xref: /linux/fs/kernfs/dir.c (revision 9d230d500b0e5f7be863e2bf2386be5f80dd18aa)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/kernfs/dir.c - kernfs directory implementation
4  *
5  * Copyright (c) 2001-3 Patrick Mochel
6  * Copyright (c) 2007 SUSE Linux Products GmbH
7  * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
8  */
9 
10 #include <linux/sched.h>
11 #include <linux/fs.h>
12 #include <linux/namei.h>
13 #include <linux/idr.h>
14 #include <linux/slab.h>
15 #include <linux/security.h>
16 #include <linux/hash.h>
17 
18 #include "kernfs-internal.h"
19 
20 /*
21  * Don't use rename_lock to piggy back on pr_cont_buf. We don't want to
22  * call pr_cont() while holding rename_lock. Because sometimes pr_cont()
23  * will perform wakeups when releasing console_sem. Holding rename_lock
24  * will introduce deadlock if the scheduler reads the kernfs_name in the
25  * wakeup path.
26  */
27 static DEFINE_SPINLOCK(kernfs_pr_cont_lock);
28 static char kernfs_pr_cont_buf[PATH_MAX];	/* protected by pr_cont_lock */
29 
30 #define rb_to_kn(X) rb_entry((X), struct kernfs_node, rb)
31 
__kernfs_active(struct kernfs_node * kn)32 static bool __kernfs_active(struct kernfs_node *kn)
33 {
34 	return atomic_read(&kn->active) >= 0;
35 }
36 
kernfs_active(struct kernfs_node * kn)37 static bool kernfs_active(struct kernfs_node *kn)
38 {
39 	lockdep_assert_held(&kernfs_root(kn)->kernfs_rwsem);
40 	return __kernfs_active(kn);
41 }
42 
kernfs_lockdep(struct kernfs_node * kn)43 static bool kernfs_lockdep(struct kernfs_node *kn)
44 {
45 #ifdef CONFIG_DEBUG_LOCK_ALLOC
46 	return kn->flags & KERNFS_LOCKDEP;
47 #else
48 	return false;
49 #endif
50 }
51 
52 /* kernfs_node_depth - compute depth from @from to @to */
kernfs_depth(struct kernfs_node * from,struct kernfs_node * to)53 static size_t kernfs_depth(struct kernfs_node *from, struct kernfs_node *to)
54 {
55 	size_t depth = 0;
56 
57 	while (rcu_dereference(to->__parent) && to != from) {
58 		depth++;
59 		to = rcu_dereference(to->__parent);
60 	}
61 	return depth;
62 }
63 
kernfs_common_ancestor(struct kernfs_node * a,struct kernfs_node * b)64 static struct kernfs_node *kernfs_common_ancestor(struct kernfs_node *a,
65 						  struct kernfs_node *b)
66 {
67 	size_t da, db;
68 	struct kernfs_root *ra = kernfs_root(a), *rb = kernfs_root(b);
69 
70 	if (ra != rb)
71 		return NULL;
72 
73 	da = kernfs_depth(ra->kn, a);
74 	db = kernfs_depth(rb->kn, b);
75 
76 	while (da > db) {
77 		a = rcu_dereference(a->__parent);
78 		da--;
79 	}
80 	while (db > da) {
81 		b = rcu_dereference(b->__parent);
82 		db--;
83 	}
84 
85 	/* worst case b and a will be the same at root */
86 	while (b != a) {
87 		b = rcu_dereference(b->__parent);
88 		a = rcu_dereference(a->__parent);
89 	}
90 
91 	return a;
92 }
93 
94 /**
95  * kernfs_path_from_node_locked - find a pseudo-absolute path to @kn_to,
96  * where kn_from is treated as root of the path.
97  * @kn_from: kernfs node which should be treated as root for the path
98  * @kn_to: kernfs node to which path is needed
99  * @buf: buffer to copy the path into
100  * @buflen: size of @buf
101  *
102  * We need to handle couple of scenarios here:
103  * [1] when @kn_from is an ancestor of @kn_to at some level
104  * kn_from: /n1/n2/n3
105  * kn_to:   /n1/n2/n3/n4/n5
106  * result:  /n4/n5
107  *
108  * [2] when @kn_from is on a different hierarchy and we need to find common
109  * ancestor between @kn_from and @kn_to.
110  * kn_from: /n1/n2/n3/n4
111  * kn_to:   /n1/n2/n5
112  * result:  /../../n5
113  * OR
114  * kn_from: /n1/n2/n3/n4/n5   [depth=5]
115  * kn_to:   /n1/n2/n3         [depth=3]
116  * result:  /../..
117  *
118  * [3] when @kn_to is %NULL result will be "(null)"
119  *
120  * Return: the length of the constructed path.  If the path would have been
121  * greater than @buflen, @buf contains the truncated path with the trailing
122  * '\0'.  On error, -errno is returned.
123  */
kernfs_path_from_node_locked(struct kernfs_node * kn_to,struct kernfs_node * kn_from,char * buf,size_t buflen)124 static int kernfs_path_from_node_locked(struct kernfs_node *kn_to,
125 					struct kernfs_node *kn_from,
126 					char *buf, size_t buflen)
127 {
128 	struct kernfs_node *kn, *common;
129 	const char parent_str[] = "/..";
130 	size_t depth_from, depth_to, len = 0;
131 	ssize_t copied;
132 	int i, j;
133 
134 	if (!kn_to)
135 		return strscpy(buf, "(null)", buflen);
136 
137 	if (!kn_from)
138 		kn_from = kernfs_root(kn_to)->kn;
139 
140 	if (kn_from == kn_to)
141 		return strscpy(buf, "/", buflen);
142 
143 	common = kernfs_common_ancestor(kn_from, kn_to);
144 	if (WARN_ON(!common))
145 		return -EINVAL;
146 
147 	depth_to = kernfs_depth(common, kn_to);
148 	depth_from = kernfs_depth(common, kn_from);
149 
150 	buf[0] = '\0';
151 
152 	for (i = 0; i < depth_from; i++) {
153 		copied = strscpy(buf + len, parent_str, buflen - len);
154 		if (copied < 0)
155 			return copied;
156 		len += copied;
157 	}
158 
159 	/* Calculate how many bytes we need for the rest */
160 	for (i = depth_to - 1; i >= 0; i--) {
161 		const char *name;
162 
163 		for (kn = kn_to, j = 0; j < i; j++)
164 			kn = rcu_dereference(kn->__parent);
165 
166 		name = rcu_dereference(kn->name);
167 		len += scnprintf(buf + len, buflen - len, "/%s", name);
168 	}
169 
170 	return len;
171 }
172 
173 /**
174  * kernfs_name - obtain the name of a given node
175  * @kn: kernfs_node of interest
176  * @buf: buffer to copy @kn's name into
177  * @buflen: size of @buf
178  *
179  * Copies the name of @kn into @buf of @buflen bytes.  The behavior is
180  * similar to strscpy().
181  *
182  * Fills buffer with "(null)" if @kn is %NULL.
183  *
184  * Return: the resulting length of @buf. If @buf isn't long enough,
185  * it's filled up to @buflen-1 and nul terminated, and returns -E2BIG.
186  *
187  * This function can be called from any context.
188  */
kernfs_name(struct kernfs_node * kn,char * buf,size_t buflen)189 int kernfs_name(struct kernfs_node *kn, char *buf, size_t buflen)
190 {
191 	struct kernfs_node *kn_parent;
192 
193 	if (!kn)
194 		return strscpy(buf, "(null)", buflen);
195 
196 	guard(rcu)();
197 	/*
198 	 * KERNFS_ROOT_INVARIANT_PARENT is ignored here. The name is RCU freed and
199 	 * the parent is either existing or not.
200 	 */
201 	kn_parent = rcu_dereference(kn->__parent);
202 	return strscpy(buf, kn_parent ? rcu_dereference(kn->name) : "/", buflen);
203 }
204 
205 /**
206  * kernfs_path_from_node - build path of node @to relative to @from.
207  * @from: parent kernfs_node relative to which we need to build the path
208  * @to: kernfs_node of interest
209  * @buf: buffer to copy @to's path into
210  * @buflen: size of @buf
211  *
212  * Builds @to's path relative to @from in @buf. @from and @to must
213  * be on the same kernfs-root. If @from is not parent of @to, then a relative
214  * path (which includes '..'s) as needed to reach from @from to @to is
215  * returned.
216  *
217  * Return: the length of the constructed path.  If the path would have been
218  * greater than @buflen, @buf contains the truncated path with the trailing
219  * '\0'.  On error, -errno is returned.
220  */
kernfs_path_from_node(struct kernfs_node * to,struct kernfs_node * from,char * buf,size_t buflen)221 int kernfs_path_from_node(struct kernfs_node *to, struct kernfs_node *from,
222 			  char *buf, size_t buflen)
223 {
224 	struct kernfs_root *root;
225 
226 	guard(rcu)();
227 	if (to) {
228 		root = kernfs_root(to);
229 		if (!(root->flags & KERNFS_ROOT_INVARIANT_PARENT)) {
230 			guard(read_lock_irqsave)(&root->kernfs_rename_lock);
231 			return kernfs_path_from_node_locked(to, from, buf, buflen);
232 		}
233 	}
234 	return kernfs_path_from_node_locked(to, from, buf, buflen);
235 }
236 EXPORT_SYMBOL_GPL(kernfs_path_from_node);
237 
238 /**
239  * pr_cont_kernfs_name - pr_cont name of a kernfs_node
240  * @kn: kernfs_node of interest
241  *
242  * This function can be called from any context.
