xref: /freebsd/sys/netipsec/key.c (revision 04207850a9b988d3c04e904cb5783f33da7fe184)
1 /*	$KAME: key.c,v 1.191 2001/06/27 10:46:49 sakane Exp $	*/
2 
3 /*-
4  * SPDX-License-Identifier: BSD-3-Clause
5  *
6  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. Neither the name of the project nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /*
35  * This code is referd to RFC 2367
36  */
37 
38 #include "opt_inet.h"
39 #include "opt_inet6.h"
40 #include "opt_ipsec.h"
41 
42 #include <sys/types.h>
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/kernel.h>
46 #include <sys/fnv_hash.h>
47 #include <sys/lock.h>
48 #include <sys/mutex.h>
49 #include <sys/mbuf.h>
50 #include <sys/domain.h>
51 #include <sys/protosw.h>
52 #include <sys/malloc.h>
53 #include <sys/rmlock.h>
54 #include <sys/socket.h>
55 #include <sys/socketvar.h>
56 #include <sys/sysctl.h>
57 #include <sys/errno.h>
58 #include <sys/proc.h>
59 #include <sys/queue.h>
60 #include <sys/refcount.h>
61 #include <sys/syslog.h>
62 
63 #include <vm/uma.h>
64 
65 #include <net/if.h>
66 #include <net/if_var.h>
67 #include <net/vnet.h>
68 
69 #include <netinet/in.h>
70 #include <netinet/in_systm.h>
71 #include <netinet/ip.h>
72 #include <netinet/in_var.h>
73 #include <netinet/udp.h>
74 
75 #ifdef INET6
76 #include <netinet/ip6.h>
77 #include <netinet6/in6_var.h>
78 #include <netinet6/ip6_var.h>
79 #endif /* INET6 */
80 
81 #include <net/pfkeyv2.h>
82 #include <netipsec/keydb.h>
83 #include <netipsec/key.h>
84 #include <netipsec/keysock.h>
85 #include <netipsec/key_debug.h>
86 #include <netipsec/ipsec_offload.h>
87 
88 #include <netipsec/ipsec.h>
89 #ifdef INET6
90 #include <netipsec/ipsec6.h>
91 #endif
92 
93 #include <netipsec/xform.h>
94 #include <netipsec/ipsec_offload.h>
95 #include <machine/in_cksum.h>
96 #include <machine/stdarg.h>
97 
98 /* randomness */
99 #include <sys/random.h>
100 
101 #ifdef IPSEC_OFFLOAD
102 void (*ipsec_accel_sa_newkey_p)(struct secasvar *sav);
103 void (*ipsec_accel_forget_sav_p)(struct secasvar *sav);
104 void (*ipsec_accel_spdadd_p)(struct secpolicy *sp, struct inpcb *inp);
105 void (*ipsec_accel_spddel_p)(struct secpolicy *sp);
106 int (*ipsec_accel_sa_lifetime_op_p)(struct secasvar *sav,
107     struct seclifetime *lft_c, if_t ifp, enum IF_SA_CNT_WHICH op,
108     struct rm_priotracker *sahtree_trackerp);
109 void (*ipsec_accel_sync_p)(void);
110 bool (*ipsec_accel_is_accel_sav_p)(struct secasvar *sav);
111 struct mbuf *(*ipsec_accel_key_setaccelif_p)(struct secasvar *sav);
112 void (*ipsec_accel_on_ifdown_p)(struct ifnet *ifp);
113 void (*ipsec_accel_drv_sa_lifetime_update_p)(struct secasvar *sav, if_t ifp,
114     u_int drv_spi, uint64_t octets, uint64_t allocs);
115 int (*ipsec_accel_drv_sa_lifetime_fetch_p)(struct secasvar *sav, if_t ifp,
116     u_int drv_spi, uint64_t *octets, uint64_t *allocs);
117 #endif
118 
119 #define FULLMASK	0xff
120 #define	_BITS(bytes)	((bytes) << 3)
121 
122 #define	UINT32_80PCT	0xcccccccc
123 /*
124  * Note on SA reference counting:
125  * - SAs that are not in DEAD state will have (total external reference + 1)
126  *   following value in reference count field.  they cannot be freed and are
127  *   referenced from SA header.
128  * - SAs that are in DEAD state will have (total external reference)
129  *   in reference count field.  they are ready to be freed.  reference from
130  *   SA header will be removed in key_delsav(), when the reference count
131  *   field hits 0 (= no external reference other than from SA header.
132  */
133 
134 VNET_DEFINE(u_int32_t, key_debug_level) = 0;
135 VNET_DEFINE_STATIC(u_int, key_spi_trycnt) = 1000;
136 VNET_DEFINE_STATIC(u_int32_t, key_spi_minval) = 0x100;
137 VNET_DEFINE_STATIC(u_int32_t, key_spi_maxval) = 0x0fffffff;	/* XXX */
138 VNET_DEFINE_STATIC(u_int32_t, policy_id) = 0;
139 /*interval to initialize randseed,1(m)*/
140 VNET_DEFINE_STATIC(u_int, key_int_random) = 60;
141 /* interval to expire acquiring, 30(s)*/
142 VNET_DEFINE_STATIC(u_int, key_larval_lifetime) = 30;
143 /* counter for blocking SADB_ACQUIRE.*/
144 VNET_DEFINE_STATIC(int, key_blockacq_count) = 10;
145 /* lifetime for blocking SADB_ACQUIRE.*/
146 VNET_DEFINE_STATIC(int, key_blockacq_lifetime) = 20;
147 /* preferred old sa rather than new sa.*/
148 VNET_DEFINE_STATIC(int, key_preferred_oldsa) = 1;
149 #define	V_key_spi_trycnt	VNET(key_spi_trycnt)
150 #define	V_key_spi_minval	VNET(key_spi_minval)
151 #define	V_key_spi_maxval	VNET(key_spi_maxval)
152 #define	V_policy_id		VNET(policy_id)
153 #define	V_key_int_random	VNET(key_int_random)
154 #define	V_key_larval_lifetime	VNET(key_larval_lifetime)
155 #define	V_key_blockacq_count	VNET(key_blockacq_count)
156 #define	V_key_blockacq_lifetime	VNET(key_blockacq_lifetime)
157 #define	V_key_preferred_oldsa	VNET(key_preferred_oldsa)
158 
159 VNET_DEFINE_STATIC(u_int32_t, acq_seq) = 0;
160 #define	V_acq_seq		VNET(acq_seq)
161 
162 VNET_DEFINE_STATIC(uint32_t, sp_genid) = 0;
163 #define	V_sp_genid		VNET(sp_genid)
164 
165 /* SPD */
166 TAILQ_HEAD(secpolicy_queue, secpolicy);
167 LIST_HEAD(secpolicy_list, secpolicy);
168 VNET_DEFINE_STATIC(struct secpolicy_queue, sptree[IPSEC_DIR_MAX]);
169 VNET_DEFINE_STATIC(struct secpolicy_queue, sptree_ifnet[IPSEC_DIR_MAX]);
170 static struct rmlock sptree_lock;
171 #define	V_sptree		VNET(sptree)
172 #define	V_sptree_ifnet		VNET(sptree_ifnet)
173 #define	SPTREE_LOCK_INIT()      rm_init(&sptree_lock, "sptree")
174 #define	SPTREE_LOCK_DESTROY()   rm_destroy(&sptree_lock)
175 #define	SPTREE_RLOCK_TRACKER    struct rm_priotracker sptree_tracker
176 #define	SPTREE_RLOCK()          rm_rlock(&sptree_lock, &sptree_tracker)
177 #define	SPTREE_RUNLOCK()        rm_runlock(&sptree_lock, &sptree_tracker)
178 #define	SPTREE_RLOCK_ASSERT()   rm_assert(&sptree_lock, RA_RLOCKED)
179 #define	SPTREE_WLOCK()          rm_wlock(&sptree_lock)
180 #define	SPTREE_WUNLOCK()        rm_wunlock(&sptree_lock)
181 #define	SPTREE_WLOCK_ASSERT()   rm_assert(&sptree_lock, RA_WLOCKED)
182 #define	SPTREE_UNLOCK_ASSERT()  rm_assert(&sptree_lock, RA_UNLOCKED)
183 
184 /* Hash table for lookup SP using unique id */
185 VNET_DEFINE_STATIC(struct secpolicy_list *, sphashtbl);
186 VNET_DEFINE_STATIC(u_long, sphash_mask);
187 #define	V_sphashtbl		VNET(sphashtbl)
188 #define	V_sphash_mask		VNET(sphash_mask)
189 
190 #define	SPHASH_NHASH_LOG2	7
191 #define	SPHASH_NHASH		(1 << SPHASH_NHASH_LOG2)
192 #define	SPHASH_HASHVAL(id)	(key_u32hash(id) & V_sphash_mask)
193 #define	SPHASH_HASH(id)		&V_sphashtbl[SPHASH_HASHVAL(id)]
194 
195 /* SPD cache */
196 struct spdcache_entry {
197    struct secpolicyindex spidx;	/* secpolicyindex */
198    struct secpolicy *sp;	/* cached policy to be used */
199 
200    LIST_ENTRY(spdcache_entry) chain;
201 };
202 LIST_HEAD(spdcache_entry_list, spdcache_entry);
203 
204 #define	SPDCACHE_MAX_ENTRIES_PER_HASH	8
205 
206 VNET_DEFINE_STATIC(u_int, key_spdcache_maxentries) = 0;
207 #define	V_key_spdcache_maxentries	VNET(key_spdcache_maxentries)
208 VNET_DEFINE_STATIC(u_int, key_spdcache_threshold) = 32;
209 #define	V_key_spdcache_threshold	VNET(key_spdcache_threshold)
210 VNET_DEFINE_STATIC(unsigned long, spd_size) = 0;
211 #define	V_spd_size		VNET(spd_size)
212 
213 #define SPDCACHE_ENABLED()	(V_key_spdcache_maxentries != 0)
214 #define SPDCACHE_ACTIVE() \
215 	(SPDCACHE_ENABLED() && V_spd_size >= V_key_spdcache_threshold)
216 
217 VNET_DEFINE_STATIC(struct spdcache_entry_list *, spdcachehashtbl);
218 VNET_DEFINE_STATIC(u_long, spdcachehash_mask);
219 #define	V_spdcachehashtbl	VNET(spdcachehashtbl)
220 #define	V_spdcachehash_mask	VNET(spdcachehash_mask)
221 
222 #define	SPDCACHE_HASHVAL(idx) \
223 	(key_addrprotohash(&(idx)->src, &(idx)->dst, &(idx)->ul_proto) &  \
224 	    V_spdcachehash_mask)
225 
226 /* Each cache line is protected by a mutex */
227 VNET_DEFINE_STATIC(struct mtx *, spdcache_lock);
228 #define	V_spdcache_lock		VNET(spdcache_lock)
229 
230 #define	SPDCACHE_LOCK_INIT(a) \
231 	mtx_init(&V_spdcache_lock[a], "spdcache", \
232 	    "fast ipsec SPD cache", MTX_DEF|MTX_DUPOK)
233 #define	SPDCACHE_LOCK_DESTROY(a)	mtx_destroy(&V_spdcache_lock[a])
234 #define	SPDCACHE_LOCK(a)		mtx_lock(&V_spdcache_lock[a]);
235 #define	SPDCACHE_UNLOCK(a)		mtx_unlock(&V_spdcache_lock[a]);
236 
237 static struct sx spi_alloc_lock;
238 #define	SPI_ALLOC_LOCK_INIT()		sx_init(&spi_alloc_lock, "spialloc")
239 #define	SPI_ALLOC_LOCK_DESTROY()	sx_destroy(&spi_alloc_lock)
240 #define	SPI_ALLOC_LOCK()          	sx_xlock(&spi_alloc_lock)
241 #define	SPI_ALLOC_UNLOCK()        	sx_unlock(&spi_alloc_lock)
242 #define	SPI_ALLOC_LOCK_ASSERT()   	sx_assert(&spi_alloc_lock, SA_XLOCKED)
243 
244 /* SAD */
245 TAILQ_HEAD(secashead_queue, secashead);
246 LIST_HEAD(secashead_list, secashead);
247 VNET_DEFINE_STATIC(struct secashead_queue, sahtree);
248 static struct rmlock sahtree_lock;
249 #define	V_sahtree		VNET(sahtree)
250 #define	SAHTREE_LOCK_INIT()	rm_init(&sahtree_lock, "sahtree")
251 #define	SAHTREE_LOCK_DESTROY()	rm_destroy(&sahtree_lock)
252 #define	SAHTREE_RLOCK_TRACKER	struct rm_priotracker sahtree_tracker
253 #define	SAHTREE_RLOCK()		rm_rlock(&sahtree_lock, &sahtree_tracker)
254 #define	SAHTREE_RUNLOCK()	rm_runlock(&sahtree_lock, &sahtree_tracker)
255 #define	SAHTREE_RLOCK_ASSERT()	rm_assert(&sahtree_lock, RA_RLOCKED)
256 #define	SAHTREE_WLOCK()		rm_wlock(&sahtree_lock)
257 #define	SAHTREE_WUNLOCK()	rm_wunlock(&sahtree_lock)
258 #define	SAHTREE_WLOCK_ASSERT()	rm_assert(&sahtree_lock, RA_WLOCKED)
259 #define	SAHTREE_UNLOCK_ASSERT()	rm_assert(&sahtree_lock, RA_UNLOCKED)
260 
261 /* Hash table for lookup in SAD using SA addresses */
262 VNET_DEFINE_STATIC(struct secashead_list *, sahaddrhashtbl);
263 VNET_DEFINE_STATIC(u_long, sahaddrhash_mask);
264 #define	V_sahaddrhashtbl	VNET(sahaddrhashtbl)
265 #define	V_sahaddrhash_mask	VNET(sahaddrhash_mask)
266 
267 #define	SAHHASH_NHASH_LOG2	7
268 #define	SAHHASH_NHASH		(1 << SAHHASH_NHASH_LOG2)
269 #define	SAHADDRHASH_HASHVAL(idx)	\
270 	(key_addrprotohash(&(idx)->src, &(idx)->dst, &(idx)->proto) & \
271 	    V_sahaddrhash_mask)
272 #define	SAHADDRHASH_HASH(saidx)		\
273     &V_sahaddrhashtbl[SAHADDRHASH_HASHVAL(saidx)]
274 
275 /* Hash table for lookup in SAD using SPI */
276 LIST_HEAD(secasvar_list, secasvar);
277 VNET_DEFINE_STATIC(struct secasvar_list *, savhashtbl);
278 VNET_DEFINE_STATIC(u_long, savhash_mask);
279 #define	V_savhashtbl		VNET(savhashtbl)
280 #define	V_savhash_mask		VNET(savhash_mask)
281 #define	SAVHASH_NHASH_LOG2	7
282 #define	SAVHASH_NHASH		(1 << SAVHASH_NHASH_LOG2)
283 #define	SAVHASH_HASHVAL(spi)	(key_u32hash(spi) & V_savhash_mask)
284 #define	SAVHASH_HASH(spi)	&V_savhashtbl[SAVHASH_HASHVAL(spi)]
285 
286 static uint32_t
key_addrprotohash(const union sockaddr_union * src,const union sockaddr_union * dst,const uint8_t * proto)287 key_addrprotohash(const union sockaddr_union *src,
288     const union sockaddr_union *dst, const uint8_t *proto)
289 {
290 	uint32_t hval;
291 
292 	hval = fnv_32_buf(proto, sizeof(*proto),
293 	    FNV1_32_INIT);
294 	switch (dst->sa.sa_family) {
295 #ifdef INET
296 	case AF_INET:
297 		hval = fnv_32_buf(&src->sin.sin_addr,
298 		    sizeof(in_addr_t), hval);
299 		hval = fnv_32_buf(&dst->sin.sin_addr,
300 		    sizeof(in_addr_t), hval);
301 		break;
302 #endif
303 #ifdef INET6
304 	case AF_INET6:
305 		hval = fnv_32_buf(&src->sin6.sin6_addr,
306 		    sizeof(struct in6_addr), hval);
307 		hval = fnv_32_buf(&dst->sin6.sin6_addr,
308 		    sizeof(struct in6_addr), hval);
309 		break;
310 #endif
311 	default:
312 		hval = 0;
313 		ipseclog((LOG_DEBUG, "%s: unknown address family %d\n",
314 		    __func__, dst->sa.sa_family));
315 	}
316 	return (hval);
317 }
318 
319 static uint32_t
key_u32hash(uint32_t val)320 key_u32hash(uint32_t val)
321 {
322 
323 	return (fnv_32_buf(&val, sizeof(val), FNV1_32_INIT));
324 }
325 
326 							/* registed list */
327 VNET_DEFINE_STATIC(LIST_HEAD(_regtree, secreg), regtree[SADB_SATYPE_MAX + 1]);
328 #define	V_regtree		VNET(regtree)
329 static struct mtx regtree_lock;
330 #define	REGTREE_LOCK_INIT() \
331 	mtx_init(&regtree_lock, "regtree", "fast ipsec regtree", MTX_DEF)
332 #define	REGTREE_LOCK_DESTROY()	mtx_destroy(&regtree_lock)
333 #define	REGTREE_LOCK()		mtx_lock(&regtree_lock)
334 #define	REGTREE_UNLOCK()	mtx_unlock(&regtree_lock)
335 #define	REGTREE_LOCK_ASSERT()	mtx_assert(&regtree_lock, MA_OWNED)
336 
337 /* Acquiring list */
338 LIST_HEAD(secacq_list, secacq);
339 VNET_DEFINE_STATIC(struct secacq_list, acqtree);
340 #define	V_acqtree		VNET(acqtree)
341 static struct mtx acq_lock;
342 #define	ACQ_LOCK_INIT() \
343     mtx_init(&acq_lock, "acqtree", "ipsec SA acquiring list", MTX_DEF)
344 #define	ACQ_LOCK_DESTROY()	mtx_destroy(&acq_lock)
345 #define	ACQ_LOCK()		mtx_lock(&acq_lock)
346 #define	ACQ_UNLOCK()		mtx_unlock(&acq_lock)
347 #define	ACQ_LOCK_ASSERT()	mtx_assert(&acq_lock, MA_OWNED)
348 
349 /* Hash table for lookup in ACQ list using SA addresses */
350 VNET_DEFINE_STATIC(struct secacq_list *, acqaddrhashtbl);
351 VNET_DEFINE_STATIC(u_long, acqaddrhash_mask);
352 #define	V_acqaddrhashtbl	VNET(acqaddrhashtbl)
353 #define	V_acqaddrhash_mask	VNET(acqaddrhash_mask)
354 
355 /* Hash table for lookup in ACQ list using SEQ number */
356 VNET_DEFINE_STATIC(struct secacq_list *, acqseqhashtbl);
357 VNET_DEFINE_STATIC(u_long, acqseqhash_mask);
358 #define	V_acqseqhashtbl		VNET(acqseqhashtbl)
359 #define	V_acqseqhash_mask	VNET(acqseqhash_mask)
360 
361 #define	ACQHASH_NHASH_LOG2	7
362 #define	ACQHASH_NHASH		(1 << ACQHASH_NHASH_LOG2)
363 #define	ACQADDRHASH_HASHVAL(idx)	\
364 	(key_addrprotohash(&(idx)->src, &(idx)->dst, &(idx)->proto) & \
365 	    V_acqaddrhash_mask)
366 #define	ACQSEQHASH_HASHVAL(seq)		\
367     (key_u32hash(seq) & V_acqseqhash_mask)
368 #define	ACQADDRHASH_HASH(saidx)	\
369     &V_acqaddrhashtbl[ACQADDRHASH_HASHVAL(saidx)]
370 #define	ACQSEQHASH_HASH(seq)	\
371     &V_acqseqhashtbl[ACQSEQHASH_HASHVAL(seq)]
372 							/* SP acquiring list */
373 VNET_DEFINE_STATIC(LIST_HEAD(_spacqtree, secspacq), spacqtree);
374 #define	V_spacqtree		VNET(spacqtree)
375 static struct mtx spacq_lock;
376 #define	SPACQ_LOCK_INIT() \
377 	mtx_init(&spacq_lock, "spacqtree", \
378 		"fast ipsec security policy acquire list", MTX_DEF)
379 #define	SPACQ_LOCK_DESTROY()	mtx_destroy(&spacq_lock)
380 #define	SPACQ_LOCK()		mtx_lock(&spacq_lock)
381 #define	SPACQ_UNLOCK()		mtx_unlock(&spacq_lock)
382 #define	SPACQ_LOCK_ASSERT()	mtx_assert(&spacq_lock, MA_OWNED)
383 
384 static const int minsize[] = {
385 	[SADB_EXT_RESERVED] = sizeof(struct sadb_msg),
386 	[SADB_EXT_SA] = sizeof(struct sadb_sa),
387 	[SADB_EXT_LIFETIME_CURRENT] = sizeof(struct sadb_lifetime),
388 	[SADB_EXT_LIFETIME_HARD] = sizeof(struct sadb_lifetime),
389 	[SADB_EXT_LIFETIME_SOFT] = sizeof(struct sadb_lifetime),
390 	[SADB_EXT_ADDRESS_SRC] = sizeof(struct sadb_address),
391 	[SADB_EXT_ADDRESS_DST] = sizeof(struct sadb_address),
392 	[SADB_EXT_ADDRESS_PROXY] = sizeof(struct sadb_address),
393 	[SADB_EXT_KEY_AUTH] = sizeof(struct sadb_key),
394 	[SADB_EXT_KEY_ENCRYPT] = sizeof(struct sadb_key),
395 	[SADB_EXT_IDENTITY_SRC] = sizeof(struct sadb_ident),
396 	[SADB_EXT_IDENTITY_DST] = sizeof(struct sadb_ident),
397 	[SADB_EXT_SENSITIVITY] = sizeof(struct sadb_sens),
398 	[SADB_EXT_PROPOSAL] = sizeof(struct sadb_prop),
399 	[SADB_EXT_SUPPORTED_AUTH] = sizeof(struct sadb_supported),
400 	[SADB_EXT_SUPPORTED_ENCRYPT] = sizeof(struct sadb_supported),
401 	[SADB_EXT_SPIRANGE] = sizeof(struct sadb_spirange),
402 	[SADB_X_EXT_KMPRIVATE] = 0,
403 	[SADB_X_EXT_POLICY] = sizeof(struct sadb_x_policy),
404 	[SADB_X_EXT_SA2] = sizeof(struct sadb_x_sa2),
405 	[SADB_X_EXT_NAT_T_TYPE] = sizeof(struct sadb_x_nat_t_type),
406 	[SADB_X_EXT_NAT_T_SPORT] = sizeof(struct sadb_x_nat_t_port),
407 	[SADB_X_EXT_NAT_T_DPORT] = sizeof(struct sadb_x_nat_t_port),
408 	[SADB_X_EXT_NAT_T_OAI] = sizeof(struct sadb_address),
409 	[SADB_X_EXT_NAT_T_OAR] = sizeof(struct sadb_address),
410 	[SADB_X_EXT_NAT_T_FRAG] = sizeof(struct sadb_x_nat_t_frag),
411 	[SADB_X_EXT_SA_REPLAY] = sizeof(struct sadb_x_sa_replay),
412 	[SADB_X_EXT_NEW_ADDRESS_SRC] = sizeof(struct sadb_address),
413 	[SADB_X_EXT_NEW_ADDRESS_DST] = sizeof(struct sadb_address),
414 	[SADB_X_EXT_LFT_CUR_SW_OFFL] = sizeof(struct sadb_lifetime),
415 	[SADB_X_EXT_LFT_CUR_HW_OFFL] = sizeof(struct sadb_lifetime),
416 	[SADB_X_EXT_IF_HW_OFFL] = sizeof(struct sadb_x_if_hw_offl),
417 };
418 _Static_assert(nitems(minsize) == SADB_EXT_MAX + 1, "minsize size mismatch");
419 
420 static const int maxsize[] = {
421 	[SADB_EXT_RESERVED] = sizeof(struct sadb_msg),
422 	[SADB_EXT_SA] = sizeof(struct sadb_sa),
423 	[SADB_EXT_LIFETIME_CURRENT] = sizeof(struct sadb_lifetime),
424 	[SADB_EXT_LIFETIME_HARD] = sizeof(struct sadb_lifetime),
425 	[SADB_EXT_LIFETIME_SOFT] = sizeof(struct sadb_lifetime),
426 	[SADB_EXT_ADDRESS_SRC] = 0,
427 	[SADB_EXT_ADDRESS_DST] = 0,
428 	[SADB_EXT_ADDRESS_PROXY] = 0,
429 	[SADB_EXT_KEY_AUTH] = 0,
430 	[SADB_EXT_KEY_ENCRYPT] = 0,
431 	[SADB_EXT_IDENTITY_SRC] = 0,
432 	[SADB_EXT_IDENTITY_DST] = 0,
433 	[SADB_EXT_SENSITIVITY] = 0,
434 	[SADB_EXT_PROPOSAL] = 0,
435 	[SADB_EXT_SUPPORTED_AUTH] = 0,
436 	[SADB_EXT_SUPPORTED_ENCRYPT] = 0,
437 	[SADB_EXT_SPIRANGE] = sizeof(struct sadb_spirange),
438 	[SADB_X_EXT_KMPRIVATE] = 0,
439 	[SADB_X_EXT_POLICY] = 0,
440 	[SADB_X_EXT_SA2] = sizeof(struct sadb_x_sa2),
441 	[SADB_X_EXT_NAT_T_TYPE] = sizeof(struct sadb_x_nat_t_type),
442 	[SADB_X_EXT_NAT_T_SPORT] = sizeof(struct sadb_x_nat_t_port),
443 	[SADB_X_EXT_NAT_T_DPORT] = sizeof(struct sadb_x_nat_t_port),
444 	[SADB_X_EXT_NAT_T_OAI] = 0,
445 	[SADB_X_EXT_NAT_T_OAR] = 0,
446 	[SADB_X_EXT_NAT_T_FRAG] = sizeof(struct sadb_x_nat_t_frag),
447 	[SADB_X_EXT_SA_REPLAY] = sizeof(struct sadb_x_sa_replay),
448 	[SADB_X_EXT_NEW_ADDRESS_SRC] = 0,
449 	[SADB_X_EXT_NEW_ADDRESS_DST] = 0,
450 	[SADB_X_EXT_LFT_CUR_SW_OFFL] = sizeof(struct sadb_lifetime),
451 	[SADB_X_EXT_LFT_CUR_HW_OFFL] = sizeof(struct sadb_lifetime),
452 	[SADB_X_EXT_IF_HW_OFFL] = sizeof(struct sadb_x_if_hw_offl),
453 };
454 _Static_assert(nitems(maxsize) == SADB_EXT_MAX + 1, "maxsize size mismatch");
455 
456 /*
457  * Internal values for SA flags:
458  * SADB_X_EXT_F_CLONED means that SA was cloned by key_updateaddresses,
459  *	thus we will not free the most of SA content in key_delsav().
460  */
461 #define	SADB_X_EXT_F_CLONED	0x80000000
462 
463 #define	SADB_CHECKLEN(_mhp, _ext)			\
464     ((_mhp)->extlen[(_ext)] < minsize[(_ext)] || (maxsize[(_ext)] != 0 && \
465 	((_mhp)->extlen[(_ext)] > maxsize[(_ext)])))
466 #define	SADB_CHECKHDR(_mhp, _ext)	((_mhp)->ext[(_ext)] == NULL)
467 
468 VNET_DEFINE_STATIC(int, ipsec_esp_keymin) = 256;
469 VNET_DEFINE_STATIC(int, ipsec_esp_auth) = 0;
470 VNET_DEFINE_STATIC(int, ipsec_ah_keymin) = 128;
471 
472 #define	V_ipsec_esp_keymin	VNET(ipsec_esp_keymin)
473 #define	V_ipsec_esp_auth	VNET(ipsec_esp_auth)
474 #define	V_ipsec_ah_keymin	VNET(ipsec_ah_keymin)
475 
476 #ifdef IPSEC_DEBUG
477 VNET_DEFINE(int, ipsec_debug) = 1;
478 #else
479 VNET_DEFINE(int, ipsec_debug) = 0;
480 #endif
481 
482 #ifdef INET
483 SYSCTL_DECL(_net_inet_ipsec);
484 SYSCTL_INT(_net_inet_ipsec, IPSECCTL_DEBUG, debug,
485     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ipsec_debug), 0,
486     "Enable IPsec debugging output when set.");
487 #endif
488 #ifdef INET6
489 SYSCTL_DECL(_net_inet6_ipsec6);
490 SYSCTL_INT(_net_inet6_ipsec6, IPSECCTL_DEBUG, debug,
491     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ipsec_debug), 0,
492     "Enable IPsec debugging output when set.");
493 #endif
494 
495 SYSCTL_INT(_net_key, KEYCTL_DEBUG_LEVEL,	debug,
496 	CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_debug_level), 0, "");
497 
498 /* max count of trial for the decision of spi value */
499 SYSCTL_INT(_net_key, KEYCTL_SPI_TRY, spi_trycnt,
500 	CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_spi_trycnt), 0, "");
501 
502 /* minimum spi value to allocate automatically. */
503 SYSCTL_INT(_net_key, KEYCTL_SPI_MIN_VALUE, spi_minval,
504 	CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_spi_minval), 0, "");
505 
506 /* maximun spi value to allocate automatically. */
507 SYSCTL_INT(_net_key, KEYCTL_SPI_MAX_VALUE, spi_maxval,
508 	CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_spi_maxval), 0, "");
509 
510 /* interval to initialize randseed */
511 SYSCTL_INT(_net_key, KEYCTL_RANDOM_INT, int_random,
512 	CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_int_random), 0, "");
513 
514 /* lifetime for larval SA */
515 SYSCTL_INT(_net_key, KEYCTL_LARVAL_LIFETIME, larval_lifetime,
516 	CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_larval_lifetime), 0, "");
517 
518 /* counter for blocking to send SADB_ACQUIRE to IKEd */
519 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_COUNT, blockacq_count,
520 	CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_blockacq_count), 0, "");
521 
522 /* lifetime for blocking to send SADB_ACQUIRE to IKEd */
523 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_LIFETIME, blockacq_lifetime,
524 	CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_blockacq_lifetime), 0, "");
525 
526 /* ESP auth */
527 SYSCTL_INT(_net_key, KEYCTL_ESP_AUTH, esp_auth,
528 	CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ipsec_esp_auth), 0, "");
529 
530 /* minimum ESP key length */
531 SYSCTL_INT(_net_key, KEYCTL_ESP_KEYMIN, esp_keymin,
532 	CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ipsec_esp_keymin), 0, "");
533 
534 /* minimum AH key length */
535 SYSCTL_INT(_net_key, KEYCTL_AH_KEYMIN, ah_keymin,
536 	CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ipsec_ah_keymin), 0, "");
537 
538 /* perfered old SA rather than new SA */
539 SYSCTL_INT(_net_key, KEYCTL_PREFERED_OLDSA, preferred_oldsa,
540 	CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_preferred_oldsa), 0, "");
541 
542 SYSCTL_NODE(_net_key, OID_AUTO, spdcache, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
543     "SPD cache");
544 
545 SYSCTL_UINT(_net_key_spdcache, OID_AUTO, maxentries,
546 	CTLFLAG_VNET | CTLFLAG_RDTUN, &VNET_NAME(key_spdcache_maxentries), 0,
547 	"Maximum number of entries in the SPD cache"
548 	" (power of 2, 0 to disable)");
549 
550 SYSCTL_UINT(_net_key_spdcache, OID_AUTO, threshold,
551 	CTLFLAG_VNET | CTLFLAG_RDTUN, &VNET_NAME(key_spdcache_threshold), 0,
552 	"Number of SPs that make the SPD cache active");
553 
554 #define __LIST_CHAINED(elm) \
555 	(!((elm)->chain.le_next == NULL && (elm)->chain.le_prev == NULL))
556 
557 MALLOC_DEFINE(M_IPSEC_SA, "secasvar", "ipsec security association");
558 MALLOC_DEFINE(M_IPSEC_SAH, "sahead", "ipsec sa head");
559 MALLOC_DEFINE(M_IPSEC_SP, "ipsecpolicy", "ipsec security policy");
560 MALLOC_DEFINE(M_IPSEC_SR, "ipsecrequest", "ipsec security request");
561 MALLOC_DEFINE(M_IPSEC_MISC, "ipsec-misc", "ipsec miscellaneous");
562 MALLOC_DEFINE(M_IPSEC_SAQ, "ipsec-saq", "ipsec sa acquire");
563 MALLOC_DEFINE(M_IPSEC_SAR, "ipsec-reg", "ipsec sa acquire");
564 MALLOC_DEFINE(M_IPSEC_SPDCACHE, "ipsec-spdcache", "ipsec SPD cache");
565 
566 static uma_zone_t __read_mostly ipsec_key_lft_zone;
567 
568 /*
569  * set parameters into secpolicyindex buffer.
570  * Must allocate secpolicyindex buffer passed to this function.
571  */
572 #define KEY_SETSECSPIDX(_dir, s, d, ps, pd, ulp, idx) \
573 do { \
574 	bzero((idx), sizeof(struct secpolicyindex));                         \
575 	(idx)->dir = (_dir);                                                 \
576 	(idx)->prefs = (ps);                                                 \
577 	(idx)->prefd = (pd);                                                 \
578 	(idx)->ul_proto = (ulp);                                             \
579 	bcopy((s), &(idx)->src, ((const struct sockaddr *)(s))->sa_len);     \
580 	bcopy((d), &(idx)->dst, ((const struct sockaddr *)(d))->sa_len);     \
581 } while (0)
582 
583 /*
584  * set parameters into secasindex buffer.
585  * Must allocate secasindex buffer before calling this function.
586  */
587 #define KEY_SETSECASIDX(p, m, r, s, d, idx) \
588 do { \
589 	bzero((idx), sizeof(struct secasindex));                             \
590 	(idx)->proto = (p);                                                  \
591 	(idx)->mode = (m);                                                   \
592 	(idx)->reqid = (r);                                                  \
593 	bcopy((s), &(idx)->src, ((const struct sockaddr *)(s))->sa_len);     \
594 	bcopy((d), &(idx)->dst, ((const struct sockaddr *)(d))->sa_len);     \
595 	key_porttosaddr(&(idx)->src.sa, 0);				     \
596 	key_porttosaddr(&(idx)->dst.sa, 0);				     \
597 } while (0)
598 
599 /* key statistics */
600 struct _keystat {
601 	u_long getspi_count; /* the avarage of count to try to get new SPI */
602 } keystat;
603 
604 struct sadb_msghdr {
605 	struct sadb_msg *msg;
606 	struct sadb_ext *ext[SADB_EXT_MAX + 1];
607 	int extoff[SADB_EXT_MAX + 1];
608 	int extlen[SADB_EXT_MAX + 1];
609 };
610 
611 static const struct supported_ealgs {
612 	int sadb_alg;
613 	const struct enc_xform *xform;
614 } supported_ealgs[] = {
615 	{ SADB_X_EALG_AES,		&enc_xform_aes_cbc },
616 	{ SADB_EALG_NULL,		&enc_xform_null },
617 	{ SADB_X_EALG_AESCTR,		&enc_xform_aes_icm },
618 	{ SADB_X_EALG_AESGCM16,		&enc_xform_aes_nist_gcm },
619 	{ SADB_X_EALG_AESGMAC,		&enc_xform_aes_nist_gmac },
620 	{ SADB_X_EALG_CHACHA20POLY1305,	&enc_xform_chacha20_poly1305 },
621 };
622 
623 static const struct supported_aalgs {
624 	int sadb_alg;
625 	const struct auth_hash *xform;
626 } supported_aalgs[] = {
627 	{ SADB_X_AALG_NULL,		&auth_hash_null },
628 	{ SADB_AALG_SHA1HMAC,		&auth_hash_hmac_sha1 },
629 	{ SADB_X_AALG_SHA2_256,		&auth_hash_hmac_sha2_256 },
630 	{ SADB_X_AALG_SHA2_384,		&auth_hash_hmac_sha2_384 },
631 	{ SADB_X_AALG_SHA2_512,		&auth_hash_hmac_sha2_512 },
632 	{ SADB_X_AALG_AES128GMAC,	&auth_hash_nist_gmac_aes_128 },
633 	{ SADB_X_AALG_AES192GMAC,	&auth_hash_nist_gmac_aes_192 },
634 	{ SADB_X_AALG_AES256GMAC,	&auth_hash_nist_gmac_aes_256 },
635 	{ SADB_X_AALG_CHACHA20POLY1305,	&auth_hash_poly1305 },
636 };
637 
638 static const struct supported_calgs {
639 	int sadb_alg;
640 	const struct comp_algo *xform;
641 } supported_calgs[] = {
642 	{ SADB_X_CALG_DEFLATE,		&comp_algo_deflate },
643 };
644 
645 #ifndef IPSEC_DEBUG2
646 static struct callout key_timer;
647 #endif
648 
649 static void key_unlink(struct secpolicy *);
650 static void key_detach(struct secpolicy *);
651 static struct secpolicy *key_getsp(struct secpolicyindex *);
652 static struct secpolicy *key_getspbyid(u_int32_t);
653 static struct mbuf *key_gather_mbuf(struct mbuf *,
654 	const struct sadb_msghdr *, int, int, ...);
655 static int key_spdadd(struct socket *, struct mbuf *,
656 	const struct sadb_msghdr *);
657 static uint32_t key_getnewspid(void);
658 static int key_spddelete(struct socket *, struct mbuf *,
659 	const struct sadb_msghdr *);
660 static int key_spddelete2(struct socket *, struct mbuf *,
661 	const struct sadb_msghdr *);
662 static int key_spdget(struct socket *, struct mbuf *,
663 	const struct sadb_msghdr *);
664 static int key_spdflush(struct socket *, struct mbuf *,
665 	const struct sadb_msghdr *);
666 static int key_spddump(struct socket *, struct mbuf *,
667 	const struct sadb_msghdr *);
668 static struct mbuf *key_setdumpsp(struct secpolicy *,
669 	u_int8_t, u_int32_t, u_int32_t);
670 static struct mbuf *key_sp2mbuf(struct secpolicy *);
671 static size_t key_getspreqmsglen(struct secpolicy *);
672 static int key_spdexpire(struct secpolicy *);
673 static struct secashead *key_newsah(struct secasindex *);
674 static void key_freesah(struct secashead **);
675 static void key_delsah(struct secashead *);
676 static struct secasvar *key_newsav(const struct sadb_msghdr *,
677     struct secasindex *, uint32_t, int *);
678 static void key_delsav(struct secasvar *);
679 static void key_unlinksav(struct secasvar *);
680 static struct secashead *key_getsah(struct secasindex *);
681 static int key_checkspidup(uint32_t);
682 static struct secasvar *key_getsavbyspi(uint32_t);
683 static int key_setnatt(struct secasvar *, const struct sadb_msghdr *);
684 static int key_setsaval(struct secasvar *, const struct sadb_msghdr *);
685 static int key_updatelifetimes(struct secasvar *, const struct sadb_msghdr *);
686 static int key_updateaddresses(struct socket *, struct mbuf *,
687     const struct sadb_msghdr *, struct secasvar *, struct secasindex *);
688 
689 static struct mbuf *key_setdumpsa(struct secasvar *, u_int8_t,
690 	u_int8_t, u_int32_t, u_int32_t, struct rm_priotracker *);
691 static struct mbuf *key_setsadbmsg(u_int8_t, u_int16_t, u_int8_t,
692 	u_int32_t, pid_t, u_int16_t);
693 static struct mbuf *key_setsadbsa(struct secasvar *);
694 static struct mbuf *key_setsadbaddr(u_int16_t,
695 	const struct sockaddr *, u_int8_t, u_int16_t);
696 static struct mbuf *key_setsadbxport(u_int16_t, u_int16_t);
697 static struct mbuf *key_setsadbxtype(u_int16_t);
698 static struct mbuf *key_setsadbxsa2(u_int8_t, u_int32_t, u_int32_t);
699 static struct mbuf *key_setsadbxsareplay(u_int32_t);
700 static struct mbuf *key_setsadbxpolicy(u_int16_t, u_int8_t,
701 	u_int32_t, u_int32_t);
702 static struct seckey *key_dup_keymsg(const struct sadb_key *,
703     struct malloc_type *);
704 static struct seclifetime *key_dup_lifemsg(const struct sadb_lifetime *src,
705     struct malloc_type *);
706 
707 /* flags for key_cmpsaidx() */
708 #define CMP_HEAD	1	/* protocol, addresses. */
709 #define CMP_MODE_REQID	2	/* additionally HEAD, reqid, mode. */
710 #define CMP_REQID	3	/* additionally HEAD, reaid. */
711 #define CMP_EXACTLY	4	/* all elements. */
712 static int key_cmpsaidx(const struct secasindex *,
713     const struct secasindex *, int);
714 static int key_cmpspidx_exactly(struct secpolicyindex *,
715     struct secpolicyindex *);
716 static int key_cmpspidx_withmask(struct secpolicyindex *,
717     struct secpolicyindex *);
718 static int key_bbcmp(const void *, const void *, u_int);
719 static uint8_t key_satype2proto(uint8_t);
720 static uint8_t key_proto2satype(uint8_t);
721 
722 static int key_getspi(struct socket *, struct mbuf *,
723 	const struct sadb_msghdr *);
724 static uint32_t key_do_getnewspi(struct sadb_spirange *, struct secasindex *);
725 static int key_update(struct socket *, struct mbuf *,
726 	const struct sadb_msghdr *);
727 static int key_add(struct socket *, struct mbuf *,
728 	const struct sadb_msghdr *);
729 static int key_setident(struct secashead *, const struct sadb_msghdr *);
730 static struct mbuf *key_getmsgbuf_x1(struct mbuf *,
731 	const struct sadb_msghdr *);
732 static int key_delete(struct socket *, struct mbuf *,
733 	const struct sadb_msghdr *);
734 static int key_delete_all(struct socket *, struct mbuf *,
735 	const struct sadb_msghdr *, struct secasindex *);
736 static int key_get(struct socket *, struct mbuf *,
737 	const struct sadb_msghdr *);
738 
739 static void key_getcomb_setlifetime(struct sadb_comb *);
740 static struct mbuf *key_getcomb_ealg(void);
741 static struct mbuf *key_getcomb_ah(void);
742 static struct mbuf *key_getcomb_ipcomp(void);
743 static struct mbuf *key_getprop(const struct secasindex *);
744 
745 static int key_acquire(const struct secasindex *, struct secpolicy *);
746 static uint32_t key_newacq(const struct secasindex *, int *);
747 static uint32_t key_getacq(const struct secasindex *, int *);
748 static int key_acqdone(const struct secasindex *, uint32_t);
749 static int key_acqreset(uint32_t);
750 static struct secspacq *key_newspacq(struct secpolicyindex *);
751 static struct secspacq *key_getspacq(struct secpolicyindex *);
752 static int key_acquire2(struct socket *, struct mbuf *,
753 	const struct sadb_msghdr *);
754 static int key_register(struct socket *, struct mbuf *,
755 	const struct sadb_msghdr *);
756 static int key_expire(struct secasvar *, int);
757 static int key_flush(struct socket *, struct mbuf *,
758 	const struct sadb_msghdr *);
759 static int key_dump(struct socket *, struct mbuf *,
760 	const struct sadb_msghdr *);
761 static int key_promisc(struct socket *, struct mbuf *,
762 	const struct sadb_msghdr *);
763 static int key_senderror(struct socket *, struct mbuf *, int);
764 static int key_validate_ext(const struct sadb_ext *, int);
765 static int key_align(struct mbuf *, struct sadb_msghdr *);
766 static struct mbuf *key_setlifetime(struct seclifetime *, uint16_t);
767 static struct mbuf *key_setkey(struct seckey *, uint16_t);
768 
769 static void spdcache_init(void);
770 static void spdcache_clear(void);
771 static struct spdcache_entry *spdcache_entry_alloc(
772 	const struct secpolicyindex *spidx,
773 	struct secpolicy *policy);
774 static void spdcache_entry_free(struct spdcache_entry *entry);
775 #ifdef VIMAGE
776 static void spdcache_destroy(void);
777 #endif
778 
779 #define	DBG_IPSEC_INITREF(t, p)	do {				\
780 	refcount_init(&(p)->refcnt, 1);				\
781 	KEYDBG(KEY_STAMP,					\
782 	    printf("%s: Initialize refcnt %s(%p) = %u\n",	\
783 	    __func__, #t, (p), (p)->refcnt));			\
784 } while (0)
785 #define	DBG_IPSEC_ADDREF(t, p)	do {				\
786 	refcount_acquire(&(p)->refcnt);				\
787 	KEYDBG(KEY_STAMP,					\
788 	    printf("%s: Acquire refcnt %s(%p) -> %u\n",		\
789 	    __func__, #t, (p), (p)->refcnt));			\
790 } while (0)
791 #define	DBG_IPSEC_DELREF(t, p)	do {				\
792 	KEYDBG(KEY_STAMP,					\
793 	    printf("%s: Release refcnt %s(%p) -> %u\n",		\
794 	    __func__, #t, (p), (p)->refcnt - 1));		\
795 	refcount_release(&(p)->refcnt);				\
796 } while (0)
797 
798 #define	IPSEC_INITREF(t, p)	refcount_init(&(p)->refcnt, 1)
799 #define	IPSEC_ADDREF(t, p)	refcount_acquire(&(p)->refcnt)
800 #define	IPSEC_DELREF(t, p)	refcount_release(&(p)->refcnt)
801 
802 #define	SP_INITREF(p)	IPSEC_INITREF(SP, p)
803 #define	SP_ADDREF(p)	IPSEC_ADDREF(SP, p)
804 #define	SP_DELREF(p)	IPSEC_DELREF(SP, p)
805 
806 #define	SAH_INITREF(p)	IPSEC_INITREF(SAH, p)
807 #define	SAH_ADDREF(p)	IPSEC_ADDREF(SAH, p)
808 #define	SAH_DELREF(p)	IPSEC_DELREF(SAH, p)
809 
810 #define	SAV_INITREF(p)	IPSEC_INITREF(SAV, p)
811 #define	SAV_ADDREF(p)	IPSEC_ADDREF(SAV, p)
812 #define	SAV_DELREF(p)	IPSEC_DELREF(SAV, p)
813 
814 /*
815  * Update the refcnt while holding the SPTREE lock.
816  */
817 void
key_addref(struct secpolicy * sp)818 key_addref(struct secpolicy *sp)
819 {
820 
821 	SP_ADDREF(sp);
822 }
823 
824 /*
825  * Return 0 when there are known to be no SP's for the specified
826  * direction.  Otherwise return 1.  This is used by IPsec code
827  * to optimize performance.
828  */
829 int
key_havesp(u_int dir)830 key_havesp(u_int dir)
831 {
832 
833 	IPSEC_ASSERT(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND,
834 		("invalid direction %u", dir));
835 	return (TAILQ_FIRST(&V_sptree[dir]) != NULL);
836 }
837 
838 int
key_havesp_any(void)839 key_havesp_any(void)
840 {
841 
842 	return (V_spd_size != 0);
843 }
844 
845 /*
846  * Allocate a single mbuf with a buffer of the desired length.  The buffer is
847  * pre-zeroed to help ensure that uninitialized pad bytes are not leaked.
848  */
849 static struct mbuf *
key_mget(u_int len)850 key_mget(u_int len)
851 {
852 	struct mbuf *m;
853 
854 	KASSERT(len <= MCLBYTES,
855 	    ("%s: invalid buffer length %u", __func__, len));
856 
857 	m = m_get2(len, M_NOWAIT, MT_DATA, M_PKTHDR);
858 	if (m == NULL)
859 		return (NULL);
860 	memset(mtod(m, void *), 0, len);
861 	return (m);
862 }
863 
864 /* %%% IPsec policy management */
865 /*
866  * Return current SPDB generation.
