xref: /linux/drivers/net/ethernet/intel/e1000e/netdev.c (revision 5c8013ae2e86ec36b07500ba4cacb14ab4d6f728)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2018 Intel Corporation. */
3 
4 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
5 
6 #include <linux/module.h>
7 #include <linux/types.h>
8 #include <linux/init.h>
9 #include <linux/pci.h>
10 #include <linux/vmalloc.h>
11 #include <linux/pagemap.h>
12 #include <linux/delay.h>
13 #include <linux/netdevice.h>
14 #include <linux/interrupt.h>
15 #include <linux/tcp.h>
16 #include <linux/ipv6.h>
17 #include <linux/slab.h>
18 #include <net/checksum.h>
19 #include <net/ip6_checksum.h>
20 #include <linux/ethtool.h>
21 #include <linux/if_vlan.h>
22 #include <linux/cpu.h>
23 #include <linux/smp.h>
24 #include <linux/pm_qos.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/prefetch.h>
27 #include <linux/suspend.h>
28 
29 #include "e1000.h"
30 #define CREATE_TRACE_POINTS
31 #include "e1000e_trace.h"
32 
33 char e1000e_driver_name[] = "e1000e";
34 
35 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
36 static int debug = -1;
37 module_param(debug, int, 0);
38 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
39 
40 static const struct e1000_info *e1000_info_tbl[] = {
41 	[board_82571]		= &e1000_82571_info,
42 	[board_82572]		= &e1000_82572_info,
43 	[board_82573]		= &e1000_82573_info,
44 	[board_82574]		= &e1000_82574_info,
45 	[board_82583]		= &e1000_82583_info,
46 	[board_80003es2lan]	= &e1000_es2_info,
47 	[board_ich8lan]		= &e1000_ich8_info,
48 	[board_ich9lan]		= &e1000_ich9_info,
49 	[board_ich10lan]	= &e1000_ich10_info,
50 	[board_pchlan]		= &e1000_pch_info,
51 	[board_pch2lan]		= &e1000_pch2_info,
52 	[board_pch_lpt]		= &e1000_pch_lpt_info,
53 	[board_pch_spt]		= &e1000_pch_spt_info,
54 	[board_pch_cnp]		= &e1000_pch_cnp_info,
55 	[board_pch_tgp]		= &e1000_pch_tgp_info,
56 	[board_pch_adp]		= &e1000_pch_adp_info,
57 	[board_pch_mtp]		= &e1000_pch_mtp_info,
58 };
59 
60 struct e1000_reg_info {
61 	u32 ofs;
62 	char *name;
63 };
64 
65 static const struct e1000_reg_info e1000_reg_info_tbl[] = {
66 	/* General Registers */
67 	{E1000_CTRL, "CTRL"},
68 	{E1000_STATUS, "STATUS"},
69 	{E1000_CTRL_EXT, "CTRL_EXT"},
70 
71 	/* Interrupt Registers */
72 	{E1000_ICR, "ICR"},
73 
74 	/* Rx Registers */
75 	{E1000_RCTL, "RCTL"},
76 	{E1000_RDLEN(0), "RDLEN"},
77 	{E1000_RDH(0), "RDH"},
78 	{E1000_RDT(0), "RDT"},
79 	{E1000_RDTR, "RDTR"},
80 	{E1000_RXDCTL(0), "RXDCTL"},
81 	{E1000_ERT, "ERT"},
82 	{E1000_RDBAL(0), "RDBAL"},
83 	{E1000_RDBAH(0), "RDBAH"},
84 	{E1000_RDFH, "RDFH"},
85 	{E1000_RDFT, "RDFT"},
86 	{E1000_RDFHS, "RDFHS"},
87 	{E1000_RDFTS, "RDFTS"},
88 	{E1000_RDFPC, "RDFPC"},
89 
90 	/* Tx Registers */
91 	{E1000_TCTL, "TCTL"},
92 	{E1000_TDBAL(0), "TDBAL"},
93 	{E1000_TDBAH(0), "TDBAH"},
94 	{E1000_TDLEN(0), "TDLEN"},
95 	{E1000_TDH(0), "TDH"},
96 	{E1000_TDT(0), "TDT"},
97 	{E1000_TIDV, "TIDV"},
98 	{E1000_TXDCTL(0), "TXDCTL"},
99 	{E1000_TADV, "TADV"},
100 	{E1000_TARC(0), "TARC"},
101 	{E1000_TDFH, "TDFH"},
102 	{E1000_TDFT, "TDFT"},
103 	{E1000_TDFHS, "TDFHS"},
104 	{E1000_TDFTS, "TDFTS"},
105 	{E1000_TDFPC, "TDFPC"},
106 
107 	/* List Terminator */
108 	{0, NULL}
109 };
110 
111 /**
112  * __ew32_prepare - prepare to write to MAC CSR register on certain parts
113  * @hw: pointer to the HW structure
114  *
115  * When updating the MAC CSR registers, the Manageability Engine (ME) could
116  * be accessing the registers at the same time.  Normally, this is handled in
117  * h/w by an arbiter but on some parts there is a bug that acknowledges Host
118  * accesses later than it should which could result in the register to have
119  * an incorrect value.  Workaround this by checking the FWSM register which
120  * has bit 24 set while ME is accessing MAC CSR registers, wait if it is set
121  * and try again a number of times.
122  **/
__ew32_prepare(struct e1000_hw * hw)123 static void __ew32_prepare(struct e1000_hw *hw)
124 {
125 	s32 i = E1000_ICH_FWSM_PCIM2PCI_COUNT;
126 
127 	while ((er32(FWSM) & E1000_ICH_FWSM_PCIM2PCI) && --i)
128 		udelay(50);
129 }
130 
__ew32(struct e1000_hw * hw,unsigned long reg,u32 val)131 void __ew32(struct e1000_hw *hw, unsigned long reg, u32 val)
132 {
133 	if (hw->adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
134 		__ew32_prepare(hw);
135 
136 	writel(val, hw->hw_addr + reg);
137 }
138 
139 /**
140  * e1000_regdump - register printout routine
141  * @hw: pointer to the HW structure
142  * @reginfo: pointer to the register info table
143  **/
e1000_regdump(struct e1000_hw * hw,struct e1000_reg_info * reginfo)144 static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo)
145 {
146 	int n = 0;
147 	char rname[16];
148 	u32 regs[8];
149 
150 	switch (reginfo->ofs) {
151 	case E1000_RXDCTL(0):
152 		for (n = 0; n < 2; n++)
153 			regs[n] = __er32(hw, E1000_RXDCTL(n));
154 		break;
155 	case E1000_TXDCTL(0):
156 		for (n = 0; n < 2; n++)
157 			regs[n] = __er32(hw, E1000_TXDCTL(n));
158 		break;
159 	case E1000_TARC(0):
160 		for (n = 0; n < 2; n++)
161 			regs[n] = __er32(hw, E1000_TARC(n));
162 		break;
163 	default:
164 		pr_info("%-15s %08x\n",
165 			reginfo->name, __er32(hw, reginfo->ofs));
166 		return;
167 	}
168 
169 	snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]");
170 	pr_info("%-15s %08x %08x\n", rname, regs[0], regs[1]);
171 }
172 
e1000e_dump_ps_pages(struct e1000_adapter * adapter,struct e1000_buffer * bi)173 static void e1000e_dump_ps_pages(struct e1000_adapter *adapter,
174 				 struct e1000_buffer *bi)
175 {
176 	int i;
177 	struct e1000_ps_page *ps_page;
178 
179 	for (i = 0; i < adapter->rx_ps_pages; i++) {
180 		ps_page = &bi->ps_pages[i];
181 
182 		if (ps_page->page) {
183 			pr_info("packet dump for ps_page %d:\n", i);
184 			print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
185 				       16, 1, page_address(ps_page->page),
186 				       PAGE_SIZE, true);
187 		}
188 	}
189 }
190 
191 /**
192  * e1000e_dump - Print registers, Tx-ring and Rx-ring
193  * @adapter: board private structure
194  **/
e1000e_dump(struct e1000_adapter * adapter)195 static void e1000e_dump(struct e1000_adapter *adapter)
196 {
197 	struct net_device *netdev = adapter->netdev;
198 	struct e1000_hw *hw = &adapter->hw;
199 	struct e1000_reg_info *reginfo;
200 	struct e1000_ring *tx_ring = adapter->tx_ring;
201 	struct e1000_tx_desc *tx_desc;
202 	struct my_u0 {
203 		__le64 a;
204 		__le64 b;
205 	} *u0;
206 	struct e1000_buffer *buffer_info;
207 	struct e1000_ring *rx_ring = adapter->rx_ring;
208 	union e1000_rx_desc_packet_split *rx_desc_ps;
209 	union e1000_rx_desc_extended *rx_desc;
210 	struct my_u1 {
211 		__le64 a;
212 		__le64 b;
213 		__le64 c;
214 		__le64 d;
215 	} *u1;
216 	u32 staterr;
217 	int i = 0;
218 
219 	if (!netif_msg_hw(adapter))
220 		return;
221 
222 	/* Print netdevice Info */
223 	if (netdev) {
224 		dev_info(&adapter->pdev->dev, "Net device Info\n");
225 		pr_info("Device Name     state            trans_start\n");
226 		pr_info("%-15s %016lX %016lX\n", netdev->name,
227 			netdev->state, dev_trans_start(netdev));
228 	}
229 
230 	/* Print Registers */
231 	dev_info(&adapter->pdev->dev, "Register Dump\n");
232 	pr_info(" Register Name   Value\n");
233 	for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl;
234 	     reginfo->name; reginfo++) {
235 		e1000_regdump(hw, reginfo);
236 	}
237 
238 	/* Print Tx Ring Summary */
239 	if (!netdev || !netif_running(netdev))
240 		return;
241 
242 	dev_info(&adapter->pdev->dev, "Tx Ring Summary\n");
243 	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
244 	buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
245 	pr_info(" %5d %5X %5X %016llX %04X %3X %016llX\n",
246 		0, tx_ring->next_to_use, tx_ring->next_to_clean,
247 		(unsigned long long)buffer_info->dma,
248 		buffer_info->length,
249 		buffer_info->next_to_watch,
250 		(unsigned long long)buffer_info->time_stamp);
251 
252 	/* Print Tx Ring */
253 	if (!netif_msg_tx_done(adapter))
254 		goto rx_ring_summary;
255 
256 	dev_info(&adapter->pdev->dev, "Tx Ring Dump\n");
257 
258 	/* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
259 	 *
260 	 * Legacy Transmit Descriptor
261 	 *   +--------------------------------------------------------------+
262 	 * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
263 	 *   +--------------------------------------------------------------+
264 	 * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
265 	 *   +--------------------------------------------------------------+
266 	 *   63       48 47        36 35    32 31     24 23    16 15        0
267 	 *
268 	 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
269 	 *   63      48 47    40 39       32 31             16 15    8 7      0
270 	 *   +----------------------------------------------------------------+
271 	 * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
272 	 *   +----------------------------------------------------------------+
273 	 * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
274 	 *   +----------------------------------------------------------------+
275 	 *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
276 	 *
277 	 * Extended Data Descriptor (DTYP=0x1)
278 	 *   +----------------------------------------------------------------+
279 	 * 0 |                     Buffer Address [63:0]                      |
280 	 *   +----------------------------------------------------------------+
281 	 * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
282 	 *   +----------------------------------------------------------------+
283 	 *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
284 	 */
285 	pr_info("Tl[desc]     [address 63:0  ] [SpeCssSCmCsLen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Legacy format\n");
286 	pr_info("Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Context format\n");
287 	pr_info("Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Data format\n");
288 	for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
289 		const char *next_desc;
290 		tx_desc = E1000_TX_DESC(*tx_ring, i);
291 		buffer_info = &tx_ring->buffer_info[i];
292 		u0 = (struct my_u0 *)tx_desc;
293 		if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
294 			next_desc = " NTC/U";
295 		else if (i == tx_ring->next_to_use)
296 			next_desc = " NTU";
297 		else if (i == tx_ring->next_to_clean)
298 			next_desc = " NTC";
299 		else
300 			next_desc = "";
301 		pr_info("T%c[0x%03X]    %016llX %016llX %016llX %04X  %3X %016llX %p%s\n",
302 			(!(le64_to_cpu(u0->b) & BIT(29)) ? 'l' :
303 			 ((le64_to_cpu(u0->b) & BIT(20)) ? 'd' : 'c')),
304 			i,
305 			(unsigned long long)le64_to_cpu(u0->a),
306 			(unsigned long long)le64_to_cpu(u0->b),
307 			(unsigned long long)buffer_info->dma,
308 			buffer_info->length, buffer_info->next_to_watch,
309 			(unsigned long long)buffer_info->time_stamp,
310 			buffer_info->skb, next_desc);
311 
312 		if (netif_msg_pktdata(adapter) && buffer_info->skb)
313 			print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
314 				       16, 1, buffer_info->skb->data,
315 				       buffer_info->skb->len, true);
316 	}
317 
318 	/* Print Rx Ring Summary */
319 rx_ring_summary:
320 	dev_info(&adapter->pdev->dev, "Rx Ring Summary\n");
321 	pr_info("Queue [NTU] [NTC]\n");
322 	pr_info(" %5d %5X %5X\n",
323 		0, rx_ring->next_to_use, rx_ring->next_to_clean);
324 
325 	/* Print Rx Ring */
326 	if (!netif_msg_rx_status(adapter))
327 		return;
328 
329 	dev_info(&adapter->pdev->dev, "Rx Ring Dump\n");
330 	switch (adapter->rx_ps_pages) {
331 	case 1:
332 	case 2:
333 	case 3:
334 		/* [Extended] Packet Split Receive Descriptor Format
335 		 *
336 		 *    +-----------------------------------------------------+
337 		 *  0 |                Buffer Address 0 [63:0]              |
338 		 *    +-----------------------------------------------------+
339 		 *  8 |                Buffer Address 1 [63:0]              |
340 		 *    +-----------------------------------------------------+
341 		 * 16 |                Buffer Address 2 [63:0]              |
342 		 *    +-----------------------------------------------------+
343 		 * 24 |                Buffer Address 3 [63:0]              |
344 		 *    +-----------------------------------------------------+
345 		 */
346 		pr_info("R  [desc]      [buffer 0 63:0 ] [buffer 1 63:0 ] [buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma       ] [bi->skb] <-- Ext Pkt Split format\n");
347 		/* [Extended] Receive Descriptor (Write-Back) Format
348 		 *
349 		 *   63       48 47    32 31     13 12    8 7    4 3        0
350 		 *   +------------------------------------------------------+
351 		 * 0 | Packet   | IP     |  Rsvd   | MRQ   | Rsvd | MRQ RSS |
352 		 *   | Checksum | Ident  |         | Queue |      |  Type   |
353 		 *   +------------------------------------------------------+
354 		 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
355 		 *   +------------------------------------------------------+
356 		 *   63       48 47    32 31            20 19               0
357 		 */
358 		pr_info("RWB[desc]      [ck ipid mrqhsh] [vl   l0 ee  es] [ l3  l2  l1 hs] [reserved      ] ---------------- [bi->skb] <-- Ext Rx Write-Back format\n");
359 		for (i = 0; i < rx_ring->count; i++) {
360 			const char *next_desc;
361 			buffer_info = &rx_ring->buffer_info[i];
362 			rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i);
363 			u1 = (struct my_u1 *)rx_desc_ps;
364 			staterr =
365 			    le32_to_cpu(rx_desc_ps->wb.middle.status_error);
366 
367 			if (i == rx_ring->next_to_use)
368 				next_desc = " NTU";
369 			else if (i == rx_ring->next_to_clean)
370 				next_desc = " NTC";
371 			else
372 				next_desc = "";
373 
374 			if (staterr & E1000_RXD_STAT_DD) {
375 				/* Descriptor Done */
376 				pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX ---------------- %p%s\n",
377 					"RWB", i,
378 					(unsigned long long)le64_to_cpu(u1->a),
379 					(unsigned long long)le64_to_cpu(u1->b),
380 					(unsigned long long)le64_to_cpu(u1->c),
381 					(unsigned long long)le64_to_cpu(u1->d),
382 					buffer_info->skb, next_desc);
383 			} else {
384 				pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX %016llX %p%s\n",
385 					"R  ", i,
386 					(unsigned long long)le64_to_cpu(u1->a),
387 					(unsigned long long)le64_to_cpu(u1->b),
388 					(unsigned long long)le64_to_cpu(u1->c),
389 					(unsigned long long)le64_to_cpu(u1->d),
390 					(unsigned long long)buffer_info->dma,
391 					buffer_info->skb, next_desc);
392 
393 				if (netif_msg_pktdata(adapter))
394 					e1000e_dump_ps_pages(adapter,
395 							     buffer_info);
396 			}
397 		}
398 		break;
399 	default:
400 	case 0:
401 		/* Extended Receive Descriptor (Read) Format
402 		 *
403 		 *   +-----------------------------------------------------+
404 		 * 0 |                Buffer Address [63:0]                |
405 		 *   +-----------------------------------------------------+
406 		 * 8 |                      Reserved                       |
407 		 *   +-----------------------------------------------------+
408 		 */
409 		pr_info("R  [desc]      [buf addr 63:0 ] [reserved 63:0 ] [bi->dma       ] [bi->skb] <-- Ext (Read) format\n");
410 		/* Extended Receive Descriptor (Write-Back) Format
411 		 *
412 		 *   63       48 47    32 31    24 23            4 3        0
413 		 *   +------------------------------------------------------+
414 		 *   |     RSS Hash      |        |               |         |
415 		 * 0 +-------------------+  Rsvd  |   Reserved    | MRQ RSS |
416 		 *   | Packet   | IP     |        |               |  Type   |
417 		 *   | Checksum | Ident  |        |               |         |
418 		 *   +------------------------------------------------------+
419 		 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
420 		 *   +------------------------------------------------------+
421 		 *   63       48 47    32 31            20 19               0
422 		 */
423 		pr_info("RWB[desc]      [cs ipid    mrq] [vt   ln xe  xs] [bi->skb] <-- Ext (Write-Back) format\n");
424 
425 		for (i = 0; i < rx_ring->count; i++) {
426 			const char *next_desc;
427 
428 			buffer_info = &rx_ring->buffer_info[i];
429 			rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
430 			u1 = (struct my_u1 *)rx_desc;
431 			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
432 
433 			if (i == rx_ring->next_to_use)
434 				next_desc = " NTU";
435 			else if (i == rx_ring->next_to_clean)
436 				next_desc = " NTC";
437 			else
438 				next_desc = "";
439 
440 			if (staterr & E1000_RXD_STAT_DD) {
441 				/* Descriptor Done */
442 				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %p%s\n",
443 					"RWB", i,
444 					(unsigned long long)le64_to_cpu(u1->a),
445 					(unsigned long long)le64_to_cpu(u1->b),
446 					buffer_info->skb, next_desc);
447 			} else {
448 				pr_info("%s[0x%03X]     %016llX %016llX %016llX %p%s\n",
449 					"R  ", i,
450 					(unsigned long long)le64_to_cpu(u1->a),
451 					(unsigned long long)le64_to_cpu(u1->b),
452 					(unsigned long long)buffer_info->dma,
453 					buffer_info->skb, next_desc);
454 
455 				if (netif_msg_pktdata(adapter) &&
456 				    buffer_info->skb)
457 					print_hex_dump(KERN_INFO, "",
458 						       DUMP_PREFIX_ADDRESS, 16,
459 						       1,
460 						       buffer_info->skb->data,
461 						       adapter->rx_buffer_len,
462 						       true);
463 			}
464 		}
465 	}
466 }
467 
468 /**
469  * e1000_desc_unused - calculate if we have unused descriptors
470  * @ring: pointer to ring struct to perform calculation on
471  **/
e1000_desc_unused(struct e1000_ring * ring)472 static int e1000_desc_unused(struct e1000_ring *ring)
473 {
474 	if (ring->next_to_clean > ring->next_to_use)
475 		return ring->next_to_clean - ring->next_to_use - 1;
476 
477 	return ring->count + ring->next_to_clean - ring->next_to_use - 1;
478 }
479 
480 /**
481  * e1000e_systim_to_hwtstamp - convert system time value to hw time stamp
482  * @adapter: board private structure
483  * @hwtstamps: time stamp structure to update
484  * @systim: unsigned 64bit system time value.
485  *
486  * Convert the system time value stored in the RX/TXSTMP registers into a
487  * hwtstamp which can be used by the upper level time stamping functions.
488  *
489  * The 'systim_lock' spinlock is used to protect the consistency of the
490  * system time value. This is needed because reading the 64 bit time
491  * value involves reading two 32 bit registers. The first read latches the
492  * value.
493  **/
e1000e_systim_to_hwtstamp(struct e1000_adapter * adapter,struct skb_shared_hwtstamps * hwtstamps,u64 systim)494 static void e1000e_systim_to_hwtstamp(struct e1000_adapter *adapter,
495 				      struct skb_shared_hwtstamps *hwtstamps,
496 				      u64 systim)
497 {
498 	u64 ns;
499 	unsigned long flags;
500 
501 	spin_lock_irqsave(&adapter->systim_lock, flags);
502 	ns = timecounter_cyc2time(&adapter->tc, systim);
503 	spin_unlock_irqrestore(&adapter->systim_lock, flags);
504 
505 	memset(hwtstamps, 0, sizeof(*hwtstamps));
506 	hwtstamps->hwtstamp = ns_to_ktime(ns);
507 }
508 
509 /**
510  * e1000e_rx_hwtstamp - utility function which checks for Rx time stamp
511  * @adapter: board private structure
512  * @status: descriptor extended error and status field
513  * @skb: particular skb to include time stamp
514  *
515  * If the time stamp is valid, convert it into the timecounter ns value
516  * and store that result into the shhwtstamps structure which is passed
517  * up the network stack.
518  **/
e1000e_rx_hwtstamp(struct e1000_adapter * adapter,u32 status,struct sk_buff * skb)519 static void e1000e_rx_hwtstamp(struct e1000_adapter *adapter, u32 status,
520 			       struct sk_buff *skb)
521 {
522 	struct e1000_hw *hw = &adapter->hw;
523 	u64 rxstmp;
524 
525 	if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP) ||
526 	    !(status & E1000_RXDEXT_STATERR_TST) ||
527 	    !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
528 		return;
529 
530 	/* The Rx time stamp registers contain the time stamp.  No other
531 	 * received packet will be time stamped until the Rx time stamp
532 	 * registers are read.  Because only one packet can be time stamped
533 	 * at a time, the register values must belong to this packet and
534 	 * therefore none of the other additional attributes need to be
535 	 * compared.
536 	 */
537 	rxstmp = (u64)er32(RXSTMPL);
538 	rxstmp |= (u64)er32(RXSTMPH) << 32;
539 	e1000e_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), rxstmp);
540 
541 	adapter->flags2 &= ~FLAG2_CHECK_RX_HWTSTAMP;
542 }
543 
544 /**
545  * e1000_receive_skb - helper function to handle Rx indications
546  * @adapter: board private structure
547  * @netdev: pointer to netdev struct
548  * @staterr: descriptor extended error and status field as written by hardware
549  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
550  * @skb: pointer to sk_buff to be indicated to stack
551  **/
e1000_receive_skb(struct e1000_adapter * adapter,struct net_device * netdev,struct sk_buff * skb,u32 staterr,__le16 vlan)552 static void e1000_receive_skb(struct e1000_adapter *adapter,
553 			      struct net_device *netdev, struct sk_buff *skb,
554 			      u32 staterr, __le16 vlan)
555 {
556 	u16 tag = le16_to_cpu(vlan);
557 
558 	e1000e_rx_hwtstamp(adapter, staterr, skb);
559 
560 	skb->protocol = eth_type_trans(skb, netdev);
561 
562 	if (staterr & E1000_RXD_STAT_VP)
563 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), tag);
564 
565 	napi_gro_receive(&adapter->napi, skb);
566 }
567 
568 /**
569  * e1000_rx_checksum - Receive Checksum Offload
570  * @adapter: board private structure
571  * @status_err: receive descriptor status and error fields
572  * @skb: socket buffer with received data
573  **/
e1000_rx_checksum(struct e1000_adapter * adapter,u32 status_err,struct sk_buff * skb)574 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
575 			      struct sk_buff *skb)
576 {
577 	u16 status = (u16)status_err;
578 	u8 errors = (u8)(status_err >> 24);
579 
580 	skb_checksum_none_assert(skb);
581 
582 	/* Rx checksum disabled */
583 	if (!(adapter->netdev->features & NETIF_F_RXCSUM))
584 		return;
585 
586 	/* Ignore Checksum bit is set */
587 	if (status & E1000_RXD_STAT_IXSM)
588 		return;
589 
590 	/* TCP/UDP checksum error bit or IP checksum error bit is set */
591 	if (errors & (E1000_RXD_ERR_TCPE | E1000_RXD_ERR_IPE)) {
592 		/* let the stack verify checksum errors */
593 		adapter->hw_csum_err++;
594 		return;
595 	}
596 
597 	/* TCP/UDP Checksum has not been calculated */
598 	if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
599 		return;
600 
601 	/* It must be a TCP or UDP packet with a valid checksum */
602 	skb->ip_summed = CHECKSUM_UNNECESSARY;
603 	adapter->hw_csum_good++;
604 }
605 
e1000e_update_rdt_wa(struct e1000_ring * rx_ring,unsigned int i)606 static void e1000e_update_rdt_wa(struct e1000_ring *rx_ring, unsigned int i)
607 {
608 	struct e1000_adapter *adapter = rx_ring->adapter;
609 	struct e1000_hw *hw = &adapter->hw;
610 
611 	__ew32_prepare(hw);
612 	writel(i, rx_ring->tail);
613 
614 	if (unlikely(i != readl(rx_ring->tail))) {
615 		u32 rctl = er32(RCTL);
616 
617 		ew32(RCTL, rctl & ~E1000_RCTL_EN);
618 		e_err("ME firmware caused invalid RDT - resetting\n");
619 		schedule_work(&adapter->reset_task);
620 	}
621 }
622 
e1000e_update_tdt_wa(struct e1000_ring * tx_ring,unsigned int i)623 static void e1000e_update_tdt_wa(struct e1000_ring *tx_ring, unsigned int i)
624 {
625 	struct e1000_adapter *adapter = tx_ring->adapter;
626 	struct e1000_hw *hw = &adapter->hw;
627 
628 	__ew32_prepare(hw);
629 	writel(i, tx_ring->tail);
630 
631 	if (unlikely(i != readl(tx_ring->tail))) {
632 		u32 tctl = er32(TCTL);
633 
634 		ew32(TCTL, tctl & ~E1000_TCTL_EN);
635 		e_err("ME firmware caused invalid TDT - resetting\n");
636 		schedule_work(&adapter->reset_task);
637 	}
638 }
639 
640 /**
641  * e1000_alloc_rx_buffers - Replace used receive buffers
642  * @rx_ring: Rx descriptor ring
643  * @cleaned_count: number to reallocate
644  * @gfp: flags for allocation
645  **/
e1000_alloc_rx_buffers(struct e1000_ring * rx_ring,int cleaned_count,gfp_t gfp)646 static void e1000_alloc_rx_buffers(struct e1000_ring *rx_ring,
647 				   int cleaned_count, gfp_t gfp)
648 {
649 	struct e1000_adapter *adapter = rx_ring->adapter;
650 	struct net_device *netdev = adapter->netdev;
651 	struct pci_dev *pdev = adapter->pdev;
652 	union e1000_rx_desc_extended *rx_desc;
653 	struct e1000_buffer *buffer_info;
654 	struct sk_buff *skb;
655 	unsigned int i;
656 	unsigned int bufsz = adapter->rx_buffer_len;
657 
658 	i = rx_ring->next_to_use;
659 	buffer_info = &rx_ring->buffer_info[i];
660 
661 	while (cleaned_count--) {
662 		skb = buffer_info->skb;
663 		if (skb) {
664 			skb_trim(skb, 0);
665 			goto map_skb;
666 		}
667 
668 		skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
669 		if (!skb) {
670 			/* Better luck next round */
671 			adapter->alloc_rx_buff_failed++;
672 			break;
673 		}
674 
675 		buffer_info->skb = skb;
676 map_skb:
677 		buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
678 						  adapter->rx_buffer_len,
679 						  DMA_FROM_DEVICE);
680 		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
681 			dev_err(&pdev->dev, "Rx DMA map failed\n");
682 			adapter->rx_dma_failed++;
683 			break;
684 		}
685 
686 		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
687 		rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
688 
689 		if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
690 			/* Force memory writes to complete before letting h/w
691 			 * know there are new descriptors to fetch.  (Only
692 			 * applicable for weak-ordered memory model archs,
693 			 * such as IA-64).
