo_int_must_check_helper( \
703 ({ \
704 	typeof((fifo) + 1) __tmp = (fifo); \
705 	void __user *__to = (to); \
706 	unsigned int __len = (len); \
707 	unsigned int *__copied = (copied); \
708 	const size_t __recsize = sizeof(*__tmp->rectype); \
709 	struct __kfifo *__kfifo = &__tmp->kfifo; \
710 	(__recsize) ? \
711 	__kfifo_to_user_r(__kfifo, __to, __len, __copied, __recsize) : \
712 	__kfifo_to_user(__kfifo, __to, __len, __copied); \
713 }) \
714 )
715 
716 /**
717  * kfifo_dma_in_prepare_mapped - setup a scatterlist for DMA input
718  * @fifo: address of the fifo to be used
719  * @sgl: pointer to the scatterlist array
720  * @nents: number of entries in the scatterlist array
721  * @len: number of elements to transfer
722  * @dma: mapped dma address to fill into @sgl
723  *
724  * This macro fills a scatterlist for DMA input.
725  * It returns the number entries in the scatterlist array.
726  *
727  * Note that with only one concurrent reader and one concurrent
728  * writer, you don't need extra locking to use these macros.
729  */
730 #define	kfifo_dma_in_prepare_mapped(fifo, sgl, nents, len, dma) \
731 ({ \
732 	typeof((fifo) + 1) __tmp = (fifo); \
733 	struct scatterlist *__sgl = (sgl); \
734 	int __nents = (nents); \
735 	unsigned int __len = (len); \
736 	const size_t __recsize = sizeof(*__tmp->rectype); \
737 	struct __kfifo *__kfifo = &__tmp->kfifo; \
738 	(__recsize) ? \
739 	__kfifo_dma_in_prepare_r(__kfifo, __sgl, __nents, __len, __recsize, \
740 				 dma) : \
741 	__kfifo_dma_in_prepare(__kfifo, __sgl, __nents, __len, dma); \
742 })
743 
744 #define kfifo_dma_in_prepare(fifo, sgl, nents, len) \
745 	kfifo_dma_in_prepare_mapped(fifo, sgl, nents, len, DMA_MAPPING_ERROR)
746 
747 /**
748  * kfifo_dma_in_finish - finish a DMA IN operation
749  * @fifo: address of the fifo to be used
750  * @len: number of bytes to received
751  *
752  * This macro finishes a DMA IN operation. The in counter will be updated by
753  * the len parameter. No error checking will be done.
754  *
755  * Note that with only one concurrent reader and one concurrent
756  * writer, you don't need extra locking to use these macros.
757  */
758 #define kfifo_dma_in_finish(fifo, len) \
759 (void)({ \
760 	typeof((fifo) + 1) __tmp = (fifo); \
761 	unsigned int __len = (len); \
762 	const size_t __recsize = sizeof(*__tmp->rectype); \
763 	struct __kfifo *__kfifo = &__tmp->kfifo; \
764 	if (__recsize) \
765 		__kfifo_dma_in_finish_r(__kfifo, __len, __recsize); \
766 	else \
767 		__kfifo->in += __len / sizeof(*__tmp->type); \
768 })
769 
770 /**
771  * kfifo_dma_out_prepare_mapped - setup a scatterlist for DMA output
772  * @fifo: address of the fifo to be used
773  * @sgl: pointer to the scatterlist array
774  * @nents: number of entries in the scatterlist array
775  * @len: number of elements to transfer
776  * @dma: mapped dma address to fill into @sgl
777  *
778  * This macro fills a scatterlist for DMA output which at most @len bytes
779  * to transfer.
780  * It returns the number entries in the scatterlist array.
781  * A zero means there is no space available and the scatterlist is not filled.
782  *
783  * Note that with only one concurrent reader and one concurrent
784  * writer, you don't need extra locking to use these macros.