867  */
868 uint32_t
key_getspgen(void)869 key_getspgen(void)
870 {
871 
872 	return (V_sp_genid);
873 }
874 
875 void
key_bumpspgen(void)876 key_bumpspgen(void)
877 {
878 
879 	V_sp_genid++;
880 }
881 
882 static int
key_checksockaddrs(struct sockaddr * src,struct sockaddr * dst)883 key_checksockaddrs(struct sockaddr *src, struct sockaddr *dst)
884 {
885 
886 	/* family match */
887 	if (src->sa_family != dst->sa_family)
888 		return (EINVAL);
889 	/* sa_len match */
890 	if (src->sa_len != dst->sa_len)
891 		return (EINVAL);
892 	switch (src->sa_family) {
893 #ifdef INET
894 	case AF_INET:
895 		if (src->sa_len != sizeof(struct sockaddr_in))
896 			return (EINVAL);
897 		break;
898 #endif
899 #ifdef INET6
900 	case AF_INET6:
901 		if (src->sa_len != sizeof(struct sockaddr_in6))
902 			return (EINVAL);
903 		break;
904 #endif
905 	default:
906 		return (EAFNOSUPPORT);
907 	}
908 	return (0);
909 }
910 
911 struct secpolicy *
key_do_allocsp(struct secpolicyindex * spidx,u_int dir)912 key_do_allocsp(struct secpolicyindex *spidx, u_int dir)
913 {
914 	SPTREE_RLOCK_TRACKER;
915 	struct secpolicy *sp;
916 
917 	IPSEC_ASSERT(spidx != NULL, ("null spidx"));
918 	IPSEC_ASSERT(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND,
919 		("invalid direction %u", dir));
920 
921 	SPTREE_RLOCK();
922 	TAILQ_FOREACH(sp, &V_sptree[dir], chain) {
923 		if (key_cmpspidx_withmask(&sp->spidx, spidx)) {
924 			SP_ADDREF(sp);
925 			break;
926 		}
927 	}
928 	SPTREE_RUNLOCK();
929 	return (sp);
930 }
931 
932 /*
933  * allocating a SP for OUTBOUND or INBOUND packet.
934  * Must call key_freesp() later.
935  * OUT:	NULL:	not found
936  *	others:	found and return the pointer.
937  */
938 struct secpolicy *
key_allocsp(struct secpolicyindex * spidx,u_int dir)939 key_allocsp(struct secpolicyindex *spidx, u_int dir)
940 {
941 	struct spdcache_entry *entry, *lastentry, *tmpentry;
942 	struct secpolicy *sp;
943 	uint32_t hashv;
944 	time_t ts;
945 	int nb_entries;
946 
947 	if (!SPDCACHE_ACTIVE()) {
948 		sp = key_do_allocsp(spidx, dir);
949 		goto out;
950 	}
951 
952 	hashv = SPDCACHE_HASHVAL(spidx);
953 	SPDCACHE_LOCK(hashv);
954 	nb_entries = 0;
955 	LIST_FOREACH_SAFE(entry, &V_spdcachehashtbl[hashv], chain, tmpentry) {
956 		/* Removed outdated entries */
957 		if (entry->sp != NULL &&
958 		    entry->sp->state == IPSEC_SPSTATE_DEAD) {
959 			LIST_REMOVE(entry, chain);
960 			spdcache_entry_free(entry);
961 			continue;
962 		}
963 
964 		nb_entries++;
965 		if (!key_cmpspidx_exactly(&entry->spidx, spidx)) {
966 			lastentry = entry;
967 			continue;
968 		}
969 
970 		sp = entry->sp;
971 		if (entry->sp != NULL)
972 			SP_ADDREF(sp);
973 
974 		/* IPSECSTAT_INC(ips_spdcache_hits); */
975 
976 		SPDCACHE_UNLOCK(hashv);
977 		goto out;
978 	}
979 
980 	/* IPSECSTAT_INC(ips_spdcache_misses); */
981 
982 	sp = key_do_allocsp(spidx, dir);
983 	entry = spdcache_entry_alloc(spidx, sp);
984 	if (entry != NULL) {
985 		if (nb_entries >= SPDCACHE_MAX_ENTRIES_PER_HASH) {
986 			LIST_REMOVE(lastentry, chain);
987 			spdcache_entry_free(lastentry);
988 		}
989 
990 		LIST_INSERT_HEAD(&V_spdcachehashtbl[hashv], entry, chain);
991 	}
992 
993 	SPDCACHE_UNLOCK(hashv);
994 
995 out:
996 	if (sp != NULL) {	/* found a SPD entry */
997 		ts = time_second;
998 		if (__predict_false(sp->lastused != ts))
999 			sp->lastused = ts;
1000 		KEYDBG(IPSEC_STAMP,
1001 		    printf("%s: return SP(%p)\n", __func__, sp));
1002 		KEYDBG(IPSEC_DATA, kdebug_secpolicy(sp));
1003 	} else {
1004 		KEYDBG(IPSEC_DATA,
1005 		    printf("%s: lookup failed for ", __func__);
1006 		    kdebug_secpolicyindex(spidx, NULL));
1007 	}
1008 	return (sp);
1009 }
1010 
1011 /*
1012  * Allocating an SA entry for an *INBOUND* or *OUTBOUND* TCP packet, signed
1013  * or should be signed by MD5 signature.
1014  * We don't use key_allocsa() for such lookups, because we don't know SPI.
1015  * Unlike ESP and AH protocols, SPI isn't transmitted in the TCP header with
1016  * signed packet. We use SADB only as storage for password.
1017  * OUT:	positive:	corresponding SA for given saidx found.
1018  *	NULL:		SA not found
1019  */
1020 struct secasvar *
key_allocsa_tcpmd5(struct secasindex * saidx)1021 key_allocsa_tcpmd5(struct secasindex *saidx)
1022 {
1023 	SAHTREE_RLOCK_TRACKER;
1024 	struct secashead *sah;
1025 	struct secasvar *sav;
1026 
1027 	IPSEC_ASSERT(saidx->proto == IPPROTO_TCP,
1028 	    ("unexpected security protocol %u", saidx->proto));
1029 	IPSEC_ASSERT(saidx->mode == IPSEC_MODE_TCPMD5,
1030 	    ("unexpected mode %u", saidx->mode));
1031 
1032 	SAHTREE_RLOCK();
1033 	LIST_FOREACH(sah, SAHADDRHASH_HASH(saidx), addrhash) {
1034 		KEYDBG(IPSEC_DUMP,
1035 		    printf("%s: checking SAH\n", __func__);
1036 		    kdebug_secash(sah, "  "));
1037 		if (sah->saidx.proto != IPPROTO_TCP)
1038 			continue;
1039 		if (!key_sockaddrcmp(&saidx->dst.sa, &sah->saidx.dst.sa, 0) &&
1040 		    !key_sockaddrcmp(&saidx->src.sa, &sah->saidx.src.sa, 0))
1041 			break;
1042 	}
1043 	if (sah != NULL) {
1044 		if (V_key_preferred_oldsa)
1045 			sav = TAILQ_LAST(&sah->savtree_alive, secasvar_queue);
1046 		else
1047 			sav = TAILQ_FIRST(&sah->savtree_alive);
1048 		if (sav != NULL)
1049 			SAV_ADDREF(sav);
1050 	} else
1051 		sav = NULL;
1052 	SAHTREE_RUNLOCK();
1053 
1054 	if (sav != NULL) {
1055 		KEYDBG(IPSEC_STAMP,
1056 		    printf("%s: return SA(%p)\n", __func__, sav));
1057 		KEYDBG(IPSEC_DATA, kdebug_secasv(sav));
1058 	} else {
1059 		KEYDBG(IPSEC_STAMP,
1060 		    printf("%s: SA not found\n", __func__));
1061 		KEYDBG(IPSEC_DATA, kdebug_secasindex(saidx, NULL));
1062 	}
1063 	return (sav);
1064 }
1065 
1066 /*
1067  * Allocating an SA entry for an *OUTBOUND* packet.
1068  * OUT:	positive:	corresponding SA for given saidx found.
1069  *	NULL:		SA not found, but will be acquired, check *error
1070  *			for acquiring status.
1071  */
1072 struct secasvar *
key_allocsa_policy(struct secpolicy * sp,const struct secasindex * saidx,int * error)1073 key_allocsa_policy(struct secpolicy *sp, const struct secasindex *saidx,
1074     int *error)
1075 {
1076 	SAHTREE_RLOCK_TRACKER;
1077 	struct secashead *sah;
1078 	struct secasvar *sav;
1079 
1080 	IPSEC_ASSERT(saidx != NULL, ("null saidx"));
1081 	IPSEC_ASSERT(saidx->mode == IPSEC_MODE_TRANSPORT ||
1082 		saidx->mode == IPSEC_MODE_TUNNEL,
1083 		("unexpected policy %u", saidx->mode));
1084 
1085 	/*
1086 	 * We check new SA in the IPsec request because a different
1087 	 * SA may be involved each time this request is checked, either
1088 	 * because new SAs are being configured, or this request is
1089 	 * associated with an unconnected datagram socket, or this request
1090 	 * is associated with a system default policy.
1091 	 */
1092 	SAHTREE_RLOCK();
1093 	LIST_FOREACH(sah, SAHADDRHASH_HASH(saidx), addrhash) {
1094 		KEYDBG(IPSEC_DUMP,
1095 		    printf("%s: checking SAH\n", __func__);
1096 		    kdebug_secash(sah, "  "));
1097 		if (key_cmpsaidx(&sah->saidx, saidx, CMP_MODE_REQID))
1098 			break;
1099 	}
1100 	if (sah != NULL) {
1101 		/*
1102 		 * Allocate the oldest SA available according to
1103 		 * draft-jenkins-ipsec-rekeying-03.
1104 		 */
1105 		if (V_key_preferred_oldsa)
1106 			sav = TAILQ_LAST(&sah->savtree_alive, secasvar_queue);
1107 		else
1108 			sav = TAILQ_FIRST(&sah->savtree_alive);
1109 		if (sav != NULL)
1110 			SAV_ADDREF(sav);
1111 	} else
1112 		sav = NULL;
1113 	SAHTREE_RUNLOCK();
1114 
1115 	if (sav != NULL) {
1116 		*error = 0;
1117 		KEYDBG(IPSEC_STAMP,
1118 		    printf("%s: chosen SA(%p) for SP(%p)\n", __func__,
1119 			sav, sp));
1120 		KEYDBG(IPSEC_DATA, kdebug_secasv(sav));
1121 		return (sav); /* return referenced SA */
1122 	}
1123 
1124 	/* there is no SA */
1125 	*error = key_acquire(saidx, sp);
1126 	if ((*error) != 0)
1127 		ipseclog((LOG_DEBUG,
1128 		    "%s: error %d returned from key_acquire()\n",
1129 			__func__, *error));
1130 	KEYDBG(IPSEC_STAMP,
1131 	    printf("%s: acquire SA for SP(%p), error %d\n",
1132 		__func__, sp, *error));
1133 	KEYDBG(IPSEC_DATA, kdebug_secasindex(saidx, NULL));
1134 	return (NULL);
1135 }
1136 
1137 /*
1138  * allocating a usable SA entry for a *INBOUND* packet.
1139  * Must call key_freesav() later.
1140  * OUT: positive:	pointer to a usable sav (i.e. MATURE or DYING state).
1141  *	NULL:		not found, or error occurred.
1142  *
1143  * According to RFC 2401 SA is uniquely identified by a triple SPI,
1144  * destination address, and security protocol. But according to RFC 4301,
1145  * SPI by itself suffices to specify an SA.
1146  *
1147  * Note that, however, we do need to keep source address in IPsec SA.
1148  * IKE specification and PF_KEY specification do assume that we
1149  * keep source address in IPsec SA.  We see a tricky situation here.
1150  */
1151 struct secasvar *
key_allocsa(union sockaddr_union * dst,uint8_t proto,uint32_t spi)1152 key_allocsa(union sockaddr_union *dst, uint8_t proto, uint32_t spi)
1153 {
1154 	SAHTREE_RLOCK_TRACKER;
1155 	struct secasvar *sav;
1156 
1157 	IPSEC_ASSERT(proto == IPPROTO_ESP || proto == IPPROTO_AH ||
1158 	    proto == IPPROTO_IPCOMP, ("unexpected security protocol %u",
1159 	    proto));
1160 
1161 	SAHTREE_RLOCK();
1162 	LIST_FOREACH(sav, SAVHASH_HASH(spi), spihash) {
1163 		if (sav->spi == spi)
1164 			break;
1165 	}
1166 	/*
1167 	 * We use single SPI namespace for all protocols, so it is
1168 	 * impossible to have SPI duplicates in the SAVHASH.
1169 	 */
1170 	if (sav != NULL) {
1171 		if (sav->state != SADB_SASTATE_LARVAL &&
1172 		    sav->sah->saidx.proto == proto &&
1173 		    key_sockaddrcmp(&dst->sa,
1174 			&sav->sah->saidx.dst.sa, 0) == 0)
1175 			SAV_ADDREF(sav);
1176 		else
1177 			sav = NULL;
1178 	}
1179 	SAHTREE_RUNLOCK();
1180 
1181 	if (sav == NULL) {
1182 		KEYDBG(IPSEC_STAMP,
1183 		    char buf[IPSEC_ADDRSTRLEN];
1184 		    printf("%s: SA not found for spi %u proto %u dst %s\n",
1185 			__func__, ntohl(spi), proto, ipsec_address(dst, buf,
1186 			sizeof(buf))));
1187 	} else {
1188 		KEYDBG(IPSEC_STAMP,
1189 		    printf("%s: return SA(%p)\n", __func__, sav));
1190 		KEYDBG(IPSEC_DATA, kdebug_secasv(sav));
1191 	}
1192 	return (sav);
1193 }
1194 
1195 struct secasvar *
key_allocsa_tunnel(union sockaddr_union * src,union sockaddr_union * dst,uint8_t proto)1196 key_allocsa_tunnel(union sockaddr_union *src, union sockaddr_union *dst,
1197     uint8_t proto)
1198 {
1199 	SAHTREE_RLOCK_TRACKER;
1200 	struct secasindex saidx;
1201 	struct secashead *sah;
1202 	struct secasvar *sav;
1203 
1204 	IPSEC_ASSERT(src != NULL, ("null src address"));
1205 	IPSEC_ASSERT(dst != NULL, ("null dst address"));
1206 
1207 	KEY_SETSECASIDX(proto, IPSEC_MODE_TUNNEL, 0, &src->sa,
1208 	    &dst->sa, &saidx);
1209 
1210 	sav = NULL;
1211 	SAHTREE_RLOCK();
1212 	LIST_FOREACH(sah, SAHADDRHASH_HASH(&saidx), addrhash) {
1213 		if (IPSEC_MODE_TUNNEL != sah->saidx.mode)
1214 			continue;
1215 		if (proto != sah->saidx.proto)
1216 			continue;
1217 		if (key_sockaddrcmp(&src->sa, &sah->saidx.src.sa, 0) != 0)
1218 			continue;
1219 		if (key_sockaddrcmp(&dst->sa, &sah->saidx.dst.sa, 0) != 0)
1220 			continue;
1221 		/* XXXAE: is key_preferred_oldsa reasonably?*/
1222 		if (V_key_preferred_oldsa)
1223 			sav = TAILQ_LAST(&sah->savtree_alive, secasvar_queue);
1224 		else
1225 			sav = TAILQ_FIRST(&sah->savtree_alive);
1226 		if (sav != NULL) {
1227 			SAV_ADDREF(sav);
1228 			break;
1229 		}
1230 	}
1231 	SAHTREE_RUNLOCK();
1232 	KEYDBG(IPSEC_STAMP,
1233 	    printf("%s: return SA(%p)\n", __func__, sav));
1234 	if (sav != NULL)
1235 		KEYDBG(IPSEC_DATA, kdebug_secasv(sav));
1236 	return (sav);
1237 }
1238 
1239 /*
1240  * Must be called after calling key_allocsp().
1241  */
1242 void
key_freesp(struct secpolicy ** spp)1243 key_freesp(struct secpolicy **spp)
1244 {
1245 	struct secpolicy *sp = *spp;
1246 
1247 	IPSEC_ASSERT(sp != NULL, ("null sp"));
1248 	if (SP_DELREF(sp) == 0)
1249 		return;
1250 
1251 	KEYDBG(IPSEC_STAMP,
1252 	    printf("%s: last reference to SP(%p)\n", __func__, sp));
1253 	KEYDBG(IPSEC_DATA, kdebug_secpolicy(sp));
1254 
1255 	*spp = NULL;
1256 #ifdef IPSEC_OFFLOAD
1257 	KASSERT(CK_LIST_EMPTY(&sp->accel_ifps),
1258 	    ("key_freesp: sp %p still offloaded", sp));
1259 	free(__DECONST(char *, sp->accel_ifname), M_IPSEC_MISC);
1260 #endif
1261 	while (sp->tcount > 0)
1262 		ipsec_delisr(sp->req[--sp->tcount]);
1263 	free(sp, M_IPSEC_SP);
1264 }
1265 
1266 static void
key_unlink(struct secpolicy * sp)1267 key_unlink(struct secpolicy *sp)
1268 {
1269 	SPTREE_WLOCK();
1270 	key_detach(sp);
1271 	SPTREE_WUNLOCK();
1272 	if (SPDCACHE_ENABLED())
1273 		spdcache_clear();
1274 	ipsec_accel_sync();
1275 	key_freesp(&sp);
1276 }
1277 
1278 static void
key_detach(struct secpolicy * sp)1279 key_detach(struct secpolicy *sp)
1280 {
1281 	IPSEC_ASSERT(sp->spidx.dir == IPSEC_DIR_INBOUND ||
1282 	    sp->spidx.dir == IPSEC_DIR_OUTBOUND,
1283 	    ("invalid direction %u", sp->spidx.dir));
1284 	SPTREE_WLOCK_ASSERT();
1285 
1286 	KEYDBG(KEY_STAMP,
1287 	    printf("%s: SP(%p)\n", __func__, sp));
1288 	if (sp->state != IPSEC_SPSTATE_ALIVE) {
1289 		/* SP is already unlinked */
1290 		return;
1291 	}
1292 	sp->state = IPSEC_SPSTATE_DEAD;
1293 	ipsec_accel_spddel(sp);
1294 	TAILQ_REMOVE(&V_sptree[sp->spidx.dir], sp, chain);
1295 	V_spd_size--;
1296 	LIST_REMOVE(sp, idhash);
1297 	V_sp_genid++;
1298 }
1299 
1300 /*
1301  * insert a secpolicy into the SP database. Lower priorities first
1302  */
1303 static void
key_insertsp(struct secpolicy * newsp)1304 key_insertsp(struct secpolicy *newsp)
1305 {
1306 	struct secpolicy *sp;
1307 
1308 	SPTREE_WLOCK_ASSERT();
1309 	TAILQ_FOREACH(sp, &V_sptree[newsp->spidx.dir], chain) {
1310 		if (newsp->priority < sp->priority) {
1311 			TAILQ_INSERT_BEFORE(sp, newsp, chain);
1312 			goto done;
1313 		}
1314 	}
1315 	TAILQ_INSERT_TAIL(&V_sptree[newsp->spidx.dir], newsp, chain);
1316 done:
1317 	LIST_INSERT_HEAD(SPHASH_HASH(newsp->id), newsp, idhash);
1318 	newsp->state = IPSEC_SPSTATE_ALIVE;
1319 	V_spd_size++;
1320 	V_sp_genid++;
1321 	ipsec_accel_spdadd(newsp, NULL);
1322 }
1323 
1324 /*
1325  * Insert a bunch of VTI secpolicies into the SPDB.
1326  * We keep VTI policies in the separate list due to following reasons:
1327  * 1) they should be immutable to user's or some deamon's attempts to
1328  *    delete. The only way delete such policies - destroy or unconfigure
1329  *    corresponding virtual inteface.
1330  * 2) such policies have traffic selector that matches all traffic per
1331  *    address family.
1332  * Since all VTI policies have the same priority, we don't care about
1333  * policies order.
1334  */
1335 int
key_register_ifnet(struct secpolicy ** spp,u_int count)1336 key_register_ifnet(struct secpolicy **spp, u_int count)
1337 {
1338 	struct mbuf *m;
1339 	u_int i;
1340 
1341 	SPTREE_WLOCK();
1342 	/*
1343 	 * First of try to acquire id for each SP.
1344 	 */
1345 	for (i = 0; i < count; i++) {
1346 		IPSEC_ASSERT(spp[i]->spidx.dir == IPSEC_DIR_INBOUND ||
1347 		    spp[i]->spidx.dir == IPSEC_DIR_OUTBOUND,
1348 		    ("invalid direction %u", spp[i]->spidx.dir));
1349 
1350 		if ((spp[i]->id = key_getnewspid()) == 0) {
1351 			SPTREE_WUNLOCK();
1352 			return (EAGAIN);
1353 		}
1354 	}
1355 	for (i = 0; i < count; i++) {
1356 		TAILQ_INSERT_TAIL(&V_sptree_ifnet[spp[i]->spidx.dir],
1357 		    spp[i], chain);
1358 		/*
1359 		 * NOTE: despite the fact that we keep VTI SP in the
1360 		 * separate list, SPHASH contains policies from both
1361 		 * sources. Thus SADB_X_SPDGET will correctly return
1362 		 * SP by id, because it uses SPHASH for lookups.
1363 		 */
1364 		LIST_INSERT_HEAD(SPHASH_HASH(spp[i]->id), spp[i], idhash);
1365 		spp[i]->state = IPSEC_SPSTATE_IFNET;
1366 		ipsec_accel_spdadd(spp[i], NULL);
1367 	}
1368 	SPTREE_WUNLOCK();
1369 	/*
1370 	 * Notify user processes about new SP.
1371 	 */
1372 	for (i = 0; i < count; i++) {
1373 		m = key_setdumpsp(spp[i], SADB_X_SPDADD, 0, 0);
1374 		if (m != NULL)
1375 			key_sendup_mbuf(NULL, m, KEY_SENDUP_ALL);
1376 	}
1377 	return (0);
1378 }
1379 
1380 void
key_unregister_ifnet(struct secpolicy ** spp,u_int count)1381 key_unregister_ifnet(struct secpolicy **spp, u_int count)
1382 {
1383 	struct mbuf *m;
1384 	u_int i;
1385 
1386 	SPTREE_WLOCK();
1387 	for (i = 0; i < count; i++) {
1388 		IPSEC_ASSERT(spp[i]->spidx.dir == IPSEC_DIR_INBOUND ||
1389 		    spp[i]->spidx.dir == IPSEC_DIR_OUTBOUND,
1390 		    ("invalid direction %u", spp[i]->spidx.dir));
1391 
1392 		if (spp[i]->state != IPSEC_SPSTATE_IFNET)
1393 			continue;
1394 		spp[i]->state = IPSEC_SPSTATE_DEAD;
1395 		ipsec_accel_spddel(spp[i]);
1396 		TAILQ_REMOVE(&V_sptree_ifnet[spp[i]->spidx.dir],
1397 		    spp[i], chain);
1398 		V_spd_size--;
1399 		LIST_REMOVE(spp[i], idhash);
1400 	}
1401 	SPTREE_WUNLOCK();
1402 	if (SPDCACHE_ENABLED())
1403 		spdcache_clear();
1404 	ipsec_accel_sync();
1405 
1406 	for (i = 0; i < count; i++) {
1407 		m = key_setdumpsp(spp[i], SADB_X_SPDDELETE, 0, 0);
1408 		if (m != NULL)
1409 			key_sendup_mbuf(NULL, m, KEY_SENDUP_ALL);
1410 	}
1411 }
1412 
1413 /*
1414  * Must be called after calling key_allocsa().
1415  * This function is called by key_freesp() to free some SA allocated
1416  * for a policy.
1417  */
1418 void
key_freesav(struct secasvar ** psav)1419 key_freesav(struct secasvar **psav)
1420 {
1421 	struct secasvar *sav = *psav;
1422 
1423 	IPSEC_ASSERT(sav != NULL, ("null sav"));
1424 	CURVNET_ASSERT_SET();
1425 	if (SAV_DELREF(sav) == 0)
1426 		return;
1427 
1428 	KEYDBG(IPSEC_STAMP,
1429 	    printf("%s: last reference to SA(%p)\n", __func__, sav));
1430 
1431 	*psav = NULL;
1432 	key_delsav(sav);
1433 }
1434 
1435 /*
1436  * Unlink SA from SAH and SPI hash under SAHTREE_WLOCK.
1437  * Expect that SA has extra reference due to lookup.
1438  * Release this references, also release SAH reference after unlink.
1439  */
1440 static void
key_unlinksav(struct secasvar * sav)1441 key_unlinksav(struct secasvar *sav)
1442 {
1443 	struct secashead *sah;
1444 
1445 	KEYDBG(KEY_STAMP,
1446 	    printf("%s: SA(%p)\n", __func__, sav));
1447 
1448 	CURVNET_ASSERT_SET();
1449 	SAHTREE_UNLOCK_ASSERT();
1450 	SAHTREE_WLOCK();
1451 	if (sav->state == SADB_SASTATE_DEAD) {
1452 		/* SA is already unlinked */
1453 		SAHTREE_WUNLOCK();
1454 		return;
1455 	}
1456 	/* Unlink from SAH */
1457 	if (sav->state == SADB_SASTATE_LARVAL)
1458 		TAILQ_REMOVE(&sav->sah->savtree_larval, sav, chain);
1459 	else
1460 		TAILQ_REMOVE(&sav->sah->savtree_alive, sav, chain);
1461 	/* Unlink from SPI hash */
1462 	LIST_REMOVE(sav, spihash);
1463 	sav->state = SADB_SASTATE_DEAD;
1464 	ipsec_accel_forget_sav(sav);
1465 	sah = sav->sah;
1466 	SAHTREE_WUNLOCK();
1467 	key_freesav(&sav);
1468 	/* Since we are unlinked, release reference to SAH */
1469 	key_freesah(&sah);
1470 }
1471 
1472 /* %%% SPD management */
1473 /*
1474  * search SPD
1475  * OUT:	NULL	: not found
1476  *	others	: found, pointer to a SP.
1477  */
1478 static struct secpolicy *
key_getsp(struct secpolicyindex * spidx)1479 key_getsp(struct secpolicyindex *spidx)
1480 {
1481 	SPTREE_RLOCK_TRACKER;
1482 	struct secpolicy *sp;
1483 
1484 	IPSEC_ASSERT(spidx != NULL, ("null spidx"));
1485 
1486 	SPTREE_RLOCK();
1487 	TAILQ_FOREACH(sp, &V_sptree[spidx->dir], chain) {
1488 		if (key_cmpspidx_exactly(spidx, &sp->spidx)) {
1489 			SP_ADDREF(sp);
1490 			break;
1491 		}
1492 	}
1493 	SPTREE_RUNLOCK();
1494 
1495 	return sp;
1496 }
1497 
1498 /*
1499  * get SP by index.
1500  * OUT:	NULL	: not found
1501  *	others	: found, pointer to referenced SP.
1502  */
1503 static struct secpolicy *
key_getspbyid(uint32_t id)1504 key_getspbyid(uint32_t id)
1505 {
1506 	SPTREE_RLOCK_TRACKER;
1507 	struct secpolicy *sp;
1508 
1509 	SPTREE_RLOCK();
1510 	LIST_FOREACH(sp, SPHASH_HASH(id), idhash) {
1511 		if (sp->id == id) {
1512 			SP_ADDREF(sp);
1513 			break;
1514 		}
1515 	}
1516 	SPTREE_RUNLOCK();
1517 	return (sp);
1518 }
1519 
1520 struct secpolicy *
key_newsp(void)1521 key_newsp(void)
1522 {
1523 	struct secpolicy *sp;
1524 
1525 	sp = malloc(sizeof(*sp), M_IPSEC_SP, M_NOWAIT | M_ZERO);
1526 	if (sp != NULL)
1527 		SP_INITREF(sp);
1528 	return (sp);
1529 }
1530 
1531 struct ipsecrequest *
ipsec_newisr(void)1532 ipsec_newisr(void)
1533 {
1534 
1535 	return (malloc(sizeof(struct ipsecrequest), M_IPSEC_SR,
1536 	    M_NOWAIT | M_ZERO));
1537 }
1538 
1539 void
ipsec_delisr(struct ipsecrequest * p)1540 ipsec_delisr(struct ipsecrequest *p)
1541 {
1542 
1543 	free(p, M_IPSEC_SR);
1544 }
1545 
1546 /*
1547  * create secpolicy structure from sadb_x_policy structure.
1548  * NOTE: `state', `secpolicyindex' and 'id' in secpolicy structure
1549  * are not set, so must be set properly later.
1550  */
1551 struct secpolicy *
key_msg2sp(struct sadb_x_policy * xpl0,size_t len,int * error)1552 key_msg2sp(struct sadb_x_policy *xpl0, size_t len, int *error)
1553 {
1554 	struct secpolicy *newsp;
1555 
1556 	IPSEC_ASSERT(xpl0 != NULL, ("null xpl0"));
1557 	IPSEC_ASSERT(len >= sizeof(*xpl0), ("policy too short: %zu", len));
1558 
1559 	if (len != PFKEY_EXTLEN(xpl0)) {
1560 		ipseclog((LOG_DEBUG, "%s: Invalid msg length.\n", __func__));
1561 		*error = EINVAL;
1562 		return NULL;
1563 	}
1564 
1565 	if ((newsp = key_newsp()) == NULL) {
1566 		*error = ENOBUFS;
1567 		return NULL;
1568 	}
1569 
1570 	newsp->spidx.dir = xpl0->sadb_x_policy_dir;
1571 	newsp->policy = xpl0->sadb_x_policy_type;
1572 	newsp->priority = xpl0->sadb_x_policy_priority;
1573 	newsp->tcount = 0;
1574 
1575 	/* check policy */
1576 	switch (xpl0->sadb_x_policy_type) {
1577 	case IPSEC_POLICY_DISCARD:
1578 	case IPSEC_POLICY_NONE:
1579 	case IPSEC_POLICY_ENTRUST:
1580 	case IPSEC_POLICY_BYPASS:
1581 		break;
1582 
1583 	case IPSEC_POLICY_IPSEC:
1584 	    {
1585 		struct sadb_x_ipsecrequest *xisr;
1586 		struct ipsecrequest *isr;
1587 		int tlen;
1588 
1589 		/* validity check */
1590 		if (PFKEY_EXTLEN(xpl0) < sizeof(*xpl0)) {
1591 			ipseclog((LOG_DEBUG, "%s: Invalid msg length.\n",
1592 				__func__));
1593 			key_freesp(&newsp);
1594 			*error = EINVAL;
1595 			return NULL;
1596 		}
1597 
1598 		tlen = PFKEY_EXTLEN(xpl0) - sizeof(*xpl0);
1599 		xisr = (struct sadb_x_ipsecrequest *)(xpl0 + 1);
1600 
1601 		while (tlen > 0) {
1602 			/* length check */
1603 			if (xisr->sadb_x_ipsecrequest_len < sizeof(*xisr) ||
1604 			    xisr->sadb_x_ipsecrequest_len > tlen) {
1605 				ipseclog((LOG_DEBUG, "%s: invalid ipsecrequest "
1606 					"length.\n", __func__));
1607 				key_freesp(&newsp);
1608 				*error = EINVAL;
1609 				return NULL;
1610 			}
1611 
1612 			if (newsp->tcount >= IPSEC_MAXREQ) {
1613 				ipseclog((LOG_DEBUG,
1614 				    "%s: too many ipsecrequests.\n",
1615 				    __func__));
1616 				key_freesp(&newsp);
1617 				*error = EINVAL;
1618 				return (NULL);
1619 			}
1620 
1621 			/* allocate request buffer */
1622 			/* NB: data structure is zero'd */
1623 			isr = ipsec_newisr();
1624 			if (isr == NULL) {
1625 				ipseclog((LOG_DEBUG,
1626 				    "%s: No more memory.\n", __func__));
1627 				key_freesp(&newsp);
1628 				*error = ENOBUFS;
1629 				return NULL;
1630 			}
1631 
1632 			newsp->req[newsp->tcount++] = isr;
1633 
1634 			/* set values */
1635 			switch (xisr->sadb_x_ipsecrequest_proto) {
1636 			case IPPROTO_ESP:
1637 			case IPPROTO_AH:
1638 			case IPPROTO_IPCOMP:
1639 				break;
1640 			default:
1641 				ipseclog((LOG_DEBUG,
1642 				    "%s: invalid proto type=%u\n", __func__,
1643 				    xisr->sadb_x_ipsecrequest_proto));
1644 				key_freesp(&newsp);
1645 				*error = EPROTONOSUPPORT;
1646 				return NULL;
1647 			}
1648 			isr->saidx.proto =
1649 			    (uint8_t)xisr->sadb_x_ipsecrequest_proto;
1650 
1651 			switch (xisr->sadb_x_ipsecrequest_mode) {
1652 			case IPSEC_MODE_TRANSPORT:
1653 			case IPSEC_MODE_TUNNEL:
1654 				break;
1655 			case IPSEC_MODE_ANY:
1656 			default:
1657 				ipseclog((LOG_DEBUG,
1658 				    "%s: invalid mode=%u\n", __func__,
1659 				    xisr->sadb_x_ipsecrequest_mode));
1660 				key_freesp(&newsp);
1661 				*error = EINVAL;
1662 				return NULL;
1663 			}
1664 			isr->saidx.mode = xisr->sadb_x_ipsecrequest_mode;
1665 
1666 			switch (xisr->sadb_x_ipsecrequest_level) {
1667 			case IPSEC_LEVEL_DEFAULT:
1668 			case IPSEC_LEVEL_USE:
1669 			case IPSEC_LEVEL_REQUIRE:
1670 				break;
1671 			case IPSEC_LEVEL_UNIQUE:
1672 				/* validity check */
1673 				/*
1674 				 * If range violation of reqid, kernel will
1675 				 * update it, don't refuse it.
1676 				 */
1677 				if (xisr->sadb_x_ipsecrequest_reqid
1678 						> IPSEC_MANUAL_REQID_MAX) {
1679 					ipseclog((LOG_DEBUG,
1680 					    "%s: reqid=%d range "
1681 					    "violation, updated by kernel.\n",
1682 					    __func__,
1683 					    xisr->sadb_x_ipsecrequest_reqid));
1684 					xisr->sadb_x_ipsecrequest_reqid = 0;
1685 				}
1686 
1687 				/* allocate new reqid id if reqid is zero. */
1688 				if (xisr->sadb_x_ipsecrequest_reqid == 0) {
1689 					u_int32_t reqid;
1690 					if ((reqid = key_newreqid()) == 0) {
1691 						key_freesp(&newsp);
1692 						*error = ENOBUFS;
1693 						return NULL;
1694 					}
1695 					isr->saidx.reqid = reqid;
1696 					xisr->sadb_x_ipsecrequest_reqid = reqid;
1697 				} else {
1698 				/* set it for manual keying. */
1699 					isr->saidx.reqid =
1700 					    xisr->sadb_x_ipsecrequest_reqid;
1701 				}
1702 				break;
1703 
1704 			default:
1705 				ipseclog((LOG_DEBUG, "%s: invalid level=%u\n",
1706 					__func__,
1707 					xisr->sadb_x_ipsecrequest_level));
1708 				key_freesp(&newsp);
1709 				*error = EINVAL;
1710 				return NULL;
1711 			}
1712 			isr->level = xisr->sadb_x_ipsecrequest_level;
1713 
1714 			/* set IP addresses if there */
1715 			if (xisr->sadb_x_ipsecrequest_len > sizeof(*xisr)) {
1716 				struct sockaddr *paddr;
1717 
1718 				len = tlen - sizeof(*xisr);
1719 				paddr = (struct sockaddr *)(xisr + 1);
1720 				/* validity check */
1721 				if (len < sizeof(struct sockaddr) ||
1722 				    len < 2 * paddr->sa_len ||
1723 				    paddr->sa_len > sizeof(isr->saidx.src)) {
1724 					ipseclog((LOG_DEBUG, "%s: invalid "
1725 						"request address length.\n",
1726 						__func__));
1727 					key_freesp(&newsp);
1728 					*error = EINVAL;
1729 					return NULL;
1730 				}
1731 				/*
1732 				 * Request length should be enough to keep
1733 				 * source and destination addresses.
1734 				 */
1735 				if (xisr->sadb_x_ipsecrequest_len <
1736 				    sizeof(*xisr) + 2 * paddr->sa_len) {
1737 					ipseclog((LOG_DEBUG, "%s: invalid "
1738 					    "ipsecrequest length.\n",
1739 					    __func__));
1740 					key_freesp(&newsp);
1741 					*error = EINVAL;
1742 					return (NULL);
1743 				}
1744 				bcopy(paddr, &isr->saidx.src, paddr->sa_len);
1745 				paddr = (struct sockaddr *)((caddr_t)paddr +
1746 				    paddr->sa_len);
1747 
1748 				/* validity check */
1749 				if (paddr->sa_len !=
1750 				    isr->saidx.src.sa.sa_len) {
1751 					ipseclog((LOG_DEBUG, "%s: invalid "
1752 						"request address length.\n",
1753 						__func__));
1754 					key_freesp(&newsp);
1755 					*error = EINVAL;
1756 					return NULL;
1757 				}
1758 				/* AF family should match */
1759 				if (paddr->sa_family !=
1760 				    isr->saidx.src.sa.sa_family) {
1761 					ipseclog((LOG_DEBUG, "%s: address "
1762 					    "family doesn't match.\n",
1763 						__func__));
1764 					key_freesp(&newsp);
1765 					*error = EINVAL;
1766 					return (NULL);
1767 				}
1768 				bcopy(paddr, &isr->saidx.dst, paddr->sa_len);
1769 			} else {
1770 				/*
1771 				 * Addresses for TUNNEL mode requests are
1772 				 * mandatory.
1773 				 */
1774 				if (isr->saidx.mode == IPSEC_MODE_TUNNEL) {
1775 					ipseclog((LOG_DEBUG, "%s: missing "
1776 					    "request addresses.\n", __func__));
1777 					key_freesp(&newsp);
1778 					*error = EINVAL;
1779 					return (NULL);
1780 				}
1781 			}
1782 			tlen -= xisr->sadb_x_ipsecrequest_len;
1783 
1784 			/* validity check */
1785 			if (tlen < 0) {
1786 				ipseclog((LOG_DEBUG, "%s: becoming tlen < 0.\n",
1787 					__func__));
1788 				key_freesp(&newsp);
1789 				*error = EINVAL;
1790 				return NULL;
1791 			}
1792 
1793 			xisr = (struct sadb_x_ipsecrequest *)((caddr_t)xisr
1794 			                 + xisr->sadb_x_ipsecrequest_len);
1795 		}
1796 		/* XXXAE: LARVAL SP */
1797 		if (newsp->tcount < 1) {
1798 			ipseclog((LOG_DEBUG, "%s: valid IPSEC transforms "
1799 			    "not found.\n", __func__));
1800 			key_freesp(&newsp);
1801 			*error = EINVAL;
1802 			return (NULL);
1803 		}
1804 	    }
1805 		break;
1806 	default:
1807 		ipseclog((LOG_DEBUG, "%s: invalid policy type.\n", __func__));
1808 		key_freesp(&newsp);
1809 		*error = EINVAL;
1810 		return NULL;
1811 	}
1812 
1813 	*error = 0;
1814 	return (newsp);
1815 }
1816 
1817 uint32_t
key_newreqid(void)1818 key_newreqid(void)
1819 {
1820 	static uint32_t auto_reqid = IPSEC_MANUAL_REQID_MAX + 1;
1821 
1822 	if (auto_reqid == ~0)
1823 		auto_reqid = IPSEC_MANUAL_REQID_MAX + 1;
1824 	else
1825 		auto_reqid++;
1826 
1827 	/* XXX should be unique check */
1828 	return (auto_reqid);
1829 }
1830 
1831 /*
1832  * copy secpolicy struct to sadb_x_policy structure indicated.
1833  */
1834 static struct mbuf *
key_sp2mbuf(struct secpolicy * sp)1835 key_sp2mbuf(struct secpolicy *sp)
1836 {
1837 	struct mbuf *m;
1838 	size_t tlen;
1839 
1840 	tlen = key_getspreqmsglen(sp);
1841 	m = m_get2(tlen, M_NOWAIT, MT_DATA, 0);
1842 	if (m == NULL)
1843 		return (NULL);
1844 	m_align(m, tlen);
1845 	m->m_len = tlen;
1846 	if (key_sp2msg(sp, m->m_data, &tlen) != 0) {
1847 		m_freem(m);
1848 		return (NULL);
1849 	}
1850 	return (m);
1851 }
1852 
1853 int
key_sp2msg(struct secpolicy * sp,void * request,size_t * len)1854 key_sp2msg(struct secpolicy *sp, void *request, size_t *len)
1855 {
1856 	struct sadb_x_ipsecrequest *xisr;
1857 	struct sadb_x_policy *xpl;
1858 	struct ipsecrequest *isr;
1859 	size_t xlen, ilen;
1860 	caddr_t p;
1861 	int error, i;
1862 #ifdef IPSEC_OFFLOAD
1863 	struct sadb_x_if_hw_offl *xif;
1864 #endif
1865 
1866 	IPSEC_ASSERT(sp != NULL, ("null policy"));
1867 
1868 	xlen = sizeof(*xpl);
1869 	if (*len < xlen)
1870 		return (EINVAL);
1871 
1872 	error = 0;
1873 	bzero(request, *len);
1874 	xpl = (struct sadb_x_policy *)request;
1875 	xpl->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
1876 	xpl->sadb_x_policy_type = sp->policy;
1877 	xpl->sadb_x_policy_dir = sp->spidx.dir;
1878 	xpl->sadb_x_policy_id = sp->id;
1879 	xpl->sadb_x_policy_priority = sp->priority;
1880 	switch (sp->state) {
1881 	case IPSEC_SPSTATE_IFNET:
1882 		xpl->sadb_x_policy_scope = IPSEC_POLICYSCOPE_IFNET;
1883 		break;
1884 	case IPSEC_SPSTATE_PCB:
1885 		xpl->sadb_x_policy_scope = IPSEC_POLICYSCOPE_PCB;
1886 		break;
1887 	default:
1888 		xpl->sadb_x_policy_scope = IPSEC_POLICYSCOPE_GLOBAL;
1889 	}
1890 
1891 	/* if is the policy for ipsec ? */
1892 	if (sp->policy == IPSEC_POLICY_IPSEC) {
1893 		p = (caddr_t)xpl + sizeof(*xpl);
1894 		for (i = 0; i < sp->tcount; i++) {
1895 			isr = sp->req[i];
1896 			ilen = PFKEY_ALIGN8(sizeof(*xisr) +
1897 			    isr->saidx.src.sa.sa_len +
1898 			    isr->saidx.dst.sa.sa_len);
1899 			xlen += ilen;
1900 			if (xlen > *len) {
1901 				error = ENOBUFS;
1902 				/* Calculate needed size */
1903 				continue;
1904 			}
1905 			xisr = (struct sadb_x_ipsecrequest *)p;
1906 			xisr->sadb_x_ipsecrequest_len = ilen;
1907 			xisr->sadb_x_ipsecrequest_proto = isr->saidx.proto;
1908 			xisr->sadb_x_ipsecrequest_mode = isr->saidx.mode;
1909 			xisr->sadb_x_ipsecrequest_level = isr->level;
1910 			xisr->sadb_x_ipsecrequest_reqid = isr->saidx.reqid;
1911 
1912 			p += sizeof(*xisr);
1913 			bcopy(&isr->saidx.src, p, isr->saidx.src.sa.sa_len);
1914 			p += isr->saidx.src.sa.sa_len;
1915 			bcopy(&isr->saidx.dst, p, isr->saidx.dst.sa.sa_len);
1916 			p += isr->saidx.dst.sa.sa_len;
1917 		}
1918 	}
1919 	xpl->sadb_x_policy_len = PFKEY_UNIT64(xlen);
1920 #ifdef IPSEC_OFFLOAD
1921 	if (error == 0 && sp->accel_ifname != NULL) {
1922 		xif = (struct sadb_x_if_hw_offl *)(xpl + 1);
1923 		bzero(xif, sizeof(*xif));
1924 		xif->sadb_x_if_hw_offl_len = PFKEY_UNIT64(sizeof(*xif));
1925 		xif->sadb_x_if_hw_offl_exttype = SADB_X_EXT_IF_HW_OFFL;
1926 		xif->sadb_x_if_hw_offl_flags = 0;
1927 		strncpy(xif->sadb_x_if_hw_offl_if, sp->accel_ifname,
1928 		    sizeof(xif->sadb_x_if_hw_offl_if));
1929 		xlen += sizeof(*xif);
1930 	}
1931 #endif
1932 	if (error == 0)
1933 		*len = xlen;
1934 	else
1935 		*len = sizeof(*xpl);
1936 	return (error);
1937 }
1938 
1939 /* m will not be freed nor modified */
1940 static struct mbuf *
key_gather_mbuf(struct mbuf * m,const struct sadb_msghdr * mhp,int ndeep,int nitem,...)1941 key_gather_mbuf(struct mbuf *m, const struct sadb_msghdr *mhp,
1942     int ndeep, int nitem, ...)
1943 {
1944 	va_list ap;
1945 	int idx;
1946 	int i;
1947 	struct mbuf *result = NULL, *n;
1948 	int len;
1949 
1950 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
1951 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
1952 
1953 	va_start(ap, nitem);
1954 	for (i = 0; i < nitem; i++) {
1955 		idx = va_arg(ap, int);
1956 		if (idx < 0 || idx > SADB_EXT_MAX)
1957 			goto fail;
1958 		/* don't attempt to pull empty extension */
1959 		if (idx == SADB_EXT_RESERVED && mhp->msg == NULL)
1960 			continue;
1961 		if (idx != SADB_EXT_RESERVED  &&
1962 		    (mhp->ext[idx] == NULL || mhp->extlen[idx] == 0))
1963 			continue;
1964 
1965 		if (idx == SADB_EXT_RESERVED) {
1966 			len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
1967 
1968 			IPSEC_ASSERT(len <= MHLEN, ("header too big %u", len));
1969 
1970 			MGETHDR(n, M_NOWAIT, MT_DATA);
1971 			if (!n)
1972 				goto fail;
1973 			n->m_len = len;
1974 			n->m_next = NULL;
1975 			m_copydata(m, 0, sizeof(struct sadb_msg),
1976 			    mtod(n, caddr_t));
1977 		} else if (i < ndeep) {
1978 			len = mhp->extlen[idx];
1979 			n = m_get2(len, M_NOWAIT, MT_DATA, 0);
1980 			if (n == NULL)
1981 				goto fail;
1982 			m_align(n, len);
1983 			n->m_len = len;
1984 			m_copydata(m, mhp->extoff[idx], mhp->extlen[idx],
1985 			    mtod(n, caddr_t));
1986 		} else {
1987 			n = m_copym(m, mhp->extoff[idx], mhp->extlen[idx],
1988 			    M_NOWAIT);
1989 		}
1990 		if (n == NULL)
1991 			goto fail;
1992 
1993 		if (result)
1994 			m_cat(result, n);
1995 		else
1996 			result = n;
1997 	}
1998 	va_end(ap);
1999 
2000 	if ((result->m_flags & M_PKTHDR) != 0) {
2001 		result->m_pkthdr.len = 0;
2002 		for (n = result; n; n = n->m_next)
2003 			result->m_pkthdr.len += n->m_len;
2004 	}
2005 
2006 	return result;
2007 
2008 fail:
2009 	m_freem(result);
2010 	va_end(ap);
2011 	return NULL;
2012 }
2013 
2014 /*
2015  * SADB_X_SPDADD, SADB_X_SPDSETIDX or SADB_X_SPDUPDATE processing
2016  * add an entry to SP database, when received
2017  *   <base, address(SD), (lifetime(H),) policy>
2018  * from the user(?).
2019  * Adding to SP database,
2020  * and send
2021  *   <base, address(SD), (lifetime(H),) policy>
2022  * to the socket which was send.
2023  *
2024  * SPDADD set a unique policy entry.
2025  * SPDSETIDX like SPDADD without a part of policy requests.
2026  * SPDUPDATE replace a unique policy entry.
2027  *
2028  * XXXAE: serialize this in PF_KEY to avoid races.
2029  * m will always be freed.
