1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/arch/x86_64/mm/init.c
4 *
5 * Copyright (C) 1995 Linus Torvalds
6 * Copyright (C) 2000 Pavel Machek <pavel@ucw.cz>
7 * Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
8 */
9
10 #include <linux/signal.h>
11 #include <linux/sched.h>
12 #include <linux/kernel.h>
13 #include <linux/errno.h>
14 #include <linux/string.h>
15 #include <linux/types.h>
16 #include <linux/ptrace.h>
17 #include <linux/mman.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/smp.h>
21 #include <linux/init.h>
22 #include <linux/initrd.h>
23 #include <linux/pagemap.h>
24 #include <linux/memblock.h>
25 #include <linux/proc_fs.h>
26 #include <linux/pci.h>
27 #include <linux/pfn.h>
28 #include <linux/poison.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/memory.h>
31 #include <linux/memory_hotplug.h>
32 #include <linux/memremap.h>
33 #include <linux/nmi.h>
34 #include <linux/gfp.h>
35 #include <linux/kcore.h>
36 #include <linux/bootmem_info.h>
37
38 #include <asm/processor.h>
39 #include <asm/bios_ebda.h>
40 #include <linux/uaccess.h>
41 #include <asm/pgalloc.h>
42 #include <asm/dma.h>
43 #include <asm/fixmap.h>
44 #include <asm/e820/api.h>
45 #include <asm/apic.h>
46 #include <asm/tlb.h>
47 #include <asm/mmu_context.h>
48 #include <asm/proto.h>
49 #include <asm/smp.h>
50 #include <asm/sections.h>
51 #include <asm/kdebug.h>
52 #include <asm/numa.h>
53 #include <asm/set_memory.h>
54 #include <asm/init.h>
55 #include <asm/uv/uv.h>
56 #include <asm/setup.h>
57 #include <asm/ftrace.h>
58
59 #include "mm_internal.h"
60
61 #include "ident_map.c"
62
63 #define DEFINE_POPULATE(fname, type1, type2, init) \
64 static inline void fname##_init(struct mm_struct *mm, \
65 type1##_t *arg1, type2##_t *arg2, bool init) \
66 { \
67 if (init) \
68 fname##_safe(mm, arg1, arg2); \
69 else \
70 fname(mm, arg1, arg2); \
71 }
72
DEFINE_POPULATE(p4d_populate,p4d,pud,init)73 DEFINE_POPULATE(p4d_populate, p4d, pud, init)
74 DEFINE_POPULATE(pgd_populate, pgd, p4d, init)
75 DEFINE_POPULATE(pud_populate, pud, pmd, init)
76 DEFINE_POPULATE(pmd_populate_kernel, pmd, pte, init)
77
78 #define DEFINE_ENTRY(type1, type2, init) \
79 static inline void set_##type1##_init(type1##_t *arg1, \
80 type2##_t arg2, bool init) \
81 { \
82 if (init) \
83 set_##type1##_safe(arg1, arg2); \
84 else \
85 set_##type1(arg1, arg2); \
86 }
87
88 DEFINE_ENTRY(p4d, p4d, init)
89 DEFINE_ENTRY(pud, pud, init)
90 DEFINE_ENTRY(pmd, pmd, init)
91 DEFINE_ENTRY(pte, pte, init)
92
93 static inline pgprot_t prot_sethuge(pgprot_t prot)
94 {
95 WARN_ON_ONCE(pgprot_val(prot) & _PAGE_PAT);
96
97 return __pgprot(pgprot_val(prot) | _PAGE_PSE);
98 }
99
100 /*
101 * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
102 * physical space so we can cache the place of the first one and move
103 * around without checking the pgd every time.
104 */
105
106 /* Bits supported by the hardware: */
107 pteval_t __supported_pte_mask __read_mostly = ~0;
108 /* Bits allowed in normal kernel mappings: */
109 pteval_t __default_kernel_pte_mask __read_mostly = ~0;
110 EXPORT_SYMBOL_GPL(__supported_pte_mask);
111 /* Used in PAGE_KERNEL_* macros which are reasonably used out-of-tree: */
112 EXPORT_SYMBOL(__default_kernel_pte_mask);
113
114 int force_personality32;
115
116 /*
117 * noexec32=on|off
118 * Control non executable heap for 32bit processes.
119 *
120 * on PROT_READ does not imply PROT_EXEC for 32-bit processes (default)
121 * off PROT_READ implies PROT_EXEC
122 */
nonx32_setup(char * str)123 static int __init nonx32_setup(char *str)
124 {
125 if (!strcmp(str, "on"))
126 force_personality32 &= ~READ_IMPLIES_EXEC;
127 else if (!strcmp(str, "off"))
128 force_personality32 |= READ_IMPLIES_EXEC;
129 return 1;
130 }
131 __setup("noexec32=", nonx32_setup);
132
sync_global_pgds_l5(unsigned long start,unsigned long end)133 static void sync_global_pgds_l5(unsigned long start, unsigned long end)
134 {
135 unsigned long addr;
136
137 for (addr = start; addr <= end; addr = ALIGN(addr + 1, PGDIR_SIZE)) {
138 const pgd_t *pgd_ref = pgd_offset_k(addr);
139 struct page *page;
140
141 /* Check for overflow */
142 if (addr < start)
143 break;
144
145 if (pgd_none(*pgd_ref))
146 continue;
147
148 spin_lock(&pgd_lock);
149 list_for_each_entry(page, &pgd_list, lru) {
150 pgd_t *pgd;
151 spinlock_t *pgt_lock;
152
153 pgd = (pgd_t *)page_address(page) + pgd_index(addr);
154 /* the pgt_lock only for Xen */
155 pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
156 spin_lock(pgt_lock);
157
158 if (!pgd_none(*pgd_ref) && !pgd_none(*pgd))
159 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
160
161 if (pgd_none(*pgd))
162 set_pgd(pgd, *pgd_ref);
163
164 spin_unlock(pgt_lock);
165 }
166 spin_unlock(&pgd_lock);
167 }
168 }
169
sync_global_pgds_l4(unsigned long start,unsigned long end)170 static void sync_global_pgds_l4(unsigned long start, unsigned long end)
171 {
172 unsigned long addr;
173
174 for (addr = start; addr <= end; addr = ALIGN(addr + 1, PGDIR_SIZE)) {
175 pgd_t *pgd_ref = pgd_offset_k(addr);
176 const p4d_t *p4d_ref;
177 struct page *page;
178
179 /*
180 * With folded p4d, pgd_none() is always false, we need to
181 * handle synchronization on p4d level.
182 */
183 MAYBE_BUILD_BUG_ON(pgd_none(*pgd_ref));
184 p4d_ref = p4d_offset(pgd_ref, addr);
185
186 if (p4d_none(*p4d_ref))
187 continue;
188
189 spin_lock(&pgd_lock);
190 list_for_each_entry(page, &pgd_list, lru) {
191 pgd_t *pgd;
192 p4d_t *p4d;
193 spinlock_t *pgt_lock;
194
195 pgd = (pgd_t *)page_address(page) + pgd_index(addr);
196 p4d = p4d_offset(pgd, addr);
197 /* the pgt_lock only for Xen */
198 pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
199 spin_lock(pgt_lock);
200
201 if (!p4d_none(*p4d_ref) && !p4d_none(*p4d))
202 BUG_ON(p4d_pgtable(*p4d)
203 != p4d_pgtable(*p4d_ref));
204
205 if (p4d_none(*p4d))
206 set_p4d(p4d, *p4d_ref);
207
208 spin_unlock(pgt_lock);
209 }
210 spin_unlock(&pgd_lock);
211 }
212 }
213
214 /*
215 * When memory was added make sure all the processes MM have
216 * suitable PGD entries in the local PGD level page.
217 */
sync_global_pgds(unsigned long start,unsigned long end)218 static void sync_global_pgds(unsigned long start, unsigned long end)
219 {
220 if (pgtable_l5_enabled())
221 sync_global_pgds_l5(start, end);
222 else
223 sync_global_pgds_l4(start, end);
224 }
225
226 /*
227 * NOTE: This function is marked __ref because it calls __init function
228 * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0.