785  */
786 #define	kfifo_dma_out_prepare_mapped(fifo, sgl, nents, len, dma) \
787 ({ \
788 	typeof((fifo) + 1) __tmp = (fifo);  \
789 	struct scatterlist *__sgl = (sgl); \
790 	int __nents = (nents); \
791 	unsigned int __len = (len); \
792 	const size_t __recsize = sizeof(*__tmp->rectype); \
793 	struct __kfifo *__kfifo = &__tmp->kfifo; \
794 	(__recsize) ? \
795 	__kfifo_dma_out_prepare_r(__kfifo, __sgl, __nents, __len, __recsize, \
796 				  dma) : \
797 	__kfifo_dma_out_prepare(__kfifo, __sgl, __nents, __len, dma); \
798 })
799 
800 #define	kfifo_dma_out_prepare(fifo, sgl, nents, len) \
801 	kfifo_dma_out_prepare_mapped(fifo, sgl, nents, len, DMA_MAPPING_ERROR)
802 
803 /**
804  * kfifo_dma_out_finish - finish a DMA OUT operation
805  * @fifo: address of the fifo to be used
806  * @len: number of bytes transferred
807  *
808  * This macro finishes a DMA OUT operation. The out counter will be updated by
809  * the len parameter. No error checking will be done.
810  *
811  * Note that with only one concurrent reader and one concurrent
812  * writer, you don't need extra locking to use these macros.
813  */
814 #define kfifo_dma_out_finish(fifo, len) do { \
815 	typeof((fifo) + 1) ___tmp = (fifo); \
816 	kfifo_skip_count(___tmp, (len) / sizeof(*___tmp->type)); \
817 } while (0)
818 
819 /**
820  * kfifo_out_peek - gets some data from the fifo
821  * @fifo: address of the fifo to be used
822  * @buf: pointer to the storage buffer
823  * @n: max. number of elements to get
824  *
825  * This macro gets the data from the fifo and returns the numbers of elements
826  * copied. The data is not removed from the fifo.
827  *
828  * Note that with only one concurrent reader and one concurrent
829  * writer, you don't need extra locking to use these macro.
830  */
831 #define	kfifo_out_peek(fifo, buf, n) \
832 __kfifo_uint_must_check_helper( \
833 ({ \
834 	typeof((fifo) + 1) __tmp = (fifo); \
835 	typeof(__tmp->ptr) __buf = (buf); \
836 	unsigned long __n = (n); \
837 	const size_t __recsize = sizeof(*__tmp->rectype); \
838 	struct __kfifo *__kfifo = &__tmp->kfifo; \
839 	(__recsize) ? \
840 	__kfifo_out_peek_r(__kfifo, __buf, __n, __recsize) : \
841 	__kfifo_out_peek(__kfifo, __buf, __n); \
842 }) \
843 )
844 
845 /**
846  * kfifo_out_linear - gets a tail of/offset to available data
847  * @fifo: address of the fifo to be used
848  * @tail: pointer to an unsigned int to store the value of tail
849  * @n: max. number of elements to point at
850  *
851  * This macro obtains the offset (tail) to the available data in the fifo
852  * buffer and returns the
853  * numbers of elements available. It returns the available count till the end
854  * of data or till the end of the buffer. So that it can be used for linear
855  * data processing (like memcpy() of (@fifo->data + @tail) with count
856  * returned).
857  *
858  * Note that with only one concurrent reader and one concurrent
859  * writer, you don't need extra locking to use these macro.
860  */
861 #define kfifo_out_linear(fifo, tail, n) \
862 __kfifo_uint_must_check_helper( \
863 ({ \
864 	typeof((fifo) + 1) __tmp = (fifo); \
865 	unsigned int *__tail = (tail); \
866 	unsigned long __n = (n); \
867 	const size_t __recsize = sizeof(*__tmp->rectype); \
868 	struct __kfifo *__kfifo = &__tmp->kfifo; \
869 	(__recsize) ? \
870 	__kfifo_out_linear_r(__kfifo, __tail, __n, __recsize) : \
871 	__kfifo_out_linear(__kfifo, __tail, __n); \
872 }) \
873 )
874 
875 /**
876  * kfifo_out_linear_ptr - gets a pointer to the available data
877  * @fifo: address of the fifo to be used
878  * @ptr: pointer to data to store the pointer to tail
879  * @n: max. number of elements to point at
880  *
881  * Similarly to kfifo_out_linear(), this macro obtains the pointer to the
882  * available data in the fifo buffer and returns the numbers of elements
883  * available. It returns the available count till the end of available data or
884  * till the end of the buffer. So that it can be used for linear data
885  * processing (like memcpy() of @ptr with count returned).