694 			 */
695 			wmb();
696 			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
697 				e1000e_update_rdt_wa(rx_ring, i);
698 			else
699 				writel(i, rx_ring->tail);
700 		}
701 		i++;
702 		if (i == rx_ring->count)
703 			i = 0;
704 		buffer_info = &rx_ring->buffer_info[i];
705 	}
706 
707 	rx_ring->next_to_use = i;
708 }
709 
710 /**
711  * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
712  * @rx_ring: Rx descriptor ring
713  * @cleaned_count: number to reallocate
714  * @gfp: flags for allocation
715  **/
e1000_alloc_rx_buffers_ps(struct e1000_ring * rx_ring,int cleaned_count,gfp_t gfp)716 static void e1000_alloc_rx_buffers_ps(struct e1000_ring *rx_ring,
717 				      int cleaned_count, gfp_t gfp)
718 {
719 	struct e1000_adapter *adapter = rx_ring->adapter;
720 	struct net_device *netdev = adapter->netdev;
721 	struct pci_dev *pdev = adapter->pdev;
722 	union e1000_rx_desc_packet_split *rx_desc;
723 	struct e1000_buffer *buffer_info;
724 	struct e1000_ps_page *ps_page;
725 	struct sk_buff *skb;
726 	unsigned int i, j;
727 
728 	i = rx_ring->next_to_use;
729 	buffer_info = &rx_ring->buffer_info[i];
730 
731 	while (cleaned_count--) {
732 		rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
733 
734 		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
735 			ps_page = &buffer_info->ps_pages[j];
736 			if (j >= adapter->rx_ps_pages) {
737 				/* all unused desc entries get hw null ptr */
738 				rx_desc->read.buffer_addr[j + 1] =
739 				    ~cpu_to_le64(0);
740 				continue;
741 			}
742 			if (!ps_page->page) {
743 				ps_page->page = alloc_page(gfp);
744 				if (!ps_page->page) {
745 					adapter->alloc_rx_buff_failed++;
746 					goto no_buffers;
747 				}
748 				ps_page->dma = dma_map_page(&pdev->dev,
749 							    ps_page->page,
750 							    0, PAGE_SIZE,
751 							    DMA_FROM_DEVICE);
752 				if (dma_mapping_error(&pdev->dev,
753 						      ps_page->dma)) {
754 					dev_err(&adapter->pdev->dev,
755 						"Rx DMA page map failed\n");
756 					adapter->rx_dma_failed++;
757 					goto no_buffers;
758 				}
759 			}
760 			/* Refresh the desc even if buffer_addrs
761 			 * didn't change because each write-back
762 			 * erases this info.
763 			 */
764 			rx_desc->read.buffer_addr[j + 1] =
765 			    cpu_to_le64(ps_page->dma);
766 		}
767 
768 		skb = __netdev_alloc_skb_ip_align(netdev, adapter->rx_ps_bsize0,
769 						  gfp);
770 
771 		if (!skb) {
772 			adapter->alloc_rx_buff_failed++;
773 			break;
774 		}
775 
776 		buffer_info->skb = skb;
777 		buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
778 						  adapter->rx_ps_bsize0,
779 						  DMA_FROM_DEVICE);
780 		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
781 			dev_err(&pdev->dev, "Rx DMA map failed\n");
782 			adapter->rx_dma_failed++;
783 			/* cleanup skb */
784 			dev_kfree_skb_any(skb);
785 			buffer_info->skb = NULL;
786 			break;
787 		}
788 
789 		rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
790 
791 		if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
792 			/* Force memory writes to complete before letting h/w
793 			 * know there are new descriptors to fetch.  (Only
794 			 * applicable for weak-ordered memory model archs,
795 			 * such as IA-64).
796 			 */
797 			wmb();
798 			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
799 				e1000e_update_rdt_wa(rx_ring, i << 1);
800 			else
801 				writel(i << 1, rx_ring->tail);
802 		}
803 
804 		i++;
805 		if (i == rx_ring->count)
806 			i = 0;
807 		buffer_info = &rx_ring->buffer_info[i];
808 	}
809 
810 no_buffers:
811 	rx_ring->next_to_use = i;
812 }
813 
814 /**
815  * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
816  * @rx_ring: Rx descriptor ring
817  * @cleaned_count: number of buffers to allocate this pass
818  * @gfp: flags for allocation
819  **/
820 
e1000_alloc_jumbo_rx_buffers(struct e1000_ring * rx_ring,int cleaned_count,gfp_t gfp)821 static void e1000_alloc_jumbo_rx_buffers(struct e1000_ring *rx_ring,
822 					 int cleaned_count, gfp_t gfp)
823 {
824 	struct e1000_adapter *adapter = rx_ring->adapter;
825 	struct net_device *netdev = adapter->netdev;
826 	struct pci_dev *pdev = adapter->pdev;
827 	union e1000_rx_desc_extended *rx_desc;
828 	struct e1000_buffer *buffer_info;
829 	struct sk_buff *skb;
830 	unsigned int i;
831 	unsigned int bufsz = 256 - 16;	/* for skb_reserve */
832 
833 	i = rx_ring->next_to_use;
834 	buffer_info = &rx_ring->buffer_info[i];
835 
836 	while (cleaned_count--) {
837 		skb = buffer_info->skb;
838 		if (skb) {
839 			skb_trim(skb, 0);
840 			goto check_page;
841 		}
842 
843 		skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
844 		if (unlikely(!skb)) {
845 			/* Better luck next round */
846 			adapter->alloc_rx_buff_failed++;
847 			break;
848 		}
849 
850 		buffer_info->skb = skb;
851 check_page:
852 		/* allocate a new page if necessary */
853 		if (!buffer_info->page) {
854 			buffer_info->page = alloc_page(gfp);
855 			if (unlikely(!buffer_info->page)) {
856 				adapter->alloc_rx_buff_failed++;
857 				break;
858 			}
859 		}
860 
861 		if (!buffer_info->dma) {
862 			buffer_info->dma = dma_map_page(&pdev->dev,
863 							buffer_info->page, 0,
864 							PAGE_SIZE,
865 							DMA_FROM_DEVICE);
866 			if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
867 				adapter->alloc_rx_buff_failed++;
868 				break;
869 			}
870 		}
871 
872 		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
873 		rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
874 
875 		if (unlikely(++i == rx_ring->count))
876 			i = 0;
877 		buffer_info = &rx_ring->buffer_info[i];
878 	}
879 
880 	if (likely(rx_ring->next_to_use != i)) {
881 		rx_ring->next_to_use = i;
882 		if (unlikely(i-- == 0))
883 			i = (rx_ring->count - 1);
884 
885 		/* Force memory writes to complete before letting h/w
886 		 * know there are new descriptors to fetch.  (Only
887 		 * applicable for weak-ordered memory model archs,
888 		 * such as IA-64).
889 		 */
890 		wmb();
891 		if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
892 			e1000e_update_rdt_wa(rx_ring, i);
893 		else
894 			writel(i, rx_ring->tail);
895 	}
896 }
897 
e1000_rx_hash(struct net_device * netdev,__le32 rss,struct sk_buff * skb)898 static inline void e1000_rx_hash(struct net_device *netdev, __le32 rss,
899 				 struct sk_buff *skb)
900 {
901 	if (netdev->features & NETIF_F_RXHASH)
902 		skb_set_hash(skb, le32_to_cpu(rss), PKT_HASH_TYPE_L3);
903 }
904 
905 /**
906  * e1000_clean_rx_irq - Send received data up the network stack
907  * @rx_ring: Rx descriptor ring
908  * @work_done: output parameter for indicating completed work
909  * @work_to_do: how many packets we can clean
910  *
911  * the return value indicates whether actual cleaning was done, there
912  * is no guarantee that everything was cleaned
913  **/
e1000_clean_rx_irq(struct e1000_ring * rx_ring,int * work_done,int work_to_do)914 static bool e1000_clean_rx_irq(struct e1000_ring *rx_ring, int *work_done,
915 			       int work_to_do)
916 {
917 	struct e1000_adapter *adapter = rx_ring->adapter;
918 	struct net_device *netdev = adapter->netdev;
919 	struct pci_dev *pdev = adapter->pdev;
920 	struct e1000_hw *hw = &adapter->hw;
921 	union e1000_rx_desc_extended *rx_desc, *next_rxd;
922 	struct e1000_buffer *buffer_info, *next_buffer;
923 	u32 length, staterr;
924 	unsigned int i;
925 	int cleaned_count = 0;
926 	bool cleaned = false;
927 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
928 
929 	i = rx_ring->next_to_clean;
930 	rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
931 	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
932 	buffer_info = &rx_ring->buffer_info[i];
933 
934 	while (staterr & E1000_RXD_STAT_DD) {
935 		struct sk_buff *skb;
936 
937 		if (*work_done >= work_to_do)
938 			break;
939 		(*work_done)++;
940 		dma_rmb();	/* read descriptor and rx_buffer_info after status DD */
941 
942 		skb = buffer_info->skb;
943 		buffer_info->skb = NULL;
944 
945 		prefetch(skb->data - NET_IP_ALIGN);
946 
947 		i++;
948 		if (i == rx_ring->count)
949 			i = 0;
950 		next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
951 		prefetch(next_rxd);
952 
953 		next_buffer = &rx_ring->buffer_info[i];
954 
955 		cleaned = true;
956 		cleaned_count++;
957 		dma_unmap_single(&pdev->dev, buffer_info->dma,
958 				 adapter->rx_buffer_len, DMA_FROM_DEVICE);
959 		buffer_info->dma = 0;
960 
961 		length = le16_to_cpu(rx_desc->wb.upper.length);
962 
963 		/* !EOP means multiple descriptors were used to store a single
964 		 * packet, if that's the case we need to toss it.  In fact, we
965 		 * need to toss every packet with the EOP bit clear and the
966 		 * next frame that _does_ have the EOP bit set, as it is by
967 		 * definition only a frame fragment
968 		 */
969 		if (unlikely(!(staterr & E1000_RXD_STAT_EOP)))
970 			adapter->flags2 |= FLAG2_IS_DISCARDING;
971 
972 		if (adapter->flags2 & FLAG2_IS_DISCARDING) {
973 			/* All receives must fit into a single buffer */
974 			e_dbg("Receive packet consumed multiple buffers\n");
975 			/* recycle */
976 			buffer_info->skb = skb;
977 			if (staterr & E1000_RXD_STAT_EOP)
978 				adapter->flags2 &= ~FLAG2_IS_DISCARDING;
979 			goto next_desc;
980 		}
981 
982 		if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
983 			     !(netdev->features & NETIF_F_RXALL))) {
984 			/* recycle */
985 			buffer_info->skb = skb;
986 			goto next_desc;
987 		}
988 
989 		/* adjust length to remove Ethernet CRC */
990 		if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
991 			/* If configured to store CRC, don't subtract FCS,
992 			 * but keep the FCS bytes out of the total_rx_bytes
993 			 * counter
994 			 */
995 			if (netdev->features & NETIF_F_RXFCS)
996 				total_rx_bytes -= 4;
997 			else
998 				length -= 4;
999 		}
1000 
1001 		total_rx_bytes += length;
1002 		total_rx_packets++;
1003 
1004 		/* code added for copybreak, this should improve
1005 		 * performance for small packets with large amounts
1006 		 * of reassembly being done in the stack
1007 		 */
1008 		if (length < copybreak) {
1009 			struct sk_buff *new_skb =
1010 				napi_alloc_skb(&adapter->napi, length);
1011 			if (new_skb) {
1012 				skb_copy_to_linear_data_offset(new_skb,
1013 							       -NET_IP_ALIGN,
1014 							       (skb->data -
1015 								NET_IP_ALIGN),
1016 							       (length +
1017 								NET_IP_ALIGN));
1018 				/* save the skb in buffer_info as good */
1019 				buffer_info->skb = skb;
1020 				skb = new_skb;
1021 			}
1022 			/* else just continue with the old one */
1023 		}
1024 		/* end copybreak code */
1025 		skb_put(skb, length);
1026 
1027 		/* Receive Checksum Offload */
1028 		e1000_rx_checksum(adapter, staterr, skb);
1029 
1030 		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1031 
1032 		e1000_receive_skb(adapter, netdev, skb, staterr,
1033 				  rx_desc->wb.upper.vlan);
1034 
1035 next_desc:
1036 		rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1037 
1038 		/* return some buffers to hardware, one at a time is too slow */
1039 		if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1040 			adapter->alloc_rx_buf(rx_ring, cleaned_count,
1041 					      GFP_ATOMIC);
1042 			cleaned_count = 0;
1043 		}
1044 
1045 		/* use prefetched values */
1046 		rx_desc = next_rxd;
1047 		buffer_info = next_buffer;
1048 
1049 		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1050 	}
1051 	rx_ring->next_to_clean = i;
1052 
1053 	cleaned_count = e1000_desc_unused(rx_ring);
1054 	if (cleaned_count)
1055 		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1056 
1057 	adapter->total_rx_bytes += total_rx_bytes;
1058 	adapter->total_rx_packets += total_rx_packets;
1059 	return cleaned;
1060 }
1061 
e1000_put_txbuf(struct e1000_ring * tx_ring,struct e1000_buffer * buffer_info,bool drop)1062 static void e1000_put_txbuf(struct e1000_ring *tx_ring,
1063 			    struct e1000_buffer *buffer_info,
1064 			    bool drop)
1065 {
1066 	struct e1000_adapter *adapter = tx_ring->adapter;
1067 
1068 	if (buffer_info->dma) {
1069 		if (buffer_info->mapped_as_page)
1070 			dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1071 				       buffer_info->length, DMA_TO_DEVICE);
1072 		else
1073 			dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1074 					 buffer_info->length, DMA_TO_DEVICE);
1075 		buffer_info->dma = 0;
1076 	}
1077 	if (buffer_info->skb) {
1078 		if (drop)
1079 			dev_kfree_skb_any(buffer_info->skb);
1080 		else
1081 			dev_consume_skb_any(buffer_info->skb);
1082 		buffer_info->skb = NULL;
1083 	}
1084 	buffer_info->time_stamp = 0;
1085 }
1086 
e1000_print_hw_hang(struct work_struct * work)1087 static void e1000_print_hw_hang(struct work_struct *work)
1088 {
1089 	struct e1000_adapter *adapter = container_of(work,
1090 						     struct e1000_adapter,
1091 						     print_hang_task);
1092 	struct net_device *netdev = adapter->netdev;
1093 	struct e1000_ring *tx_ring = adapter->tx_ring;
1094 	unsigned int i = tx_ring->next_to_clean;
1095 	unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
1096 	struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
1097 	struct e1000_hw *hw = &adapter->hw;
1098 	u16 phy_status, phy_1000t_status, phy_ext_status;
1099 	u16 pci_status;
1100 
1101 	if (test_bit(__E1000_DOWN, &adapter->state))
1102 		return;
1103 
1104 	if (!adapter->tx_hang_recheck && (adapter->flags2 & FLAG2_DMA_BURST)) {
1105 		/* May be block on write-back, flush and detect again
1106 		 * flush pending descriptor writebacks to memory
1107 		 */
1108 		ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1109 		/* execute the writes immediately */
1110 		e1e_flush();
1111 		/* Due to rare timing issues, write to TIDV again to ensure
1112 		 * the write is successful
1113 		 */
1114 		ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1115 		/* execute the writes immediately */
1116 		e1e_flush();
1117 		adapter->tx_hang_recheck = true;
1118 		return;
1119 	}
1120 	adapter->tx_hang_recheck = false;
1121 
1122 	if (er32(TDH(0)) == er32(TDT(0))) {
1123 		e_dbg("false hang detected, ignoring\n");
1124 		return;
1125 	}
1126 
1127 	/* Real hang detected */
1128 	netif_stop_queue(netdev);
1129 
1130 	e1e_rphy(hw, MII_BMSR, &phy_status);
1131 	e1e_rphy(hw, MII_STAT1000, &phy_1000t_status);
1132 	e1e_rphy(hw, MII_ESTATUS, &phy_ext_status);
1133 
1134 	pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);
1135 
1136 	/* detected Hardware unit hang */
1137 	e_err("Detected Hardware Unit Hang:\n"
1138 	      "  TDH                  <%x>\n"
1139 	      "  TDT                  <%x>\n"
1140 	      "  next_to_use          <%x>\n"
1141 	      "  next_to_clean        <%x>\n"
1142 	      "buffer_info[next_to_clean]:\n"
1143 	      "  time_stamp           <%lx>\n"
1144 	      "  next_to_watch        <%x>\n"
1145 	      "  jiffies              <%lx>\n"
1146 	      "  next_to_watch.status <%x>\n"
1147 	      "MAC Status             <%x>\n"
1148 	      "PHY Status             <%x>\n"
1149 	      "PHY 1000BASE-T Status  <%x>\n"
1150 	      "PHY Extended Status    <%x>\n"
1151 	      "PCI Status             <%x>\n",
1152 	      readl(tx_ring->head), readl(tx_ring->tail), tx_ring->next_to_use,
1153 	      tx_ring->next_to_clean, tx_ring->buffer_info[eop].time_stamp,
1154 	      eop, jiffies, eop_desc->upper.fields.status, er32(STATUS),
1155 	      phy_status, phy_1000t_status, phy_ext_status, pci_status);
1156 
1157 	e1000e_dump(adapter);
1158 
1159 	/* Suggest workaround for known h/w issue */
1160 	if ((hw->mac.type == e1000_pchlan) && (er32(CTRL) & E1000_CTRL_TFCE))
1161 		e_err("Try turning off Tx pause (flow control) via ethtool\n");
1162 }
1163 
1164 /**
1165  * e1000e_tx_hwtstamp_work - check for Tx time stamp
1166  * @work: pointer to work struct
1167  *
1168  * This work function polls the TSYNCTXCTL valid bit to determine when a
1169  * timestamp has been taken for the current stored skb.  The timestamp must
1170  * be for this skb because only one such packet is allowed in the queue.
1171  */
e1000e_tx_hwtstamp_work(struct work_struct * work)1172 static void e1000e_tx_hwtstamp_work(struct work_struct *work)
1173 {
1174 	struct e1000_adapter *adapter = container_of(work, struct e1000_adapter,
1175 						     tx_hwtstamp_work);
1176 	struct e1000_hw *hw = &adapter->hw;
1177 
1178 	if (er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID) {
1179 		struct sk_buff *skb = adapter->tx_hwtstamp_skb;
1180 		struct skb_shared_hwtstamps shhwtstamps;
1181 		u64 txstmp;
1182 
1183 		txstmp = er32(TXSTMPL);
1184 		txstmp |= (u64)er32(TXSTMPH) << 32;
1185 
1186 		e1000e_systim_to_hwtstamp(adapter, &shhwtstamps, txstmp);
1187 
1188 		/* Clear the global tx_hwtstamp_skb pointer and force writes
1189 		 * prior to notifying the stack of a Tx timestamp.
1190 		 */
1191 		adapter->tx_hwtstamp_skb = NULL;
1192 		wmb(); /* force write prior to skb_tstamp_tx */
1193 
1194 		skb_tstamp_tx(skb, &shhwtstamps);
1195 		dev_consume_skb_any(skb);
1196 	} else if (time_after(jiffies, adapter->tx_hwtstamp_start
1197 			      + adapter->tx_timeout_factor * HZ)) {
1198 		dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
1199 		adapter->tx_hwtstamp_skb = NULL;
1200 		adapter->tx_hwtstamp_timeouts++;
1201 		e_warn("clearing Tx timestamp hang\n");
1202 	} else {
1203 		/* reschedule to check later */
1204 		schedule_work(&adapter->tx_hwtstamp_work);
1205 	}
1206 }
1207 
1208 /**
1209  * e1000_clean_tx_irq - Reclaim resources after transmit completes
1210  * @tx_ring: Tx descriptor ring
1211  *
1212  * the return value indicates whether actual cleaning was done, there
1213  * is no guarantee that everything was cleaned
1214  **/
e1000_clean_tx_irq(struct e1000_ring * tx_ring)1215 static bool e1000_clean_tx_irq(struct e1000_ring *tx_ring)
1216 {
1217 	struct e1000_adapter *adapter = tx_ring->adapter;
1218 	struct net_device *netdev = adapter->netdev;
1219 	struct e1000_hw *hw = &adapter->hw;
1220 	struct e1000_tx_desc *tx_desc, *eop_desc;
1221 	struct e1000_buffer *buffer_info;
1222 	unsigned int i, eop;
1223 	unsigned int count = 0;
1224 	unsigned int total_tx_bytes = 0, total_tx_packets = 0;
1225 	unsigned int bytes_compl = 0, pkts_compl = 0;
1226 
1227 	i = tx_ring->next_to_clean;
1228 	eop = tx_ring->buffer_info[i].next_to_watch;
1229 	eop_desc = E1000_TX_DESC(*tx_ring, eop);
1230 
1231 	while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
1232 	       (count < tx_ring->count)) {
1233 		bool cleaned = false;
1234 
1235 		dma_rmb();		/* read buffer_info after eop_desc */
1236 		for (; !cleaned; count++) {
1237 			tx_desc = E1000_TX_DESC(*tx_ring, i);
1238 			buffer_info = &tx_ring->buffer_info[i];
1239 			cleaned = (i == eop);
1240 
1241 			if (cleaned) {
1242 				total_tx_packets += buffer_info->segs;
1243 				total_tx_bytes += buffer_info->bytecount;
1244 				if (buffer_info->skb) {
1245 					bytes_compl += buffer_info->skb->len;
1246 					pkts_compl++;
1247 				}
1248 			}
1249 
1250 			e1000_put_txbuf(tx_ring, buffer_info, false);
1251 			tx_desc->upper.data = 0;
1252 
1253 			i++;
1254 			if (i == tx_ring->count)
1255 				i = 0;
1256 		}
1257 
1258 		if (i == tx_ring->next_to_use)
1259 			break;
1260 		eop = tx_ring->buffer_info[i].next_to_watch;
1261 		eop_desc = E1000_TX_DESC(*tx_ring, eop);
1262 	}
1263 
1264 	tx_ring->next_to_clean = i;
1265 
1266 	netdev_completed_queue(netdev, pkts_compl, bytes_compl);
1267 
1268 #define TX_WAKE_THRESHOLD 32
1269 	if (count && netif_carrier_ok(netdev) &&
1270 	    e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
1271 		/* Make sure that anybody stopping the queue after this
1272 		 * sees the new next_to_clean.