2030  */
2031 static int
key_spdadd(struct socket * so,struct mbuf * m,const struct sadb_msghdr * mhp)2032 key_spdadd(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
2033 {
2034 	struct secpolicyindex spidx;
2035 	struct sadb_address *src0, *dst0;
2036 	struct sadb_x_policy *xpl0, *xpl;
2037 	struct sadb_lifetime *lft = NULL;
2038 	struct secpolicy *newsp, *oldsp;
2039 	int error;
2040 
2041 	IPSEC_ASSERT(so != NULL, ("null socket"));
2042 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
2043 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2044 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2045 
2046 	if (SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_SRC) ||
2047 	    SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_DST) ||
2048 	    SADB_CHECKHDR(mhp, SADB_X_EXT_POLICY)) {
2049 		ipseclog((LOG_DEBUG,
2050 		    "%s: invalid message: missing required header.\n",
2051 		    __func__));
2052 		return key_senderror(so, m, EINVAL);
2053 	}
2054 	if (SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_SRC) ||
2055 	    SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_DST) ||
2056 	    SADB_CHECKLEN(mhp, SADB_X_EXT_POLICY)) {
2057 		ipseclog((LOG_DEBUG,
2058 		    "%s: invalid message: wrong header size.\n", __func__));
2059 		return key_senderror(so, m, EINVAL);
2060 	}
2061 	if (!SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_HARD)) {
2062 		if (SADB_CHECKLEN(mhp, SADB_EXT_LIFETIME_HARD)) {
2063 			ipseclog((LOG_DEBUG,
2064 			    "%s: invalid message: wrong header size.\n",
2065 			    __func__));
2066 			return key_senderror(so, m, EINVAL);
2067 		}
2068 		lft = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD];
2069 	}
2070 
2071 	src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
2072 	dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
2073 	xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY];
2074 
2075 	/* check the direciton */
2076 	switch (xpl0->sadb_x_policy_dir) {
2077 	case IPSEC_DIR_INBOUND:
2078 	case IPSEC_DIR_OUTBOUND:
2079 		break;
2080 	default:
2081 		ipseclog((LOG_DEBUG, "%s: invalid SP direction.\n", __func__));
2082 		return key_senderror(so, m, EINVAL);
2083 	}
2084 	/* key_spdadd() accepts DISCARD, NONE and IPSEC. */
2085 	if (xpl0->sadb_x_policy_type != IPSEC_POLICY_DISCARD &&
2086 	    xpl0->sadb_x_policy_type != IPSEC_POLICY_NONE &&
2087 	    xpl0->sadb_x_policy_type != IPSEC_POLICY_IPSEC) {
2088 		ipseclog((LOG_DEBUG, "%s: invalid policy type.\n", __func__));
2089 		return key_senderror(so, m, EINVAL);
2090 	}
2091 
2092 	/* policy requests are mandatory when action is ipsec. */
2093 	if (xpl0->sadb_x_policy_type == IPSEC_POLICY_IPSEC &&
2094 	    mhp->extlen[SADB_X_EXT_POLICY] <= sizeof(*xpl0)) {
2095 		ipseclog((LOG_DEBUG,
2096 		    "%s: policy requests required.\n", __func__));
2097 		return key_senderror(so, m, EINVAL);
2098 	}
2099 
2100 	error = key_checksockaddrs((struct sockaddr *)(src0 + 1),
2101 	    (struct sockaddr *)(dst0 + 1));
2102 	if (error != 0 ||
2103 	    src0->sadb_address_proto != dst0->sadb_address_proto) {
2104 		ipseclog((LOG_DEBUG, "%s: invalid sockaddr.\n", __func__));
2105 		return key_senderror(so, m, error);
2106 	}
2107 	/* make secindex */
2108 	KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir,
2109 	                src0 + 1,
2110 	                dst0 + 1,
2111 	                src0->sadb_address_prefixlen,
2112 	                dst0->sadb_address_prefixlen,
2113 	                src0->sadb_address_proto,
2114 	                &spidx);
2115 	/* Checking there is SP already or not. */
2116 	oldsp = key_getsp(&spidx);
2117 	if (oldsp != NULL) {
2118 		if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) {
2119 			KEYDBG(KEY_STAMP,
2120 			    printf("%s: unlink SP(%p) for SPDUPDATE\n",
2121 				__func__, oldsp));
2122 			KEYDBG(KEY_DATA, kdebug_secpolicy(oldsp));
2123 		} else {
2124 			key_freesp(&oldsp);
2125 			ipseclog((LOG_DEBUG,
2126 			    "%s: a SP entry exists already.\n", __func__));
2127 			return (key_senderror(so, m, EEXIST));
2128 		}
2129 	}
2130 
2131 	/* allocate new SP entry */
2132 	if ((newsp = key_msg2sp(xpl0, PFKEY_EXTLEN(xpl0), &error)) == NULL) {
2133 		if (oldsp != NULL) {
2134 			key_unlink(oldsp);
2135 			key_freesp(&oldsp); /* second for our reference */
2136 		}
2137 		return key_senderror(so, m, error);
2138 	}
2139 
2140 	newsp->lastused = newsp->created = time_second;
2141 	newsp->lifetime = lft ? lft->sadb_lifetime_addtime : 0;
2142 	newsp->validtime = lft ? lft->sadb_lifetime_usetime : 0;
2143 	bcopy(&spidx, &newsp->spidx, sizeof(spidx));
2144 #ifdef IPSEC_OFFLOAD
2145 	if (!SADB_CHECKHDR(mhp, SADB_X_EXT_IF_HW_OFFL) &&
2146 	    !SADB_CHECKLEN(mhp, SADB_X_EXT_IF_HW_OFFL)) {
2147 		struct sadb_x_if_hw_offl *xof;
2148 
2149 		xof = (struct sadb_x_if_hw_offl *)mhp->ext[
2150 		    SADB_X_EXT_IF_HW_OFFL];
2151 		newsp->accel_ifname = malloc(sizeof(xof->sadb_x_if_hw_offl_if),
2152 		    M_IPSEC_MISC, M_NOWAIT);
2153 		if (newsp->accel_ifname == NULL) {
2154 			ipseclog((LOG_DEBUG, "%s: cannot alloc accel_ifname.\n",
2155 			    __func__));
2156 			key_freesp(&newsp);
2157 			return (key_senderror(so, m, error));
2158 		}
2159 		strncpy(__DECONST(char *, newsp->accel_ifname),
2160 		    xof->sadb_x_if_hw_offl_if,
2161 		    sizeof(xof->sadb_x_if_hw_offl_if));
2162 	}
2163 
2164 #endif
2165 
2166 	SPTREE_WLOCK();
2167 	if ((newsp->id = key_getnewspid()) == 0) {
2168 		if (oldsp != NULL)
2169 			key_detach(oldsp);
2170 		SPTREE_WUNLOCK();
2171 		if (oldsp != NULL) {
2172 			ipsec_accel_sync();
2173 			key_freesp(&oldsp); /* first for key_detach */
2174 			IPSEC_ASSERT(oldsp != NULL, ("null oldsp: refcount bug"));
2175 			key_freesp(&oldsp); /* second for our reference */
2176 			if (SPDCACHE_ENABLED()) /* refresh cache because of key_detach */
2177 				spdcache_clear();
2178 		}
2179 		key_freesp(&newsp);
2180 		return key_senderror(so, m, ENOBUFS);
2181 	}
2182 	if (oldsp != NULL)
2183 		key_detach(oldsp);
2184 	key_insertsp(newsp);
2185 	SPTREE_WUNLOCK();
2186 	if (oldsp != NULL) {
2187 		ipsec_accel_sync();
2188 		key_freesp(&oldsp); /* first for key_detach */
2189 		IPSEC_ASSERT(oldsp != NULL, ("null oldsp: refcount bug"));
2190 		key_freesp(&oldsp); /* second for our reference */
2191 	}
2192 	if (SPDCACHE_ENABLED())
2193 		spdcache_clear();
2194 	KEYDBG(KEY_STAMP,
2195 	    printf("%s: SP(%p)\n", __func__, newsp));
2196 	KEYDBG(KEY_DATA, kdebug_secpolicy(newsp));
2197 
2198     {
2199 	struct mbuf *n, *mpolicy;
2200 	struct sadb_msg *newmsg;
2201 	int off;
2202 
2203 	/* create new sadb_msg to reply. */
2204 	if (lft) {
2205 		n = key_gather_mbuf(m, mhp, 2, 5, SADB_EXT_RESERVED,
2206 		    SADB_X_EXT_POLICY, SADB_EXT_LIFETIME_HARD,
2207 		    SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
2208 	} else {
2209 		n = key_gather_mbuf(m, mhp, 2, 4, SADB_EXT_RESERVED,
2210 		    SADB_X_EXT_POLICY,
2211 		    SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
2212 	}
2213 	if (!n)
2214 		return key_senderror(so, m, ENOBUFS);
2215 
2216 	if (n->m_len < sizeof(*newmsg)) {
2217 		n = m_pullup(n, sizeof(*newmsg));
2218 		if (!n)
2219 			return key_senderror(so, m, ENOBUFS);
2220 	}
2221 	newmsg = mtod(n, struct sadb_msg *);
2222 	newmsg->sadb_msg_errno = 0;
2223 	newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
2224 
2225 	off = 0;
2226 	mpolicy = m_pulldown(n, PFKEY_ALIGN8(sizeof(struct sadb_msg)),
2227 	    sizeof(*xpl), &off);
2228 	if (mpolicy == NULL) {
2229 		/* n is already freed */
2230 		return key_senderror(so, m, ENOBUFS);
2231 	}
2232 	xpl = (struct sadb_x_policy *)(mtod(mpolicy, caddr_t) + off);
2233 	if (xpl->sadb_x_policy_exttype != SADB_X_EXT_POLICY) {
2234 		m_freem(n);
2235 		return key_senderror(so, m, EINVAL);
2236 	}
2237 	xpl->sadb_x_policy_id = newsp->id;
2238 
2239 	m_freem(m);
2240 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2241     }
2242 }
2243 
2244 /*
2245  * get new policy id.
2246  * OUT:
2247  *	0:	failure.
2248  *	others: success.
2249  */
2250 static uint32_t
key_getnewspid(void)2251 key_getnewspid(void)
2252 {
2253 	struct secpolicy *sp;
2254 	uint32_t newid = 0;
2255 	int tries, limit;
2256 
2257 	SPTREE_WLOCK_ASSERT();
2258 
2259 	limit = atomic_load_int(&V_key_spi_trycnt);
2260 	for (tries = 0; tries < limit; tries++) {
2261 		if (V_policy_id == ~0) /* overflowed */
2262 			newid = V_policy_id = 1;
2263 		else
2264 			newid = ++V_policy_id;
2265 		LIST_FOREACH(sp, SPHASH_HASH(newid), idhash) {
2266 			if (sp->id == newid)
2267 				break;
2268 		}
2269 		if (sp == NULL)
2270 			break;
2271 	}
2272 	if (tries == limit || newid == 0) {
2273 		ipseclog((LOG_DEBUG, "%s: failed to allocate policy id.\n",
2274 		    __func__));
2275 		return (0);
2276 	}
2277 	return (newid);
2278 }
2279 
2280 /*
2281  * SADB_SPDDELETE processing
2282  * receive
2283  *   <base, address(SD), policy(*)>
2284  * from the user(?), and set SADB_SASTATE_DEAD,
2285  * and send,
2286  *   <base, address(SD), policy(*)>
2287  * to the ikmpd.
2288  * policy(*) including direction of policy.
2289  *
2290  * m will always be freed.
2291  */
2292 static int
key_spddelete(struct socket * so,struct mbuf * m,const struct sadb_msghdr * mhp)2293 key_spddelete(struct socket *so, struct mbuf *m,
2294     const struct sadb_msghdr *mhp)
2295 {
2296 	struct secpolicyindex spidx;
2297 	struct sadb_address *src0, *dst0;
2298 	struct sadb_x_policy *xpl0;
2299 	struct secpolicy *sp;
2300 
2301 	IPSEC_ASSERT(so != NULL, ("null so"));
2302 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
2303 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2304 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2305 
2306 	if (SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_SRC) ||
2307 	    SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_DST) ||
2308 	    SADB_CHECKHDR(mhp, SADB_X_EXT_POLICY)) {
2309 		ipseclog((LOG_DEBUG,
2310 		    "%s: invalid message: missing required header.\n",
2311 		    __func__));
2312 		return key_senderror(so, m, EINVAL);
2313 	}
2314 	if (SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_SRC) ||
2315 	    SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_DST) ||
2316 	    SADB_CHECKLEN(mhp, SADB_X_EXT_POLICY)) {
2317 		ipseclog((LOG_DEBUG,
2318 		    "%s: invalid message: wrong header size.\n", __func__));
2319 		return key_senderror(so, m, EINVAL);
2320 	}
2321 
2322 	src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
2323 	dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
2324 	xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY];
2325 
2326 	/* check the direciton */
2327 	switch (xpl0->sadb_x_policy_dir) {
2328 	case IPSEC_DIR_INBOUND:
2329 	case IPSEC_DIR_OUTBOUND:
2330 		break;
2331 	default:
2332 		ipseclog((LOG_DEBUG, "%s: invalid SP direction.\n", __func__));
2333 		return key_senderror(so, m, EINVAL);
2334 	}
2335 	/* Only DISCARD, NONE and IPSEC are allowed */
2336 	if (xpl0->sadb_x_policy_type != IPSEC_POLICY_DISCARD &&
2337 	    xpl0->sadb_x_policy_type != IPSEC_POLICY_NONE &&
2338 	    xpl0->sadb_x_policy_type != IPSEC_POLICY_IPSEC) {
2339 		ipseclog((LOG_DEBUG, "%s: invalid policy type.\n", __func__));
2340 		return key_senderror(so, m, EINVAL);
2341 	}
2342 	if (key_checksockaddrs((struct sockaddr *)(src0 + 1),
2343 	    (struct sockaddr *)(dst0 + 1)) != 0 ||
2344 	    src0->sadb_address_proto != dst0->sadb_address_proto) {
2345 		ipseclog((LOG_DEBUG, "%s: invalid sockaddr.\n", __func__));
2346 		return key_senderror(so, m, EINVAL);
2347 	}
2348 	/* make secindex */
2349 	KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir,
2350 	                src0 + 1,
2351 	                dst0 + 1,
2352 	                src0->sadb_address_prefixlen,
2353 	                dst0->sadb_address_prefixlen,
2354 	                src0->sadb_address_proto,
2355 	                &spidx);
2356 
2357 	/* Is there SP in SPD ? */
2358 	if ((sp = key_getsp(&spidx)) == NULL) {
2359 		ipseclog((LOG_DEBUG, "%s: no SP found.\n", __func__));
2360 		return key_senderror(so, m, EINVAL);
2361 	}
2362 
2363 	/* save policy id to buffer to be returned. */
2364 	xpl0->sadb_x_policy_id = sp->id;
2365 
2366 	KEYDBG(KEY_STAMP,
2367 	    printf("%s: SP(%p)\n", __func__, sp));
2368 	KEYDBG(KEY_DATA, kdebug_secpolicy(sp));
2369 	ipsec_accel_spddel(sp);
2370 	key_unlink(sp);
2371 	key_freesp(&sp);
2372 
2373     {
2374 	struct mbuf *n;
2375 	struct sadb_msg *newmsg;
2376 
2377 	/* create new sadb_msg to reply. */
2378 	n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED,
2379 	    SADB_X_EXT_POLICY, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
2380 	if (!n)
2381 		return key_senderror(so, m, ENOBUFS);
2382 
2383 	newmsg = mtod(n, struct sadb_msg *);
2384 	newmsg->sadb_msg_errno = 0;
2385 	newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
2386 
2387 	m_freem(m);
2388 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2389     }
2390 }
2391 
2392 /*
2393  * SADB_SPDDELETE2 processing
2394  * receive
2395  *   <base, policy(*)>
2396  * from the user(?), and set SADB_SASTATE_DEAD,
2397  * and send,
2398  *   <base, policy(*)>
2399  * to the ikmpd.
2400  * policy(*) including direction of policy.
2401  *
2402  * m will always be freed.
2403  */
2404 static int
key_spddelete2(struct socket * so,struct mbuf * m,const struct sadb_msghdr * mhp)2405 key_spddelete2(struct socket *so, struct mbuf *m,
2406     const struct sadb_msghdr *mhp)
2407 {
2408 	struct secpolicy *sp;
2409 	uint32_t id;
2410 
2411 	IPSEC_ASSERT(so != NULL, ("null socket"));
2412 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
2413 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2414 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2415 
2416 	if (SADB_CHECKHDR(mhp, SADB_X_EXT_POLICY) ||
2417 	    SADB_CHECKLEN(mhp, SADB_X_EXT_POLICY)) {
2418 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
2419 		    __func__));
2420 		return key_senderror(so, m, EINVAL);
2421 	}
2422 
2423 	id = ((struct sadb_x_policy *)
2424 	    mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id;
2425 
2426 	/* Is there SP in SPD ? */
2427 	if ((sp = key_getspbyid(id)) == NULL) {
2428 		ipseclog((LOG_DEBUG, "%s: no SP found for id %u.\n",
2429 		    __func__, id));
2430 		return key_senderror(so, m, EINVAL);
2431 	}
2432 
2433 	KEYDBG(KEY_STAMP,
2434 	    printf("%s: SP(%p)\n", __func__, sp));
2435 	KEYDBG(KEY_DATA, kdebug_secpolicy(sp));
2436 	key_unlink(sp);
2437 	if (sp->state != IPSEC_SPSTATE_DEAD) {
2438 		ipseclog((LOG_DEBUG, "%s: failed to delete SP with id %u.\n",
2439 		    __func__, id));
2440 		key_freesp(&sp);
2441 		return (key_senderror(so, m, EACCES));
2442 	}
2443 	key_freesp(&sp);
2444 
2445     {
2446 	struct mbuf *n, *nn;
2447 	struct sadb_msg *newmsg;
2448 	int off, len;
2449 
2450 	/* create new sadb_msg to reply. */
2451 	len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
2452 
2453 	n = key_mget(len);
2454 	if (n == NULL)
2455 		return key_senderror(so, m, ENOBUFS);
2456 
2457 	n->m_len = len;
2458 	n->m_next = NULL;
2459 	off = 0;
2460 
2461 	m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off);
2462 	off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
2463 
2464 	IPSEC_ASSERT(off == len, ("length inconsistency (off %u len %u)",
2465 		off, len));
2466 
2467 	n->m_next = m_copym(m, mhp->extoff[SADB_X_EXT_POLICY],
2468 	    mhp->extlen[SADB_X_EXT_POLICY], M_NOWAIT);
2469 	if (!n->m_next) {
2470 		m_freem(n);
2471 		return key_senderror(so, m, ENOBUFS);
2472 	}
2473 
2474 	n->m_pkthdr.len = 0;
2475 	for (nn = n; nn; nn = nn->m_next)
2476 		n->m_pkthdr.len += nn->m_len;
2477 
2478 	newmsg = mtod(n, struct sadb_msg *);
2479 	newmsg->sadb_msg_errno = 0;
2480 	newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
2481 
2482 	m_freem(m);
2483 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2484     }
2485 }
2486 
2487 /*
2488  * SADB_X_SPDGET processing
2489  * receive
2490  *   <base, policy(*)>
2491  * from the user(?),
2492  * and send,
2493  *   <base, address(SD), policy>
2494  * to the ikmpd.
2495  * policy(*) including direction of policy.
2496  *
2497  * m will always be freed.
2498  */
2499 static int
key_spdget(struct socket * so,struct mbuf * m,const struct sadb_msghdr * mhp)2500 key_spdget(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
2501 {
2502 	struct secpolicy *sp;
2503 	struct mbuf *n;
2504 	uint32_t id;
2505 
2506 	IPSEC_ASSERT(so != NULL, ("null socket"));
2507 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
2508 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2509 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2510 
2511 	if (SADB_CHECKHDR(mhp, SADB_X_EXT_POLICY) ||
2512 	    SADB_CHECKLEN(mhp, SADB_X_EXT_POLICY)) {
2513 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
2514 		    __func__));
2515 		return key_senderror(so, m, EINVAL);
2516 	}
2517 
2518 	id = ((struct sadb_x_policy *)
2519 	    mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id;
2520 
2521 	/* Is there SP in SPD ? */
2522 	if ((sp = key_getspbyid(id)) == NULL) {
2523 		ipseclog((LOG_DEBUG, "%s: no SP found for id %u.\n",
2524 		    __func__, id));
2525 		return key_senderror(so, m, ENOENT);
2526 	}
2527 
2528 	n = key_setdumpsp(sp, SADB_X_SPDGET, mhp->msg->sadb_msg_seq,
2529 	    mhp->msg->sadb_msg_pid);
2530 	key_freesp(&sp);
2531 	if (n != NULL) {
2532 		m_freem(m);
2533 		return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
2534 	} else
2535 		return key_senderror(so, m, ENOBUFS);
2536 }
2537 
2538 /*
2539  * SADB_X_SPDACQUIRE processing.
2540  * Acquire policy and SA(s) for a *OUTBOUND* packet.
2541  * send
2542  *   <base, policy(*)>
2543  * to KMD, and expect to receive
2544  *   <base> with SADB_X_SPDACQUIRE if error occurred,
2545  * or
2546  *   <base, policy>
2547  * with SADB_X_SPDUPDATE from KMD by PF_KEY.
2548  * policy(*) is without policy requests.
2549  *
2550  *    0     : succeed
2551  *    others: error number
2552  */
2553 int
key_spdacquire(struct secpolicy * sp)2554 key_spdacquire(struct secpolicy *sp)
2555 {
2556 	struct mbuf *result = NULL, *m;
2557 	struct secspacq *newspacq;
2558 
2559 	IPSEC_ASSERT(sp != NULL, ("null secpolicy"));
2560 	IPSEC_ASSERT(sp->req == NULL, ("policy exists"));
2561 	IPSEC_ASSERT(sp->policy == IPSEC_POLICY_IPSEC,
2562 		("policy not IPSEC %u", sp->policy));
2563 
2564 	/* Get an entry to check whether sent message or not. */
2565 	newspacq = key_getspacq(&sp->spidx);
2566 	if (newspacq != NULL) {
2567 		if (V_key_blockacq_count < newspacq->count) {
2568 			/* reset counter and do send message. */
2569 			newspacq->count = 0;
2570 		} else {
2571 			/* increment counter and do nothing. */
2572 			newspacq->count++;
2573 			SPACQ_UNLOCK();
2574 			return (0);
2575 		}
2576 		SPACQ_UNLOCK();
2577 	} else {
2578 		/* make new entry for blocking to send SADB_ACQUIRE. */
2579 		newspacq = key_newspacq(&sp->spidx);
2580 		if (newspacq == NULL)
2581 			return ENOBUFS;
2582 	}
2583 
2584 	/* create new sadb_msg to reply. */
2585 	m = key_setsadbmsg(SADB_X_SPDACQUIRE, 0, 0, 0, 0, 0);
2586 	if (!m)
2587 		return ENOBUFS;
2588 
2589 	result = m;
2590 
2591 	result->m_pkthdr.len = 0;
2592 	for (m = result; m; m = m->m_next)
2593 		result->m_pkthdr.len += m->m_len;
2594 
2595 	mtod(result, struct sadb_msg *)->sadb_msg_len =
2596 	    PFKEY_UNIT64(result->m_pkthdr.len);
2597 
2598 	return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
2599 }
2600 
2601 /*
2602  * SADB_SPDFLUSH processing
2603  * receive
2604  *   <base>
2605  * from the user, and free all entries in secpctree.
2606  * and send,
2607  *   <base>
2608  * to the user.
2609  * NOTE: what to do is only marking SADB_SASTATE_DEAD.
2610  *
2611  * m will always be freed.
2612  */
2613 static int
key_spdflush(struct socket * so,struct mbuf * m,const struct sadb_msghdr * mhp)2614 key_spdflush(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
2615 {
2616 	struct secpolicy_queue drainq;
2617 	struct sadb_msg *newmsg;
2618 	struct secpolicy *sp, *nextsp;
2619 	u_int dir;
2620 
2621 	IPSEC_ASSERT(so != NULL, ("null socket"));
2622 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
2623 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2624 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2625 
2626 	if (m->m_len != PFKEY_ALIGN8(sizeof(struct sadb_msg)))
2627 		return key_senderror(so, m, EINVAL);
2628 
2629 	TAILQ_INIT(&drainq);
2630 	SPTREE_WLOCK();
2631 	for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2632 		TAILQ_CONCAT(&drainq, &V_sptree[dir], chain);
2633 	}
2634 	/*
2635 	 * We need to set state to DEAD for each policy to be sure,
2636 	 * that another thread won't try to unlink it.
2637 	 * Also remove SP from sphash.
2638 	 */
2639 	TAILQ_FOREACH(sp, &drainq, chain) {
2640 		sp->state = IPSEC_SPSTATE_DEAD;
2641 		ipsec_accel_spddel(sp);
2642 		LIST_REMOVE(sp, idhash);
2643 	}
2644 	V_sp_genid++;
2645 	V_spd_size = 0;
2646 	SPTREE_WUNLOCK();
2647 	if (SPDCACHE_ENABLED())
2648 		spdcache_clear();
2649 	sp = TAILQ_FIRST(&drainq);
2650 	while (sp != NULL) {
2651 		nextsp = TAILQ_NEXT(sp, chain);
2652 		key_freesp(&sp);
2653 		sp = nextsp;
2654 	}
2655 
2656 	if (sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) {
2657 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
2658 		return key_senderror(so, m, ENOBUFS);
2659 	}
2660 
2661 	if (m->m_next)
2662 		m_freem(m->m_next);
2663 	m->m_next = NULL;
2664 	m->m_pkthdr.len = m->m_len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
2665 	newmsg = mtod(m, struct sadb_msg *);
2666 	newmsg->sadb_msg_errno = 0;
2667 	newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
2668 
2669 	return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
2670 }
2671 
2672 static uint8_t
key_satype2scopemask(uint8_t satype)2673 key_satype2scopemask(uint8_t satype)
2674 {
2675 
2676 	if (satype == IPSEC_POLICYSCOPE_ANY)
2677 		return (0xff);
2678 	return (satype);
2679 }
2680 /*
2681  * SADB_SPDDUMP processing
2682  * receive
2683  *   <base>
2684  * from the user, and dump all SP leaves and send,
2685  *   <base> .....
2686  * to the ikmpd.
2687  *
2688  * NOTE:
2689  *   sadb_msg_satype is considered as mask of policy scopes.
2690  *   m will always be freed.
2691  */
2692 static int
key_spddump(struct socket * so,struct mbuf * m,const struct sadb_msghdr * mhp)2693 key_spddump(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
2694 {
2695 	SPTREE_RLOCK_TRACKER;
2696 	struct secpolicy *sp;
2697 	struct mbuf *n;
2698 	int cnt;
2699 	u_int dir, scope;
2700 
2701 	IPSEC_ASSERT(so != NULL, ("null socket"));
2702 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
2703 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2704 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2705 
2706 	/* search SPD entry and get buffer size. */
2707 	cnt = 0;
2708 	scope = key_satype2scopemask(mhp->msg->sadb_msg_satype);
2709 	SPTREE_RLOCK();
2710 	for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2711 		if (scope & IPSEC_POLICYSCOPE_GLOBAL) {
2712 			TAILQ_FOREACH(sp, &V_sptree[dir], chain)
2713 				cnt++;
2714 		}
2715 		if (scope & IPSEC_POLICYSCOPE_IFNET) {
2716 			TAILQ_FOREACH(sp, &V_sptree_ifnet[dir], chain)
2717 				cnt++;
2718 		}
2719 	}
2720 
2721 	if (cnt == 0) {
2722 		SPTREE_RUNLOCK();
2723 		return key_senderror(so, m, ENOENT);
2724 	}
2725 
2726 	for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2727 		if (scope & IPSEC_POLICYSCOPE_GLOBAL) {
2728 			TAILQ_FOREACH(sp, &V_sptree[dir], chain) {
2729 				--cnt;
2730 				n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt,
2731 				    mhp->msg->sadb_msg_pid);
2732 
2733 				if (n != NULL)
2734 					key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
2735 			}
2736 		}
2737 		if (scope & IPSEC_POLICYSCOPE_IFNET) {
2738 			TAILQ_FOREACH(sp, &V_sptree_ifnet[dir], chain) {
2739 				--cnt;
2740 				n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt,
2741 				    mhp->msg->sadb_msg_pid);
2742 
2743 				if (n != NULL)
2744 					key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
2745 			}
2746 		}
2747 	}
2748 
2749 	SPTREE_RUNLOCK();
2750 	m_freem(m);
2751 	return (0);
2752 }
2753 
2754 static struct mbuf *
key_setdumpsp(struct secpolicy * sp,u_int8_t type,u_int32_t seq,u_int32_t pid)2755 key_setdumpsp(struct secpolicy *sp, u_int8_t type, u_int32_t seq,
2756     u_int32_t pid)
2757 {
2758 	struct mbuf *result = NULL, *m;
2759 	struct seclifetime lt;
2760 
2761 	m = key_setsadbmsg(type, 0, SADB_SATYPE_UNSPEC, seq, pid, sp->refcnt);
2762 	if (!m)
2763 		goto fail;
2764 	result = m;
2765 
2766 	m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
2767 	    &sp->spidx.src.sa, sp->spidx.prefs,
2768 	    sp->spidx.ul_proto);
2769 	if (!m)
2770 		goto fail;
2771 	m_cat(result, m);
2772 
2773 	m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
2774 	    &sp->spidx.dst.sa, sp->spidx.prefd,
2775 	    sp->spidx.ul_proto);
2776 	if (!m)
2777 		goto fail;
2778 	m_cat(result, m);
2779 
2780 	m = key_sp2mbuf(sp);
2781 	if (!m)
2782 		goto fail;
2783 	m_cat(result, m);
2784 
2785 	if(sp->lifetime){
2786 		lt.addtime=sp->created;
2787 		lt.usetime= sp->lastused;
2788 		m = key_setlifetime(&lt, SADB_EXT_LIFETIME_CURRENT);
2789 		if (!m)
2790 			goto fail;
2791 		m_cat(result, m);
2792 
2793 		lt.addtime=sp->lifetime;
2794 		lt.usetime= sp->validtime;
2795 		m = key_setlifetime(&lt, SADB_EXT_LIFETIME_HARD);
2796 		if (!m)
2797 			goto fail;
2798 		m_cat(result, m);
2799 	}
2800 
2801 	if ((result->m_flags & M_PKTHDR) == 0)
2802 		goto fail;
2803 
2804 	if (result->m_len < sizeof(struct sadb_msg)) {
2805 		result = m_pullup(result, sizeof(struct sadb_msg));
2806 		if (result == NULL)
2807 			goto fail;
2808 	}
2809 
2810 	result->m_pkthdr.len = 0;
2811 	for (m = result; m; m = m->m_next)
2812 		result->m_pkthdr.len += m->m_len;
2813 
2814 	mtod(result, struct sadb_msg *)->sadb_msg_len =
2815 	    PFKEY_UNIT64(result->m_pkthdr.len);
2816 
2817 	return result;
2818 
2819 fail:
2820 	m_freem(result);
2821 	return NULL;
2822 }
2823 /*
2824  * get PFKEY message length for security policy and request.
2825  */
2826 static size_t
key_getspreqmsglen(struct secpolicy * sp)2827 key_getspreqmsglen(struct secpolicy *sp)
2828 {
2829 	size_t tlen, len;
2830 	int i;
2831 
2832 	tlen = sizeof(struct sadb_x_policy);
2833 	/* if is the policy for ipsec ? */
2834 	if (sp->policy != IPSEC_POLICY_IPSEC)
2835 		return (tlen);
2836 
2837 	/* get length of ipsec requests */
2838 	for (i = 0; i < sp->tcount; i++) {
2839 		len = sizeof(struct sadb_x_ipsecrequest)
2840 			+ sp->req[i]->saidx.src.sa.sa_len
2841 			+ sp->req[i]->saidx.dst.sa.sa_len;
2842 
2843 		tlen += PFKEY_ALIGN8(len);
2844 	}
2845 #ifdef IPSEC_OFFLOAD
2846 	if (sp->accel_ifname != NULL)
2847 		tlen += sizeof(struct sadb_x_if_hw_offl);
2848 #endif
2849 	return (tlen);
2850 }
2851 
2852 /*
2853  * SADB_SPDEXPIRE processing
2854  * send
2855  *   <base, address(SD), lifetime(CH), policy>
2856  * to KMD by PF_KEY.
2857  *
2858  * OUT:	0	: succeed
2859  *	others	: error number
2860  */
2861 static int
key_spdexpire(struct secpolicy * sp)2862 key_spdexpire(struct secpolicy *sp)
2863 {
2864 	struct sadb_lifetime *lt;
2865 	struct mbuf *result = NULL, *m;
2866 	int len, error = -1;
2867 
2868 	IPSEC_ASSERT(sp != NULL, ("null secpolicy"));
2869 
2870 	KEYDBG(KEY_STAMP,
2871 	    printf("%s: SP(%p)\n", __func__, sp));
2872 	KEYDBG(KEY_DATA, kdebug_secpolicy(sp));
2873 
2874 	/* set msg header */
2875 	m = key_setsadbmsg(SADB_X_SPDEXPIRE, 0, 0, 0, 0, 0);
2876 	if (!m) {
2877 		error = ENOBUFS;
2878 		goto fail;
2879 	}
2880 	result = m;
2881 
2882 	/* create lifetime extension (current and hard) */
2883 	len = PFKEY_ALIGN8(sizeof(*lt)) * 2;
2884 	m = m_get2(len, M_NOWAIT, MT_DATA, 0);
2885 	if (m == NULL) {
2886 		error = ENOBUFS;
2887 		goto fail;
2888 	}
2889 	m_align(m, len);
2890 	m->m_len = len;
2891 	bzero(mtod(m, caddr_t), len);
2892 	lt = mtod(m, struct sadb_lifetime *);
2893 	lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
2894 	lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
2895 	lt->sadb_lifetime_allocations = 0;
2896 	lt->sadb_lifetime_bytes = 0;
2897 	lt->sadb_lifetime_addtime = sp->created;
2898 	lt->sadb_lifetime_usetime = sp->lastused;
2899 	lt = (struct sadb_lifetime *)(mtod(m, caddr_t) + len / 2);
2900 	lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
2901 	lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
2902 	lt->sadb_lifetime_allocations = 0;
2903 	lt->sadb_lifetime_bytes = 0;
2904 	lt->sadb_lifetime_addtime = sp->lifetime;
2905 	lt->sadb_lifetime_usetime = sp->validtime;
2906 	m_cat(result, m);
2907 
2908 	/* set sadb_address for source */
2909 	m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
2910 	    &sp->spidx.src.sa,
2911 	    sp->spidx.prefs, sp->spidx.ul_proto);
2912 	if (!m) {
2913 		error = ENOBUFS;
2914 		goto fail;
2915 	}
2916 	m_cat(result, m);
2917 
2918 	/* set sadb_address for destination */
2919 	m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
2920 	    &sp->spidx.dst.sa,
2921 	    sp->spidx.prefd, sp->spidx.ul_proto);
2922 	if (!m) {
2923 		error = ENOBUFS;
2924 		goto fail;
2925 	}
2926 	m_cat(result, m);
2927 
2928 	/* set secpolicy */
2929 	m = key_sp2mbuf(sp);
2930 	if (!m) {
2931 		error = ENOBUFS;
2932 		goto fail;
2933 	}
2934 	m_cat(result, m);
2935 
2936 	if ((result->m_flags & M_PKTHDR) == 0) {
2937 		error = EINVAL;
2938 		goto fail;
2939 	}
2940 
2941 	if (result->m_len < sizeof(struct sadb_msg)) {
2942 		result = m_pullup(result, sizeof(struct sadb_msg));
2943 		if (result == NULL) {
2944 			error = ENOBUFS;
2945 			goto fail;
2946 		}
2947 	}
2948 
2949 	result->m_pkthdr.len = 0;
2950 	for (m = result; m; m = m->m_next)
2951 		result->m_pkthdr.len += m->m_len;
2952 
2953 	mtod(result, struct sadb_msg *)->sadb_msg_len =
2954 	    PFKEY_UNIT64(result->m_pkthdr.len);
2955 
2956 	return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
2957 
2958  fail:
2959 	if (result)
2960 		m_freem(result);
2961 	return error;
2962 }
2963 
2964 /* %%% SAD management */
2965 /*
2966  * allocating and initialize new SA head.
2967  * OUT:	NULL	: failure due to the lack of memory.
2968  *	others	: pointer to new SA head.
2969  */
2970 static struct secashead *
key_newsah(struct secasindex * saidx)2971 key_newsah(struct secasindex *saidx)
2972 {
2973 	struct secashead *sah;
2974 
2975 	sah = malloc(sizeof(struct secashead), M_IPSEC_SAH,
2976 	    M_NOWAIT | M_ZERO);
2977 	if (sah == NULL) {
2978 		PFKEYSTAT_INC(in_nomem);
2979 		return (NULL);
2980 	}
2981 	TAILQ_INIT(&sah->savtree_larval);
2982 	TAILQ_INIT(&sah->savtree_alive);
2983 	sah->saidx = *saidx;
2984 	sah->state = SADB_SASTATE_DEAD;
2985 	SAH_INITREF(sah);
2986 
2987 	KEYDBG(KEY_STAMP,
2988 	    printf("%s: SAH(%p)\n", __func__, sah));
2989 	KEYDBG(KEY_DATA, kdebug_secash(sah, NULL));
2990 	return (sah);
2991 }
2992 
2993 static void
key_freesah(struct secashead ** psah)2994 key_freesah(struct secashead **psah)
2995 {
2996 	struct secashead *sah = *psah;
2997 
2998 	CURVNET_ASSERT_SET();
2999 
3000 	if (SAH_DELREF(sah) == 0)
3001 		return;
3002 
3003 	KEYDBG(KEY_STAMP,
3004 	    printf("%s: last reference to SAH(%p)\n", __func__, sah));
3005 	KEYDBG(KEY_DATA, kdebug_secash(sah, NULL));
3006 
3007 	*psah = NULL;
3008 	key_delsah(sah);
3009 }
3010 
3011 static void
key_delsah(struct secashead * sah)3012 key_delsah(struct secashead *sah)
3013 {
3014 	IPSEC_ASSERT(sah != NULL, ("NULL sah"));
3015 	IPSEC_ASSERT(sah->state == SADB_SASTATE_DEAD,
3016 	    ("Attempt to free non DEAD SAH %p", sah));
3017 	IPSEC_ASSERT(TAILQ_EMPTY(&sah->savtree_larval),
3018 	    ("Attempt to free SAH %p with LARVAL SA", sah));
3019 	IPSEC_ASSERT(TAILQ_EMPTY(&sah->savtree_alive),
3020 	    ("Attempt to free SAH %p with ALIVE SA", sah));
3021 
3022 	free(sah, M_IPSEC_SAH);
3023 }
3024 
3025 /*
3026  * allocating a new SA for key_add() and key_getspi() call,
3027  * and copy the values of mhp into new buffer.
3028  * When SAD message type is SADB_GETSPI set SA state to LARVAL.
3029  * For SADB_ADD create and initialize SA with MATURE state.
3030  * OUT:	NULL	: fail
3031  *	others	: pointer to new secasvar.
3032  */
3033 static struct secasvar *
key_newsav(const struct sadb_msghdr * mhp,struct secasindex * saidx,uint32_t spi,int * errp)3034 key_newsav(const struct sadb_msghdr *mhp, struct secasindex *saidx,
3035     uint32_t spi, int *errp)
3036 {
3037 	struct secashead *sah;
3038 	struct secasvar *sav;
3039 	int isnew;
3040 
3041 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
3042 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
3043 	IPSEC_ASSERT(mhp->msg->sadb_msg_type == SADB_GETSPI ||
3044 	    mhp->msg->sadb_msg_type == SADB_ADD, ("wrong message type"));
3045 
3046 	sav = NULL;
3047 	sah = NULL;
3048 	/* check SPI value */
3049 	switch (saidx->proto) {
3050 	case IPPROTO_ESP:
3051 	case IPPROTO_AH:
3052 		/*
3053 		 * RFC 4302, 2.4. Security Parameters Index (SPI), SPI values
3054 		 * 1-255 reserved by IANA for future use,
3055 		 * 0 for implementation specific, local use.
3056 		 */
3057 		if (ntohl(spi) <= 255) {
3058 			ipseclog((LOG_DEBUG, "%s: illegal range of SPI %u.\n",
3059 			    __func__, ntohl(spi)));
3060 			*errp = EINVAL;
3061 			goto done;
3062 		}
3063 		break;
3064 	}
3065 
3066 	sav = malloc(sizeof(struct secasvar), M_IPSEC_SA, M_NOWAIT | M_ZERO);
3067 	if (sav == NULL) {
3068 		*errp = ENOBUFS;
3069 		goto done;
3070 	}
3071 	sav->lock = malloc_aligned(max(sizeof(struct rmlock),
3072 	    CACHE_LINE_SIZE), CACHE_LINE_SIZE, M_IPSEC_MISC,
3073 	    M_NOWAIT | M_ZERO);
3074 	if (sav->lock == NULL) {
3075 		*errp = ENOBUFS;
3076 		goto done;
3077 	}
3078 	rm_init(sav->lock, "ipsec association");
3079 	sav->lft_c = uma_zalloc_pcpu(ipsec_key_lft_zone, M_NOWAIT | M_ZERO);
3080 	if (sav->lft_c == NULL) {
3081 		*errp = ENOBUFS;
3082 		goto done;
3083 	}
3084 
3085 	sav->spi = spi;
3086 	sav->seq = mhp->msg->sadb_msg_seq;
3087 	sav->state = SADB_SASTATE_LARVAL;
3088 	sav->pid = (pid_t)mhp->msg->sadb_msg_pid;
3089 	SAV_INITREF(sav);
3090 #ifdef IPSEC_OFFLOAD
3091 	CK_LIST_INIT(&sav->accel_ifps);
3092 	sav->accel_forget_tq = 0;
3093 	sav->accel_lft_sw = uma_zalloc_pcpu(ipsec_key_lft_zone,
3094 	    M_NOWAIT | M_ZERO);
3095 	if (sav->accel_lft_sw == NULL) {
3096 		*errp = ENOBUFS;
3097 		goto done;
3098 	}
3099 	if (!SADB_CHECKHDR(mhp, SADB_X_EXT_IF_HW_OFFL) &&
3100 	    !SADB_CHECKLEN(mhp, SADB_X_EXT_IF_HW_OFFL)) {
3101 		struct sadb_x_if_hw_offl *xof;
3102 
3103 		xof = (struct sadb_x_if_hw_offl *)mhp->ext[
3104 		    SADB_X_EXT_IF_HW_OFFL];
3105 		sav->accel_ifname = malloc(sizeof(xof->sadb_x_if_hw_offl_if),
3106 		    M_IPSEC_MISC, M_NOWAIT);
3107 		if (sav->accel_ifname == NULL) {
3108 			*errp = ENOBUFS;
3109 			goto done;
3110 		}
3111 		strncpy(__DECONST(char *, sav->accel_ifname),
3112 		    xof->sadb_x_if_hw_offl_if,
3113 		    sizeof(xof->sadb_x_if_hw_offl_if));
3114 	}
3115 #endif
3116 again:
3117 	sah = key_getsah(saidx);
3118 	if (sah == NULL) {
3119 		/* create a new SA index */
3120 		sah = key_newsah(saidx);
3121 		if (sah == NULL) {
3122 			ipseclog((LOG_DEBUG,
3123 			    "%s: No more memory.\n", __func__));
3124 			*errp = ENOBUFS;
3125 			goto done;
3126 		}
3127 		isnew = 1;
3128 	} else
3129 		isnew = 0;
3130 
3131 	sav->sah = sah;
3132 	if (mhp->msg->sadb_msg_type == SADB_GETSPI) {
3133 		sav->created = time_second;
3134 	} else if (sav->state == SADB_SASTATE_LARVAL) {
3135 		/*
3136 		 * Do not call key_setsaval() second time in case
3137 		 * of `goto again`. We will have MATURE state.
3138 		 */
3139 		*errp = key_setsaval(sav, mhp);
3140 		if (*errp != 0)
3141 			goto done;
3142 		sav->state = SADB_SASTATE_MATURE;
3143 	}
3144 
3145 	SAHTREE_WLOCK();
3146 	/*
3147 	 * Check that existing SAH wasn't unlinked.
3148 	 * Since we didn't hold the SAHTREE lock, it is possible,
3149 	 * that callout handler or key_flush() or key_delete() could
3150 	 * unlink this SAH.
3151 	 */
3152 	if (isnew == 0 && sah->state == SADB_SASTATE_DEAD) {
3153 		SAHTREE_WUNLOCK();
3154 		key_freesah(&sah);	/* reference from key_getsah() */
3155 		goto again;
3156 	}
3157 	if (isnew != 0) {
3158 		/*
3159 		 * Add new SAH into SADB.
3160 		 *
3161 		 * XXXAE: we can serialize key_add and key_getspi calls, so
3162 		 * several threads will not fight in the race.
3163 		 * Otherwise we should check under SAHTREE lock, that this
3164 		 * SAH would not added twice.
3165 		 */
3166 		TAILQ_INSERT_HEAD(&V_sahtree, sah, chain);
3167 		/* Add new SAH into hash by addresses */
3168 		LIST_INSERT_HEAD(SAHADDRHASH_HASH(saidx), sah, addrhash);
3169 		/* Now we are linked in the chain */
3170 		sah->state = SADB_SASTATE_MATURE;
3171 		/*
3172 		 * SAV references this new SAH.
3173 		 * In case of existing SAH we reuse reference
3174 		 * from key_getsah().
3175 		 */
3176 		SAH_ADDREF(sah);
3177 	}
3178 	/* Link SAV with SAH */
3179 	if (sav->state == SADB_SASTATE_MATURE) {
3180 		TAILQ_INSERT_HEAD(&sah->savtree_alive, sav, chain);
3181 		ipsec_accel_sa_newkey(sav);
3182 	} else
3183 		TAILQ_INSERT_HEAD(&sah->savtree_larval, sav, chain);
3184 	/* Add SAV into SPI hash */
3185 	LIST_INSERT_HEAD(SAVHASH_HASH(sav->spi), sav, spihash);
3186 	SAHTREE_WUNLOCK();
3187 	*errp = 0;	/* success */
3188 done:
3189 	if (*errp != 0) {
3190 		if (sav != NULL) {
3191 			if (sav->lock != NULL) {
3192 				rm_destroy(sav->lock);
3193 				free(sav->lock, M_IPSEC_MISC);
3194 			}
3195 			if (sav->lft_c != NULL)
3196 				uma_zfree_pcpu(ipsec_key_lft_zone, sav->lft_c);
3197 #ifdef IPSEC_OFFLOAD
3198 			if (sav->accel_lft_sw != NULL)
3199 				uma_zfree_pcpu(ipsec_key_lft_zone,
3200 				    sav->accel_lft_sw);
3201 			free(__DECONST(char *, sav->accel_ifname),
3202 			    M_IPSEC_MISC);
3203 #endif
3204 			free(sav, M_IPSEC_SA), sav = NULL;
3205 		}
3206 		if (sah != NULL)
3207 			key_freesah(&sah);
3208 		if (*errp == ENOBUFS) {
3209 			ipseclog((LOG_DEBUG, "%s: No more memory.\n",
3210 			    __func__));
3211 			PFKEYSTAT_INC(in_nomem);
3212 		}
3213 	}
3214 	return (sav);
3215 }
3216 
3217 /*
3218  * free() SA variable entry.