243  */
pr_cont_kernfs_name(struct kernfs_node * kn)244 void pr_cont_kernfs_name(struct kernfs_node *kn)
245 {
246 	unsigned long flags;
247 
248 	spin_lock_irqsave(&kernfs_pr_cont_lock, flags);
249 
250 	kernfs_name(kn, kernfs_pr_cont_buf, sizeof(kernfs_pr_cont_buf));
251 	pr_cont("%s", kernfs_pr_cont_buf);
252 
253 	spin_unlock_irqrestore(&kernfs_pr_cont_lock, flags);
254 }
255 
256 /**
257  * pr_cont_kernfs_path - pr_cont path of a kernfs_node
258  * @kn: kernfs_node of interest
259  *
260  * This function can be called from any context.
261  */
pr_cont_kernfs_path(struct kernfs_node * kn)262 void pr_cont_kernfs_path(struct kernfs_node *kn)
263 {
264 	unsigned long flags;
265 	int sz;
266 
267 	spin_lock_irqsave(&kernfs_pr_cont_lock, flags);
268 
269 	sz = kernfs_path_from_node(kn, NULL, kernfs_pr_cont_buf,
270 				   sizeof(kernfs_pr_cont_buf));
271 	if (sz < 0) {
272 		if (sz == -E2BIG)
273 			pr_cont("(name too long)");
274 		else
275 			pr_cont("(error)");
276 		goto out;
277 	}
278 
279 	pr_cont("%s", kernfs_pr_cont_buf);
280 
281 out:
282 	spin_unlock_irqrestore(&kernfs_pr_cont_lock, flags);
283 }
284 
285 /**
286  * kernfs_get_parent - determine the parent node and pin it
287  * @kn: kernfs_node of interest
288  *
289  * Determines @kn's parent, pins and returns it.  This function can be
290  * called from any context.
291  *
292  * Return: parent node of @kn
293  */
kernfs_get_parent(struct kernfs_node * kn)294 struct kernfs_node *kernfs_get_parent(struct kernfs_node *kn)
295 {
296 	struct kernfs_node *parent;
297 	struct kernfs_root *root;
298 	unsigned long flags;
299 
300 	root = kernfs_root(kn);
301 	read_lock_irqsave(&root->kernfs_rename_lock, flags);
302 	parent = kernfs_parent(kn);
303 	kernfs_get(parent);
304 	read_unlock_irqrestore(&root->kernfs_rename_lock, flags);
305 
306 	return parent;
307 }
308 
309 /**
310  *	kernfs_name_hash - calculate hash of @ns + @name
311  *	@name: Null terminated string to hash
312  *	@ns:   Namespace tag to hash
313  *
314  *	Return: 31-bit hash of ns + name (so it fits in an off_t)
315  */
kernfs_name_hash(const char * name,const void * ns)316 static unsigned int kernfs_name_hash(const char *name, const void *ns)
317 {
318 	unsigned long hash = init_name_hash(ns);
319 	unsigned int len = strlen(name);
320 	while (len--)
321 		hash = partial_name_hash(*name++, hash);
322 	hash = end_name_hash(hash);
323 	hash &= 0x7fffffffU;
324 	/* Reserve hash numbers 0, 1 and INT_MAX for magic directory entries */
325 	if (hash < 2)
326 		hash += 2;
327 	if (hash >= INT_MAX)
328 		hash = INT_MAX - 1;
329 	return hash;
330 }
331 
kernfs_name_compare(unsigned int hash,const char * name,const void * ns,const struct kernfs_node * kn)332 static int kernfs_name_compare(unsigned int hash, const char *name,
333 			       const void *ns, const struct kernfs_node *kn)
334 {
335 	if (hash < kn->hash)
336 		return -1;
337 	if (hash > kn->hash)
338 		return 1;
339 	if (ns < kn->ns)
340 		return -1;
341 	if (ns > kn->ns)
342 		return 1;
343 	return strcmp(name, kernfs_rcu_name(kn));
344 }
345 
kernfs_sd_compare(const struct kernfs_node * left,const struct kernfs_node * right)346 static int kernfs_sd_compare(const struct kernfs_node *left,
347 			     const struct kernfs_node *right)
348 {
349 	return kernfs_name_compare(left->hash, kernfs_rcu_name(left), left->ns, right);
350 }
351 
352 /**
353  *	kernfs_link_sibling - link kernfs_node into sibling rbtree
354  *	@kn: kernfs_node of interest
355  *
356  *	Link @kn into its sibling rbtree which starts from
357  *	@kn->parent->dir.children.
358  *
359  *	Locking:
360  *	kernfs_rwsem held exclusive
361  *
362  *	Return:
363  *	%0 on success, -EEXIST on failure.
364  */
kernfs_link_sibling(struct kernfs_node * kn)365 static int kernfs_link_sibling(struct kernfs_node *kn)
366 {
367 	struct rb_node *parent = NULL;
368 	struct kernfs_node *kn_parent;
369 	struct rb_node **node;
370 
371 	kn_parent = kernfs_parent(kn);
372 	node = &kn_parent->dir.children.rb_node;
373 
374 	while (*node) {
375 		struct kernfs_node *pos;
376 		int result;
377 
378 		pos = rb_to_kn(*node);
379 		parent = *node;
380 		result = kernfs_sd_compare(kn, pos);
381 		if (result < 0)
382 			node = &pos->rb.rb_left;
383 		else if (result > 0)
384 			node = &pos->rb.rb_right;
385 		else
386 			return -EEXIST;
387 	}
388 
389 	/* add new node and rebalance the tree */
390 	rb_link_node(&kn->rb, parent, node);
391 	rb_insert_color(&kn->rb, &kn_parent->dir.children);
392 
393 	/* successfully added, account subdir number */
394 	down_write(&kernfs_root(kn)->kernfs_iattr_rwsem);
395 	if (kernfs_type(kn) == KERNFS_DIR)
396 		kn_parent->dir.subdirs++;
397 	kernfs_inc_rev(kn_parent);
398 	up_write(&kernfs_root(kn)->kernfs_iattr_rwsem);
399 
400 	return 0;
401 }
402 
403 /**
404  *	kernfs_unlink_sibling - unlink kernfs_node from sibling rbtree
405  *	@kn: kernfs_node of interest
406  *
407  *	Try to unlink @kn from its sibling rbtree which starts from
408  *	kn->parent->dir.children.
409  *
410  *	Return: %true if @kn was actually removed,
411  *	%false if @kn wasn't on the rbtree.
412  *
413  *	Locking:
414  *	kernfs_rwsem held exclusive
415  */
kernfs_unlink_sibling(struct kernfs_node * kn)416 static bool kernfs_unlink_sibling(struct kernfs_node *kn)
417 {
418 	struct kernfs_node *kn_parent;
419 
420 	if (RB_EMPTY_NODE(&kn->rb))
421 		return false;
422 
423 	kn_parent = kernfs_parent(kn);
424 	down_write(&kernfs_root(kn)->kernfs_iattr_rwsem);
425 	if (kernfs_type(kn) == KERNFS_DIR)
426 		kn_parent->dir.subdirs--;
427 	kernfs_inc_rev(kn_parent);
428 	up_write(&kernfs_root(kn)->kernfs_iattr_rwsem);
429 
430 	rb_erase(&kn->rb, &kn_parent->dir.children);
431 	RB_CLEAR_NODE(&kn->rb);
432 	return true;
433 }
434 
435 /**
436  *	kernfs_get_active - get an active reference to kernfs_node
437  *	@kn: kernfs_node to get an active reference to
438  *
439  *	Get an active reference of @kn.  This function is noop if @kn
440  *	is %NULL.
441  *
442  *	Return:
443  *	Pointer to @kn on success, %NULL on failure.
444  */
kernfs_get_active(struct kernfs_node * kn)445 struct kernfs_node *kernfs_get_active(struct kernfs_node *kn)
446 {
447 	if (unlikely(!kn))
448 		return NULL;
449 
450 	if (!atomic_inc_unless_negative(&kn->active))
451 		return NULL;
452 
453 	if (kernfs_lockdep(kn))
454 		rwsem_acquire_read(&kn->dep_map, 0, 1, _RET_IP_);
455 	return kn;
456 }
457 
458 /**
459  *	kernfs_put_active - put an active reference to kernfs_node
460  *	@kn: kernfs_node to put an active reference to
461  *
462  *	Put an active reference to @kn.  This function is noop if @kn
463  *	is %NULL.
464  */
kernfs_put_active(struct kernfs_node * kn)465 void kernfs_put_active(struct kernfs_node *kn)
466 {
467 	int v;
468 
469 	if (unlikely(!kn))
470 		return;
471 
472 	if (kernfs_lockdep(kn))
473 		rwsem_release(&kn->dep_map, _RET_IP_);
474 	v = atomic_dec_return(&kn->active);
475 	if (likely(v != KN_DEACTIVATED_BIAS))
476 		return;
477 
478 	wake_up_all(&kernfs_root(kn)->deactivate_waitq);
479 }
480 
481 /**
482  * kernfs_drain - drain kernfs_node
483  * @kn: kernfs_node to drain
484  *
485  * Drain existing usages and nuke all existing mmaps of @kn.  Multiple
486  * removers may invoke this function concurrently on @kn and all will
487  * return after draining is complete.
488  */
kernfs_drain(struct kernfs_node * kn)489 static void kernfs_drain(struct kernfs_node *kn)
490 	__releases(&kernfs_root(kn)->kernfs_rwsem)
491 	__acquires(&kernfs_root(kn)->kernfs_rwsem)
492 {
493 	struct kernfs_root *root = kernfs_root(kn);
494 
495 	lockdep_assert_held_write(&root->kernfs_rwsem);
496 	WARN_ON_ONCE(kernfs_active(kn));
497 
498 	/*
499 	 * Skip draining if already fully drained. This avoids draining and its
500 	 * lockdep annotations for nodes which have never been activated
501 	 * allowing embedding kernfs_remove() in create error paths without
502 	 * worrying about draining.