1273 		 */
1274 		smp_mb();
1275 
1276 		if (netif_queue_stopped(netdev) &&
1277 		    !(test_bit(__E1000_DOWN, &adapter->state))) {
1278 			netif_wake_queue(netdev);
1279 			++adapter->restart_queue;
1280 		}
1281 	}
1282 
1283 	if (adapter->detect_tx_hung) {
1284 		/* Detect a transmit hang in hardware, this serializes the
1285 		 * check with the clearing of time_stamp and movement of i
1286 		 */
1287 		adapter->detect_tx_hung = false;
1288 		if (tx_ring->buffer_info[i].time_stamp &&
1289 		    time_after(jiffies, tx_ring->buffer_info[i].time_stamp
1290 			       + (adapter->tx_timeout_factor * HZ)) &&
1291 		    !(er32(STATUS) & E1000_STATUS_TXOFF))
1292 			schedule_work(&adapter->print_hang_task);
1293 		else
1294 			adapter->tx_hang_recheck = false;
1295 	}
1296 	adapter->total_tx_bytes += total_tx_bytes;
1297 	adapter->total_tx_packets += total_tx_packets;
1298 	return count < tx_ring->count;
1299 }
1300 
1301 /**
1302  * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
1303  * @rx_ring: Rx descriptor ring
1304  * @work_done: output parameter for indicating completed work
1305  * @work_to_do: how many packets we can clean
1306  *
1307  * the return value indicates whether actual cleaning was done, there
1308  * is no guarantee that everything was cleaned
1309  **/
e1000_clean_rx_irq_ps(struct e1000_ring * rx_ring,int * work_done,int work_to_do)1310 static bool e1000_clean_rx_irq_ps(struct e1000_ring *rx_ring, int *work_done,
1311 				  int work_to_do)
1312 {
1313 	struct e1000_adapter *adapter = rx_ring->adapter;
1314 	struct e1000_hw *hw = &adapter->hw;
1315 	union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
1316 	struct net_device *netdev = adapter->netdev;
1317 	struct pci_dev *pdev = adapter->pdev;
1318 	struct e1000_buffer *buffer_info, *next_buffer;
1319 	struct e1000_ps_page *ps_page;
1320 	struct sk_buff *skb;
1321 	unsigned int i, j;
1322 	u32 length, staterr;
1323 	int cleaned_count = 0;
1324 	bool cleaned = false;
1325 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1326 
1327 	i = rx_ring->next_to_clean;
1328 	rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
1329 	staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1330 	buffer_info = &rx_ring->buffer_info[i];
1331 
1332 	while (staterr & E1000_RXD_STAT_DD) {
1333 		if (*work_done >= work_to_do)
1334 			break;
1335 		(*work_done)++;
1336 		skb = buffer_info->skb;
1337 		dma_rmb();	/* read descriptor and rx_buffer_info after status DD */
1338 
1339 		/* in the packet split case this is header only */
1340 		prefetch(skb->data - NET_IP_ALIGN);
1341 
1342 		i++;
1343 		if (i == rx_ring->count)
1344 			i = 0;
1345 		next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
1346 		prefetch(next_rxd);
1347 
1348 		next_buffer = &rx_ring->buffer_info[i];
1349 
1350 		cleaned = true;
1351 		cleaned_count++;
1352 		dma_unmap_single(&pdev->dev, buffer_info->dma,
1353 				 adapter->rx_ps_bsize0, DMA_FROM_DEVICE);
1354 		buffer_info->dma = 0;
1355 
1356 		/* see !EOP comment in other Rx routine */
1357 		if (!(staterr & E1000_RXD_STAT_EOP))
1358 			adapter->flags2 |= FLAG2_IS_DISCARDING;
1359 
1360 		if (adapter->flags2 & FLAG2_IS_DISCARDING) {
1361 			e_dbg("Packet Split buffers didn't pick up the full packet\n");
1362 			dev_kfree_skb_irq(skb);
1363 			if (staterr & E1000_RXD_STAT_EOP)
1364 				adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1365 			goto next_desc;
1366 		}
1367 
1368 		if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1369 			     !(netdev->features & NETIF_F_RXALL))) {
1370 			dev_kfree_skb_irq(skb);
1371 			goto next_desc;
1372 		}
1373 
1374 		length = le16_to_cpu(rx_desc->wb.middle.length0);
1375 
1376 		if (!length) {
1377 			e_dbg("Last part of the packet spanning multiple descriptors\n");
1378 			dev_kfree_skb_irq(skb);
1379 			goto next_desc;
1380 		}
1381 
1382 		/* Good Receive */
1383 		skb_put(skb, length);
1384 
1385 		{
1386 			/* this looks ugly, but it seems compiler issues make
1387 			 * it more efficient than reusing j
1388 			 */
1389 			int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
1390 
1391 			/* page alloc/put takes too long and effects small
1392 			 * packet throughput, so unsplit small packets and
1393 			 * save the alloc/put
1394 			 */
1395 			if (l1 && (l1 <= copybreak) &&
1396 			    ((length + l1) <= adapter->rx_ps_bsize0)) {
1397 				ps_page = &buffer_info->ps_pages[0];
1398 
1399 				dma_sync_single_for_cpu(&pdev->dev,
1400 							ps_page->dma,
1401 							PAGE_SIZE,
1402 							DMA_FROM_DEVICE);
1403 				memcpy(skb_tail_pointer(skb),
1404 				       page_address(ps_page->page), l1);
1405 				dma_sync_single_for_device(&pdev->dev,
1406 							   ps_page->dma,
1407 							   PAGE_SIZE,
1408 							   DMA_FROM_DEVICE);
1409 
1410 				/* remove the CRC */
1411 				if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1412 					if (!(netdev->features & NETIF_F_RXFCS))
1413 						l1 -= 4;
1414 				}
1415 
1416 				skb_put(skb, l1);
1417 				goto copydone;
1418 			}	/* if */
1419 		}
1420 
1421 		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1422 			length = le16_to_cpu(rx_desc->wb.upper.length[j]);
1423 			if (!length)
1424 				break;
1425 
1426 			ps_page = &buffer_info->ps_pages[j];
1427 			dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1428 				       DMA_FROM_DEVICE);
1429 			ps_page->dma = 0;
1430 			skb_fill_page_desc(skb, j, ps_page->page, 0, length);
1431 			ps_page->page = NULL;
1432 			skb->len += length;
1433 			skb->data_len += length;
1434 			skb->truesize += PAGE_SIZE;
1435 		}
1436 
1437 		/* strip the ethernet crc, problem is we're using pages now so
1438 		 * this whole operation can get a little cpu intensive
1439 		 */
1440 		if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1441 			if (!(netdev->features & NETIF_F_RXFCS))
1442 				pskb_trim(skb, skb->len - 4);
1443 		}
1444 
1445 copydone:
1446 		total_rx_bytes += skb->len;
1447 		total_rx_packets++;
1448 
1449 		e1000_rx_checksum(adapter, staterr, skb);
1450 
1451 		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1452 
1453 		if (rx_desc->wb.upper.header_status &
1454 		    cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
1455 			adapter->rx_hdr_split++;
1456 
1457 		e1000_receive_skb(adapter, netdev, skb, staterr,
1458 				  rx_desc->wb.middle.vlan);
1459 
1460 next_desc:
1461 		rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
1462 		buffer_info->skb = NULL;
1463 
1464 		/* return some buffers to hardware, one at a time is too slow */
1465 		if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1466 			adapter->alloc_rx_buf(rx_ring, cleaned_count,
1467 					      GFP_ATOMIC);
1468 			cleaned_count = 0;
1469 		}
1470 
1471 		/* use prefetched values */
1472 		rx_desc = next_rxd;
1473 		buffer_info = next_buffer;
1474 
1475 		staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1476 	}
1477 	rx_ring->next_to_clean = i;
1478 
1479 	cleaned_count = e1000_desc_unused(rx_ring);
1480 	if (cleaned_count)
1481 		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1482 
1483 	adapter->total_rx_bytes += total_rx_bytes;
1484 	adapter->total_rx_packets += total_rx_packets;
1485 	return cleaned;
1486 }
1487 
e1000_consume_page(struct e1000_buffer * bi,struct sk_buff * skb,u16 length)1488 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
1489 			       u16 length)
1490 {
1491 	bi->page = NULL;
1492 	skb->len += length;
1493 	skb->data_len += length;
1494 	skb->truesize += PAGE_SIZE;
1495 }
1496 
1497 /**
1498  * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
1499  * @rx_ring: Rx descriptor ring
1500  * @work_done: output parameter for indicating completed work
1501  * @work_to_do: how many packets we can clean
1502  *
1503  * the return value indicates whether actual cleaning was done, there
1504  * is no guarantee that everything was cleaned
1505  **/
e1000_clean_jumbo_rx_irq(struct e1000_ring * rx_ring,int * work_done,int work_to_do)1506 static bool e1000_clean_jumbo_rx_irq(struct e1000_ring *rx_ring, int *work_done,
1507 				     int work_to_do)
1508 {
1509 	struct e1000_adapter *adapter = rx_ring->adapter;
1510 	struct net_device *netdev = adapter->netdev;
1511 	struct pci_dev *pdev = adapter->pdev;
1512 	union e1000_rx_desc_extended *rx_desc, *next_rxd;
1513 	struct e1000_buffer *buffer_info, *next_buffer;
1514 	u32 length, staterr;
1515 	unsigned int i;
1516 	int cleaned_count = 0;
1517 	bool cleaned = false;
1518 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1519 	struct skb_shared_info *shinfo;
1520 
1521 	i = rx_ring->next_to_clean;
1522 	rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1523 	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1524 	buffer_info = &rx_ring->buffer_info[i];
1525 
1526 	while (staterr & E1000_RXD_STAT_DD) {
1527 		struct sk_buff *skb;
1528 
1529 		if (*work_done >= work_to_do)
1530 			break;
1531 		(*work_done)++;
1532 		dma_rmb();	/* read descriptor and rx_buffer_info after status DD */
1533 
1534 		skb = buffer_info->skb;
1535 		buffer_info->skb = NULL;
1536 
1537 		++i;
1538 		if (i == rx_ring->count)
1539 			i = 0;
1540 		next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
1541 		prefetch(next_rxd);
1542 
1543 		next_buffer = &rx_ring->buffer_info[i];
1544 
1545 		cleaned = true;
1546 		cleaned_count++;
1547 		dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE,
1548 			       DMA_FROM_DEVICE);
1549 		buffer_info->dma = 0;
1550 
1551 		length = le16_to_cpu(rx_desc->wb.upper.length);
1552 
1553 		/* errors is only valid for DD + EOP descriptors */
1554 		if (unlikely((staterr & E1000_RXD_STAT_EOP) &&
1555 			     ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1556 			      !(netdev->features & NETIF_F_RXALL)))) {
1557 			/* recycle both page and skb */
1558 			buffer_info->skb = skb;
1559 			/* an error means any chain goes out the window too */
1560 			if (rx_ring->rx_skb_top)
1561 				dev_kfree_skb_irq(rx_ring->rx_skb_top);
1562 			rx_ring->rx_skb_top = NULL;
1563 			goto next_desc;
1564 		}
1565 #define rxtop (rx_ring->rx_skb_top)
1566 		if (!(staterr & E1000_RXD_STAT_EOP)) {
1567 			/* this descriptor is only the beginning (or middle) */
1568 			if (!rxtop) {
1569 				/* this is the beginning of a chain */
1570 				rxtop = skb;
1571 				skb_fill_page_desc(rxtop, 0, buffer_info->page,
1572 						   0, length);
1573 			} else {
1574 				/* this is the middle of a chain */
1575 				shinfo = skb_shinfo(rxtop);
1576 				skb_fill_page_desc(rxtop, shinfo->nr_frags,
1577 						   buffer_info->page, 0,
1578 						   length);
1579 				/* re-use the skb, only consumed the page */
1580 				buffer_info->skb = skb;
1581 			}
1582 			e1000_consume_page(buffer_info, rxtop, length);
1583 			goto next_desc;
1584 		} else {
1585 			if (rxtop) {
1586 				/* end of the chain */
1587 				shinfo = skb_shinfo(rxtop);
1588 				skb_fill_page_desc(rxtop, shinfo->nr_frags,
1589 						   buffer_info->page, 0,
1590 						   length);
1591 				/* re-use the current skb, we only consumed the
1592 				 * page
1593 				 */
1594 				buffer_info->skb = skb;
1595 				skb = rxtop;
1596 				rxtop = NULL;
1597 				e1000_consume_page(buffer_info, skb, length);
1598 			} else {
1599 				/* no chain, got EOP, this buf is the packet
1600 				 * copybreak to save the put_page/alloc_page
1601 				 */
1602 				if (length <= copybreak &&
1603 				    skb_tailroom(skb) >= length) {
1604 					memcpy(skb_tail_pointer(skb),
1605 					       page_address(buffer_info->page),
1606 					       length);
1607 					/* re-use the page, so don't erase
1608 					 * buffer_info->page
1609 					 */
1610 					skb_put(skb, length);
1611 				} else {
1612 					skb_fill_page_desc(skb, 0,
1613 							   buffer_info->page, 0,
1614 							   length);
1615 					e1000_consume_page(buffer_info, skb,
1616 							   length);
1617 				}
1618 			}
1619 		}
1620 
1621 		/* Receive Checksum Offload */
1622 		e1000_rx_checksum(adapter, staterr, skb);
1623 
1624 		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1625 
1626 		/* probably a little skewed due to removing CRC */
1627 		total_rx_bytes += skb->len;
1628 		total_rx_packets++;
1629 
1630 		/* eth type trans needs skb->data to point to something */
1631 		if (!pskb_may_pull(skb, ETH_HLEN)) {
1632 			e_err("pskb_may_pull failed.\n");
1633 			dev_kfree_skb_irq(skb);
1634 			goto next_desc;
1635 		}
1636 
1637 		e1000_receive_skb(adapter, netdev, skb, staterr,
1638 				  rx_desc->wb.upper.vlan);
1639 
1640 next_desc:
1641 		rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1642 
1643 		/* return some buffers to hardware, one at a time is too slow */
1644 		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1645 			adapter->alloc_rx_buf(rx_ring, cleaned_count,
1646 					      GFP_ATOMIC);
1647 			cleaned_count = 0;
1648 		}
1649 
1650 		/* use prefetched values */
1651 		rx_desc = next_rxd;
1652 		buffer_info = next_buffer;
1653 
1654 		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1655 	}
1656 	rx_ring->next_to_clean = i;
1657 
1658 	cleaned_count = e1000_desc_unused(rx_ring);
1659 	if (cleaned_count)
1660 		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1661 
1662 	adapter->total_rx_bytes += total_rx_bytes;
1663 	adapter->total_rx_packets += total_rx_packets;
1664 	return cleaned;
1665 }
1666 
1667 /**
1668  * e1000_clean_rx_ring - Free Rx Buffers per Queue
1669  * @rx_ring: Rx descriptor ring
1670  **/
e1000_clean_rx_ring(struct e1000_ring * rx_ring)1671 static void e1000_clean_rx_ring(struct e1000_ring *rx_ring)
1672 {
1673 	struct e1000_adapter *adapter = rx_ring->adapter;
1674 	struct e1000_buffer *buffer_info;
1675 	struct e1000_ps_page *ps_page;
1676 	struct pci_dev *pdev = adapter->pdev;
1677 	unsigned int i, j;
1678 
1679 	/* Free all the Rx ring sk_buffs */
1680 	for (i = 0; i < rx_ring->count; i++) {
1681 		buffer_info = &rx_ring->buffer_info[i];
1682 		if (buffer_info->dma) {
1683 			if (adapter->clean_rx == e1000_clean_rx_irq)
1684 				dma_unmap_single(&pdev->dev, buffer_info->dma,
1685 						 adapter->rx_buffer_len,
1686 						 DMA_FROM_DEVICE);
1687 			else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1688 				dma_unmap_page(&pdev->dev, buffer_info->dma,
1689 					       PAGE_SIZE, DMA_FROM_DEVICE);
1690 			else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1691 				dma_unmap_single(&pdev->dev, buffer_info->dma,
1692 						 adapter->rx_ps_bsize0,
1693 						 DMA_FROM_DEVICE);
1694 			buffer_info->dma = 0;
1695 		}
1696 
1697 		if (buffer_info->page) {
1698 			put_page(buffer_info->page);
1699 			buffer_info->page = NULL;
1700 		}
1701 
1702 		if (buffer_info->skb) {
1703 			dev_kfree_skb(buffer_info->skb);
1704 			buffer_info->skb = NULL;
1705 		}
1706 
1707 		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1708 			ps_page = &buffer_info->ps_pages[j];
1709 			if (!ps_page->page)
1710 				break;
1711 			dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1712 				       DMA_FROM_DEVICE);
1713 			ps_page->dma = 0;
1714 			put_page(ps_page->page);
1715 			ps_page->page = NULL;
1716 		}
1717 	}
1718 
1719 	/* there also may be some cached data from a chained receive */
1720 	if (rx_ring->rx_skb_top) {
1721 		dev_kfree_skb(rx_ring->rx_skb_top);
1722 		rx_ring->rx_skb_top = NULL;
1723 	}
1724 
1725 	/* Zero out the descriptor ring */
1726 	memset(rx_ring->desc, 0, rx_ring->size);
1727 
1728 	rx_ring->next_to_clean = 0;
1729 	rx_ring->next_to_use = 0;
1730 	adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1731 }
1732 
e1000e_downshift_workaround(struct work_struct * work)1733 static void e1000e_downshift_workaround(struct work_struct *work)
1734 {
1735 	struct e1000_adapter *adapter = container_of(work,
1736 						     struct e1000_adapter,
1737 						     downshift_task);
1738 
1739 	if (test_bit(__E1000_DOWN, &adapter->state))
1740 		return;
1741 
1742 	e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
1743 }
1744 
1745 /**
1746  * e1000_intr_msi - Interrupt Handler
1747  * @irq: interrupt number
1748  * @data: pointer to a network interface device structure
1749  **/
e1000_intr_msi(int __always_unused irq,void * data)1750 static irqreturn_t e1000_intr_msi(int __always_unused irq, void *data)
1751 {
1752 	struct net_device *netdev = data;
1753 	struct e1000_adapter *adapter = netdev_priv(netdev);
1754 	struct e1000_hw *hw = &adapter->hw;
1755 	u32 icr = er32(ICR);
1756 
1757 	/* read ICR disables interrupts using IAM */
1758 	if (icr & E1000_ICR_LSC) {
1759 		hw->mac.get_link_status = true;
1760 		/* ICH8 workaround-- Call gig speed drop workaround on cable
1761 		 * disconnect (LSC) before accessing any PHY registers
1762 		 */
1763 		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1764 		    (!(er32(STATUS) & E1000_STATUS_LU)))
1765 			schedule_work(&adapter->downshift_task);
1766 
1767 		/* 80003ES2LAN workaround-- For packet buffer work-around on
1768 		 * link down event; disable receives here in the ISR and reset
1769 		 * adapter in watchdog
1770 		 */
1771 		if (netif_carrier_ok(netdev) &&
1772 		    adapter->flags & FLAG_RX_NEEDS_RESTART) {
1773 			/* disable receives */
1774 			u32 rctl = er32(RCTL);
1775 
1776 			ew32(RCTL, rctl & ~E1000_RCTL_EN);
1777 			adapter->flags |= FLAG_RESTART_NOW;
1778 		}
1779 		/* guard against interrupt when we're going down */
1780 		if (!test_bit(__E1000_DOWN, &adapter->state))
1781 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
1782 	}
1783 
1784 	/* Reset on uncorrectable ECC error */
1785 	if ((icr & E1000_ICR_ECCER) && (hw->mac.type >= e1000_pch_lpt)) {
1786 		u32 pbeccsts = er32(PBECCSTS);
1787 
1788 		adapter->corr_errors +=
1789 		    pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1790 		adapter->uncorr_errors +=
1791 		    FIELD_GET(E1000_PBECCSTS_UNCORR_ERR_CNT_MASK, pbeccsts);
1792 
1793 		/* Do the reset outside of interrupt context */
1794 		schedule_work(&adapter->reset_task);
1795 
1796 		/* return immediately since reset is imminent */
1797 		return IRQ_HANDLED;
1798 	}
1799 
1800 	if (napi_schedule_prep(&adapter->napi)) {
1801 		adapter->total_tx_bytes = 0;
1802 		adapter->total_tx_packets = 0;
1803 		adapter->total_rx_bytes = 0;
1804 		adapter->total_rx_packets = 0;
1805 		__napi_schedule(&adapter->napi);
1806 	}
1807 
1808 	return IRQ_HANDLED;
1809 }
1810 
1811 /**
1812  * e1000_intr - Interrupt Handler
1813  * @irq: interrupt number
1814  * @data: pointer to a network interface device structure
1815  **/
e1000_intr(int __always_unused irq,void * data)1816 static irqreturn_t e1000_intr(int __always_unused irq, void *data)
1817 {
1818 	struct net_device *netdev = data;
1819 	struct e1000_adapter *adapter = netdev_priv(netdev);
1820 	struct e1000_hw *hw = &adapter->hw;
1821 	u32 rctl, icr = er32(ICR);
1822 
1823 	if (!icr || test_bit(__E1000_DOWN, &adapter->state))
1824 		return IRQ_NONE;	/* Not our interrupt */
1825 
1826 	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1827 	 * not set, then the adapter didn't send an interrupt
1828 	 */
1829 	if (!(icr & E1000_ICR_INT_ASSERTED))
1830 		return IRQ_NONE;
1831 
1832 	/* Interrupt Auto-Mask...upon reading ICR,
1833 	 * interrupts are masked.  No need for the
1834 	 * IMC write
1835 	 */
1836 
1837 	if (icr & E1000_ICR_LSC) {
1838 		hw->mac.get_link_status = true;
1839 		/* ICH8 workaround-- Call gig speed drop workaround on cable
1840 		 * disconnect (LSC) before accessing any PHY registers
1841 		 */
1842 		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1843 		    (!(er32(STATUS) & E1000_STATUS_LU)))
1844 			schedule_work(&adapter->downshift_task);
1845 
1846 		/* 80003ES2LAN workaround--
1847 		 * For packet buffer work-around on link down event;
1848 		 * disable receives here in the ISR and
1849 		 * reset adapter in watchdog
1850 		 */
1851 		if (netif_carrier_ok(netdev) &&
1852 		    (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1853 			/* disable receives */
1854 			rctl = er32(RCTL);
1855 			ew32(RCTL, rctl & ~E1000_RCTL_EN);
1856 			adapter->flags |= FLAG_RESTART_NOW;
1857 		}
1858 		/* guard against interrupt when we're going down */
1859 		if (!test_bit(__E1000_DOWN, &adapter->state))
1860 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
1861 	}
1862 
1863 	/* Reset on uncorrectable ECC error */
1864 	if ((icr & E1000_ICR_ECCER) && (hw->mac.type >= e1000_pch_lpt)) {
1865 		u32 pbeccsts = er32(PBECCSTS);
1866 
1867 		adapter->corr_errors +=
1868 		    pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1869 		adapter->uncorr_errors +=
1870 		    FIELD_GET(E1000_PBECCSTS_UNCORR_ERR_CNT_MASK, pbeccsts);
1871 
1872 		/* Do the reset outside of interrupt context */
1873 		schedule_work(&adapter->reset_task);
1874 
1875 		/* return immediately since reset is imminent */
1876 		return IRQ_HANDLED;
1877 	}
1878 
1879 	if (napi_schedule_prep(&adapter->napi)) {
1880 		adapter->total_tx_bytes = 0;
1881 		adapter->total_tx_packets = 0;
1882 		adapter->total_rx_bytes = 0;
1883 		adapter->total_rx_packets = 0;
1884 		__napi_schedule(&adapter->napi);
1885 	}
1886 
1887 	return IRQ_HANDLED;
1888 }
1889 
e1000_msix_other(int __always_unused irq,void * data)1890 static irqreturn_t e1000_msix_other(int __always_unused irq, void *data)
1891 {
1892 	struct net_device *netdev = data;
1893 	struct e1000_adapter *adapter = netdev_priv(netdev);
1894 	struct e1000_hw *hw = &adapter->hw;
1895 	u32 icr = er32(ICR);
1896 
1897 	if (icr & adapter->eiac_mask)
1898 		ew32(ICS, (icr & adapter->eiac_mask));
1899 
1900 	if (icr & E1000_ICR_LSC) {
1901 		hw->mac.get_link_status = true;
1902 		/* guard against interrupt when we're going down */
1903 		if (!test_bit(__E1000_DOWN, &adapter->state))
1904 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
1905 	}
1906 
1907 	if (!test_bit(__E1000_DOWN, &adapter->state))
1908 		ew32(IMS, E1000_IMS_OTHER | IMS_OTHER_MASK);
1909 
1910 	return IRQ_HANDLED;
1911 }
1912 
e1000_intr_msix_tx(int __always_unused irq,void * data)1913 static irqreturn_t e1000_intr_msix_tx(int __always_unused irq, void *data)
1914 {
1915 	struct net_device *netdev = data;
1916 	struct e1000_adapter *adapter = netdev_priv(netdev);
1917 	struct e1000_hw *hw = &adapter->hw;
1918 	struct e1000_ring *tx_ring = adapter->tx_ring;
1919 
1920 	adapter->total_tx_bytes = 0;
1921 	adapter->total_tx_packets = 0;
1922 
1923 	if (!e1000_clean_tx_irq(tx_ring))
1924 		/* Ring was not completely cleaned, so fire another interrupt */
1925 		ew32(ICS, tx_ring->ims_val);
1926 
1927 	if (!test_bit(__E1000_DOWN, &adapter->state))
1928 		ew32(IMS, adapter->tx_ring->ims_val);
1929 
1930 	return IRQ_HANDLED;
1931 }
1932 
e1000_intr_msix_rx(int __always_unused irq,void * data)1933 static irqreturn_t e1000_intr_msix_rx(int __always_unused irq, void *data)
1934 {
1935 	struct net_device *netdev = data;
1936 	struct e1000_adapter *adapter = netdev_priv(netdev);
1937 	struct e1000_ring *rx_ring = adapter->rx_ring;
1938 
1939 	/* Write the ITR value calculated at the end of the
1940 	 * previous interrupt.
1941 	 */
1942 	if (rx_ring->set_itr) {
1943 		u32 itr = rx_ring->itr_val ?
1944 			  1000000000 / (rx_ring->itr_val * 256) : 0;
1945 
1946 		writel(itr, rx_ring->itr_register);
1947 		rx_ring->set_itr = 0;
1948 	}
1949 
1950 	if (napi_schedule_prep(&adapter->napi)) {
1951 		adapter->total_rx_bytes = 0;
1952 		adapter->total_rx_packets = 0;
1953 		__napi_schedule(&adapter->napi);
1954 	}
1955 	return IRQ_HANDLED;
1956 }
1957 
1958 /**
1959  * e1000_configure_msix - Configure MSI-X hardware
1960  * @adapter: board private structure
1961  *
1962  * e1000_configure_msix sets up the hardware to properly
1963  * generate MSI-X interrupts.
1964  **/
e1000_configure_msix(struct e1000_adapter * adapter)1965 static void e1000_configure_msix(struct e1000_adapter *adapter)
1966 {
1967 	struct e1000_hw *hw = &adapter->hw;
1968 	struct e1000_ring *rx_ring = adapter->rx_ring;
1969 	struct e1000_ring *tx_ring = adapter->tx_ring;
1970 	int vector = 0;
1971 	u32 ctrl_ext, ivar = 0;
1972 
1973 	adapter->eiac_mask = 0;
1974 
1975 	/* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1976 	if (hw->mac.type == e1000_82574) {
1977 		u32 rfctl = er32(RFCTL);
1978 
1979 		rfctl |= E1000_RFCTL_ACK_DIS;
1980 		ew32(RFCTL, rfctl);
1981 	}
1982 
1983 	/* Configure Rx vector */
1984 	rx_ring->ims_val = E1000_IMS_RXQ0;
1985 	adapter->eiac_mask |= rx_ring->ims_val;
1986 	if (rx_ring->itr_val)
1987 		writel(1000000000 / (rx_ring->itr_val * 256),
1988 		       rx_ring->itr_register);
1989 	else
1990 		writel(1, rx_ring->itr_register);
1991 	ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
1992 
1993 	/* Configure Tx vector */
1994 	tx_ring->ims_val = E1000_IMS_TXQ0;
1995 	vector++;
1996 	if (tx_ring->itr_val)
1997 		writel(1000000000 / (tx_ring->itr_val * 256),
1998 		       tx_ring->itr_register);
1999 	else
2000 		writel(1, tx_ring->itr_register);
2001 	adapter->eiac_mask |= tx_ring->ims_val;
2002 	ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
2003 
2004 	/* set vector for Other Causes, e.g. link changes */
2005 	vector++;
2006 	ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
2007 	if (rx_ring->itr_val)
2008 		writel(1000000000 / (rx_ring->itr_val * 256),
2009 		       hw->hw_addr + E1000_EITR_82574(vector));
2010 	else
2011 		writel(1, hw->hw_addr + E1000_EITR_82574(vector));
2012 
2013 	/* Cause Tx interrupts on every write back */
2014 	ivar |= BIT(31);
2015 
2016 	ew32(IVAR, ivar);
2017 
2018 	/* enable MSI-X PBA support */
2019 	ctrl_ext = er32(CTRL_EXT) & ~E1000_CTRL_EXT_IAME;
2020 	ctrl_ext |= E1000_CTRL_EXT_PBA_CLR | E1000_CTRL_EXT_EIAME;
2021 	ew32(CTRL_EXT, ctrl_ext);
2022 	e1e_flush();
2023 }
2024 
e1000e_reset_interrupt_capability(struct e1000_adapter * adapter)2025 void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
2026 {
2027 	if (adapter->msix_entries) {
2028 		pci_disable_msix(adapter->pdev);
2029 		kfree(adapter->msix_entries);
2030 		adapter->msix_entries = NULL;
2031 	} else if (adapter->flags & FLAG_MSI_ENABLED) {
2032 		pci_disable_msi(adapter->pdev);
2033 		adapter->flags &= ~FLAG_MSI_ENABLED;
2034 	}
2035 }
2036 
2037 /**
2038  * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
2039  * @adapter: board private structure
2040  *
2041  * Attempt to configure interrupts using the best available
2042  * capabilities of the hardware and kernel.
2043  **/
e1000e_set_interrupt_capability(struct e1000_adapter * adapter)2044 void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
2045 {
2046 	int err;
2047 	int i;
2048 
2049 	switch (adapter->int_mode) {
2050 	case E1000E_INT_MODE_MSIX:
2051 		if (adapter->flags & FLAG_HAS_MSIX) {
2052 			adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */
2053 			adapter->msix_entries = kcalloc(adapter->num_vectors,
2054 							sizeof(struct
2055 							       msix_entry),
2056 							GFP_KERNEL);
2057 			if (adapter->msix_entries) {
2058 				struct e1000_adapter *a = adapter;
2059 
2060 				for (i = 0; i < adapter->num_vectors; i++)
2061 					adapter->msix_entries[i].entry = i;
2062 
2063 				err = pci_enable_msix_range(a->pdev,
2064 							    a->msix_entries,
2065 							    a->num_vectors,
2066 							    a->num_vectors);
2067 				if (err > 0)
2068 					return;
2069 			}
2070 			/* MSI-X failed, so fall through and try MSI */
2071 			e_err("Failed to initialize MSI-X interrupts.  Falling back to MSI interrupts.\n");
2072 			e1000e_reset_interrupt_capability(adapter);
2073 		}
2074 		adapter->int_mode = E1000E_INT_MODE_MSI;
2075 		fallthrough;
2076 	case E1000E_INT_MODE_MSI:
2077 		if (!pci_enable_msi(adapter->pdev)) {
2078 			adapter->flags |= FLAG_MSI_ENABLED;
2079 		} else {
2080 			adapter->int_mode = E1000E_INT_MODE_LEGACY;
2081 			e_err("Failed to initialize MSI interrupts.  Falling back to legacy interrupts.\n");
2082 		}
2083 		fallthrough;
2084 	case E1000E_INT_MODE_LEGACY:
2085 		/* Don't do anything; this is the system default */
2086 		break;
2087 	}
2088 
2089 	/* store the number of vectors being used */
2090 	adapter->num_vectors = 1;
2091 }
2092 
2093 /**
2094  * e1000_request_msix - Initialize MSI-X interrupts
2095  * @adapter: board private structure
2096  *
2097  * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
2098  * kernel.