3219  */
3220 static void
key_cleansav(struct secasvar * sav)3221 key_cleansav(struct secasvar *sav)
3222 {
3223 
3224 	if (sav->natt != NULL) {
3225 		free(sav->natt, M_IPSEC_MISC);
3226 		sav->natt = NULL;
3227 	}
3228 	if (sav->flags & SADB_X_EXT_F_CLONED)
3229 		return;
3230 	if (sav->tdb_xform != NULL) {
3231 		sav->tdb_xform->xf_cleanup(sav);
3232 		sav->tdb_xform = NULL;
3233 	}
3234 	if (sav->key_auth != NULL) {
3235 		zfree(sav->key_auth->key_data, M_IPSEC_MISC);
3236 		free(sav->key_auth, M_IPSEC_MISC);
3237 		sav->key_auth = NULL;
3238 	}
3239 	if (sav->key_enc != NULL) {
3240 		zfree(sav->key_enc->key_data, M_IPSEC_MISC);
3241 		free(sav->key_enc, M_IPSEC_MISC);
3242 		sav->key_enc = NULL;
3243 	}
3244 	if (sav->replay != NULL) {
3245 		mtx_destroy(&sav->replay->lock);
3246 		if (sav->replay->bitmap != NULL)
3247 			free(sav->replay->bitmap, M_IPSEC_MISC);
3248 		free(sav->replay, M_IPSEC_MISC);
3249 		sav->replay = NULL;
3250 	}
3251 	if (sav->lft_h != NULL) {
3252 		free(sav->lft_h, M_IPSEC_MISC);
3253 		sav->lft_h = NULL;
3254 	}
3255 	if (sav->lft_s != NULL) {
3256 		free(sav->lft_s, M_IPSEC_MISC);
3257 		sav->lft_s = NULL;
3258 	}
3259 }
3260 
3261 /*
3262  * free() SA variable entry.
3263  */
3264 static void
key_delsav(struct secasvar * sav)3265 key_delsav(struct secasvar *sav)
3266 {
3267 	IPSEC_ASSERT(sav != NULL, ("null sav"));
3268 	IPSEC_ASSERT(sav->state == SADB_SASTATE_DEAD,
3269 	    ("attempt to free non DEAD SA %p", sav));
3270 	IPSEC_ASSERT(sav->refcnt == 0, ("reference count %u > 0",
3271 	    sav->refcnt));
3272 #ifdef IPSEC_OFFLOAD
3273 	KASSERT(CK_LIST_EMPTY(&sav->accel_ifps),
3274 	    ("key_unlinksav: sav %p still offloaded", sav));
3275 #endif
3276 
3277 	/*
3278 	 * SA must be unlinked from the chain and hashtbl.
3279 	 * If SA was cloned, we leave all fields untouched,
3280 	 * except NAT-T config.
3281 	 */
3282 	key_cleansav(sav);
3283 	if ((sav->flags & SADB_X_EXT_F_CLONED) == 0) {
3284 		rm_destroy(sav->lock);
3285 		free(sav->lock, M_IPSEC_MISC);
3286 		uma_zfree_pcpu(ipsec_key_lft_zone, sav->lft_c);
3287 	}
3288 #ifdef IPSEC_OFFLOAD
3289 	/* XXXKIB should this be moved to key_cleansav()? */
3290 	uma_zfree_pcpu(ipsec_key_lft_zone, sav->accel_lft_sw);
3291 	free(__DECONST(char *, sav->accel_ifname), M_IPSEC_MISC);
3292 #endif
3293 	free(sav, M_IPSEC_SA);
3294 }
3295 
3296 /*
3297  * search SAH.
3298  * OUT:
3299  *	NULL	: not found
3300  *	others	: found, referenced pointer to a SAH.
3301  */
3302 static struct secashead *
key_getsah(struct secasindex * saidx)3303 key_getsah(struct secasindex *saidx)
3304 {
3305 	SAHTREE_RLOCK_TRACKER;
3306 	struct secashead *sah;
3307 
3308 	SAHTREE_RLOCK();
3309 	LIST_FOREACH(sah, SAHADDRHASH_HASH(saidx), addrhash) {
3310 	    if (key_cmpsaidx(&sah->saidx, saidx, CMP_MODE_REQID) != 0) {
3311 		    SAH_ADDREF(sah);
3312 		    break;
3313 	    }
3314 	}
3315 	SAHTREE_RUNLOCK();
3316 	return (sah);
3317 }
3318 
3319 /*
3320  * Check not to be duplicated SPI.
3321  * OUT:
3322  *	0	: not found
3323  *	1	: found SA with given SPI.
3324  */
3325 static int
key_checkspidup(uint32_t spi)3326 key_checkspidup(uint32_t spi)
3327 {
3328 	SAHTREE_RLOCK_TRACKER;
3329 	struct secasvar *sav;
3330 
3331 	/* Assume SPI is in network byte order */
3332 	SAHTREE_RLOCK();
3333 	LIST_FOREACH(sav, SAVHASH_HASH(spi), spihash) {
3334 		if (sav->spi == spi)
3335 			break;
3336 	}
3337 	SAHTREE_RUNLOCK();
3338 	return (sav != NULL);
3339 }
3340 
3341 /*
3342  * Search SA by SPI.
3343  * OUT:
3344  *	NULL	: not found
3345  *	others	: found, referenced pointer to a SA.
3346  */
3347 static struct secasvar *
key_getsavbyspi(uint32_t spi)3348 key_getsavbyspi(uint32_t spi)
3349 {
3350 	SAHTREE_RLOCK_TRACKER;
3351 	struct secasvar *sav;
3352 
3353 	/* Assume SPI is in network byte order */
3354 	SAHTREE_RLOCK();
3355 	LIST_FOREACH(sav, SAVHASH_HASH(spi), spihash) {
3356 		if (sav->spi != spi)
3357 			continue;
3358 		SAV_ADDREF(sav);
3359 		break;
3360 	}
3361 	SAHTREE_RUNLOCK();
3362 	return (sav);
3363 }
3364 
3365 static int
key_updatelifetimes(struct secasvar * sav,const struct sadb_msghdr * mhp)3366 key_updatelifetimes(struct secasvar *sav, const struct sadb_msghdr *mhp)
3367 {
3368 	struct seclifetime *lft_h, *lft_s, *tmp;
3369 
3370 	/* Lifetime extension is optional, check that it is present. */
3371 	if (SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_HARD) &&
3372 	    SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_SOFT)) {
3373 		/*
3374 		 * In case of SADB_UPDATE we may need to change
3375 		 * existing lifetimes.
3376 		 */
3377 		if (sav->state == SADB_SASTATE_MATURE) {
3378 			lft_h = lft_s = NULL;
3379 			goto reset;
3380 		}
3381 		return (0);
3382 	}
3383 	/* Both HARD and SOFT extensions must present */
3384 	if ((SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_HARD) &&
3385 	    !SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_SOFT)) ||
3386 	    (SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_SOFT) &&
3387 	    !SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_HARD))) {
3388 		ipseclog((LOG_DEBUG,
3389 		    "%s: invalid message: missing required header.\n",
3390 		    __func__));
3391 		return (EINVAL);
3392 	}
3393 	if (SADB_CHECKLEN(mhp, SADB_EXT_LIFETIME_HARD) ||
3394 	    SADB_CHECKLEN(mhp, SADB_EXT_LIFETIME_SOFT)) {
3395 		ipseclog((LOG_DEBUG,
3396 		    "%s: invalid message: wrong header size.\n", __func__));
3397 		return (EINVAL);
3398 	}
3399 	lft_h = key_dup_lifemsg((const struct sadb_lifetime *)
3400 	    mhp->ext[SADB_EXT_LIFETIME_HARD], M_IPSEC_MISC);
3401 	if (lft_h == NULL) {
3402 		PFKEYSTAT_INC(in_nomem);
3403 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
3404 		return (ENOBUFS);
3405 	}
3406 	lft_s = key_dup_lifemsg((const struct sadb_lifetime *)
3407 	    mhp->ext[SADB_EXT_LIFETIME_SOFT], M_IPSEC_MISC);
3408 	if (lft_s == NULL) {
3409 		PFKEYSTAT_INC(in_nomem);
3410 		free(lft_h, M_IPSEC_MISC);
3411 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
3412 		return (ENOBUFS);
3413 	}
3414 reset:
3415 	if (sav->state != SADB_SASTATE_LARVAL) {
3416 		/*
3417 		 * key_update() holds reference to this SA,
3418 		 * so it won't be deleted in meanwhile.
3419 		 */
3420 		SECASVAR_WLOCK(sav);
3421 		tmp = sav->lft_h;
3422 		sav->lft_h = lft_h;
3423 		lft_h = tmp;
3424 
3425 		tmp = sav->lft_s;
3426 		sav->lft_s = lft_s;
3427 		lft_s = tmp;
3428 		SECASVAR_WUNLOCK(sav);
3429 		if (lft_h != NULL)
3430 			free(lft_h, M_IPSEC_MISC);
3431 		if (lft_s != NULL)
3432 			free(lft_s, M_IPSEC_MISC);
3433 		return (0);
3434 	}
3435 	/* We can update lifetime without holding a lock */
3436 	IPSEC_ASSERT(sav->lft_h == NULL, ("lft_h is already initialized\n"));
3437 	IPSEC_ASSERT(sav->lft_s == NULL, ("lft_s is already initialized\n"));
3438 	sav->lft_h = lft_h;
3439 	sav->lft_s = lft_s;
3440 	return (0);
3441 }
3442 
3443 /*
3444  * copy SA values from PF_KEY message except *SPI, SEQ, PID and TYPE*.
3445  * You must update these if need. Expects only LARVAL SAs.
3446  * OUT:	0:	success.
3447  *	!0:	failure.
3448  */
3449 static int
key_setsaval(struct secasvar * sav,const struct sadb_msghdr * mhp)3450 key_setsaval(struct secasvar *sav, const struct sadb_msghdr *mhp)
3451 {
3452 	const struct sadb_sa *sa0;
3453 	const struct sadb_key *key0;
3454 	uint32_t replay;
3455 	size_t len;
3456 	int error;
3457 
3458 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
3459 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
3460 	IPSEC_ASSERT(sav->state == SADB_SASTATE_LARVAL,
3461 	    ("Attempt to update non LARVAL SA"));
3462 
3463 	/* XXX rewrite */
3464 	error = key_setident(sav->sah, mhp);
3465 	if (error != 0)
3466 		goto fail;
3467 
3468 	/* SA */
3469 	if (!SADB_CHECKHDR(mhp, SADB_EXT_SA)) {
3470 		if (SADB_CHECKLEN(mhp, SADB_EXT_SA)) {
3471 			error = EINVAL;
3472 			goto fail;
3473 		}
3474 		sa0 = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA];
3475 		sav->alg_auth = sa0->sadb_sa_auth;
3476 		sav->alg_enc = sa0->sadb_sa_encrypt;
3477 		sav->flags = sa0->sadb_sa_flags;
3478 		if ((sav->flags & SADB_KEY_FLAGS_MAX) != sav->flags) {
3479 			ipseclog((LOG_DEBUG,
3480 			    "%s: invalid sa_flags 0x%08x.\n", __func__,
3481 			    sav->flags));
3482 			error = EINVAL;
3483 			goto fail;
3484 		}
3485 
3486 		/* Optional replay window */
3487 		replay = 0;
3488 		if ((sa0->sadb_sa_flags & SADB_X_EXT_OLD) == 0)
3489 			replay = sa0->sadb_sa_replay;
3490 		if (!SADB_CHECKHDR(mhp, SADB_X_EXT_SA_REPLAY)) {
3491 			if (SADB_CHECKLEN(mhp, SADB_X_EXT_SA_REPLAY)) {
3492 				error = EINVAL;
3493 				goto fail;
3494 			}
3495 			replay = ((const struct sadb_x_sa_replay *)
3496 			    mhp->ext[SADB_X_EXT_SA_REPLAY])->sadb_x_sa_replay_replay;
3497 
3498 			if (replay > UINT32_MAX - 32) {
3499 				ipseclog((LOG_DEBUG,
3500 				    "%s: replay window too big.\n", __func__));
3501 				error = EINVAL;
3502 				goto fail;
3503 			}
3504 
3505 			replay = (replay + 7) >> 3;
3506 		}
3507 
3508 		sav->replay = malloc(sizeof(struct secreplay), M_IPSEC_MISC,
3509 		    M_NOWAIT | M_ZERO);
3510 		if (sav->replay == NULL) {
3511 			PFKEYSTAT_INC(in_nomem);
3512 			ipseclog((LOG_DEBUG, "%s: No more memory.\n",
3513 			    __func__));
3514 			error = ENOBUFS;
3515 			goto fail;
3516 		}
3517 		mtx_init(&sav->replay->lock, "ipsec replay", NULL, MTX_DEF);
3518 
3519 		if (replay != 0) {
3520 			/* number of 32b blocks to be allocated */
3521 			uint32_t bitmap_size;
3522 
3523 			/* RFC 6479:
3524 			 * - the allocated replay window size must be
3525 			 *   a power of two.
3526 			 * - use an extra 32b block as a redundant window.
3527 			 */
3528 			bitmap_size = 1;
3529 			while (replay + 4 > bitmap_size)
3530 				bitmap_size <<= 1;
3531 			bitmap_size = bitmap_size / 4;
3532 
3533 			sav->replay->bitmap = malloc(
3534 			    bitmap_size * sizeof(uint32_t), M_IPSEC_MISC,
3535 			    M_NOWAIT | M_ZERO);
3536 			if (sav->replay->bitmap == NULL) {
3537 				PFKEYSTAT_INC(in_nomem);
3538 				ipseclog((LOG_DEBUG, "%s: No more memory.\n",
3539 					__func__));
3540 				error = ENOBUFS;
3541 				goto fail;
3542 			}
3543 			sav->replay->bitmap_size = bitmap_size;
3544 			sav->replay->wsize = replay;
3545 		}
3546 	}
3547 
3548 	/* Authentication keys */
3549 	if (!SADB_CHECKHDR(mhp, SADB_EXT_KEY_AUTH)) {
3550 		if (SADB_CHECKLEN(mhp, SADB_EXT_KEY_AUTH)) {
3551 			error = EINVAL;
3552 			goto fail;
3553 		}
3554 		error = 0;
3555 		key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_AUTH];
3556 		len = mhp->extlen[SADB_EXT_KEY_AUTH];
3557 		switch (mhp->msg->sadb_msg_satype) {
3558 		case SADB_SATYPE_AH:
3559 		case SADB_SATYPE_ESP:
3560 		case SADB_X_SATYPE_TCPSIGNATURE:
3561 			if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) &&
3562 			    sav->alg_auth != SADB_X_AALG_NULL)
3563 				error = EINVAL;
3564 			if (key0->sadb_key_bits == 0 || (sizeof(struct sadb_key) +
3565 			    (key0->sadb_key_bits >> 3)) > len)
3566 				error = EINVAL;
3567 			break;
3568 		case SADB_X_SATYPE_IPCOMP:
3569 		default:
3570 			error = EINVAL;
3571 			break;
3572 		}
3573 		if (error) {
3574 			ipseclog((LOG_DEBUG, "%s: invalid key_auth values.\n",
3575 				__func__));
3576 			goto fail;
3577 		}
3578 
3579 		sav->key_auth = key_dup_keymsg(key0, M_IPSEC_MISC);
3580 		if (sav->key_auth == NULL ) {
3581 			ipseclog((LOG_DEBUG, "%s: No more memory.\n",
3582 				  __func__));
3583 			PFKEYSTAT_INC(in_nomem);
3584 			error = ENOBUFS;
3585 			goto fail;
3586 		}
3587 	}
3588 
3589 	/* Encryption key */
3590 	if (!SADB_CHECKHDR(mhp, SADB_EXT_KEY_ENCRYPT)) {
3591 		if (SADB_CHECKLEN(mhp, SADB_EXT_KEY_ENCRYPT)) {
3592 			error = EINVAL;
3593 			goto fail;
3594 		}
3595 		error = 0;
3596 		key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_ENCRYPT];
3597 		len = mhp->extlen[SADB_EXT_KEY_ENCRYPT];
3598 		switch (mhp->msg->sadb_msg_satype) {
3599 		case SADB_SATYPE_ESP:
3600 			if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) &&
3601 			    sav->alg_enc != SADB_EALG_NULL) {
3602 				error = EINVAL;
3603 				break;
3604 			}
3605 			if (key0->sadb_key_bits == 0 || (sizeof(struct sadb_key) +
3606 			    (key0->sadb_key_bits >> 3)) > len) {
3607 				error = EINVAL;
3608 				break;
3609 			}
3610 			sav->key_enc = key_dup_keymsg(key0, M_IPSEC_MISC);
3611 			if (sav->key_enc == NULL) {
3612 				ipseclog((LOG_DEBUG, "%s: No more memory.\n",
3613 					__func__));
3614 				PFKEYSTAT_INC(in_nomem);
3615 				error = ENOBUFS;
3616 				goto fail;
3617 			}
3618 			break;
3619 		case SADB_X_SATYPE_IPCOMP:
3620 			if (len != PFKEY_ALIGN8(sizeof(struct sadb_key)))
3621 				error = EINVAL;
3622 			sav->key_enc = NULL;	/*just in case*/
3623 			break;
3624 		case SADB_SATYPE_AH:
3625 		case SADB_X_SATYPE_TCPSIGNATURE:
3626 		default:
3627 			error = EINVAL;
3628 			break;
3629 		}
3630 		if (error) {
3631 			ipseclog((LOG_DEBUG, "%s: invalid key_enc value.\n",
3632 				__func__));
3633 			goto fail;
3634 		}
3635 	}
3636 
3637 	/* set iv */
3638 	sav->ivlen = 0;
3639 	switch (mhp->msg->sadb_msg_satype) {
3640 	case SADB_SATYPE_AH:
3641 		if (sav->flags & SADB_X_EXT_DERIV) {
3642 			ipseclog((LOG_DEBUG, "%s: invalid flag (derived) "
3643 			    "given to AH SA.\n", __func__));
3644 			error = EINVAL;
3645 			goto fail;
3646 		}
3647 		if (sav->alg_enc != SADB_EALG_NONE) {
3648 			ipseclog((LOG_DEBUG, "%s: protocol and algorithm "
3649 			    "mismated.\n", __func__));
3650 			error = EINVAL;
3651 			goto fail;
3652 		}
3653 		error = xform_init(sav, XF_AH);
3654 		break;
3655 	case SADB_SATYPE_ESP:
3656 		if ((sav->flags & (SADB_X_EXT_OLD | SADB_X_EXT_DERIV)) ==
3657 		    (SADB_X_EXT_OLD | SADB_X_EXT_DERIV)) {
3658 			ipseclog((LOG_DEBUG, "%s: invalid flag (derived) "
3659 			    "given to old-esp.\n", __func__));
3660 			error = EINVAL;
3661 			goto fail;
3662 		}
3663 		error = xform_init(sav, XF_ESP);
3664 		break;
3665 	case SADB_X_SATYPE_IPCOMP:
3666 		if (sav->alg_auth != SADB_AALG_NONE) {
3667 			ipseclog((LOG_DEBUG, "%s: protocol and algorithm "
3668 			    "mismated.\n", __func__));
3669 			error = EINVAL;
3670 			goto fail;
3671 		}
3672 		if ((sav->flags & SADB_X_EXT_RAWCPI) == 0 &&
3673 		    ntohl(sav->spi) >= 0x10000) {
3674 			ipseclog((LOG_DEBUG, "%s: invalid cpi for IPComp.\n",
3675 			    __func__));
3676 			error = EINVAL;
3677 			goto fail;
3678 		}
3679 		error = xform_init(sav, XF_IPCOMP);
3680 		break;
3681 	case SADB_X_SATYPE_TCPSIGNATURE:
3682 		if (sav->alg_enc != SADB_EALG_NONE) {
3683 			ipseclog((LOG_DEBUG, "%s: protocol and algorithm "
3684 			    "mismated.\n", __func__));
3685 			error = EINVAL;
3686 			goto fail;
3687 		}
3688 		error = xform_init(sav, XF_TCPSIGNATURE);
3689 		break;
3690 	default:
3691 		ipseclog((LOG_DEBUG, "%s: Invalid satype.\n", __func__));
3692 		error = EPROTONOSUPPORT;
3693 		goto fail;
3694 	}
3695 	if (error) {
3696 		ipseclog((LOG_DEBUG, "%s: unable to initialize SA type %u.\n",
3697 		    __func__, mhp->msg->sadb_msg_satype));
3698 		goto fail;
3699 	}
3700 
3701 	/* Handle NAT-T headers */
3702 	error = key_setnatt(sav, mhp);
3703 	if (error != 0)
3704 		goto fail;
3705 
3706 	/* Initialize lifetime for CURRENT */
3707 	sav->firstused = 0;
3708 	sav->created = time_second;
3709 
3710 	/* lifetimes for HARD and SOFT */
3711 	error = key_updatelifetimes(sav, mhp);
3712 	if (error == 0)
3713 		return (0);
3714 fail:
3715 	key_cleansav(sav);
3716 	return (error);
3717 }
3718 
3719 /*
3720  * subroutine for SADB_GET and SADB_DUMP.
3721  */
3722 static struct mbuf *
key_setdumpsa(struct secasvar * sav,uint8_t type,uint8_t satype,uint32_t seq,uint32_t pid,struct rm_priotracker * sahtree_trackerp)3723 key_setdumpsa(struct secasvar *sav, uint8_t type, uint8_t satype,
3724     uint32_t seq, uint32_t pid, struct rm_priotracker *sahtree_trackerp)
3725 {
3726 	struct seclifetime lft_c;
3727 	struct mbuf *result = NULL, *tres = NULL, *m;
3728 	int i, dumporder[] = {
3729 		SADB_EXT_SA, SADB_X_EXT_SA2, SADB_X_EXT_SA_REPLAY,
3730 		SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT,
3731 		SADB_EXT_LIFETIME_CURRENT, SADB_EXT_ADDRESS_SRC,
3732 		SADB_EXT_ADDRESS_DST, SADB_EXT_ADDRESS_PROXY,
3733 		SADB_EXT_KEY_AUTH, SADB_EXT_KEY_ENCRYPT,
3734 		SADB_EXT_IDENTITY_SRC, SADB_EXT_IDENTITY_DST,
3735 		SADB_EXT_SENSITIVITY,
3736 		SADB_X_EXT_NAT_T_TYPE,
3737 		SADB_X_EXT_NAT_T_SPORT, SADB_X_EXT_NAT_T_DPORT,
3738 		SADB_X_EXT_NAT_T_OAI, SADB_X_EXT_NAT_T_OAR,
3739 		SADB_X_EXT_NAT_T_FRAG,
3740 #ifdef IPSEC_OFFLOAD
3741 		SADB_X_EXT_LFT_CUR_SW_OFFL, SADB_X_EXT_LFT_CUR_HW_OFFL,
3742 		SADB_X_EXT_IF_HW_OFFL,
3743 #endif
3744 	};
3745 	uint32_t replay_count;
3746 #ifdef IPSEC_OFFLOAD
3747 	int error;
3748 #endif
3749 
3750 	SECASVAR_RLOCK_TRACKER;
3751 
3752 	m = key_setsadbmsg(type, 0, satype, seq, pid, sav->refcnt);
3753 	if (m == NULL)
3754 		goto fail;
3755 	result = m;
3756 
3757 	for (i = nitems(dumporder) - 1; i >= 0; i--) {
3758 		m = NULL;
3759 		switch (dumporder[i]) {
3760 		case SADB_EXT_SA:
3761 			m = key_setsadbsa(sav);
3762 			if (!m)
3763 				goto fail;
3764 			break;
3765 
3766 		case SADB_X_EXT_SA2: {
3767 			SECASVAR_RLOCK(sav);
3768 			replay_count = sav->replay ? sav->replay->count : 0;
3769 			SECASVAR_RUNLOCK(sav);
3770 			m = key_setsadbxsa2(sav->sah->saidx.mode, replay_count,
3771 					sav->sah->saidx.reqid);
3772 			if (!m)
3773 				goto fail;
3774 			break;
3775 		}
3776 		case SADB_X_EXT_SA_REPLAY:
3777 			if (sav->replay == NULL ||
3778 			    sav->replay->wsize <= UINT8_MAX)
3779 				continue;
3780 
3781 			m = key_setsadbxsareplay(sav->replay->wsize);
3782 			if (!m)
3783 				goto fail;
3784 			break;
3785 
3786 		case SADB_EXT_ADDRESS_SRC:
3787 			m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
3788 			    &sav->sah->saidx.src.sa,
3789 			    FULLMASK, IPSEC_ULPROTO_ANY);
3790 			if (!m)
3791 				goto fail;
3792 			break;
3793 
3794 		case SADB_EXT_ADDRESS_DST:
3795 			m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
3796 			    &sav->sah->saidx.dst.sa,
3797 			    FULLMASK, IPSEC_ULPROTO_ANY);
3798 			if (!m)
3799 				goto fail;
3800 			break;
3801 
3802 		case SADB_EXT_KEY_AUTH:
3803 			if (!sav->key_auth)
3804 				continue;
3805 			m = key_setkey(sav->key_auth, SADB_EXT_KEY_AUTH);
3806 			if (!m)
3807 				goto fail;
3808 			break;
3809 
3810 		case SADB_EXT_KEY_ENCRYPT:
3811 			if (!sav->key_enc)
3812 				continue;
3813 			m = key_setkey(sav->key_enc, SADB_EXT_KEY_ENCRYPT);
3814 			if (!m)
3815 				goto fail;
3816 			break;
3817 
3818 		case SADB_EXT_LIFETIME_CURRENT:
3819 			lft_c.addtime = sav->created;
3820 			lft_c.allocations = (uint32_t)counter_u64_fetch(
3821 			    sav->lft_c_allocations);
3822 			lft_c.bytes = counter_u64_fetch(sav->lft_c_bytes);
3823 			lft_c.usetime = sav->firstused;
3824 			m = key_setlifetime(&lft_c, SADB_EXT_LIFETIME_CURRENT);
3825 			if (!m)
3826 				goto fail;
3827 			break;
3828 
3829 		case SADB_EXT_LIFETIME_HARD:
3830 			if (!sav->lft_h)
3831 				continue;
3832 			m = key_setlifetime(sav->lft_h,
3833 					    SADB_EXT_LIFETIME_HARD);
3834 			if (!m)
3835 				goto fail;
3836 			break;
3837 
3838 		case SADB_EXT_LIFETIME_SOFT:
3839 			if (!sav->lft_s)
3840 				continue;
3841 			m = key_setlifetime(sav->lft_s,
3842 					    SADB_EXT_LIFETIME_SOFT);
3843 
3844 			if (!m)
3845 				goto fail;
3846 			break;
3847 
3848 		case SADB_X_EXT_NAT_T_TYPE:
3849 			if (sav->natt == NULL)
3850 				continue;
3851 			m = key_setsadbxtype(UDP_ENCAP_ESPINUDP);
3852 			if (!m)
3853 				goto fail;
3854 			break;
3855 
3856 		case SADB_X_EXT_NAT_T_DPORT:
3857 			if (sav->natt == NULL)
3858 				continue;
3859 			m = key_setsadbxport(sav->natt->dport,
3860 			    SADB_X_EXT_NAT_T_DPORT);
3861 			if (!m)
3862 				goto fail;
3863 			break;
3864 
3865 		case SADB_X_EXT_NAT_T_SPORT:
3866 			if (sav->natt == NULL)
3867 				continue;
3868 			m = key_setsadbxport(sav->natt->sport,
3869 			    SADB_X_EXT_NAT_T_SPORT);
3870 			if (!m)
3871 				goto fail;
3872 			break;
3873 
3874 		case SADB_X_EXT_NAT_T_OAI:
3875 			if (sav->natt == NULL ||
3876 			    (sav->natt->flags & IPSEC_NATT_F_OAI) == 0)
3877 				continue;
3878 			m = key_setsadbaddr(SADB_X_EXT_NAT_T_OAI,
3879 			    &sav->natt->oai.sa, FULLMASK, IPSEC_ULPROTO_ANY);
3880 			if (!m)
3881 				goto fail;
3882 			break;
3883 		case SADB_X_EXT_NAT_T_OAR:
3884 			if (sav->natt == NULL ||
3885 			    (sav->natt->flags & IPSEC_NATT_F_OAR) == 0)
3886 				continue;
3887 			m = key_setsadbaddr(SADB_X_EXT_NAT_T_OAR,
3888 			    &sav->natt->oar.sa, FULLMASK, IPSEC_ULPROTO_ANY);
3889 			if (!m)
3890 				goto fail;
3891 			break;
3892 		case SADB_X_EXT_NAT_T_FRAG:
3893 			/* We do not (yet) support those. */
3894 			continue;
3895 #ifdef IPSEC_OFFLOAD
3896 		case SADB_X_EXT_LFT_CUR_SW_OFFL:
3897 			if (!ipsec_accel_is_accel_sav(sav))
3898 				continue;
3899 			SAV_ADDREF(sav);
3900 			error = ipsec_accel_sa_lifetime_op(sav, &lft_c,
3901 			    NULL, IF_SA_CNT_TOTAL_SW_VAL, sahtree_trackerp);
3902 			if (error != 0) {
3903 				m = NULL;
3904 				goto fail;
3905 			}
3906 			m = key_setlifetime(&lft_c, dumporder[i]);
3907 			if (m == NULL)
3908 				goto fail;
3909 			key_freesav(&sav);
3910 			if (sav == NULL) {
3911 				m_freem(m);
3912 				goto fail;
3913 			}
3914 			break;
3915 		case SADB_X_EXT_LFT_CUR_HW_OFFL:
3916 			if (!ipsec_accel_is_accel_sav(sav))
3917 				continue;
3918 			memset(&lft_c, 0, sizeof(lft_c));
3919 			lft_c.bytes = sav->accel_hw_octets;
3920 			lft_c.allocations = sav->accel_hw_allocs;
3921 			m = key_setlifetime(&lft_c, dumporder[i]);
3922 			if (m == NULL)
3923 				goto fail;
3924 			break;
3925 		case SADB_X_EXT_IF_HW_OFFL:
3926 			if (!ipsec_accel_is_accel_sav(sav))
3927 				continue;
3928 			m = ipsec_accel_key_setaccelif(sav);
3929 			if (m == NULL)
3930 				continue;	/* benigh */
3931 			break;
3932 #endif
3933 
3934 		case SADB_EXT_ADDRESS_PROXY:
3935 		case SADB_EXT_IDENTITY_SRC:
3936 		case SADB_EXT_IDENTITY_DST:
3937 			/* XXX: should we brought from SPD ? */
3938 		case SADB_EXT_SENSITIVITY:
3939 		default:
3940 			continue;
3941 		}
3942 
3943 		if (!m)
3944 			goto fail;
3945 		if (tres)
3946 			m_cat(m, tres);
3947 		tres = m;
3948 	}
3949 
3950 	m_cat(result, tres);
3951 	tres = NULL;
3952 	if (result->m_len < sizeof(struct sadb_msg)) {
3953 		result = m_pullup(result, sizeof(struct sadb_msg));
3954 		if (result == NULL)
3955 			goto fail;
3956 	}
3957 
3958 	result->m_pkthdr.len = 0;
3959 	for (m = result; m; m = m->m_next)
3960 		result->m_pkthdr.len += m->m_len;
3961 
3962 	mtod(result, struct sadb_msg *)->sadb_msg_len =
3963 	    PFKEY_UNIT64(result->m_pkthdr.len);
3964 
3965 	return result;
3966 
3967 fail:
3968 	m_freem(result);
3969 	m_freem(tres);
3970 	return NULL;
3971 }
3972 
3973 /*
3974  * set data into sadb_msg.
3975  */
3976 static struct mbuf *
key_setsadbmsg(u_int8_t type,u_int16_t tlen,u_int8_t satype,u_int32_t seq,pid_t pid,u_int16_t reserved)3977 key_setsadbmsg(u_int8_t type, u_int16_t tlen, u_int8_t satype, u_int32_t seq,
3978     pid_t pid, u_int16_t reserved)
3979 {
3980 	struct mbuf *m;
3981 	struct sadb_msg *p;
3982 	int len;
3983 
3984 	len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
3985 	if (len > MCLBYTES)
3986 		return NULL;
3987 	m = key_mget(len);
3988 	if (m == NULL)
3989 		return NULL;
3990 	m->m_pkthdr.len = m->m_len = len;
3991 	m->m_next = NULL;
3992 
3993 	p = mtod(m, struct sadb_msg *);
3994 
3995 	bzero(p, len);
3996 	p->sadb_msg_version = PF_KEY_V2;
3997 	p->sadb_msg_type = type;
3998 	p->sadb_msg_errno = 0;
3999 	p->sadb_msg_satype = satype;
4000 	p->sadb_msg_len = PFKEY_UNIT64(tlen);
4001 	p->sadb_msg_reserved = reserved;
4002 	p->sadb_msg_seq = seq;
4003 	p->sadb_msg_pid = (u_int32_t)pid;
4004 
4005 	return m;
4006 }
4007 
4008 /*
4009  * copy secasvar data into sadb_address.
4010  */
4011 static struct mbuf *
key_setsadbsa(struct secasvar * sav)4012 key_setsadbsa(struct secasvar *sav)
4013 {
4014 	struct mbuf *m;
4015 	struct sadb_sa *p;
4016 	int len;
4017 
4018 	len = PFKEY_ALIGN8(sizeof(struct sadb_sa));
4019 	m = m_get2(len, M_NOWAIT, MT_DATA, 0);
4020 	if (m == NULL)
4021 		return (NULL);
4022 	m_align(m, len);
4023 	m->m_len = len;
4024 	p = mtod(m, struct sadb_sa *);
4025 	bzero(p, len);
4026 	p->sadb_sa_len = PFKEY_UNIT64(len);
4027 	p->sadb_sa_exttype = SADB_EXT_SA;
4028 	p->sadb_sa_spi = sav->spi;
4029 	p->sadb_sa_replay = sav->replay ?
4030 	    (sav->replay->wsize > UINT8_MAX ? UINT8_MAX :
4031 		sav->replay->wsize): 0;
4032 	p->sadb_sa_state = sav->state;
4033 	p->sadb_sa_auth = sav->alg_auth;
4034 	p->sadb_sa_encrypt = sav->alg_enc;
4035 	p->sadb_sa_flags = sav->flags & SADB_KEY_FLAGS_MAX;
4036 	return (m);
4037 }
4038 
4039 /*
4040  * set data into sadb_address.
4041  */
4042 static struct mbuf *
key_setsadbaddr(u_int16_t exttype,const struct sockaddr * saddr,u_int8_t prefixlen,u_int16_t ul_proto)4043 key_setsadbaddr(u_int16_t exttype, const struct sockaddr *saddr,
4044     u_int8_t prefixlen, u_int16_t ul_proto)
4045 {
4046 	struct mbuf *m;
4047 	struct sadb_address *p;
4048 	size_t len;
4049 
4050 	len = PFKEY_ALIGN8(sizeof(struct sadb_address)) +
4051 	    PFKEY_ALIGN8(saddr->sa_len);
4052 	m = m_get2(len, M_NOWAIT, MT_DATA, 0);
4053 	if (m == NULL)
4054 		return (NULL);
4055 	m_align(m, len);
4056 	m->m_len = len;
4057 	p = mtod(m, struct sadb_address *);
4058 
4059 	bzero(p, len);
4060 	p->sadb_address_len = PFKEY_UNIT64(len);
4061 	p->sadb_address_exttype = exttype;
4062 	p->sadb_address_proto = ul_proto;
4063 	if (prefixlen == FULLMASK) {
4064 		switch (saddr->sa_family) {
4065 		case AF_INET:
4066 			prefixlen = sizeof(struct in_addr) << 3;
4067 			break;
4068 		case AF_INET6:
4069 			prefixlen = sizeof(struct in6_addr) << 3;
4070 			break;
4071 		default:
4072 			; /*XXX*/
4073 		}
4074 	}
4075 	p->sadb_address_prefixlen = prefixlen;
4076 	p->sadb_address_reserved = 0;
4077 
4078 	bcopy(saddr,
4079 	    mtod(m, caddr_t) + PFKEY_ALIGN8(sizeof(struct sadb_address)),
4080 	    saddr->sa_len);
4081 
4082 	return m;
4083 }
4084 
4085 /*
4086  * set data into sadb_x_sa2.
4087  */
4088 static struct mbuf *
key_setsadbxsa2(u_int8_t mode,u_int32_t seq,u_int32_t reqid)4089 key_setsadbxsa2(u_int8_t mode, u_int32_t seq, u_int32_t reqid)
4090 {
4091 	struct mbuf *m;
4092 	struct sadb_x_sa2 *p;
4093 	size_t len;
4094 
4095 	len = PFKEY_ALIGN8(sizeof(struct sadb_x_sa2));
4096 	m = m_get2(len, M_NOWAIT, MT_DATA, 0);
4097 	if (m == NULL)
4098 		return (NULL);
4099 	m_align(m, len);
4100 	m->m_len = len;
4101 	p = mtod(m, struct sadb_x_sa2 *);
4102 
4103 	bzero(p, len);
4104 	p->sadb_x_sa2_len = PFKEY_UNIT64(len);
4105 	p->sadb_x_sa2_exttype = SADB_X_EXT_SA2;
4106 	p->sadb_x_sa2_mode = mode;
4107 	p->sadb_x_sa2_reserved1 = 0;
4108 	p->sadb_x_sa2_reserved2 = 0;
4109 	p->sadb_x_sa2_sequence = seq;
4110 	p->sadb_x_sa2_reqid = reqid;
4111 
4112 	return m;
4113 }
4114 
4115 /*
4116  * Set data into sadb_x_sa_replay.
4117  */
4118 static struct mbuf *
key_setsadbxsareplay(u_int32_t replay)4119 key_setsadbxsareplay(u_int32_t replay)
4120 {
4121 	struct mbuf *m;
4122 	struct sadb_x_sa_replay *p;
4123 	size_t len;
4124 
4125 	len = PFKEY_ALIGN8(sizeof(struct sadb_x_sa_replay));
4126 	m = m_get2(len, M_NOWAIT, MT_DATA, 0);
4127 	if (m == NULL)
4128 		return (NULL);
4129 	m_align(m, len);
4130 	m->m_len = len;
4131 	p = mtod(m, struct sadb_x_sa_replay *);
4132 
4133 	bzero(p, len);
4134 	p->sadb_x_sa_replay_len = PFKEY_UNIT64(len);
4135 	p->sadb_x_sa_replay_exttype = SADB_X_EXT_SA_REPLAY;
4136 	p->sadb_x_sa_replay_replay = (replay << 3);
4137 
4138 	return m;
4139 }
4140 
4141 /*
4142  * Set a type in sadb_x_nat_t_type.
4143  */
4144 static struct mbuf *
key_setsadbxtype(u_int16_t type)4145 key_setsadbxtype(u_int16_t type)
4146 {
4147 	struct mbuf *m;
4148 	size_t len;
4149 	struct sadb_x_nat_t_type *p;
4150 
4151 	len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_type));
4152 
4153 	m = m_get2(len, M_NOWAIT, MT_DATA, 0);
4154 	if (m == NULL)
4155 		return (NULL);
4156 	m_align(m, len);
4157 	m->m_len = len;
4158 	p = mtod(m, struct sadb_x_nat_t_type *);
4159 
4160 	bzero(p, len);
4161 	p->sadb_x_nat_t_type_len = PFKEY_UNIT64(len);
4162 	p->sadb_x_nat_t_type_exttype = SADB_X_EXT_NAT_T_TYPE;
4163 	p->sadb_x_nat_t_type_type = type;
4164 
4165 	return (m);
4166 }
4167 /*
4168  * Set a port in sadb_x_nat_t_port.
4169  * In contrast to default RFC 2367 behaviour, port is in network byte order.
4170  */
4171 static struct mbuf *
key_setsadbxport(u_int16_t port,u_int16_t type)4172 key_setsadbxport(u_int16_t port, u_int16_t type)
4173 {
4174 	struct mbuf *m;
4175 	size_t len;
4176 	struct sadb_x_nat_t_port *p;
4177 
4178 	len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_port));
4179 
4180 	m = m_get2(len, M_NOWAIT, MT_DATA, 0);
4181 	if (m == NULL)
4182 		return (NULL);
4183 	m_align(m, len);
4184 	m->m_len = len;
4185 	p = mtod(m, struct sadb_x_nat_t_port *);
4186 
4187 	bzero(p, len);
4188 	p->sadb_x_nat_t_port_len = PFKEY_UNIT64(len);
4189 	p->sadb_x_nat_t_port_exttype = type;
4190 	p->sadb_x_nat_t_port_port = port;
4191 
4192 	return (m);
4193 }
4194 
4195 /*
4196  * Get port from sockaddr. Port is in network byte order.
4197  */
4198 uint16_t
key_portfromsaddr(struct sockaddr * sa)4199 key_portfromsaddr(struct sockaddr *sa)
4200 {
4201 
4202 	switch (sa->sa_family) {
4203 #ifdef INET
4204 	case AF_INET:
4205 		return ((struct sockaddr_in *)sa)->sin_port;
4206 #endif
4207 #ifdef INET6
4208 	case AF_INET6:
4209 		return ((struct sockaddr_in6 *)sa)->sin6_port;
4210 #endif
4211 	}
4212 	return (0);
4213 }
4214 
4215 /*
4216  * Set port in struct sockaddr. Port is in network byte order.
4217  */
4218 void
key_porttosaddr(struct sockaddr * sa,uint16_t port)4219 key_porttosaddr(struct sockaddr *sa, uint16_t port)
4220 {
4221 
4222 	switch (sa->sa_family) {
4223 #ifdef INET
4224 	case AF_INET:
4225 		((struct sockaddr_in *)sa)->sin_port = port;
4226 		break;
4227 #endif
4228 #ifdef INET6
4229 	case AF_INET6:
4230 		((struct sockaddr_in6 *)sa)->sin6_port = port;
4231 		break;
4232 #endif
4233 	default:
4234 		ipseclog((LOG_DEBUG, "%s: unexpected address family %d.\n",
4235 			__func__, sa->sa_family));
4236 		break;
4237 	}
4238 }
4239 
4240 /*
4241  * set data into sadb_x_policy
4242  */
4243 static struct mbuf *
key_setsadbxpolicy(u_int16_t type,u_int8_t dir,u_int32_t id,u_int32_t priority)4244 key_setsadbxpolicy(u_int16_t type, u_int8_t dir, u_int32_t id, u_int32_t priority)
4245 {
4246 	struct mbuf *m;
4247 	struct sadb_x_policy *p;
4248 	size_t len;
4249 
4250 	len = PFKEY_ALIGN8(sizeof(struct sadb_x_policy));
4251 	m = m_get2(len, M_NOWAIT, MT_DATA, 0);
4252 	if (m == NULL)
4253 		return (NULL);
4254 	m_align(m, len);
4255 	m->m_len = len;
4256 	p = mtod(m, struct sadb_x_policy *);
4257 
4258 	bzero(p, len);
4259 	p->sadb_x_policy_len = PFKEY_UNIT64(len);
4260 	p->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
4261 	p->sadb_x_policy_type = type;
4262 	p->sadb_x_policy_dir = dir;
4263 	p->sadb_x_policy_id = id;
4264 	p->sadb_x_policy_priority = priority;
4265 
4266 	return m;
4267 }
4268 
4269 /* %%% utilities */
4270 /* Take a key message (sadb_key) from the socket and turn it into one
4271  * of the kernel's key structures (seckey).
4272  *
4273  * IN: pointer to the src
4274  * OUT: NULL no more memory
4275  */
4276 struct seckey *
key_dup_keymsg(const struct sadb_key * src,struct malloc_type * type)4277 key_dup_keymsg(const struct sadb_key *src, struct malloc_type *type)
4278 {
4279 	struct seckey *dst;
4280 	size_t len;
4281 
4282 	dst = malloc(sizeof(*dst), type, M_NOWAIT);
4283 	if (dst != NULL) {
4284 		len = src->sadb_key_bits >> 3;
4285 		dst->bits = src->sadb_key_bits;
4286 		dst->key_data = malloc(len, type, M_NOWAIT);
4287 		if (dst->key_data != NULL) {
4288 			bcopy((const char *)(src + 1), dst->key_data, len);
4289 		} else {
4290 			ipseclog((LOG_DEBUG, "%s: No more memory.\n",
4291 			    __func__));
4292 			free(dst, type);
4293 			dst = NULL;
4294 		}
4295 	} else {
4296 		ipseclog((LOG_DEBUG, "%s: No more memory.\n",
4297 		    __func__));
4298 	}
4299 	return (dst);
4300 }
4301 
4302 /* Take a lifetime message (sadb_lifetime) passed in on a socket and
4303  * turn it into one of the kernel's lifetime structures (seclifetime).
4304  *
4305  * IN: pointer to the destination, source and malloc type
4306  * OUT: NULL, no more memory
4307  */
4308 
4309 static struct seclifetime *
key_dup_lifemsg(const struct sadb_lifetime * src,struct malloc_type * type)4310 key_dup_lifemsg(const struct sadb_lifetime *src, struct malloc_type *type)
4311 {
4312 	struct seclifetime *dst;
4313 
4314 	dst = malloc(sizeof(*dst), type, M_NOWAIT);
4315 	if (dst == NULL) {
4316 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
4317 		return (NULL);
4318 	}
4319 	dst->allocations = src->sadb_lifetime_allocations;
4320 	dst->bytes = src->sadb_lifetime_bytes;
4321 	dst->addtime = src->sadb_lifetime_addtime;
4322 	dst->usetime = src->sadb_lifetime_usetime;
4323 	return (dst);
4324 }
4325 
4326 /*
4327  * compare two secasindex structure.
4328  * flag can specify to compare 2 saidxes.
4329  * compare two secasindex structure without both mode and reqid.
4330  * don't compare port.
4331  * IN:
4332  *      saidx0: source, it can be in SAD.
4333  *      saidx1: object.
4334  * OUT:
4335  *      1 : equal
4336  *      0 : not equal
4337  */
4338 static int
key_cmpsaidx(const struct secasindex * saidx0,const struct secasindex * saidx1,int flag)4339 key_cmpsaidx(const struct secasindex *saidx0, const struct secasindex *saidx1,
4340     int flag)
4341 {
4342 
4343 	/* sanity */
4344 	if (saidx0 == NULL && saidx1 == NULL)
4345 		return 1;
4346 
4347 	if (saidx0 == NULL || saidx1 == NULL)
4348 		return 0;
4349 
4350 	if (saidx0->proto != saidx1->proto)
4351 		return 0;
4352 
4353 	if (flag == CMP_EXACTLY) {
4354 		if (saidx0->mode != saidx1->mode)
4355 			return 0;
4356 		if (saidx0->reqid != saidx1->reqid)
4357 			return 0;
4358 		if (bcmp(&saidx0->src, &saidx1->src,
4359 		    saidx0->src.sa.sa_len) != 0 ||
4360 		    bcmp(&saidx0->dst, &saidx1->dst,
4361 		    saidx0->dst.sa.sa_len) != 0)
4362 			return 0;
4363 	} else {
4364 		/* CMP_MODE_REQID, CMP_REQID, CMP_HEAD */
4365 		if (flag == CMP_MODE_REQID || flag == CMP_REQID) {
4366 			/*
4367 			 * If reqid of SPD is non-zero, unique SA is required.
4368 			 * The result must be of same reqid in this case.
4369 			 */
4370 			if (saidx1->reqid != 0 &&
4371 			    saidx0->reqid != saidx1->reqid)
4372 				return 0;
4373 		}
4374 
4375 		if (flag == CMP_MODE_REQID) {
4376 			if (saidx0->mode != IPSEC_MODE_ANY
4377 			 && saidx0->mode != saidx1->mode)
4378 				return 0;
4379 		}
4380 
4381 		if (key_sockaddrcmp(&saidx0->src.sa, &saidx1->src.sa, 0) != 0)
4382 			return 0;
4383 		if (key_sockaddrcmp(&saidx0->dst.sa, &saidx1->dst.sa, 0) != 0)
4384 			return 0;
4385 	}
4386 
4387 	return 1;
4388 }
4389 
4390 /*
4391  * compare two secindex structure exactly.
4392  * IN:
4393  *	spidx0: source, it is often in SPD.
4394  *	spidx1: object, it is often from PFKEY message.
4395  * OUT:
4396  *	1 : equal
4397  *	0 : not equal
4398  */
4399 static int
key_cmpspidx_exactly(struct secpolicyindex * spidx0,struct secpolicyindex * spidx1)4400 key_cmpspidx_exactly(struct secpolicyindex *spidx0,
4401     struct secpolicyindex *spidx1)
4402 {
4403 	/* sanity */
4404 	if (spidx0 == NULL && spidx1 == NULL)
4405 		return 1;
4406 
4407 	if (spidx0 == NULL || spidx1 == NULL)
4408 		return 0;
4409 
4410 	if (spidx0->prefs != spidx1->prefs
4411 	 || spidx0->prefd != spidx1->prefd
4412 	 || spidx0->ul_proto != spidx1->ul_proto
4413 	 || spidx0->dir != spidx1->dir)
4414 		return 0;
4415 
4416 	return key_sockaddrcmp(&spidx0->src.sa, &spidx1->src.sa, 1) == 0 &&
4417 	       key_sockaddrcmp(&spidx0->dst.sa, &spidx1->dst.sa, 1) == 0;
4418 }
4419 
4420 /*
4421  * compare two secindex structure with mask.