503 	 */
504 	if (atomic_read(&kn->active) == KN_DEACTIVATED_BIAS &&
505 	    !kernfs_should_drain_open_files(kn))
506 		return;
507 
508 	up_write(&root->kernfs_rwsem);
509 
510 	if (kernfs_lockdep(kn)) {
511 		rwsem_acquire(&kn->dep_map, 0, 0, _RET_IP_);
512 		if (atomic_read(&kn->active) != KN_DEACTIVATED_BIAS)
513 			lock_contended(&kn->dep_map, _RET_IP_);
514 	}
515 
516 	wait_event(root->deactivate_waitq,
517 		   atomic_read(&kn->active) == KN_DEACTIVATED_BIAS);
518 
519 	if (kernfs_lockdep(kn)) {
520 		lock_acquired(&kn->dep_map, _RET_IP_);
521 		rwsem_release(&kn->dep_map, _RET_IP_);
522 	}
523 
524 	if (kernfs_should_drain_open_files(kn))
525 		kernfs_drain_open_files(kn);
526 
527 	down_write(&root->kernfs_rwsem);
528 }
529 
530 /**
531  * kernfs_get - get a reference count on a kernfs_node
532  * @kn: the target kernfs_node
533  */
kernfs_get(struct kernfs_node * kn)534 void kernfs_get(struct kernfs_node *kn)
535 {
536 	if (kn) {
537 		WARN_ON(!atomic_read(&kn->count));
538 		atomic_inc(&kn->count);
539 	}
540 }
541 EXPORT_SYMBOL_GPL(kernfs_get);
542 
kernfs_free_rcu(struct rcu_head * rcu)543 static void kernfs_free_rcu(struct rcu_head *rcu)
544 {
545 	struct kernfs_node *kn = container_of(rcu, struct kernfs_node, rcu);
546 
547 	/* If the whole node goes away, then name can't be used outside */
548 	kfree_const(rcu_access_pointer(kn->name));
549 
550 	if (kn->iattr) {
551 		simple_xattrs_free(&kn->iattr->xattrs, NULL);
552 		kmem_cache_free(kernfs_iattrs_cache, kn->iattr);
553 	}
554 
555 	kmem_cache_free(kernfs_node_cache, kn);
556 }
557 
558 /**
559  * kernfs_put - put a reference count on a kernfs_node
560  * @kn: the target kernfs_node
561  *
562  * Put a reference count of @kn and destroy it if it reached zero.
563  */
kernfs_put(struct kernfs_node * kn)564 void kernfs_put(struct kernfs_node *kn)
565 {
566 	struct kernfs_node *parent;
567 	struct kernfs_root *root;
568 
569 	if (!kn || !atomic_dec_and_test(&kn->count))
570 		return;
571 	root = kernfs_root(kn);
572  repeat:
573 	/*
574 	 * Moving/renaming is always done while holding reference.
575 	 * kn->parent won't change beneath us.
576 	 */
577 	parent = kernfs_parent(kn);
578 
579 	WARN_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS,
580 		  "kernfs_put: %s/%s: released with incorrect active_ref %d\n",
581 		  parent ? rcu_dereference(parent->name) : "",
582 		  rcu_dereference(kn->name), atomic_read(&kn->active));
583 
584 	if (kernfs_type(kn) == KERNFS_LINK)
585 		kernfs_put(kn->symlink.target_kn);
586 
587 	spin_lock(&root->kernfs_idr_lock);
588 	idr_remove(&root->ino_idr, (u32)kernfs_ino(kn));
589 	spin_unlock(&root->kernfs_idr_lock);
590 
591 	call_rcu(&kn->rcu, kernfs_free_rcu);
592 
593 	kn = parent;
594 	if (kn) {
595 		if (atomic_dec_and_test(&kn->count))
596 			goto repeat;
597 	} else {
598 		/* just released the root kn, free @root too */
599 		idr_destroy(&root->ino_idr);
600 		kfree_rcu(root, rcu);
601 	}
602 }
603 EXPORT_SYMBOL_GPL(kernfs_put);
604 
605 /**
606  * kernfs_node_from_dentry - determine kernfs_node associated with a dentry
607  * @dentry: the dentry in question
608  *
609  * Return: the kernfs_node associated with @dentry.  If @dentry is not a
610  * kernfs one, %NULL is returned.
611  *
612  * While the returned kernfs_node will stay accessible as long as @dentry
613  * is accessible, the returned node can be in any state and the caller is
614  * fully responsible for determining what's accessible.
615  */
kernfs_node_from_dentry(struct dentry * dentry)616 struct kernfs_node *kernfs_node_from_dentry(struct dentry *dentry)
617 {
618 	if (dentry->d_sb->s_op == &kernfs_sops)
619 		return kernfs_dentry_node(dentry);
620 	return NULL;
621 }
622 
__kernfs_new_node(struct kernfs_root * root,struct kernfs_node * parent,const char * name,umode_t mode,kuid_t uid,kgid_t gid,unsigned flags)623 static struct kernfs_node *__kernfs_new_node(struct kernfs_root *root,
624 					     struct kernfs_node *parent,
625 					     const char *name, umode_t mode,
626 					     kuid_t uid, kgid_t gid,
627 					     unsigned flags)
628 {
629 	struct kernfs_node *kn;
630 	u32 id_highbits;
631 	int ret;
632 
633 	name = kstrdup_const(name, GFP_KERNEL);
634 	if (!name)
635 		return NULL;
636 
637 	kn = kmem_cache_zalloc(kernfs_node_cache, GFP_KERNEL);
638 	if (!kn)
639 		goto err_out1;
640 
641 	idr_preload(GFP_KERNEL);
642 	spin_lock(&root->kernfs_idr_lock);
643 	ret = idr_alloc_cyclic(&root->ino_idr, kn, 1, 0, GFP_ATOMIC);
644 	if (ret >= 0 && ret < root->last_id_lowbits)
645 		root->id_highbits++;
646 	id_highbits = root->id_highbits;
647 	root->last_id_lowbits = ret;
648 	spin_unlock(&root->kernfs_idr_lock);
649 	idr_preload_end();
650 	if (ret < 0)
651 		goto err_out2;
652 
653 	kn->id = (u64)id_highbits << 32 | ret;
654 
655 	atomic_set(&kn->count, 1);
656 	atomic_set(&kn->active, KN_DEACTIVATED_BIAS);
657 	RB_CLEAR_NODE(&kn->rb);
658 
659 	rcu_assign_pointer(kn->name, name);
660 	kn->mode = mode;
661 	kn->flags = flags;
662 
663 	if (!uid_eq(uid, GLOBAL_ROOT_UID) || !gid_eq(gid, GLOBAL_ROOT_GID)) {
664 		struct iattr iattr = {
665 			.ia_valid = ATTR_UID | ATTR_GID,
666 			.ia_uid = uid,
667 			.ia_gid = gid,
668 		};
669 
670 		ret = __kernfs_setattr(kn, &iattr);
671 		if (ret < 0)
672 			goto err_out3;
673 	}
674 
675 	if (parent) {
676 		ret = security_kernfs_init_security(parent, kn);
677 		if (ret)
678 			goto err_out3;
679 	}
680 
681 	return kn;
682 
683  err_out3:
684 	spin_lock(&root->kernfs_idr_lock);
685 	idr_remove(&root->ino_idr, (u32)kernfs_ino(kn));
686 	spin_unlock(&root->kernfs_idr_lock);
687  err_out2:
688 	kmem_cache_free(kernfs_node_cache, kn);
689  err_out1:
690 	kfree_const(name);
691 	return NULL;
692 }
693 
kernfs_new_node(struct kernfs_node * parent,const char * name,umode_t mode,kuid_t uid,kgid_t gid,unsigned flags)694 struct kernfs_node *kernfs_new_node(struct kernfs_node *parent,
695 				    const char *name, umode_t mode,
696 				    kuid_t uid, kgid_t gid,
697 				    unsigned flags)
698 {
699 	struct kernfs_node *kn;
700 
701 	if (parent->mode & S_ISGID) {
702 		/* this code block imitates inode_init_owner() for
703 		 * kernfs
704 		 */
705 
706 		if (parent->iattr)
707 			gid = parent->iattr->ia_gid;
708 
709 		if (flags & KERNFS_DIR)
710 			mode |= S_ISGID;
711 	}
712 
713 	kn = __kernfs_new_node(kernfs_root(parent), parent,
714 			       name, mode, uid, gid, flags);
715 	if (kn) {
716 		kernfs_get(parent);
717 		rcu_assign_pointer(kn->__parent, parent);
718 	}
719 	return kn;
720 }
721 
722 /*
723  * kernfs_find_and_get_node_by_id - get kernfs_node from node id
724  * @root: the kernfs root
725  * @id: the target node id
726  *
727  * @id's lower 32bits encode ino and upper gen.  If the gen portion is
728  * zero, all generations are matched.
729  *
730  * Return: %NULL on failure,
731  * otherwise a kernfs node with reference counter incremented.