229 */
spp_getpage(void)230 static __ref void *spp_getpage(void)
231 {
232 void *ptr;
233
234 if (after_bootmem)
235 ptr = (void *) get_zeroed_page(GFP_ATOMIC);
236 else
237 ptr = memblock_alloc(PAGE_SIZE, PAGE_SIZE);
238
239 if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
240 panic("set_pte_phys: cannot allocate page data %s\n",
241 after_bootmem ? "after bootmem" : "");
242 }
243
244 pr_debug("spp_getpage %p\n", ptr);
245
246 return ptr;
247 }
248
fill_p4d(pgd_t * pgd,unsigned long vaddr)249 static p4d_t *fill_p4d(pgd_t *pgd, unsigned long vaddr)
250 {
251 if (pgd_none(*pgd)) {
252 p4d_t *p4d = (p4d_t *)spp_getpage();
253 pgd_populate(&init_mm, pgd, p4d);
254 if (p4d != p4d_offset(pgd, 0))
255 printk(KERN_ERR "PAGETABLE BUG #00! %p <-> %p\n",
256 p4d, p4d_offset(pgd, 0));
257 }
258 return p4d_offset(pgd, vaddr);
259 }
260
fill_pud(p4d_t * p4d,unsigned long vaddr)261 static pud_t *fill_pud(p4d_t *p4d, unsigned long vaddr)
262 {
263 if (p4d_none(*p4d)) {
264 pud_t *pud = (pud_t *)spp_getpage();
265 p4d_populate(&init_mm, p4d, pud);
266 if (pud != pud_offset(p4d, 0))
267 printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
268 pud, pud_offset(p4d, 0));
269 }
270 return pud_offset(p4d, vaddr);
271 }
272
fill_pmd(pud_t * pud,unsigned long vaddr)273 static pmd_t *fill_pmd(pud_t *pud, unsigned long vaddr)
274 {
275 if (pud_none(*pud)) {
276 pmd_t *pmd = (pmd_t *) spp_getpage();
277 pud_populate(&init_mm, pud, pmd);
278 if (pmd != pmd_offset(pud, 0))
279 printk(KERN_ERR "PAGETABLE BUG #02! %p <-> %p\n",
280 pmd, pmd_offset(pud, 0));
281 }
282 return pmd_offset(pud, vaddr);
283 }
284
fill_pte(pmd_t * pmd,unsigned long vaddr)285 static pte_t *fill_pte(pmd_t *pmd, unsigned long vaddr)
286 {
287 if (pmd_none(*pmd)) {
288 pte_t *pte = (pte_t *) spp_getpage();
289 pmd_populate_kernel(&init_mm, pmd, pte);
290 if (pte != pte_offset_kernel(pmd, 0))
291 printk(KERN_ERR "PAGETABLE BUG #03!\n");
292 }
293 return pte_offset_kernel(pmd, vaddr);
294 }
295
__set_pte_vaddr(pud_t * pud,unsigned long vaddr,pte_t new_pte)296 static void __set_pte_vaddr(pud_t *pud, unsigned long vaddr, pte_t new_pte)
297 {
298 pmd_t *pmd = fill_pmd(pud, vaddr);
299 pte_t *pte = fill_pte(pmd, vaddr);
300
301 set_pte(pte, new_pte);
302
303 /*
304 * It's enough to flush this one mapping.
305 * (PGE mappings get flushed as well)
306 */
307 flush_tlb_one_kernel(vaddr);
308 }
309
set_pte_vaddr_p4d(p4d_t * p4d_page,unsigned long vaddr,pte_t new_pte)310 void set_pte_vaddr_p4d(p4d_t *p4d_page, unsigned long vaddr, pte_t new_pte)
311 {
312 p4d_t *p4d = p4d_page + p4d_index(vaddr);
313 pud_t *pud = fill_pud(p4d, vaddr);
314
315 __set_pte_vaddr(pud, vaddr, new_pte);
316 }
317
set_pte_vaddr_pud(pud_t * pud_page,unsigned long vaddr,pte_t new_pte)318 void set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte)
319 {
320 pud_t *pud = pud_page + pud_index(vaddr);
321
322 __set_pte_vaddr(pud, vaddr, new_pte);
323 }
324
set_pte_vaddr(unsigned long vaddr,pte_t pteval)325 void set_pte_vaddr(unsigned long vaddr, pte_t pteval)
326 {
327 pgd_t *pgd;
328 p4d_t *p4d_page;
329
330 pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval));
331
332 pgd = pgd_offset_k(vaddr);
333 if (pgd_none(*pgd)) {
334 printk(KERN_ERR
335 "PGD FIXMAP MISSING, it should be setup in head.S!\n");
336 return;
337 }
338
339 p4d_page = p4d_offset(pgd, 0);
340 set_pte_vaddr_p4d(p4d_page, vaddr, pteval);
341 }
342
populate_extra_pmd(unsigned long vaddr)343 pmd_t * __init populate_extra_pmd(unsigned long vaddr)
344 {
345 pgd_t *pgd;
346 p4d_t *p4d;
347 pud_t *pud;
348
349 pgd = pgd_offset_k(vaddr);
350 p4d = fill_p4d(pgd, vaddr);
351 pud = fill_pud(p4d, vaddr);
352 return fill_pmd(pud, vaddr);
353 }
354
populate_extra_pte(unsigned long vaddr)355 pte_t * __init populate_extra_pte(unsigned long vaddr)
356 {
357 pmd_t *pmd;
358
359 pmd = populate_extra_pmd(vaddr);
360 return fill_pte(pmd, vaddr);
361 }
362
363 /*
364 * Create large page table mappings for a range of physical addresses.
365 */
__init_extra_mapping(unsigned long phys,unsigned long size,enum page_cache_mode cache)366 static void __init __init_extra_mapping(unsigned long phys, unsigned long size,
367 enum page_cache_mode cache)
368 {
369 pgd_t *pgd;
370 p4d_t *p4d;
371 pud_t *pud;
372 pmd_t *pmd;
373 pgprot_t prot;
374
375 pgprot_val(prot) = pgprot_val(PAGE_KERNEL_LARGE) |
376 protval_4k_2_large(cachemode2protval(cache));
377 BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK));
378 for (; size; phys += PMD_SIZE, size -= PMD_SIZE) {
379 pgd = pgd_offset_k((unsigned long)__va(phys));
380 if (pgd_none(*pgd)) {
381 p4d = (p4d_t *) spp_getpage();
382 set_pgd(pgd, __pgd(__pa(p4d) | _KERNPG_TABLE |
383 _PAGE_USER));
384 }
385 p4d = p4d_offset(pgd, (unsigned long)__va(phys));
386 if (p4d_none(*p4d)) {
387 pud = (pud_t *) spp_getpage();
388 set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE |
389 _PAGE_USER));
390 }
391 pud = pud_offset(p4d, (unsigned long)__va(phys));
392 if (pud_none(*pud)) {
393 pmd = (pmd_t *) spp_getpage();
394 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE |
395 _PAGE_USER));
396 }
397 pmd = pmd_offset(pud, phys);
398 BUG_ON(!pmd_none(*pmd));
399 set_pmd(pmd, __pmd(phys | pgprot_val(prot)));
400 }
401 }
402
init_extra_mapping_wb(unsigned long phys,unsigned long size)403 void __init init_extra_mapping_wb(unsigned long phys, unsigned long size)
404 {
405 __init_extra_mapping(phys, size, _PAGE_CACHE_MODE_WB);
406 }
407
init_extra_mapping_uc(unsigned long phys,unsigned long size)408 void __init init_extra_mapping_uc(unsigned long phys, unsigned long size)
409 {
410 __init_extra_mapping(phys, size, _PAGE_CACHE_MODE_UC);
411 }
412
413 /*
414 * The head.S code sets up the kernel high mapping:
415 *
416 * from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
417 *
418 * phys_base holds the negative offset to the kernel, which is added
419 * to the compile time generated pmds. This results in invalid pmds up
420 * to the point where we hit the physaddr 0 mapping.