4422  * IN:
4423  *	spidx0: source, it is often in SPD.
4424  *	spidx1: object, it is often from IP header.
4425  * OUT:
4426  *	1 : equal
4427  *	0 : not equal
4428  */
4429 static int
key_cmpspidx_withmask(struct secpolicyindex * spidx0,struct secpolicyindex * spidx1)4430 key_cmpspidx_withmask(struct secpolicyindex *spidx0,
4431     struct secpolicyindex *spidx1)
4432 {
4433 	/* sanity */
4434 	if (spidx0 == NULL && spidx1 == NULL)
4435 		return 1;
4436 
4437 	if (spidx0 == NULL || spidx1 == NULL)
4438 		return 0;
4439 
4440 	if (spidx0->src.sa.sa_family != spidx1->src.sa.sa_family ||
4441 	    spidx0->dst.sa.sa_family != spidx1->dst.sa.sa_family ||
4442 	    spidx0->src.sa.sa_len != spidx1->src.sa.sa_len ||
4443 	    spidx0->dst.sa.sa_len != spidx1->dst.sa.sa_len)
4444 		return 0;
4445 
4446 	/* if spidx.ul_proto == IPSEC_ULPROTO_ANY, ignore. */
4447 	if (spidx0->ul_proto != (u_int16_t)IPSEC_ULPROTO_ANY
4448 	 && spidx0->ul_proto != spidx1->ul_proto)
4449 		return 0;
4450 
4451 	switch (spidx0->src.sa.sa_family) {
4452 	case AF_INET:
4453 		if (spidx0->src.sin.sin_port != IPSEC_PORT_ANY
4454 		 && spidx0->src.sin.sin_port != spidx1->src.sin.sin_port)
4455 			return 0;
4456 		if (!key_bbcmp(&spidx0->src.sin.sin_addr,
4457 		    &spidx1->src.sin.sin_addr, spidx0->prefs))
4458 			return 0;
4459 		break;
4460 	case AF_INET6:
4461 		if (spidx0->src.sin6.sin6_port != IPSEC_PORT_ANY
4462 		 && spidx0->src.sin6.sin6_port != spidx1->src.sin6.sin6_port)
4463 			return 0;
4464 		/*
4465 		 * scope_id check. if sin6_scope_id is 0, we regard it
4466 		 * as a wildcard scope, which matches any scope zone ID.
4467 		 */
4468 		if (spidx0->src.sin6.sin6_scope_id &&
4469 		    spidx1->src.sin6.sin6_scope_id &&
4470 		    spidx0->src.sin6.sin6_scope_id != spidx1->src.sin6.sin6_scope_id)
4471 			return 0;
4472 		if (!key_bbcmp(&spidx0->src.sin6.sin6_addr,
4473 		    &spidx1->src.sin6.sin6_addr, spidx0->prefs))
4474 			return 0;
4475 		break;
4476 	default:
4477 		/* XXX */
4478 		if (bcmp(&spidx0->src, &spidx1->src, spidx0->src.sa.sa_len) != 0)
4479 			return 0;
4480 		break;
4481 	}
4482 
4483 	switch (spidx0->dst.sa.sa_family) {
4484 	case AF_INET:
4485 		if (spidx0->dst.sin.sin_port != IPSEC_PORT_ANY
4486 		 && spidx0->dst.sin.sin_port != spidx1->dst.sin.sin_port)
4487 			return 0;
4488 		if (!key_bbcmp(&spidx0->dst.sin.sin_addr,
4489 		    &spidx1->dst.sin.sin_addr, spidx0->prefd))
4490 			return 0;
4491 		break;
4492 	case AF_INET6:
4493 		if (spidx0->dst.sin6.sin6_port != IPSEC_PORT_ANY
4494 		 && spidx0->dst.sin6.sin6_port != spidx1->dst.sin6.sin6_port)
4495 			return 0;
4496 		/*
4497 		 * scope_id check. if sin6_scope_id is 0, we regard it
4498 		 * as a wildcard scope, which matches any scope zone ID.
4499 		 */
4500 		if (spidx0->dst.sin6.sin6_scope_id &&
4501 		    spidx1->dst.sin6.sin6_scope_id &&
4502 		    spidx0->dst.sin6.sin6_scope_id != spidx1->dst.sin6.sin6_scope_id)
4503 			return 0;
4504 		if (!key_bbcmp(&spidx0->dst.sin6.sin6_addr,
4505 		    &spidx1->dst.sin6.sin6_addr, spidx0->prefd))
4506 			return 0;
4507 		break;
4508 	default:
4509 		/* XXX */
4510 		if (bcmp(&spidx0->dst, &spidx1->dst, spidx0->dst.sa.sa_len) != 0)
4511 			return 0;
4512 		break;
4513 	}
4514 
4515 	/* XXX Do we check other field ?  e.g. flowinfo */
4516 
4517 	return 1;
4518 }
4519 
4520 #ifdef satosin
4521 #undef satosin
4522 #endif
4523 #define satosin(s) ((const struct sockaddr_in *)s)
4524 #ifdef satosin6
4525 #undef satosin6
4526 #endif
4527 #define satosin6(s) ((const struct sockaddr_in6 *)s)
4528 /* returns 0 on match */
4529 int
key_sockaddrcmp(const struct sockaddr * sa1,const struct sockaddr * sa2,int port)4530 key_sockaddrcmp(const struct sockaddr *sa1, const struct sockaddr *sa2,
4531     int port)
4532 {
4533 	if (sa1->sa_family != sa2->sa_family || sa1->sa_len != sa2->sa_len)
4534 		return 1;
4535 
4536 	switch (sa1->sa_family) {
4537 #ifdef INET
4538 	case AF_INET:
4539 		if (sa1->sa_len != sizeof(struct sockaddr_in))
4540 			return 1;
4541 		if (satosin(sa1)->sin_addr.s_addr !=
4542 		    satosin(sa2)->sin_addr.s_addr) {
4543 			return 1;
4544 		}
4545 		if (port && satosin(sa1)->sin_port != satosin(sa2)->sin_port)
4546 			return 1;
4547 		break;
4548 #endif
4549 #ifdef INET6
4550 	case AF_INET6:
4551 		if (sa1->sa_len != sizeof(struct sockaddr_in6))
4552 			return 1;	/*EINVAL*/
4553 		if (satosin6(sa1)->sin6_scope_id !=
4554 		    satosin6(sa2)->sin6_scope_id) {
4555 			return 1;
4556 		}
4557 		if (!IN6_ARE_ADDR_EQUAL(&satosin6(sa1)->sin6_addr,
4558 		    &satosin6(sa2)->sin6_addr)) {
4559 			return 1;
4560 		}
4561 		if (port &&
4562 		    satosin6(sa1)->sin6_port != satosin6(sa2)->sin6_port) {
4563 			return 1;
4564 		}
4565 		break;
4566 #endif
4567 	default:
4568 		if (bcmp(sa1, sa2, sa1->sa_len) != 0)
4569 			return 1;
4570 		break;
4571 	}
4572 
4573 	return 0;
4574 }
4575 
4576 /* returns 0 on match */
4577 int
key_sockaddrcmp_withmask(const struct sockaddr * sa1,const struct sockaddr * sa2,size_t mask)4578 key_sockaddrcmp_withmask(const struct sockaddr *sa1,
4579     const struct sockaddr *sa2, size_t mask)
4580 {
4581 	if (sa1->sa_family != sa2->sa_family || sa1->sa_len != sa2->sa_len)
4582 		return (1);
4583 
4584 	switch (sa1->sa_family) {
4585 #ifdef INET
4586 	case AF_INET:
4587 		return (!key_bbcmp(&satosin(sa1)->sin_addr,
4588 		    &satosin(sa2)->sin_addr, mask));
4589 #endif
4590 #ifdef INET6
4591 	case AF_INET6:
4592 		if (satosin6(sa1)->sin6_scope_id !=
4593 		    satosin6(sa2)->sin6_scope_id)
4594 			return (1);
4595 		return (!key_bbcmp(&satosin6(sa1)->sin6_addr,
4596 		    &satosin6(sa2)->sin6_addr, mask));
4597 #endif
4598 	}
4599 	return (1);
4600 }
4601 #undef satosin
4602 #undef satosin6
4603 
4604 /*
4605  * compare two buffers with mask.
4606  * IN:
4607  *	addr1: source
4608  *	addr2: object
4609  *	bits:  Number of bits to compare
4610  * OUT:
4611  *	1 : equal
4612  *	0 : not equal
4613  */
4614 static int
key_bbcmp(const void * a1,const void * a2,u_int bits)4615 key_bbcmp(const void *a1, const void *a2, u_int bits)
4616 {
4617 	const unsigned char *p1 = a1;
4618 	const unsigned char *p2 = a2;
4619 
4620 	/* XXX: This could be considerably faster if we compare a word
4621 	 * at a time, but it is complicated on LSB Endian machines */
4622 
4623 	/* Handle null pointers */
4624 	if (p1 == NULL || p2 == NULL)
4625 		return (p1 == p2);
4626 
4627 	while (bits >= 8) {
4628 		if (*p1++ != *p2++)
4629 			return 0;
4630 		bits -= 8;
4631 	}
4632 
4633 	if (bits > 0) {
4634 		u_int8_t mask = ~((1<<(8-bits))-1);
4635 		if ((*p1 & mask) != (*p2 & mask))
4636 			return 0;
4637 	}
4638 	return 1;	/* Match! */
4639 }
4640 
4641 static void
key_flush_spd(time_t now)4642 key_flush_spd(time_t now)
4643 {
4644 	SPTREE_RLOCK_TRACKER;
4645 	struct secpolicy_list drainq;
4646 	struct secpolicy *sp, *nextsp;
4647 	u_int dir;
4648 
4649 	LIST_INIT(&drainq);
4650 	SPTREE_RLOCK();
4651 	for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
4652 		TAILQ_FOREACH(sp, &V_sptree[dir], chain) {
4653 			if (sp->lifetime == 0 && sp->validtime == 0)
4654 				continue;
4655 			if ((sp->lifetime &&
4656 			    now - sp->created > sp->lifetime) ||
4657 			    (sp->validtime &&
4658 			    now - sp->lastused > sp->validtime)) {
4659 				/* Hold extra reference to send SPDEXPIRE */
4660 				SP_ADDREF(sp);
4661 				LIST_INSERT_HEAD(&drainq, sp, drainq);
4662 			}
4663 		}
4664 	}
4665 	SPTREE_RUNLOCK();
4666 	if (LIST_EMPTY(&drainq))
4667 		return;
4668 
4669 	SPTREE_WLOCK();
4670 	sp = LIST_FIRST(&drainq);
4671 	while (sp != NULL) {
4672 		nextsp = LIST_NEXT(sp, drainq);
4673 		/* Check that SP is still linked */
4674 		if (sp->state != IPSEC_SPSTATE_ALIVE) {
4675 			LIST_REMOVE(sp, drainq);
4676 			key_freesp(&sp); /* release extra reference */
4677 			sp = nextsp;
4678 			continue;
4679 		}
4680 		TAILQ_REMOVE(&V_sptree[sp->spidx.dir], sp, chain);
4681 		V_spd_size--;
4682 		LIST_REMOVE(sp, idhash);
4683 		sp->state = IPSEC_SPSTATE_DEAD;
4684 		ipsec_accel_spddel(sp);
4685 		sp = nextsp;
4686 	}
4687 	V_sp_genid++;
4688 	SPTREE_WUNLOCK();
4689 	if (SPDCACHE_ENABLED())
4690 		spdcache_clear();
4691 
4692 	sp = LIST_FIRST(&drainq);
4693 	while (sp != NULL) {
4694 		nextsp = LIST_NEXT(sp, drainq);
4695 		key_spdexpire(sp);
4696 		key_freesp(&sp); /* release extra reference */
4697 		key_freesp(&sp); /* release last reference */
4698 		sp = nextsp;
4699 	}
4700 }
4701 
4702 static void
key_flush_sad(time_t now)4703 key_flush_sad(time_t now)
4704 {
4705 	SAHTREE_RLOCK_TRACKER;
4706 	struct secashead_list emptyq;
4707 	struct secasvar_list drainq, hexpireq, sexpireq, freeq;
4708 	struct secashead *sah, *nextsah;
4709 	struct secasvar *sav, *nextsav;
4710 
4711 	SECASVAR_RLOCK_TRACKER;
4712 
4713 	LIST_INIT(&drainq);
4714 	LIST_INIT(&hexpireq);
4715 	LIST_INIT(&sexpireq);
4716 	LIST_INIT(&emptyq);
4717 
4718 	SAHTREE_RLOCK();
4719 	TAILQ_FOREACH(sah, &V_sahtree, chain) {
4720 		/* Check for empty SAH */
4721 		if (TAILQ_EMPTY(&sah->savtree_larval) &&
4722 		    TAILQ_EMPTY(&sah->savtree_alive)) {
4723 			SAH_ADDREF(sah);
4724 			LIST_INSERT_HEAD(&emptyq, sah, drainq);
4725 			continue;
4726 		}
4727 		/* Add all stale LARVAL SAs into drainq */
4728 		TAILQ_FOREACH(sav, &sah->savtree_larval, chain) {
4729 			if (now - sav->created < V_key_larval_lifetime)
4730 				continue;
4731 			SAV_ADDREF(sav);
4732 			LIST_INSERT_HEAD(&drainq, sav, drainq);
4733 		}
4734 		TAILQ_FOREACH(sav, &sah->savtree_alive, chain) {
4735 			/* lifetimes aren't specified */
4736 			if (sav->lft_h == NULL)
4737 				continue;
4738 			SECASVAR_RLOCK(sav);
4739 			/*
4740 			 * Check again with lock held, because it may
4741 			 * be updated by SADB_UPDATE.
4742 			 */
4743 			if (sav->lft_h == NULL) {
4744 				SECASVAR_RUNLOCK(sav);
4745 				continue;
4746 			}
4747 			/*
4748 			 * RFC 2367:
4749 			 * HARD lifetimes MUST take precedence over SOFT
4750 			 * lifetimes, meaning if the HARD and SOFT lifetimes
4751 			 * are the same, the HARD lifetime will appear on the
4752 			 * EXPIRE message.
4753 			 */
4754 			/* check HARD lifetime */
4755 			if ((sav->lft_h->addtime != 0 &&
4756 			    now - sav->created > sav->lft_h->addtime) ||
4757 			    (sav->lft_h->usetime != 0 && sav->firstused &&
4758 			    now - sav->firstused > sav->lft_h->usetime) ||
4759 			    (sav->lft_h->bytes != 0 && counter_u64_fetch(
4760 			        sav->lft_c_bytes) > sav->lft_h->bytes)) {
4761 				SECASVAR_RUNLOCK(sav);
4762 				SAV_ADDREF(sav);
4763 				LIST_INSERT_HEAD(&hexpireq, sav, drainq);
4764 				continue;
4765 			}
4766 			/* check SOFT lifetime (only for MATURE SAs) */
4767 			if (sav->state == SADB_SASTATE_MATURE && (
4768 			    (sav->lft_s->addtime != 0 &&
4769 			    now - sav->created > sav->lft_s->addtime) ||
4770 			    (sav->lft_s->usetime != 0 && sav->firstused &&
4771 			    now - sav->firstused > sav->lft_s->usetime) ||
4772 			    (sav->lft_s->bytes != 0 && counter_u64_fetch(
4773 				sav->lft_c_bytes) > sav->lft_s->bytes) ||
4774 			    (!(sav->flags & SADB_X_SAFLAGS_ESN) &&
4775 			    (sav->replay != NULL) && (
4776 			    (sav->replay->count > UINT32_80PCT) ||
4777 			    (sav->replay->last > UINT32_80PCT))))) {
4778 				SECASVAR_RUNLOCK(sav);
4779 				SAV_ADDREF(sav);
4780 				LIST_INSERT_HEAD(&sexpireq, sav, drainq);
4781 				continue;
4782 			}
4783 			SECASVAR_RUNLOCK(sav);
4784 		}
4785 	}
4786 	SAHTREE_RUNLOCK();
4787 
4788 	if (LIST_EMPTY(&emptyq) && LIST_EMPTY(&drainq) &&
4789 	    LIST_EMPTY(&hexpireq) && LIST_EMPTY(&sexpireq))
4790 		return;
4791 
4792 	LIST_INIT(&freeq);
4793 	SAHTREE_WLOCK();
4794 	/* Unlink stale LARVAL SAs */
4795 	sav = LIST_FIRST(&drainq);
4796 	while (sav != NULL) {
4797 		nextsav = LIST_NEXT(sav, drainq);
4798 		/* Check that SA is still LARVAL */
4799 		if (sav->state != SADB_SASTATE_LARVAL) {
4800 			LIST_REMOVE(sav, drainq);
4801 			LIST_INSERT_HEAD(&freeq, sav, drainq);
4802 			sav = nextsav;
4803 			continue;
4804 		}
4805 		TAILQ_REMOVE(&sav->sah->savtree_larval, sav, chain);
4806 		LIST_REMOVE(sav, spihash);
4807 		sav->state = SADB_SASTATE_DEAD;
4808 		ipsec_accel_forget_sav(sav);
4809 		sav = nextsav;
4810 	}
4811 	/* Unlink all SAs with expired HARD lifetime */
4812 	sav = LIST_FIRST(&hexpireq);
4813 	while (sav != NULL) {
4814 		nextsav = LIST_NEXT(sav, drainq);
4815 		/* Check that SA is not unlinked */
4816 		if (sav->state == SADB_SASTATE_DEAD) {
4817 			LIST_REMOVE(sav, drainq);
4818 			LIST_INSERT_HEAD(&freeq, sav, drainq);
4819 			sav = nextsav;
4820 			continue;
4821 		}
4822 		TAILQ_REMOVE(&sav->sah->savtree_alive, sav, chain);
4823 		LIST_REMOVE(sav, spihash);
4824 		sav->state = SADB_SASTATE_DEAD;
4825 		ipsec_accel_forget_sav(sav);
4826 		sav = nextsav;
4827 	}
4828 	/* Mark all SAs with expired SOFT lifetime as DYING */
4829 	sav = LIST_FIRST(&sexpireq);
4830 	while (sav != NULL) {
4831 		nextsav = LIST_NEXT(sav, drainq);
4832 		/* Check that SA is not unlinked */
4833 		if (sav->state == SADB_SASTATE_DEAD) {
4834 			LIST_REMOVE(sav, drainq);
4835 			LIST_INSERT_HEAD(&freeq, sav, drainq);
4836 			sav = nextsav;
4837 			continue;
4838 		}
4839 		/*
4840 		 * NOTE: this doesn't change SA order in the chain.
4841 		 */
4842 		sav->state = SADB_SASTATE_DYING;
4843 		sav = nextsav;
4844 	}
4845 	/* Unlink empty SAHs */
4846 	sah = LIST_FIRST(&emptyq);
4847 	while (sah != NULL) {
4848 		nextsah = LIST_NEXT(sah, drainq);
4849 		/* Check that SAH is still empty and not unlinked */
4850 		if (sah->state == SADB_SASTATE_DEAD ||
4851 		    !TAILQ_EMPTY(&sah->savtree_larval) ||
4852 		    !TAILQ_EMPTY(&sah->savtree_alive)) {
4853 			LIST_REMOVE(sah, drainq);
4854 			key_freesah(&sah); /* release extra reference */
4855 			sah = nextsah;
4856 			continue;
4857 		}
4858 		TAILQ_REMOVE(&V_sahtree, sah, chain);
4859 		LIST_REMOVE(sah, addrhash);
4860 		sah->state = SADB_SASTATE_DEAD;
4861 		sah = nextsah;
4862 	}
4863 	SAHTREE_WUNLOCK();
4864 
4865 	/* Send SPDEXPIRE messages */
4866 	sav = LIST_FIRST(&hexpireq);
4867 	while (sav != NULL) {
4868 		nextsav = LIST_NEXT(sav, drainq);
4869 		key_expire(sav, 1);
4870 		key_freesah(&sav->sah); /* release reference from SAV */
4871 		key_freesav(&sav); /* release extra reference */
4872 		key_freesav(&sav); /* release last reference */
4873 		sav = nextsav;
4874 	}
4875 	sav = LIST_FIRST(&sexpireq);
4876 	while (sav != NULL) {
4877 		nextsav = LIST_NEXT(sav, drainq);
4878 		key_expire(sav, 0);
4879 		key_freesav(&sav); /* release extra reference */
4880 		sav = nextsav;
4881 	}
4882 	/* Free stale LARVAL SAs */
4883 	sav = LIST_FIRST(&drainq);
4884 	while (sav != NULL) {
4885 		nextsav = LIST_NEXT(sav, drainq);
4886 		key_freesah(&sav->sah); /* release reference from SAV */
4887 		key_freesav(&sav); /* release extra reference */
4888 		key_freesav(&sav); /* release last reference */
4889 		sav = nextsav;
4890 	}
4891 	/* Free SAs that were unlinked/changed by someone else */
4892 	sav = LIST_FIRST(&freeq);
4893 	while (sav != NULL) {
4894 		nextsav = LIST_NEXT(sav, drainq);
4895 		key_freesav(&sav); /* release extra reference */
4896 		sav = nextsav;
4897 	}
4898 	/* Free empty SAH */
4899 	sah = LIST_FIRST(&emptyq);
4900 	while (sah != NULL) {
4901 		nextsah = LIST_NEXT(sah, drainq);
4902 		key_freesah(&sah); /* release extra reference */
4903 		key_freesah(&sah); /* release last reference */
4904 		sah = nextsah;
4905 	}
4906 }
4907 
4908 static void
key_flush_acq(time_t now)4909 key_flush_acq(time_t now)
4910 {
4911 	struct secacq *acq, *nextacq;
4912 
4913 	/* ACQ tree */
4914 	ACQ_LOCK();
4915 	acq = LIST_FIRST(&V_acqtree);
4916 	while (acq != NULL) {
4917 		nextacq = LIST_NEXT(acq, chain);
4918 		if (now - acq->created > V_key_blockacq_lifetime) {
4919 			LIST_REMOVE(acq, chain);
4920 			LIST_REMOVE(acq, addrhash);
4921 			LIST_REMOVE(acq, seqhash);
4922 			free(acq, M_IPSEC_SAQ);
4923 		}
4924 		acq = nextacq;
4925 	}
4926 	ACQ_UNLOCK();
4927 }
4928 
4929 static void
key_flush_spacq(time_t now)4930 key_flush_spacq(time_t now)
4931 {
4932 	struct secspacq *acq, *nextacq;
4933 
4934 	/* SP ACQ tree */
4935 	SPACQ_LOCK();
4936 	for (acq = LIST_FIRST(&V_spacqtree); acq != NULL; acq = nextacq) {
4937 		nextacq = LIST_NEXT(acq, chain);
4938 		if (now - acq->created > V_key_blockacq_lifetime
4939 		 && __LIST_CHAINED(acq)) {
4940 			LIST_REMOVE(acq, chain);
4941 			free(acq, M_IPSEC_SAQ);
4942 		}
4943 	}
4944 	SPACQ_UNLOCK();
4945 }
4946 
4947 /*
4948  * time handler.
4949  * scanning SPD and SAD to check status for each entries,
4950  * and do to remove or to expire.
4951  * XXX: year 2038 problem may remain.
4952  */
4953 static void
key_timehandler(void * arg)4954 key_timehandler(void *arg)
4955 {
4956 	VNET_ITERATOR_DECL(vnet_iter);
4957 	time_t now = time_second;
4958 
4959 	VNET_LIST_RLOCK_NOSLEEP();
4960 	VNET_FOREACH(vnet_iter) {
4961 		CURVNET_SET(vnet_iter);
4962 		key_flush_spd(now);
4963 		key_flush_sad(now);
4964 		key_flush_acq(now);
4965 		key_flush_spacq(now);
4966 		CURVNET_RESTORE();
4967 	}
4968 	VNET_LIST_RUNLOCK_NOSLEEP();
4969 
4970 #ifndef IPSEC_DEBUG2
4971 	/* do exchange to tick time !! */
4972 	callout_schedule(&key_timer, hz);
4973 #endif /* IPSEC_DEBUG2 */
4974 }
4975 
4976 u_long
key_random(void)4977 key_random(void)
4978 {
4979 	u_long value;
4980 
4981 	arc4random_buf(&value, sizeof(value));
4982 	return value;
4983 }
4984 
4985 /*
4986  * map SADB_SATYPE_* to IPPROTO_*.
4987  * if satype == SADB_SATYPE then satype is mapped to ~0.
4988  * OUT:
4989  *	0: invalid satype.
4990  */
4991 static uint8_t
key_satype2proto(uint8_t satype)4992 key_satype2proto(uint8_t satype)
4993 {
4994 	switch (satype) {
4995 	case SADB_SATYPE_UNSPEC:
4996 		return IPSEC_PROTO_ANY;
4997 	case SADB_SATYPE_AH:
4998 		return IPPROTO_AH;
4999 	case SADB_SATYPE_ESP:
5000 		return IPPROTO_ESP;
5001 	case SADB_X_SATYPE_IPCOMP:
5002 		return IPPROTO_IPCOMP;
5003 	case SADB_X_SATYPE_TCPSIGNATURE:
5004 		return IPPROTO_TCP;
5005 	default:
5006 		return 0;
5007 	}
5008 	/* NOTREACHED */
5009 }
5010 
5011 /*
5012  * map IPPROTO_* to SADB_SATYPE_*
5013  * OUT:
5014  *	0: invalid protocol type.
5015  */
5016 static uint8_t
key_proto2satype(uint8_t proto)5017 key_proto2satype(uint8_t proto)
5018 {
5019 	switch (proto) {
5020 	case IPPROTO_AH:
5021 		return SADB_SATYPE_AH;
5022 	case IPPROTO_ESP:
5023 		return SADB_SATYPE_ESP;
5024 	case IPPROTO_IPCOMP:
5025 		return SADB_X_SATYPE_IPCOMP;
5026 	case IPPROTO_TCP:
5027 		return SADB_X_SATYPE_TCPSIGNATURE;
5028 	default:
5029 		return 0;
5030 	}
5031 	/* NOTREACHED */
5032 }
5033 
5034 /* %%% PF_KEY */
5035 /*
5036  * SADB_GETSPI processing is to receive
5037  *	<base, (SA2), src address, dst address, (SPI range)>
5038  * from the IKMPd, to assign a unique spi value, to hang on the INBOUND
5039  * tree with the status of LARVAL, and send
5040  *	<base, SA(*), address(SD)>
5041  * to the IKMPd.
5042  *
5043  * IN:	mhp: pointer to the pointer to each header.
5044  * OUT:	NULL if fail.
5045  *	other if success, return pointer to the message to send.
5046  */
5047 static int
key_getspi(struct socket * so,struct mbuf * m,const struct sadb_msghdr * mhp)5048 key_getspi(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
5049 {
5050 	struct secasindex saidx;
5051 	struct sadb_address *src0, *dst0;
5052 	struct secasvar *sav;
5053 	uint32_t reqid, spi;
5054 	int error;
5055 	uint8_t mode, proto;
5056 
5057 	IPSEC_ASSERT(so != NULL, ("null socket"));
5058 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
5059 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
5060 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
5061 
5062 	if (SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_SRC) ||
5063 	    SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_DST)
5064 #ifdef PFKEY_STRICT_CHECKS
5065 	    || SADB_CHECKHDR(mhp, SADB_EXT_SPIRANGE)
5066 #endif
5067 	    ) {
5068 		ipseclog((LOG_DEBUG,
5069 		    "%s: invalid message: missing required header.\n",
5070 		    __func__));
5071 		error = EINVAL;
5072 		goto fail;
5073 	}
5074 	if (SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_SRC) ||
5075 	    SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_DST)
5076 #ifdef PFKEY_STRICT_CHECKS
5077 	    || SADB_CHECKLEN(mhp, SADB_EXT_SPIRANGE)
5078 #endif
5079 	    ) {
5080 		ipseclog((LOG_DEBUG,
5081 		    "%s: invalid message: wrong header size.\n", __func__));
5082 		error = EINVAL;
5083 		goto fail;
5084 	}
5085 	if (SADB_CHECKHDR(mhp, SADB_X_EXT_SA2)) {
5086 		mode = IPSEC_MODE_ANY;
5087 		reqid = 0;
5088 	} else {
5089 		if (SADB_CHECKLEN(mhp, SADB_X_EXT_SA2)) {
5090 			ipseclog((LOG_DEBUG,
5091 			    "%s: invalid message: wrong header size.\n",
5092 			    __func__));
5093 			error = EINVAL;
5094 			goto fail;
5095 		}
5096 		mode = ((struct sadb_x_sa2 *)
5097 		    mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
5098 		reqid = ((struct sadb_x_sa2 *)
5099 		    mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
5100 	}
5101 
5102 	src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
5103 	dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
5104 
5105 	/* map satype to proto */
5106 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
5107 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
5108 			__func__));
5109 		error = EINVAL;
5110 		goto fail;
5111 	}
5112 	error = key_checksockaddrs((struct sockaddr *)(src0 + 1),
5113 	    (struct sockaddr *)(dst0 + 1));
5114 	if (error != 0) {
5115 		ipseclog((LOG_DEBUG, "%s: invalid sockaddr.\n", __func__));
5116 		error = EINVAL;
5117 		goto fail;
5118 	}
5119 	KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx);
5120 
5121 	/* SPI allocation */
5122 	SPI_ALLOC_LOCK();
5123 	spi = key_do_getnewspi(
5124 	    (struct sadb_spirange *)mhp->ext[SADB_EXT_SPIRANGE], &saidx);
5125 	if (spi == 0) {
5126 		/*
5127 		 * Requested SPI or SPI range is not available or
5128 		 * already used.
5129 		 */
5130 		SPI_ALLOC_UNLOCK();
5131 		error = EEXIST;
5132 		goto fail;
5133 	}
5134 	sav = key_newsav(mhp, &saidx, spi, &error);
5135 	SPI_ALLOC_UNLOCK();
5136 	if (sav == NULL)
5137 		goto fail;
5138 
5139 	if (sav->seq != 0) {
5140 		/*
5141 		 * RFC2367:
5142 		 * If the SADB_GETSPI message is in response to a
5143 		 * kernel-generated SADB_ACQUIRE, the sadb_msg_seq
5144 		 * MUST be the same as the SADB_ACQUIRE message.
5145 		 *
5146 		 * XXXAE: However it doesn't definethe behaviour how to
5147 		 * check this and what to do if it doesn't match.
5148 		 * Also what we should do if it matches?
5149 		 *
5150 		 * We can compare saidx used in SADB_ACQUIRE with saidx
5151 		 * used in SADB_GETSPI, but this probably can break
5152 		 * existing software. For now just warn if it doesn't match.
5153 		 *
5154 		 * XXXAE: anyway it looks useless.
5155 		 */
5156 		key_acqdone(&saidx, sav->seq);
5157 	}
5158 	KEYDBG(KEY_STAMP,
5159 	    printf("%s: SA(%p)\n", __func__, sav));
5160 	KEYDBG(KEY_DATA, kdebug_secasv(sav));
5161 
5162     {
5163 	struct mbuf *n, *nn;
5164 	struct sadb_sa *m_sa;
5165 	struct sadb_msg *newmsg;
5166 	int off, len;
5167 
5168 	/* create new sadb_msg to reply. */
5169 	len = PFKEY_ALIGN8(sizeof(struct sadb_msg)) +
5170 	    PFKEY_ALIGN8(sizeof(struct sadb_sa));
5171 
5172 	n = key_mget(len);
5173 	if (n == NULL) {
5174 		error = ENOBUFS;
5175 		goto fail;
5176 	}
5177 
5178 	n->m_len = len;
5179 	n->m_next = NULL;
5180 	off = 0;
5181 
5182 	m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off);
5183 	off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
5184 
5185 	m_sa = (struct sadb_sa *)(mtod(n, caddr_t) + off);
5186 	m_sa->sadb_sa_len = PFKEY_UNIT64(sizeof(struct sadb_sa));
5187 	m_sa->sadb_sa_exttype = SADB_EXT_SA;
5188 	m_sa->sadb_sa_spi = spi; /* SPI is already in network byte order */
5189 	off += PFKEY_ALIGN8(sizeof(struct sadb_sa));
5190 
5191 	IPSEC_ASSERT(off == len,
5192 		("length inconsistency (off %u len %u)", off, len));
5193 
5194 	n->m_next = key_gather_mbuf(m, mhp, 0, 2, SADB_EXT_ADDRESS_SRC,
5195 	    SADB_EXT_ADDRESS_DST);
5196 	if (!n->m_next) {
5197 		m_freem(n);
5198 		error = ENOBUFS;
5199 		goto fail;
5200 	}
5201 
5202 	if (n->m_len < sizeof(struct sadb_msg)) {
5203 		n = m_pullup(n, sizeof(struct sadb_msg));
5204 		if (n == NULL)
5205 			return key_sendup_mbuf(so, m, KEY_SENDUP_ONE);
5206 	}
5207 
5208 	n->m_pkthdr.len = 0;
5209 	for (nn = n; nn; nn = nn->m_next)
5210 		n->m_pkthdr.len += nn->m_len;
5211 
5212 	newmsg = mtod(n, struct sadb_msg *);
5213 	newmsg->sadb_msg_seq = sav->seq;
5214 	newmsg->sadb_msg_errno = 0;
5215 	newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
5216 
5217 	m_freem(m);
5218 	return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
5219     }
5220 
5221 fail:
5222 	return (key_senderror(so, m, error));
5223 }
5224 
5225 /*
5226  * allocating new SPI
5227  * called by key_getspi().
5228  * OUT:
5229  *	0:	failure.
5230  *	others: success, SPI in network byte order.
5231  */
5232 static uint32_t
key_do_getnewspi(struct sadb_spirange * spirange,struct secasindex * saidx)5233 key_do_getnewspi(struct sadb_spirange *spirange, struct secasindex *saidx)
5234 {
5235 	uint32_t min, max, newspi, t;
5236 	int tries, limit;
5237 
5238 	SPI_ALLOC_LOCK_ASSERT();
5239 
5240 	/* set spi range to allocate */
5241 	if (spirange != NULL) {
5242 		min = spirange->sadb_spirange_min;
5243 		max = spirange->sadb_spirange_max;
5244 	} else {
5245 		min = V_key_spi_minval;
5246 		max = V_key_spi_maxval;
5247 	}
5248 	/* IPCOMP needs 2-byte SPI */
5249 	if (saidx->proto == IPPROTO_IPCOMP) {
5250 		if (min >= 0x10000)
5251 			min = 0xffff;
5252 		if (max >= 0x10000)
5253 			max = 0xffff;
5254 		if (min > max) {
5255 			t = min; min = max; max = t;
5256 		}
5257 	}
5258 
5259 	if (min == max) {
5260 		if (key_checkspidup(htonl(min))) {
5261 			ipseclog((LOG_DEBUG, "%s: SPI %u exists already.\n",
5262 			    __func__, min));
5263 			return 0;
5264 		}
5265 
5266 		tries = 1;
5267 		newspi = min;
5268 	} else {
5269 		/* init SPI */
5270 		newspi = 0;
5271 
5272 		limit = atomic_load_int(&V_key_spi_trycnt);
5273 		/* when requesting to allocate spi ranged */
5274 		for (tries = 0; tries < limit; tries++) {
5275 			/* generate pseudo-random SPI value ranged. */
5276 			newspi = min + (key_random() % (max - min + 1));
5277 			if (!key_checkspidup(htonl(newspi)))
5278 				break;
5279 		}
5280 
5281 		if (tries == limit || newspi == 0) {
5282 			ipseclog((LOG_DEBUG,
5283 			    "%s: failed to allocate SPI.\n", __func__));
5284 			return 0;
5285 		}
5286 	}
5287 
5288 	/* statistics */
5289 	keystat.getspi_count =
5290 	    (keystat.getspi_count + tries) / 2;
5291 
5292 	return (htonl(newspi));
5293 }
5294 
5295 /*
5296  * Find TCP-MD5 SA with corresponding secasindex.
5297  * If not found, return NULL and fill SPI with usable value if needed.
5298  */
5299 static struct secasvar *
key_getsav_tcpmd5(struct secasindex * saidx,uint32_t * spi)5300 key_getsav_tcpmd5(struct secasindex *saidx, uint32_t *spi)
5301 {
5302 	SAHTREE_RLOCK_TRACKER;
5303 	struct secashead *sah;
5304 	struct secasvar *sav;
5305 
5306 	IPSEC_ASSERT(saidx->proto == IPPROTO_TCP, ("wrong proto"));
5307 	SAHTREE_RLOCK();
5308 	LIST_FOREACH(sah, SAHADDRHASH_HASH(saidx), addrhash) {
5309 		if (sah->saidx.proto != IPPROTO_TCP)
5310 			continue;
5311 		if (!key_sockaddrcmp(&saidx->dst.sa, &sah->saidx.dst.sa, 0) &&
5312 		    !key_sockaddrcmp(&saidx->src.sa, &sah->saidx.src.sa, 0))
5313 			break;
5314 	}
5315 	if (sah != NULL) {
5316 		if (V_key_preferred_oldsa)
5317 			sav = TAILQ_LAST(&sah->savtree_alive, secasvar_queue);
5318 		else
5319 			sav = TAILQ_FIRST(&sah->savtree_alive);
5320 		if (sav != NULL) {
5321 			SAV_ADDREF(sav);
5322 			SAHTREE_RUNLOCK();
5323 			return (sav);
5324 		}
5325 	}
5326 	if (spi == NULL) {
5327 		/* No SPI required */
5328 		SAHTREE_RUNLOCK();
5329 		return (NULL);
5330 	}
5331 	/* Check that SPI is unique */
5332 	LIST_FOREACH(sav, SAVHASH_HASH(*spi), spihash) {
5333 		if (sav->spi == *spi)
5334 			break;
5335 	}
5336 	if (sav == NULL) {
5337 		SAHTREE_RUNLOCK();
5338 		/* SPI is already unique */
5339 		return (NULL);
5340 	}
5341 	SAHTREE_RUNLOCK();
5342 	/* XXX: not optimal */
5343 	*spi = key_do_getnewspi(NULL, saidx);
5344 	return (NULL);
5345 }
5346 
5347 static int
key_updateaddresses(struct socket * so,struct mbuf * m,const struct sadb_msghdr * mhp,struct secasvar * sav,struct secasindex * saidx)5348 key_updateaddresses(struct socket *so, struct mbuf *m,
5349     const struct sadb_msghdr *mhp, struct secasvar *sav,
5350     struct secasindex *saidx)
5351 {
5352 	struct sockaddr *newaddr;
5353 	struct secashead *sah;
5354 	struct secasvar *newsav, *tmp;
5355 	struct mbuf *n;
5356 	int error, isnew;
5357 
5358 	/* Check that we need to change SAH */
5359 	if (!SADB_CHECKHDR(mhp, SADB_X_EXT_NEW_ADDRESS_SRC)) {
5360 		newaddr = (struct sockaddr *)(
5361 		    ((struct sadb_address *)
5362 		    mhp->ext[SADB_X_EXT_NEW_ADDRESS_SRC]) + 1);
5363 		bcopy(newaddr, &saidx->src, newaddr->sa_len);
5364 		key_porttosaddr(&saidx->src.sa, 0);
5365 	}
5366 	if (!SADB_CHECKHDR(mhp, SADB_X_EXT_NEW_ADDRESS_DST)) {
5367 		newaddr = (struct sockaddr *)(
5368 		    ((struct sadb_address *)
5369 		    mhp->ext[SADB_X_EXT_NEW_ADDRESS_DST]) + 1);
5370 		bcopy(newaddr, &saidx->dst, newaddr->sa_len);
5371 		key_porttosaddr(&saidx->dst.sa, 0);
5372 	}
5373 	if (!SADB_CHECKHDR(mhp, SADB_X_EXT_NEW_ADDRESS_SRC) ||
5374 	    !SADB_CHECKHDR(mhp, SADB_X_EXT_NEW_ADDRESS_DST)) {
5375 		error = key_checksockaddrs(&saidx->src.sa, &saidx->dst.sa);
5376 		if (error != 0) {
5377 			ipseclog((LOG_DEBUG, "%s: invalid new sockaddr.\n",
5378 			    __func__));
5379 			return (error);
5380 		}
5381 
5382 		sah = key_getsah(saidx);
5383 		if (sah == NULL) {
5384 			/* create a new SA index */
5385 			sah = key_newsah(saidx);
5386 			if (sah == NULL) {
5387 				ipseclog((LOG_DEBUG,
5388 				    "%s: No more memory.\n", __func__));
5389 				return (ENOBUFS);
5390 			}
5391 			isnew = 2; /* SAH is new */
5392 		} else
5393 			isnew = 1; /* existing SAH is referenced */
5394 	} else {
5395 		/*
5396 		 * src and dst addresses are still the same.
5397 		 * Do we want to change NAT-T config?
5398 		 */
5399 		if (sav->sah->saidx.proto != IPPROTO_ESP ||
5400 		    SADB_CHECKHDR(mhp, SADB_X_EXT_NAT_T_TYPE) ||
5401 		    SADB_CHECKHDR(mhp, SADB_X_EXT_NAT_T_SPORT) ||
5402 		    SADB_CHECKHDR(mhp, SADB_X_EXT_NAT_T_DPORT)) {
5403 			ipseclog((LOG_DEBUG,
5404 			    "%s: invalid message: missing required header.\n",
5405 			    __func__));
5406 			return (EINVAL);
5407 		}
5408 		/* We hold reference to SA, thus SAH will be referenced too. */
5409 		sah = sav->sah;
5410 		isnew = 0;
5411 	}
5412 
5413 	newsav = malloc(sizeof(struct secasvar), M_IPSEC_SA,
5414 	    M_NOWAIT | M_ZERO);
5415 	if (newsav == NULL) {
5416 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
5417 		error = ENOBUFS;
5418 		goto fail;
5419 	}
5420 
5421 	/* Clone SA's content into newsav */
5422 	SAV_INITREF(newsav);
5423 	bcopy(sav, newsav, offsetof(struct secasvar, chain));
5424 #ifdef IPSEC_OFFLOAD
5425 	CK_LIST_INIT(&newsav->accel_ifps);
5426 	newsav->accel_forget_tq = 0;
5427 	newsav->accel_lft_sw = uma_zalloc_pcpu(ipsec_key_lft_zone,
5428 	    M_NOWAIT | M_ZERO);
5429 	if (newsav->accel_lft_sw == NULL) {
5430 		error = ENOBUFS;
5431 		goto fail;
5432 	}
5433 	if (sav->accel_ifname != NULL) {
5434 		struct sadb_x_if_hw_offl xof;
5435 
5436 		newsav->accel_ifname = malloc(sizeof(xof.sadb_x_if_hw_offl_if),
5437 		    M_IPSEC_MISC, M_NOWAIT);
5438 		if (newsav->accel_ifname == NULL) {
5439 			error = ENOBUFS;
5440 			goto fail;
5441 		}
5442 		strncpy(__DECONST(char *, sav->accel_ifname),
5443 		    newsav->accel_ifname,
5444 		    sizeof(xof.sadb_x_if_hw_offl_if));
5445 	}
5446 #endif
5447 
5448 	/*
5449 	 * We create new NAT-T config if it is needed.
5450 	 * Old NAT-T config will be freed by key_cleansav() when
5451 	 * last reference to SA will be released.
5452 	 */
5453 	newsav->natt = NULL;
5454 	newsav->sah = sah;
5455 	newsav->state = SADB_SASTATE_MATURE;
5456 	error = key_setnatt(newsav, mhp);
5457 	if (error != 0)
5458 		goto fail;
5459 
5460 	SAHTREE_WLOCK();
5461 	/* Check that SA is still alive */
5462 	if (sav->state == SADB_SASTATE_DEAD) {
5463 		/* SA was unlinked */
5464 		SAHTREE_WUNLOCK();
5465 		error = ESRCH;
5466 		goto fail;
5467 	}
5468 
5469 	/* Unlink SA from SAH and SPI hash */
5470 	IPSEC_ASSERT((sav->flags & SADB_X_EXT_F_CLONED) == 0,
5471 	    ("SA is already cloned"));
5472 	IPSEC_ASSERT(sav->state == SADB_SASTATE_MATURE ||
5473 	    sav->state == SADB_SASTATE_DYING,
5474 	    ("Wrong SA state %u\n", sav->state));
5475 	TAILQ_REMOVE(&sav->sah->savtree_alive, sav, chain);
5476 	LIST_REMOVE(sav, spihash);
5477 	sav->state = SADB_SASTATE_DEAD;
5478 	ipsec_accel_forget_sav(sav);
5479 
5480 	/*
5481 	 * Link new SA with SAH. Keep SAs ordered by
5482 	 * create time (newer are first).
5483 	 */
5484 	TAILQ_FOREACH(tmp, &sah->savtree_alive, chain) {
5485 		if (newsav->created > tmp->created) {
5486 			TAILQ_INSERT_BEFORE(tmp, newsav, chain);
5487 			break;
5488 		}
5489 	}
5490 	if (tmp == NULL)
5491 		TAILQ_INSERT_TAIL(&sah->savtree_alive, newsav, chain);
5492 
5493 	/* Add new SA into SPI hash. */
5494 	LIST_INSERT_HEAD(SAVHASH_HASH(newsav->spi), newsav, spihash);
5495 
5496 	/* Add new SAH into SADB. */
5497 	if (isnew == 2) {
5498 		TAILQ_INSERT_HEAD(&V_sahtree, sah, chain);
5499 		LIST_INSERT_HEAD(SAHADDRHASH_HASH(saidx), sah, addrhash);
5500 		sah->state = SADB_SASTATE_MATURE;
5501 		SAH_ADDREF(sah); /* newsav references new SAH */
5502 	}
5503 	/*
5504 	 * isnew == 1 -> @sah was referenced by key_getsah().
5505 	 * isnew == 0 -> we use the same @sah, that was used by @sav,
5506 	 *	and we use its reference for @newsav.
5507 	 */
5508 	SECASVAR_WLOCK(sav);
5509 	/* XXX: replace cntr with pointer? */
5510 	newsav->cntr = sav->cntr;
5511 	sav->flags |= SADB_X_EXT_F_CLONED;
5512 	SECASVAR_WUNLOCK(sav);
5513 
5514 	SAHTREE_WUNLOCK();
5515 
5516 	KEYDBG(KEY_STAMP,
5517 	    printf("%s: SA(%p) cloned into SA(%p)\n",
5518 	    __func__, sav, newsav));
5519 	KEYDBG(KEY_DATA, kdebug_secasv(newsav));
5520 
5521 	key_freesav(&sav); /* release last reference */
5522 
5523 	/* set msg buf from mhp */
5524 	n = key_getmsgbuf_x1(m, mhp);
5525 	if (n == NULL) {
5526 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
5527 		return (ENOBUFS);
5528 	}
5529 	m_freem(m);
5530 	key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5531 	return (0);
5532 fail:
5533 	if (isnew != 0)
5534 		key_freesah(&sah);
5535 	if (newsav != NULL) {
5536 #ifdef IPSEC_OFFLOAD
5537 		uma_zfree_pcpu(ipsec_key_lft_zone, newsav->accel_lft_sw);
5538 		free(__DECONST(char *, newsav->accel_ifname), M_IPSEC_MISC);
5539 #endif
5540 		if (newsav->natt != NULL)
5541 			free(newsav->natt, M_IPSEC_MISC);
5542 		free(newsav, M_IPSEC_SA);
5543 	}
5544 	return (error);
5545 }
5546 
5547 /*
5548  * SADB_UPDATE processing
5549  * receive
5550  *   <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5551  *       key(AE), (identity(SD),) (sensitivity)>
5552  * from the ikmpd, and update a secasvar entry whose status is SADB_SASTATE_LARVAL.
5553  * and send
5554  *   <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5555  *       (identity(SD),) (sensitivity)>
5556  * to the ikmpd.