2099  **/
e1000_request_msix(struct e1000_adapter * adapter)2100 static int e1000_request_msix(struct e1000_adapter *adapter)
2101 {
2102 	struct net_device *netdev = adapter->netdev;
2103 	int err = 0, vector = 0;
2104 
2105 	if (strlen(netdev->name) < (IFNAMSIZ - 5))
2106 		snprintf(adapter->rx_ring->name,
2107 			 sizeof(adapter->rx_ring->name) - 1,
2108 			 "%.14s-rx-0", netdev->name);
2109 	else
2110 		memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
2111 	err = request_irq(adapter->msix_entries[vector].vector,
2112 			  e1000_intr_msix_rx, 0, adapter->rx_ring->name,
2113 			  netdev);
2114 	if (err)
2115 		return err;
2116 	adapter->rx_ring->itr_register = adapter->hw.hw_addr +
2117 	    E1000_EITR_82574(vector);
2118 	adapter->rx_ring->itr_val = adapter->itr;
2119 	vector++;
2120 
2121 	if (strlen(netdev->name) < (IFNAMSIZ - 5))
2122 		snprintf(adapter->tx_ring->name,
2123 			 sizeof(adapter->tx_ring->name) - 1,
2124 			 "%.14s-tx-0", netdev->name);
2125 	else
2126 		memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
2127 	err = request_irq(adapter->msix_entries[vector].vector,
2128 			  e1000_intr_msix_tx, 0, adapter->tx_ring->name,
2129 			  netdev);
2130 	if (err)
2131 		return err;
2132 	adapter->tx_ring->itr_register = adapter->hw.hw_addr +
2133 	    E1000_EITR_82574(vector);
2134 	adapter->tx_ring->itr_val = adapter->itr;
2135 	vector++;
2136 
2137 	err = request_irq(adapter->msix_entries[vector].vector,
2138 			  e1000_msix_other, 0, netdev->name, netdev);
2139 	if (err)
2140 		return err;
2141 
2142 	e1000_configure_msix(adapter);
2143 
2144 	return 0;
2145 }
2146 
2147 /**
2148  * e1000_request_irq - initialize interrupts
2149  * @adapter: board private structure
2150  *
2151  * Attempts to configure interrupts using the best available
2152  * capabilities of the hardware and kernel.
2153  **/
e1000_request_irq(struct e1000_adapter * adapter)2154 static int e1000_request_irq(struct e1000_adapter *adapter)
2155 {
2156 	struct net_device *netdev = adapter->netdev;
2157 	int err;
2158 
2159 	if (adapter->msix_entries) {
2160 		err = e1000_request_msix(adapter);
2161 		if (!err)
2162 			return err;
2163 		/* fall back to MSI */
2164 		e1000e_reset_interrupt_capability(adapter);
2165 		adapter->int_mode = E1000E_INT_MODE_MSI;
2166 		e1000e_set_interrupt_capability(adapter);
2167 	}
2168 	if (adapter->flags & FLAG_MSI_ENABLED) {
2169 		err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
2170 				  netdev->name, netdev);
2171 		if (!err)
2172 			return err;
2173 
2174 		/* fall back to legacy interrupt */
2175 		e1000e_reset_interrupt_capability(adapter);
2176 		adapter->int_mode = E1000E_INT_MODE_LEGACY;
2177 	}
2178 
2179 	err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
2180 			  netdev->name, netdev);
2181 	if (err)
2182 		e_err("Unable to allocate interrupt, Error: %d\n", err);
2183 
2184 	return err;
2185 }
2186 
e1000_free_irq(struct e1000_adapter * adapter)2187 static void e1000_free_irq(struct e1000_adapter *adapter)
2188 {
2189 	struct net_device *netdev = adapter->netdev;
2190 
2191 	if (adapter->msix_entries) {
2192 		int vector = 0;
2193 
2194 		free_irq(adapter->msix_entries[vector].vector, netdev);
2195 		vector++;
2196 
2197 		free_irq(adapter->msix_entries[vector].vector, netdev);
2198 		vector++;
2199 
2200 		/* Other Causes interrupt vector */
2201 		free_irq(adapter->msix_entries[vector].vector, netdev);
2202 		return;
2203 	}
2204 
2205 	free_irq(adapter->pdev->irq, netdev);
2206 }
2207 
2208 /**
2209  * e1000_irq_disable - Mask off interrupt generation on the NIC
2210  * @adapter: board private structure
2211  **/
e1000_irq_disable(struct e1000_adapter * adapter)2212 static void e1000_irq_disable(struct e1000_adapter *adapter)
2213 {
2214 	struct e1000_hw *hw = &adapter->hw;
2215 
2216 	ew32(IMC, ~0);
2217 	if (adapter->msix_entries)
2218 		ew32(EIAC_82574, 0);
2219 	e1e_flush();
2220 
2221 	if (adapter->msix_entries) {
2222 		int i;
2223 
2224 		for (i = 0; i < adapter->num_vectors; i++)
2225 			synchronize_irq(adapter->msix_entries[i].vector);
2226 	} else {
2227 		synchronize_irq(adapter->pdev->irq);
2228 	}
2229 }
2230 
2231 /**
2232  * e1000_irq_enable - Enable default interrupt generation settings
2233  * @adapter: board private structure
2234  **/
e1000_irq_enable(struct e1000_adapter * adapter)2235 static void e1000_irq_enable(struct e1000_adapter *adapter)
2236 {
2237 	struct e1000_hw *hw = &adapter->hw;
2238 
2239 	if (adapter->msix_entries) {
2240 		ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
2241 		ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER |
2242 		     IMS_OTHER_MASK);
2243 	} else if (hw->mac.type >= e1000_pch_lpt) {
2244 		ew32(IMS, IMS_ENABLE_MASK | E1000_IMS_ECCER);
2245 	} else {
2246 		ew32(IMS, IMS_ENABLE_MASK);
2247 	}
2248 	e1e_flush();
2249 }
2250 
2251 /**
2252  * e1000e_get_hw_control - get control of the h/w from f/w
2253  * @adapter: address of board private structure
2254  *
2255  * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2256  * For ASF and Pass Through versions of f/w this means that
2257  * the driver is loaded. For AMT version (only with 82573)
2258  * of the f/w this means that the network i/f is open.
2259  **/
e1000e_get_hw_control(struct e1000_adapter * adapter)2260 void e1000e_get_hw_control(struct e1000_adapter *adapter)
2261 {
2262 	struct e1000_hw *hw = &adapter->hw;
2263 	u32 ctrl_ext;
2264 	u32 swsm;
2265 
2266 	/* Let firmware know the driver has taken over */
2267 	if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2268 		swsm = er32(SWSM);
2269 		ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
2270 	} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2271 		ctrl_ext = er32(CTRL_EXT);
2272 		ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2273 	}
2274 }
2275 
2276 /**
2277  * e1000e_release_hw_control - release control of the h/w to f/w
2278  * @adapter: address of board private structure
2279  *
2280  * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2281  * For ASF and Pass Through versions of f/w this means that the
2282  * driver is no longer loaded. For AMT version (only with 82573) i
2283  * of the f/w this means that the network i/f is closed.
2284  *
2285  **/
e1000e_release_hw_control(struct e1000_adapter * adapter)2286 void e1000e_release_hw_control(struct e1000_adapter *adapter)
2287 {
2288 	struct e1000_hw *hw = &adapter->hw;
2289 	u32 ctrl_ext;
2290 	u32 swsm;
2291 
2292 	/* Let firmware taken over control of h/w */
2293 	if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2294 		swsm = er32(SWSM);
2295 		ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
2296 	} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2297 		ctrl_ext = er32(CTRL_EXT);
2298 		ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2299 	}
2300 }
2301 
2302 /**
2303  * e1000_alloc_ring_dma - allocate memory for a ring structure
2304  * @adapter: board private structure
2305  * @ring: ring struct for which to allocate dma
2306  **/
e1000_alloc_ring_dma(struct e1000_adapter * adapter,struct e1000_ring * ring)2307 static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
2308 				struct e1000_ring *ring)
2309 {
2310 	struct pci_dev *pdev = adapter->pdev;
2311 
2312 	ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
2313 					GFP_KERNEL);
2314 	if (!ring->desc)
2315 		return -ENOMEM;
2316 
2317 	return 0;
2318 }
2319 
2320 /**
2321  * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
2322  * @tx_ring: Tx descriptor ring
2323  *
2324  * Return 0 on success, negative on failure
2325  **/
e1000e_setup_tx_resources(struct e1000_ring * tx_ring)2326 int e1000e_setup_tx_resources(struct e1000_ring *tx_ring)
2327 {
2328 	struct e1000_adapter *adapter = tx_ring->adapter;
2329 	int err = -ENOMEM, size;
2330 
2331 	size = sizeof(struct e1000_buffer) * tx_ring->count;
2332 	tx_ring->buffer_info = vzalloc(size);
2333 	if (!tx_ring->buffer_info)
2334 		goto err;
2335 
2336 	/* round up to nearest 4K */
2337 	tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
2338 	tx_ring->size = ALIGN(tx_ring->size, 4096);
2339 
2340 	err = e1000_alloc_ring_dma(adapter, tx_ring);
2341 	if (err)
2342 		goto err;
2343 
2344 	tx_ring->next_to_use = 0;
2345 	tx_ring->next_to_clean = 0;
2346 
2347 	return 0;
2348 err:
2349 	vfree(tx_ring->buffer_info);
2350 	e_err("Unable to allocate memory for the transmit descriptor ring\n");
2351 	return err;
2352 }
2353 
2354 /**
2355  * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
2356  * @rx_ring: Rx descriptor ring
2357  *
2358  * Returns 0 on success, negative on failure
2359  **/
e1000e_setup_rx_resources(struct e1000_ring * rx_ring)2360 int e1000e_setup_rx_resources(struct e1000_ring *rx_ring)
2361 {
2362 	struct e1000_adapter *adapter = rx_ring->adapter;
2363 	struct e1000_buffer *buffer_info;
2364 	int i, size, desc_len, err = -ENOMEM;
2365 
2366 	size = sizeof(struct e1000_buffer) * rx_ring->count;
2367 	rx_ring->buffer_info = vzalloc(size);
2368 	if (!rx_ring->buffer_info)
2369 		goto err;
2370 
2371 	for (i = 0; i < rx_ring->count; i++) {
2372 		buffer_info = &rx_ring->buffer_info[i];
2373 		buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
2374 						sizeof(struct e1000_ps_page),
2375 						GFP_KERNEL);
2376 		if (!buffer_info->ps_pages)
2377 			goto err_pages;
2378 	}
2379 
2380 	desc_len = sizeof(union e1000_rx_desc_packet_split);
2381 
2382 	/* Round up to nearest 4K */
2383 	rx_ring->size = rx_ring->count * desc_len;
2384 	rx_ring->size = ALIGN(rx_ring->size, 4096);
2385 
2386 	err = e1000_alloc_ring_dma(adapter, rx_ring);
2387 	if (err)
2388 		goto err_pages;
2389 
2390 	rx_ring->next_to_clean = 0;
2391 	rx_ring->next_to_use = 0;
2392 	rx_ring->rx_skb_top = NULL;
2393 
2394 	return 0;
2395 
2396 err_pages:
2397 	for (i = 0; i < rx_ring->count; i++) {
2398 		buffer_info = &rx_ring->buffer_info[i];
2399 		kfree(buffer_info->ps_pages);
2400 	}
2401 err:
2402 	vfree(rx_ring->buffer_info);
2403 	e_err("Unable to allocate memory for the receive descriptor ring\n");
2404 	return err;
2405 }
2406 
2407 /**
2408  * e1000_clean_tx_ring - Free Tx Buffers
2409  * @tx_ring: Tx descriptor ring
2410  **/
e1000_clean_tx_ring(struct e1000_ring * tx_ring)2411 static void e1000_clean_tx_ring(struct e1000_ring *tx_ring)
2412 {
2413 	struct e1000_adapter *adapter = tx_ring->adapter;
2414 	struct e1000_buffer *buffer_info;
2415 	unsigned long size;
2416 	unsigned int i;
2417 
2418 	for (i = 0; i < tx_ring->count; i++) {
2419 		buffer_info = &tx_ring->buffer_info[i];
2420 		e1000_put_txbuf(tx_ring, buffer_info, false);
2421 	}
2422 
2423 	netdev_reset_queue(adapter->netdev);
2424 	size = sizeof(struct e1000_buffer) * tx_ring->count;
2425 	memset(tx_ring->buffer_info, 0, size);
2426 
2427 	memset(tx_ring->desc, 0, tx_ring->size);
2428 
2429 	tx_ring->next_to_use = 0;
2430 	tx_ring->next_to_clean = 0;
2431 }
2432 
2433 /**
2434  * e1000e_free_tx_resources - Free Tx Resources per Queue
2435  * @tx_ring: Tx descriptor ring
2436  *
2437  * Free all transmit software resources
2438  **/
e1000e_free_tx_resources(struct e1000_ring * tx_ring)2439 void e1000e_free_tx_resources(struct e1000_ring *tx_ring)
2440 {
2441 	struct e1000_adapter *adapter = tx_ring->adapter;
2442 	struct pci_dev *pdev = adapter->pdev;
2443 
2444 	e1000_clean_tx_ring(tx_ring);
2445 
2446 	vfree(tx_ring->buffer_info);
2447 	tx_ring->buffer_info = NULL;
2448 
2449 	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
2450 			  tx_ring->dma);
2451 	tx_ring->desc = NULL;
2452 }
2453 
2454 /**
2455  * e1000e_free_rx_resources - Free Rx Resources
2456  * @rx_ring: Rx descriptor ring
2457  *
2458  * Free all receive software resources
2459  **/
e1000e_free_rx_resources(struct e1000_ring * rx_ring)2460 void e1000e_free_rx_resources(struct e1000_ring *rx_ring)
2461 {
2462 	struct e1000_adapter *adapter = rx_ring->adapter;
2463 	struct pci_dev *pdev = adapter->pdev;
2464 	int i;
2465 
2466 	e1000_clean_rx_ring(rx_ring);
2467 
2468 	for (i = 0; i < rx_ring->count; i++)
2469 		kfree(rx_ring->buffer_info[i].ps_pages);
2470 
2471 	vfree(rx_ring->buffer_info);
2472 	rx_ring->buffer_info = NULL;
2473 
2474 	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2475 			  rx_ring->dma);
2476 	rx_ring->desc = NULL;
2477 }
2478 
2479 /**
2480  * e1000_update_itr - update the dynamic ITR value based on statistics
2481  * @itr_setting: current adapter->itr
2482  * @packets: the number of packets during this measurement interval
2483  * @bytes: the number of bytes during this measurement interval
2484  *
2485  *      Stores a new ITR value based on packets and byte
2486  *      counts during the last interrupt.  The advantage of per interrupt
2487  *      computation is faster updates and more accurate ITR for the current
2488  *      traffic pattern.  Constants in this function were computed
2489  *      based on theoretical maximum wire speed and thresholds were set based
2490  *      on testing data as well as attempting to minimize response time
2491  *      while increasing bulk throughput.  This functionality is controlled
2492  *      by the InterruptThrottleRate module parameter.
2493  **/
e1000_update_itr(u16 itr_setting,int packets,int bytes)2494 static unsigned int e1000_update_itr(u16 itr_setting, int packets, int bytes)
2495 {
2496 	unsigned int retval = itr_setting;
2497 
2498 	if (packets == 0)
2499 		return itr_setting;
2500 
2501 	switch (itr_setting) {
2502 	case lowest_latency:
2503 		/* handle TSO and jumbo frames */
2504 		if (bytes / packets > 8000)
2505 			retval = bulk_latency;
2506 		else if ((packets < 5) && (bytes > 512))
2507 			retval = low_latency;
2508 		break;
2509 	case low_latency:	/* 50 usec aka 20000 ints/s */
2510 		if (bytes > 10000) {
2511 			/* this if handles the TSO accounting */
2512 			if (bytes / packets > 8000)
2513 				retval = bulk_latency;
2514 			else if ((packets < 10) || ((bytes / packets) > 1200))
2515 				retval = bulk_latency;
2516 			else if ((packets > 35))
2517 				retval = lowest_latency;
2518 		} else if (bytes / packets > 2000) {
2519 			retval = bulk_latency;
2520 		} else if (packets <= 2 && bytes < 512) {
2521 			retval = lowest_latency;
2522 		}
2523 		break;
2524 	case bulk_latency:	/* 250 usec aka 4000 ints/s */
2525 		if (bytes > 25000) {
2526 			if (packets > 35)
2527 				retval = low_latency;
2528 		} else if (bytes < 6000) {
2529 			retval = low_latency;
2530 		}
2531 		break;
2532 	}
2533 
2534 	return retval;
2535 }
2536 
e1000_set_itr(struct e1000_adapter * adapter)2537 static void e1000_set_itr(struct e1000_adapter *adapter)
2538 {
2539 	u16 current_itr;
2540 	u32 new_itr = adapter->itr;
2541 
2542 	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2543 	if (adapter->link_speed != SPEED_1000) {
2544 		new_itr = 4000;
2545 		goto set_itr_now;
2546 	}
2547 
2548 	if (adapter->flags2 & FLAG2_DISABLE_AIM) {
2549 		new_itr = 0;
2550 		goto set_itr_now;
2551 	}
2552 
2553 	adapter->tx_itr = e1000_update_itr(adapter->tx_itr,
2554 					   adapter->total_tx_packets,
2555 					   adapter->total_tx_bytes);
2556 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2557 	if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2558 		adapter->tx_itr = low_latency;
2559 
2560 	adapter->rx_itr = e1000_update_itr(adapter->rx_itr,
2561 					   adapter->total_rx_packets,
2562 					   adapter->total_rx_bytes);
2563 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2564 	if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2565 		adapter->rx_itr = low_latency;
2566 
2567 	current_itr = max(adapter->rx_itr, adapter->tx_itr);
2568 
2569 	/* counts and packets in update_itr are dependent on these numbers */
2570 	switch (current_itr) {
2571 	case lowest_latency:
2572 		new_itr = 70000;
2573 		break;
2574 	case low_latency:
2575 		new_itr = 20000;	/* aka hwitr = ~200 */
2576 		break;
2577 	case bulk_latency:
2578 		new_itr = 4000;
2579 		break;
2580 	default:
2581 		break;
2582 	}
2583 
2584 set_itr_now:
2585 	if (new_itr != adapter->itr) {
2586 		/* this attempts to bias the interrupt rate towards Bulk
2587 		 * by adding intermediate steps when interrupt rate is
2588 		 * increasing
2589 		 */
2590 		new_itr = new_itr > adapter->itr ?
2591 		    min(adapter->itr + (new_itr >> 2), new_itr) : new_itr;
2592 		adapter->itr = new_itr;
2593 		adapter->rx_ring->itr_val = new_itr;
2594 		if (adapter->msix_entries)
2595 			adapter->rx_ring->set_itr = 1;
2596 		else
2597 			e1000e_write_itr(adapter, new_itr);
2598 	}
2599 }
2600 
2601 /**
2602  * e1000e_write_itr - write the ITR value to the appropriate registers
2603  * @adapter: address of board private structure
2604  * @itr: new ITR value to program
2605  *
2606  * e1000e_write_itr determines if the adapter is in MSI-X mode
2607  * and, if so, writes the EITR registers with the ITR value.
2608  * Otherwise, it writes the ITR value into the ITR register.
2609  **/
e1000e_write_itr(struct e1000_adapter * adapter,u32 itr)2610 void e1000e_write_itr(struct e1000_adapter *adapter, u32 itr)
2611 {
2612 	struct e1000_hw *hw = &adapter->hw;
2613 	u32 new_itr = itr ? 1000000000 / (itr * 256) : 0;
2614 
2615 	if (adapter->msix_entries) {
2616 		int vector;
2617 
2618 		for (vector = 0; vector < adapter->num_vectors; vector++)
2619 			writel(new_itr, hw->hw_addr + E1000_EITR_82574(vector));
2620 	} else {
2621 		ew32(ITR, new_itr);
2622 	}
2623 }
2624 
2625 /**
2626  * e1000_alloc_queues - Allocate memory for all rings
2627  * @adapter: board private structure to initialize
2628  **/
e1000_alloc_queues(struct e1000_adapter * adapter)2629 static int e1000_alloc_queues(struct e1000_adapter *adapter)
2630 {
2631 	int size = sizeof(struct e1000_ring);
2632 
2633 	adapter->tx_ring = kzalloc(size, GFP_KERNEL);
2634 	if (!adapter->tx_ring)
2635 		goto err;
2636 	adapter->tx_ring->count = adapter->tx_ring_count;
2637 	adapter->tx_ring->adapter = adapter;
2638 
2639 	adapter->rx_ring = kzalloc(size, GFP_KERNEL);
2640 	if (!adapter->rx_ring)
2641 		goto err;
2642 	adapter->rx_ring->count = adapter->rx_ring_count;
2643 	adapter->rx_ring->adapter = adapter;
2644 
2645 	return 0;
2646 err:
2647 	e_err("Unable to allocate memory for queues\n");
2648 	kfree(adapter->rx_ring);
2649 	kfree(adapter->tx_ring);
2650 	return -ENOMEM;
2651 }
2652 
2653 /**
2654  * e1000e_poll - NAPI Rx polling callback
2655  * @napi: struct associated with this polling callback
2656  * @budget: number of packets driver is allowed to process this poll
2657  **/
e1000e_poll(struct napi_struct * napi,int budget)2658 static int e1000e_poll(struct napi_struct *napi, int budget)
2659 {
2660 	struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
2661 						     napi);
2662 	struct e1000_hw *hw = &adapter->hw;
2663 	struct net_device *poll_dev = adapter->netdev;
2664 	int tx_cleaned = 1, work_done = 0;
2665 
2666 	adapter = netdev_priv(poll_dev);
2667 
2668 	if (!adapter->msix_entries ||
2669 	    (adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
2670 		tx_cleaned = e1000_clean_tx_irq(adapter->tx_ring);
2671 
2672 	adapter->clean_rx(adapter->rx_ring, &work_done, budget);
2673 
2674 	if (!tx_cleaned || work_done == budget)
2675 		return budget;
2676 
2677 	/* Exit the polling mode, but don't re-enable interrupts if stack might
2678 	 * poll us due to busy-polling
2679 	 */
2680 	if (likely(napi_complete_done(napi, work_done))) {
2681 		if (adapter->itr_setting & 3)
2682 			e1000_set_itr(adapter);
2683 		if (!test_bit(__E1000_DOWN, &adapter->state)) {
2684 			if (adapter->msix_entries)
2685 				ew32(IMS, adapter->rx_ring->ims_val);
2686 			else
2687 				e1000_irq_enable(adapter);
2688 		}
2689 	}
2690 
2691 	return work_done;
2692 }
2693 
e1000_vlan_rx_add_vid(struct net_device * netdev,__always_unused __be16 proto,u16 vid)2694 static int e1000_vlan_rx_add_vid(struct net_device *netdev,
2695 				 __always_unused __be16 proto, u16 vid)
2696 {
2697 	struct e1000_adapter *adapter = netdev_priv(netdev);
2698 	struct e1000_hw *hw = &adapter->hw;
2699 	u32 vfta, index;
2700 
2701 	/* don't update vlan cookie if already programmed */
2702 	if ((adapter->hw.mng_cookie.status &
2703 	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2704 	    (vid == adapter->mng_vlan_id))
2705 		return 0;
2706 
2707 	/* add VID to filter table */
2708 	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2709 		index = (vid >> 5) & 0x7F;
2710 		vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2711 		vfta |= BIT((vid & 0x1F));
2712 		hw->mac.ops.write_vfta(hw, index, vfta);
2713 	}
2714 
2715 	set_bit(vid, adapter->active_vlans);
2716 
2717 	return 0;
2718 }
2719 
e1000_vlan_rx_kill_vid(struct net_device * netdev,__always_unused __be16 proto,u16 vid)2720 static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
2721 				  __always_unused __be16 proto, u16 vid)
2722 {
2723 	struct e1000_adapter *adapter = netdev_priv(netdev);
2724 	struct e1000_hw *hw = &adapter->hw;
2725 	u32 vfta, index;
2726 
2727 	if ((adapter->hw.mng_cookie.status &
2728 	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2729 	    (vid == adapter->mng_vlan_id)) {
2730 		/* release control to f/w */
2731 		e1000e_release_hw_control(adapter);
2732 		return 0;
2733 	}
2734 
2735 	/* remove VID from filter table */
2736 	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2737 		index = (vid >> 5) & 0x7F;
2738 		vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2739 		vfta &= ~BIT((vid & 0x1F));
2740 		hw->mac.ops.write_vfta(hw, index, vfta);
2741 	}
2742 
2743 	clear_bit(vid, adapter->active_vlans);
2744 
2745 	return 0;
2746 }
2747 
2748 /**
2749  * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering
2750  * @adapter: board private structure to initialize
2751  **/
e1000e_vlan_filter_disable(struct e1000_adapter * adapter)2752 static void e1000e_vlan_filter_disable(struct e1000_adapter *adapter)
2753 {
2754 	struct net_device *netdev = adapter->netdev;
2755 	struct e1000_hw *hw = &adapter->hw;
2756 	u32 rctl;
2757 
2758 	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2759 		/* disable VLAN receive filtering */
2760 		rctl = er32(RCTL);
2761 		rctl &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN);
2762 		ew32(RCTL, rctl);
2763 
2764 		if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
2765 			e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
2766 					       adapter->mng_vlan_id);
2767 			adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2768 		}
2769 	}
2770 }
2771 
2772 /**
2773  * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering
2774  * @adapter: board private structure to initialize
2775  **/
e1000e_vlan_filter_enable(struct e1000_adapter * adapter)2776 static void e1000e_vlan_filter_enable(struct e1000_adapter *adapter)
2777 {
2778 	struct e1000_hw *hw = &adapter->hw;
2779 	u32 rctl;
2780 
2781 	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2782 		/* enable VLAN receive filtering */
2783 		rctl = er32(RCTL);
2784 		rctl |= E1000_RCTL_VFE;
2785 		rctl &= ~E1000_RCTL_CFIEN;
2786 		ew32(RCTL, rctl);
2787 	}
2788 }
2789 
2790 /**
2791  * e1000e_vlan_strip_disable - helper to disable HW VLAN stripping
2792  * @adapter: board private structure to initialize
2793  **/
e1000e_vlan_strip_disable(struct e1000_adapter * adapter)2794 static void e1000e_vlan_strip_disable(struct e1000_adapter *adapter)
2795 {
2796 	struct e1000_hw *hw = &adapter->hw;
2797 	u32 ctrl;
2798 
2799 	/* disable VLAN tag insert/strip */
2800 	ctrl = er32(CTRL);
2801 	ctrl &= ~E1000_CTRL_VME;
2802 	ew32(CTRL, ctrl);
2803 }
2804 
2805 /**
2806  * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping
2807  * @adapter: board private structure to initialize
2808  **/
e1000e_vlan_strip_enable(struct e1000_adapter * adapter)2809 static void e1000e_vlan_strip_enable(struct e1000_adapter *adapter)
2810 {
2811 	struct e1000_hw *hw = &adapter->hw;
2812 	u32 ctrl;
2813 
2814 	/* enable VLAN tag insert/strip */
2815 	ctrl = er32(CTRL);
2816 	ctrl |= E1000_CTRL_VME;
2817 	ew32(CTRL, ctrl);
2818 }
2819 
e1000_update_mng_vlan(struct e1000_adapter * adapter)2820 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
2821 {
2822 	struct net_device *netdev = adapter->netdev;
2823 	u16 vid = adapter->hw.mng_cookie.vlan_id;
2824 	u16 old_vid = adapter->mng_vlan_id;
2825 
2826 	if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
2827 		e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
2828 		adapter->mng_vlan_id = vid;
2829 	}
2830 
2831 	if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && (vid != old_vid))
2832 		e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), old_vid);
2833 }
2834 
e1000_restore_vlan(struct e1000_adapter * adapter)2835 static void e1000_restore_vlan(struct e1000_adapter *adapter)
2836 {
2837 	u16 vid;
2838 
2839 	e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
2840 
2841 	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
2842 	    e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
2843 }
2844 
e1000_init_manageability_pt(struct e1000_adapter * adapter)2845 static void e1000_init_manageability_pt(struct e1000_adapter *adapter)
2846 {
2847 	struct e1000_hw *hw = &adapter->hw;
2848 	u32 manc, manc2h, mdef, i, j;
2849 
2850 	if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
2851 		return;
2852 
2853 	manc = er32(MANC);
2854 
2855 	/* enable receiving management packets to the host. this will probably
2856 	 * generate destination unreachable messages from the host OS, but
2857 	 * the packets will be handled on SMBUS
2858 	 */
2859 	manc |= E1000_MANC_EN_MNG2HOST;
2860 	manc2h = er32(MANC2H);
2861 
2862 	switch (hw->mac.type) {
2863 	default:
2864 		manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664);
2865 		break;
2866 	case e1000_82574:
2867 	case e1000_82583:
2868 		/* Check if IPMI pass-through decision filter already exists;
2869 		 * if so, enable it.