421 *
422 * We limit the mappings to the region from _text to _brk_end. _brk_end
423 * is rounded up to the 2MB boundary. This catches the invalid pmds as
424 * well, as they are located before _text:
425 */
cleanup_highmap(void)426 void __init cleanup_highmap(void)
427 {
428 unsigned long vaddr = __START_KERNEL_map;
429 unsigned long vaddr_end = __START_KERNEL_map + KERNEL_IMAGE_SIZE;
430 unsigned long end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1;
431 pmd_t *pmd = level2_kernel_pgt;
432
433 /*
434 * Native path, max_pfn_mapped is not set yet.
435 * Xen has valid max_pfn_mapped set in
436 * arch/x86/xen/mmu.c:xen_setup_kernel_pagetable().
437 */
438 if (max_pfn_mapped)
439 vaddr_end = __START_KERNEL_map + (max_pfn_mapped << PAGE_SHIFT);
440
441 for (; vaddr + PMD_SIZE - 1 < vaddr_end; pmd++, vaddr += PMD_SIZE) {
442 if (pmd_none(*pmd))
443 continue;
444 if (vaddr < (unsigned long) _text || vaddr > end)
445 set_pmd(pmd, __pmd(0));
446 }
447 }
448
449 /*
450 * Create PTE level page table mapping for physical addresses.
451 * It returns the last physical address mapped.
452 */
453 static unsigned long __meminit
phys_pte_init(pte_t * pte_page,unsigned long paddr,unsigned long paddr_end,pgprot_t prot,bool init)454 phys_pte_init(pte_t *pte_page, unsigned long paddr, unsigned long paddr_end,
455 pgprot_t prot, bool init)
456 {
457 unsigned long pages = 0, paddr_next;
458 unsigned long paddr_last = paddr_end;
459 pte_t *pte;
460 int i;
461
462 pte = pte_page + pte_index(paddr);
463 i = pte_index(paddr);
464
465 for (; i < PTRS_PER_PTE; i++, paddr = paddr_next, pte++) {
466 paddr_next = (paddr & PAGE_MASK) + PAGE_SIZE;
467 if (paddr >= paddr_end) {
468 if (!after_bootmem &&
469 !e820__mapped_any(paddr & PAGE_MASK, paddr_next,
470 E820_TYPE_RAM) &&
471 !e820__mapped_any(paddr & PAGE_MASK, paddr_next,
472 E820_TYPE_ACPI))
473 set_pte_init(pte, __pte(0), init);
474 continue;
475 }
476
477 /*
478 * We will re-use the existing mapping.
479 * Xen for example has some special requirements, like mapping
480 * pagetable pages as RO. So assume someone who pre-setup
481 * these mappings are more intelligent.
482 */
483 if (!pte_none(*pte)) {
484 if (!after_bootmem)
485 pages++;
486 continue;
487 }
488
489 if (0)
490 pr_info(" pte=%p addr=%lx pte=%016lx\n", pte, paddr,
491 pfn_pte(paddr >> PAGE_SHIFT, PAGE_KERNEL).pte);
492 pages++;
493 set_pte_init(pte, pfn_pte(paddr >> PAGE_SHIFT, prot), init);
494 paddr_last = (paddr & PAGE_MASK) + PAGE_SIZE;
495 }
496
497 update_page_count(PG_LEVEL_4K, pages);
498
499 return paddr_last;
500 }
501
502 /*
503 * Create PMD level page table mapping for physical addresses. The virtual
504 * and physical address have to be aligned at this level.
505 * It returns the last physical address mapped.
506 */
507 static unsigned long __meminit
phys_pmd_init(pmd_t * pmd_page,unsigned long paddr,unsigned long paddr_end,unsigned long page_size_mask,pgprot_t prot,bool init)508 phys_pmd_init(pmd_t *pmd_page, unsigned long paddr, unsigned long paddr_end,
509 unsigned long page_size_mask, pgprot_t prot, bool init)
510 {
511 unsigned long pages = 0, paddr_next;
512 unsigned long paddr_last = paddr_end;
513
514 int i = pmd_index(paddr);
515
516 for (; i < PTRS_PER_PMD; i++, paddr = paddr_next) {
517 pmd_t *pmd = pmd_page + pmd_index(paddr);
518 pte_t *pte;
519 pgprot_t new_prot = prot;
520
521 paddr_next = (paddr & PMD_MASK) + PMD_SIZE;
522 if (paddr >= paddr_end) {
523 if (!after_bootmem &&
524 !e820__mapped_any(paddr & PMD_MASK, paddr_next,
525 E820_TYPE_RAM) &&
526 !e820__mapped_any(paddr & PMD_MASK, paddr_next,
527 E820_TYPE_ACPI))
528 set_pmd_init(pmd, __pmd(0), init);
529 continue;
530 }
531
532 if (!pmd_none(*pmd)) {
533 if (!pmd_leaf(*pmd)) {
534 spin_lock(&init_mm.page_table_lock);
535 pte = (pte_t *)pmd_page_vaddr(*pmd);
536 paddr_last = phys_pte_init(pte, paddr,
537 paddr_end, prot,
538 init);
539 spin_unlock(&init_mm.page_table_lock);
540 continue;
541 }
542 /*
543 * If we are ok with PG_LEVEL_2M mapping, then we will
544 * use the existing mapping,
545 *
546 * Otherwise, we will split the large page mapping but
547 * use the same existing protection bits except for
548 * large page, so that we don't violate Intel's TLB
549 * Application note (317080) which says, while changing
550 * the page sizes, new and old translations should
551 * not differ with respect to page frame and
552 * attributes.
553 */
554 if (page_size_mask & (1 << PG_LEVEL_2M)) {
555 if (!after_bootmem)
556 pages++;
557 paddr_last = paddr_next;
558 continue;
559 }
560 new_prot = pte_pgprot(pte_clrhuge(*(pte_t *)pmd));
561 }
562
563 if (page_size_mask & (1<<PG_LEVEL_2M)) {
564 pages++;
565 spin_lock(&init_mm.page_table_lock);
566 set_pmd_init(pmd,
567 pfn_pmd(paddr >> PAGE_SHIFT, prot_sethuge(prot)),
568 init);
569 spin_unlock(&init_mm.page_table_lock);
570 paddr_last = paddr_next;
571 continue;
572 }
573
574 pte = alloc_low_page();
575 paddr_last = phys_pte_init(pte, paddr, paddr_end, new_prot, init);
576
577 spin_lock(&init_mm.page_table_lock);
578 pmd_populate_kernel_init(&init_mm, pmd, pte, init);
579 spin_unlock(&init_mm.page_table_lock);
580 }
581 update_page_count(PG_LEVEL_2M, pages);
582 return paddr_last;
583 }
584
585 /*
586 * Create PUD level page table mapping for physical addresses. The virtual
587 * and physical address do not have to be aligned at this level. KASLR can
588 * randomize virtual addresses up to this level.
589 * It returns the last physical address mapped.
590 */
591 static unsigned long __meminit
phys_pud_init(pud_t * pud_page,unsigned long paddr,unsigned long paddr_end,unsigned long page_size_mask,pgprot_t _prot,bool init)592 phys_pud_init(pud_t *pud_page, unsigned long paddr, unsigned long paddr_end,
593 unsigned long page_size_mask, pgprot_t _prot, bool init)
594 {
595 unsigned long pages = 0, paddr_next;
596 unsigned long paddr_last = paddr_end;
597 unsigned long vaddr = (unsigned long)__va(paddr);
598 int i = pud_index(vaddr);
599
600 for (; i < PTRS_PER_PUD; i++, paddr = paddr_next) {
601 pud_t *pud;
602 pmd_t *pmd;
603 pgprot_t prot = _prot;
604
605 vaddr = (unsigned long)__va(paddr);
606 pud = pud_page + pud_index(vaddr);
607 paddr_next = (paddr & PUD_MASK) + PUD_SIZE;
608
609 if (paddr >= paddr_end) {
610 if (!after_bootmem &&
611 !e820__mapped_any(paddr & PUD_MASK, paddr_next,
612 E820_TYPE_RAM) &&
613 !e820__mapped_any(paddr & PUD_MASK, paddr_next,
614 E820_TYPE_ACPI))
615 set_pud_init(pud, __pud(0), init);
616 continue;
617 }
618
619 if (!pud_none(*pud)) {
620 if (!pud_leaf(*pud)) {
621 pmd = pmd_offset(pud, 0);
622 paddr_last = phys_pmd_init(pmd, paddr,
623 paddr_end,
624 page_size_mask,
625 prot, init);
626 continue;
627 }
628 /*
629 * If we are ok with PG_LEVEL_1G mapping, then we will
630 * use the existing mapping.