732  */
kernfs_find_and_get_node_by_id(struct kernfs_root * root,u64 id)733 struct kernfs_node *kernfs_find_and_get_node_by_id(struct kernfs_root *root,
734 						   u64 id)
735 {
736 	struct kernfs_node *kn;
737 	ino_t ino = kernfs_id_ino(id);
738 	u32 gen = kernfs_id_gen(id);
739 
740 	rcu_read_lock();
741 
742 	kn = idr_find(&root->ino_idr, (u32)ino);
743 	if (!kn)
744 		goto err_unlock;
745 
746 	if (sizeof(ino_t) >= sizeof(u64)) {
747 		/* we looked up with the low 32bits, compare the whole */
748 		if (kernfs_ino(kn) != ino)
749 			goto err_unlock;
750 	} else {
751 		/* 0 matches all generations */
752 		if (unlikely(gen && kernfs_gen(kn) != gen))
753 			goto err_unlock;
754 	}
755 
756 	/*
757 	 * We should fail if @kn has never been activated and guarantee success
758 	 * if the caller knows that @kn is active. Both can be achieved by
759 	 * __kernfs_active() which tests @kn->active without kernfs_rwsem.
760 	 */
761 	if (unlikely(!__kernfs_active(kn) || !atomic_inc_not_zero(&kn->count)))
762 		goto err_unlock;
763 
764 	rcu_read_unlock();
765 	return kn;
766 err_unlock:
767 	rcu_read_unlock();
768 	return NULL;
769 }
770 
771 /**
772  *	kernfs_add_one - add kernfs_node to parent without warning
773  *	@kn: kernfs_node to be added
774  *
775  *	The caller must already have initialized @kn->parent.  This
776  *	function increments nlink of the parent's inode if @kn is a
777  *	directory and link into the children list of the parent.
778  *
779  *	Return:
780  *	%0 on success, -EEXIST if entry with the given name already
781  *	exists.
782  */
kernfs_add_one(struct kernfs_node * kn)783 int kernfs_add_one(struct kernfs_node *kn)
784 {
785 	struct kernfs_root *root = kernfs_root(kn);
786 	struct kernfs_iattrs *ps_iattr;
787 	struct kernfs_node *parent;
788 	bool has_ns;
789 	int ret;
790 
791 	down_write(&root->kernfs_rwsem);
792 	parent = kernfs_parent(kn);
793 
794 	ret = -EINVAL;
795 	has_ns = kernfs_ns_enabled(parent);
796 	if (WARN(has_ns != (bool)kn->ns, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
797 		 has_ns ? "required" : "invalid",
798 		 kernfs_rcu_name(parent), kernfs_rcu_name(kn)))
799 		goto out_unlock;
800 
801 	if (kernfs_type(parent) != KERNFS_DIR)
802 		goto out_unlock;
803 
804 	ret = -ENOENT;
805 	if (parent->flags & (KERNFS_REMOVING | KERNFS_EMPTY_DIR))
806 		goto out_unlock;
807 
808 	kn->hash = kernfs_name_hash(kernfs_rcu_name(kn), kn->ns);
809 
810 	ret = kernfs_link_sibling(kn);
811 	if (ret)
812 		goto out_unlock;
813 
814 	/* Update timestamps on the parent */
815 	down_write(&root->kernfs_iattr_rwsem);
816 
817 	ps_iattr = parent->iattr;
818 	if (ps_iattr) {
819 		ktime_get_real_ts64(&ps_iattr->ia_ctime);
820 		ps_iattr->ia_mtime = ps_iattr->ia_ctime;
821 	}
822 
823 	up_write(&root->kernfs_iattr_rwsem);
824 	up_write(&root->kernfs_rwsem);
825 
826 	/*
827 	 * Activate the new node unless CREATE_DEACTIVATED is requested.
828 	 * If not activated here, the kernfs user is responsible for
829 	 * activating the node with kernfs_activate().  A node which hasn't
830 	 * been activated is not visible to userland and its removal won't
831 	 * trigger deactivation.
832 	 */
833 	if (!(kernfs_root(kn)->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
834 		kernfs_activate(kn);
835 	return 0;
836 
837 out_unlock:
838 	up_write(&root->kernfs_rwsem);
839 	return ret;
840 }
841 
842 /**
843  * kernfs_find_ns - find kernfs_node with the given name
844  * @parent: kernfs_node to search under
845  * @name: name to look for
846  * @ns: the namespace tag to use
847  *
848  * Look for kernfs_node with name @name under @parent.
849  *
850  * Return: pointer to the found kernfs_node on success, %NULL on failure.
851  */
kernfs_find_ns(struct kernfs_node * parent,const unsigned char * name,const void * ns)852 static struct kernfs_node *kernfs_find_ns(struct kernfs_node *parent,
853 					  const unsigned char *name,
854 					  const void *ns)
855 {
856 	struct rb_node *node = parent->dir.children.rb_node;
857 	bool has_ns = kernfs_ns_enabled(parent);
858 	unsigned int hash;
859 
860 	lockdep_assert_held(&kernfs_root(parent)->kernfs_rwsem);
861 
862 	if (has_ns != (bool)ns) {
863 		WARN(1, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
864 		     has_ns ? "required" : "invalid", kernfs_rcu_name(parent), name);
865 		return NULL;
866 	}
867 
868 	hash = kernfs_name_hash(name, ns);
869 	while (node) {
870 		struct kernfs_node *kn;
871 		int result;
872 
873 		kn = rb_to_kn(node);
874 		result = kernfs_name_compare(hash, name, ns, kn);
875 		if (result < 0)
876 			node = node->rb_left;
877 		else if (result > 0)
878 			node = node->rb_right;
879 		else
880 			return kn;
881 	}
882 	return NULL;
883 }
884 
kernfs_walk_ns(struct kernfs_node * parent,const unsigned char * path,const void * ns)885 static struct kernfs_node *kernfs_walk_ns(struct kernfs_node *parent,
886 					  const unsigned char *path,
887 					  const void *ns)
888 {
889 	ssize_t len;
890 	char *p, *name;
891 
892 	lockdep_assert_held_read(&kernfs_root(parent)->kernfs_rwsem);
893 
894 	spin_lock_irq(&kernfs_pr_cont_lock);
895 
896 	len = strscpy(kernfs_pr_cont_buf, path, sizeof(kernfs_pr_cont_buf));
897 
898 	if (len < 0) {
899 		spin_unlock_irq(&kernfs_pr_cont_lock);
900 		return NULL;
901 	}
902 
903 	p = kernfs_pr_cont_buf;
904 
905 	while ((name = strsep(&p, "/")) && parent) {
906 		if (*name == '\0')
907 			continue;
908 		parent = kernfs_find_ns(parent, name, ns);
909 	}
910 
911 	spin_unlock_irq(&kernfs_pr_cont_lock);
912 
913 	return parent;
914 }
915 
916 /**
917  * kernfs_find_and_get_ns - find and get kernfs_node with the given name
918  * @parent: kernfs_node to search under
919  * @name: name to look for
920  * @ns: the namespace tag to use
921  *
922  * Look for kernfs_node with name @name under @parent and get a reference
923  * if found.  This function may sleep.
924  *
925  * Return: pointer to the found kernfs_node on success, %NULL on failure.
926  */
kernfs_find_and_get_ns(struct kernfs_node * parent,const char * name,const void * ns)927 struct kernfs_node *kernfs_find_and_get_ns(struct kernfs_node *parent,
928 					   const char *name, const void *ns)
929 {
930 	struct kernfs_node *kn;
931 	struct kernfs_root *root = kernfs_root(parent);
932 
933 	down_read(&root->kernfs_rwsem);
934 	kn = kernfs_find_ns(parent, name, ns);
935 	kernfs_get(kn);
936 	up_read(&root->kernfs_rwsem);
937 
938 	return kn;
939 }
940 EXPORT_SYMBOL_GPL(kernfs_find_and_get_ns);
941 
942 /**
943  * kernfs_walk_and_get_ns - find and get kernfs_node with the given path
944  * @parent: kernfs_node to search under
945  * @path: path to look for
946  * @ns: the namespace tag to use
947  *
948  * Look for kernfs_node with path @path under @parent and get a reference
949  * if found.  This function may sleep.
950  *
951  * Return: pointer to the found kernfs_node on success, %NULL on failure.
952  */
kernfs_walk_and_get_ns(struct kernfs_node * parent,const char * path,const void * ns)953 struct kernfs_node *kernfs_walk_and_get_ns(struct kernfs_node *parent,
954 					   const char *path, const void *ns)
955 {
956 	struct kernfs_node *kn;
957 	struct kernfs_root *root = kernfs_root(parent);
958 
959 	down_read(&root->kernfs_rwsem);
960 	kn = kernfs_walk_ns(parent, path, ns);
961 	kernfs_get(kn);
962 	up_read(&root->kernfs_rwsem);
963 
964 	return kn;
965 }
966 
kernfs_root_flags(struct kernfs_node * kn)967 unsigned int kernfs_root_flags(struct kernfs_node *kn)
968 {
969 	return kernfs_root(kn)->flags;
970 }
971 
972 /**
973  * kernfs_create_root - create a new kernfs hierarchy
974  * @scops: optional syscall operations for the hierarchy
975  * @flags: KERNFS_ROOT_* flags
976  * @priv: opaque data associated with the new directory
977  *
978  * Return: the root of the new hierarchy on success, ERR_PTR() value on
979  * failure.
980  */
kernfs_create_root(struct kernfs_syscall_ops * scops,unsigned int flags,void * priv)981 struct kernfs_root *kernfs_create_root(struct kernfs_syscall_ops *scops,
982 				       unsigned int flags, void *priv)
983 {
984 	struct kernfs_root *root;
985 	struct kernfs_node *kn;
986 
987 	root = kzalloc(sizeof(*root), GFP_KERNEL);
988 	if (!root)
989 		return ERR_PTR(-ENOMEM);
990 
991 	idr_init(&root->ino_idr);
992 	spin_lock_init(&root->kernfs_idr_lock);
993 	init_rwsem(&root->kernfs_rwsem);
994 	init_rwsem(&root->kernfs_iattr_rwsem);
995 	init_rwsem(&root->kernfs_supers_rwsem);
996 	INIT_LIST_HEAD(&root->supers);
997 	rwlock_init(&root->kernfs_rename_lock);
998 
999 	/*
1000 	 * On 64bit ino setups, id is ino.  On 32bit, low 32bits are ino.