5557  *
5558  * m will always be freed.
5559  */
5560 static int
key_update(struct socket * so,struct mbuf * m,const struct sadb_msghdr * mhp)5561 key_update(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
5562 {
5563 	struct secasindex saidx;
5564 	struct sadb_address *src0, *dst0;
5565 	struct sadb_sa *sa0;
5566 	struct secasvar *sav;
5567 	uint32_t reqid;
5568 	int error;
5569 	uint8_t mode, proto;
5570 
5571 	IPSEC_ASSERT(so != NULL, ("null socket"));
5572 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
5573 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
5574 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
5575 
5576 	/* map satype to proto */
5577 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
5578 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
5579 		    __func__));
5580 		return key_senderror(so, m, EINVAL);
5581 	}
5582 
5583 	if (SADB_CHECKHDR(mhp, SADB_EXT_SA) ||
5584 	    SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_SRC) ||
5585 	    SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_DST) ||
5586 	    (SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_HARD) &&
5587 		!SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_SOFT)) ||
5588 	    (SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_SOFT) &&
5589 		!SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_HARD))) {
5590 		ipseclog((LOG_DEBUG,
5591 		    "%s: invalid message: missing required header.\n",
5592 		    __func__));
5593 		return key_senderror(so, m, EINVAL);
5594 	}
5595 	if (SADB_CHECKLEN(mhp, SADB_EXT_SA) ||
5596 	    SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_SRC) ||
5597 	    SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_DST)) {
5598 		ipseclog((LOG_DEBUG,
5599 		    "%s: invalid message: wrong header size.\n", __func__));
5600 		return key_senderror(so, m, EINVAL);
5601 	}
5602 	if (SADB_CHECKHDR(mhp, SADB_X_EXT_SA2)) {
5603 		mode = IPSEC_MODE_ANY;
5604 		reqid = 0;
5605 	} else {
5606 		if (SADB_CHECKLEN(mhp, SADB_X_EXT_SA2)) {
5607 			ipseclog((LOG_DEBUG,
5608 			    "%s: invalid message: wrong header size.\n",
5609 			    __func__));
5610 			return key_senderror(so, m, EINVAL);
5611 		}
5612 		mode = ((struct sadb_x_sa2 *)
5613 		    mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
5614 		reqid = ((struct sadb_x_sa2 *)
5615 		    mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
5616 	}
5617 
5618 	sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5619 	src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
5620 	dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
5621 
5622 	/*
5623 	 * Only SADB_SASTATE_MATURE SAs may be submitted in an
5624 	 * SADB_UPDATE message.
5625 	 */
5626 	if (sa0->sadb_sa_state != SADB_SASTATE_MATURE) {
5627 		ipseclog((LOG_DEBUG, "%s: invalid state.\n", __func__));
5628 #ifdef PFKEY_STRICT_CHECKS
5629 		return key_senderror(so, m, EINVAL);
5630 #endif
5631 	}
5632 	error = key_checksockaddrs((struct sockaddr *)(src0 + 1),
5633 	    (struct sockaddr *)(dst0 + 1));
5634 	if (error != 0) {
5635 		ipseclog((LOG_DEBUG, "%s: invalid sockaddr.\n", __func__));
5636 		return key_senderror(so, m, error);
5637 	}
5638 	KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx);
5639 	sav = key_getsavbyspi(sa0->sadb_sa_spi);
5640 	if (sav == NULL) {
5641 		ipseclog((LOG_DEBUG, "%s: no SA found for SPI %u\n",
5642 		    __func__, ntohl(sa0->sadb_sa_spi)));
5643 		return key_senderror(so, m, EINVAL);
5644 	}
5645 	/*
5646 	 * Check that SADB_UPDATE issued by the same process that did
5647 	 * SADB_GETSPI or SADB_ADD.
5648 	 */
5649 	if (sav->pid != mhp->msg->sadb_msg_pid) {
5650 		ipseclog((LOG_DEBUG,
5651 		    "%s: pid mismatched (SPI %u, pid %u vs. %u)\n", __func__,
5652 		    ntohl(sav->spi), sav->pid, mhp->msg->sadb_msg_pid));
5653 		key_freesav(&sav);
5654 		return key_senderror(so, m, EINVAL);
5655 	}
5656 	/* saidx should match with SA. */
5657 	if (key_cmpsaidx(&sav->sah->saidx, &saidx, CMP_MODE_REQID) == 0) {
5658 		ipseclog((LOG_DEBUG, "%s: saidx mismatched for SPI %u\n",
5659 		    __func__, ntohl(sav->spi)));
5660 		key_freesav(&sav);
5661 		return key_senderror(so, m, ESRCH);
5662 	}
5663 
5664 	if (sav->state == SADB_SASTATE_LARVAL) {
5665 		if ((mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP &&
5666 		    SADB_CHECKHDR(mhp, SADB_EXT_KEY_ENCRYPT)) ||
5667 		    (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH &&
5668 		    SADB_CHECKHDR(mhp, SADB_EXT_KEY_AUTH))) {
5669 			ipseclog((LOG_DEBUG,
5670 			    "%s: invalid message: missing required header.\n",
5671 			    __func__));
5672 			key_freesav(&sav);
5673 			return key_senderror(so, m, EINVAL);
5674 		}
5675 		/*
5676 		 * We can set any values except src, dst and SPI.
5677 		 */
5678 		error = key_setsaval(sav, mhp);
5679 		if (error != 0) {
5680 			key_freesav(&sav);
5681 			return (key_senderror(so, m, error));
5682 		}
5683 		/* Change SA state to MATURE */
5684 		SAHTREE_WLOCK();
5685 		if (sav->state != SADB_SASTATE_LARVAL) {
5686 			/* SA was deleted or another thread made it MATURE. */
5687 			SAHTREE_WUNLOCK();
5688 			key_freesav(&sav);
5689 			return (key_senderror(so, m, ESRCH));
5690 		}
5691 		/*
5692 		 * NOTE: we keep SAs in savtree_alive ordered by created
5693 		 * time. When SA's state changed from LARVAL to MATURE,
5694 		 * we update its created time in key_setsaval() and move
5695 		 * it into head of savtree_alive.
5696 		 */
5697 		TAILQ_REMOVE(&sav->sah->savtree_larval, sav, chain);
5698 		TAILQ_INSERT_HEAD(&sav->sah->savtree_alive, sav, chain);
5699 		sav->state = SADB_SASTATE_MATURE;
5700 		SAHTREE_WUNLOCK();
5701 	} else {
5702 		/*
5703 		 * For DYING and MATURE SA we can change only state
5704 		 * and lifetimes. Report EINVAL if something else attempted
5705 		 * to change.
5706 		 */
5707 		if (!SADB_CHECKHDR(mhp, SADB_EXT_KEY_ENCRYPT) ||
5708 		    !SADB_CHECKHDR(mhp, SADB_EXT_KEY_AUTH)) {
5709 			key_freesav(&sav);
5710 			return (key_senderror(so, m, EINVAL));
5711 		}
5712 		error = key_updatelifetimes(sav, mhp);
5713 		if (error != 0) {
5714 			key_freesav(&sav);
5715 			return (key_senderror(so, m, error));
5716 		}
5717 		/*
5718 		 * This is FreeBSD extension to RFC2367.
5719 		 * IKEd can specify SADB_X_EXT_NEW_ADDRESS_SRC and/or
5720 		 * SADB_X_EXT_NEW_ADDRESS_DST when it wants to change
5721 		 * SA addresses (for example to implement MOBIKE protocol
5722 		 * as described in RFC4555). Also we allow to change
5723 		 * NAT-T config.
5724 		 */
5725 		if (!SADB_CHECKHDR(mhp, SADB_X_EXT_NEW_ADDRESS_SRC) ||
5726 		    !SADB_CHECKHDR(mhp, SADB_X_EXT_NEW_ADDRESS_DST) ||
5727 		    !SADB_CHECKHDR(mhp, SADB_X_EXT_NAT_T_TYPE) ||
5728 		    sav->natt != NULL) {
5729 			error = key_updateaddresses(so, m, mhp, sav, &saidx);
5730 			key_freesav(&sav);
5731 			if (error != 0)
5732 				return (key_senderror(so, m, error));
5733 			return (0);
5734 		}
5735 		/* Check that SA is still alive */
5736 		SAHTREE_WLOCK();
5737 		if (sav->state == SADB_SASTATE_DEAD) {
5738 			/* SA was unlinked */
5739 			SAHTREE_WUNLOCK();
5740 			key_freesav(&sav);
5741 			return (key_senderror(so, m, ESRCH));
5742 		}
5743 		/*
5744 		 * NOTE: there is possible state moving from DYING to MATURE,
5745 		 * but this doesn't change created time, so we won't reorder
5746 		 * this SA.
5747 		 */
5748 		sav->state = SADB_SASTATE_MATURE;
5749 		SAHTREE_WUNLOCK();
5750 	}
5751 	KEYDBG(KEY_STAMP,
5752 	    printf("%s: SA(%p)\n", __func__, sav));
5753 	KEYDBG(KEY_DATA, kdebug_secasv(sav));
5754 	ipsec_accel_sa_newkey(sav);
5755 	key_freesav(&sav);
5756 
5757     {
5758 	struct mbuf *n;
5759 
5760 	/* set msg buf from mhp */
5761 	n = key_getmsgbuf_x1(m, mhp);
5762 	if (n == NULL) {
5763 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
5764 		return key_senderror(so, m, ENOBUFS);
5765 	}
5766 
5767 	m_freem(m);
5768 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5769     }
5770 }
5771 
5772 /*
5773  * SADB_ADD processing
5774  * add an entry to SA database, when received
5775  *   <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5776  *       key(AE), (identity(SD),) (sensitivity)>
5777  * from the ikmpd,
5778  * and send
5779  *   <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5780  *       (identity(SD),) (sensitivity)>
5781  * to the ikmpd.
5782  *
5783  * IGNORE identity and sensitivity messages.
5784  *
5785  * m will always be freed.
5786  */
5787 static int
key_add(struct socket * so,struct mbuf * m,const struct sadb_msghdr * mhp)5788 key_add(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
5789 {
5790 	struct secasindex saidx;
5791 	struct sadb_address *src0, *dst0;
5792 	struct sadb_sa *sa0;
5793 	struct secasvar *sav;
5794 	uint32_t reqid, spi;
5795 	uint8_t mode, proto;
5796 	int error;
5797 
5798 	IPSEC_ASSERT(so != NULL, ("null socket"));
5799 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
5800 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
5801 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
5802 
5803 	/* map satype to proto */
5804 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
5805 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
5806 		    __func__));
5807 		return key_senderror(so, m, EINVAL);
5808 	}
5809 
5810 	if (SADB_CHECKHDR(mhp, SADB_EXT_SA) ||
5811 	    SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_SRC) ||
5812 	    SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_DST) ||
5813 	    (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP && (
5814 		SADB_CHECKHDR(mhp, SADB_EXT_KEY_ENCRYPT) ||
5815 		SADB_CHECKLEN(mhp, SADB_EXT_KEY_ENCRYPT))) ||
5816 	    (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH && (
5817 		SADB_CHECKHDR(mhp, SADB_EXT_KEY_AUTH) ||
5818 		SADB_CHECKLEN(mhp, SADB_EXT_KEY_AUTH))) ||
5819 	    (SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_HARD) &&
5820 		!SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_SOFT)) ||
5821 	    (SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_SOFT) &&
5822 		!SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_HARD))) {
5823 		ipseclog((LOG_DEBUG,
5824 		    "%s: invalid message: missing required header.\n",
5825 		    __func__));
5826 		return key_senderror(so, m, EINVAL);
5827 	}
5828 	if (SADB_CHECKLEN(mhp, SADB_EXT_SA) ||
5829 	    SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_SRC) ||
5830 	    SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_DST)) {
5831 		ipseclog((LOG_DEBUG,
5832 		    "%s: invalid message: wrong header size.\n", __func__));
5833 		return key_senderror(so, m, EINVAL);
5834 	}
5835 	if (SADB_CHECKHDR(mhp, SADB_X_EXT_SA2)) {
5836 		mode = IPSEC_MODE_ANY;
5837 		reqid = 0;
5838 	} else {
5839 		if (SADB_CHECKLEN(mhp, SADB_X_EXT_SA2)) {
5840 			ipseclog((LOG_DEBUG,
5841 			    "%s: invalid message: wrong header size.\n",
5842 			    __func__));
5843 			return key_senderror(so, m, EINVAL);
5844 		}
5845 		mode = ((struct sadb_x_sa2 *)
5846 		    mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
5847 		reqid = ((struct sadb_x_sa2 *)
5848 		    mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
5849 	}
5850 
5851 	sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5852 	src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
5853 	dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
5854 
5855 	/*
5856 	 * Only SADB_SASTATE_MATURE SAs may be submitted in an
5857 	 * SADB_ADD message.
5858 	 */
5859 	if (sa0->sadb_sa_state != SADB_SASTATE_MATURE) {
5860 		ipseclog((LOG_DEBUG, "%s: invalid state.\n", __func__));
5861 #ifdef PFKEY_STRICT_CHECKS
5862 		return key_senderror(so, m, EINVAL);
5863 #endif
5864 	}
5865 	error = key_checksockaddrs((struct sockaddr *)(src0 + 1),
5866 	    (struct sockaddr *)(dst0 + 1));
5867 	if (error != 0) {
5868 		ipseclog((LOG_DEBUG, "%s: invalid sockaddr.\n", __func__));
5869 		return key_senderror(so, m, error);
5870 	}
5871 	KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx);
5872 	spi = sa0->sadb_sa_spi;
5873 	/*
5874 	 * For TCP-MD5 SAs we don't use SPI. Check the uniqueness using
5875 	 * secasindex.
5876 	 * XXXAE: IPComp seems also doesn't use SPI.
5877 	 */
5878 	SPI_ALLOC_LOCK();
5879 	if (proto == IPPROTO_TCP) {
5880 		sav = key_getsav_tcpmd5(&saidx, &spi);
5881 		if (sav == NULL && spi == 0) {
5882 			SPI_ALLOC_UNLOCK();
5883 			/* Failed to allocate SPI */
5884 			ipseclog((LOG_DEBUG, "%s: SA already exists.\n",
5885 			    __func__));
5886 			return key_senderror(so, m, EEXIST);
5887 		}
5888 		/* XXX: SPI that we report back can have another value */
5889 	} else {
5890 		/* We can create new SA only if SPI is different. */
5891 		sav = key_getsavbyspi(spi);
5892 	}
5893 	if (sav != NULL) {
5894 		SPI_ALLOC_UNLOCK();
5895 		key_freesav(&sav);
5896 		ipseclog((LOG_DEBUG, "%s: SA already exists.\n", __func__));
5897 		return key_senderror(so, m, EEXIST);
5898 	}
5899 
5900 	sav = key_newsav(mhp, &saidx, spi, &error);
5901 	SPI_ALLOC_UNLOCK();
5902 	if (sav == NULL)
5903 		return key_senderror(so, m, error);
5904 	KEYDBG(KEY_STAMP,
5905 	    printf("%s: return SA(%p)\n", __func__, sav));
5906 	KEYDBG(KEY_DATA, kdebug_secasv(sav));
5907 	ipsec_accel_sa_newkey(sav);
5908 	/*
5909 	 * If SADB_ADD was in response to SADB_ACQUIRE, we need to schedule
5910 	 * ACQ for deletion.
5911 	 */
5912 	if (sav->seq != 0)
5913 		key_acqdone(&saidx, sav->seq);
5914 
5915     {
5916 	/*
5917 	 * Don't call key_freesav() on error here, as we would like to
5918 	 * keep the SA in the database.
5919 	 */
5920 	struct mbuf *n;
5921 
5922 	/* set msg buf from mhp */
5923 	n = key_getmsgbuf_x1(m, mhp);
5924 	if (n == NULL) {
5925 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
5926 		return key_senderror(so, m, ENOBUFS);
5927 	}
5928 
5929 	m_freem(m);
5930 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5931     }
5932 }
5933 
5934 /*
5935  * NAT-T support.
5936  * IKEd may request the use ESP in UDP encapsulation when it detects the
5937  * presence of NAT. It uses NAT-T extension headers for such SAs to specify
5938  * parameters needed for encapsulation and decapsulation. These PF_KEY
5939  * extension headers are not standardized, so this comment addresses our
5940  * implementation.
5941  * SADB_X_EXT_NAT_T_TYPE specifies type of encapsulation, we support only
5942  * UDP_ENCAP_ESPINUDP as described in RFC3948.
5943  * SADB_X_EXT_NAT_T_SPORT/DPORT specifies source and destination ports for
5944  * UDP header. We use these ports in UDP encapsulation procedure, also we
5945  * can check them in UDP decapsulation procedure.
5946  * SADB_X_EXT_NAT_T_OA[IR] specifies original address of initiator or
5947  * responder. These addresses can be used for transport mode to adjust
5948  * checksum after decapsulation and decryption. Since original IP addresses
5949  * used by peer usually different (we detected presence of NAT), TCP/UDP
5950  * pseudo header checksum and IP header checksum was calculated using original
5951  * addresses. After decapsulation and decryption we need to adjust checksum
5952  * to have correct datagram.
5953  *
5954  * We expect presence of NAT-T extension headers only in SADB_ADD and
5955  * SADB_UPDATE messages. We report NAT-T extension headers in replies
5956  * to SADB_ADD, SADB_UPDATE, SADB_GET, and SADB_DUMP messages.
5957  */
5958 static int
key_setnatt(struct secasvar * sav,const struct sadb_msghdr * mhp)5959 key_setnatt(struct secasvar *sav, const struct sadb_msghdr *mhp)
5960 {
5961 	struct sadb_x_nat_t_port *port;
5962 	struct sadb_x_nat_t_type *type;
5963 	struct sadb_address *oai, *oar;
5964 	struct sockaddr *sa;
5965 	uint32_t addr;
5966 	uint16_t cksum;
5967 	int i;
5968 
5969 	IPSEC_ASSERT(sav->natt == NULL, ("natt is already initialized"));
5970 	/*
5971 	 * Ignore NAT-T headers if sproto isn't ESP.
5972 	 */
5973 	if (sav->sah->saidx.proto != IPPROTO_ESP)
5974 		return (0);
5975 
5976 	if (!SADB_CHECKHDR(mhp, SADB_X_EXT_NAT_T_TYPE) &&
5977 	    !SADB_CHECKHDR(mhp, SADB_X_EXT_NAT_T_SPORT) &&
5978 	    !SADB_CHECKHDR(mhp, SADB_X_EXT_NAT_T_DPORT)) {
5979 		if (SADB_CHECKLEN(mhp, SADB_X_EXT_NAT_T_TYPE) ||
5980 		    SADB_CHECKLEN(mhp, SADB_X_EXT_NAT_T_SPORT) ||
5981 		    SADB_CHECKLEN(mhp, SADB_X_EXT_NAT_T_DPORT)) {
5982 			ipseclog((LOG_DEBUG,
5983 			    "%s: invalid message: wrong header size.\n",
5984 			    __func__));
5985 			return (EINVAL);
5986 		}
5987 	} else
5988 		return (0);
5989 
5990 	type = (struct sadb_x_nat_t_type *)mhp->ext[SADB_X_EXT_NAT_T_TYPE];
5991 	if (type->sadb_x_nat_t_type_type != UDP_ENCAP_ESPINUDP) {
5992 		ipseclog((LOG_DEBUG, "%s: unsupported NAT-T type %u.\n",
5993 		    __func__, type->sadb_x_nat_t_type_type));
5994 		return (EINVAL);
5995 	}
5996 	/*
5997 	 * Allocate storage for NAT-T config.
5998 	 * On error it will be released by key_cleansav().
5999 	 */
6000 	sav->natt = malloc(sizeof(struct secnatt), M_IPSEC_MISC,
6001 	    M_NOWAIT | M_ZERO);
6002 	if (sav->natt == NULL) {
6003 		PFKEYSTAT_INC(in_nomem);
6004 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
6005 		return (ENOBUFS);
6006 	}
6007 	port = (struct sadb_x_nat_t_port *)mhp->ext[SADB_X_EXT_NAT_T_SPORT];
6008 	if (port->sadb_x_nat_t_port_port == 0) {
6009 		ipseclog((LOG_DEBUG, "%s: invalid NAT-T sport specified.\n",
6010 		    __func__));
6011 		return (EINVAL);
6012 	}
6013 	sav->natt->sport = port->sadb_x_nat_t_port_port;
6014 	port = (struct sadb_x_nat_t_port *)mhp->ext[SADB_X_EXT_NAT_T_DPORT];
6015 	if (port->sadb_x_nat_t_port_port == 0) {
6016 		ipseclog((LOG_DEBUG, "%s: invalid NAT-T dport specified.\n",
6017 		    __func__));
6018 		return (EINVAL);
6019 	}
6020 	sav->natt->dport = port->sadb_x_nat_t_port_port;
6021 
6022 	/*
6023 	 * SADB_X_EXT_NAT_T_OAI and SADB_X_EXT_NAT_T_OAR are optional
6024 	 * and needed only for transport mode IPsec.
6025 	 * Usually NAT translates only one address, but it is possible,
6026 	 * that both addresses could be translated.
6027 	 * NOTE: Value of SADB_X_EXT_NAT_T_OAI is equal to SADB_X_EXT_NAT_T_OA.
6028 	 */
6029 	if (!SADB_CHECKHDR(mhp, SADB_X_EXT_NAT_T_OAI)) {
6030 		if (SADB_CHECKLEN(mhp, SADB_X_EXT_NAT_T_OAI)) {
6031 			ipseclog((LOG_DEBUG,
6032 			    "%s: invalid message: wrong header size.\n",
6033 			    __func__));
6034 			return (EINVAL);
6035 		}
6036 		oai = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAI];
6037 	} else
6038 		oai = NULL;
6039 	if (!SADB_CHECKHDR(mhp, SADB_X_EXT_NAT_T_OAR)) {
6040 		if (SADB_CHECKLEN(mhp, SADB_X_EXT_NAT_T_OAR)) {
6041 			ipseclog((LOG_DEBUG,
6042 			    "%s: invalid message: wrong header size.\n",
6043 			    __func__));
6044 			return (EINVAL);
6045 		}
6046 		oar = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAR];
6047 	} else
6048 		oar = NULL;
6049 
6050 	/* Initialize addresses only for transport mode */
6051 	if (sav->sah->saidx.mode != IPSEC_MODE_TUNNEL) {
6052 		cksum = 0;
6053 		if (oai != NULL) {
6054 			sa = (struct sockaddr *)(oai + 1);
6055 			switch (sa->sa_family) {
6056 #ifdef AF_INET
6057 			case AF_INET:
6058 				if (sa->sa_len != sizeof(struct sockaddr_in)) {
6059 					ipseclog((LOG_DEBUG,
6060 					    "%s: wrong NAT-OAi header.\n",
6061 					    __func__));
6062 					return (EINVAL);
6063 				}
6064 				/* Ignore address if it the same */
6065 				if (((struct sockaddr_in *)sa)->sin_addr.s_addr !=
6066 				    sav->sah->saidx.src.sin.sin_addr.s_addr) {
6067 					bcopy(sa, &sav->natt->oai.sa, sa->sa_len);
6068 					sav->natt->flags |= IPSEC_NATT_F_OAI;
6069 					/* Calculate checksum delta */
6070 					addr = sav->sah->saidx.src.sin.sin_addr.s_addr;
6071 					cksum = in_addword(cksum, ~addr >> 16);
6072 					cksum = in_addword(cksum, ~addr & 0xffff);
6073 					addr = sav->natt->oai.sin.sin_addr.s_addr;
6074 					cksum = in_addword(cksum, addr >> 16);
6075 					cksum = in_addword(cksum, addr & 0xffff);
6076 				}
6077 				break;
6078 #endif
6079 #ifdef AF_INET6
6080 			case AF_INET6:
6081 				if (sa->sa_len != sizeof(struct sockaddr_in6)) {
6082 					ipseclog((LOG_DEBUG,
6083 					    "%s: wrong NAT-OAi header.\n",
6084 					    __func__));
6085 					return (EINVAL);
6086 				}
6087 				/* Ignore address if it the same */
6088 				if (memcmp(&((struct sockaddr_in6 *)sa)->sin6_addr.s6_addr,
6089 				    &sav->sah->saidx.src.sin6.sin6_addr.s6_addr,
6090 				    sizeof(struct in6_addr)) != 0) {
6091 					bcopy(sa, &sav->natt->oai.sa, sa->sa_len);
6092 					sav->natt->flags |= IPSEC_NATT_F_OAI;
6093 					/* Calculate checksum delta */
6094 					for (i = 0; i < 8; i++) {
6095 						cksum = in_addword(cksum,
6096 						  ~sav->sah->saidx.src.sin6.sin6_addr.s6_addr16[i]);
6097 						cksum = in_addword(cksum,
6098 						   sav->natt->oai.sin6.sin6_addr.s6_addr16[i]);
6099 					}
6100 				}
6101 				break;
6102 #endif
6103 			default:
6104 				ipseclog((LOG_DEBUG,
6105 				    "%s: wrong NAT-OAi header.\n",
6106 				    __func__));
6107 				return (EINVAL);
6108 			}
6109 		}
6110 		if (oar != NULL) {
6111 			sa = (struct sockaddr *)(oar + 1);
6112 			switch (sa->sa_family) {
6113 #ifdef AF_INET
6114 			case AF_INET:
6115 				if (sa->sa_len != sizeof(struct sockaddr_in)) {
6116 					ipseclog((LOG_DEBUG,
6117 					    "%s: wrong NAT-OAr header.\n",
6118 					    __func__));
6119 					return (EINVAL);
6120 				}
6121 				/* Ignore address if it the same */
6122 				if (((struct sockaddr_in *)sa)->sin_addr.s_addr !=
6123 				    sav->sah->saidx.dst.sin.sin_addr.s_addr) {
6124 					bcopy(sa, &sav->natt->oar.sa, sa->sa_len);
6125 					sav->natt->flags |= IPSEC_NATT_F_OAR;
6126 					/* Calculate checksum delta */
6127 					addr = sav->sah->saidx.dst.sin.sin_addr.s_addr;
6128 					cksum = in_addword(cksum, ~addr >> 16);
6129 					cksum = in_addword(cksum, ~addr & 0xffff);
6130 					addr = sav->natt->oar.sin.sin_addr.s_addr;
6131 					cksum = in_addword(cksum, addr >> 16);
6132 					cksum = in_addword(cksum, addr & 0xffff);
6133 				}
6134 				break;
6135 #endif
6136 #ifdef AF_INET6
6137 			case AF_INET6:
6138 				if (sa->sa_len != sizeof(struct sockaddr_in6)) {
6139 					ipseclog((LOG_DEBUG,
6140 					    "%s: wrong NAT-OAr header.\n",
6141 					    __func__));
6142 					return (EINVAL);
6143 				}
6144 				/* Ignore address if it the same */
6145 				if (memcmp(&((struct sockaddr_in6 *)sa)->sin6_addr.s6_addr,
6146 				           &sav->sah->saidx.dst.sin6.sin6_addr.s6_addr, 16) != 0) {
6147 					bcopy(sa, &sav->natt->oar.sa, sa->sa_len);
6148 					sav->natt->flags |= IPSEC_NATT_F_OAR;
6149 					/* Calculate checksum delta */
6150 					for (i = 0; i < 8; i++) {
6151 						cksum = in_addword(cksum,
6152 						   ~sav->sah->saidx.dst.sin6.sin6_addr.s6_addr16[i]);
6153 						cksum = in_addword(cksum,
6154 						   sav->natt->oar.sin6.sin6_addr.s6_addr16[i]);
6155 					}
6156 				}
6157 				break;
6158 #endif
6159 			default:
6160 				ipseclog((LOG_DEBUG,
6161 				    "%s: wrong NAT-OAr header.\n",
6162 				    __func__));
6163 				return (EINVAL);
6164 			}
6165 		}
6166 		sav->natt->cksum = cksum;
6167 	}
6168 	return (0);
6169 }
6170 
6171 static int
key_setident(struct secashead * sah,const struct sadb_msghdr * mhp)6172 key_setident(struct secashead *sah, const struct sadb_msghdr *mhp)
6173 {
6174 	const struct sadb_ident *idsrc, *iddst;
6175 
6176 	IPSEC_ASSERT(sah != NULL, ("null secashead"));
6177 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
6178 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
6179 
6180 	/* don't make buffer if not there */
6181 	if (SADB_CHECKHDR(mhp, SADB_EXT_IDENTITY_SRC) &&
6182 	    SADB_CHECKHDR(mhp, SADB_EXT_IDENTITY_DST)) {
6183 		sah->idents = NULL;
6184 		sah->identd = NULL;
6185 		return (0);
6186 	}
6187 
6188 	if (SADB_CHECKHDR(mhp, SADB_EXT_IDENTITY_SRC) ||
6189 	    SADB_CHECKHDR(mhp, SADB_EXT_IDENTITY_DST)) {
6190 		ipseclog((LOG_DEBUG, "%s: invalid identity.\n", __func__));
6191 		return (EINVAL);
6192 	}
6193 
6194 	idsrc = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_SRC];
6195 	iddst = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_DST];
6196 
6197 	/* validity check */
6198 	if (idsrc->sadb_ident_type != iddst->sadb_ident_type) {
6199 		ipseclog((LOG_DEBUG, "%s: ident type mismatch.\n", __func__));
6200 		return EINVAL;
6201 	}
6202 
6203 	switch (idsrc->sadb_ident_type) {
6204 	case SADB_IDENTTYPE_PREFIX:
6205 	case SADB_IDENTTYPE_FQDN:
6206 	case SADB_IDENTTYPE_USERFQDN:
6207 	default:
6208 		/* XXX do nothing */
6209 		sah->idents = NULL;
6210 		sah->identd = NULL;
6211 	 	return 0;
6212 	}
6213 
6214 	/* make structure */
6215 	sah->idents = malloc(sizeof(struct secident), M_IPSEC_MISC, M_NOWAIT);
6216 	if (sah->idents == NULL) {
6217 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
6218 		return ENOBUFS;
6219 	}
6220 	sah->identd = malloc(sizeof(struct secident), M_IPSEC_MISC, M_NOWAIT);
6221 	if (sah->identd == NULL) {
6222 		free(sah->idents, M_IPSEC_MISC);
6223 		sah->idents = NULL;
6224 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
6225 		return ENOBUFS;
6226 	}
6227 	sah->idents->type = idsrc->sadb_ident_type;
6228 	sah->idents->id = idsrc->sadb_ident_id;
6229 
6230 	sah->identd->type = iddst->sadb_ident_type;
6231 	sah->identd->id = iddst->sadb_ident_id;
6232 
6233 	return 0;
6234 }
6235 
6236 /*
6237  * m will not be freed on return.
6238  * it is caller's responsibility to free the result.
6239  *
6240  * Called from SADB_ADD and SADB_UPDATE. Reply will contain headers
6241  * from the request in defined order.
6242  */
6243 static struct mbuf *
key_getmsgbuf_x1(struct mbuf * m,const struct sadb_msghdr * mhp)6244 key_getmsgbuf_x1(struct mbuf *m, const struct sadb_msghdr *mhp)
6245 {
6246 	struct mbuf *n;
6247 
6248 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
6249 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
6250 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
6251 
6252 	/* create new sadb_msg to reply. */
6253 	n = key_gather_mbuf(m, mhp, 1, 16, SADB_EXT_RESERVED,
6254 	    SADB_EXT_SA, SADB_X_EXT_SA2,
6255 	    SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST,
6256 	    SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT,
6257 	    SADB_EXT_IDENTITY_SRC, SADB_EXT_IDENTITY_DST,
6258 	    SADB_X_EXT_NAT_T_TYPE, SADB_X_EXT_NAT_T_SPORT,
6259 	    SADB_X_EXT_NAT_T_DPORT, SADB_X_EXT_NAT_T_OAI,
6260 	    SADB_X_EXT_NAT_T_OAR, SADB_X_EXT_NEW_ADDRESS_SRC,
6261 	    SADB_X_EXT_NEW_ADDRESS_DST);
6262 	if (!n)
6263 		return NULL;
6264 
6265 	if (n->m_len < sizeof(struct sadb_msg)) {
6266 		n = m_pullup(n, sizeof(struct sadb_msg));
6267 		if (n == NULL)
6268 			return NULL;
6269 	}
6270 	mtod(n, struct sadb_msg *)->sadb_msg_errno = 0;
6271 	mtod(n, struct sadb_msg *)->sadb_msg_len =
6272 	    PFKEY_UNIT64(n->m_pkthdr.len);
6273 
6274 	return n;
6275 }
6276 
6277 /*
6278  * SADB_DELETE processing
6279  * receive
6280  *   <base, SA(*), address(SD)>
6281  * from the ikmpd, and set SADB_SASTATE_DEAD,
6282  * and send,
6283  *   <base, SA(*), address(SD)>
6284  * to the ikmpd.
6285  *
6286  * m will always be freed.
6287  */
6288 static int
key_delete(struct socket * so,struct mbuf * m,const struct sadb_msghdr * mhp)6289 key_delete(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
6290 {
6291 	struct secasindex saidx;
6292 	struct sadb_address *src0, *dst0;
6293 	struct secasvar *sav;
6294 	struct sadb_sa *sa0;
6295 	uint8_t proto;
6296 
6297 	IPSEC_ASSERT(so != NULL, ("null socket"));
6298 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
6299 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
6300 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
6301 
6302 	/* map satype to proto */
6303 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
6304 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
6305 		    __func__));
6306 		return key_senderror(so, m, EINVAL);
6307 	}
6308 
6309 	if (SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_SRC) ||
6310 	    SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_DST) ||
6311 	    SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_SRC) ||
6312 	    SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_DST)) {
6313 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
6314 		    __func__));
6315 		return key_senderror(so, m, EINVAL);
6316 	}
6317 
6318 	src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
6319 	dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
6320 
6321 	if (key_checksockaddrs((struct sockaddr *)(src0 + 1),
6322 	    (struct sockaddr *)(dst0 + 1)) != 0) {
6323 		ipseclog((LOG_DEBUG, "%s: invalid sockaddr.\n", __func__));
6324 		return (key_senderror(so, m, EINVAL));
6325 	}
6326 	KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx);
6327 	if (SADB_CHECKHDR(mhp, SADB_EXT_SA)) {
6328 		/*
6329 		 * Caller wants us to delete all non-LARVAL SAs
6330 		 * that match the src/dst.  This is used during
6331 		 * IKE INITIAL-CONTACT.
6332 		 * XXXAE: this looks like some extension to RFC2367.
6333 		 */
6334 		ipseclog((LOG_DEBUG, "%s: doing delete all.\n", __func__));
6335 		return (key_delete_all(so, m, mhp, &saidx));
6336 	}
6337 	if (SADB_CHECKLEN(mhp, SADB_EXT_SA)) {
6338 		ipseclog((LOG_DEBUG,
6339 		    "%s: invalid message: wrong header size.\n", __func__));
6340 		return (key_senderror(so, m, EINVAL));
6341 	}
6342 	sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
6343 	SPI_ALLOC_LOCK();
6344 	if (proto == IPPROTO_TCP)
6345 		sav = key_getsav_tcpmd5(&saidx, NULL);
6346 	else
6347 		sav = key_getsavbyspi(sa0->sadb_sa_spi);
6348 	SPI_ALLOC_UNLOCK();
6349 	if (sav == NULL) {
6350 		ipseclog((LOG_DEBUG, "%s: no SA found for SPI %u.\n",
6351 		    __func__, ntohl(sa0->sadb_sa_spi)));
6352 		return (key_senderror(so, m, ESRCH));
6353 	}
6354 	if (key_cmpsaidx(&sav->sah->saidx, &saidx, CMP_HEAD) == 0) {
6355 		ipseclog((LOG_DEBUG, "%s: saidx mismatched for SPI %u.\n",
6356 		    __func__, ntohl(sav->spi)));
6357 		key_freesav(&sav);
6358 		return (key_senderror(so, m, ESRCH));
6359 	}
6360 	KEYDBG(KEY_STAMP,
6361 	    printf("%s: SA(%p)\n", __func__, sav));
6362 	KEYDBG(KEY_DATA, kdebug_secasv(sav));
6363 	key_unlinksav(sav);
6364 	key_freesav(&sav);
6365 
6366     {
6367 	struct mbuf *n;
6368 	struct sadb_msg *newmsg;
6369 
6370 	/* create new sadb_msg to reply. */
6371 	n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED,
6372 	    SADB_EXT_SA, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
6373 	if (!n)
6374 		return key_senderror(so, m, ENOBUFS);
6375 
6376 	if (n->m_len < sizeof(struct sadb_msg)) {
6377 		n = m_pullup(n, sizeof(struct sadb_msg));
6378 		if (n == NULL)
6379 			return key_senderror(so, m, ENOBUFS);
6380 	}
6381 	newmsg = mtod(n, struct sadb_msg *);
6382 	newmsg->sadb_msg_errno = 0;
6383 	newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
6384 
6385 	m_freem(m);
6386 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
6387     }
6388 }
6389 
6390 /*
6391  * delete all SAs for src/dst.  Called from key_delete().
6392  */
6393 static int
key_delete_all(struct socket * so,struct mbuf * m,const struct sadb_msghdr * mhp,struct secasindex * saidx)6394 key_delete_all(struct socket *so, struct mbuf *m,
6395     const struct sadb_msghdr *mhp, struct secasindex *saidx)
6396 {
6397 	struct secasvar_queue drainq;
6398 	struct secashead *sah;
6399 	struct secasvar *sav, *nextsav;
6400 
6401 	TAILQ_INIT(&drainq);
6402 	SAHTREE_WLOCK();
6403 	LIST_FOREACH(sah, SAHADDRHASH_HASH(saidx), addrhash) {
6404 		if (key_cmpsaidx(&sah->saidx, saidx, CMP_HEAD) == 0)
6405 			continue;
6406 		/* Move all ALIVE SAs into drainq */
6407 		TAILQ_CONCAT(&drainq, &sah->savtree_alive, chain);
6408 	}
6409 	/* Unlink all queued SAs from SPI hash */
6410 	TAILQ_FOREACH(sav, &drainq, chain) {
6411 		sav->state = SADB_SASTATE_DEAD;
6412 		ipsec_accel_forget_sav(sav);
6413 		LIST_REMOVE(sav, spihash);
6414 	}
6415 	SAHTREE_WUNLOCK();
6416 	/* Now we can release reference for all SAs in drainq */
6417 	sav = TAILQ_FIRST(&drainq);
6418 	while (sav != NULL) {
6419 		KEYDBG(KEY_STAMP,
6420 		    printf("%s: SA(%p)\n", __func__, sav));
6421 		KEYDBG(KEY_DATA, kdebug_secasv(sav));
6422 		nextsav = TAILQ_NEXT(sav, chain);
6423 		key_freesah(&sav->sah); /* release reference from SAV */
6424 		key_freesav(&sav); /* release last reference */
6425 		sav = nextsav;
6426 	}
6427 
6428     {
6429 	struct mbuf *n;
6430 	struct sadb_msg *newmsg;
6431 
6432 	/* create new sadb_msg to reply. */
6433 	n = key_gather_mbuf(m, mhp, 1, 3, SADB_EXT_RESERVED,
6434 	    SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
6435 	if (!n)
6436 		return key_senderror(so, m, ENOBUFS);
6437 
6438 	if (n->m_len < sizeof(struct sadb_msg)) {
6439 		n = m_pullup(n, sizeof(struct sadb_msg));
6440 		if (n == NULL)
6441 			return key_senderror(so, m, ENOBUFS);
6442 	}
6443 	newmsg = mtod(n, struct sadb_msg *);
6444 	newmsg->sadb_msg_errno = 0;
6445 	newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
6446 
6447 	m_freem(m);
6448 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
6449     }
6450 }
6451 
6452 /*
6453  * Delete all alive SAs for corresponding xform.
6454  * Larval SAs have not initialized tdb_xform, so it is safe to leave them
6455  * here when xform disappears.
6456  */
6457 void
key_delete_xform(const struct xformsw * xsp)6458 key_delete_xform(const struct xformsw *xsp)
6459 {
6460 	struct secasvar_queue drainq;
6461 	struct secashead *sah;
6462 	struct secasvar *sav, *nextsav;
6463 
6464 	TAILQ_INIT(&drainq);
6465 	SAHTREE_WLOCK();
6466 	TAILQ_FOREACH(sah, &V_sahtree, chain) {
6467 		sav = TAILQ_FIRST(&sah->savtree_alive);
6468 		if (sav == NULL)
6469 			continue;
6470 		if (sav->tdb_xform != xsp)
6471 			continue;
6472 		/*
6473 		 * It is supposed that all SAs in the chain are related to
6474 		 * one xform.
6475 		 */
6476 		TAILQ_CONCAT(&drainq, &sah->savtree_alive, chain);
6477 	}
6478 	/* Unlink all queued SAs from SPI hash */
6479 	TAILQ_FOREACH(sav, &drainq, chain) {
6480 		sav->state = SADB_SASTATE_DEAD;
6481 		ipsec_accel_forget_sav(sav);
6482 		LIST_REMOVE(sav, spihash);
6483 	}
6484 	SAHTREE_WUNLOCK();
6485 
6486 	/* Now we can release reference for all SAs in drainq */
6487 	sav = TAILQ_FIRST(&drainq);
6488 	while (sav != NULL) {
6489 		KEYDBG(KEY_STAMP,
6490 		    printf("%s: SA(%p)\n", __func__, sav));
6491 		KEYDBG(KEY_DATA, kdebug_secasv(sav));
6492 		nextsav = TAILQ_NEXT(sav, chain);
6493 		key_freesah(&sav->sah); /* release reference from SAV */
6494 		key_freesav(&sav); /* release last reference */
6495 		sav = nextsav;
6496 	}
6497 }
6498 
6499 /*
6500  * SADB_GET processing
6501  * receive
6502  *   <base, SA(*), address(SD)>
6503  * from the ikmpd, and get a SP and a SA to respond,
6504  * and send,
6505  *   <base, SA, (lifetime(HSC),) address(SD), (address(P),) key(AE),
6506  *       (identity(SD),) (sensitivity)>
6507  * to the ikmpd.
6508  *
6509  * m will always be freed.
6510  */
6511 static int
key_get(struct socket * so,struct mbuf * m,const struct sadb_msghdr * mhp)6512 key_get(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
6513 {
6514 	struct secasindex saidx;
6515 	struct sadb_address *src0, *dst0;
6516 	struct sadb_sa *sa0;
6517 	struct secasvar *sav;
6518 	uint8_t proto;
6519 
6520 	IPSEC_ASSERT(so != NULL, ("null socket"));
6521 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
6522 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
6523 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
6524 
6525 	/* map satype to proto */
6526 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
6527 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
6528 			__func__));
6529 		return key_senderror(so, m, EINVAL);
6530 	}
6531 
6532 	if (SADB_CHECKHDR(mhp, SADB_EXT_SA) ||
6533 	    SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_SRC) ||
6534 	    SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_DST)) {
6535 		ipseclog((LOG_DEBUG,
6536 		    "%s: invalid message: missing required header.\n",
6537 		    __func__));
6538 		return key_senderror(so, m, EINVAL);
6539 	}
6540 	if (SADB_CHECKLEN(mhp, SADB_EXT_SA) ||
6541 	    SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_SRC) ||
6542 	    SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_DST)) {
6543 		ipseclog((LOG_DEBUG,
6544 		    "%s: invalid message: wrong header size.\n", __func__));
6545 		return key_senderror(so, m, EINVAL);
6546 	}
6547 
6548 	sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
6549 	src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
6550 	dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
6551 
6552 	if (key_checksockaddrs((struct sockaddr *)(src0 + 1),
6553 	    (struct sockaddr *)(dst0 + 1)) != 0) {
6554 		ipseclog((LOG_DEBUG, "%s: invalid sockaddr.\n", __func__));
6555 		return key_senderror(so, m, EINVAL);
6556 	}
6557 	KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx);
6558 
6559 	SPI_ALLOC_LOCK();
6560 	if (proto == IPPROTO_TCP)
6561 		sav = key_getsav_tcpmd5(&saidx, NULL);
6562 	else
6563 		sav = key_getsavbyspi(sa0->sadb_sa_spi);
6564 	SPI_ALLOC_UNLOCK();
6565 	if (sav == NULL) {
6566 		ipseclog((LOG_DEBUG, "%s: no SA found.\n", __func__));
6567 		return key_senderror(so, m, ESRCH);
6568 	}
6569 	if (key_cmpsaidx(&sav->sah->saidx, &saidx, CMP_HEAD) == 0) {
6570 		ipseclog((LOG_DEBUG, "%s: saidx mismatched for SPI %u.\n",
6571 		    __func__, ntohl(sa0->sadb_sa_spi)));
6572 		key_freesav(&sav);
6573 		return (key_senderror(so, m, ESRCH));
6574 	}
6575 
6576     {
6577 	struct mbuf *n;
6578 	uint8_t satype;
6579 
6580 	/* map proto to satype */
6581 	if ((satype = key_proto2satype(sav->sah->saidx.proto)) == 0) {
6582 		ipseclog((LOG_DEBUG, "%s: there was invalid proto in SAD.\n",
6583 		    __func__));
6584 		key_freesav(&sav);
6585 		return key_senderror(so, m, EINVAL);
6586 	}
6587 
6588 	/* create new sadb_msg to reply. */
6589 	n = key_setdumpsa(sav, SADB_GET, satype, mhp->msg->sadb_msg_seq,
6590 	    mhp->msg->sadb_msg_pid, NULL);
6591 
6592 	key_freesav(&sav);
6593 	if (!n)
6594 		return key_senderror(so, m, ENOBUFS);
6595 
6596 	m_freem(m);
6597 	return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
6598     }
6599 }
6600 
6601 /* XXX make it sysctl-configurable? */
6602 static void
key_getcomb_setlifetime(struct sadb_comb * comb)6603 key_getcomb_setlifetime(struct sadb_comb *comb)
6604 {
6605 
6606 	comb->sadb_comb_soft_allocations = 1;
6607 	comb->sadb_comb_hard_allocations = 1;
6608 	comb->sadb_comb_soft_bytes = 0;
6609 	comb->sadb_comb_hard_bytes = 0;
6610 	comb->sadb_comb_hard_addtime = 86400;	/* 1 day */
6611 	comb->sadb_comb_soft_addtime = comb->sadb_comb_soft_addtime * 80 / 100;
6612 	comb->sadb_comb_soft_usetime = 28800;	/* 8 hours */
6613 	comb->sadb_comb_hard_usetime = comb->sadb_comb_hard_usetime * 80 / 100;
6614 }
6615 
6616 /*
6617  * XXX reorder combinations by preference
6618  * XXX no idea if the user wants ESP authentication or not
6619  */
6620 static struct mbuf *
key_getcomb_ealg(void)6621 key_getcomb_ealg(void)
6622 {
6623 	struct sadb_comb *comb;
6624 	const struct enc_xform *algo;
6625 	struct mbuf *result = NULL, *m, *n;
6626 	int encmin;
6627 	int i, off, o;
6628 	int totlen;
6629 	const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
6630 
6631 	m = NULL;
6632 	for (i = 1; i <= SADB_EALG_MAX; i++) {
6633 		algo = enc_algorithm_lookup(i);
6634 		if (algo == NULL)
6635 			continue;
6636 
6637 		/* discard algorithms with key size smaller than system min */
6638 		if (_BITS(algo->maxkey) < V_ipsec_esp_keymin)
6639 			continue;
6640 		if (_BITS(algo->minkey) < V_ipsec_esp_keymin)
6641 			encmin = V_ipsec_esp_keymin;
6642 		else
6643 			encmin = _BITS(algo->minkey);
6644 
6645 		if (V_ipsec_esp_auth)
6646 			m = key_getcomb_ah();
6647 		else {
6648 			IPSEC_ASSERT(l <= MLEN,
6649 				("l=%u > MLEN=%lu", l, (u_long) MLEN));
6650 			MGET(m, M_NOWAIT, MT_DATA);
6651 			if (m) {
6652 				M_ALIGN(m, l);
6653 				m->m_len = l;
6654 				m->m_next = NULL;
6655 				bzero(mtod(m, caddr_t), m->m_len);
6656 			}
6657 		}
6658 		if (!m)
6659 			goto fail;
6660 
6661 		totlen = 0;
6662 		for (n = m; n; n = n->m_next)
6663 			totlen += n->m_len;
6664 		IPSEC_ASSERT((totlen % l) == 0, ("totlen=%u, l=%u", totlen, l));
6665 
6666 		for (off = 0; off < totlen; off += l) {
6667 			n = m_pulldown(m, off, l, &o);
6668 			if (!n) {
6669 				/* m is already freed */
6670 				goto fail;
6671 			}
6672 			comb = (struct sadb_comb *)(mtod(n, caddr_t) + o);
6673 			bzero(comb, sizeof(*comb));
6674 			key_getcomb_setlifetime(comb);
6675 			comb->sadb_comb_encrypt = i;
6676 			comb->sadb_comb_encrypt_minbits = encmin;
6677 			comb->sadb_comb_encrypt_maxbits = _BITS(algo->maxkey);
6678 		}
6679 
6680 		if (!result)
6681 			result = m;
6682 		else
6683 			m_cat(result, m);
6684 	}
6685 
6686 	return result;
6687 
6688  fail:
6689 	if (result)
6690 		m_freem(result);
6691 	return NULL;
6692 }
6693 
6694 static void
key_getsizes_ah(const struct auth_hash * ah,int alg,u_int16_t * min,u_int16_t * max)6695 key_getsizes_ah(const struct auth_hash *ah, int alg, u_int16_t* min,
6696     u_int16_t* max)
6697 {
6698 
6699 	*min = *max = ah->hashsize;
6700 	if (ah->keysize == 0) {
6701 		/*
6702 		 * Transform takes arbitrary key size but algorithm
6703 		 * key size is restricted.  Enforce this here.