2870 		 */
2871 		for (i = 0, j = 0; i < 8; i++) {
2872 			mdef = er32(MDEF(i));
2873 
2874 			/* Ignore filters with anything other than IPMI ports */
2875 			if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2876 				continue;
2877 
2878 			/* Enable this decision filter in MANC2H */
2879 			if (mdef)
2880 				manc2h |= BIT(i);
2881 
2882 			j |= mdef;
2883 		}
2884 
2885 		if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2886 			break;
2887 
2888 		/* Create new decision filter in an empty filter */
2889 		for (i = 0, j = 0; i < 8; i++)
2890 			if (er32(MDEF(i)) == 0) {
2891 				ew32(MDEF(i), (E1000_MDEF_PORT_623 |
2892 					       E1000_MDEF_PORT_664));
2893 				manc2h |= BIT(1);
2894 				j++;
2895 				break;
2896 			}
2897 
2898 		if (!j)
2899 			e_warn("Unable to create IPMI pass-through filter\n");
2900 		break;
2901 	}
2902 
2903 	ew32(MANC2H, manc2h);
2904 	ew32(MANC, manc);
2905 }
2906 
2907 /**
2908  * e1000_configure_tx - Configure Transmit Unit after Reset
2909  * @adapter: board private structure
2910  *
2911  * Configure the Tx unit of the MAC after a reset.
2912  **/
e1000_configure_tx(struct e1000_adapter * adapter)2913 static void e1000_configure_tx(struct e1000_adapter *adapter)
2914 {
2915 	struct e1000_hw *hw = &adapter->hw;
2916 	struct e1000_ring *tx_ring = adapter->tx_ring;
2917 	u64 tdba;
2918 	u32 tdlen, tctl, tarc;
2919 
2920 	/* Setup the HW Tx Head and Tail descriptor pointers */
2921 	tdba = tx_ring->dma;
2922 	tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2923 	ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
2924 	ew32(TDBAH(0), (tdba >> 32));
2925 	ew32(TDLEN(0), tdlen);
2926 	ew32(TDH(0), 0);
2927 	ew32(TDT(0), 0);
2928 	tx_ring->head = adapter->hw.hw_addr + E1000_TDH(0);
2929 	tx_ring->tail = adapter->hw.hw_addr + E1000_TDT(0);
2930 
2931 	if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
2932 		e1000e_update_tdt_wa(tx_ring, 0);
2933 
2934 	/* Set the Tx Interrupt Delay register */
2935 	ew32(TIDV, adapter->tx_int_delay);
2936 	/* Tx irq moderation */
2937 	ew32(TADV, adapter->tx_abs_int_delay);
2938 
2939 	if (adapter->flags2 & FLAG2_DMA_BURST) {
2940 		u32 txdctl = er32(TXDCTL(0));
2941 
2942 		txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH |
2943 			    E1000_TXDCTL_WTHRESH);
2944 		/* set up some performance related parameters to encourage the
2945 		 * hardware to use the bus more efficiently in bursts, depends
2946 		 * on the tx_int_delay to be enabled,
2947 		 * wthresh = 1 ==> burst write is disabled to avoid Tx stalls
2948 		 * hthresh = 1 ==> prefetch when one or more available
2949 		 * pthresh = 0x1f ==> prefetch if internal cache 31 or less
2950 		 * BEWARE: this seems to work but should be considered first if
2951 		 * there are Tx hangs or other Tx related bugs
2952 		 */
2953 		txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE;
2954 		ew32(TXDCTL(0), txdctl);
2955 	}
2956 	/* erratum work around: set txdctl the same for both queues */
2957 	ew32(TXDCTL(1), er32(TXDCTL(0)));
2958 
2959 	/* Program the Transmit Control Register */
2960 	tctl = er32(TCTL);
2961 	tctl &= ~E1000_TCTL_CT;
2962 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2963 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2964 
2965 	if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
2966 		tarc = er32(TARC(0));
2967 		/* set the speed mode bit, we'll clear it if we're not at
2968 		 * gigabit link later
2969 		 */
2970 #define SPEED_MODE_BIT BIT(21)
2971 		tarc |= SPEED_MODE_BIT;
2972 		ew32(TARC(0), tarc);
2973 	}
2974 
2975 	/* errata: program both queues to unweighted RR */
2976 	if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
2977 		tarc = er32(TARC(0));
2978 		tarc |= 1;
2979 		ew32(TARC(0), tarc);
2980 		tarc = er32(TARC(1));
2981 		tarc |= 1;
2982 		ew32(TARC(1), tarc);
2983 	}
2984 
2985 	/* Setup Transmit Descriptor Settings for eop descriptor */
2986 	adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
2987 
2988 	/* only set IDE if we are delaying interrupts using the timers */
2989 	if (adapter->tx_int_delay)
2990 		adapter->txd_cmd |= E1000_TXD_CMD_IDE;
2991 
2992 	/* enable Report Status bit */
2993 	adapter->txd_cmd |= E1000_TXD_CMD_RS;
2994 
2995 	ew32(TCTL, tctl);
2996 
2997 	hw->mac.ops.config_collision_dist(hw);
2998 
2999 	/* SPT and KBL Si errata workaround to avoid data corruption */
3000 	if (hw->mac.type == e1000_pch_spt) {
3001 		u32 reg_val;
3002 
3003 		reg_val = er32(IOSFPC);
3004 		reg_val |= E1000_RCTL_RDMTS_HEX;
3005 		ew32(IOSFPC, reg_val);
3006 
3007 		reg_val = er32(TARC(0));
3008 		/* SPT and KBL Si errata workaround to avoid Tx hang.
3009 		 * Dropping the number of outstanding requests from
3010 		 * 3 to 2 in order to avoid a buffer overrun.
3011 		 */
3012 		reg_val &= ~E1000_TARC0_CB_MULTIQ_3_REQ;
3013 		reg_val |= E1000_TARC0_CB_MULTIQ_2_REQ;
3014 		ew32(TARC(0), reg_val);
3015 	}
3016 }
3017 
3018 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
3019 			   (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
3020 
3021 /**
3022  * e1000_setup_rctl - configure the receive control registers
3023  * @adapter: Board private structure
3024  **/
e1000_setup_rctl(struct e1000_adapter * adapter)3025 static void e1000_setup_rctl(struct e1000_adapter *adapter)
3026 {
3027 	struct e1000_hw *hw = &adapter->hw;
3028 	u32 rctl, rfctl;
3029 	u32 pages = 0;
3030 
3031 	/* Workaround Si errata on PCHx - configure jumbo frame flow.
3032 	 * If jumbo frames not set, program related MAC/PHY registers
3033 	 * to h/w defaults
3034 	 */
3035 	if (hw->mac.type >= e1000_pch2lan) {
3036 		s32 ret_val;
3037 
3038 		if (adapter->netdev->mtu > ETH_DATA_LEN)
3039 			ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true);
3040 		else
3041 			ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false);
3042 
3043 		if (ret_val)
3044 			e_dbg("failed to enable|disable jumbo frame workaround mode\n");
3045 	}
3046 
3047 	/* Program MC offset vector base */
3048 	rctl = er32(RCTL);
3049 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3050 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
3051 	    E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
3052 	    (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3053 
3054 	/* Do not Store bad packets */
3055 	rctl &= ~E1000_RCTL_SBP;
3056 
3057 	/* Enable Long Packet receive */
3058 	if (adapter->netdev->mtu <= ETH_DATA_LEN)
3059 		rctl &= ~E1000_RCTL_LPE;
3060 	else
3061 		rctl |= E1000_RCTL_LPE;
3062 
3063 	/* Some systems expect that the CRC is included in SMBUS traffic. The
3064 	 * hardware strips the CRC before sending to both SMBUS (BMC) and to
3065 	 * host memory when this is enabled
3066 	 */
3067 	if (adapter->flags2 & FLAG2_CRC_STRIPPING)
3068 		rctl |= E1000_RCTL_SECRC;
3069 
3070 	/* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
3071 	if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
3072 		u16 phy_data;
3073 
3074 		e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
3075 		phy_data &= 0xfff8;
3076 		phy_data |= BIT(2);
3077 		e1e_wphy(hw, PHY_REG(770, 26), phy_data);
3078 
3079 		e1e_rphy(hw, 22, &phy_data);
3080 		phy_data &= 0x0fff;
3081 		phy_data |= BIT(14);
3082 		e1e_wphy(hw, 0x10, 0x2823);
3083 		e1e_wphy(hw, 0x11, 0x0003);
3084 		e1e_wphy(hw, 22, phy_data);
3085 	}
3086 
3087 	/* Setup buffer sizes */
3088 	rctl &= ~E1000_RCTL_SZ_4096;
3089 	rctl |= E1000_RCTL_BSEX;
3090 	switch (adapter->rx_buffer_len) {
3091 	case 2048:
3092 	default:
3093 		rctl |= E1000_RCTL_SZ_2048;
3094 		rctl &= ~E1000_RCTL_BSEX;
3095 		break;
3096 	case 4096:
3097 		rctl |= E1000_RCTL_SZ_4096;
3098 		break;
3099 	case 8192:
3100 		rctl |= E1000_RCTL_SZ_8192;
3101 		break;
3102 	case 16384:
3103 		rctl |= E1000_RCTL_SZ_16384;
3104 		break;
3105 	}
3106 
3107 	/* Enable Extended Status in all Receive Descriptors */
3108 	rfctl = er32(RFCTL);
3109 	rfctl |= E1000_RFCTL_EXTEN;
3110 	ew32(RFCTL, rfctl);
3111 
3112 	/* 82571 and greater support packet-split where the protocol
3113 	 * header is placed in skb->data and the packet data is
3114 	 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
3115 	 * In the case of a non-split, skb->data is linearly filled,
3116 	 * followed by the page buffers.  Therefore, skb->data is
3117 	 * sized to hold the largest protocol header.
3118 	 *
3119 	 * allocations using alloc_page take too long for regular MTU
3120 	 * so only enable packet split for jumbo frames
3121 	 *
3122 	 * Using pages when the page size is greater than 16k wastes
3123 	 * a lot of memory, since we allocate 3 pages at all times
3124 	 * per packet.
3125 	 */
3126 	pages = PAGE_USE_COUNT(adapter->netdev->mtu);
3127 	if ((pages <= 3) && (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
3128 		adapter->rx_ps_pages = pages;
3129 	else
3130 		adapter->rx_ps_pages = 0;
3131 
3132 	if (adapter->rx_ps_pages) {
3133 		u32 psrctl = 0;
3134 
3135 		/* Enable Packet split descriptors */
3136 		rctl |= E1000_RCTL_DTYP_PS;
3137 
3138 		psrctl |= adapter->rx_ps_bsize0 >> E1000_PSRCTL_BSIZE0_SHIFT;
3139 
3140 		switch (adapter->rx_ps_pages) {
3141 		case 3:
3142 			psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE3_SHIFT;
3143 			fallthrough;
3144 		case 2:
3145 			psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE2_SHIFT;
3146 			fallthrough;
3147 		case 1:
3148 			psrctl |= PAGE_SIZE >> E1000_PSRCTL_BSIZE1_SHIFT;
3149 			break;
3150 		}
3151 
3152 		ew32(PSRCTL, psrctl);
3153 	}
3154 
3155 	/* This is useful for sniffing bad packets. */
3156 	if (adapter->netdev->features & NETIF_F_RXALL) {
3157 		/* UPE and MPE will be handled by normal PROMISC logic
3158 		 * in e1000e_set_rx_mode
3159 		 */
3160 		rctl |= (E1000_RCTL_SBP |	/* Receive bad packets */
3161 			 E1000_RCTL_BAM |	/* RX All Bcast Pkts */
3162 			 E1000_RCTL_PMCF);	/* RX All MAC Ctrl Pkts */
3163 
3164 		rctl &= ~(E1000_RCTL_VFE |	/* Disable VLAN filter */
3165 			  E1000_RCTL_DPF |	/* Allow filtered pause */
3166 			  E1000_RCTL_CFIEN);	/* Dis VLAN CFIEN Filter */
3167 		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3168 		 * and that breaks VLANs.
3169 		 */
3170 	}
3171 
3172 	ew32(RCTL, rctl);
3173 	/* just started the receive unit, no need to restart */
3174 	adapter->flags &= ~FLAG_RESTART_NOW;
3175 }
3176 
3177 /**
3178  * e1000_configure_rx - Configure Receive Unit after Reset
3179  * @adapter: board private structure
3180  *
3181  * Configure the Rx unit of the MAC after a reset.
3182  **/
e1000_configure_rx(struct e1000_adapter * adapter)3183 static void e1000_configure_rx(struct e1000_adapter *adapter)
3184 {
3185 	struct e1000_hw *hw = &adapter->hw;
3186 	struct e1000_ring *rx_ring = adapter->rx_ring;
3187 	u64 rdba;
3188 	u32 rdlen, rctl, rxcsum, ctrl_ext;
3189 
3190 	if (adapter->rx_ps_pages) {
3191 		/* this is a 32 byte descriptor */
3192 		rdlen = rx_ring->count *
3193 		    sizeof(union e1000_rx_desc_packet_split);
3194 		adapter->clean_rx = e1000_clean_rx_irq_ps;
3195 		adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
3196 	} else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
3197 		rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3198 		adapter->clean_rx = e1000_clean_jumbo_rx_irq;
3199 		adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
3200 	} else {
3201 		rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3202 		adapter->clean_rx = e1000_clean_rx_irq;
3203 		adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
3204 	}
3205 
3206 	/* disable receives while setting up the descriptors */
3207 	rctl = er32(RCTL);
3208 	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
3209 		ew32(RCTL, rctl & ~E1000_RCTL_EN);
3210 	e1e_flush();
3211 	usleep_range(10000, 11000);
3212 
3213 	if (adapter->flags2 & FLAG2_DMA_BURST) {
3214 		/* set the writeback threshold (only takes effect if the RDTR
3215 		 * is set). set GRAN=1 and write back up to 0x4 worth, and
3216 		 * enable prefetching of 0x20 Rx descriptors
3217 		 * granularity = 01
3218 		 * wthresh = 04,
3219 		 * hthresh = 04,
3220 		 * pthresh = 0x20
3221 		 */
3222 		ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE);
3223 		ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE);
3224 	}
3225 
3226 	/* set the Receive Delay Timer Register */
3227 	ew32(RDTR, adapter->rx_int_delay);
3228 
3229 	/* irq moderation */
3230 	ew32(RADV, adapter->rx_abs_int_delay);
3231 	if ((adapter->itr_setting != 0) && (adapter->itr != 0))
3232 		e1000e_write_itr(adapter, adapter->itr);
3233 
3234 	ctrl_ext = er32(CTRL_EXT);
3235 	/* Auto-Mask interrupts upon ICR access */
3236 	ctrl_ext |= E1000_CTRL_EXT_IAME;
3237 	ew32(IAM, 0xffffffff);
3238 	ew32(CTRL_EXT, ctrl_ext);
3239 	e1e_flush();
3240 
3241 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
3242 	 * the Base and Length of the Rx Descriptor Ring
3243 	 */
3244 	rdba = rx_ring->dma;
3245 	ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
3246 	ew32(RDBAH(0), (rdba >> 32));
3247 	ew32(RDLEN(0), rdlen);
3248 	ew32(RDH(0), 0);
3249 	ew32(RDT(0), 0);
3250 	rx_ring->head = adapter->hw.hw_addr + E1000_RDH(0);
3251 	rx_ring->tail = adapter->hw.hw_addr + E1000_RDT(0);
3252 
3253 	if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
3254 		e1000e_update_rdt_wa(rx_ring, 0);
3255 
3256 	/* Enable Receive Checksum Offload for TCP and UDP */
3257 	rxcsum = er32(RXCSUM);
3258 	if (adapter->netdev->features & NETIF_F_RXCSUM)
3259 		rxcsum |= E1000_RXCSUM_TUOFL;
3260 	else
3261 		rxcsum &= ~E1000_RXCSUM_TUOFL;
3262 	ew32(RXCSUM, rxcsum);
3263 
3264 	/* With jumbo frames, excessive C-state transition latencies result
3265 	 * in dropped transactions.
3266 	 */
3267 	if (adapter->netdev->mtu > ETH_DATA_LEN) {
3268 		u32 lat =
3269 		    ((er32(PBA) & E1000_PBA_RXA_MASK) * 1024 -
3270 		     adapter->max_frame_size) * 8 / 1000;
3271 
3272 		if (adapter->flags & FLAG_IS_ICH) {
3273 			u32 rxdctl = er32(RXDCTL(0));
3274 
3275 			ew32(RXDCTL(0), rxdctl | 0x3 | BIT(8));
3276 		}
3277 
3278 		dev_info(&adapter->pdev->dev,
3279 			 "Some CPU C-states have been disabled in order to enable jumbo frames\n");
3280 		cpu_latency_qos_update_request(&adapter->pm_qos_req, lat);
3281 	} else {
3282 		cpu_latency_qos_update_request(&adapter->pm_qos_req,
3283 					       PM_QOS_DEFAULT_VALUE);
3284 	}
3285 
3286 	/* Enable Receives */
3287 	ew32(RCTL, rctl);
3288 }
3289 
3290 /**
3291  * e1000e_write_mc_addr_list - write multicast addresses to MTA
3292  * @netdev: network interface device structure
3293  *
3294  * Writes multicast address list to the MTA hash table.
3295  * Returns: -ENOMEM on failure
3296  *                0 on no addresses written
3297  *                X on writing X addresses to MTA
3298  */
e1000e_write_mc_addr_list(struct net_device * netdev)3299 static int e1000e_write_mc_addr_list(struct net_device *netdev)
3300 {
3301 	struct e1000_adapter *adapter = netdev_priv(netdev);
3302 	struct e1000_hw *hw = &adapter->hw;
3303 	struct netdev_hw_addr *ha;
3304 	u8 *mta_list;
3305 	int i;
3306 
3307 	if (netdev_mc_empty(netdev)) {
3308 		/* nothing to program, so clear mc list */
3309 		hw->mac.ops.update_mc_addr_list(hw, NULL, 0);
3310 		return 0;
3311 	}
3312 
3313 	mta_list = kcalloc(netdev_mc_count(netdev), ETH_ALEN, GFP_ATOMIC);
3314 	if (!mta_list)
3315 		return -ENOMEM;
3316 
3317 	/* update_mc_addr_list expects a packed array of only addresses. */
3318 	i = 0;
3319 	netdev_for_each_mc_addr(ha, netdev)
3320 	    memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3321 
3322 	hw->mac.ops.update_mc_addr_list(hw, mta_list, i);
3323 	kfree(mta_list);
3324 
3325 	return netdev_mc_count(netdev);
3326 }
3327 
3328 /**
3329  * e1000e_write_uc_addr_list - write unicast addresses to RAR table
3330  * @netdev: network interface device structure
3331  *
3332  * Writes unicast address list to the RAR table.
3333  * Returns: -ENOMEM on failure/insufficient address space
3334  *                0 on no addresses written
3335  *                X on writing X addresses to the RAR table
3336  **/
e1000e_write_uc_addr_list(struct net_device * netdev)3337 static int e1000e_write_uc_addr_list(struct net_device *netdev)
3338 {
3339 	struct e1000_adapter *adapter = netdev_priv(netdev);
3340 	struct e1000_hw *hw = &adapter->hw;
3341 	unsigned int rar_entries;
3342 	int count = 0;
3343 
3344 	rar_entries = hw->mac.ops.rar_get_count(hw);
3345 
3346 	/* save a rar entry for our hardware address */
3347 	rar_entries--;
3348 
3349 	/* save a rar entry for the LAA workaround */
3350 	if (adapter->flags & FLAG_RESET_OVERWRITES_LAA)
3351 		rar_entries--;
3352 
3353 	/* return ENOMEM indicating insufficient memory for addresses */
3354 	if (netdev_uc_count(netdev) > rar_entries)
3355 		return -ENOMEM;
3356 
3357 	if (!netdev_uc_empty(netdev) && rar_entries) {
3358 		struct netdev_hw_addr *ha;
3359 
3360 		/* write the addresses in reverse order to avoid write
3361 		 * combining
3362 		 */
3363 		netdev_for_each_uc_addr(ha, netdev) {
3364 			int ret_val;
3365 
3366 			if (!rar_entries)
3367 				break;
3368 			ret_val = hw->mac.ops.rar_set(hw, ha->addr, rar_entries--);
3369 			if (ret_val < 0)
3370 				return -ENOMEM;
3371 			count++;
3372 		}
3373 	}
3374 
3375 	/* zero out the remaining RAR entries not used above */
3376 	for (; rar_entries > 0; rar_entries--) {
3377 		ew32(RAH(rar_entries), 0);
3378 		ew32(RAL(rar_entries), 0);
3379 	}
3380 	e1e_flush();
3381 
3382 	return count;
3383 }
3384 
3385 /**
3386  * e1000e_set_rx_mode - secondary unicast, Multicast and Promiscuous mode set
3387  * @netdev: network interface device structure
3388  *
3389  * The ndo_set_rx_mode entry point is called whenever the unicast or multicast
3390  * address list or the network interface flags are updated.  This routine is
3391  * responsible for configuring the hardware for proper unicast, multicast,
3392  * promiscuous mode, and all-multi behavior.
3393  **/
e1000e_set_rx_mode(struct net_device * netdev)3394 static void e1000e_set_rx_mode(struct net_device *netdev)
3395 {
3396 	struct e1000_adapter *adapter = netdev_priv(netdev);
3397 	struct e1000_hw *hw = &adapter->hw;
3398 	u32 rctl;
3399 
3400 	if (pm_runtime_suspended(netdev->dev.parent))
3401 		return;
3402 
3403 	/* Check for Promiscuous and All Multicast modes */
3404 	rctl = er32(RCTL);
3405 
3406 	/* clear the affected bits */
3407 	rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
3408 
3409 	if (netdev->flags & IFF_PROMISC) {
3410 		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3411 		/* Do not hardware filter VLANs in promisc mode */
3412 		e1000e_vlan_filter_disable(adapter);
3413 	} else {
3414 		int count;
3415 
3416 		if (netdev->flags & IFF_ALLMULTI) {
3417 			rctl |= E1000_RCTL_MPE;
3418 		} else {
3419 			/* Write addresses to the MTA, if the attempt fails
3420 			 * then we should just turn on promiscuous mode so
3421 			 * that we can at least receive multicast traffic
3422 			 */
3423 			count = e1000e_write_mc_addr_list(netdev);
3424 			if (count < 0)
3425 				rctl |= E1000_RCTL_MPE;
3426 		}
3427 		e1000e_vlan_filter_enable(adapter);
3428 		/* Write addresses to available RAR registers, if there is not
3429 		 * sufficient space to store all the addresses then enable
3430 		 * unicast promiscuous mode
3431 		 */
3432 		count = e1000e_write_uc_addr_list(netdev);
3433 		if (count < 0)
3434 			rctl |= E1000_RCTL_UPE;
3435 	}
3436 
3437 	ew32(RCTL, rctl);
3438 
3439 	if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
3440 		e1000e_vlan_strip_enable(adapter);
3441 	else
3442 		e1000e_vlan_strip_disable(adapter);
3443 }
3444 
e1000e_setup_rss_hash(struct e1000_adapter * adapter)3445 static void e1000e_setup_rss_hash(struct e1000_adapter *adapter)
3446 {
3447 	struct e1000_hw *hw = &adapter->hw;
3448 	u32 mrqc, rxcsum;
3449 	u32 rss_key[10];
3450 	int i;
3451 
3452 	netdev_rss_key_fill(rss_key, sizeof(rss_key));
3453 	for (i = 0; i < 10; i++)
3454 		ew32(RSSRK(i), rss_key[i]);
3455 
3456 	/* Direct all traffic to queue 0 */
3457 	for (i = 0; i < 32; i++)
3458 		ew32(RETA(i), 0);
3459 
3460 	/* Disable raw packet checksumming so that RSS hash is placed in
3461 	 * descriptor on writeback.
3462 	 */
3463 	rxcsum = er32(RXCSUM);
3464 	rxcsum |= E1000_RXCSUM_PCSD;
3465 
3466 	ew32(RXCSUM, rxcsum);
3467 
3468 	mrqc = (E1000_MRQC_RSS_FIELD_IPV4 |
3469 		E1000_MRQC_RSS_FIELD_IPV4_TCP |
3470 		E1000_MRQC_RSS_FIELD_IPV6 |
3471 		E1000_MRQC_RSS_FIELD_IPV6_TCP |
3472 		E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
3473 
3474 	ew32(MRQC, mrqc);
3475 }
3476 
3477 /**
3478  * e1000e_get_base_timinca - get default SYSTIM time increment attributes
3479  * @adapter: board private structure
3480  * @timinca: pointer to returned time increment attributes
3481  *
3482  * Get attributes for incrementing the System Time Register SYSTIML/H at
3483  * the default base frequency, and set the cyclecounter shift value.