631 *
632 * Otherwise, we will split the gbpage mapping but use
633 * the same existing protection bits except for large
634 * page, so that we don't violate Intel's TLB
635 * Application note (317080) which says, while changing
636 * the page sizes, new and old translations should
637 * not differ with respect to page frame and
638 * attributes.
639 */
640 if (page_size_mask & (1 << PG_LEVEL_1G)) {
641 if (!after_bootmem)
642 pages++;
643 paddr_last = paddr_next;
644 continue;
645 }
646 prot = pte_pgprot(pte_clrhuge(*(pte_t *)pud));
647 }
648
649 if (page_size_mask & (1<<PG_LEVEL_1G)) {
650 pages++;
651 spin_lock(&init_mm.page_table_lock);
652 set_pud_init(pud,
653 pfn_pud(paddr >> PAGE_SHIFT, prot_sethuge(prot)),
654 init);
655 spin_unlock(&init_mm.page_table_lock);
656 paddr_last = paddr_next;
657 continue;
658 }
659
660 pmd = alloc_low_page();
661 paddr_last = phys_pmd_init(pmd, paddr, paddr_end,
662 page_size_mask, prot, init);
663
664 spin_lock(&init_mm.page_table_lock);
665 pud_populate_init(&init_mm, pud, pmd, init);
666 spin_unlock(&init_mm.page_table_lock);
667 }
668
669 update_page_count(PG_LEVEL_1G, pages);
670
671 return paddr_last;
672 }
673
674 static unsigned long __meminit
phys_p4d_init(p4d_t * p4d_page,unsigned long paddr,unsigned long paddr_end,unsigned long page_size_mask,pgprot_t prot,bool init)675 phys_p4d_init(p4d_t *p4d_page, unsigned long paddr, unsigned long paddr_end,
676 unsigned long page_size_mask, pgprot_t prot, bool init)
677 {
678 unsigned long vaddr, vaddr_end, vaddr_next, paddr_next, paddr_last;
679
680 paddr_last = paddr_end;
681 vaddr = (unsigned long)__va(paddr);
682 vaddr_end = (unsigned long)__va(paddr_end);
683
684 if (!pgtable_l5_enabled())
685 return phys_pud_init((pud_t *) p4d_page, paddr, paddr_end,
686 page_size_mask, prot, init);
687
688 for (; vaddr < vaddr_end; vaddr = vaddr_next) {
689 p4d_t *p4d = p4d_page + p4d_index(vaddr);
690 pud_t *pud;
691
692 vaddr_next = (vaddr & P4D_MASK) + P4D_SIZE;
693 paddr = __pa(vaddr);
694
695 if (paddr >= paddr_end) {
696 paddr_next = __pa(vaddr_next);
697 if (!after_bootmem &&
698 !e820__mapped_any(paddr & P4D_MASK, paddr_next,
699 E820_TYPE_RAM) &&
700 !e820__mapped_any(paddr & P4D_MASK, paddr_next,
701 E820_TYPE_ACPI))
702 set_p4d_init(p4d, __p4d(0), init);
703 continue;
704 }
705
706 if (!p4d_none(*p4d)) {
707 pud = pud_offset(p4d, 0);
708 paddr_last = phys_pud_init(pud, paddr, __pa(vaddr_end),
709 page_size_mask, prot, init);
710 continue;
711 }
712
713 pud = alloc_low_page();
714 paddr_last = phys_pud_init(pud, paddr, __pa(vaddr_end),
715 page_size_mask, prot, init);
716
717 spin_lock(&init_mm.page_table_lock);
718 p4d_populate_init(&init_mm, p4d, pud, init);
719 spin_unlock(&init_mm.page_table_lock);
720 }
721
722 return paddr_last;
723 }
724
725 static unsigned long __meminit
__kernel_physical_mapping_init(unsigned long paddr_start,unsigned long paddr_end,unsigned long page_size_mask,pgprot_t prot,bool init)726 __kernel_physical_mapping_init(unsigned long paddr_start,
727 unsigned long paddr_end,
728 unsigned long page_size_mask,
729 pgprot_t prot, bool init)
730 {
731 bool pgd_changed = false;
732 unsigned long vaddr, vaddr_start, vaddr_end, vaddr_next, paddr_last;
733
734 paddr_last = paddr_end;
735 vaddr = (unsigned long)__va(paddr_start);
736 vaddr_end = (unsigned long)__va(paddr_end);
737 vaddr_start = vaddr;
738
739 for (; vaddr < vaddr_end; vaddr = vaddr_next) {
740 pgd_t *pgd = pgd_offset_k(vaddr);
741 p4d_t *p4d;
742
743 vaddr_next = (vaddr & PGDIR_MASK) + PGDIR_SIZE;
744
745 if (pgd_val(*pgd)) {
746 p4d = (p4d_t *)pgd_page_vaddr(*pgd);
747 paddr_last = phys_p4d_init(p4d, __pa(vaddr),
748 __pa(vaddr_end),
749 page_size_mask,
750 prot, init);
751 continue;
752 }
753
754 p4d = alloc_low_page();
755 paddr_last = phys_p4d_init(p4d, __pa(vaddr), __pa(vaddr_end),
756 page_size_mask, prot, init);
757
758 spin_lock(&init_mm.page_table_lock);
759 if (pgtable_l5_enabled())
760 pgd_populate_init(&init_mm, pgd, p4d, init);
761 else
762 p4d_populate_init(&init_mm, p4d_offset(pgd, vaddr),
763 (pud_t *) p4d, init);
764
765 spin_unlock(&init_mm.page_table_lock);
766 pgd_changed = true;
767 }
768
769 if (pgd_changed)
770 sync_global_pgds(vaddr_start, vaddr_end - 1);
771
772 return paddr_last;
773 }
774
775
776 /*
777 * Create page table mapping for the physical memory for specific physical
778 * addresses. Note that it can only be used to populate non-present entries.
779 * The virtual and physical addresses have to be aligned on PMD level
780 * down. It returns the last physical address mapped.
781 */
782 unsigned long __meminit
kernel_physical_mapping_init(unsigned long paddr_start,unsigned long paddr_end,unsigned long page_size_mask,pgprot_t prot)783 kernel_physical_mapping_init(unsigned long paddr_start,
784 unsigned long paddr_end,
785 unsigned long page_size_mask, pgprot_t prot)
786 {
787 return __kernel_physical_mapping_init(paddr_start, paddr_end,
788 page_size_mask, prot, true);
789 }
790
791 /*
792 * This function is similar to kernel_physical_mapping_init() above with the
793 * exception that it uses set_{pud,pmd}() instead of the set_{pud,pte}_safe()
794 * when updating the mapping. The caller is responsible to flush the TLBs after
795 * the function returns.
796 */
797 unsigned long __meminit
kernel_physical_mapping_change(unsigned long paddr_start,unsigned long paddr_end,unsigned long page_size_mask)798 kernel_physical_mapping_change(unsigned long paddr_start,
799 unsigned long paddr_end,
800 unsigned long page_size_mask)
801 {
802 return __kernel_physical_mapping_init(paddr_start, paddr_end,
803 page_size_mask, PAGE_KERNEL,
804 false);
805 }
806
807 #ifndef CONFIG_NUMA
x86_numa_init(void)808 static inline void x86_numa_init(void)
809 {
810 memblock_set_node(0, PHYS_ADDR_MAX, &memblock.memory, 0);
811 }
812 #endif
813
initmem_init(void)814 void __init initmem_init(void)
815 {
816 x86_numa_init();
817 }
818
paging_init(void)819 void __init paging_init(void)
820 {
821 sparse_init();
822
823 /*
824 * clear the default setting with node 0
825 * note: don't use nodes_clear here, that is really clearing when
826 * numa support is not compiled in, and later node_set_state
827 * will not set it back.