1001 	 * High bits generation.  The starting value for both ino and
1002 	 * genenration is 1.  Initialize upper 32bit allocation
1003 	 * accordingly.
1004 	 */
1005 	if (sizeof(ino_t) >= sizeof(u64))
1006 		root->id_highbits = 0;
1007 	else
1008 		root->id_highbits = 1;
1009 
1010 	kn = __kernfs_new_node(root, NULL, "", S_IFDIR | S_IRUGO | S_IXUGO,
1011 			       GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
1012 			       KERNFS_DIR);
1013 	if (!kn) {
1014 		idr_destroy(&root->ino_idr);
1015 		kfree(root);
1016 		return ERR_PTR(-ENOMEM);
1017 	}
1018 
1019 	kn->priv = priv;
1020 	kn->dir.root = root;
1021 
1022 	root->syscall_ops = scops;
1023 	root->flags = flags;
1024 	root->kn = kn;
1025 	init_waitqueue_head(&root->deactivate_waitq);
1026 
1027 	if (!(root->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
1028 		kernfs_activate(kn);
1029 
1030 	return root;
1031 }
1032 
1033 /**
1034  * kernfs_destroy_root - destroy a kernfs hierarchy
1035  * @root: root of the hierarchy to destroy
1036  *
1037  * Destroy the hierarchy anchored at @root by removing all existing
1038  * directories and destroying @root.
1039  */
kernfs_destroy_root(struct kernfs_root * root)1040 void kernfs_destroy_root(struct kernfs_root *root)
1041 {
1042 	/*
1043 	 *  kernfs_remove holds kernfs_rwsem from the root so the root
1044 	 *  shouldn't be freed during the operation.
1045 	 */
1046 	kernfs_get(root->kn);
1047 	kernfs_remove(root->kn);
1048 	kernfs_put(root->kn); /* will also free @root */
1049 }
1050 
1051 /**
1052  * kernfs_root_to_node - return the kernfs_node associated with a kernfs_root
1053  * @root: root to use to lookup
1054  *
1055  * Return: @root's kernfs_node
1056  */
kernfs_root_to_node(struct kernfs_root * root)1057 struct kernfs_node *kernfs_root_to_node(struct kernfs_root *root)
1058 {
1059 	return root->kn;
1060 }
1061 
1062 /**
1063  * kernfs_create_dir_ns - create a directory
1064  * @parent: parent in which to create a new directory
1065  * @name: name of the new directory
1066  * @mode: mode of the new directory
1067  * @uid: uid of the new directory
1068  * @gid: gid of the new directory
1069  * @priv: opaque data associated with the new directory
1070  * @ns: optional namespace tag of the directory
1071  *
1072  * Return: the created node on success, ERR_PTR() value on failure.
1073  */
kernfs_create_dir_ns(struct kernfs_node * parent,const char * name,umode_t mode,kuid_t uid,kgid_t gid,void * priv,const void * ns)1074 struct kernfs_node *kernfs_create_dir_ns(struct kernfs_node *parent,
1075 					 const char *name, umode_t mode,
1076 					 kuid_t uid, kgid_t gid,
1077 					 void *priv, const void *ns)
1078 {
1079 	struct kernfs_node *kn;
1080 	int rc;
1081 
1082 	/* allocate */
1083 	kn = kernfs_new_node(parent, name, mode | S_IFDIR,
1084 			     uid, gid, KERNFS_DIR);
1085 	if (!kn)
1086 		return ERR_PTR(-ENOMEM);
1087 
1088 	kn->dir.root = parent->dir.root;
1089 	kn->ns = ns;
1090 	kn->priv = priv;
1091 
1092 	/* link in */
1093 	rc = kernfs_add_one(kn);
1094 	if (!rc)
1095 		return kn;
1096 
1097 	kernfs_put(kn);
1098 	return ERR_PTR(rc);
1099 }
1100 
1101 /**
1102  * kernfs_create_empty_dir - create an always empty directory
1103  * @parent: parent in which to create a new directory
1104  * @name: name of the new directory
1105  *
1106  * Return: the created node on success, ERR_PTR() value on failure.
1107  */
kernfs_create_empty_dir(struct kernfs_node * parent,const char * name)1108 struct kernfs_node *kernfs_create_empty_dir(struct kernfs_node *parent,
1109 					    const char *name)
1110 {
1111 	struct kernfs_node *kn;
1112 	int rc;
1113 
1114 	/* allocate */
1115 	kn = kernfs_new_node(parent, name, S_IRUGO|S_IXUGO|S_IFDIR,
1116 			     GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, KERNFS_DIR);
1117 	if (!kn)
1118 		return ERR_PTR(-ENOMEM);
1119 
1120 	kn->flags |= KERNFS_EMPTY_DIR;
1121 	kn->dir.root = parent->dir.root;
1122 	kn->ns = NULL;
1123 	kn->priv = NULL;
1124 
1125 	/* link in */
1126 	rc = kernfs_add_one(kn);
1127 	if (!rc)
1128 		return kn;
1129 
1130 	kernfs_put(kn);
1131 	return ERR_PTR(rc);
1132 }
1133 
kernfs_dop_revalidate(struct inode * dir,const struct qstr * name,struct dentry * dentry,unsigned int flags)1134 static int kernfs_dop_revalidate(struct inode *dir, const struct qstr *name,
1135 				 struct dentry *dentry, unsigned int flags)
1136 {
1137 	struct kernfs_node *kn, *parent;
1138 	struct kernfs_root *root;
1139 
1140 	if (flags & LOOKUP_RCU)
1141 		return -ECHILD;
1142 
1143 	/* Negative hashed dentry? */
1144 	if (d_really_is_negative(dentry)) {
1145 		/* If the kernfs parent node has changed discard and
1146 		 * proceed to ->lookup.
1147 		 *
1148 		 * There's nothing special needed here when getting the
1149 		 * dentry parent, even if a concurrent rename is in
1150 		 * progress. That's because the dentry is negative so
1151 		 * it can only be the target of the rename and it will
1152 		 * be doing a d_move() not a replace. Consequently the
1153 		 * dentry d_parent won't change over the d_move().
1154 		 *
1155 		 * Also kernfs negative dentries transitioning from
1156 		 * negative to positive during revalidate won't happen
1157 		 * because they are invalidated on containing directory
1158 		 * changes and the lookup re-done so that a new positive
1159 		 * dentry can be properly created.
1160 		 */
1161 		root = kernfs_root_from_sb(dentry->d_sb);
1162 		down_read(&root->kernfs_rwsem);
1163 		parent = kernfs_dentry_node(dentry->d_parent);
1164 		if (parent) {
1165 			if (kernfs_dir_changed(parent, dentry)) {
1166 				up_read(&root->kernfs_rwsem);
1167 				return 0;
1168 			}
1169 		}
1170 		up_read(&root->kernfs_rwsem);
1171 
1172 		/* The kernfs parent node hasn't changed, leave the
1173 		 * dentry negative and return success.
1174 		 */
1175 		return 1;
1176 	}
1177 
1178 	kn = kernfs_dentry_node(dentry);
1179 	root = kernfs_root(kn);
1180 	down_read(&root->kernfs_rwsem);
1181 
1182 	/* The kernfs node has been deactivated */
1183 	if (!kernfs_active(kn))
1184 		goto out_bad;
1185 
1186 	parent = kernfs_parent(kn);
1187 	/* The kernfs node has been moved? */
1188 	if (kernfs_dentry_node(dentry->d_parent) != parent)
1189 		goto out_bad;
1190 
1191 	/* The kernfs node has been renamed */
1192 	if (strcmp(dentry->d_name.name, kernfs_rcu_name(kn)) != 0)
1193 		goto out_bad;
1194 
1195 	/* The kernfs node has been moved to a different namespace */
1196 	if (parent && kernfs_ns_enabled(parent) &&
1197 	    kernfs_info(dentry->d_sb)->ns != kn->ns)
1198 		goto out_bad;
1199 
1200 	up_read(&root->kernfs_rwsem);
1201 	return 1;
1202 out_bad:
1203 	up_read(&root->kernfs_rwsem);
1204 	return 0;
1205 }
1206 
1207 const struct dentry_operations kernfs_dops = {
1208 	.d_revalidate	= kernfs_dop_revalidate,
1209 };
1210 
kernfs_iop_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)1211 static struct dentry *kernfs_iop_lookup(struct inode *dir,
1212 					struct dentry *dentry,
1213 					unsigned int flags)
1214 {
1215 	struct kernfs_node *parent = dir->i_private;
1216 	struct kernfs_node *kn;
1217 	struct kernfs_root *root;
1218 	struct inode *inode = NULL;
1219 	const void *ns = NULL;
1220 
1221 	root = kernfs_root(parent);
1222 	down_read(&root->kernfs_rwsem);
1223 	if (kernfs_ns_enabled(parent))
1224 		ns = kernfs_info(dir->i_sb)->ns;
1225 
1226 	kn = kernfs_find_ns(parent, dentry->d_name.name, ns);
1227 	/* attach dentry and inode */
1228 	if (kn) {
1229 		/* Inactive nodes are invisible to the VFS so don't
1230 		 * create a negative.