3484  **/
e1000e_get_base_timinca(struct e1000_adapter * adapter,u32 * timinca)3485 s32 e1000e_get_base_timinca(struct e1000_adapter *adapter, u32 *timinca)
3486 {
3487 	struct e1000_hw *hw = &adapter->hw;
3488 	u32 incvalue, incperiod, shift;
3489 
3490 	/* Make sure clock is enabled on I217/I218/I219  before checking
3491 	 * the frequency
3492 	 */
3493 	if ((hw->mac.type >= e1000_pch_lpt) &&
3494 	    !(er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) &&
3495 	    !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_ENABLED)) {
3496 		u32 fextnvm7 = er32(FEXTNVM7);
3497 
3498 		if (!(fextnvm7 & BIT(0))) {
3499 			ew32(FEXTNVM7, fextnvm7 | BIT(0));
3500 			e1e_flush();
3501 		}
3502 	}
3503 
3504 	switch (hw->mac.type) {
3505 	case e1000_pch2lan:
3506 		/* Stable 96MHz frequency */
3507 		incperiod = INCPERIOD_96MHZ;
3508 		incvalue = INCVALUE_96MHZ;
3509 		shift = INCVALUE_SHIFT_96MHZ;
3510 		adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHZ;
3511 		break;
3512 	case e1000_pch_lpt:
3513 		if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) {
3514 			/* Stable 96MHz frequency */
3515 			incperiod = INCPERIOD_96MHZ;
3516 			incvalue = INCVALUE_96MHZ;
3517 			shift = INCVALUE_SHIFT_96MHZ;
3518 			adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHZ;
3519 		} else {
3520 			/* Stable 25MHz frequency */
3521 			incperiod = INCPERIOD_25MHZ;
3522 			incvalue = INCVALUE_25MHZ;
3523 			shift = INCVALUE_SHIFT_25MHZ;
3524 			adapter->cc.shift = shift;
3525 		}
3526 		break;
3527 	case e1000_pch_spt:
3528 		/* Stable 24MHz frequency */
3529 		incperiod = INCPERIOD_24MHZ;
3530 		incvalue = INCVALUE_24MHZ;
3531 		shift = INCVALUE_SHIFT_24MHZ;
3532 		adapter->cc.shift = shift;
3533 		break;
3534 	case e1000_pch_cnp:
3535 	case e1000_pch_tgp:
3536 	case e1000_pch_adp:
3537 	case e1000_pch_nvp:
3538 		if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) {
3539 			/* Stable 24MHz frequency */
3540 			incperiod = INCPERIOD_24MHZ;
3541 			incvalue = INCVALUE_24MHZ;
3542 			shift = INCVALUE_SHIFT_24MHZ;
3543 			adapter->cc.shift = shift;
3544 		} else {
3545 			/* Stable 38400KHz frequency */
3546 			incperiod = INCPERIOD_38400KHZ;
3547 			incvalue = INCVALUE_38400KHZ;
3548 			shift = INCVALUE_SHIFT_38400KHZ;
3549 			adapter->cc.shift = shift;
3550 		}
3551 		break;
3552 	case e1000_pch_mtp:
3553 	case e1000_pch_lnp:
3554 	case e1000_pch_ptp:
3555 		/* System firmware can misreport this value, so set it to a
3556 		 * stable 38400KHz frequency.
3557 		 */
3558 		incperiod = INCPERIOD_38400KHZ;
3559 		incvalue = INCVALUE_38400KHZ;
3560 		shift = INCVALUE_SHIFT_38400KHZ;
3561 		adapter->cc.shift = shift;
3562 		break;
3563 	case e1000_82574:
3564 	case e1000_82583:
3565 		/* Stable 25MHz frequency */
3566 		incperiod = INCPERIOD_25MHZ;
3567 		incvalue = INCVALUE_25MHZ;
3568 		shift = INCVALUE_SHIFT_25MHZ;
3569 		adapter->cc.shift = shift;
3570 		break;
3571 	default:
3572 		return -EINVAL;
3573 	}
3574 
3575 	*timinca = ((incperiod << E1000_TIMINCA_INCPERIOD_SHIFT) |
3576 		    ((incvalue << shift) & E1000_TIMINCA_INCVALUE_MASK));
3577 
3578 	return 0;
3579 }
3580 
3581 /**
3582  * e1000e_config_hwtstamp - configure the hwtstamp registers and enable/disable
3583  * @adapter: board private structure
3584  * @config: timestamp configuration
3585  * @extack: netlink extended ACK for error report
3586  *
3587  * Outgoing time stamping can be enabled and disabled. Play nice and
3588  * disable it when requested, although it shouldn't cause any overhead
3589  * when no packet needs it. At most one packet in the queue may be
3590  * marked for time stamping, otherwise it would be impossible to tell
3591  * for sure to which packet the hardware time stamp belongs.
3592  *
3593  * Incoming time stamping has to be configured via the hardware filters.
3594  * Not all combinations are supported, in particular event type has to be
3595  * specified. Matching the kind of event packet is not supported, with the
3596  * exception of "all V2 events regardless of level 2 or 4".
3597  **/
e1000e_config_hwtstamp(struct e1000_adapter * adapter,struct kernel_hwtstamp_config * config,struct netlink_ext_ack * extack)3598 static int e1000e_config_hwtstamp(struct e1000_adapter *adapter,
3599 				  struct kernel_hwtstamp_config *config,
3600 				  struct netlink_ext_ack *extack)
3601 {
3602 	struct e1000_hw *hw = &adapter->hw;
3603 	u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
3604 	u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
3605 	u32 rxmtrl = 0;
3606 	u16 rxudp = 0;
3607 	bool is_l4 = false;
3608 	bool is_l2 = false;
3609 	u32 regval;
3610 
3611 	if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP)) {
3612 		NL_SET_ERR_MSG(extack, "No HW timestamp support");
3613 		return -EINVAL;
3614 	}
3615 
3616 	switch (config->tx_type) {
3617 	case HWTSTAMP_TX_OFF:
3618 		tsync_tx_ctl = 0;
3619 		break;
3620 	case HWTSTAMP_TX_ON:
3621 		break;
3622 	default:
3623 		NL_SET_ERR_MSG(extack, "Unsupported TX HW timestamp type");
3624 		return -ERANGE;
3625 	}
3626 
3627 	switch (config->rx_filter) {
3628 	case HWTSTAMP_FILTER_NONE:
3629 		tsync_rx_ctl = 0;
3630 		break;
3631 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
3632 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3633 		rxmtrl = E1000_RXMTRL_PTP_V1_SYNC_MESSAGE;
3634 		is_l4 = true;
3635 		break;
3636 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
3637 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3638 		rxmtrl = E1000_RXMTRL_PTP_V1_DELAY_REQ_MESSAGE;
3639 		is_l4 = true;
3640 		break;
3641 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
3642 		/* Also time stamps V2 L2 Path Delay Request/Response */
3643 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3644 		rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3645 		is_l2 = true;
3646 		break;
3647 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
3648 		/* Also time stamps V2 L2 Path Delay Request/Response. */
3649 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3650 		rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3651 		is_l2 = true;
3652 		break;
3653 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
3654 		/* Hardware cannot filter just V2 L4 Sync messages */
3655 		fallthrough;
3656 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
3657 		/* Also time stamps V2 Path Delay Request/Response. */
3658 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3659 		rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3660 		is_l2 = true;
3661 		is_l4 = true;
3662 		break;
3663 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
3664 		/* Hardware cannot filter just V2 L4 Delay Request messages */
3665 		fallthrough;
3666 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
3667 		/* Also time stamps V2 Path Delay Request/Response. */
3668 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3669 		rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3670 		is_l2 = true;
3671 		is_l4 = true;
3672 		break;
3673 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
3674 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
3675 		/* Hardware cannot filter just V2 L4 or L2 Event messages */
3676 		fallthrough;
3677 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
3678 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
3679 		config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
3680 		is_l2 = true;
3681 		is_l4 = true;
3682 		break;
3683 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
3684 		/* For V1, the hardware can only filter Sync messages or
3685 		 * Delay Request messages but not both so fall-through to
3686 		 * time stamp all packets.
3687 		 */
3688 		fallthrough;
3689 	case HWTSTAMP_FILTER_NTP_ALL:
3690 	case HWTSTAMP_FILTER_ALL:
3691 		is_l2 = true;
3692 		is_l4 = true;
3693 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
3694 		config->rx_filter = HWTSTAMP_FILTER_ALL;
3695 		break;
3696 	default:
3697 		NL_SET_ERR_MSG(extack, "Unsupported RX HW timestamp filter");
3698 		return -ERANGE;
3699 	}
3700 
3701 	adapter->hwtstamp_config = *config;
3702 
3703 	/* enable/disable Tx h/w time stamping */
3704 	regval = er32(TSYNCTXCTL);
3705 	regval &= ~E1000_TSYNCTXCTL_ENABLED;
3706 	regval |= tsync_tx_ctl;
3707 	ew32(TSYNCTXCTL, regval);
3708 	if ((er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) !=
3709 	    (regval & E1000_TSYNCTXCTL_ENABLED)) {
3710 		NL_SET_ERR_MSG(extack,
3711 			       "Timesync Tx Control register not set as expected");
3712 		return -EAGAIN;
3713 	}
3714 
3715 	/* enable/disable Rx h/w time stamping */
3716 	regval = er32(TSYNCRXCTL);
3717 	regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
3718 	regval |= tsync_rx_ctl;
3719 	ew32(TSYNCRXCTL, regval);
3720 	if ((er32(TSYNCRXCTL) & (E1000_TSYNCRXCTL_ENABLED |
3721 				 E1000_TSYNCRXCTL_TYPE_MASK)) !=
3722 	    (regval & (E1000_TSYNCRXCTL_ENABLED |
3723 		       E1000_TSYNCRXCTL_TYPE_MASK))) {
3724 		NL_SET_ERR_MSG(extack,
3725 			       "Timesync Rx Control register not set as expected");
3726 		return -EAGAIN;
3727 	}
3728 
3729 	/* L2: define ethertype filter for time stamped packets */
3730 	if (is_l2)
3731 		rxmtrl |= ETH_P_1588;
3732 
3733 	/* define which PTP packets get time stamped */
3734 	ew32(RXMTRL, rxmtrl);
3735 
3736 	/* Filter by destination port */
3737 	if (is_l4) {
3738 		rxudp = PTP_EV_PORT;
3739 		cpu_to_be16s(&rxudp);
3740 	}
3741 	ew32(RXUDP, rxudp);
3742 
3743 	e1e_flush();
3744 
3745 	/* Clear TSYNCRXCTL_VALID & TSYNCTXCTL_VALID bit */
3746 	er32(RXSTMPH);
3747 	er32(TXSTMPH);
3748 
3749 	return 0;
3750 }
3751 
3752 /**
3753  * e1000_configure - configure the hardware for Rx and Tx
3754  * @adapter: private board structure
3755  **/
e1000_configure(struct e1000_adapter * adapter)3756 static void e1000_configure(struct e1000_adapter *adapter)
3757 {
3758 	struct e1000_ring *rx_ring = adapter->rx_ring;
3759 
3760 	e1000e_set_rx_mode(adapter->netdev);
3761 
3762 	e1000_restore_vlan(adapter);
3763 	e1000_init_manageability_pt(adapter);
3764 
3765 	e1000_configure_tx(adapter);
3766 
3767 	if (adapter->netdev->features & NETIF_F_RXHASH)
3768 		e1000e_setup_rss_hash(adapter);
3769 	e1000_setup_rctl(adapter);
3770 	e1000_configure_rx(adapter);
3771 	adapter->alloc_rx_buf(rx_ring, e1000_desc_unused(rx_ring), GFP_KERNEL);
3772 }
3773 
3774 /**
3775  * e1000e_power_up_phy - restore link in case the phy was powered down
3776  * @adapter: address of board private structure
3777  *
3778  * The phy may be powered down to save power and turn off link when the
3779  * driver is unloaded and wake on lan is not enabled (among others)
3780  * *** this routine MUST be followed by a call to e1000e_reset ***
3781  **/
e1000e_power_up_phy(struct e1000_adapter * adapter)3782 void e1000e_power_up_phy(struct e1000_adapter *adapter)
3783 {
3784 	if (adapter->hw.phy.ops.power_up)
3785 		adapter->hw.phy.ops.power_up(&adapter->hw);
3786 
3787 	adapter->hw.mac.ops.setup_link(&adapter->hw);
3788 }
3789 
3790 /**
3791  * e1000_power_down_phy - Power down the PHY
3792  * @adapter: board private structure
3793  *
3794  * Power down the PHY so no link is implied when interface is down.
3795  * The PHY cannot be powered down if management or WoL is active.
3796  */
e1000_power_down_phy(struct e1000_adapter * adapter)3797 static void e1000_power_down_phy(struct e1000_adapter *adapter)
3798 {
3799 	if (adapter->hw.phy.ops.power_down)
3800 		adapter->hw.phy.ops.power_down(&adapter->hw);
3801 }
3802 
3803 /**
3804  * e1000_flush_tx_ring - remove all descriptors from the tx_ring
3805  * @adapter: board private structure
3806  *
3807  * We want to clear all pending descriptors from the TX ring.
3808  * zeroing happens when the HW reads the regs. We  assign the ring itself as
3809  * the data of the next descriptor. We don't care about the data we are about
3810  * to reset the HW.
3811  */
e1000_flush_tx_ring(struct e1000_adapter * adapter)3812 static void e1000_flush_tx_ring(struct e1000_adapter *adapter)
3813 {
3814 	struct e1000_hw *hw = &adapter->hw;
3815 	struct e1000_ring *tx_ring = adapter->tx_ring;
3816 	struct e1000_tx_desc *tx_desc = NULL;
3817 	u32 tdt, tctl, txd_lower = E1000_TXD_CMD_IFCS;
3818 	u16 size = 512;
3819 
3820 	tctl = er32(TCTL);
3821 	ew32(TCTL, tctl | E1000_TCTL_EN);
3822 	tdt = er32(TDT(0));
3823 	BUG_ON(tdt != tx_ring->next_to_use);
3824 	tx_desc =  E1000_TX_DESC(*tx_ring, tx_ring->next_to_use);
3825 	tx_desc->buffer_addr = cpu_to_le64(tx_ring->dma);
3826 
3827 	tx_desc->lower.data = cpu_to_le32(txd_lower | size);
3828 	tx_desc->upper.data = 0;
3829 	/* flush descriptors to memory before notifying the HW */
3830 	wmb();
3831 	tx_ring->next_to_use++;
3832 	if (tx_ring->next_to_use == tx_ring->count)
3833 		tx_ring->next_to_use = 0;
3834 	ew32(TDT(0), tx_ring->next_to_use);
3835 	usleep_range(200, 250);
3836 }
3837 
3838 /**
3839  * e1000_flush_rx_ring - remove all descriptors from the rx_ring
3840  * @adapter: board private structure
3841  *
3842  * Mark all descriptors in the RX ring as consumed and disable the rx ring
3843  */
e1000_flush_rx_ring(struct e1000_adapter * adapter)3844 static void e1000_flush_rx_ring(struct e1000_adapter *adapter)
3845 {
3846 	u32 rctl, rxdctl;
3847 	struct e1000_hw *hw = &adapter->hw;
3848 
3849 	rctl = er32(RCTL);
3850 	ew32(RCTL, rctl & ~E1000_RCTL_EN);
3851 	e1e_flush();
3852 	usleep_range(100, 150);
3853 
3854 	rxdctl = er32(RXDCTL(0));
3855 	/* zero the lower 14 bits (prefetch and host thresholds) */
3856 	rxdctl &= 0xffffc000;
3857 
3858 	/* update thresholds: prefetch threshold to 31, host threshold to 1
3859 	 * and make sure the granularity is "descriptors" and not "cache lines"
3860 	 */
3861 	rxdctl |= (0x1F | BIT(8) | E1000_RXDCTL_THRESH_UNIT_DESC);
3862 
3863 	ew32(RXDCTL(0), rxdctl);
3864 	/* momentarily enable the RX ring for the changes to take effect */
3865 	ew32(RCTL, rctl | E1000_RCTL_EN);
3866 	e1e_flush();
3867 	usleep_range(100, 150);
3868 	ew32(RCTL, rctl & ~E1000_RCTL_EN);
3869 }
3870 
3871 /**
3872  * e1000_flush_desc_rings - remove all descriptors from the descriptor rings
3873  * @adapter: board private structure
3874  *
3875  * In i219, the descriptor rings must be emptied before resetting the HW
3876  * or before changing the device state to D3 during runtime (runtime PM).
3877  *
3878  * Failure to do this will cause the HW to enter a unit hang state which can
3879  * only be released by PCI reset on the device
3880  *
3881  */
3882 
e1000_flush_desc_rings(struct e1000_adapter * adapter)3883 static void e1000_flush_desc_rings(struct e1000_adapter *adapter)
3884 {
3885 	u16 hang_state;
3886 	u32 fext_nvm11, tdlen;
3887 	struct e1000_hw *hw = &adapter->hw;
3888 
3889 	/* First, disable MULR fix in FEXTNVM11 */
3890 	fext_nvm11 = er32(FEXTNVM11);
3891 	fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX;
3892 	ew32(FEXTNVM11, fext_nvm11);
3893 	/* do nothing if we're not in faulty state, or if the queue is empty */
3894 	tdlen = er32(TDLEN(0));
3895 	pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS,
3896 			     &hang_state);
3897 	if (!(hang_state & FLUSH_DESC_REQUIRED) || !tdlen)
3898 		return;
3899 	e1000_flush_tx_ring(adapter);
3900 	/* recheck, maybe the fault is caused by the rx ring */
3901 	pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS,
3902 			     &hang_state);
3903 	if (hang_state & FLUSH_DESC_REQUIRED)
3904 		e1000_flush_rx_ring(adapter);
3905 }
3906 
3907 /**
3908  * e1000e_systim_reset - reset the timesync registers after a hardware reset
3909  * @adapter: board private structure
3910  *
3911  * When the MAC is reset, all hardware bits for timesync will be reset to the
3912  * default values. This function will restore the settings last in place.
3913  * Since the clock SYSTIME registers are reset, we will simply restore the
3914  * cyclecounter to the kernel real clock time.
3915  **/
e1000e_systim_reset(struct e1000_adapter * adapter)3916 static void e1000e_systim_reset(struct e1000_adapter *adapter)
3917 {
3918 	struct ptp_clock_info *info = &adapter->ptp_clock_info;
3919 	struct e1000_hw *hw = &adapter->hw;
3920 	struct netlink_ext_ack extack = {};
3921 	unsigned long flags;
3922 	u32 timinca;
3923 	s32 ret_val;
3924 
3925 	if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
3926 		return;
3927 
3928 	if (info->adjfine) {
3929 		/* restore the previous ptp frequency delta */
3930 		ret_val = info->adjfine(info, adapter->ptp_delta);
3931 	} else {
3932 		/* set the default base frequency if no adjustment possible */
3933 		ret_val = e1000e_get_base_timinca(adapter, &timinca);
3934 		if (!ret_val)
3935 			ew32(TIMINCA, timinca);
3936 	}
3937 
3938 	if (ret_val) {
3939 		dev_warn(&adapter->pdev->dev,
3940 			 "Failed to restore TIMINCA clock rate delta: %d\n",
3941 			 ret_val);
3942 		return;
3943 	}
3944 
3945 	/* reset the systim ns time counter */
3946 	spin_lock_irqsave(&adapter->systim_lock, flags);
3947 	timecounter_init(&adapter->tc, &adapter->cc,
3948 			 ktime_to_ns(ktime_get_real()));
3949 	spin_unlock_irqrestore(&adapter->systim_lock, flags);
3950 
3951 	/* restore the previous hwtstamp configuration settings */
3952 	ret_val = e1000e_config_hwtstamp(adapter, &adapter->hwtstamp_config,
3953 					 &extack);
3954 	if (ret_val) {
3955 		if (extack._msg)
3956 			e_err("%s\n", extack._msg);
3957 	}
3958 }
3959 
3960 /**
3961  * e1000e_reset - bring the hardware into a known good state
3962  * @adapter: board private structure
3963  *
3964  * This function boots the hardware and enables some settings that
3965  * require a configuration cycle of the hardware - those cannot be
3966  * set/changed during runtime. After reset the device needs to be
3967  * properly configured for Rx, Tx etc.
3968  */
e1000e_reset(struct e1000_adapter * adapter)3969 void e1000e_reset(struct e1000_adapter *adapter)
3970 {
3971 	struct e1000_mac_info *mac = &adapter->hw.mac;
3972 	struct e1000_fc_info *fc = &adapter->hw.fc;
3973 	struct e1000_hw *hw = &adapter->hw;
3974 	u32 tx_space, min_tx_space, min_rx_space;
3975 	u32 pba = adapter->pba;
3976 	u16 hwm;
3977 
3978 	/* reset Packet Buffer Allocation to default */
3979 	ew32(PBA, pba);
3980 
3981 	if (adapter->max_frame_size > (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN)) {
3982 		/* To maintain wire speed transmits, the Tx FIFO should be
3983 		 * large enough to accommodate two full transmit packets,
3984 		 * rounded up to the next 1KB and expressed in KB.  Likewise,
3985 		 * the Rx FIFO should be large enough to accommodate at least
3986 		 * one full receive packet and is similarly rounded up and
3987 		 * expressed in KB.
3988 		 */
3989 		pba = er32(PBA);
3990 		/* upper 16 bits has Tx packet buffer allocation size in KB */
3991 		tx_space = pba >> 16;
3992 		/* lower 16 bits has Rx packet buffer allocation size in KB */
3993 		pba &= 0xffff;
3994 		/* the Tx fifo also stores 16 bytes of information about the Tx
3995 		 * but don't include ethernet FCS because hardware appends it
3996 		 */
3997 		min_tx_space = (adapter->max_frame_size +
3998 				sizeof(struct e1000_tx_desc) - ETH_FCS_LEN) * 2;
3999 		min_tx_space = ALIGN(min_tx_space, 1024);
4000 		min_tx_space >>= 10;
4001 		/* software strips receive CRC, so leave room for it */
4002 		min_rx_space = adapter->max_frame_size;
4003 		min_rx_space = ALIGN(min_rx_space, 1024);
4004 		min_rx_space >>= 10;
4005 
4006 		/* If current Tx allocation is less than the min Tx FIFO size,
4007 		 * and the min Tx FIFO size is less than the current Rx FIFO
4008 		 * allocation, take space away from current Rx allocation
4009 		 */
4010 		if ((tx_space < min_tx_space) &&
4011 		    ((min_tx_space - tx_space) < pba)) {
4012 			pba -= min_tx_space - tx_space;
4013 
4014 			/* if short on Rx space, Rx wins and must trump Tx
4015 			 * adjustment
4016 			 */
4017 			if (pba < min_rx_space)
4018 				pba = min_rx_space;
4019 		}
4020 
4021 		ew32(PBA, pba);
4022 	}
4023 
4024 	/* flow control settings
4025 	 *
4026 	 * The high water mark must be low enough to fit one full frame
4027 	 * (or the size used for early receive) above it in the Rx FIFO.
4028 	 * Set it to the lower of:
4029 	 * - 90% of the Rx FIFO size, and
4030 	 * - the full Rx FIFO size minus one full frame
4031 	 */
4032 	if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
4033 		fc->pause_time = 0xFFFF;
4034 	else
4035 		fc->pause_time = E1000_FC_PAUSE_TIME;
4036 	fc->send_xon = true;
4037 	fc->current_mode = fc->requested_mode;
4038 
4039 	switch (hw->mac.type) {
4040 	case e1000_ich9lan:
4041 	case e1000_ich10lan:
4042 		if (adapter->netdev->mtu > ETH_DATA_LEN) {
4043 			pba = 14;
4044 			ew32(PBA, pba);
4045 			fc->high_water = 0x2800;
4046 			fc->low_water = fc->high_water - 8;
4047 			break;
4048 		}
4049 		fallthrough;
4050 	default:
4051 		hwm = min(((pba << 10) * 9 / 10),
4052 			  ((pba << 10) - adapter->max_frame_size));
4053 
4054 		fc->high_water = hwm & E1000_FCRTH_RTH;	/* 8-byte granularity */
4055 		fc->low_water = fc->high_water - 8;
4056 		break;
4057 	case e1000_pchlan:
4058 		/* Workaround PCH LOM adapter hangs with certain network
4059 		 * loads.  If hangs persist, try disabling Tx flow control.
4060 		 */
4061 		if (adapter->netdev->mtu > ETH_DATA_LEN) {
4062 			fc->high_water = 0x3500;
4063 			fc->low_water = 0x1500;
4064 		} else {
4065 			fc->high_water = 0x5000;
4066 			fc->low_water = 0x3000;
4067 		}
4068 		fc->refresh_time = 0x1000;
4069 		break;
4070 	case e1000_pch2lan:
4071 	case e1000_pch_lpt:
4072 	case e1000_pch_spt:
4073 	case e1000_pch_cnp:
4074 	case e1000_pch_tgp:
4075 	case e1000_pch_adp:
4076 	case e1000_pch_mtp:
4077 	case e1000_pch_lnp:
4078 	case e1000_pch_ptp:
4079 	case e1000_pch_nvp:
4080 		fc->refresh_time = 0xFFFF;
4081 		fc->pause_time = 0xFFFF;
4082 
4083 		if (adapter->netdev->mtu <= ETH_DATA_LEN) {
4084 			fc->high_water = 0x05C20;
4085 			fc->low_water = 0x05048;
4086 			break;
4087 		}
4088 
4089 		pba = 14;
4090 		ew32(PBA, pba);
4091 		fc->high_water = ((pba << 10) * 9 / 10) & E1000_FCRTH_RTH;
4092 		fc->low_water = ((pba << 10) * 8 / 10) & E1000_FCRTL_RTL;
4093 		break;
4094 	}
4095 
4096 	/* Alignment of Tx data is on an arbitrary byte boundary with the
4097 	 * maximum size per Tx descriptor limited only to the transmit
4098 	 * allocation of the packet buffer minus 96 bytes with an upper
4099 	 * limit of 24KB due to receive synchronization limitations.
4100 	 */
4101 	adapter->tx_fifo_limit = min_t(u32, ((er32(PBA) >> 16) << 10) - 96,
4102 				       24 << 10);
4103 
4104 	/* Disable Adaptive Interrupt Moderation if 2 full packets cannot
4105 	 * fit in receive buffer.
4106 	 */
4107 	if (adapter->itr_setting & 0x3) {
4108 		if ((adapter->max_frame_size * 2) > (pba << 10)) {
4109 			if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) {
4110 				dev_info(&adapter->pdev->dev,
4111 					 "Interrupt Throttle Rate off\n");
4112 				adapter->flags2 |= FLAG2_DISABLE_AIM;
4113 				e1000e_write_itr(adapter, 0);
4114 			}
4115 		} else if (adapter->flags2 & FLAG2_DISABLE_AIM) {
4116 			dev_info(&adapter->pdev->dev,
4117 				 "Interrupt Throttle Rate on\n");
4118 			adapter->flags2 &= ~FLAG2_DISABLE_AIM;
4119 			adapter->itr = 20000;
4120 			e1000e_write_itr(adapter, adapter->itr);
4121 		}
4122 	}
4123 
4124 	if (hw->mac.type >= e1000_pch_spt)
4125 		e1000_flush_desc_rings(adapter);
4126 	/* Allow time for pending master requests to run */
4127 	mac->ops.reset_hw(hw);
4128 
4129 	/* For parts with AMT enabled, let the firmware know
4130 	 * that the network interface is in control
4131 	 */
4132 	if (adapter->flags & FLAG_HAS_AMT)
4133 		e1000e_get_hw_control(adapter);
4134 
4135 	ew32(WUC, 0);
4136 
4137 	if (mac->ops.init_hw(hw))
4138 		e_err("Hardware Error\n");
4139 
4140 	e1000_update_mng_vlan(adapter);
4141 
4142 	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
4143 	ew32(VET, ETH_P_8021Q);
4144 
4145 	e1000e_reset_adaptive(hw);
4146 
4147 	/* restore systim and hwtstamp settings */
4148 	e1000e_systim_reset(adapter);
4149 
4150 	/* Set EEE advertisement as appropriate */
4151 	if (adapter->flags2 & FLAG2_HAS_EEE) {
4152 		s32 ret_val;
4153 		u16 adv_addr;
4154 
4155 		switch (hw->phy.type) {
4156 		case e1000_phy_82579:
4157 			adv_addr = I82579_EEE_ADVERTISEMENT;
4158 			break;
4159 		case e1000_phy_i217:
4160 			adv_addr = I217_EEE_ADVERTISEMENT;
4161 			break;
4162 		default:
4163 			dev_err(&adapter->pdev->dev,
4164 				"Invalid PHY type setting EEE advertisement\n");
4165 			return;
4166 		}
4167 
4168 		ret_val = hw->phy.ops.acquire(hw);
4169 		if (ret_val) {
4170 			dev_err(&adapter->pdev->dev,
4171 				"EEE advertisement - unable to acquire PHY\n");
4172 			return;
4173 		}
4174 
4175 		e1000_write_emi_reg_locked(hw, adv_addr,
4176 					   hw->dev_spec.ich8lan.eee_disable ?