828 */
829 node_clear_state(0, N_MEMORY);
830 node_clear_state(0, N_NORMAL_MEMORY);
831
832 zone_sizes_init();
833 }
834
835 #define PAGE_UNUSED 0xFD
836
837 /*
838 * The unused vmemmap range, which was not yet memset(PAGE_UNUSED), ranges
839 * from unused_pmd_start to next PMD_SIZE boundary.
840 */
841 static unsigned long unused_pmd_start __meminitdata;
842
vmemmap_flush_unused_pmd(void)843 static void __meminit vmemmap_flush_unused_pmd(void)
844 {
845 if (!unused_pmd_start)
846 return;
847 /*
848 * Clears (unused_pmd_start, PMD_END]
849 */
850 memset((void *)unused_pmd_start, PAGE_UNUSED,
851 ALIGN(unused_pmd_start, PMD_SIZE) - unused_pmd_start);
852 unused_pmd_start = 0;
853 }
854
855 #ifdef CONFIG_MEMORY_HOTPLUG
856 /* Returns true if the PMD is completely unused and thus it can be freed */
vmemmap_pmd_is_unused(unsigned long addr,unsigned long end)857 static bool __meminit vmemmap_pmd_is_unused(unsigned long addr, unsigned long end)
858 {
859 unsigned long start = ALIGN_DOWN(addr, PMD_SIZE);
860
861 /*
862 * Flush the unused range cache to ensure that memchr_inv() will work
863 * for the whole range.
864 */
865 vmemmap_flush_unused_pmd();
866 memset((void *)addr, PAGE_UNUSED, end - addr);
867
868 return !memchr_inv((void *)start, PAGE_UNUSED, PMD_SIZE);
869 }
870 #endif
871
__vmemmap_use_sub_pmd(unsigned long start)872 static void __meminit __vmemmap_use_sub_pmd(unsigned long start)
873 {
874 /*
875 * As we expect to add in the same granularity as we remove, it's
876 * sufficient to mark only some piece used to block the memmap page from
877 * getting removed when removing some other adjacent memmap (just in
878 * case the first memmap never gets initialized e.g., because the memory
879 * block never gets onlined).
880 */
881 memset((void *)start, 0, sizeof(struct page));
882 }
883
vmemmap_use_sub_pmd(unsigned long start,unsigned long end)884 static void __meminit vmemmap_use_sub_pmd(unsigned long start, unsigned long end)
885 {
886 /*
887 * We only optimize if the new used range directly follows the
888 * previously unused range (esp., when populating consecutive sections).
889 */
890 if (unused_pmd_start == start) {
891 if (likely(IS_ALIGNED(end, PMD_SIZE)))
892 unused_pmd_start = 0;
893 else
894 unused_pmd_start = end;
895 return;
896 }
897
898 /*
899 * If the range does not contiguously follows previous one, make sure
900 * to mark the unused range of the previous one so it can be removed.
901 */
902 vmemmap_flush_unused_pmd();
903 __vmemmap_use_sub_pmd(start);
904 }
905
906
vmemmap_use_new_sub_pmd(unsigned long start,unsigned long end)907 static void __meminit vmemmap_use_new_sub_pmd(unsigned long start, unsigned long end)
908 {
909 const unsigned long page = ALIGN_DOWN(start, PMD_SIZE);
910
911 vmemmap_flush_unused_pmd();
912
913 /*
914 * Could be our memmap page is filled with PAGE_UNUSED already from a
915 * previous remove. Make sure to reset it.
916 */
917 __vmemmap_use_sub_pmd(start);
918
919 /*
920 * Mark with PAGE_UNUSED the unused parts of the new memmap range
921 */
922 if (!IS_ALIGNED(start, PMD_SIZE))
923 memset((void *)page, PAGE_UNUSED, start - page);
924
925 /*
926 * We want to avoid memset(PAGE_UNUSED) when populating the vmemmap of
927 * consecutive sections. Remember for the last added PMD where the
928 * unused range begins.
929 */
930 if (!IS_ALIGNED(end, PMD_SIZE))
931 unused_pmd_start = end;
932 }
933
934 /*
935 * Memory hotplug specific functions
936 */
937 #ifdef CONFIG_MEMORY_HOTPLUG
938 /*
939 * After memory hotplug the variables max_pfn, max_low_pfn and high_memory need
940 * updating.
941 */
update_end_of_memory_vars(u64 start,u64 size)942 static void update_end_of_memory_vars(u64 start, u64 size)
943 {
944 unsigned long end_pfn = PFN_UP(start + size);
945
946 if (end_pfn > max_pfn) {
947 max_pfn = end_pfn;
948 max_low_pfn = end_pfn;
949 high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
950 }
951 }
952
add_pages(int nid,unsigned long start_pfn,unsigned long nr_pages,struct mhp_params * params)953 int add_pages(int nid, unsigned long start_pfn, unsigned long nr_pages,
954 struct mhp_params *params)
955 {
956 unsigned long end = ((start_pfn + nr_pages) << PAGE_SHIFT) - 1;
957 int ret;
958
959 if (WARN_ON_ONCE(end > DIRECT_MAP_PHYSMEM_END))
960 return -ERANGE;
961
962 ret = __add_pages(nid, start_pfn, nr_pages, params);
963 WARN_ON_ONCE(ret);
964
965 /*
966 * Special case: add_pages() is called by memremap_pages() for adding device
967 * private pages. Do not bump up max_pfn in the device private path,
968 * because max_pfn changes affect dma_addressing_limited().
969 *
970 * dma_addressing_limited() returning true when max_pfn is the device's
971 * addressable memory can force device drivers to use bounce buffers
972 * and impact their performance negatively:
973 */
974 if (!params->pgmap)
975 /* update max_pfn, max_low_pfn and high_memory */
976 update_end_of_memory_vars(start_pfn << PAGE_SHIFT, nr_pages << PAGE_SHIFT);
977
978 return ret;
979 }
980
arch_add_memory(int nid,u64 start,u64 size,struct mhp_params * params)981 int arch_add_memory(int nid, u64 start, u64 size,
982 struct mhp_params *params)
983 {
984 unsigned long start_pfn = start >> PAGE_SHIFT;
985 unsigned long nr_pages = size >> PAGE_SHIFT;
986
987 init_memory_mapping(start, start + size, params->pgprot);
988
989 return add_pages(nid, start_pfn, nr_pages, params);
990 }
991
free_reserved_pages(struct page * page,unsigned long nr_pages)992 static void free_reserved_pages(struct page *page, unsigned long nr_pages)
993 {
994 while (nr_pages--)
995 free_reserved_page(page++);
996 }
997
free_pagetable(struct page * page,int order)998 static void __meminit free_pagetable(struct page *page, int order)
999 {
1000 /* bootmem page has reserved flag */
1001 if (PageReserved(page)) {
1002 unsigned long nr_pages = 1 << order;
1003 #ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE
1004 enum bootmem_type type = bootmem_type(page);
1005
1006 if (type == SECTION_INFO || type == MIX_SECTION_INFO) {
1007 while (nr_pages--)
1008 put_page_bootmem(page++);
1009 } else {
1010 free_reserved_pages(page, nr_pages);
1011 }
1012 #else
1013 free_reserved_pages(page, nr_pages);
1014 #endif
1015 } else {