6704 		 */
6705 		switch (alg) {
6706 		case SADB_X_AALG_NULL:	*min = 1; *max = 256; break;
6707 		case SADB_X_AALG_SHA2_256: *min = *max = 32; break;
6708 		case SADB_X_AALG_SHA2_384: *min = *max = 48; break;
6709 		case SADB_X_AALG_SHA2_512: *min = *max = 64; break;
6710 		default:
6711 			DPRINTF(("%s: unknown AH algorithm %u\n",
6712 				__func__, alg));
6713 			break;
6714 		}
6715 	}
6716 }
6717 
6718 /*
6719  * XXX reorder combinations by preference
6720  */
6721 static struct mbuf *
key_getcomb_ah(void)6722 key_getcomb_ah(void)
6723 {
6724 	const struct auth_hash *algo;
6725 	struct sadb_comb *comb;
6726 	struct mbuf *m;
6727 	u_int16_t minkeysize, maxkeysize;
6728 	int i;
6729 	const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
6730 
6731 	m = NULL;
6732 	for (i = 1; i <= SADB_AALG_MAX; i++) {
6733 #if 1
6734 		/* we prefer HMAC algorithms, not old algorithms */
6735 		if (i != SADB_AALG_SHA1HMAC &&
6736 		    i != SADB_X_AALG_SHA2_256 &&
6737 		    i != SADB_X_AALG_SHA2_384 &&
6738 		    i != SADB_X_AALG_SHA2_512)
6739 			continue;
6740 #endif
6741 		algo = auth_algorithm_lookup(i);
6742 		if (!algo)
6743 			continue;
6744 		key_getsizes_ah(algo, i, &minkeysize, &maxkeysize);
6745 		/* discard algorithms with key size smaller than system min */
6746 		if (_BITS(minkeysize) < V_ipsec_ah_keymin)
6747 			continue;
6748 
6749 		if (!m) {
6750 			IPSEC_ASSERT(l <= MLEN,
6751 				("l=%u > MLEN=%lu", l, (u_long) MLEN));
6752 			MGET(m, M_NOWAIT, MT_DATA);
6753 			if (m) {
6754 				M_ALIGN(m, l);
6755 				m->m_len = l;
6756 				m->m_next = NULL;
6757 			}
6758 		} else
6759 			M_PREPEND(m, l, M_NOWAIT);
6760 		if (!m)
6761 			return NULL;
6762 
6763 		comb = mtod(m, struct sadb_comb *);
6764 		bzero(comb, sizeof(*comb));
6765 		key_getcomb_setlifetime(comb);
6766 		comb->sadb_comb_auth = i;
6767 		comb->sadb_comb_auth_minbits = _BITS(minkeysize);
6768 		comb->sadb_comb_auth_maxbits = _BITS(maxkeysize);
6769 	}
6770 
6771 	return m;
6772 }
6773 
6774 /*
6775  * not really an official behavior.  discussed in pf_key@inner.net in Sep2000.
6776  * XXX reorder combinations by preference
6777  */
6778 static struct mbuf *
key_getcomb_ipcomp(void)6779 key_getcomb_ipcomp(void)
6780 {
6781 	const struct comp_algo *algo;
6782 	struct sadb_comb *comb;
6783 	struct mbuf *m;
6784 	int i;
6785 	const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
6786 
6787 	m = NULL;
6788 	for (i = 1; i <= SADB_X_CALG_MAX; i++) {
6789 		algo = comp_algorithm_lookup(i);
6790 		if (!algo)
6791 			continue;
6792 
6793 		if (!m) {
6794 			IPSEC_ASSERT(l <= MLEN,
6795 				("l=%u > MLEN=%lu", l, (u_long) MLEN));
6796 			MGET(m, M_NOWAIT, MT_DATA);
6797 			if (m) {
6798 				M_ALIGN(m, l);
6799 				m->m_len = l;
6800 				m->m_next = NULL;
6801 			}
6802 		} else
6803 			M_PREPEND(m, l, M_NOWAIT);
6804 		if (!m)
6805 			return NULL;
6806 
6807 		comb = mtod(m, struct sadb_comb *);
6808 		bzero(comb, sizeof(*comb));
6809 		key_getcomb_setlifetime(comb);
6810 		comb->sadb_comb_encrypt = i;
6811 		/* what should we set into sadb_comb_*_{min,max}bits? */
6812 	}
6813 
6814 	return m;
6815 }
6816 
6817 /*
6818  * XXX no way to pass mode (transport/tunnel) to userland
6819  * XXX replay checking?
6820  * XXX sysctl interface to ipsec_{ah,esp}_keymin
6821  */
6822 static struct mbuf *
key_getprop(const struct secasindex * saidx)6823 key_getprop(const struct secasindex *saidx)
6824 {
6825 	struct sadb_prop *prop;
6826 	struct mbuf *m, *n;
6827 	const int l = PFKEY_ALIGN8(sizeof(struct sadb_prop));
6828 	int totlen;
6829 
6830 	switch (saidx->proto)  {
6831 	case IPPROTO_ESP:
6832 		m = key_getcomb_ealg();
6833 		break;
6834 	case IPPROTO_AH:
6835 		m = key_getcomb_ah();
6836 		break;
6837 	case IPPROTO_IPCOMP:
6838 		m = key_getcomb_ipcomp();
6839 		break;
6840 	default:
6841 		return NULL;
6842 	}
6843 
6844 	if (!m)
6845 		return NULL;
6846 	M_PREPEND(m, l, M_NOWAIT);
6847 	if (!m)
6848 		return NULL;
6849 
6850 	totlen = 0;
6851 	for (n = m; n; n = n->m_next)
6852 		totlen += n->m_len;
6853 
6854 	prop = mtod(m, struct sadb_prop *);
6855 	bzero(prop, sizeof(*prop));
6856 	prop->sadb_prop_len = PFKEY_UNIT64(totlen);
6857 	prop->sadb_prop_exttype = SADB_EXT_PROPOSAL;
6858 	prop->sadb_prop_replay = 32;	/* XXX */
6859 
6860 	return m;
6861 }
6862 
6863 /*
6864  * SADB_ACQUIRE processing called by key_checkrequest() and key_acquire2().
6865  * send
6866  *   <base, SA, address(SD), (address(P)), x_policy,
6867  *       (identity(SD),) (sensitivity,) proposal>
6868  * to KMD, and expect to receive
6869  *   <base> with SADB_ACQUIRE if error occurred,
6870  * or
6871  *   <base, src address, dst address, (SPI range)> with SADB_GETSPI
6872  * from KMD by PF_KEY.
6873  *
6874  * XXX x_policy is outside of RFC2367 (KAME extension).
6875  * XXX sensitivity is not supported.
6876  * XXX for ipcomp, RFC2367 does not define how to fill in proposal.
6877  * see comment for key_getcomb_ipcomp().
6878  *
6879  * OUT:
6880  *    0     : succeed
6881  *    others: error number
6882  */
6883 static int
key_acquire(const struct secasindex * saidx,struct secpolicy * sp)6884 key_acquire(const struct secasindex *saidx, struct secpolicy *sp)
6885 {
6886 	union sockaddr_union addr;
6887 	struct mbuf *result, *m;
6888 	uint32_t seq;
6889 	int error;
6890 	uint16_t ul_proto;
6891 	uint8_t mask, satype;
6892 
6893 	IPSEC_ASSERT(saidx != NULL, ("null saidx"));
6894 	satype = key_proto2satype(saidx->proto);
6895 	IPSEC_ASSERT(satype != 0, ("null satype, protocol %u", saidx->proto));
6896 
6897 	error = -1;
6898 	result = NULL;
6899 	ul_proto = IPSEC_ULPROTO_ANY;
6900 
6901 	/* Get seq number to check whether sending message or not. */
6902 	seq = key_getacq(saidx, &error);
6903 	if (seq == 0)
6904 		return (error);
6905 
6906 	m = key_setsadbmsg(SADB_ACQUIRE, 0, satype, seq, 0, 0);
6907 	if (!m) {
6908 		error = ENOBUFS;
6909 		goto fail;
6910 	}
6911 	result = m;
6912 
6913 	/*
6914 	 * set sadb_address for saidx's.
6915 	 *
6916 	 * Note that if sp is supplied, then we're being called from
6917 	 * key_allocsa_policy() and should supply port and protocol
6918 	 * information.
6919 	 * XXXAE: why only TCP and UDP? ICMP and SCTP looks applicable too.
6920 	 * XXXAE: probably we can handle this in the ipsec[46]_allocsa().
6921 	 * XXXAE: it looks like we should save this info in the ACQ entry.
6922 	 */
6923 	if (sp != NULL && (sp->spidx.ul_proto == IPPROTO_TCP ||
6924 	    sp->spidx.ul_proto == IPPROTO_UDP))
6925 		ul_proto = sp->spidx.ul_proto;
6926 
6927 	addr = saidx->src;
6928 	mask = FULLMASK;
6929 	if (ul_proto != IPSEC_ULPROTO_ANY) {
6930 		switch (sp->spidx.src.sa.sa_family) {
6931 		case AF_INET:
6932 			if (sp->spidx.src.sin.sin_port != IPSEC_PORT_ANY) {
6933 				addr.sin.sin_port = sp->spidx.src.sin.sin_port;
6934 				mask = sp->spidx.prefs;
6935 			}
6936 			break;
6937 		case AF_INET6:
6938 			if (sp->spidx.src.sin6.sin6_port != IPSEC_PORT_ANY) {
6939 				addr.sin6.sin6_port =
6940 				    sp->spidx.src.sin6.sin6_port;
6941 				mask = sp->spidx.prefs;
6942 			}
6943 			break;
6944 		default:
6945 			break;
6946 		}
6947 	}
6948 	m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &addr.sa, mask, ul_proto);
6949 	if (!m) {
6950 		error = ENOBUFS;
6951 		goto fail;
6952 	}
6953 	m_cat(result, m);
6954 
6955 	addr = saidx->dst;
6956 	mask = FULLMASK;
6957 	if (ul_proto != IPSEC_ULPROTO_ANY) {
6958 		switch (sp->spidx.dst.sa.sa_family) {
6959 		case AF_INET:
6960 			if (sp->spidx.dst.sin.sin_port != IPSEC_PORT_ANY) {
6961 				addr.sin.sin_port = sp->spidx.dst.sin.sin_port;
6962 				mask = sp->spidx.prefd;
6963 			}
6964 			break;
6965 		case AF_INET6:
6966 			if (sp->spidx.dst.sin6.sin6_port != IPSEC_PORT_ANY) {
6967 				addr.sin6.sin6_port =
6968 				    sp->spidx.dst.sin6.sin6_port;
6969 				mask = sp->spidx.prefd;
6970 			}
6971 			break;
6972 		default:
6973 			break;
6974 		}
6975 	}
6976 	m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &addr.sa, mask, ul_proto);
6977 	if (!m) {
6978 		error = ENOBUFS;
6979 		goto fail;
6980 	}
6981 	m_cat(result, m);
6982 
6983 	/* XXX proxy address (optional) */
6984 
6985 	/*
6986 	 * Set sadb_x_policy. This is KAME extension to RFC2367.
6987 	 */
6988 	if (sp != NULL) {
6989 		m = key_setsadbxpolicy(sp->policy, sp->spidx.dir, sp->id,
6990 		    sp->priority);
6991 		if (!m) {
6992 			error = ENOBUFS;
6993 			goto fail;
6994 		}
6995 		m_cat(result, m);
6996 	}
6997 
6998 	/*
6999 	 * Set sadb_x_sa2 extension if saidx->reqid is not zero.
7000 	 * This is FreeBSD extension to RFC2367.
7001 	 */
7002 	if (saidx->reqid != 0) {
7003 		m = key_setsadbxsa2(saidx->mode, 0, saidx->reqid);
7004 		if (m == NULL) {
7005 			error = ENOBUFS;
7006 			goto fail;
7007 		}
7008 		m_cat(result, m);
7009 	}
7010 	/* XXX identity (optional) */
7011 #if 0
7012 	if (idexttype && fqdn) {
7013 		/* create identity extension (FQDN) */
7014 		struct sadb_ident *id;
7015 		int fqdnlen;
7016 
7017 		fqdnlen = strlen(fqdn) + 1;	/* +1 for terminating-NUL */
7018 		id = (struct sadb_ident *)p;
7019 		bzero(id, sizeof(*id) + PFKEY_ALIGN8(fqdnlen));
7020 		id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(fqdnlen));
7021 		id->sadb_ident_exttype = idexttype;
7022 		id->sadb_ident_type = SADB_IDENTTYPE_FQDN;
7023 		bcopy(fqdn, id + 1, fqdnlen);
7024 		p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(fqdnlen);
7025 	}
7026 
7027 	if (idexttype) {
7028 		/* create identity extension (USERFQDN) */
7029 		struct sadb_ident *id;
7030 		int userfqdnlen;
7031 
7032 		if (userfqdn) {
7033 			/* +1 for terminating-NUL */
7034 			userfqdnlen = strlen(userfqdn) + 1;
7035 		} else
7036 			userfqdnlen = 0;
7037 		id = (struct sadb_ident *)p;
7038 		bzero(id, sizeof(*id) + PFKEY_ALIGN8(userfqdnlen));
7039 		id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(userfqdnlen));
7040 		id->sadb_ident_exttype = idexttype;
7041 		id->sadb_ident_type = SADB_IDENTTYPE_USERFQDN;
7042 		/* XXX is it correct? */
7043 		if (curproc && curproc->p_cred)
7044 			id->sadb_ident_id = curproc->p_cred->p_ruid;
7045 		if (userfqdn && userfqdnlen)
7046 			bcopy(userfqdn, id + 1, userfqdnlen);
7047 		p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(userfqdnlen);
7048 	}
7049 #endif
7050 
7051 	/* XXX sensitivity (optional) */
7052 
7053 	/* create proposal/combination extension */
7054 	m = key_getprop(saidx);
7055 #if 0
7056 	/*
7057 	 * spec conformant: always attach proposal/combination extension,
7058 	 * the problem is that we have no way to attach it for ipcomp,
7059 	 * due to the way sadb_comb is declared in RFC2367.
7060 	 */
7061 	if (!m) {
7062 		error = ENOBUFS;
7063 		goto fail;
7064 	}
7065 	m_cat(result, m);
7066 #else
7067 	/*
7068 	 * outside of spec; make proposal/combination extension optional.
7069 	 */
7070 	if (m)
7071 		m_cat(result, m);
7072 #endif
7073 
7074 	if ((result->m_flags & M_PKTHDR) == 0) {
7075 		error = EINVAL;
7076 		goto fail;
7077 	}
7078 
7079 	if (result->m_len < sizeof(struct sadb_msg)) {
7080 		result = m_pullup(result, sizeof(struct sadb_msg));
7081 		if (result == NULL) {
7082 			error = ENOBUFS;
7083 			goto fail;
7084 		}
7085 	}
7086 
7087 	result->m_pkthdr.len = 0;
7088 	for (m = result; m; m = m->m_next)
7089 		result->m_pkthdr.len += m->m_len;
7090 
7091 	mtod(result, struct sadb_msg *)->sadb_msg_len =
7092 	    PFKEY_UNIT64(result->m_pkthdr.len);
7093 
7094 	KEYDBG(KEY_STAMP,
7095 	    printf("%s: SP(%p)\n", __func__, sp));
7096 	KEYDBG(KEY_DATA, kdebug_secasindex(saidx, NULL));
7097 
7098 	return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
7099 
7100  fail:
7101 	if (result)
7102 		m_freem(result);
7103 	return error;
7104 }
7105 
7106 static uint32_t
key_newacq(const struct secasindex * saidx,int * perror)7107 key_newacq(const struct secasindex *saidx, int *perror)
7108 {
7109 	struct secacq *acq;
7110 	uint32_t seq;
7111 
7112 	acq = malloc(sizeof(*acq), M_IPSEC_SAQ, M_NOWAIT | M_ZERO);
7113 	if (acq == NULL) {
7114 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
7115 		*perror = ENOBUFS;
7116 		return (0);
7117 	}
7118 
7119 	/* copy secindex */
7120 	bcopy(saidx, &acq->saidx, sizeof(acq->saidx));
7121 	acq->created = time_second;
7122 	acq->count = 0;
7123 
7124 	/* add to acqtree */
7125 	ACQ_LOCK();
7126 	seq = acq->seq = (V_acq_seq == ~0 ? 1 : ++V_acq_seq);
7127 	LIST_INSERT_HEAD(&V_acqtree, acq, chain);
7128 	LIST_INSERT_HEAD(ACQADDRHASH_HASH(saidx), acq, addrhash);
7129 	LIST_INSERT_HEAD(ACQSEQHASH_HASH(seq), acq, seqhash);
7130 	ACQ_UNLOCK();
7131 	*perror = 0;
7132 	return (seq);
7133 }
7134 
7135 static uint32_t
key_getacq(const struct secasindex * saidx,int * perror)7136 key_getacq(const struct secasindex *saidx, int *perror)
7137 {
7138 	struct secacq *acq;
7139 	uint32_t seq;
7140 
7141 	ACQ_LOCK();
7142 	LIST_FOREACH(acq, ACQADDRHASH_HASH(saidx), addrhash) {
7143 		if (key_cmpsaidx(&acq->saidx, saidx, CMP_EXACTLY)) {
7144 			if (acq->count > V_key_blockacq_count) {
7145 				/*
7146 				 * Reset counter and send message.
7147 				 * Also reset created time to keep ACQ for
7148 				 * this saidx.
7149 				 */
7150 				acq->created = time_second;
7151 				acq->count = 0;
7152 				seq = acq->seq;
7153 			} else {
7154 				/*
7155 				 * Increment counter and do nothing.
7156 				 * We send SADB_ACQUIRE message only
7157 				 * for each V_key_blockacq_count packet.
7158 				 */
7159 				acq->count++;
7160 				seq = 0;
7161 			}
7162 			break;
7163 		}
7164 	}
7165 	ACQ_UNLOCK();
7166 	if (acq != NULL) {
7167 		*perror = 0;
7168 		return (seq);
7169 	}
7170 	/* allocate new  entry */
7171 	return (key_newacq(saidx, perror));
7172 }
7173 
7174 static int
key_acqreset(uint32_t seq)7175 key_acqreset(uint32_t seq)
7176 {
7177 	struct secacq *acq;
7178 
7179 	ACQ_LOCK();
7180 	LIST_FOREACH(acq, ACQSEQHASH_HASH(seq), seqhash) {
7181 		if (acq->seq == seq) {
7182 			acq->count = 0;
7183 			acq->created = time_second;
7184 			break;
7185 		}
7186 	}
7187 	ACQ_UNLOCK();
7188 	if (acq == NULL)
7189 		return (ESRCH);
7190 	return (0);
7191 }
7192 /*
7193  * Mark ACQ entry as stale to remove it in key_flush_acq().
7194  * Called after successful SADB_GETSPI message.
7195  */
7196 static int
key_acqdone(const struct secasindex * saidx,uint32_t seq)7197 key_acqdone(const struct secasindex *saidx, uint32_t seq)
7198 {
7199 	struct secacq *acq;
7200 
7201 	ACQ_LOCK();
7202 	LIST_FOREACH(acq, ACQSEQHASH_HASH(seq), seqhash) {
7203 		if (acq->seq == seq)
7204 			break;
7205 	}
7206 	if (acq != NULL) {
7207 		if (key_cmpsaidx(&acq->saidx, saidx, CMP_EXACTLY) == 0) {
7208 			ipseclog((LOG_DEBUG,
7209 			    "%s: Mismatched saidx for ACQ %u\n", __func__, seq));
7210 			acq = NULL;
7211 		} else {
7212 			acq->created = 0;
7213 		}
7214 	} else {
7215 		ipseclog((LOG_DEBUG,
7216 		    "%s: ACQ %u is not found.\n", __func__, seq));
7217 	}
7218 	ACQ_UNLOCK();
7219 	if (acq == NULL)
7220 		return (ESRCH);
7221 	return (0);
7222 }
7223 
7224 static struct secspacq *
key_newspacq(struct secpolicyindex * spidx)7225 key_newspacq(struct secpolicyindex *spidx)
7226 {
7227 	struct secspacq *acq;
7228 
7229 	/* get new entry */
7230 	acq = malloc(sizeof(struct secspacq), M_IPSEC_SAQ, M_NOWAIT|M_ZERO);
7231 	if (acq == NULL) {
7232 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
7233 		return NULL;
7234 	}
7235 
7236 	/* copy secindex */
7237 	bcopy(spidx, &acq->spidx, sizeof(acq->spidx));
7238 	acq->created = time_second;
7239 	acq->count = 0;
7240 
7241 	/* add to spacqtree */
7242 	SPACQ_LOCK();
7243 	LIST_INSERT_HEAD(&V_spacqtree, acq, chain);
7244 	SPACQ_UNLOCK();
7245 
7246 	return acq;
7247 }
7248 
7249 static struct secspacq *
key_getspacq(struct secpolicyindex * spidx)7250 key_getspacq(struct secpolicyindex *spidx)
7251 {
7252 	struct secspacq *acq;
7253 
7254 	SPACQ_LOCK();
7255 	LIST_FOREACH(acq, &V_spacqtree, chain) {
7256 		if (key_cmpspidx_exactly(spidx, &acq->spidx)) {
7257 			/* NB: return holding spacq_lock */
7258 			return acq;
7259 		}
7260 	}
7261 	SPACQ_UNLOCK();
7262 
7263 	return NULL;
7264 }
7265 
7266 /*
7267  * SADB_ACQUIRE processing,
7268  * in first situation, is receiving
7269  *   <base>
7270  * from the ikmpd, and clear sequence of its secasvar entry.
7271  *
7272  * In second situation, is receiving
7273  *   <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal>
7274  * from a user land process, and return
7275  *   <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal>
7276  * to the socket.
7277  *
7278  * m will always be freed.
7279  */
7280 static int
key_acquire2(struct socket * so,struct mbuf * m,const struct sadb_msghdr * mhp)7281 key_acquire2(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
7282 {
7283 	SAHTREE_RLOCK_TRACKER;
7284 	struct sadb_address *src0, *dst0;
7285 	struct secasindex saidx;
7286 	struct secashead *sah;
7287 	uint32_t reqid;
7288 	int error;
7289 	uint8_t mode, proto;
7290 
7291 	IPSEC_ASSERT(so != NULL, ("null socket"));
7292 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
7293 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
7294 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
7295 
7296 	/*
7297 	 * Error message from KMd.
7298 	 * We assume that if error was occurred in IKEd, the length of PFKEY
7299 	 * message is equal to the size of sadb_msg structure.
7300 	 * We do not raise error even if error occurred in this function.
7301 	 */
7302 	if (mhp->msg->sadb_msg_len == PFKEY_UNIT64(sizeof(struct sadb_msg))) {
7303 		/* check sequence number */
7304 		if (mhp->msg->sadb_msg_seq == 0 ||
7305 		    mhp->msg->sadb_msg_errno == 0) {
7306 			ipseclog((LOG_DEBUG, "%s: must specify sequence "
7307 				"number and errno.\n", __func__));
7308 		} else {
7309 			/*
7310 			 * IKEd reported that error occurred.
7311 			 * XXXAE: what it expects from the kernel?
7312 			 * Probably we should send SADB_ACQUIRE again?
7313 			 * If so, reset ACQ's state.
7314 			 * XXXAE: it looks useless.
7315 			 */
7316 			key_acqreset(mhp->msg->sadb_msg_seq);
7317 		}
7318 		m_freem(m);
7319 		return (0);
7320 	}
7321 
7322 	/*
7323 	 * This message is from user land.
7324 	 */
7325 
7326 	/* map satype to proto */
7327 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
7328 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
7329 		    __func__));
7330 		return key_senderror(so, m, EINVAL);
7331 	}
7332 
7333 	if (SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_SRC) ||
7334 	    SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_DST) ||
7335 	    SADB_CHECKHDR(mhp, SADB_EXT_PROPOSAL)) {
7336 		ipseclog((LOG_DEBUG,
7337 		    "%s: invalid message: missing required header.\n",
7338 		    __func__));
7339 		return key_senderror(so, m, EINVAL);
7340 	}
7341 	if (SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_SRC) ||
7342 	    SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_DST) ||
7343 	    SADB_CHECKLEN(mhp, SADB_EXT_PROPOSAL)) {
7344 		ipseclog((LOG_DEBUG,
7345 		    "%s: invalid message: wrong header size.\n", __func__));
7346 		return key_senderror(so, m, EINVAL);
7347 	}
7348 
7349 	if (SADB_CHECKHDR(mhp, SADB_X_EXT_SA2)) {
7350 		mode = IPSEC_MODE_ANY;
7351 		reqid = 0;
7352 	} else {
7353 		if (SADB_CHECKLEN(mhp, SADB_X_EXT_SA2)) {
7354 			ipseclog((LOG_DEBUG,
7355 			    "%s: invalid message: wrong header size.\n",
7356 			    __func__));
7357 			return key_senderror(so, m, EINVAL);
7358 		}
7359 		mode = ((struct sadb_x_sa2 *)
7360 		    mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
7361 		reqid = ((struct sadb_x_sa2 *)
7362 		    mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
7363 	}
7364 
7365 	src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
7366 	dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
7367 
7368 	error = key_checksockaddrs((struct sockaddr *)(src0 + 1),
7369 	    (struct sockaddr *)(dst0 + 1));
7370 	if (error != 0) {
7371 		ipseclog((LOG_DEBUG, "%s: invalid sockaddr.\n", __func__));
7372 		return key_senderror(so, m, EINVAL);
7373 	}
7374 	KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx);
7375 
7376 	/* get a SA index */
7377 	SAHTREE_RLOCK();
7378 	LIST_FOREACH(sah, SAHADDRHASH_HASH(&saidx), addrhash) {
7379 		if (key_cmpsaidx(&sah->saidx, &saidx, CMP_MODE_REQID))
7380 			break;
7381 	}
7382 	SAHTREE_RUNLOCK();
7383 	if (sah != NULL) {
7384 		ipseclog((LOG_DEBUG, "%s: a SA exists already.\n", __func__));
7385 		return key_senderror(so, m, EEXIST);
7386 	}
7387 
7388 	error = key_acquire(&saidx, NULL);
7389 	if (error != 0) {
7390 		ipseclog((LOG_DEBUG,
7391 		    "%s: error %d returned from key_acquire()\n",
7392 			__func__, error));
7393 		return key_senderror(so, m, error);
7394 	}
7395 	m_freem(m);
7396 	return (0);
7397 }
7398 
7399 /*
7400  * SADB_REGISTER processing.
7401  * If SATYPE_UNSPEC has been passed as satype, only return sabd_supported.
7402  * receive
7403  *   <base>
7404  * from the ikmpd, and register a socket to send PF_KEY messages,
7405  * and send
7406  *   <base, supported>
7407  * to KMD by PF_KEY.
7408  * If socket is detached, must free from regnode.
7409  *
7410  * m will always be freed.
7411  */
7412 static int
key_register(struct socket * so,struct mbuf * m,const struct sadb_msghdr * mhp)7413 key_register(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
7414 {
7415 	struct secreg *reg, *newreg = NULL;
7416 
7417 	IPSEC_ASSERT(so != NULL, ("null socket"));
7418 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
7419 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
7420 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
7421 
7422 	/* check for invalid register message */
7423 	if (mhp->msg->sadb_msg_satype >= sizeof(V_regtree)/sizeof(V_regtree[0]))
7424 		return key_senderror(so, m, EINVAL);
7425 
7426 	/* When SATYPE_UNSPEC is specified, only return sabd_supported. */
7427 	if (mhp->msg->sadb_msg_satype == SADB_SATYPE_UNSPEC)
7428 		goto setmsg;
7429 
7430 	/* check whether existing or not */
7431 	REGTREE_LOCK();
7432 	LIST_FOREACH(reg, &V_regtree[mhp->msg->sadb_msg_satype], chain) {
7433 		if (reg->so == so) {
7434 			REGTREE_UNLOCK();
7435 			ipseclog((LOG_DEBUG, "%s: socket exists already.\n",
7436 				__func__));
7437 			return key_senderror(so, m, EEXIST);
7438 		}
7439 	}
7440 
7441 	/* create regnode */
7442 	newreg =  malloc(sizeof(struct secreg), M_IPSEC_SAR, M_NOWAIT|M_ZERO);
7443 	if (newreg == NULL) {
7444 		REGTREE_UNLOCK();
7445 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
7446 		return key_senderror(so, m, ENOBUFS);
7447 	}
7448 
7449 	newreg->so = so;
7450 	((struct keycb *)(so->so_pcb))->kp_registered++;
7451 
7452 	/* add regnode to regtree. */
7453 	LIST_INSERT_HEAD(&V_regtree[mhp->msg->sadb_msg_satype], newreg, chain);
7454 	REGTREE_UNLOCK();
7455 
7456   setmsg:
7457     {
7458 	struct mbuf *n;
7459 	struct sadb_msg *newmsg;
7460 	struct sadb_supported *sup;
7461 	u_int len, alen, elen;
7462 	int off;
7463 	int i;
7464 	struct sadb_alg *alg;
7465 
7466 	/* create new sadb_msg to reply. */
7467 	alen = 0;
7468 	for (i = 1; i <= SADB_AALG_MAX; i++) {
7469 		if (auth_algorithm_lookup(i))
7470 			alen += sizeof(struct sadb_alg);
7471 	}
7472 	if (alen)
7473 		alen += sizeof(struct sadb_supported);
7474 	elen = 0;
7475 	for (i = 1; i <= SADB_EALG_MAX; i++) {
7476 		if (enc_algorithm_lookup(i))
7477 			elen += sizeof(struct sadb_alg);
7478 	}
7479 	if (elen)
7480 		elen += sizeof(struct sadb_supported);
7481 
7482 	len = sizeof(struct sadb_msg) + alen + elen;
7483 
7484 	if (len > MCLBYTES)
7485 		return key_senderror(so, m, ENOBUFS);
7486 
7487 	n = key_mget(len);
7488 	if (n == NULL)
7489 		return key_senderror(so, m, ENOBUFS);
7490 
7491 	n->m_pkthdr.len = n->m_len = len;
7492 	n->m_next = NULL;
7493 	off = 0;
7494 
7495 	m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off);
7496 	newmsg = mtod(n, struct sadb_msg *);
7497 	newmsg->sadb_msg_errno = 0;
7498 	newmsg->sadb_msg_len = PFKEY_UNIT64(len);
7499 	off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
7500 
7501 	/* for authentication algorithm */
7502 	if (alen) {
7503 		sup = (struct sadb_supported *)(mtod(n, caddr_t) + off);
7504 		sup->sadb_supported_len = PFKEY_UNIT64(alen);
7505 		sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH;
7506 		off += PFKEY_ALIGN8(sizeof(*sup));
7507 
7508 		for (i = 1; i <= SADB_AALG_MAX; i++) {
7509 			const struct auth_hash *aalgo;
7510 			u_int16_t minkeysize, maxkeysize;
7511 
7512 			aalgo = auth_algorithm_lookup(i);
7513 			if (!aalgo)
7514 				continue;
7515 			alg = (struct sadb_alg *)(mtod(n, caddr_t) + off);
7516 			alg->sadb_alg_id = i;
7517 			alg->sadb_alg_ivlen = 0;
7518 			key_getsizes_ah(aalgo, i, &minkeysize, &maxkeysize);
7519 			alg->sadb_alg_minbits = _BITS(minkeysize);
7520 			alg->sadb_alg_maxbits = _BITS(maxkeysize);
7521 			off += PFKEY_ALIGN8(sizeof(*alg));
7522 		}
7523 	}
7524 
7525 	/* for encryption algorithm */
7526 	if (elen) {
7527 		sup = (struct sadb_supported *)(mtod(n, caddr_t) + off);
7528 		sup->sadb_supported_len = PFKEY_UNIT64(elen);
7529 		sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT;
7530 		off += PFKEY_ALIGN8(sizeof(*sup));
7531 
7532 		for (i = 1; i <= SADB_EALG_MAX; i++) {
7533 			const struct enc_xform *ealgo;
7534 
7535 			ealgo = enc_algorithm_lookup(i);
7536 			if (!ealgo)
7537 				continue;
7538 			alg = (struct sadb_alg *)(mtod(n, caddr_t) + off);
7539 			alg->sadb_alg_id = i;
7540 			alg->sadb_alg_ivlen = ealgo->ivsize;
7541 			alg->sadb_alg_minbits = _BITS(ealgo->minkey);
7542 			alg->sadb_alg_maxbits = _BITS(ealgo->maxkey);
7543 			off += PFKEY_ALIGN8(sizeof(struct sadb_alg));
7544 		}
7545 	}
7546 
7547 	IPSEC_ASSERT(off == len,
7548 		("length assumption failed (off %u len %u)", off, len));
7549 
7550 	m_freem(m);
7551 	return key_sendup_mbuf(so, n, KEY_SENDUP_REGISTERED);
7552     }
7553 }
7554 
7555 /*
7556  * free secreg entry registered.
7557  * XXX: I want to do free a socket marked done SADB_RESIGER to socket.
7558  */
7559 void
key_freereg(struct socket * so)7560 key_freereg(struct socket *so)
7561 {
7562 	struct secreg *reg;
7563 	int i;
7564 
7565 	IPSEC_ASSERT(so != NULL, ("NULL so"));
7566 
7567 	/*
7568 	 * check whether existing or not.
7569 	 * check all type of SA, because there is a potential that
7570 	 * one socket is registered to multiple type of SA.
7571 	 */
7572 	REGTREE_LOCK();
7573 	for (i = 0; i <= SADB_SATYPE_MAX; i++) {
7574 		LIST_FOREACH(reg, &V_regtree[i], chain) {
7575 			if (reg->so == so && __LIST_CHAINED(reg)) {
7576 				LIST_REMOVE(reg, chain);
7577 				free(reg, M_IPSEC_SAR);
7578 				break;
7579 			}
7580 		}
7581 	}
7582 	REGTREE_UNLOCK();
7583 }
7584 
7585 /*
7586  * SADB_EXPIRE processing
7587  * send
7588  *   <base, SA, SA2, lifetime(C and one of HS), address(SD)>
7589  * to KMD by PF_KEY.
7590  * NOTE: We send only soft lifetime extension.
7591  *
7592  * OUT:	0	: succeed
7593  *	others	: error number
7594  */
7595 static int
key_expire(struct secasvar * sav,int hard)7596 key_expire(struct secasvar *sav, int hard)
7597 {
7598 	struct mbuf *result = NULL, *m;
7599 	struct sadb_lifetime *lt;
7600 	uint32_t replay_count;
7601 	int error, len;
7602 	uint8_t satype;
7603 
7604 	SECASVAR_RLOCK_TRACKER;
7605 
7606 	IPSEC_ASSERT (sav != NULL, ("null sav"));
7607 	IPSEC_ASSERT (sav->sah != NULL, ("null sa header"));
7608 
7609 	KEYDBG(KEY_STAMP,
7610 	    printf("%s: SA(%p) expired %s lifetime\n", __func__,
7611 		sav, hard ? "hard": "soft"));
7612 	KEYDBG(KEY_DATA, kdebug_secasv(sav));
7613 	/* set msg header */
7614 	satype = key_proto2satype(sav->sah->saidx.proto);
7615 	IPSEC_ASSERT(satype != 0, ("invalid proto, satype %u", satype));
7616 	m = key_setsadbmsg(SADB_EXPIRE, 0, satype, sav->seq, 0, sav->refcnt);
7617 	if (!m) {
7618 		error = ENOBUFS;
7619 		goto fail;
7620 	}
7621 	result = m;
7622 
7623 	/* create SA extension */
7624 	m = key_setsadbsa(sav);
7625 	if (!m) {
7626 		error = ENOBUFS;
7627 		goto fail;
7628 	}
7629 	m_cat(result, m);
7630 
7631 	/* create SA extension */
7632 	SECASVAR_RLOCK(sav);
7633 	replay_count = sav->replay ? sav->replay->count : 0;
7634 	SECASVAR_RUNLOCK(sav);
7635 
7636 	m = key_setsadbxsa2(sav->sah->saidx.mode, replay_count,
7637 			sav->sah->saidx.reqid);
7638 	if (!m) {
7639 		error = ENOBUFS;
7640 		goto fail;
7641 	}
7642 	m_cat(result, m);
7643 
7644 	if (sav->replay && sav->replay->wsize > UINT8_MAX) {
7645 		m = key_setsadbxsareplay(sav->replay->wsize);
7646 		if (!m) {
7647 			error = ENOBUFS;
7648 			goto fail;
7649 		}
7650 		m_cat(result, m);
7651 	}
7652 
7653 	/* create lifetime extension (current and soft) */
7654 	len = PFKEY_ALIGN8(sizeof(*lt)) * 2;
7655 	m = m_get2(len, M_NOWAIT, MT_DATA, 0);
7656 	if (m == NULL) {
7657 		error = ENOBUFS;
7658 		goto fail;
7659 	}
7660 	m_align(m, len);
7661 	m->m_len = len;
7662 	bzero(mtod(m, caddr_t), len);
7663 	lt = mtod(m, struct sadb_lifetime *);
7664 	lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
7665 	lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
7666 	lt->sadb_lifetime_allocations =
7667 	    (uint32_t)counter_u64_fetch(sav->lft_c_allocations);
7668 	lt->sadb_lifetime_bytes =
7669 	    counter_u64_fetch(sav->lft_c_bytes);
7670 	lt->sadb_lifetime_addtime = sav->created;
7671 	lt->sadb_lifetime_usetime = sav->firstused;
7672 	lt = (struct sadb_lifetime *)(mtod(m, caddr_t) + len / 2);
7673 	lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
7674 	if (hard) {
7675 		lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
7676 		lt->sadb_lifetime_allocations = sav->lft_h->allocations;
7677 		lt->sadb_lifetime_bytes = sav->lft_h->bytes;
7678 		lt->sadb_lifetime_addtime = sav->lft_h->addtime;
7679 		lt->sadb_lifetime_usetime = sav->lft_h->usetime;
7680 	} else {
7681 		lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT;
7682 		lt->sadb_lifetime_allocations = sav->lft_s->allocations;
7683 		lt->sadb_lifetime_bytes = sav->lft_s->bytes;
7684 		lt->sadb_lifetime_addtime = sav->lft_s->addtime;
7685 		lt->sadb_lifetime_usetime = sav->lft_s->usetime;
7686 	}
7687 	m_cat(result, m);
7688 
7689 	/* set sadb_address for source */
7690 	m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
7691 	    &sav->sah->saidx.src.sa,
7692 	    FULLMASK, IPSEC_ULPROTO_ANY);
7693 	if (!m) {
7694 		error = ENOBUFS;
7695 		goto fail;
7696 	}
7697 	m_cat(result, m);
7698 
7699 	/* set sadb_address for destination */
7700 	m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
7701 	    &sav->sah->saidx.dst.sa,
7702 	    FULLMASK, IPSEC_ULPROTO_ANY);
7703 	if (!m) {
7704 		error = ENOBUFS;
7705 		goto fail;
7706 	}
7707 	m_cat(result, m);
7708 
7709 	/*
7710 	 * XXX-BZ Handle NAT-T extensions here.
7711 	 * XXXAE: it doesn't seem quite useful. IKEs should not depend on
7712 	 * this information, we report only significant SA fields.
7713 	 */
7714 
7715 	if ((result->m_flags & M_PKTHDR) == 0) {
7716 		error = EINVAL;
7717 		goto fail;
7718 	}
7719 
7720 	if (result->m_len < sizeof(struct sadb_msg)) {
7721 		result = m_pullup(result, sizeof(struct sadb_msg));
7722 		if (result == NULL) {
7723 			error = ENOBUFS;
7724 			goto fail;
7725 		}
7726 	}
7727 
7728 	result->m_pkthdr.len = 0;
7729 	for (m = result; m; m = m->m_next)
7730 		result->m_pkthdr.len += m->m_len;
7731 
7732 	mtod(result, struct sadb_msg *)->sadb_msg_len =
7733 	    PFKEY_UNIT64(result->m_pkthdr.len);
7734 
7735 	return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
7736 
7737  fail:
7738 	if (result)
7739 		m_freem(result);
7740 	return error;
7741 }
7742 
7743 static void
key_freesah_flushed(struct secashead_queue * flushq)7744 key_freesah_flushed(struct secashead_queue *flushq)
7745 {
7746 	struct secashead *sah, *nextsah;
7747 	struct secasvar *sav, *nextsav;
7748 
7749 	sah = TAILQ_FIRST(flushq);
7750 	while (sah != NULL) {
7751 		sav = TAILQ_FIRST(&sah->savtree_larval);
7752 		while (sav != NULL) {
7753 			nextsav = TAILQ_NEXT(sav, chain);
7754 			TAILQ_REMOVE(&sah->savtree_larval, sav, chain);
7755 			key_freesav(&sav); /* release last reference */
7756 			key_freesah(&sah); /* release reference from SAV */
7757 			sav = nextsav;
7758 		}
7759 		sav = TAILQ_FIRST(&sah->savtree_alive);
7760 		while (sav != NULL) {
7761 			nextsav = TAILQ_NEXT(sav, chain);
7762 			TAILQ_REMOVE(&sah->savtree_alive, sav, chain);
7763 			key_freesav(&sav); /* release last reference */
7764 			key_freesah(&sah); /* release reference from SAV */
7765 			sav = nextsav;
7766 		}
7767 		nextsah = TAILQ_NEXT(sah, chain);
7768 		key_freesah(&sah);	/* release last reference */
7769 		sah = nextsah;
7770 	}
7771 }
7772 
7773 /*
7774  * SADB_FLUSH processing
7775  * receive
7776  *   <base>
7777  * from the ikmpd, and free all entries in secastree.
7778  * and send,
7779  *   <base>
7780  * to the ikmpd.
7781  * NOTE: to do is only marking SADB_SASTATE_DEAD.
7782  *
7783  * m will always be freed.
7784  */
7785 static int
key_flush(struct socket * so,struct mbuf * m,const struct sadb_msghdr * mhp)7786 key_flush(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
7787 {
7788 	struct secashead_queue flushq;
7789 	struct sadb_msg *newmsg;
7790 	struct secashead *sah, *nextsah;
7791 	struct secasvar *sav;
7792 	uint8_t proto;
7793 	int i;
7794 
7795 	IPSEC_ASSERT(so != NULL, ("null socket"));
7796 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
7797 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
7798 
7799 	/* map satype to proto */
7800 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
7801 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
7802 			__func__));
7803 		return key_senderror(so, m, EINVAL);
7804 	}
7805 	KEYDBG(KEY_STAMP,
7806 	    printf("%s: proto %u\n", __func__, proto));
7807 
7808 	TAILQ_INIT(&flushq);
7809 	if (proto == IPSEC_PROTO_ANY) {
7810 		/* no SATYPE specified, i.e. flushing all SA. */
7811 		SAHTREE_WLOCK();
7812 		/* Move all SAHs into flushq */
7813 		TAILQ_CONCAT(&flushq, &V_sahtree, chain);
7814 		/* Flush all buckets in SPI hash */
7815 		for (i = 0; i < V_savhash_mask + 1; i++)
7816 			LIST_INIT(&V_savhashtbl[i]);
7817 		/* Flush all buckets in SAHADDRHASH */
7818 		for (i = 0; i < V_sahaddrhash_mask + 1; i++)
7819 			LIST_INIT(&V_sahaddrhashtbl[i]);
7820 		/* Mark all SAHs as unlinked */
7821 		TAILQ_FOREACH(sah, &flushq, chain) {
7822 			sah->state = SADB_SASTATE_DEAD;
7823 			/*
7824 			 * Callout handler makes its job using
7825 			 * RLOCK and drain queues. In case, when this
7826 			 * function will be called just before it
7827 			 * acquires WLOCK, we need to mark SAs as
7828 			 * unlinked to prevent second unlink.
7829 			 */
7830 			TAILQ_FOREACH(sav, &sah->savtree_larval, chain) {
7831 				sav->state = SADB_SASTATE_DEAD;
7832 				ipsec_accel_forget_sav(sav);
7833 			}
7834 			TAILQ_FOREACH(sav, &sah->savtree_alive, chain) {
7835 				sav->state = SADB_SASTATE_DEAD;
7836 				ipsec_accel_forget_sav(sav);
7837 			}
7838 		}
7839 		SAHTREE_WUNLOCK();
7840 	} else {
7841 		SAHTREE_WLOCK();
7842 		sah = TAILQ_FIRST(&V_sahtree);
7843 		while (sah != NULL) {
7844 			IPSEC_ASSERT(sah->state != SADB_SASTATE_DEAD,
7845 			    ("DEAD SAH %p in SADB_FLUSH", sah));
7846 			nextsah = TAILQ_NEXT(sah, chain);
7847 			if (sah->saidx.proto != proto) {
7848 				sah = nextsah;
7849 				continue;
7850 			}
7851 			sah->state = SADB_SASTATE_DEAD;
7852 			TAILQ_REMOVE(&V_sahtree, sah, chain);
7853 			LIST_REMOVE(sah, addrhash);
7854 			/* Unlink all SAs from SPI hash */
7855 			TAILQ_FOREACH(sav, &sah->savtree_larval, chain) {
7856 				LIST_REMOVE(sav, spihash);
7857 				sav->state = SADB_SASTATE_DEAD;
7858 				ipsec_accel_forget_sav(sav);
7859 			}
7860 			TAILQ_FOREACH(sav, &sah->savtree_alive, chain) {
7861 				LIST_REMOVE(sav, spihash);
7862 				sav->state = SADB_SASTATE_DEAD;
7863 				ipsec_accel_forget_sav(sav);
7864 			}
7865 			/* Add SAH into flushq */
7866 			TAILQ_INSERT_HEAD(&flushq, sah, chain);
7867 			sah = nextsah;
7868 		}
7869 		SAHTREE_WUNLOCK();
7870 	}
7871 
7872 	key_freesah_flushed(&flushq);
7873 	/* Free all queued SAs and SAHs */
7874 	if (m->m_len < sizeof(struct sadb_msg) ||
7875 	    sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) {
7876 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
7877 		return key_senderror(so, m, ENOBUFS);
7878 	}
7879 
7880 	if (m->m_next)
7881 		m_freem(m->m_next);
7882 	m->m_next = NULL;
7883 	m->m_pkthdr.len = m->m_len = sizeof(struct sadb_msg);
7884 	newmsg = mtod(m, struct sadb_msg *);
7885 	newmsg->sadb_msg_errno = 0;
7886 	newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
7887 
7888 	return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
7889 }
7890 
7891 /*
7892  * SADB_DUMP processing
7893  * dump all entries including status of DEAD in SAD.