4177 					   0 : adapter->eee_advert);
4178 
4179 		hw->phy.ops.release(hw);
4180 	}
4181 
4182 	if (!netif_running(adapter->netdev) &&
4183 	    !test_bit(__E1000_TESTING, &adapter->state))
4184 		e1000_power_down_phy(adapter);
4185 
4186 	e1000_get_phy_info(hw);
4187 
4188 	if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
4189 	    !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
4190 		u16 phy_data = 0;
4191 		/* speed up time to link by disabling smart power down, ignore
4192 		 * the return value of this function because there is nothing
4193 		 * different we would do if it failed
4194 		 */
4195 		e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
4196 		phy_data &= ~IGP02E1000_PM_SPD;
4197 		e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
4198 	}
4199 	if (hw->mac.type >= e1000_pch_spt && adapter->int_mode == 0) {
4200 		u32 reg;
4201 
4202 		/* Fextnvm7 @ 0xe4[2] = 1 */
4203 		reg = er32(FEXTNVM7);
4204 		reg |= E1000_FEXTNVM7_SIDE_CLK_UNGATE;
4205 		ew32(FEXTNVM7, reg);
4206 		/* Fextnvm9 @ 0x5bb4[13:12] = 11 */
4207 		reg = er32(FEXTNVM9);
4208 		reg |= E1000_FEXTNVM9_IOSFSB_CLKGATE_DIS |
4209 		       E1000_FEXTNVM9_IOSFSB_CLKREQ_DIS;
4210 		ew32(FEXTNVM9, reg);
4211 	}
4212 
4213 }
4214 
4215 /**
4216  * e1000e_trigger_lsc - trigger an LSC interrupt
4217  * @adapter: board private structure
4218  *
4219  * Fire a link status change interrupt to start the watchdog.
4220  **/
e1000e_trigger_lsc(struct e1000_adapter * adapter)4221 static void e1000e_trigger_lsc(struct e1000_adapter *adapter)
4222 {
4223 	struct e1000_hw *hw = &adapter->hw;
4224 
4225 	if (adapter->msix_entries)
4226 		ew32(ICS, E1000_ICS_LSC | E1000_ICS_OTHER);
4227 	else
4228 		ew32(ICS, E1000_ICS_LSC);
4229 }
4230 
e1000e_up(struct e1000_adapter * adapter)4231 void e1000e_up(struct e1000_adapter *adapter)
4232 {
4233 	/* hardware has been reset, we need to reload some things */
4234 	e1000_configure(adapter);
4235 
4236 	clear_bit(__E1000_DOWN, &adapter->state);
4237 
4238 	if (adapter->msix_entries)
4239 		e1000_configure_msix(adapter);
4240 	e1000_irq_enable(adapter);
4241 
4242 	/* Tx queue started by watchdog timer when link is up */
4243 
4244 	e1000e_trigger_lsc(adapter);
4245 }
4246 
e1000e_flush_descriptors(struct e1000_adapter * adapter)4247 static void e1000e_flush_descriptors(struct e1000_adapter *adapter)
4248 {
4249 	struct e1000_hw *hw = &adapter->hw;
4250 
4251 	if (!(adapter->flags2 & FLAG2_DMA_BURST))
4252 		return;
4253 
4254 	/* flush pending descriptor writebacks to memory */
4255 	ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4256 	ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
4257 
4258 	/* execute the writes immediately */
4259 	e1e_flush();
4260 
4261 	/* due to rare timing issues, write to TIDV/RDTR again to ensure the
4262 	 * write is successful
4263 	 */
4264 	ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4265 	ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
4266 
4267 	/* execute the writes immediately */
4268 	e1e_flush();
4269 }
4270 
4271 static void e1000e_update_stats(struct e1000_adapter *adapter);
4272 
4273 /**
4274  * e1000e_down - quiesce the device and optionally reset the hardware
4275  * @adapter: board private structure
4276  * @reset: boolean flag to reset the hardware or not
4277  */
e1000e_down(struct e1000_adapter * adapter,bool reset)4278 void e1000e_down(struct e1000_adapter *adapter, bool reset)
4279 {
4280 	struct net_device *netdev = adapter->netdev;
4281 	struct e1000_hw *hw = &adapter->hw;
4282 	u32 tctl, rctl;
4283 
4284 	/* signal that we're down so the interrupt handler does not
4285 	 * reschedule our watchdog timer
4286 	 */
4287 	set_bit(__E1000_DOWN, &adapter->state);
4288 
4289 	netif_carrier_off(netdev);
4290 
4291 	/* disable receives in the hardware */
4292 	rctl = er32(RCTL);
4293 	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
4294 		ew32(RCTL, rctl & ~E1000_RCTL_EN);
4295 	/* flush and sleep below */
4296 
4297 	netif_stop_queue(netdev);
4298 
4299 	/* disable transmits in the hardware */
4300 	tctl = er32(TCTL);
4301 	tctl &= ~E1000_TCTL_EN;
4302 	ew32(TCTL, tctl);
4303 
4304 	/* flush both disables and wait for them to finish */
4305 	e1e_flush();
4306 	usleep_range(10000, 11000);
4307 
4308 	e1000_irq_disable(adapter);
4309 
4310 	napi_synchronize(&adapter->napi);
4311 
4312 	timer_delete_sync(&adapter->watchdog_timer);
4313 	timer_delete_sync(&adapter->phy_info_timer);
4314 
4315 	spin_lock(&adapter->stats64_lock);
4316 	e1000e_update_stats(adapter);
4317 	spin_unlock(&adapter->stats64_lock);
4318 
4319 	e1000e_flush_descriptors(adapter);
4320 
4321 	adapter->link_speed = 0;
4322 	adapter->link_duplex = 0;
4323 
4324 	/* Disable Si errata workaround on PCHx for jumbo frame flow */
4325 	if ((hw->mac.type >= e1000_pch2lan) &&
4326 	    (adapter->netdev->mtu > ETH_DATA_LEN) &&
4327 	    e1000_lv_jumbo_workaround_ich8lan(hw, false))
4328 		e_dbg("failed to disable jumbo frame workaround mode\n");
4329 
4330 	if (!pci_channel_offline(adapter->pdev)) {
4331 		if (reset)
4332 			e1000e_reset(adapter);
4333 		else if (hw->mac.type >= e1000_pch_spt)
4334 			e1000_flush_desc_rings(adapter);
4335 	}
4336 	e1000_clean_tx_ring(adapter->tx_ring);
4337 	e1000_clean_rx_ring(adapter->rx_ring);
4338 }
4339 
e1000e_reinit_locked(struct e1000_adapter * adapter)4340 void e1000e_reinit_locked(struct e1000_adapter *adapter)
4341 {
4342 	might_sleep();
4343 	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
4344 		usleep_range(1000, 1100);
4345 	e1000e_down(adapter, true);
4346 	e1000e_up(adapter);
4347 	clear_bit(__E1000_RESETTING, &adapter->state);
4348 }
4349 
4350 /**
4351  * e1000e_sanitize_systim - sanitize raw cycle counter reads
4352  * @hw: pointer to the HW structure
4353  * @systim: PHC time value read, sanitized and returned
4354  * @sts: structure to hold system time before and after reading SYSTIML,
4355  * may be NULL
4356  *
4357  * Errata for 82574/82583 possible bad bits read from SYSTIMH/L:
4358  * check to see that the time is incrementing at a reasonable
4359  * rate and is a multiple of incvalue.
4360  **/
e1000e_sanitize_systim(struct e1000_hw * hw,u64 systim,struct ptp_system_timestamp * sts)4361 static u64 e1000e_sanitize_systim(struct e1000_hw *hw, u64 systim,
4362 				  struct ptp_system_timestamp *sts)
4363 {
4364 	u64 time_delta, rem, temp;
4365 	u64 systim_next;
4366 	u32 incvalue;
4367 	int i;
4368 
4369 	incvalue = er32(TIMINCA) & E1000_TIMINCA_INCVALUE_MASK;
4370 	for (i = 0; i < E1000_MAX_82574_SYSTIM_REREADS; i++) {
4371 		/* latch SYSTIMH on read of SYSTIML */
4372 		ptp_read_system_prets(sts);
4373 		systim_next = (u64)er32(SYSTIML);
4374 		ptp_read_system_postts(sts);
4375 		systim_next |= (u64)er32(SYSTIMH) << 32;
4376 
4377 		time_delta = systim_next - systim;
4378 		temp = time_delta;
4379 		/* VMWare users have seen incvalue of zero, don't div / 0 */
4380 		rem = incvalue ? do_div(temp, incvalue) : (time_delta != 0);
4381 
4382 		systim = systim_next;
4383 
4384 		if ((time_delta < E1000_82574_SYSTIM_EPSILON) && (rem == 0))
4385 			break;
4386 	}
4387 
4388 	return systim;
4389 }
4390 
4391 /**
4392  * e1000e_read_systim - read SYSTIM register
4393  * @adapter: board private structure
4394  * @sts: structure which will contain system time before and after reading
4395  * SYSTIML, may be NULL
4396  **/
e1000e_read_systim(struct e1000_adapter * adapter,struct ptp_system_timestamp * sts)4397 u64 e1000e_read_systim(struct e1000_adapter *adapter,
4398 		       struct ptp_system_timestamp *sts)
4399 {
4400 	struct e1000_hw *hw = &adapter->hw;
4401 	u32 systimel, systimel_2, systimeh;
4402 	u64 systim;
4403 	/* SYSTIMH latching upon SYSTIML read does not work well.
4404 	 * This means that if SYSTIML overflows after we read it but before
4405 	 * we read SYSTIMH, the value of SYSTIMH has been incremented and we
4406 	 * will experience a huge non linear increment in the systime value
4407 	 * to fix that we test for overflow and if true, we re-read systime.
4408 	 */
4409 	ptp_read_system_prets(sts);
4410 	systimel = er32(SYSTIML);
4411 	ptp_read_system_postts(sts);
4412 	systimeh = er32(SYSTIMH);
4413 	/* Is systimel is so large that overflow is possible? */
4414 	if (systimel >= (u32)0xffffffff - E1000_TIMINCA_INCVALUE_MASK) {
4415 		ptp_read_system_prets(sts);
4416 		systimel_2 = er32(SYSTIML);
4417 		ptp_read_system_postts(sts);
4418 		if (systimel > systimel_2) {
4419 			/* There was an overflow, read again SYSTIMH, and use
4420 			 * systimel_2
4421 			 */
4422 			systimeh = er32(SYSTIMH);
4423 			systimel = systimel_2;
4424 		}
4425 	}
4426 	systim = (u64)systimel;
4427 	systim |= (u64)systimeh << 32;
4428 
4429 	if (adapter->flags2 & FLAG2_CHECK_SYSTIM_OVERFLOW)
4430 		systim = e1000e_sanitize_systim(hw, systim, sts);
4431 
4432 	return systim;
4433 }
4434 
4435 /**
4436  * e1000e_cyclecounter_read - read raw cycle counter (used by time counter)
4437  * @cc: cyclecounter structure
4438  **/
e1000e_cyclecounter_read(const struct cyclecounter * cc)4439 static u64 e1000e_cyclecounter_read(const struct cyclecounter *cc)
4440 {
4441 	struct e1000_adapter *adapter = container_of(cc, struct e1000_adapter,
4442 						     cc);
4443 
4444 	return e1000e_read_systim(adapter, NULL);
4445 }
4446 
4447 /**
4448  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
4449  * @adapter: board private structure to initialize
4450  *
4451  * e1000_sw_init initializes the Adapter private data structure.
4452  * Fields are initialized based on PCI device information and
4453  * OS network device settings (MTU size).
4454  **/
e1000_sw_init(struct e1000_adapter * adapter)4455 static int e1000_sw_init(struct e1000_adapter *adapter)
4456 {
4457 	struct net_device *netdev = adapter->netdev;
4458 
4459 	adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
4460 	adapter->rx_ps_bsize0 = 128;
4461 	adapter->max_frame_size = netdev->mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
4462 	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4463 	adapter->tx_ring_count = E1000_DEFAULT_TXD;
4464 	adapter->rx_ring_count = E1000_DEFAULT_RXD;
4465 
4466 	spin_lock_init(&adapter->stats64_lock);
4467 
4468 	e1000e_set_interrupt_capability(adapter);
4469 
4470 	if (e1000_alloc_queues(adapter))
4471 		return -ENOMEM;
4472 
4473 	/* Setup hardware time stamping cyclecounter */
4474 	if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
4475 		adapter->cc.read = e1000e_cyclecounter_read;
4476 		adapter->cc.mask = CYCLECOUNTER_MASK(64);
4477 		adapter->cc.mult = 1;
4478 		/* cc.shift set in e1000e_get_base_tininca() */
4479 
4480 		spin_lock_init(&adapter->systim_lock);
4481 		INIT_WORK(&adapter->tx_hwtstamp_work, e1000e_tx_hwtstamp_work);
4482 	}
4483 
4484 	/* Explicitly disable IRQ since the NIC can be in any state. */
4485 	e1000_irq_disable(adapter);
4486 
4487 	set_bit(__E1000_DOWN, &adapter->state);
4488 	return 0;
4489 }
4490 
4491 /**
4492  * e1000_intr_msi_test - Interrupt Handler
4493  * @irq: interrupt number
4494  * @data: pointer to a network interface device structure
4495  **/
e1000_intr_msi_test(int __always_unused irq,void * data)4496 static irqreturn_t e1000_intr_msi_test(int __always_unused irq, void *data)
4497 {
4498 	struct net_device *netdev = data;
4499 	struct e1000_adapter *adapter = netdev_priv(netdev);
4500 	struct e1000_hw *hw = &adapter->hw;
4501 	u32 icr = er32(ICR);
4502 
4503 	e_dbg("icr is %08X\n", icr);
4504 	if (icr & E1000_ICR_RXSEQ) {
4505 		adapter->flags &= ~FLAG_MSI_TEST_FAILED;
4506 		/* Force memory writes to complete before acknowledging the
4507 		 * interrupt is handled.
4508 		 */
4509 		wmb();
4510 	}
4511 
4512 	return IRQ_HANDLED;
4513 }
4514 
4515 /**
4516  * e1000_test_msi_interrupt - Returns 0 for successful test
4517  * @adapter: board private struct
4518  *
4519  * code flow taken from tg3.c
4520  **/
e1000_test_msi_interrupt(struct e1000_adapter * adapter)4521 static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
4522 {
4523 	struct net_device *netdev = adapter->netdev;
4524 	struct e1000_hw *hw = &adapter->hw;
4525 	int err;
4526 
4527 	/* poll_enable hasn't been called yet, so don't need disable */
4528 	/* clear any pending events */
4529 	er32(ICR);
4530 
4531 	/* free the real vector and request a test handler */
4532 	e1000_free_irq(adapter);
4533 	e1000e_reset_interrupt_capability(adapter);
4534 
4535 	/* Assume that the test fails, if it succeeds then the test
4536 	 * MSI irq handler will unset this flag
4537 	 */
4538 	adapter->flags |= FLAG_MSI_TEST_FAILED;
4539 
4540 	err = pci_enable_msi(adapter->pdev);
4541 	if (err)
4542 		goto msi_test_failed;
4543 
4544 	err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
4545 			  netdev->name, netdev);
4546 	if (err) {
4547 		pci_disable_msi(adapter->pdev);
4548 		goto msi_test_failed;
4549 	}
4550 
4551 	/* Force memory writes to complete before enabling and firing an
4552 	 * interrupt.
4553 	 */
4554 	wmb();
4555 
4556 	e1000_irq_enable(adapter);
4557 
4558 	/* fire an unusual interrupt on the test handler */
4559 	ew32(ICS, E1000_ICS_RXSEQ);
4560 	e1e_flush();
4561 	msleep(100);
4562 
4563 	e1000_irq_disable(adapter);
4564 
4565 	rmb();			/* read flags after interrupt has been fired */
4566 
4567 	if (adapter->flags & FLAG_MSI_TEST_FAILED) {
4568 		adapter->int_mode = E1000E_INT_MODE_LEGACY;
4569 		e_info("MSI interrupt test failed, using legacy interrupt.\n");
4570 	} else {
4571 		e_dbg("MSI interrupt test succeeded!\n");
4572 	}
4573 
4574 	free_irq(adapter->pdev->irq, netdev);
4575 	pci_disable_msi(adapter->pdev);
4576 
4577 msi_test_failed:
4578 	e1000e_set_interrupt_capability(adapter);
4579 	return e1000_request_irq(adapter);
4580 }
4581 
4582 /**
4583  * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
4584  * @adapter: board private struct
4585  *
4586  * code flow taken from tg3.c, called with e1000 interrupts disabled.
4587  **/
e1000_test_msi(struct e1000_adapter * adapter)4588 static int e1000_test_msi(struct e1000_adapter *adapter)
4589 {
4590 	int err;
4591 	u16 pci_cmd;
4592 
4593 	if (!(adapter->flags & FLAG_MSI_ENABLED))
4594 		return 0;
4595 
4596 	/* disable SERR in case the MSI write causes a master abort */
4597 	pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4598 	if (pci_cmd & PCI_COMMAND_SERR)
4599 		pci_write_config_word(adapter->pdev, PCI_COMMAND,
4600 				      pci_cmd & ~PCI_COMMAND_SERR);
4601 
4602 	err = e1000_test_msi_interrupt(adapter);
4603 
4604 	/* re-enable SERR */
4605 	if (pci_cmd & PCI_COMMAND_SERR) {
4606 		pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4607 		pci_cmd |= PCI_COMMAND_SERR;
4608 		pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
4609 	}
4610 
4611 	return err;
4612 }
4613 
4614 /**
4615  * e1000e_open - Called when a network interface is made active
4616  * @netdev: network interface device structure
4617  *
4618  * Returns 0 on success, negative value on failure
4619  *
4620  * The open entry point is called when a network interface is made
4621  * active by the system (IFF_UP).  At this point all resources needed
4622  * for transmit and receive operations are allocated, the interrupt
4623  * handler is registered with the OS, the watchdog timer is started,
4624  * and the stack is notified that the interface is ready.
4625  **/
e1000e_open(struct net_device * netdev)4626 int e1000e_open(struct net_device *netdev)
4627 {
4628 	struct e1000_adapter *adapter = netdev_priv(netdev);
4629 	struct e1000_hw *hw = &adapter->hw;
4630 	struct pci_dev *pdev = adapter->pdev;
4631 	int err;
4632 	int irq;
4633 
4634 	/* disallow open during test */
4635 	if (test_bit(__E1000_TESTING, &adapter->state))
4636 		return -EBUSY;
4637 
4638 	pm_runtime_get_sync(&pdev->dev);
4639 
4640 	netif_carrier_off(netdev);
4641 	netif_stop_queue(netdev);
4642 
4643 	/* allocate transmit descriptors */
4644 	err = e1000e_setup_tx_resources(adapter->tx_ring);
4645 	if (err)
4646 		goto err_setup_tx;
4647 
4648 	/* allocate receive descriptors */
4649 	err = e1000e_setup_rx_resources(adapter->rx_ring);
4650 	if (err)
4651 		goto err_setup_rx;
4652 
4653 	/* If AMT is enabled, let the firmware know that the network
4654 	 * interface is now open and reset the part to a known state.
4655 	 */
4656 	if (adapter->flags & FLAG_HAS_AMT) {
4657 		e1000e_get_hw_control(adapter);
4658 		e1000e_reset(adapter);
4659 	}
4660 
4661 	e1000e_power_up_phy(adapter);
4662 
4663 	adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4664 	if ((adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
4665 		e1000_update_mng_vlan(adapter);
4666 
4667 	/* DMA latency requirement to workaround jumbo issue */
4668 	cpu_latency_qos_add_request(&adapter->pm_qos_req, PM_QOS_DEFAULT_VALUE);
4669 
4670 	/* before we allocate an interrupt, we must be ready to handle it.
4671 	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
4672 	 * as soon as we call pci_request_irq, so we have to setup our
4673 	 * clean_rx handler before we do so.
4674 	 */
4675 	e1000_configure(adapter);
4676 
4677 	err = e1000_request_irq(adapter);
4678 	if (err)
4679 		goto err_req_irq;
4680 
4681 	/* Work around PCIe errata with MSI interrupts causing some chipsets to
4682 	 * ignore e1000e MSI messages, which means we need to test our MSI
4683 	 * interrupt now
4684 	 */
4685 	if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
4686 		err = e1000_test_msi(adapter);
4687 		if (err) {
4688 			e_err("Interrupt allocation failed\n");
4689 			goto err_req_irq;
4690 		}
4691 	}
4692 
4693 	/* From here on the code is the same as e1000e_up() */
4694 	clear_bit(__E1000_DOWN, &adapter->state);
4695 
4696 	if (adapter->int_mode == E1000E_INT_MODE_MSIX)
4697 		irq = adapter->msix_entries[0].vector;
4698 	else
4699 		irq = adapter->pdev->irq;
4700 
4701 	netif_napi_set_irq(&adapter->napi, irq);
4702 	napi_enable(&adapter->napi);
4703 	netif_queue_set_napi(netdev, 0, NETDEV_QUEUE_TYPE_RX, &adapter->napi);
4704 	netif_queue_set_napi(netdev, 0, NETDEV_QUEUE_TYPE_TX, &adapter->napi);
4705 
4706 	e1000_irq_enable(adapter);
4707 
4708 	adapter->tx_hang_recheck = false;
4709 
4710 	hw->mac.get_link_status = true;
4711 	pm_runtime_put(&pdev->dev);
4712 
4713 	e1000e_trigger_lsc(adapter);
4714 
4715 	return 0;
4716 
4717 err_req_irq:
4718 	cpu_latency_qos_remove_request(&adapter->pm_qos_req);
4719 	e1000e_release_hw_control(adapter);
4720 	e1000_power_down_phy(adapter);
4721 	e1000e_free_rx_resources(adapter->rx_ring);
4722 err_setup_rx:
4723 	e1000e_free_tx_resources(adapter->tx_ring);
4724 err_setup_tx:
4725 	e1000e_reset(adapter);
4726 	pm_runtime_put_sync(&pdev->dev);
4727 
4728 	return err;
4729 }
4730 
4731 /**
4732  * e1000e_close - Disables a network interface
4733  * @netdev: network interface device structure
4734  *
4735  * Returns 0, this is not allowed to fail
4736  *
4737  * The close entry point is called when an interface is de-activated
4738  * by the OS.  The hardware is still under the drivers control, but
4739  * needs to be disabled.  A global MAC reset is issued to stop the
4740  * hardware, and all transmit and receive resources are freed.
4741  **/
e1000e_close(struct net_device * netdev)4742 int e1000e_close(struct net_device *netdev)
4743 {
4744 	struct e1000_adapter *adapter = netdev_priv(netdev);
4745 	struct pci_dev *pdev = adapter->pdev;
4746 	int count = E1000_CHECK_RESET_COUNT;
4747 
4748 	while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
4749 		usleep_range(10000, 11000);
4750 
4751 	WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
4752 
4753 	pm_runtime_get_sync(&pdev->dev);
4754 
4755 	if (netif_device_present(netdev)) {
4756 		e1000e_down(adapter, true);
4757 		e1000_free_irq(adapter);
4758 
4759 		/* Link status message must follow this format */
4760 		netdev_info(netdev, "NIC Link is Down\n");
4761 	}
4762 
4763 	netif_queue_set_napi(netdev, 0, NETDEV_QUEUE_TYPE_RX, NULL);
4764 	netif_queue_set_napi(netdev, 0, NETDEV_QUEUE_TYPE_TX, NULL);
4765 	napi_disable(&adapter->napi);
4766 
4767 	e1000e_free_tx_resources(adapter->tx_ring);
4768 	e1000e_free_rx_resources(adapter->rx_ring);
4769 
4770 	/* kill manageability vlan ID if supported, but not if a vlan with
4771 	 * the same ID is registered on the host OS (let 8021q kill it)
4772 	 */
4773 	if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN)
4774 		e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
4775 				       adapter->mng_vlan_id);
4776 
4777 	/* If AMT is enabled, let the firmware know that the network
4778 	 * interface is now closed
4779 	 */
4780 	if ((adapter->flags & FLAG_HAS_AMT) &&
4781 	    !test_bit(__E1000_TESTING, &adapter->state))
4782 		e1000e_release_hw_control(adapter);
4783 
4784 	cpu_latency_qos_remove_request(&adapter->pm_qos_req);
4785 
4786 	pm_runtime_put_sync(&pdev->dev);
4787 
4788 	return 0;
4789 }
4790 
4791 /**
4792  * e1000_set_mac - Change the Ethernet Address of the NIC
4793  * @netdev: network interface device structure
4794  * @p: pointer to an address structure
4795  *
4796  * Returns 0 on success, negative on failure
4797  **/
e1000_set_mac(struct net_device * netdev,void * p)4798 static int e1000_set_mac(struct net_device *netdev, void *p)
4799 {
4800 	struct e1000_adapter *adapter = netdev_priv(netdev);
4801 	struct e1000_hw *hw = &adapter->hw;
4802 	struct sockaddr *addr = p;
4803 
4804 	if (!is_valid_ether_addr(addr->sa_data))
4805 		return -EADDRNOTAVAIL;
4806 
4807 	eth_hw_addr_set(netdev, addr->sa_data);
4808 	memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
4809 
4810 	hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
4811 
4812 	if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
4813 		/* activate the work around */
4814 		e1000e_set_laa_state_82571(&adapter->hw, 1);
4815 
4816 		/* Hold a copy of the LAA in RAR[14] This is done so that
4817 		 * between the time RAR[0] gets clobbered  and the time it
4818 		 * gets fixed (in e1000_watchdog), the actual LAA is in one
4819 		 * of the RARs and no incoming packets directed to this port
4820 		 * are dropped. Eventually the LAA will be in RAR[0] and
4821 		 * RAR[14]
4822 		 */
4823 		hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr,
4824 				    adapter->hw.mac.rar_entry_count - 1);
4825 	}
4826 
4827 	return 0;
4828 }
4829 
4830 /**
4831  * e1000e_update_phy_task - work thread to update phy
4832  * @work: pointer to our work struct
4833  *
4834  * this worker thread exists because we must acquire a
4835  * semaphore to read the phy, which we could msleep while
4836  * waiting for it, and we can't msleep in a timer.