1016 free_pages((unsigned long)page_address(page), order);
1017 }
1018 }
1019
free_hugepage_table(struct page * page,struct vmem_altmap * altmap)1020 static void __meminit free_hugepage_table(struct page *page,
1021 struct vmem_altmap *altmap)
1022 {
1023 if (altmap)
1024 vmem_altmap_free(altmap, PMD_SIZE / PAGE_SIZE);
1025 else
1026 free_pagetable(page, get_order(PMD_SIZE));
1027 }
1028
free_pte_table(pte_t * pte_start,pmd_t * pmd)1029 static void __meminit free_pte_table(pte_t *pte_start, pmd_t *pmd)
1030 {
1031 pte_t *pte;
1032 int i;
1033
1034 for (i = 0; i < PTRS_PER_PTE; i++) {
1035 pte = pte_start + i;
1036 if (!pte_none(*pte))
1037 return;
1038 }
1039
1040 /* free a pte table */
1041 free_pagetable(pmd_page(*pmd), 0);
1042 spin_lock(&init_mm.page_table_lock);
1043 pmd_clear(pmd);
1044 spin_unlock(&init_mm.page_table_lock);
1045 }
1046
free_pmd_table(pmd_t * pmd_start,pud_t * pud)1047 static void __meminit free_pmd_table(pmd_t *pmd_start, pud_t *pud)
1048 {
1049 pmd_t *pmd;
1050 int i;
1051
1052 for (i = 0; i < PTRS_PER_PMD; i++) {
1053 pmd = pmd_start + i;
1054 if (!pmd_none(*pmd))
1055 return;
1056 }
1057
1058 /* free a pmd table */
1059 free_pagetable(pud_page(*pud), 0);
1060 spin_lock(&init_mm.page_table_lock);
1061 pud_clear(pud);
1062 spin_unlock(&init_mm.page_table_lock);
1063 }
1064
free_pud_table(pud_t * pud_start,p4d_t * p4d)1065 static void __meminit free_pud_table(pud_t *pud_start, p4d_t *p4d)
1066 {
1067 pud_t *pud;
1068 int i;
1069
1070 for (i = 0; i < PTRS_PER_PUD; i++) {
1071 pud = pud_start + i;
1072 if (!pud_none(*pud))
1073 return;
1074 }
1075
1076 /* free a pud table */
1077 free_pagetable(p4d_page(*p4d), 0);
1078 spin_lock(&init_mm.page_table_lock);
1079 p4d_clear(p4d);
1080 spin_unlock(&init_mm.page_table_lock);
1081 }
1082
1083 static void __meminit
remove_pte_table(pte_t * pte_start,unsigned long addr,unsigned long end,bool direct)1084 remove_pte_table(pte_t *pte_start, unsigned long addr, unsigned long end,
1085 bool direct)
1086 {
1087 unsigned long next, pages = 0;
1088 pte_t *pte;
1089 phys_addr_t phys_addr;
1090
1091 pte = pte_start + pte_index(addr);
1092 for (; addr < end; addr = next, pte++) {
1093 next = (addr + PAGE_SIZE) & PAGE_MASK;
1094 if (next > end)
1095 next = end;
1096
1097 if (!pte_present(*pte))
1098 continue;
1099
1100 /*
1101 * We mapped [0,1G) memory as identity mapping when
1102 * initializing, in arch/x86/kernel/head_64.S. These
1103 * pagetables cannot be removed.
1104 */
1105 phys_addr = pte_val(*pte) + (addr & PAGE_MASK);
1106 if (phys_addr < (phys_addr_t)0x40000000)
1107 return;
1108
1109 if (!direct)
1110 free_pagetable(pte_page(*pte), 0);
1111
1112 spin_lock(&init_mm.page_table_lock);
1113 pte_clear(&init_mm, addr, pte);
1114 spin_unlock(&init_mm.page_table_lock);
1115
1116 /* For non-direct mapping, pages means nothing. */
1117 pages++;
1118 }
1119
1120 /* Call free_pte_table() in remove_pmd_table(). */
1121 flush_tlb_all();
1122 if (direct)
1123 update_page_count(PG_LEVEL_4K, -pages);
1124 }
1125
1126 static void __meminit
remove_pmd_table(pmd_t * pmd_start,unsigned long addr,unsigned long end,bool direct,struct vmem_altmap * altmap)1127 remove_pmd_table(pmd_t *pmd_start, unsigned long addr, unsigned long end,
1128 bool direct, struct vmem_altmap *altmap)
1129 {
1130 unsigned long next, pages = 0;
1131 pte_t *pte_base;
1132 pmd_t *pmd;
1133
1134 pmd = pmd_start + pmd_index(addr);
1135 for (; addr < end; addr = next, pmd++) {
1136 next = pmd_addr_end(addr, end);
1137
1138 if (!pmd_present(*pmd))
1139 continue;
1140
1141 if (pmd_leaf(*pmd)) {
1142 if (IS_ALIGNED(addr, PMD_SIZE) &&
1143 IS_ALIGNED(next, PMD_SIZE)) {
1144 if (!direct)
1145 free_hugepage_table(pmd_page(*pmd),
1146 altmap);
1147
1148 spin_lock(&init_mm.page_table_lock);
1149 pmd_clear(pmd);
1150 spin_unlock(&init_mm.page_table_lock);
1151 pages++;
1152 } else if (vmemmap_pmd_is_unused(addr, next)) {
1153 free_hugepage_table(pmd_page(*pmd),
1154 altmap);
1155 spin_lock(&init_mm.page_table_lock);
1156 pmd_clear(pmd);
1157 spin_unlock(&init_mm.page_table_lock);
1158 }
1159 continue;
1160 }
1161
1162 pte_base = (pte_t *)pmd_page_vaddr(*pmd);
1163 remove_pte_table(pte_base, addr, next, direct);
1164 free_pte_table(pte_base, pmd);
1165 }
1166
1167 /* Call free_pmd_table() in remove_pud_table(). */
1168 if (direct)
1169 update_page_count(PG_LEVEL_2M, -pages);
1170 }
1171
1172 static void __meminit
remove_pud_table(pud_t * pud_start,unsigned long addr,unsigned long end,struct vmem_altmap * altmap,bool direct)1173 remove_pud_table(pud_t *pud_start, unsigned long addr, unsigned long end,
1174 struct vmem_altmap *altmap, bool direct)
1175 {
1176 unsigned long next, pages = 0;
1177 pmd_t *pmd_base;
1178 pud_t *pud;
1179
1180 pud = pud_start + pud_index(addr);
1181 for (; addr < end; addr = next, pud++) {
1182 next = pud_addr_end(addr, end);
1183
1184 if (!pud_present(*pud))
1185 continue;
1186
1187 if (pud_leaf(*pud) &&
1188 IS_ALIGNED(addr, PUD_SIZE) &&
1189 IS_ALIGNED(next, PUD_SIZE)) {
1190 spin_lock(&init_mm.page_table_lock);
1191 pud_clear(pud);
1192 spin_unlock(&init_mm.page_table_lock);
1193 pages++;
1194 continue;
1195 }
1196
1197 pmd_base = pmd_offset(pud, 0);
1198 remove_pmd_table(pmd_base, addr, next, direct, altmap);
1199 free_pmd_table(pmd_base, pud);
1200 }
1201
1202 if (direct)
1203 update_page_count(PG_LEVEL_1G, -pages);
1204 }
1205
1206 static void __meminit
remove_p4d_table(p4d_t * p4d_start,unsigned long addr,unsigned long end,struct vmem_altmap * altmap,bool direct)1207 remove_p4d_table(p4d_t *p4d_start, unsigned long addr, unsigned long end,
1208 struct vmem_altmap *altmap, bool direct)
1209 {
1210 unsigned long next, pages = 0;
1211 pud_t *pud_base;
1212 p4d_t *p4d;
1213
1214 p4d = p4d_start + p4d_index(addr);
1215 for (; addr < end; addr = next, p4d++) {
1216 next = p4d_addr_end(addr, end);
1217
1218 if (!p4d_present(*p4d))
1219 continue;
1220
1221 BUILD_BUG_ON(p4d_leaf(*p4d));
1222
1223 pud_base = pud_offset(p4d, 0);
1224 remove_pud_table(pud_base, addr, next, altmap, direct);
1225 /*
1226 * For 4-level page tables we do not want to free PUDs, but in the
1227 * 5-level case we should free them. This code will have to change
1228 * to adapt for boot-time switching between 4 and 5 level page tables.