7894  * receive
7895  *   <base>
7896  * from the ikmpd, and dump all secasvar leaves
7897  * and send,
7898  *   <base> .....
7899  * to the ikmpd.
7900  *
7901  * m will always be freed.
7902  */
7903 static int
key_dump(struct socket * so,struct mbuf * m,const struct sadb_msghdr * mhp)7904 key_dump(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
7905 {
7906 	SAHTREE_RLOCK_TRACKER;
7907 	struct secashead *sah;
7908 	struct secasvar *sav;
7909 	struct mbuf *n;
7910 	uint32_t cnt;
7911 	uint8_t proto, satype;
7912 
7913 	IPSEC_ASSERT(so != NULL, ("null socket"));
7914 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
7915 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
7916 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
7917 
7918 	/* map satype to proto */
7919 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
7920 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
7921 		    __func__));
7922 		return key_senderror(so, m, EINVAL);
7923 	}
7924 
7925 	/* count sav entries to be sent to the userland. */
7926 	cnt = 0;
7927 	IFNET_RLOCK();
7928 	SAHTREE_RLOCK();
7929 	TAILQ_FOREACH(sah, &V_sahtree, chain) {
7930 		if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC &&
7931 		    proto != sah->saidx.proto)
7932 			continue;
7933 
7934 		TAILQ_FOREACH(sav, &sah->savtree_larval, chain)
7935 			cnt++;
7936 		TAILQ_FOREACH(sav, &sah->savtree_alive, chain)
7937 			cnt++;
7938 	}
7939 
7940 	if (cnt == 0) {
7941 		SAHTREE_RUNLOCK();
7942 		IFNET_RUNLOCK();
7943 		return key_senderror(so, m, ENOENT);
7944 	}
7945 
7946 	/* send this to the userland, one at a time. */
7947 	TAILQ_FOREACH(sah, &V_sahtree, chain) {
7948 		if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC &&
7949 		    proto != sah->saidx.proto)
7950 			continue;
7951 
7952 		/* map proto to satype */
7953 		if ((satype = key_proto2satype(sah->saidx.proto)) == 0) {
7954 			SAHTREE_RUNLOCK();
7955 			IFNET_RUNLOCK();
7956 			ipseclog((LOG_DEBUG, "%s: there was invalid proto in "
7957 			    "SAD.\n", __func__));
7958 			return key_senderror(so, m, EINVAL);
7959 		}
7960 		TAILQ_FOREACH(sav, &sah->savtree_larval, chain) {
7961 			n = key_setdumpsa(sav, SADB_DUMP, satype,
7962 			    --cnt, mhp->msg->sadb_msg_pid, &sahtree_tracker);
7963 			if (n == NULL) {
7964 				SAHTREE_RUNLOCK();
7965 				IFNET_RUNLOCK();
7966 				return key_senderror(so, m, ENOBUFS);
7967 			}
7968 			key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
7969 		}
7970 		TAILQ_FOREACH(sav, &sah->savtree_alive, chain) {
7971 			n = key_setdumpsa(sav, SADB_DUMP, satype,
7972 			    --cnt, mhp->msg->sadb_msg_pid, &sahtree_tracker);
7973 			if (n == NULL) {
7974 				SAHTREE_RUNLOCK();
7975 				IFNET_RUNLOCK();
7976 				return key_senderror(so, m, ENOBUFS);
7977 			}
7978 			key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
7979 		}
7980 	}
7981 	SAHTREE_RUNLOCK();
7982 	IFNET_RUNLOCK();
7983 	m_freem(m);
7984 	return (0);
7985 }
7986 /*
7987  * SADB_X_PROMISC processing
7988  *
7989  * m will always be freed.
7990  */
7991 static int
key_promisc(struct socket * so,struct mbuf * m,const struct sadb_msghdr * mhp)7992 key_promisc(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
7993 {
7994 	int olen;
7995 
7996 	IPSEC_ASSERT(so != NULL, ("null socket"));
7997 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
7998 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
7999 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
8000 
8001 	olen = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len);
8002 
8003 	if (olen < sizeof(struct sadb_msg)) {
8004 #if 1
8005 		return key_senderror(so, m, EINVAL);
8006 #else
8007 		m_freem(m);
8008 		return 0;
8009 #endif
8010 	} else if (olen == sizeof(struct sadb_msg)) {
8011 		/* enable/disable promisc mode */
8012 		struct keycb *kp;
8013 
8014 		if ((kp = so->so_pcb) == NULL)
8015 			return key_senderror(so, m, EINVAL);
8016 		mhp->msg->sadb_msg_errno = 0;
8017 		switch (mhp->msg->sadb_msg_satype) {
8018 		case 0:
8019 		case 1:
8020 			kp->kp_promisc = mhp->msg->sadb_msg_satype;
8021 			break;
8022 		default:
8023 			return key_senderror(so, m, EINVAL);
8024 		}
8025 
8026 		/* send the original message back to everyone */
8027 		mhp->msg->sadb_msg_errno = 0;
8028 		return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
8029 	} else {
8030 		/* send packet as is */
8031 
8032 		m_adj(m, PFKEY_ALIGN8(sizeof(struct sadb_msg)));
8033 
8034 		/* TODO: if sadb_msg_seq is specified, send to specific pid */
8035 		return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
8036 	}
8037 }
8038 
8039 static int (*key_typesw[])(struct socket *, struct mbuf *,
8040     const struct sadb_msghdr *) = {
8041 	[SADB_RESERVED] =	NULL,
8042 	[SADB_GETSPI] =		key_getspi,
8043 	[SADB_UPDATE] =		key_update,
8044 	[SADB_ADD] =		key_add,
8045 	[SADB_DELETE] =		key_delete,
8046 	[SADB_GET] =		key_get,
8047 	[SADB_ACQUIRE] =	key_acquire2,
8048 	[SADB_REGISTER] =	key_register,
8049 	[SADB_EXPIRE] =		NULL,
8050 	[SADB_FLUSH] =		key_flush,
8051 	[SADB_DUMP] =		key_dump,
8052 	[SADB_X_PROMISC] =	key_promisc,
8053 	[SADB_X_PCHANGE] =	NULL,
8054 	[SADB_X_SPDUPDATE] =	key_spdadd,
8055 	[SADB_X_SPDADD] =	key_spdadd,
8056 	[SADB_X_SPDDELETE] =	key_spddelete,
8057 	[SADB_X_SPDGET] =	key_spdget,
8058 	[SADB_X_SPDACQUIRE] =	NULL,
8059 	[SADB_X_SPDDUMP] =	key_spddump,
8060 	[SADB_X_SPDFLUSH] =	key_spdflush,
8061 	[SADB_X_SPDSETIDX] =	key_spdadd,
8062 	[SADB_X_SPDEXPIRE] =	NULL,
8063 	[SADB_X_SPDDELETE2] =	key_spddelete2,
8064 };
8065 
8066 /*
8067  * parse sadb_msg buffer to process PFKEYv2,
8068  * and create a data to response if needed.
8069  * I think to be dealed with mbuf directly.
8070  * IN:
8071  *     msgp  : pointer to pointer to a received buffer pulluped.
8072  *             This is rewrited to response.
8073  *     so    : pointer to socket.
8074  * OUT:
8075  *    length for buffer to send to user process.
8076  */
8077 int
key_parse(struct mbuf * m,struct socket * so)8078 key_parse(struct mbuf *m, struct socket *so)
8079 {
8080 	struct sadb_msg *msg;
8081 	struct sadb_msghdr mh;
8082 	u_int orglen;
8083 	int error;
8084 	int target;
8085 
8086 	IPSEC_ASSERT(so != NULL, ("null socket"));
8087 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
8088 
8089 	if (m->m_len < sizeof(struct sadb_msg)) {
8090 		m = m_pullup(m, sizeof(struct sadb_msg));
8091 		if (!m)
8092 			return ENOBUFS;
8093 	}
8094 	msg = mtod(m, struct sadb_msg *);
8095 	orglen = PFKEY_UNUNIT64(msg->sadb_msg_len);
8096 	target = KEY_SENDUP_ONE;
8097 
8098 	if ((m->m_flags & M_PKTHDR) == 0 || m->m_pkthdr.len != orglen) {
8099 		ipseclog((LOG_DEBUG, "%s: invalid message length.\n",__func__));
8100 		PFKEYSTAT_INC(out_invlen);
8101 		error = EINVAL;
8102 		goto senderror;
8103 	}
8104 
8105 	if (msg->sadb_msg_version != PF_KEY_V2) {
8106 		ipseclog((LOG_DEBUG, "%s: PF_KEY version %u is mismatched.\n",
8107 		    __func__, msg->sadb_msg_version));
8108 		PFKEYSTAT_INC(out_invver);
8109 		error = EINVAL;
8110 		goto senderror;
8111 	}
8112 
8113 	if (msg->sadb_msg_type > SADB_MAX) {
8114 		ipseclog((LOG_DEBUG, "%s: invalid type %u is passed.\n",
8115 		    __func__, msg->sadb_msg_type));
8116 		PFKEYSTAT_INC(out_invmsgtype);
8117 		error = EINVAL;
8118 		goto senderror;
8119 	}
8120 
8121 	/* for old-fashioned code - should be nuked */
8122 	if (m->m_pkthdr.len > MCLBYTES) {
8123 		m_freem(m);
8124 		return ENOBUFS;
8125 	}
8126 	if (m->m_next) {
8127 		struct mbuf *n;
8128 
8129 		n = key_mget(m->m_pkthdr.len);
8130 		if (n == NULL) {
8131 			m_freem(m);
8132 			return ENOBUFS;
8133 		}
8134 		m_copydata(m, 0, m->m_pkthdr.len, mtod(n, caddr_t));
8135 		n->m_pkthdr.len = n->m_len = m->m_pkthdr.len;
8136 		n->m_next = NULL;
8137 		m_freem(m);
8138 		m = n;
8139 	}
8140 
8141 	/* align the mbuf chain so that extensions are in contiguous region. */
8142 	error = key_align(m, &mh);
8143 	if (error)
8144 		return error;
8145 
8146 	msg = mh.msg;
8147 
8148 	/* We use satype as scope mask for spddump */
8149 	if (msg->sadb_msg_type == SADB_X_SPDDUMP) {
8150 		switch (msg->sadb_msg_satype) {
8151 		case IPSEC_POLICYSCOPE_ANY:
8152 		case IPSEC_POLICYSCOPE_GLOBAL:
8153 		case IPSEC_POLICYSCOPE_IFNET:
8154 		case IPSEC_POLICYSCOPE_PCB:
8155 			break;
8156 		default:
8157 			ipseclog((LOG_DEBUG, "%s: illegal satype=%u\n",
8158 			    __func__, msg->sadb_msg_type));
8159 			PFKEYSTAT_INC(out_invsatype);
8160 			error = EINVAL;
8161 			goto senderror;
8162 		}
8163 	} else {
8164 		switch (msg->sadb_msg_satype) { /* check SA type */
8165 		case SADB_SATYPE_UNSPEC:
8166 			switch (msg->sadb_msg_type) {
8167 			case SADB_GETSPI:
8168 			case SADB_UPDATE:
8169 			case SADB_ADD:
8170 			case SADB_DELETE:
8171 			case SADB_GET:
8172 			case SADB_ACQUIRE:
8173 			case SADB_EXPIRE:
8174 				ipseclog((LOG_DEBUG, "%s: must specify satype "
8175 				    "when msg type=%u.\n", __func__,
8176 				    msg->sadb_msg_type));
8177 				PFKEYSTAT_INC(out_invsatype);
8178 				error = EINVAL;
8179 				goto senderror;
8180 			}
8181 			break;
8182 		case SADB_SATYPE_AH:
8183 		case SADB_SATYPE_ESP:
8184 		case SADB_X_SATYPE_IPCOMP:
8185 		case SADB_X_SATYPE_TCPSIGNATURE:
8186 			switch (msg->sadb_msg_type) {
8187 			case SADB_X_SPDADD:
8188 			case SADB_X_SPDDELETE:
8189 			case SADB_X_SPDGET:
8190 			case SADB_X_SPDFLUSH:
8191 			case SADB_X_SPDSETIDX:
8192 			case SADB_X_SPDUPDATE:
8193 			case SADB_X_SPDDELETE2:
8194 				ipseclog((LOG_DEBUG, "%s: illegal satype=%u\n",
8195 				    __func__, msg->sadb_msg_type));
8196 				PFKEYSTAT_INC(out_invsatype);
8197 				error = EINVAL;
8198 				goto senderror;
8199 			}
8200 			break;
8201 		case SADB_SATYPE_RSVP:
8202 		case SADB_SATYPE_OSPFV2:
8203 		case SADB_SATYPE_RIPV2:
8204 		case SADB_SATYPE_MIP:
8205 			ipseclog((LOG_DEBUG, "%s: type %u isn't supported.\n",
8206 			    __func__, msg->sadb_msg_satype));
8207 			PFKEYSTAT_INC(out_invsatype);
8208 			error = EOPNOTSUPP;
8209 			goto senderror;
8210 		case 1:	/* XXX: What does it do? */
8211 			if (msg->sadb_msg_type == SADB_X_PROMISC)
8212 				break;
8213 			/*FALLTHROUGH*/
8214 		default:
8215 			ipseclog((LOG_DEBUG, "%s: invalid type %u is passed.\n",
8216 			    __func__, msg->sadb_msg_satype));
8217 			PFKEYSTAT_INC(out_invsatype);
8218 			error = EINVAL;
8219 			goto senderror;
8220 		}
8221 	}
8222 
8223 	/* check field of upper layer protocol and address family */
8224 	if (mh.ext[SADB_EXT_ADDRESS_SRC] != NULL
8225 	 && mh.ext[SADB_EXT_ADDRESS_DST] != NULL) {
8226 		struct sadb_address *src0, *dst0;
8227 		u_int plen;
8228 
8229 		src0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_SRC]);
8230 		dst0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_DST]);
8231 
8232 		/* check upper layer protocol */
8233 		if (src0->sadb_address_proto != dst0->sadb_address_proto) {
8234 			ipseclog((LOG_DEBUG, "%s: upper layer protocol "
8235 				"mismatched.\n", __func__));
8236 			PFKEYSTAT_INC(out_invaddr);
8237 			error = EINVAL;
8238 			goto senderror;
8239 		}
8240 
8241 		/* check family */
8242 		if (PFKEY_ADDR_SADDR(src0)->sa_family !=
8243 		    PFKEY_ADDR_SADDR(dst0)->sa_family) {
8244 			ipseclog((LOG_DEBUG, "%s: address family mismatched.\n",
8245 				__func__));
8246 			PFKEYSTAT_INC(out_invaddr);
8247 			error = EINVAL;
8248 			goto senderror;
8249 		}
8250 		if (PFKEY_ADDR_SADDR(src0)->sa_len !=
8251 		    PFKEY_ADDR_SADDR(dst0)->sa_len) {
8252 			ipseclog((LOG_DEBUG, "%s: address struct size "
8253 				"mismatched.\n", __func__));
8254 			PFKEYSTAT_INC(out_invaddr);
8255 			error = EINVAL;
8256 			goto senderror;
8257 		}
8258 
8259 		switch (PFKEY_ADDR_SADDR(src0)->sa_family) {
8260 		case AF_INET:
8261 			if (PFKEY_ADDR_SADDR(src0)->sa_len !=
8262 			    sizeof(struct sockaddr_in)) {
8263 				PFKEYSTAT_INC(out_invaddr);
8264 				error = EINVAL;
8265 				goto senderror;
8266 			}
8267 			break;
8268 		case AF_INET6:
8269 			if (PFKEY_ADDR_SADDR(src0)->sa_len !=
8270 			    sizeof(struct sockaddr_in6)) {
8271 				PFKEYSTAT_INC(out_invaddr);
8272 				error = EINVAL;
8273 				goto senderror;
8274 			}
8275 			break;
8276 		default:
8277 			ipseclog((LOG_DEBUG, "%s: unsupported address family\n",
8278 				__func__));
8279 			PFKEYSTAT_INC(out_invaddr);
8280 			error = EAFNOSUPPORT;
8281 			goto senderror;
8282 		}
8283 
8284 		switch (PFKEY_ADDR_SADDR(src0)->sa_family) {
8285 		case AF_INET:
8286 			plen = sizeof(struct in_addr) << 3;
8287 			break;
8288 		case AF_INET6:
8289 			plen = sizeof(struct in6_addr) << 3;
8290 			break;
8291 		default:
8292 			plen = 0;	/*fool gcc*/
8293 			break;
8294 		}
8295 
8296 		/* check max prefix length */
8297 		if (src0->sadb_address_prefixlen > plen ||
8298 		    dst0->sadb_address_prefixlen > plen) {
8299 			ipseclog((LOG_DEBUG, "%s: illegal prefixlen.\n",
8300 				__func__));
8301 			PFKEYSTAT_INC(out_invaddr);
8302 			error = EINVAL;
8303 			goto senderror;
8304 		}
8305 
8306 		/*
8307 		 * prefixlen == 0 is valid because there can be a case when
8308 		 * all addresses are matched.
8309 		 */
8310 	}
8311 
8312 	if (msg->sadb_msg_type >= nitems(key_typesw) ||
8313 	    key_typesw[msg->sadb_msg_type] == NULL) {
8314 		PFKEYSTAT_INC(out_invmsgtype);
8315 		error = EINVAL;
8316 		goto senderror;
8317 	}
8318 
8319 	return (*key_typesw[msg->sadb_msg_type])(so, m, &mh);
8320 
8321 senderror:
8322 	msg->sadb_msg_errno = error;
8323 	return key_sendup_mbuf(so, m, target);
8324 }
8325 
8326 static int
key_senderror(struct socket * so,struct mbuf * m,int code)8327 key_senderror(struct socket *so, struct mbuf *m, int code)
8328 {
8329 	struct sadb_msg *msg;
8330 
8331 	IPSEC_ASSERT(m->m_len >= sizeof(struct sadb_msg),
8332 		("mbuf too small, len %u", m->m_len));
8333 
8334 	msg = mtod(m, struct sadb_msg *);
8335 	msg->sadb_msg_errno = code;
8336 	return key_sendup_mbuf(so, m, KEY_SENDUP_ONE);
8337 }
8338 
8339 /*
8340  * set the pointer to each header into message buffer.
8341  * m will be freed on error.
8342  * XXX larger-than-MCLBYTES extension?
8343  */
8344 static int
key_align(struct mbuf * m,struct sadb_msghdr * mhp)8345 key_align(struct mbuf *m, struct sadb_msghdr *mhp)
8346 {
8347 	struct mbuf *n;
8348 	struct sadb_ext *ext;
8349 	size_t off, end;
8350 	int extlen;
8351 	int toff;
8352 
8353 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
8354 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
8355 	IPSEC_ASSERT(m->m_len >= sizeof(struct sadb_msg),
8356 		("mbuf too small, len %u", m->m_len));
8357 
8358 	/* initialize */
8359 	bzero(mhp, sizeof(*mhp));
8360 
8361 	mhp->msg = mtod(m, struct sadb_msg *);
8362 	mhp->ext[0] = (struct sadb_ext *)mhp->msg;	/*XXX backward compat */
8363 
8364 	end = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len);
8365 	extlen = end;	/*just in case extlen is not updated*/
8366 	for (off = sizeof(struct sadb_msg); off < end; off += extlen) {
8367 		n = m_pulldown(m, off, sizeof(struct sadb_ext), &toff);
8368 		if (!n) {
8369 			/* m is already freed */
8370 			return ENOBUFS;
8371 		}
8372 		ext = (struct sadb_ext *)(mtod(n, caddr_t) + toff);
8373 
8374 		/* set pointer */
8375 		switch (ext->sadb_ext_type) {
8376 		case SADB_EXT_SA:
8377 		case SADB_EXT_ADDRESS_SRC:
8378 		case SADB_EXT_ADDRESS_DST:
8379 		case SADB_EXT_ADDRESS_PROXY:
8380 		case SADB_EXT_LIFETIME_CURRENT:
8381 		case SADB_EXT_LIFETIME_HARD:
8382 		case SADB_EXT_LIFETIME_SOFT:
8383 		case SADB_EXT_KEY_AUTH:
8384 		case SADB_EXT_KEY_ENCRYPT:
8385 		case SADB_EXT_IDENTITY_SRC:
8386 		case SADB_EXT_IDENTITY_DST:
8387 		case SADB_EXT_SENSITIVITY:
8388 		case SADB_EXT_PROPOSAL:
8389 		case SADB_EXT_SUPPORTED_AUTH:
8390 		case SADB_EXT_SUPPORTED_ENCRYPT:
8391 		case SADB_EXT_SPIRANGE:
8392 		case SADB_X_EXT_POLICY:
8393 		case SADB_X_EXT_SA2:
8394 		case SADB_X_EXT_NAT_T_TYPE:
8395 		case SADB_X_EXT_NAT_T_SPORT:
8396 		case SADB_X_EXT_NAT_T_DPORT:
8397 		case SADB_X_EXT_NAT_T_OAI:
8398 		case SADB_X_EXT_NAT_T_OAR:
8399 		case SADB_X_EXT_NAT_T_FRAG:
8400 		case SADB_X_EXT_SA_REPLAY:
8401 		case SADB_X_EXT_NEW_ADDRESS_SRC:
8402 		case SADB_X_EXT_NEW_ADDRESS_DST:
8403 #ifdef IPSEC_OFFLOAD
8404 		case SADB_X_EXT_LFT_CUR_SW_OFFL:
8405 		case SADB_X_EXT_LFT_CUR_HW_OFFL:
8406 		case SADB_X_EXT_IF_HW_OFFL:
8407 #endif
8408 			/* duplicate check */
8409 			/*
8410 			 * XXX Are there duplication payloads of either
8411 			 * KEY_AUTH or KEY_ENCRYPT ?
8412 			 */
8413 			if (mhp->ext[ext->sadb_ext_type] != NULL) {
8414 				ipseclog((LOG_DEBUG, "%s: duplicate ext_type "
8415 					"%u\n", __func__, ext->sadb_ext_type));
8416 				m_freem(m);
8417 				PFKEYSTAT_INC(out_dupext);
8418 				return EINVAL;
8419 			}
8420 			break;
8421 		default:
8422 			ipseclog((LOG_DEBUG, "%s: invalid ext_type %u\n",
8423 				__func__, ext->sadb_ext_type));
8424 			m_freem(m);
8425 			PFKEYSTAT_INC(out_invexttype);
8426 			return EINVAL;
8427 		}
8428 
8429 		extlen = PFKEY_UNUNIT64(ext->sadb_ext_len);
8430 
8431 		if (key_validate_ext(ext, extlen)) {
8432 			m_freem(m);
8433 			PFKEYSTAT_INC(out_invlen);
8434 			return EINVAL;
8435 		}
8436 
8437 		n = m_pulldown(m, off, extlen, &toff);
8438 		if (!n) {
8439 			/* m is already freed */
8440 			return ENOBUFS;
8441 		}
8442 		ext = (struct sadb_ext *)(mtod(n, caddr_t) + toff);
8443 
8444 		mhp->ext[ext->sadb_ext_type] = ext;
8445 		mhp->extoff[ext->sadb_ext_type] = off;
8446 		mhp->extlen[ext->sadb_ext_type] = extlen;
8447 	}
8448 
8449 	if (off != end) {
8450 		m_freem(m);
8451 		PFKEYSTAT_INC(out_invlen);
8452 		return EINVAL;
8453 	}
8454 
8455 	return 0;
8456 }
8457 
8458 static int
key_validate_ext(const struct sadb_ext * ext,int len)8459 key_validate_ext(const struct sadb_ext *ext, int len)
8460 {
8461 	const struct sockaddr *sa;
8462 	enum { NONE, ADDR } checktype = NONE;
8463 	int baselen = 0;
8464 	const int sal = offsetof(struct sockaddr, sa_len) + sizeof(sa->sa_len);
8465 
8466 	if (len != PFKEY_UNUNIT64(ext->sadb_ext_len))
8467 		return EINVAL;
8468 
8469 	/* if it does not match minimum/maximum length, bail */
8470 	if (ext->sadb_ext_type >= nitems(minsize) ||
8471 	    ext->sadb_ext_type >= nitems(maxsize))
8472 		return EINVAL;
8473 	if (!minsize[ext->sadb_ext_type] || len < minsize[ext->sadb_ext_type])
8474 		return EINVAL;
8475 	if (maxsize[ext->sadb_ext_type] && len > maxsize[ext->sadb_ext_type])
8476 		return EINVAL;
8477 
8478 	/* more checks based on sadb_ext_type XXX need more */
8479 	switch (ext->sadb_ext_type) {
8480 	case SADB_EXT_ADDRESS_SRC:
8481 	case SADB_EXT_ADDRESS_DST:
8482 	case SADB_EXT_ADDRESS_PROXY:
8483 	case SADB_X_EXT_NAT_T_OAI:
8484 	case SADB_X_EXT_NAT_T_OAR:
8485 	case SADB_X_EXT_NEW_ADDRESS_SRC:
8486 	case SADB_X_EXT_NEW_ADDRESS_DST:
8487 		baselen = PFKEY_ALIGN8(sizeof(struct sadb_address));
8488 		checktype = ADDR;
8489 		break;
8490 	case SADB_EXT_IDENTITY_SRC:
8491 	case SADB_EXT_IDENTITY_DST:
8492 		if (((const struct sadb_ident *)ext)->sadb_ident_type ==
8493 		    SADB_X_IDENTTYPE_ADDR) {
8494 			baselen = PFKEY_ALIGN8(sizeof(struct sadb_ident));
8495 			checktype = ADDR;
8496 		} else
8497 			checktype = NONE;
8498 		break;
8499 	default:
8500 		checktype = NONE;
8501 		break;
8502 	}
8503 
8504 	switch (checktype) {
8505 	case NONE:
8506 		break;
8507 	case ADDR:
8508 		sa = (const struct sockaddr *)(((const u_int8_t*)ext)+baselen);
8509 		if (len < baselen + sal)
8510 			return EINVAL;
8511 		if (baselen + PFKEY_ALIGN8(sa->sa_len) != len)
8512 			return EINVAL;
8513 		break;
8514 	}
8515 
8516 	return 0;
8517 }
8518 
8519 void
spdcache_init(void)8520 spdcache_init(void)
8521 {
8522 	int i;
8523 
8524 	TUNABLE_INT_FETCH("net.key.spdcache.maxentries",
8525 	    &V_key_spdcache_maxentries);
8526 	TUNABLE_INT_FETCH("net.key.spdcache.threshold",
8527 	    &V_key_spdcache_threshold);
8528 
8529 	if (V_key_spdcache_maxentries) {
8530 		V_key_spdcache_maxentries = MAX(V_key_spdcache_maxentries,
8531 		    SPDCACHE_MAX_ENTRIES_PER_HASH);
8532 		V_spdcachehashtbl = hashinit(V_key_spdcache_maxentries /
8533 		    SPDCACHE_MAX_ENTRIES_PER_HASH,
8534 		    M_IPSEC_SPDCACHE, &V_spdcachehash_mask);
8535 		V_key_spdcache_maxentries = (V_spdcachehash_mask + 1)
8536 		    * SPDCACHE_MAX_ENTRIES_PER_HASH;
8537 
8538 		V_spdcache_lock = malloc(sizeof(struct mtx) *
8539 		    (V_spdcachehash_mask + 1),
8540 		    M_IPSEC_SPDCACHE, M_WAITOK | M_ZERO);
8541 
8542 		for (i = 0; i < V_spdcachehash_mask + 1; ++i)
8543 			SPDCACHE_LOCK_INIT(i);
8544 	}
8545 }
8546 
8547 struct spdcache_entry *
spdcache_entry_alloc(const struct secpolicyindex * spidx,struct secpolicy * sp)8548 spdcache_entry_alloc(const struct secpolicyindex *spidx, struct secpolicy *sp)
8549 {
8550 	struct spdcache_entry *entry;
8551 
8552 	entry = malloc(sizeof(struct spdcache_entry), M_IPSEC_SPDCACHE,
8553 	    M_NOWAIT | M_ZERO);
8554 	if (entry == NULL)
8555 		return (NULL);
8556 
8557 	if (sp != NULL)
8558 		SP_ADDREF(sp);
8559 
8560 	entry->spidx = *spidx;
8561 	entry->sp = sp;
8562 
8563 	return (entry);
8564 }
8565 
8566 void
spdcache_entry_free(struct spdcache_entry * entry)8567 spdcache_entry_free(struct spdcache_entry *entry)
8568 {
8569 
8570 	if (entry->sp != NULL)
8571 		key_freesp(&entry->sp);
8572 	free(entry, M_IPSEC_SPDCACHE);
8573 }
8574 
8575 void
spdcache_clear(void)8576 spdcache_clear(void)
8577 {
8578 	struct spdcache_entry *entry;
8579 	int i;
8580 
8581 	for (i = 0; i < V_spdcachehash_mask + 1; ++i) {
8582 		SPDCACHE_LOCK(i);
8583 		while (!LIST_EMPTY(&V_spdcachehashtbl[i])) {
8584 			entry = LIST_FIRST(&V_spdcachehashtbl[i]);
8585 			LIST_REMOVE(entry, chain);
8586 			spdcache_entry_free(entry);
8587 		}
8588 		SPDCACHE_UNLOCK(i);
8589 	}
8590 }
8591 
8592 #ifdef VIMAGE
8593 void
spdcache_destroy(void)8594 spdcache_destroy(void)
8595 {
8596 	int i;
8597 
8598 	if (SPDCACHE_ENABLED()) {
8599 		spdcache_clear();
8600 		hashdestroy(V_spdcachehashtbl, M_IPSEC_SPDCACHE, V_spdcachehash_mask);
8601 
8602 		for (i = 0; i < V_spdcachehash_mask + 1; ++i)
8603 			SPDCACHE_LOCK_DESTROY(i);
8604 
8605 		free(V_spdcache_lock, M_IPSEC_SPDCACHE);
8606 	}
8607 }
8608 #endif
8609 
8610 static void
key_vnet_init(void * arg __unused)8611 key_vnet_init(void *arg __unused)
8612 {
8613 	int i;
8614 
8615 	for (i = 0; i < IPSEC_DIR_MAX; i++) {
8616 		TAILQ_INIT(&V_sptree[i]);
8617 		TAILQ_INIT(&V_sptree_ifnet[i]);
8618 	}
8619 
8620 	TAILQ_INIT(&V_sahtree);
8621 	V_sphashtbl = hashinit(SPHASH_NHASH, M_IPSEC_SP, &V_sphash_mask);
8622 	V_savhashtbl = hashinit(SAVHASH_NHASH, M_IPSEC_SA, &V_savhash_mask);
8623 	V_sahaddrhashtbl = hashinit(SAHHASH_NHASH, M_IPSEC_SAH,
8624 	    &V_sahaddrhash_mask);
8625 	V_acqaddrhashtbl = hashinit(ACQHASH_NHASH, M_IPSEC_SAQ,
8626 	    &V_acqaddrhash_mask);
8627 	V_acqseqhashtbl = hashinit(ACQHASH_NHASH, M_IPSEC_SAQ,
8628 	    &V_acqseqhash_mask);
8629 
8630 	spdcache_init();
8631 
8632 	for (i = 0; i <= SADB_SATYPE_MAX; i++)
8633 		LIST_INIT(&V_regtree[i]);
8634 
8635 	LIST_INIT(&V_acqtree);
8636 	LIST_INIT(&V_spacqtree);
8637 }
8638 VNET_SYSINIT(key_vnet_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_SECOND,
8639     key_vnet_init, NULL);
8640 
8641 static void
key_init(void * arg __unused)8642 key_init(void *arg __unused)
8643 {
8644 
8645 	ipsec_key_lft_zone = uma_zcreate("IPsec SA lft_c",
8646 	    sizeof(uint64_t) * 2, NULL, NULL, NULL, NULL,
8647 	    UMA_ALIGN_PTR, UMA_ZONE_PCPU);
8648 
8649 	SPTREE_LOCK_INIT();
8650 	REGTREE_LOCK_INIT();
8651 	SAHTREE_LOCK_INIT();
8652 	ACQ_LOCK_INIT();
8653 	SPACQ_LOCK_INIT();
8654 	SPI_ALLOC_LOCK_INIT();
8655 
8656 #ifndef IPSEC_DEBUG2
8657 	callout_init(&key_timer, 1);
8658 	callout_reset(&key_timer, hz, key_timehandler, NULL);
8659 #endif /*IPSEC_DEBUG2*/
8660 
8661 	/* initialize key statistics */
8662 	keystat.getspi_count = 1;
8663 
8664 	if (bootverbose)
8665 		printf("IPsec: Initialized Security Association Processing.\n");
8666 }
8667 SYSINIT(key_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_FIRST, key_init, NULL);
8668 
8669 #ifdef VIMAGE
8670 static void
key_vnet_destroy(void * arg __unused)8671 key_vnet_destroy(void *arg __unused)
8672 {
8673 	struct secashead_queue sahdrainq;
8674 	struct secpolicy_queue drainq;
8675 	struct secpolicy *sp, *nextsp;
8676 	struct secacq *acq, *nextacq;
8677 	struct secspacq *spacq, *nextspacq;
8678 	struct secashead *sah;
8679 	struct secasvar *sav;
8680 	struct secreg *reg;
8681 	int i;
8682 
8683 	/*
8684 	 * XXX: can we just call free() for each object without
8685 	 * walking through safe way with releasing references?
8686 	 */
8687 	TAILQ_INIT(&drainq);
8688 	SPTREE_WLOCK();
8689 	for (i = 0; i < IPSEC_DIR_MAX; i++) {
8690 		TAILQ_CONCAT(&drainq, &V_sptree[i], chain);
8691 		TAILQ_CONCAT(&drainq, &V_sptree_ifnet[i], chain);
8692 	}
8693 	for (i = 0; i < V_sphash_mask + 1; i++)
8694 		LIST_INIT(&V_sphashtbl[i]);
8695 	SPTREE_WUNLOCK();
8696 	spdcache_destroy();
8697 
8698 	sp = TAILQ_FIRST(&drainq);
8699 	while (sp != NULL) {
8700 		nextsp = TAILQ_NEXT(sp, chain);
8701 		key_freesp(&sp);
8702 		sp = nextsp;
8703 	}
8704 
8705 	TAILQ_INIT(&sahdrainq);
8706 	SAHTREE_WLOCK();
8707 	TAILQ_CONCAT(&sahdrainq, &V_sahtree, chain);
8708 	for (i = 0; i < V_savhash_mask + 1; i++)
8709 		LIST_INIT(&V_savhashtbl[i]);
8710 	for (i = 0; i < V_sahaddrhash_mask + 1; i++)
8711 		LIST_INIT(&V_sahaddrhashtbl[i]);
8712 	TAILQ_FOREACH(sah, &sahdrainq, chain) {
8713 		sah->state = SADB_SASTATE_DEAD;
8714 		TAILQ_FOREACH(sav, &sah->savtree_larval, chain) {
8715 			sav->state = SADB_SASTATE_DEAD;
8716 			ipsec_accel_forget_sav(sav);
8717 		}
8718 		TAILQ_FOREACH(sav, &sah->savtree_alive, chain) {
8719 			sav->state = SADB_SASTATE_DEAD;
8720 			ipsec_accel_forget_sav(sav);
8721 		}
8722 	}
8723 	SAHTREE_WUNLOCK();
8724 
8725 	/* Wait for async work referencing this VNET to finish. */
8726 	ipsec_accel_sync();
8727 
8728 	key_freesah_flushed(&sahdrainq);
8729 	hashdestroy(V_sphashtbl, M_IPSEC_SP, V_sphash_mask);
8730 	hashdestroy(V_savhashtbl, M_IPSEC_SA, V_savhash_mask);
8731 	hashdestroy(V_sahaddrhashtbl, M_IPSEC_SAH, V_sahaddrhash_mask);
8732 
8733 	REGTREE_LOCK();
8734 	for (i = 0; i <= SADB_SATYPE_MAX; i++) {
8735 		LIST_FOREACH(reg, &V_regtree[i], chain) {
8736 			if (__LIST_CHAINED(reg)) {
8737 				LIST_REMOVE(reg, chain);
8738 				free(reg, M_IPSEC_SAR);
8739 				break;
8740 			}
8741 		}
8742 	}
8743 	REGTREE_UNLOCK();
8744 
8745 	ACQ_LOCK();
8746 	acq = LIST_FIRST(&V_acqtree);
8747 	while (acq != NULL) {
8748 		nextacq = LIST_NEXT(acq, chain);
8749 		LIST_REMOVE(acq, chain);
8750 		free(acq, M_IPSEC_SAQ);
8751 		acq = nextacq;
8752 	}
8753 	for (i = 0; i < V_acqaddrhash_mask + 1; i++)
8754 		LIST_INIT(&V_acqaddrhashtbl[i]);
8755 	for (i = 0; i < V_acqseqhash_mask + 1; i++)
8756 		LIST_INIT(&V_acqseqhashtbl[i]);
8757 	ACQ_UNLOCK();
8758 
8759 	SPACQ_LOCK();
8760 	for (spacq = LIST_FIRST(&V_spacqtree); spacq != NULL;
8761 	    spacq = nextspacq) {
8762 		nextspacq = LIST_NEXT(spacq, chain);
8763 		if (__LIST_CHAINED(spacq)) {
8764 			LIST_REMOVE(spacq, chain);
8765 			free(spacq, M_IPSEC_SAQ);
8766 		}
8767 	}
8768 	SPACQ_UNLOCK();
8769 	hashdestroy(V_acqaddrhashtbl, M_IPSEC_SAQ, V_acqaddrhash_mask);
8770 	hashdestroy(V_acqseqhashtbl, M_IPSEC_SAQ, V_acqseqhash_mask);
8771 }
8772 VNET_SYSUNINIT(key_vnet_destroy, SI_SUB_PROTO_DOMAIN, SI_ORDER_SECOND,
8773     key_vnet_destroy, NULL);
8774 #endif
8775 
8776 /*
8777  * XXX: as long as domains are not unloadable, this function is never called,
8778  * provided for consistensy and future unload support.
8779  */
8780 static void
key_destroy(void * arg __unused)8781 key_destroy(void *arg __unused)
8782 {
8783 	uma_zdestroy(ipsec_key_lft_zone);
8784 
8785 #ifndef IPSEC_DEBUG2
8786 	callout_drain(&key_timer);
8787 #endif
8788 	SPTREE_LOCK_DESTROY();
8789 	REGTREE_LOCK_DESTROY();
8790 	SAHTREE_LOCK_DESTROY();
8791 	ACQ_LOCK_DESTROY();
8792 	SPACQ_LOCK_DESTROY();
8793 	SPI_ALLOC_LOCK_DESTROY();
8794 }
8795 SYSUNINIT(key_destroy, SI_SUB_PROTO_DOMAIN, SI_ORDER_FIRST, key_destroy, NULL);
8796 
8797 /* record data transfer on SA, and update timestamps */
8798 void
key_sa_recordxfer(struct secasvar * sav,struct mbuf * m)8799 key_sa_recordxfer(struct secasvar *sav, struct mbuf *m)
8800 {
8801 	IPSEC_ASSERT(sav != NULL, ("Null secasvar"));
8802 	IPSEC_ASSERT(m != NULL, ("Null mbuf"));
8803 
8804 	/*
8805 	 * XXX Currently, there is a difference of bytes size
8806 	 * between inbound and outbound processing.
8807 	 */
8808 	counter_u64_add(sav->lft_c_bytes, m->m_pkthdr.len);
8809 
8810 	/*
8811 	 * We use the number of packets as the unit of
8812 	 * allocations.  We increment the variable
8813 	 * whenever {esp,ah}_{in,out}put is called.
8814 	 */
8815 	counter_u64_add(sav->lft_c_allocations, 1);
8816 
8817 	/*
8818 	 * NOTE: We record CURRENT usetime by using wall clock,
8819 	 * in seconds.  HARD and SOFT lifetime are measured by the time
8820 	 * difference (again in seconds) from usetime.
8821 	 *
8822 	 *	usetime
8823 	 *	v     expire   expire
8824 	 * -----+-----+--------+---> t
8825 	 *	<--------------> HARD
8826 	 *	<-----> SOFT
8827 	 */
8828 	if (sav->firstused == 0)
8829 		sav->firstused = time_second;
8830 }
8831 
8832 /*
8833  * Take one of the kernel's security keys and convert it into a PF_KEY
8834  * structure within an mbuf, suitable for sending up to a waiting
8835  * application in user land.
8836  *
8837  * IN:
8838  *    src: A pointer to a kernel security key.
8839  *    exttype: Which type of key this is. Refer to the PF_KEY data structures.
8840  * OUT:
8841  *    a valid mbuf or NULL indicating an error
8842  *
8843  */
8844 
8845 static struct mbuf *
key_setkey(struct seckey * src,uint16_t exttype)8846 key_setkey(struct seckey *src, uint16_t exttype)
8847 {
8848 	struct mbuf *m;
8849 	struct sadb_key *p;
8850 	int len;
8851 
8852 	if (src == NULL)
8853 		return NULL;
8854 
8855 	len = PFKEY_ALIGN8(sizeof(struct sadb_key) + _KEYLEN(src));
8856 	m = m_get2(len, M_NOWAIT, MT_DATA, 0);
8857 	if (m == NULL)
8858 		return NULL;
8859 	m_align(m, len);
8860 	m->m_len = len;
8861 	p = mtod(m, struct sadb_key *);
8862 	bzero(p, len);
8863 	p->sadb_key_len = PFKEY_UNIT64(len);
8864 	p->sadb_key_exttype = exttype;
8865 	p->sadb_key_bits = src->bits;
8866 	bcopy(src->key_data, _KEYBUF(p), _KEYLEN(src));
8867 
8868 	return m;
8869 }
8870 
8871 #ifdef IPSEC_OFFLOAD
8872 struct mbuf *
key_setaccelif(const char * ifname)8873 key_setaccelif(const char *ifname)
8874 {
8875 	struct mbuf *m = NULL;
8876 	struct sadb_x_if_hw_offl *p;
8877 	int len = PFKEY_ALIGN8(sizeof(*p));
8878 
8879 	m = m_get2(len, M_NOWAIT, MT_DATA, 0);
8880 	if (m == NULL)
8881 		return (m);
8882 	m_align(m, len);
8883 	m->m_len = len;
8884 	p = mtod(m, struct sadb_x_if_hw_offl *);
8885 
8886 	bzero(p, len);
8887 	p->sadb_x_if_hw_offl_len = PFKEY_UNIT64(len);
8888 	p->sadb_x_if_hw_offl_exttype = SADB_X_EXT_IF_HW_OFFL;
8889 	p->sadb_x_if_hw_offl_flags = 0;
8890 	strncpy(p->sadb_x_if_hw_offl_if, ifname,
8891 	    sizeof(p->sadb_x_if_hw_offl_if));
8892 
8893 	return (m);
8894 }
8895 #endif
8896 
8897 /*
8898  * Take one of the kernel's lifetime data structures and convert it
8899  * into a PF_KEY structure within an mbuf, suitable for sending up to
8900  * a waiting application in user land.
8901  *
8902  * IN:
8903  *    src: A pointer to a kernel lifetime structure.
8904  *    exttype: Which type of lifetime this is. Refer to the PF_KEY
8905  *             data structures for more information.
8906  * OUT:
8907  *    a valid mbuf or NULL indicating an error
8908  *
8909  */
8910 
8911 static struct mbuf *
key_setlifetime(struct seclifetime * src,uint16_t exttype)8912 key_setlifetime(struct seclifetime *src, uint16_t exttype)
8913 {
8914 	struct mbuf *m = NULL;
8915 	struct sadb_lifetime *p;
8916 	int len = PFKEY_ALIGN8(sizeof(struct sadb_lifetime));
8917 
8918 	if (src == NULL)
8919 		return NULL;
8920 
8921 	m = m_get2(len, M_NOWAIT, MT_DATA, 0);
8922 	if (m == NULL)
8923 		return m;
8924 	m_align(m, len);
8925 	m->m_len = len;
8926 	p = mtod(m, struct sadb_lifetime *);
8927 
8928 	bzero(p, len);
8929 	p->sadb_lifetime_len = PFKEY_UNIT64(len);
8930 	p->sadb_lifetime_exttype = exttype;
8931 	p->sadb_lifetime_allocations = src->allocations;
8932 	p->sadb_lifetime_bytes = src->bytes;
8933 	p->sadb_lifetime_addtime = src->addtime;
8934 	p->sadb_lifetime_usetime = src->usetime;
8935 
8936 	return m;
8937 
8938 }
8939 
8940 const struct enc_xform *
enc_algorithm_lookup(int alg)8941 enc_algorithm_lookup(int alg)
8942 {
8943 	int i;
8944 
8945 	for (i = 0; i < nitems(supported_ealgs); i++)
8946 		if (alg == supported_ealgs[i].sadb_alg)
8947 			return (supported_ealgs[i].xform);
8948 	return (NULL);
8949 }
8950 
8951 const struct auth_hash *
auth_algorithm_lookup(int alg)8952 auth_algorithm_lookup(int alg)
8953 {
8954 	int i;
8955 
8956 	for (i = 0; i < nitems(supported_aalgs); i++)
8957 		if (alg == supported_aalgs[i].sadb_alg)
8958 			return (supported_aalgs[i].xform);
8959 	return (NULL);
8960 }
8961 
8962 const struct comp_algo *
comp_algorithm_lookup(int alg)8963 comp_algorithm_lookup(int alg)
8964 {
8965 	int i;
8966 
8967 	for (i = 0; i < nitems(supported_calgs); i++)
8968 		if (alg == supported_calgs[i].sadb_alg)
8969 			return (supported_calgs[i].xform);
8970 	return (NULL);
8971 }
8972 
8973 void
ipsec_sahtree_runlock(struct rm_priotracker * sahtree_trackerp)8974 ipsec_sahtree_runlock(struct rm_priotracker *sahtree_trackerp)
8975 {
8976 	rm_runlock(&sahtree_lock, sahtree_trackerp);
8977 }
8978 
8979 void
ipsec_sahtree_rlock(struct rm_priotracker * sahtree_trackerp)8980 ipsec_sahtree_rlock(struct rm_priotracker *sahtree_trackerp)
8981 {
8982 	rm_rlock(&sahtree_lock, sahtree_trackerp);
8983 }
8984 
8985 #ifdef IPSEC_OFFLOAD
8986 void
ipsec_accel_on_ifdown(struct ifnet * ifp)8987 ipsec_accel_on_ifdown(struct ifnet *ifp)
8988 {
8989 	void (*p)(struct ifnet *ifp);
8990 
8991 	p = atomic_load_ptr(&ipsec_accel_on_ifdown_p);
8992 	if (p != NULL)
8993 		p(ifp);
8994 }
8995 
8996 void
ipsec_accel_drv_sa_lifetime_update(struct secasvar * sav,if_t ifp,u_int drv_spi,uint64_t octets,uint64_t allocs)8997 ipsec_accel_drv_sa_lifetime_update(struct secasvar *sav, if_t ifp,
8998     u_int drv_spi, uint64_t octets, uint64_t allocs)
8999 {
9000 	void (*p)(struct secasvar *sav, if_t ifp, u_int drv_spi,
9001 	    uint64_t octets, uint64_t allocs);
9002 
9003 	p = atomic_load_ptr(&ipsec_accel_drv_sa_lifetime_update_p);
9004 	if (p != NULL)
9005 		p(sav, ifp, drv_spi, octets, allocs);
9006 }
9007 
9008 int
ipsec_accel_drv_sa_lifetime_fetch(struct secasvar * sav,if_t ifp,u_int drv_spi,uint64_t * octets,uint64_t * allocs)9009 ipsec_accel_drv_sa_lifetime_fetch(struct secasvar *sav,
9010     if_t ifp, u_int drv_spi, uint64_t *octets, uint64_t *allocs)
9011 {
9012 	int (*p)(struct secasvar *sav, if_t ifp, u_int drv_spi,
9013 	    uint64_t *octets, uint64_t *allocs);
9014 
9015 	p = atomic_load_ptr(&ipsec_accel_drv_sa_lifetime_fetch_p);
9016 	if (p == NULL)
9017 		return (EOPNOTSUPP);
9018 	return (p(sav, ifp, drv_spi, octets, allocs));
9019 }
9020 #endif
9021