1231 		 */
1232 		if (!kernfs_active(kn)) {
1233 			up_read(&root->kernfs_rwsem);
1234 			return NULL;
1235 		}
1236 		inode = kernfs_get_inode(dir->i_sb, kn);
1237 		if (!inode)
1238 			inode = ERR_PTR(-ENOMEM);
1239 	}
1240 	/*
1241 	 * Needed for negative dentry validation.
1242 	 * The negative dentry can be created in kernfs_iop_lookup()
1243 	 * or transforms from positive dentry in dentry_unlink_inode()
1244 	 * called from vfs_rmdir().
1245 	 */
1246 	if (!IS_ERR(inode))
1247 		kernfs_set_rev(parent, dentry);
1248 	up_read(&root->kernfs_rwsem);
1249 
1250 	/* instantiate and hash (possibly negative) dentry */
1251 	return d_splice_alias(inode, dentry);
1252 }
1253 
kernfs_iop_mkdir(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode)1254 static struct dentry *kernfs_iop_mkdir(struct mnt_idmap *idmap,
1255 				       struct inode *dir, struct dentry *dentry,
1256 				       umode_t mode)
1257 {
1258 	struct kernfs_node *parent = dir->i_private;
1259 	struct kernfs_syscall_ops *scops = kernfs_root(parent)->syscall_ops;
1260 	int ret;
1261 
1262 	if (!scops || !scops->mkdir)
1263 		return ERR_PTR(-EPERM);
1264 
1265 	if (!kernfs_get_active(parent))
1266 		return ERR_PTR(-ENODEV);
1267 
1268 	ret = scops->mkdir(parent, dentry->d_name.name, mode);
1269 
1270 	kernfs_put_active(parent);
1271 	return ERR_PTR(ret);
1272 }
1273 
kernfs_iop_rmdir(struct inode * dir,struct dentry * dentry)1274 static int kernfs_iop_rmdir(struct inode *dir, struct dentry *dentry)
1275 {
1276 	struct kernfs_node *kn  = kernfs_dentry_node(dentry);
1277 	struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
1278 	int ret;
1279 
1280 	if (!scops || !scops->rmdir)
1281 		return -EPERM;
1282 
1283 	if (!kernfs_get_active(kn))
1284 		return -ENODEV;
1285 
1286 	ret = scops->rmdir(kn);
1287 
1288 	kernfs_put_active(kn);
1289 	return ret;
1290 }
1291 
kernfs_iop_rename(struct mnt_idmap * idmap,struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)1292 static int kernfs_iop_rename(struct mnt_idmap *idmap,
1293 			     struct inode *old_dir, struct dentry *old_dentry,
1294 			     struct inode *new_dir, struct dentry *new_dentry,
1295 			     unsigned int flags)
1296 {
1297 	struct kernfs_node *kn = kernfs_dentry_node(old_dentry);
1298 	struct kernfs_node *new_parent = new_dir->i_private;
1299 	struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
1300 	int ret;
1301 
1302 	if (flags)
1303 		return -EINVAL;
1304 
1305 	if (!scops || !scops->rename)
1306 		return -EPERM;
1307 
1308 	if (!kernfs_get_active(kn))
1309 		return -ENODEV;
1310 
1311 	if (!kernfs_get_active(new_parent)) {
1312 		kernfs_put_active(kn);
1313 		return -ENODEV;
1314 	}
1315 
1316 	ret = scops->rename(kn, new_parent, new_dentry->d_name.name);
1317 
1318 	kernfs_put_active(new_parent);
1319 	kernfs_put_active(kn);
1320 	return ret;
1321 }
1322 
1323 const struct inode_operations kernfs_dir_iops = {
1324 	.lookup		= kernfs_iop_lookup,
1325 	.permission	= kernfs_iop_permission,
1326 	.setattr	= kernfs_iop_setattr,
1327 	.getattr	= kernfs_iop_getattr,
1328 	.listxattr	= kernfs_iop_listxattr,
1329 
1330 	.mkdir		= kernfs_iop_mkdir,
1331 	.rmdir		= kernfs_iop_rmdir,
1332 	.rename		= kernfs_iop_rename,
1333 };
1334 
kernfs_leftmost_descendant(struct kernfs_node * pos)1335 static struct kernfs_node *kernfs_leftmost_descendant(struct kernfs_node *pos)
1336 {
1337 	struct kernfs_node *last;
1338 
1339 	while (true) {
1340 		struct rb_node *rbn;
1341 
1342 		last = pos;
1343 
1344 		if (kernfs_type(pos) != KERNFS_DIR)
1345 			break;
1346 
1347 		rbn = rb_first(&pos->dir.children);
1348 		if (!rbn)
1349 			break;
1350 
1351 		pos = rb_to_kn(rbn);
1352 	}
1353 
1354 	return last;
1355 }
1356 
1357 /**
1358  * kernfs_next_descendant_post - find the next descendant for post-order walk
1359  * @pos: the current position (%NULL to initiate traversal)
1360  * @root: kernfs_node whose descendants to walk
1361  *
1362  * Find the next descendant to visit for post-order traversal of @root's
1363  * descendants.  @root is included in the iteration and the last node to be
1364  * visited.
1365  *
1366  * Return: the next descendant to visit or %NULL when done.
1367  */
kernfs_next_descendant_post(struct kernfs_node * pos,struct kernfs_node * root)1368 static struct kernfs_node *kernfs_next_descendant_post(struct kernfs_node *pos,
1369 						       struct kernfs_node *root)
1370 {
1371 	struct rb_node *rbn;
1372 
1373 	lockdep_assert_held_write(&kernfs_root(root)->kernfs_rwsem);
1374 
1375 	/* if first iteration, visit leftmost descendant which may be root */
1376 	if (!pos)
1377 		return kernfs_leftmost_descendant(root);
1378 
1379 	/* if we visited @root, we're done */
1380 	if (pos == root)
1381 		return NULL;
1382 
1383 	/* if there's an unvisited sibling, visit its leftmost descendant */
1384 	rbn = rb_next(&pos->rb);
1385 	if (rbn)
1386 		return kernfs_leftmost_descendant(rb_to_kn(rbn));
1387 
1388 	/* no sibling left, visit parent */
1389 	return kernfs_parent(pos);
1390 }
1391 
kernfs_activate_one(struct kernfs_node * kn)1392 static void kernfs_activate_one(struct kernfs_node *kn)
1393 {
1394 	lockdep_assert_held_write(&kernfs_root(kn)->kernfs_rwsem);
1395 
1396 	kn->flags |= KERNFS_ACTIVATED;
1397 
1398 	if (kernfs_active(kn) || (kn->flags & (KERNFS_HIDDEN | KERNFS_REMOVING)))
1399 		return;
1400 
1401 	WARN_ON_ONCE(rcu_access_pointer(kn->__parent) && RB_EMPTY_NODE(&kn->rb));
1402 	WARN_ON_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS);
1403 
1404 	atomic_sub(KN_DEACTIVATED_BIAS, &kn->active);
1405 }
1406 
1407 /**
1408  * kernfs_activate - activate a node which started deactivated
1409  * @kn: kernfs_node whose subtree is to be activated
1410  *
1411  * If the root has KERNFS_ROOT_CREATE_DEACTIVATED set, a newly created node
1412  * needs to be explicitly activated.  A node which hasn't been activated
1413  * isn't visible to userland and deactivation is skipped during its
1414  * removal.  This is useful to construct atomic init sequences where
1415  * creation of multiple nodes should either succeed or fail atomically.
1416  *
1417  * The caller is responsible for ensuring that this function is not called
1418  * after kernfs_remove*() is invoked on @kn.
1419  */
kernfs_activate(struct kernfs_node * kn)1420 void kernfs_activate(struct kernfs_node *kn)
1421 {
1422 	struct kernfs_node *pos;
1423 	struct kernfs_root *root = kernfs_root(kn);
1424 
1425 	down_write(&root->kernfs_rwsem);
1426 
1427 	pos = NULL;
1428 	while ((pos = kernfs_next_descendant_post(pos, kn)))
1429 		kernfs_activate_one(pos);
1430 
1431 	up_write(&root->kernfs_rwsem);
1432 }
1433 
1434 /**
1435  * kernfs_show - show or hide a node
1436  * @kn: kernfs_node to show or hide
1437  * @show: whether to show or hide
1438  *
1439  * If @show is %false, @kn is marked hidden and deactivated. A hidden node is
1440  * ignored in future activaitons. If %true, the mark is removed and activation
1441  * state is restored. This function won't implicitly activate a new node in a
1442  * %KERNFS_ROOT_CREATE_DEACTIVATED root which hasn't been activated yet.
1443  *
1444  * To avoid recursion complexities, directories aren't supported for now.
1445  */
kernfs_show(struct kernfs_node * kn,bool show)1446 void kernfs_show(struct kernfs_node *kn, bool show)
1447 {
1448 	struct kernfs_root *root = kernfs_root(kn);
1449 
1450 	if (WARN_ON_ONCE(kernfs_type(kn) == KERNFS_DIR))
1451 		return;
1452 
1453 	down_write(&root->kernfs_rwsem);
1454 
1455 	if (show) {
1456 		kn->flags &= ~KERNFS_HIDDEN;
1457 		if (kn->flags & KERNFS_ACTIVATED)
1458 			kernfs_activate_one(kn);
1459 	} else {
1460 		kn->flags |= KERNFS_HIDDEN;
1461 		if (kernfs_active(kn))
1462 			atomic_add(KN_DEACTIVATED_BIAS, &kn->active);
1463 		kernfs_drain(kn);
1464 	}
1465 
1466 	up_write(&root->kernfs_rwsem);
1467 }
1468 
__kernfs_remove(struct kernfs_node * kn)1469 static void __kernfs_remove(struct kernfs_node *kn)
1470 {
1471 	struct kernfs_node *pos, *parent;
1472 
1473 	/* Short-circuit if non-root @kn has already finished removal. */
1474 	if (!kn)
1475 		return;
1476 
1477 	lockdep_assert_held_write(&kernfs_root(kn)->kernfs_rwsem);
1478 
1479 	/*
1480 	 * This is for kernfs_remove_self() which plays with active ref
1481 	 * after removal.