1229 */
1230 if (pgtable_l5_enabled())
1231 free_pud_table(pud_base, p4d);
1232 }
1233
1234 if (direct)
1235 update_page_count(PG_LEVEL_512G, -pages);
1236 }
1237
1238 /* start and end are both virtual address. */
1239 static void __meminit
remove_pagetable(unsigned long start,unsigned long end,bool direct,struct vmem_altmap * altmap)1240 remove_pagetable(unsigned long start, unsigned long end, bool direct,
1241 struct vmem_altmap *altmap)
1242 {
1243 unsigned long next;
1244 unsigned long addr;
1245 pgd_t *pgd;
1246 p4d_t *p4d;
1247
1248 for (addr = start; addr < end; addr = next) {
1249 next = pgd_addr_end(addr, end);
1250
1251 pgd = pgd_offset_k(addr);
1252 if (!pgd_present(*pgd))
1253 continue;
1254
1255 p4d = p4d_offset(pgd, 0);
1256 remove_p4d_table(p4d, addr, next, altmap, direct);
1257 }
1258
1259 flush_tlb_all();
1260 }
1261
vmemmap_free(unsigned long start,unsigned long end,struct vmem_altmap * altmap)1262 void __ref vmemmap_free(unsigned long start, unsigned long end,
1263 struct vmem_altmap *altmap)
1264 {
1265 VM_BUG_ON(!PAGE_ALIGNED(start));
1266 VM_BUG_ON(!PAGE_ALIGNED(end));
1267
1268 remove_pagetable(start, end, false, altmap);
1269 }
1270
1271 static void __meminit
kernel_physical_mapping_remove(unsigned long start,unsigned long end)1272 kernel_physical_mapping_remove(unsigned long start, unsigned long end)
1273 {
1274 start = (unsigned long)__va(start);
1275 end = (unsigned long)__va(end);
1276
1277 remove_pagetable(start, end, true, NULL);
1278 }
1279
arch_remove_memory(u64 start,u64 size,struct vmem_altmap * altmap)1280 void __ref arch_remove_memory(u64 start, u64 size, struct vmem_altmap *altmap)
1281 {
1282 unsigned long start_pfn = start >> PAGE_SHIFT;
1283 unsigned long nr_pages = size >> PAGE_SHIFT;
1284
1285 __remove_pages(start_pfn, nr_pages, altmap);
1286 kernel_physical_mapping_remove(start, start + size);
1287 }
1288 #endif /* CONFIG_MEMORY_HOTPLUG */
1289
1290 static struct kcore_list kcore_vsyscall;
1291
register_page_bootmem_info(void)1292 static void __init register_page_bootmem_info(void)
1293 {
1294 #if defined(CONFIG_NUMA) || defined(CONFIG_HUGETLB_PAGE_OPTIMIZE_VMEMMAP)
1295 int i;
1296
1297 for_each_online_node(i)
1298 register_page_bootmem_info_node(NODE_DATA(i));
1299 #endif
1300 }
1301
1302 /*
1303 * Pre-allocates page-table pages for the vmalloc area in the kernel page-table.
1304 * Only the level which needs to be synchronized between all page-tables is
1305 * allocated because the synchronization can be expensive.
1306 */
preallocate_vmalloc_pages(void)1307 static void __init preallocate_vmalloc_pages(void)
1308 {
1309 unsigned long addr;
1310 const char *lvl;
1311
1312 for (addr = VMALLOC_START; addr <= VMEMORY_END; addr = ALIGN(addr + 1, PGDIR_SIZE)) {
1313 pgd_t *pgd = pgd_offset_k(addr);
1314 p4d_t *p4d;
1315 pud_t *pud;
1316
1317 lvl = "p4d";
1318 p4d = p4d_alloc(&init_mm, pgd, addr);
1319 if (!p4d)
1320 goto failed;
1321
1322 if (pgtable_l5_enabled())
1323 continue;
1324
1325 /*
1326 * The goal here is to allocate all possibly required
1327 * hardware page tables pointed to by the top hardware
1328 * level.
1329 *
1330 * On 4-level systems, the P4D layer is folded away and
1331 * the above code does no preallocation. Below, go down
1332 * to the pud _software_ level to ensure the second
1333 * hardware level is allocated on 4-level systems too.
1334 */
1335 lvl = "pud";
1336 pud = pud_alloc(&init_mm, p4d, addr);
1337 if (!pud)
1338 goto failed;
1339 }
1340
1341 return;
1342
1343 failed:
1344
1345 /*
1346 * The pages have to be there now or they will be missing in
1347 * process page-tables later.
1348 */
1349 panic("Failed to pre-allocate %s pages for vmalloc area\n", lvl);
1350 }
1351
arch_mm_preinit(void)1352 void __init arch_mm_preinit(void)
1353 {
1354 pci_iommu_alloc();
1355 }
1356
mem_init(void)1357 void __init mem_init(void)
1358 {
1359 /* clear_bss() already clear the empty_zero_page */
1360
1361 after_bootmem = 1;
1362 x86_init.hyper.init_after_bootmem();
1363
1364 /*
1365 * Must be done after boot memory is put on freelist, because here we
1366 * might set fields in deferred struct pages that have not yet been
1367 * initialized, and memblock_free_all() initializes all the reserved
1368 * deferred pages for us.
1369 */
1370 register_page_bootmem_info();
1371
1372 /* Register memory areas for /proc/kcore */
1373 if (get_gate_vma(&init_mm))
1374 kclist_add(&kcore_vsyscall, (void *)VSYSCALL_ADDR, PAGE_SIZE, KCORE_USER);
1375
1376 preallocate_vmalloc_pages();
1377 }
1378
1379 int kernel_set_to_readonly;
1380
mark_rodata_ro(void)1381 void mark_rodata_ro(void)
1382 {
1383 unsigned long start = PFN_ALIGN(_text);
1384 unsigned long rodata_start = PFN_ALIGN(__start_rodata);
1385 unsigned long end = (unsigned long)__end_rodata_hpage_align;
1386 unsigned long text_end = PFN_ALIGN(_etext);
1387 unsigned long rodata_end = PFN_ALIGN(__end_rodata);
1388 unsigned long all_end;
1389
1390 printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
1391 (end - start) >> 10);
1392 set_memory_ro(start, (end - start) >> PAGE_SHIFT);
1393
1394 kernel_set_to_readonly = 1;
1395
1396 /*
1397 * The rodata/data/bss/brk section (but not the kernel text!)
1398 * should also be not-executable.
1399 *
1400 * We align all_end to PMD_SIZE because the existing mapping
1401 * is a full PMD. If we would align _brk_end to PAGE_SIZE we
1402 * split the PMD and the reminder between _brk_end and the end
1403 * of the PMD will remain mapped executable.
1404 *
1405 * Any PMD which was setup after the one which covers _brk_end
1406 * has been zapped already via cleanup_highmem().
1407 */
1408 all_end = roundup((unsigned long)_brk_end, PMD_SIZE);
1409 set_memory_nx(text_end, (all_end - text_end) >> PAGE_SHIFT);
1410
1411 set_ftrace_ops_ro();
1412
1413 #ifdef CONFIG_CPA_DEBUG
1414 printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
1415 set_memory_rw(start, (end-start) >> PAGE_SHIFT);
1416
1417 printk(KERN_INFO "Testing CPA: again\n");
1418 set_memory_ro(start, (end-start) >> PAGE_SHIFT);
1419 #endif
1420
1421 free_kernel_image_pages("unused kernel image (text/rodata gap)",
1422 (void *)text_end, (void *)rodata_start);
1423 free_kernel_image_pages("unused kernel image (rodata/data gap)",
1424 (void *)rodata_end, (void *)_sdata);
1425 }
1426
1427 /*
1428 * Block size is the minimum amount of memory which can be hotplugged or
1429 * hotremoved. It must be power of two and must be equal or larger than
1430 * MIN_MEMORY_BLOCK_SIZE.