886  *
887  * Note that with only one concurrent reader and one concurrent
888  * writer, you don't need extra locking to use these macro.
889  */
890 #define kfifo_out_linear_ptr(fifo, ptr, n) \
891 __kfifo_uint_must_check_helper( \
892 ({ \
893 	typeof((fifo) + 1) ___tmp = (fifo); \
894 	unsigned int ___tail; \
895 	unsigned int ___n = kfifo_out_linear(___tmp, &___tail, (n)); \
896 	*(ptr) = ___tmp->kfifo.data + ___tail * kfifo_esize(___tmp); \
897 	___n; \
898 }) \
899 )
900 
901 
902 extern int __kfifo_alloc(struct __kfifo *fifo, unsigned int size,
903 	size_t esize, gfp_t gfp_mask);
904 
905 extern void __kfifo_free(struct __kfifo *fifo);
906 
907 extern int __kfifo_init(struct __kfifo *fifo, void *buffer,
908 	unsigned int size, size_t esize);
909 
910 extern unsigned int __kfifo_in(struct __kfifo *fifo,
911 	const void *buf, unsigned int len);
912 
913 extern unsigned int __kfifo_out(struct __kfifo *fifo,
914 	void *buf, unsigned int len);
915 
916 extern int __kfifo_from_user(struct __kfifo *fifo,
917 	const void __user *from, unsigned long len, unsigned int *copied);
918 
919 extern int __kfifo_to_user(struct __kfifo *fifo,
920 	void __user *to, unsigned long len, unsigned int *copied);
921 
922 extern unsigned int __kfifo_dma_in_prepare(struct __kfifo *fifo,
923 	struct scatterlist *sgl, int nents, unsigned int len, dma_addr_t dma);
924 
925 extern unsigned int __kfifo_dma_out_prepare(struct __kfifo *fifo,
926 	struct scatterlist *sgl, int nents, unsigned int len, dma_addr_t dma);
927 
928 extern unsigned int __kfifo_out_peek(struct __kfifo *fifo,
929 	void *buf, unsigned int len);
930 
931 extern unsigned int __kfifo_out_linear(struct __kfifo *fifo,
932 	unsigned int *tail, unsigned int n);
933 
934 extern unsigned int __kfifo_in_r(struct __kfifo *fifo,
935 	const void *buf, unsigned int len, size_t recsize);
936 
937 extern unsigned int __kfifo_out_r(struct __kfifo *fifo,
938 	void *buf, unsigned int len, size_t recsize);
939 
940 extern int __kfifo_from_user_r(struct __kfifo *fifo,
941 	const void __user *from, unsigned long len, unsigned int *copied,
942 	size_t recsize);
943 
944 extern int __kfifo_to_user_r(struct __kfifo *fifo, void __user *to,
945 	unsigned long len, unsigned int *copied, size_t recsize);
946 
947 extern unsigned int __kfifo_dma_in_prepare_r(struct __kfifo *fifo,
948 	struct scatterlist *sgl, int nents, unsigned int len, size_t recsize,
949 	dma_addr_t dma);
950 
951 extern void __kfifo_dma_in_finish_r(struct __kfifo *fifo,
952 	unsigned int len, size_t recsize);
953 
954 extern unsigned int __kfifo_dma_out_prepare_r(struct __kfifo *fifo,
955 	struct scatterlist *sgl, int nents, unsigned int len, size_t recsize,
956 	dma_addr_t dma);
957 
958 extern unsigned int __kfifo_len_r(struct __kfifo *fifo, size_t recsize);
959 
960 extern void __kfifo_skip_r(struct __kfifo *fifo, size_t recsize);
961 
962 extern unsigned int __kfifo_out_peek_r(struct __kfifo *fifo,
963 	void *buf, unsigned int len, size_t recsize);
964 
965 extern unsigned int __kfifo_out_linear_r(struct __kfifo *fifo,
966 	unsigned int *tail, unsigned int n, size_t recsize);
967 
968 extern unsigned int __kfifo_max_r(unsigned int len, size_t recsize);
969 
970 #endif
971