1482 	 */
1483 	if (kernfs_parent(kn) && RB_EMPTY_NODE(&kn->rb))
1484 		return;
1485 
1486 	pr_debug("kernfs %s: removing\n", kernfs_rcu_name(kn));
1487 
1488 	/* prevent new usage by marking all nodes removing and deactivating */
1489 	pos = NULL;
1490 	while ((pos = kernfs_next_descendant_post(pos, kn))) {
1491 		pos->flags |= KERNFS_REMOVING;
1492 		if (kernfs_active(pos))
1493 			atomic_add(KN_DEACTIVATED_BIAS, &pos->active);
1494 	}
1495 
1496 	/* deactivate and unlink the subtree node-by-node */
1497 	do {
1498 		pos = kernfs_leftmost_descendant(kn);
1499 
1500 		/*
1501 		 * kernfs_drain() may drop kernfs_rwsem temporarily and @pos's
1502 		 * base ref could have been put by someone else by the time
1503 		 * the function returns.  Make sure it doesn't go away
1504 		 * underneath us.
1505 		 */
1506 		kernfs_get(pos);
1507 
1508 		kernfs_drain(pos);
1509 		parent = kernfs_parent(pos);
1510 		/*
1511 		 * kernfs_unlink_sibling() succeeds once per node.  Use it
1512 		 * to decide who's responsible for cleanups.
1513 		 */
1514 		if (!parent || kernfs_unlink_sibling(pos)) {
1515 			struct kernfs_iattrs *ps_iattr =
1516 				parent ? parent->iattr : NULL;
1517 
1518 			/* update timestamps on the parent */
1519 			down_write(&kernfs_root(kn)->kernfs_iattr_rwsem);
1520 
1521 			if (ps_iattr) {
1522 				ktime_get_real_ts64(&ps_iattr->ia_ctime);
1523 				ps_iattr->ia_mtime = ps_iattr->ia_ctime;
1524 			}
1525 
1526 			up_write(&kernfs_root(kn)->kernfs_iattr_rwsem);
1527 			kernfs_put(pos);
1528 		}
1529 
1530 		kernfs_put(pos);
1531 	} while (pos != kn);
1532 }
1533 
1534 /**
1535  * kernfs_remove - remove a kernfs_node recursively
1536  * @kn: the kernfs_node to remove
1537  *
1538  * Remove @kn along with all its subdirectories and files.
1539  */
kernfs_remove(struct kernfs_node * kn)1540 void kernfs_remove(struct kernfs_node *kn)
1541 {
1542 	struct kernfs_root *root;
1543 
1544 	if (!kn)
1545 		return;
1546 
1547 	root = kernfs_root(kn);
1548 
1549 	down_write(&root->kernfs_rwsem);
1550 	__kernfs_remove(kn);
1551 	up_write(&root->kernfs_rwsem);
1552 }
1553 
1554 /**
1555  * kernfs_break_active_protection - break out of active protection
1556  * @kn: the self kernfs_node
1557  *
1558  * The caller must be running off of a kernfs operation which is invoked
1559  * with an active reference - e.g. one of kernfs_ops.  Each invocation of
1560  * this function must also be matched with an invocation of
1561  * kernfs_unbreak_active_protection().
1562  *
1563  * This function releases the active reference of @kn the caller is
1564  * holding.  Once this function is called, @kn may be removed at any point
1565  * and the caller is solely responsible for ensuring that the objects it
1566  * dereferences are accessible.
1567  */
kernfs_break_active_protection(struct kernfs_node * kn)1568 void kernfs_break_active_protection(struct kernfs_node *kn)
1569 {
1570 	/*
1571 	 * Take out ourself out of the active ref dependency chain.  If
1572 	 * we're called without an active ref, lockdep will complain.
1573 	 */
1574 	kernfs_put_active(kn);
1575 }
1576 
1577 /**
1578  * kernfs_unbreak_active_protection - undo kernfs_break_active_protection()
1579  * @kn: the self kernfs_node
1580  *
1581  * If kernfs_break_active_protection() was called, this function must be
1582  * invoked before finishing the kernfs operation.  Note that while this
1583  * function restores the active reference, it doesn't and can't actually
1584  * restore the active protection - @kn may already or be in the process of
1585  * being drained and removed.  Once kernfs_break_active_protection() is
1586  * invoked, that protection is irreversibly gone for the kernfs operation
1587  * instance.
1588  *
1589  * While this function may be called at any point after
1590  * kernfs_break_active_protection() is invoked, its most useful location
1591  * would be right before the enclosing kernfs operation returns.
1592  */
kernfs_unbreak_active_protection(struct kernfs_node * kn)1593 void kernfs_unbreak_active_protection(struct kernfs_node *kn)
1594 {
1595 	/*
1596 	 * @kn->active could be in any state; however, the increment we do
1597 	 * here will be undone as soon as the enclosing kernfs operation
1598 	 * finishes and this temporary bump can't break anything.  If @kn
1599 	 * is alive, nothing changes.  If @kn is being deactivated, the
1600 	 * soon-to-follow put will either finish deactivation or restore
1601 	 * deactivated state.  If @kn is already removed, the temporary
1602 	 * bump is guaranteed to be gone before @kn is released.
1603 	 */
1604 	atomic_inc(&kn->active);
1605 	if (kernfs_lockdep(kn))
1606 		rwsem_acquire(&kn->dep_map, 0, 1, _RET_IP_);
1607 }
1608 
1609 /**
1610  * kernfs_remove_self - remove a kernfs_node from its own method
1611  * @kn: the self kernfs_node to remove
1612  *
1613  * The caller must be running off of a kernfs operation which is invoked
1614  * with an active reference - e.g. one of kernfs_ops.  This can be used to
1615  * implement a file operation which deletes itself.
1616  *
1617  * For example, the "delete" file for a sysfs device directory can be
1618  * implemented by invoking kernfs_remove_self() on the "delete" file
1619  * itself.  This function breaks the circular dependency of trying to
1620  * deactivate self while holding an active ref itself.  It isn't necessary
1621  * to modify the usual removal path to use kernfs_remove_self().  The
1622  * "delete" implementation can simply invoke kernfs_remove_self() on self
1623  * before proceeding with the usual removal path.  kernfs will ignore later
1624  * kernfs_remove() on self.
1625  *
1626  * kernfs_remove_self() can be called multiple times concurrently on the
1627  * same kernfs_node.  Only the first one actually performs removal and
1628  * returns %true.  All others will wait until the kernfs operation which
1629  * won self-removal finishes and return %false.  Note that the losers wait
1630  * for the completion of not only the winning kernfs_remove_self() but also
1631  * the whole kernfs_ops which won the arbitration.  This can be used to
1632  * guarantee, for example, all concurrent writes to a "delete" file to
1633  * finish only after the whole operation is complete.
1634  *
1635  * Return: %true if @kn is removed by this call, otherwise %false.
1636  */
kernfs_remove_self(struct kernfs_node * kn)1637 bool kernfs_remove_self(struct kernfs_node *kn)
1638 {
1639 	bool ret;
1640 	struct kernfs_root *root = kernfs_root(kn);
1641 
1642 	down_write(&root->kernfs_rwsem);
1643 	kernfs_break_active_protection(kn);
1644 
1645 	/*
1646 	 * SUICIDAL is used to arbitrate among competing invocations.  Only
1647 	 * the first one will actually perform removal.  When the removal
1648 	 * is complete, SUICIDED is set and the active ref is restored
1649 	 * while kernfs_rwsem for held exclusive.  The ones which lost
1650 	 * arbitration waits for SUICIDED && drained which can happen only
1651 	 * after the enclosing kernfs operation which executed the winning
1652 	 * instance of kernfs_remove_self() finished.
1653 	 */
1654 	if (!(kn->flags & KERNFS_SUICIDAL)) {
1655 		kn->flags |= KERNFS_SUICIDAL;
1656 		__kernfs_remove(kn);
1657 		kn->flags |= KERNFS_SUICIDED;
1658 		ret = true;
1659 	} else {
1660 		wait_queue_head_t *waitq = &kernfs_root(kn)->deactivate_waitq;
1661 		DEFINE_WAIT(wait);
1662 
1663 		while (true) {
1664 			prepare_to_wait(waitq, &wait, TASK_UNINTERRUPTIBLE);
1665 
1666 			if ((kn->flags & KERNFS_SUICIDED) &&
1667 			    atomic_read(&kn->active) == KN_DEACTIVATED_BIAS)
1668 				break;
1669 
1670 			up_write(&root->kernfs_rwsem);
1671 			schedule();
1672 			down_write(&root->kernfs_rwsem);
1673 		}
1674 		finish_wait(waitq, &wait);
1675 		WARN_ON_ONCE(!RB_EMPTY_NODE(&kn->rb));
1676 		ret = false;
1677 	}
1678 
1679 	/*
1680 	 * This must be done while kernfs_rwsem held exclusive; otherwise,
1681 	 * waiting for SUICIDED && deactivated could finish prematurely.