1431 */
1432 #define MAX_BLOCK_SIZE (2UL << 30)
1433
1434 /* Amount of ram needed to start using large blocks */
1435 #define MEM_SIZE_FOR_LARGE_BLOCK (64UL << 30)
1436
1437 /* Adjustable memory block size */
1438 static unsigned long set_memory_block_size;
set_memory_block_size_order(unsigned int order)1439 int __init set_memory_block_size_order(unsigned int order)
1440 {
1441 unsigned long size = 1UL << order;
1442
1443 if (size > MEM_SIZE_FOR_LARGE_BLOCK || size < MIN_MEMORY_BLOCK_SIZE)
1444 return -EINVAL;
1445
1446 set_memory_block_size = size;
1447 return 0;
1448 }
1449
probe_memory_block_size(void)1450 static unsigned long probe_memory_block_size(void)
1451 {
1452 unsigned long boot_mem_end = max_pfn << PAGE_SHIFT;
1453 unsigned long bz;
1454
1455 /* If memory block size has been set, then use it */
1456 bz = set_memory_block_size;
1457 if (bz)
1458 goto done;
1459
1460 /* Use regular block if RAM is smaller than MEM_SIZE_FOR_LARGE_BLOCK */
1461 if (boot_mem_end < MEM_SIZE_FOR_LARGE_BLOCK) {
1462 bz = MIN_MEMORY_BLOCK_SIZE;
1463 goto done;
1464 }
1465
1466 /*
1467 * When hotplug alignment is not a concern, maximize blocksize
1468 * to minimize overhead. Otherwise, align to the lesser of advice
1469 * alignment and end of memory alignment.
1470 */
1471 bz = memory_block_advised_max_size();
1472 if (!bz) {
1473 bz = MAX_BLOCK_SIZE;
1474 if (!cpu_feature_enabled(X86_FEATURE_HYPERVISOR))
1475 goto done;
1476 } else {
1477 bz = max(min(bz, MAX_BLOCK_SIZE), MIN_MEMORY_BLOCK_SIZE);
1478 }
1479
1480 /* Find the largest allowed block size that aligns to memory end */
1481 for (; bz > MIN_MEMORY_BLOCK_SIZE; bz >>= 1) {
1482 if (IS_ALIGNED(boot_mem_end, bz))
1483 break;
1484 }
1485 done:
1486 pr_info("x86/mm: Memory block size: %ldMB\n", bz >> 20);
1487
1488 return bz;
1489 }
1490
1491 static unsigned long memory_block_size_probed;
memory_block_size_bytes(void)1492 unsigned long memory_block_size_bytes(void)
1493 {
1494 if (!memory_block_size_probed)
1495 memory_block_size_probed = probe_memory_block_size();
1496
1497 return memory_block_size_probed;
1498 }
1499
1500 /*
1501 * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
1502 */
1503 static long __meminitdata addr_start, addr_end;
1504 static void __meminitdata *p_start, *p_end;
1505 static int __meminitdata node_start;
1506
vmemmap_set_pmd(pmd_t * pmd,void * p,int node,unsigned long addr,unsigned long next)1507 void __meminit vmemmap_set_pmd(pmd_t *pmd, void *p, int node,
1508 unsigned long addr, unsigned long next)
1509 {
1510 pte_t entry;
1511
1512 entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
1513 PAGE_KERNEL_LARGE);
1514 set_pmd(pmd, __pmd(pte_val(entry)));
1515
1516 /* check to see if we have contiguous blocks */
1517 if (p_end != p || node_start != node) {
1518 if (p_start)
1519 pr_debug(" [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1520 addr_start, addr_end-1, p_start, p_end-1, node_start);
1521 addr_start = addr;
1522 node_start = node;
1523 p_start = p;
1524 }
1525
1526 addr_end = addr + PMD_SIZE;
1527 p_end = p + PMD_SIZE;
1528
1529 if (!IS_ALIGNED(addr, PMD_SIZE) ||
1530 !IS_ALIGNED(next, PMD_SIZE))
1531 vmemmap_use_new_sub_pmd(addr, next);
1532 }
1533
vmemmap_check_pmd(pmd_t * pmd,int node,unsigned long addr,unsigned long next)1534 int __meminit vmemmap_check_pmd(pmd_t *pmd, int node,
1535 unsigned long addr, unsigned long next)
1536 {
1537 int large = pmd_leaf(*pmd);
1538
1539 if (pmd_leaf(*pmd)) {
1540 vmemmap_verify((pte_t *)pmd, node, addr, next);
1541 vmemmap_use_sub_pmd(addr, next);
1542 }
1543
1544 return large;
1545 }
1546
vmemmap_populate(unsigned long start,unsigned long end,int node,struct vmem_altmap * altmap)1547 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node,
1548 struct vmem_altmap *altmap)
1549 {
1550 int err;
1551
1552 VM_BUG_ON(!PAGE_ALIGNED(start));
1553 VM_BUG_ON(!PAGE_ALIGNED(end));
1554
1555 if (end - start < PAGES_PER_SECTION * sizeof(struct page))
1556 err = vmemmap_populate_basepages(start, end, node, NULL);
1557 else if (boot_cpu_has(X86_FEATURE_PSE))
1558 err = vmemmap_populate_hugepages(start, end, node, altmap);
1559 else if (altmap) {
1560 pr_err_once("%s: no cpu support for altmap allocations\n",
1561 __func__);
1562 err = -ENOMEM;
1563 } else
1564 err = vmemmap_populate_basepages(start, end, node, NULL);
1565 if (!err)
1566 sync_global_pgds(start, end - 1);
1567 return err;
1568 }
1569
1570 #ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE
register_page_bootmem_memmap(unsigned long section_nr,struct page * start_page,unsigned long nr_pages)1571 void register_page_bootmem_memmap(unsigned long section_nr,
1572 struct page *start_page, unsigned long nr_pages)
1573 {
1574 unsigned long addr = (unsigned long)start_page;
1575 unsigned long end = (unsigned long)(start_page + nr_pages);
1576 unsigned long next;
1577 pgd_t *pgd;
1578 p4d_t *p4d;
1579 pud_t *pud;
1580 pmd_t *pmd;
1581 unsigned int nr_pmd_pages;
1582 struct page *page;
1583
1584 for (; addr < end; addr = next) {
1585 pte_t *pte = NULL;
1586
1587 pgd = pgd_offset_k(addr);
1588 if (pgd_none(*pgd)) {
1589 next = (addr + PAGE_SIZE) & PAGE_MASK;
1590 continue;
1591 }
1592 get_page_bootmem(section_nr, pgd_page(*pgd), MIX_SECTION_INFO);
1593
1594 p4d = p4d_offset(pgd, addr);
1595 if (p4d_none(*p4d)) {
1596 next = (addr + PAGE_SIZE) & PAGE_MASK;
1597 continue;
1598 }
1599 get_page_bootmem(section_nr, p4d_page(*p4d), MIX_SECTION_INFO);
1600
1601 pud = pud_offset(p4d, addr);
1602 if (pud_none(*pud)) {
1603 next = (addr + PAGE_SIZE) & PAGE_MASK;
1604 continue;
1605 }
1606 get_page_bootmem(section_nr, pud_page(*pud), MIX_SECTION_INFO);
1607
1608 pmd = pmd_offset(pud, addr);
1609 if (pmd_none(*pmd)) {
1610 next = (addr + PAGE_SIZE) & PAGE_MASK;
1611 continue;
1612 }
1613
1614 if (!boot_cpu_has(X86_FEATURE_PSE) || !pmd_leaf(*pmd)) {
1615 next = (addr + PAGE_SIZE) & PAGE_MASK;
1616 get_page_bootmem(section_nr, pmd_page(*pmd),
1617 MIX_SECTION_INFO);
1618
1619 pte = pte_offset_kernel(pmd, addr);
1620 if (pte_none(*pte))
1621 continue;
1622 get_page_bootmem(section_nr, pte_page(*pte),
1623 SECTION_INFO);
1624 } else {
1625 next = pmd_addr_end(addr, end);
1626 nr_pmd_pages = (next - addr) >> PAGE_SHIFT;
1627 page = pmd_page(*pmd);
1628 while (nr_pmd_pages--)
1629 get_page_bootmem(section_nr, page++,
1630 SECTION_INFO);
1631 }
1632 }
1633 }
1634 #endif
1635
vmemmap_populate_print_last(void)1636 void __meminit vmemmap_populate_print_last(void)
1637 {
1638 if (p_start) {
1639 pr_debug(" [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1640 addr_start, addr_end-1, p_start, p_end-1, node_start);
1641 p_start = NULL;
1642 p_end = NULL;
1643 node_start = 0;
1644 }
1645 }
1646