1682 	 */
1683 	kernfs_unbreak_active_protection(kn);
1684 
1685 	up_write(&root->kernfs_rwsem);
1686 	return ret;
1687 }
1688 
1689 /**
1690  * kernfs_remove_by_name_ns - find a kernfs_node by name and remove it
1691  * @parent: parent of the target
1692  * @name: name of the kernfs_node to remove
1693  * @ns: namespace tag of the kernfs_node to remove
1694  *
1695  * Look for the kernfs_node with @name and @ns under @parent and remove it.
1696  *
1697  * Return: %0 on success, -ENOENT if such entry doesn't exist.
1698  */
kernfs_remove_by_name_ns(struct kernfs_node * parent,const char * name,const void * ns)1699 int kernfs_remove_by_name_ns(struct kernfs_node *parent, const char *name,
1700 			     const void *ns)
1701 {
1702 	struct kernfs_node *kn;
1703 	struct kernfs_root *root;
1704 
1705 	if (!parent) {
1706 		WARN(1, KERN_WARNING "kernfs: can not remove '%s', no directory\n",
1707 			name);
1708 		return -ENOENT;
1709 	}
1710 
1711 	root = kernfs_root(parent);
1712 	down_write(&root->kernfs_rwsem);
1713 
1714 	kn = kernfs_find_ns(parent, name, ns);
1715 	if (kn) {
1716 		kernfs_get(kn);
1717 		__kernfs_remove(kn);
1718 		kernfs_put(kn);
1719 	}
1720 
1721 	up_write(&root->kernfs_rwsem);
1722 
1723 	if (kn)
1724 		return 0;
1725 	else
1726 		return -ENOENT;
1727 }
1728 
1729 /**
1730  * kernfs_rename_ns - move and rename a kernfs_node
1731  * @kn: target node
1732  * @new_parent: new parent to put @sd under
1733  * @new_name: new name
1734  * @new_ns: new namespace tag
1735  *
1736  * Return: %0 on success, -errno on failure.
1737  */
kernfs_rename_ns(struct kernfs_node * kn,struct kernfs_node * new_parent,const char * new_name,const void * new_ns)1738 int kernfs_rename_ns(struct kernfs_node *kn, struct kernfs_node *new_parent,
1739 		     const char *new_name, const void *new_ns)
1740 {
1741 	struct kernfs_node *old_parent;
1742 	struct kernfs_root *root;
1743 	const char *old_name;
1744 	int error;
1745 
1746 	/* can't move or rename root */
1747 	if (!rcu_access_pointer(kn->__parent))
1748 		return -EINVAL;
1749 
1750 	root = kernfs_root(kn);
1751 	down_write(&root->kernfs_rwsem);
1752 
1753 	error = -ENOENT;
1754 	if (!kernfs_active(kn) || !kernfs_active(new_parent) ||
1755 	    (new_parent->flags & KERNFS_EMPTY_DIR))
1756 		goto out;
1757 
1758 	old_parent = kernfs_parent(kn);
1759 	if (root->flags & KERNFS_ROOT_INVARIANT_PARENT) {
1760 		error = -EINVAL;
1761 		if (WARN_ON_ONCE(old_parent != new_parent))
1762 			goto out;
1763 	}
1764 
1765 	error = 0;
1766 	old_name = kernfs_rcu_name(kn);
1767 	if (!new_name)
1768 		new_name = old_name;
1769 	if ((old_parent == new_parent) && (kn->ns == new_ns) &&
1770 	    (strcmp(old_name, new_name) == 0))
1771 		goto out;	/* nothing to rename */
1772 
1773 	error = -EEXIST;
1774 	if (kernfs_find_ns(new_parent, new_name, new_ns))
1775 		goto out;
1776 
1777 	/* rename kernfs_node */
1778 	if (strcmp(old_name, new_name) != 0) {
1779 		error = -ENOMEM;
1780 		new_name = kstrdup_const(new_name, GFP_KERNEL);
1781 		if (!new_name)
1782 			goto out;
1783 	} else {
1784 		new_name = NULL;
1785 	}
1786 
1787 	/*
1788 	 * Move to the appropriate place in the appropriate directories rbtree.
1789 	 */
1790 	kernfs_unlink_sibling(kn);
1791 
1792 	/* rename_lock protects ->parent accessors */
1793 	if (old_parent != new_parent) {
1794 		kernfs_get(new_parent);
1795 		write_lock_irq(&root->kernfs_rename_lock);
1796 
1797 		rcu_assign_pointer(kn->__parent, new_parent);
1798 
1799 		kn->ns = new_ns;
1800 		if (new_name)
1801 			rcu_assign_pointer(kn->name, new_name);
1802 
1803 		write_unlock_irq(&root->kernfs_rename_lock);
1804 		kernfs_put(old_parent);
1805 	} else {
1806 		/* name assignment is RCU protected, parent is the same */
1807 		kn->ns = new_ns;
1808 		if (new_name)
1809 			rcu_assign_pointer(kn->name, new_name);
1810 	}
1811 
1812 	kn->hash = kernfs_name_hash(new_name ?: old_name, kn->ns);
1813 	kernfs_link_sibling(kn);
1814 
1815 	if (new_name && !is_kernel_rodata((unsigned long)old_name))
1816 		kfree_rcu_mightsleep(old_name);
1817 
1818 	error = 0;
1819  out:
1820 	up_write(&root->kernfs_rwsem);
1821 	return error;
1822 }
1823 
kernfs_dir_fop_release(struct inode * inode,struct file * filp)1824 static int kernfs_dir_fop_release(struct inode *inode, struct file *filp)
1825 {
1826 	kernfs_put(filp->private_data);
1827 	return 0;
1828 }
1829 
kernfs_dir_pos(const void * ns,struct kernfs_node * parent,loff_t hash,struct kernfs_node * pos)1830 static struct kernfs_node *kernfs_dir_pos(const void *ns,
1831 	struct kernfs_node *parent, loff_t hash, struct kernfs_node *pos)
1832 {
1833 	if (pos) {
1834 		int valid = kernfs_active(pos) &&
1835 			rcu_access_pointer(pos->__parent) == parent &&
1836 			hash == pos->hash;
1837 		kernfs_put(pos);
1838 		if (!valid)
1839 			pos = NULL;
1840 	}
1841 	if (!pos && (hash > 1) && (hash < INT_MAX)) {
1842 		struct rb_node *node = parent->dir.children.rb_node;
1843 		while (node) {
1844 			pos = rb_to_kn(node);
1845 
1846 			if (hash < pos->hash)
1847 				node = node->rb_left;
1848 			else if (hash > pos->hash)
1849 				node = node->rb_right;
1850 			else
1851 				break;
1852 		}
1853 	}
1854 	/* Skip over entries which are dying/dead or in the wrong namespace */
1855 	while (pos && (!kernfs_active(pos) || pos->ns != ns)) {
1856 		struct rb_node *node = rb_next(&pos->rb);
1857 		if (!node)
1858 			pos = NULL;
1859 		else
1860 			pos = rb_to_kn(node);
1861 	}
1862 	return pos;
1863 }
1864 
kernfs_dir_next_pos(const void * ns,struct kernfs_node * parent,ino_t ino,struct kernfs_node * pos)1865 static struct kernfs_node *kernfs_dir_next_pos(const void *ns,
1866 	struct kernfs_node *parent, ino_t ino, struct kernfs_node *pos)
1867 {
1868 	pos = kernfs_dir_pos(ns, parent, ino, pos);
1869 	if (pos) {
1870 		do {
1871 			struct rb_node *node = rb_next(&pos->rb);
1872 			if (!node)
1873 				pos = NULL;
1874 			else
1875 				pos = rb_to_kn(node);
1876 		} while (pos && (!kernfs_active(pos) || pos->ns != ns));
1877 	}
1878 	return pos;
1879 }
1880 
kernfs_fop_readdir(struct file * file,struct dir_context * ctx)1881 static int kernfs_fop_readdir(struct file *file, struct dir_context *ctx)
1882 {
1883 	struct dentry *dentry = file->f_path.dentry;
1884 	struct kernfs_node *parent = kernfs_dentry_node(dentry);
1885 	struct kernfs_node *pos = file->private_data;
1886 	struct kernfs_root *root;
1887 	const void *ns = NULL;
1888 
1889 	if (!dir_emit_dots(file, ctx))
1890 		return 0;
1891 
1892 	root = kernfs_root(parent);
1893 	down_read(&root->kernfs_rwsem);
1894 
1895 	if (kernfs_ns_enabled(parent))
1896 		ns = kernfs_info(dentry->d_sb)->ns;
1897 
1898 	for (pos = kernfs_dir_pos(ns, parent, ctx->pos, pos);
1899 	     pos;
1900 	     pos = kernfs_dir_next_pos(ns, parent, ctx->pos, pos)) {
1901 		const char *name = kernfs_rcu_name(pos);
1902 		unsigned int type = fs_umode_to_dtype(pos->mode);
1903 		int len = strlen(name);
1904 		ino_t ino = kernfs_ino(pos);
1905 
1906 		ctx->pos = pos->hash;
1907 		file->private_data = pos;
1908 		kernfs_get(pos);
1909 
1910 		if (!dir_emit(ctx, name, len, ino, type)) {
1911 			up_read(&root->kernfs_rwsem);
1912 			return 0;
1913 		}
1914 	}
1915 	up_read(&root->kernfs_rwsem);
1916 	file->private_data = NULL;
1917 	ctx->pos = INT_MAX;
1918 	return 0;
1919 }
1920 
1921 const struct file_operations kernfs_dir_fops = {
1922 	.read		= generic_read_dir,
1923 	.iterate_shared	= kernfs_fop_readdir,
1924 	.release	= kernfs_dir_fop_release,
1925 	.llseek		= generic_file_llseek,
1926 };
1927