4837  **/
e1000e_update_phy_task(struct work_struct * work)4838 static void e1000e_update_phy_task(struct work_struct *work)
4839 {
4840 	struct e1000_adapter *adapter = container_of(work,
4841 						     struct e1000_adapter,
4842 						     update_phy_task);
4843 	struct e1000_hw *hw = &adapter->hw;
4844 
4845 	if (test_bit(__E1000_DOWN, &adapter->state))
4846 		return;
4847 
4848 	e1000_get_phy_info(hw);
4849 
4850 	/* Enable EEE on 82579 after link up */
4851 	if (hw->phy.type >= e1000_phy_82579)
4852 		e1000_set_eee_pchlan(hw);
4853 }
4854 
4855 /**
4856  * e1000_update_phy_info - timre call-back to update PHY info
4857  * @t: pointer to timer_list containing private info adapter
4858  *
4859  * Need to wait a few seconds after link up to get diagnostic information from
4860  * the phy
4861  **/
e1000_update_phy_info(struct timer_list * t)4862 static void e1000_update_phy_info(struct timer_list *t)
4863 {
4864 	struct e1000_adapter *adapter = timer_container_of(adapter, t,
4865 							   phy_info_timer);
4866 
4867 	if (test_bit(__E1000_DOWN, &adapter->state))
4868 		return;
4869 
4870 	schedule_work(&adapter->update_phy_task);
4871 }
4872 
4873 /**
4874  * e1000e_update_phy_stats - Update the PHY statistics counters
4875  * @adapter: board private structure
4876  *
4877  * Read/clear the upper 16-bit PHY registers and read/accumulate lower
4878  **/
e1000e_update_phy_stats(struct e1000_adapter * adapter)4879 static void e1000e_update_phy_stats(struct e1000_adapter *adapter)
4880 {
4881 	struct e1000_hw *hw = &adapter->hw;
4882 	s32 ret_val;
4883 	u16 phy_data;
4884 
4885 	ret_val = hw->phy.ops.acquire(hw);
4886 	if (ret_val)
4887 		return;
4888 
4889 	/* A page set is expensive so check if already on desired page.
4890 	 * If not, set to the page with the PHY status registers.
4891 	 */
4892 	hw->phy.addr = 1;
4893 	ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
4894 					   &phy_data);
4895 	if (ret_val)
4896 		goto release;
4897 	if (phy_data != (HV_STATS_PAGE << IGP_PAGE_SHIFT)) {
4898 		ret_val = hw->phy.ops.set_page(hw,
4899 					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
4900 		if (ret_val)
4901 			goto release;
4902 	}
4903 
4904 	/* Single Collision Count */
4905 	hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
4906 	ret_val = hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
4907 	if (!ret_val)
4908 		adapter->stats.scc += phy_data;
4909 
4910 	/* Excessive Collision Count */
4911 	hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
4912 	ret_val = hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
4913 	if (!ret_val)
4914 		adapter->stats.ecol += phy_data;
4915 
4916 	/* Multiple Collision Count */
4917 	hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
4918 	ret_val = hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
4919 	if (!ret_val)
4920 		adapter->stats.mcc += phy_data;
4921 
4922 	/* Late Collision Count */
4923 	hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
4924 	ret_val = hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4925 	if (!ret_val)
4926 		adapter->stats.latecol += phy_data;
4927 
4928 	/* Collision Count - also used for adaptive IFS */
4929 	hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
4930 	ret_val = hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4931 	if (!ret_val)
4932 		hw->mac.collision_delta = phy_data;
4933 
4934 	/* Defer Count */
4935 	hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
4936 	ret_val = hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4937 	if (!ret_val)
4938 		adapter->stats.dc += phy_data;
4939 
4940 	/* Transmit with no CRS */
4941 	hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
4942 	ret_val = hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4943 	if (!ret_val)
4944 		adapter->stats.tncrs += phy_data;
4945 
4946 release:
4947 	hw->phy.ops.release(hw);
4948 }
4949 
4950 /**
4951  * e1000e_update_stats - Update the board statistics counters
4952  * @adapter: board private structure
4953  **/
e1000e_update_stats(struct e1000_adapter * adapter)4954 static void e1000e_update_stats(struct e1000_adapter *adapter)
4955 {
4956 	struct net_device *netdev = adapter->netdev;
4957 	struct e1000_hw *hw = &adapter->hw;
4958 	struct pci_dev *pdev = adapter->pdev;
4959 
4960 	/* Prevent stats update while adapter is being reset, or if the pci
4961 	 * connection is down.
4962 	 */
4963 	if (adapter->link_speed == 0)
4964 		return;
4965 	if (pci_channel_offline(pdev))
4966 		return;
4967 
4968 	adapter->stats.crcerrs += er32(CRCERRS);
4969 	adapter->stats.gprc += er32(GPRC);
4970 	adapter->stats.gorc += er32(GORCL);
4971 	er32(GORCH);		/* Clear gorc */
4972 	adapter->stats.bprc += er32(BPRC);
4973 	adapter->stats.mprc += er32(MPRC);
4974 	adapter->stats.roc += er32(ROC);
4975 
4976 	adapter->stats.mpc += er32(MPC);
4977 
4978 	/* Half-duplex statistics */
4979 	if (adapter->link_duplex == HALF_DUPLEX) {
4980 		if (adapter->flags2 & FLAG2_HAS_PHY_STATS) {
4981 			e1000e_update_phy_stats(adapter);
4982 		} else {
4983 			adapter->stats.scc += er32(SCC);
4984 			adapter->stats.ecol += er32(ECOL);
4985 			adapter->stats.mcc += er32(MCC);
4986 			adapter->stats.latecol += er32(LATECOL);
4987 			adapter->stats.dc += er32(DC);
4988 
4989 			hw->mac.collision_delta = er32(COLC);
4990 
4991 			if ((hw->mac.type != e1000_82574) &&
4992 			    (hw->mac.type != e1000_82583))
4993 				adapter->stats.tncrs += er32(TNCRS);
4994 		}
4995 		adapter->stats.colc += hw->mac.collision_delta;
4996 	}
4997 
4998 	adapter->stats.xonrxc += er32(XONRXC);
4999 	adapter->stats.xontxc += er32(XONTXC);
5000 	adapter->stats.xoffrxc += er32(XOFFRXC);
5001 	adapter->stats.xofftxc += er32(XOFFTXC);
5002 	adapter->stats.gptc += er32(GPTC);
5003 	adapter->stats.gotc += er32(GOTCL);
5004 	er32(GOTCH);		/* Clear gotc */
5005 	adapter->stats.rnbc += er32(RNBC);
5006 	adapter->stats.ruc += er32(RUC);
5007 
5008 	adapter->stats.mptc += er32(MPTC);
5009 	adapter->stats.bptc += er32(BPTC);
5010 
5011 	/* used for adaptive IFS */
5012 
5013 	hw->mac.tx_packet_delta = er32(TPT);
5014 	adapter->stats.tpt += hw->mac.tx_packet_delta;
5015 
5016 	adapter->stats.algnerrc += er32(ALGNERRC);
5017 	adapter->stats.rxerrc += er32(RXERRC);
5018 	adapter->stats.cexterr += er32(CEXTERR);
5019 	adapter->stats.tsctc += er32(TSCTC);
5020 	adapter->stats.tsctfc += er32(TSCTFC);
5021 
5022 	/* Fill out the OS statistics structure */
5023 	netdev->stats.multicast = adapter->stats.mprc;
5024 	netdev->stats.collisions = adapter->stats.colc;
5025 
5026 	/* Rx Errors */
5027 
5028 	/* RLEC on some newer hardware can be incorrect so build
5029 	 * our own version based on RUC and ROC
5030 	 */
5031 	netdev->stats.rx_errors = adapter->stats.rxerrc +
5032 	    adapter->stats.crcerrs + adapter->stats.algnerrc +
5033 	    adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
5034 	netdev->stats.rx_length_errors = adapter->stats.ruc +
5035 	    adapter->stats.roc;
5036 	netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
5037 	netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
5038 	netdev->stats.rx_missed_errors = adapter->stats.mpc;
5039 
5040 	/* Tx Errors */
5041 	netdev->stats.tx_errors = adapter->stats.ecol + adapter->stats.latecol;
5042 	netdev->stats.tx_aborted_errors = adapter->stats.ecol;
5043 	netdev->stats.tx_window_errors = adapter->stats.latecol;
5044 	netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
5045 
5046 	/* Tx Dropped needs to be maintained elsewhere */
5047 
5048 	/* Management Stats */
5049 	adapter->stats.mgptc += er32(MGTPTC);
5050 	adapter->stats.mgprc += er32(MGTPRC);
5051 	adapter->stats.mgpdc += er32(MGTPDC);
5052 
5053 	/* Correctable ECC Errors */
5054 	if (hw->mac.type >= e1000_pch_lpt) {
5055 		u32 pbeccsts = er32(PBECCSTS);
5056 
5057 		adapter->corr_errors +=
5058 		    pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
5059 		adapter->uncorr_errors +=
5060 		    FIELD_GET(E1000_PBECCSTS_UNCORR_ERR_CNT_MASK, pbeccsts);
5061 	}
5062 }
5063 
5064 /**
5065  * e1000_phy_read_status - Update the PHY register status snapshot
5066  * @adapter: board private structure
5067  **/
e1000_phy_read_status(struct e1000_adapter * adapter)5068 static void e1000_phy_read_status(struct e1000_adapter *adapter)
5069 {
5070 	struct e1000_hw *hw = &adapter->hw;
5071 	struct e1000_phy_regs *phy = &adapter->phy_regs;
5072 
5073 	if (!pm_runtime_suspended((&adapter->pdev->dev)->parent) &&
5074 	    (er32(STATUS) & E1000_STATUS_LU) &&
5075 	    (adapter->hw.phy.media_type == e1000_media_type_copper)) {
5076 		int ret_val;
5077 
5078 		ret_val = e1e_rphy(hw, MII_BMCR, &phy->bmcr);
5079 		ret_val |= e1e_rphy(hw, MII_BMSR, &phy->bmsr);
5080 		ret_val |= e1e_rphy(hw, MII_ADVERTISE, &phy->advertise);
5081 		ret_val |= e1e_rphy(hw, MII_LPA, &phy->lpa);
5082 		ret_val |= e1e_rphy(hw, MII_EXPANSION, &phy->expansion);
5083 		ret_val |= e1e_rphy(hw, MII_CTRL1000, &phy->ctrl1000);
5084 		ret_val |= e1e_rphy(hw, MII_STAT1000, &phy->stat1000);
5085 		ret_val |= e1e_rphy(hw, MII_ESTATUS, &phy->estatus);
5086 		if (ret_val)
5087 			e_warn("Error reading PHY register\n");
5088 	} else {
5089 		/* Do not read PHY registers if link is not up
5090 		 * Set values to typical power-on defaults
5091 		 */
5092 		phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
5093 		phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
5094 			     BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
5095 			     BMSR_ERCAP);
5096 		phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
5097 				  ADVERTISE_ALL | ADVERTISE_CSMA);
5098 		phy->lpa = 0;
5099 		phy->expansion = EXPANSION_ENABLENPAGE;
5100 		phy->ctrl1000 = ADVERTISE_1000FULL;
5101 		phy->stat1000 = 0;
5102 		phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
5103 	}
5104 }
5105 
e1000_print_link_info(struct e1000_adapter * adapter)5106 static void e1000_print_link_info(struct e1000_adapter *adapter)
5107 {
5108 	struct e1000_hw *hw = &adapter->hw;
5109 	u32 ctrl = er32(CTRL);
5110 
5111 	/* Link status message must follow this format for user tools */
5112 	netdev_info(adapter->netdev,
5113 		    "NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5114 		    adapter->link_speed,
5115 		    adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half",
5116 		    (ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE) ? "Rx/Tx" :
5117 		    (ctrl & E1000_CTRL_RFCE) ? "Rx" :
5118 		    (ctrl & E1000_CTRL_TFCE) ? "Tx" : "None");
5119 }
5120 
e1000e_has_link(struct e1000_adapter * adapter)5121 static bool e1000e_has_link(struct e1000_adapter *adapter)
5122 {
5123 	struct e1000_hw *hw = &adapter->hw;
5124 	bool link_active = false;
5125 	s32 ret_val = 0;
5126 
5127 	/* get_link_status is set on LSC (link status) interrupt or
5128 	 * Rx sequence error interrupt.  get_link_status will stay
5129 	 * true until the check_for_link establishes link
5130 	 * for copper adapters ONLY
5131 	 */
5132 	switch (hw->phy.media_type) {
5133 	case e1000_media_type_copper:
5134 		if (hw->mac.get_link_status) {
5135 			ret_val = hw->mac.ops.check_for_link(hw);
5136 			link_active = !hw->mac.get_link_status;
5137 		} else {
5138 			link_active = true;
5139 		}
5140 		break;
5141 	case e1000_media_type_fiber:
5142 		ret_val = hw->mac.ops.check_for_link(hw);
5143 		link_active = !!(er32(STATUS) & E1000_STATUS_LU);
5144 		break;
5145 	case e1000_media_type_internal_serdes:
5146 		ret_val = hw->mac.ops.check_for_link(hw);
5147 		link_active = hw->mac.serdes_has_link;
5148 		break;
5149 	default:
5150 	case e1000_media_type_unknown:
5151 		break;
5152 	}
5153 
5154 	if ((ret_val == -E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
5155 	    (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
5156 		/* See e1000_kmrn_lock_loss_workaround_ich8lan() */
5157 		e_info("Gigabit has been disabled, downgrading speed\n");
5158 	}
5159 
5160 	return link_active;
5161 }
5162 
e1000e_enable_receives(struct e1000_adapter * adapter)5163 static void e1000e_enable_receives(struct e1000_adapter *adapter)
5164 {
5165 	/* make sure the receive unit is started */
5166 	if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
5167 	    (adapter->flags & FLAG_RESTART_NOW)) {
5168 		struct e1000_hw *hw = &adapter->hw;
5169 		u32 rctl = er32(RCTL);
5170 
5171 		ew32(RCTL, rctl | E1000_RCTL_EN);
5172 		adapter->flags &= ~FLAG_RESTART_NOW;
5173 	}
5174 }
5175 
e1000e_check_82574_phy_workaround(struct e1000_adapter * adapter)5176 static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter)
5177 {
5178 	struct e1000_hw *hw = &adapter->hw;
5179 
5180 	/* With 82574 controllers, PHY needs to be checked periodically
5181 	 * for hung state and reset, if two calls return true
5182 	 */
5183 	if (e1000_check_phy_82574(hw))
5184 		adapter->phy_hang_count++;
5185 	else
5186 		adapter->phy_hang_count = 0;
5187 
5188 	if (adapter->phy_hang_count > 1) {
5189 		adapter->phy_hang_count = 0;
5190 		e_dbg("PHY appears hung - resetting\n");
5191 		schedule_work(&adapter->reset_task);
5192 	}
5193 }
5194 
5195 /**
5196  * e1000_watchdog - Timer Call-back
5197  * @t: pointer to timer_list containing private info adapter
5198  **/
e1000_watchdog(struct timer_list * t)5199 static void e1000_watchdog(struct timer_list *t)
5200 {
5201 	struct e1000_adapter *adapter = timer_container_of(adapter, t,
5202 							   watchdog_timer);
5203 
5204 	/* Do the rest outside of interrupt context */
5205 	schedule_work(&adapter->watchdog_task);
5206 
5207 	/* TODO: make this use queue_delayed_work() */
5208 }
5209 
e1000_watchdog_task(struct work_struct * work)5210 static void e1000_watchdog_task(struct work_struct *work)
5211 {
5212 	struct e1000_adapter *adapter = container_of(work,
5213 						     struct e1000_adapter,
5214 						     watchdog_task);
5215 	struct net_device *netdev = adapter->netdev;
5216 	struct e1000_mac_info *mac = &adapter->hw.mac;
5217 	struct e1000_phy_info *phy = &adapter->hw.phy;
5218 	struct e1000_ring *tx_ring = adapter->tx_ring;
5219 	u32 dmoff_exit_timeout = 100, tries = 0;
5220 	struct e1000_hw *hw = &adapter->hw;
5221 	u32 link, tctl, pcim_state;
5222 
5223 	if (test_bit(__E1000_DOWN, &adapter->state))
5224 		return;
5225 
5226 	link = e1000e_has_link(adapter);
5227 	if ((netif_carrier_ok(netdev)) && link) {
5228 		/* Cancel scheduled suspend requests. */
5229 		pm_runtime_resume(netdev->dev.parent);
5230 
5231 		e1000e_enable_receives(adapter);
5232 		goto link_up;
5233 	}
5234 
5235 	if ((e1000e_enable_tx_pkt_filtering(hw)) &&
5236 	    (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
5237 		e1000_update_mng_vlan(adapter);
5238 
5239 	if (link) {
5240 		if (!netif_carrier_ok(netdev)) {
5241 			bool txb2b = true;
5242 
5243 			/* Cancel scheduled suspend requests. */
5244 			pm_runtime_resume(netdev->dev.parent);
5245 
5246 			/* Checking if MAC is in DMoff state*/
5247 			if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
5248 				pcim_state = er32(STATUS);
5249 				while (pcim_state & E1000_STATUS_PCIM_STATE) {
5250 					if (tries++ == dmoff_exit_timeout) {
5251 						e_dbg("Error in exiting dmoff\n");
5252 						break;
5253 					}
5254 					usleep_range(10000, 20000);
5255 					pcim_state = er32(STATUS);
5256 
5257 					/* Checking if MAC exited DMoff state */
5258 					if (!(pcim_state & E1000_STATUS_PCIM_STATE))
5259 						e1000_phy_hw_reset(&adapter->hw);
5260 				}
5261 			}
5262 
5263 			/* update snapshot of PHY registers on LSC */
5264 			e1000_phy_read_status(adapter);
5265 			mac->ops.get_link_up_info(&adapter->hw,
5266 						  &adapter->link_speed,
5267 						  &adapter->link_duplex);
5268 			e1000_print_link_info(adapter);
5269 
5270 			/* check if SmartSpeed worked */
5271 			e1000e_check_downshift(hw);
5272 			if (phy->speed_downgraded)
5273 				netdev_warn(netdev,
5274 					    "Link Speed was downgraded by SmartSpeed\n");
5275 
5276 			/* On supported PHYs, check for duplex mismatch only
5277 			 * if link has autonegotiated at 10/100 half
5278 			 */
5279 			if ((hw->phy.type == e1000_phy_igp_3 ||
5280 			     hw->phy.type == e1000_phy_bm) &&
5281 			    hw->mac.autoneg &&
5282 			    (adapter->link_speed == SPEED_10 ||
5283 			     adapter->link_speed == SPEED_100) &&
5284 			    (adapter->link_duplex == HALF_DUPLEX)) {
5285 				u16 autoneg_exp;
5286 
5287 				e1e_rphy(hw, MII_EXPANSION, &autoneg_exp);
5288 
5289 				if (!(autoneg_exp & EXPANSION_NWAY))
5290 					e_info("Autonegotiated half duplex but link partner cannot autoneg.  Try forcing full duplex if link gets many collisions.\n");
5291 			}
5292 
5293 			/* adjust timeout factor according to speed/duplex */
5294 			adapter->tx_timeout_factor = 1;
5295 			switch (adapter->link_speed) {
5296 			case SPEED_10:
5297 				txb2b = false;
5298 				adapter->tx_timeout_factor = 16;
5299 				break;
5300 			case SPEED_100:
5301 				txb2b = false;
5302 				adapter->tx_timeout_factor = 10;
5303 				break;
5304 			}
5305 
5306 			/* workaround: re-program speed mode bit after
5307 			 * link-up event
5308 			 */
5309 			if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
5310 			    !txb2b) {
5311 				u32 tarc0;
5312 
5313 				tarc0 = er32(TARC(0));
5314 				tarc0 &= ~SPEED_MODE_BIT;
5315 				ew32(TARC(0), tarc0);
5316 			}
5317 
5318 			/* enable transmits in the hardware, need to do this
5319 			 * after setting TARC(0)
5320 			 */
5321 			tctl = er32(TCTL);
5322 			tctl |= E1000_TCTL_EN;
5323 			ew32(TCTL, tctl);
5324 
5325 			/* Perform any post-link-up configuration before
5326 			 * reporting link up.
5327 			 */
5328 			if (phy->ops.cfg_on_link_up)
5329 				phy->ops.cfg_on_link_up(hw);
5330 
5331 			netif_wake_queue(netdev);
5332 			netif_carrier_on(netdev);
5333 
5334 			if (!test_bit(__E1000_DOWN, &adapter->state))
5335 				mod_timer(&adapter->phy_info_timer,
5336 					  round_jiffies(jiffies + 2 * HZ));
5337 		}
5338 	} else {
5339 		if (netif_carrier_ok(netdev)) {
5340 			adapter->link_speed = 0;
5341 			adapter->link_duplex = 0;
5342 			/* Link status message must follow this format */
5343 			netdev_info(netdev, "NIC Link is Down\n");
5344 			netif_carrier_off(netdev);
5345 			netif_stop_queue(netdev);
5346 			if (!test_bit(__E1000_DOWN, &adapter->state))
5347 				mod_timer(&adapter->phy_info_timer,
5348 					  round_jiffies(jiffies + 2 * HZ));
5349 
5350 			/* 8000ES2LAN requires a Rx packet buffer work-around
5351 			 * on link down event; reset the controller to flush
5352 			 * the Rx packet buffer.
5353 			 */
5354 			if (adapter->flags & FLAG_RX_NEEDS_RESTART)
5355 				adapter->flags |= FLAG_RESTART_NOW;
5356 			else
5357 				pm_schedule_suspend(netdev->dev.parent,
5358 						    LINK_TIMEOUT);
5359 		}
5360 	}
5361 
5362 link_up:
5363 	spin_lock(&adapter->stats64_lock);
5364 	e1000e_update_stats(adapter);
5365 
5366 	mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
5367 	adapter->tpt_old = adapter->stats.tpt;
5368 	mac->collision_delta = adapter->stats.colc - adapter->colc_old;
5369 	adapter->colc_old = adapter->stats.colc;
5370 
5371 	adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
5372 	adapter->gorc_old = adapter->stats.gorc;
5373 	adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
5374 	adapter->gotc_old = adapter->stats.gotc;
5375 	spin_unlock(&adapter->stats64_lock);
5376 
5377 	/* If the link is lost the controller stops DMA, but
5378 	 * if there is queued Tx work it cannot be done.  So
5379 	 * reset the controller to flush the Tx packet buffers.
5380 	 */
5381 	if (!netif_carrier_ok(netdev) &&
5382 	    (e1000_desc_unused(tx_ring) + 1 < tx_ring->count))
5383 		adapter->flags |= FLAG_RESTART_NOW;
5384 
5385 	/* If reset is necessary, do it outside of interrupt context. */
5386 	if (adapter->flags & FLAG_RESTART_NOW) {
5387 		schedule_work(&adapter->reset_task);
5388 		/* return immediately since reset is imminent */
5389 		return;
5390 	}
5391 
5392 	e1000e_update_adaptive(&adapter->hw);
5393 
5394 	/* Simple mode for Interrupt Throttle Rate (ITR) */
5395 	if (adapter->itr_setting == 4) {
5396 		/* Symmetric Tx/Rx gets a reduced ITR=2000;
5397 		 * Total asymmetrical Tx or Rx gets ITR=8000;
5398 		 * everyone else is between 2000-8000.
5399 		 */
5400 		u32 goc = (adapter->gotc + adapter->gorc) / 10000;
5401 		u32 dif = (adapter->gotc > adapter->gorc ?
5402 			   adapter->gotc - adapter->gorc :
5403 			   adapter->gorc - adapter->gotc) / 10000;
5404 		u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
5405 
5406 		e1000e_write_itr(adapter, itr);
5407 	}
5408 
5409 	/* Cause software interrupt to ensure Rx ring is cleaned */
5410 	if (adapter->msix_entries)
5411 		ew32(ICS, adapter->rx_ring->ims_val);
5412 	else
5413 		ew32(ICS, E1000_ICS_RXDMT0);
5414 
5415 	/* flush pending descriptors to memory before detecting Tx hang */
5416 	e1000e_flush_descriptors(adapter);
5417 
5418 	/* Force detection of hung controller every watchdog period */
5419 	adapter->detect_tx_hung = true;
5420 
5421 	/* With 82571 controllers, LAA may be overwritten due to controller
5422 	 * reset from the other port. Set the appropriate LAA in RAR[0]
5423 	 */
5424 	if (e1000e_get_laa_state_82571(hw))
5425 		hw->mac.ops.rar_set(hw, adapter->hw.mac.addr, 0);
5426 
5427 	if (adapter->flags2 & FLAG2_CHECK_PHY_HANG)
5428 		e1000e_check_82574_phy_workaround(adapter);
5429 
5430 	/* Clear valid timestamp stuck in RXSTMPL/H due to a Rx error */
5431 	if (adapter->hwtstamp_config.rx_filter != HWTSTAMP_FILTER_NONE) {
5432 		if ((adapter->flags2 & FLAG2_CHECK_RX_HWTSTAMP) &&
5433 		    (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID)) {
5434 			er32(RXSTMPH);
5435 			adapter->rx_hwtstamp_cleared++;
5436 		} else {
5437 			adapter->flags2 |= FLAG2_CHECK_RX_HWTSTAMP;
5438 		}
5439 	}
5440 
5441 	/* Reset the timer */
5442 	if (!test_bit(__E1000_DOWN, &adapter->state))
5443 		mod_timer(&adapter->watchdog_timer,
5444 			  round_jiffies(jiffies + 2 * HZ));
5445 }
5446 
5447 #define E1000_TX_FLAGS_CSUM		0x00000001
5448 #define E1000_TX_FLAGS_VLAN		0x00000002
5449 #define E1000_TX_FLAGS_TSO		0x00000004
5450 #define E1000_TX_FLAGS_IPV4		0x00000008
5451 #define E1000_TX_FLAGS_NO_FCS		0x00000010
5452 #define E1000_TX_FLAGS_HWTSTAMP		0x00000020
5453 #define E1000_TX_FLAGS_VLAN_MASK	0xffff0000
5454 #define E1000_TX_FLAGS_VLAN_SHIFT	16
5455 
e1000_tso(struct e1000_ring * tx_ring,struct sk_buff * skb,__be16 protocol)5456 static int e1000_tso(struct e1000_ring *tx_ring, struct sk_buff *skb,
5457 		     __be16 protocol)
5458 {
5459 	struct e1000_context_desc *context_desc;
5460 	struct e1000_buffer *buffer_info;
5461 	unsigned int i;
5462 	u32 cmd_length = 0;
5463 	u16 ipcse = 0, mss;
5464 	u8 ipcss, ipcso, tucss, tucso, hdr_len;
5465 	int err;
5466 
5467 	if (!skb_is_gso(skb))
5468 		return 0;
5469 
5470 	err = skb_cow_head(skb, 0);
5471 	if (err < 0)
5472 		return err;
5473 
5474 	hdr_len = skb_tcp_all_headers(skb);
5475 	mss = skb_shinfo(skb)->gso_size;
5476 	if (protocol == htons(ETH_P_IP)) {
5477 		struct iphdr *iph = ip_hdr(skb);
5478 		iph->tot_len = 0;
5479 		iph->check = 0;
5480 		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
5481 							 0, IPPROTO_TCP, 0);
5482 		cmd_length = E1000_TXD_CMD_IP;
5483 		ipcse = skb_transport_offset(skb) - 1;
5484 	} else if (skb_is_gso_v6(skb)) {
5485 		tcp_v6_gso_csum_prep(skb);
5486 		ipcse = 0;
5487 	}
5488 	ipcss = skb_network_offset(skb);
5489 	ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
5490 	tucss = skb_transport_offset(skb);
5491 	tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
5492 
5493 	cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
5494 		       E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
5495 
5496 	i = tx_ring->next_to_use;
5497 	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5498 	buffer_info = &tx_ring->buffer_info[i];
5499 
5500 	context_desc->lower_setup.ip_fields.ipcss = ipcss;
5501 	context_desc->lower_setup.ip_fields.ipcso = ipcso;
5502 	context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
5503 	context_desc->upper_setup.tcp_fields.tucss = tucss;
5504 	context_desc->upper_setup.tcp_fields.tucso = tucso;
5505 	context_desc->upper_setup.tcp_fields.tucse = 0;
5506 	context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
5507 	context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
5508 	context_desc->cmd_and_length = cpu_to_le32(cmd_length);
5509 
5510 	buffer_info->time_stamp = jiffies;
5511 	buffer_info->next_to_watch = i;
5512 
5513 	i++;
5514 	if (i == tx_ring->count)
5515 		i = 0;
5516 	tx_ring->next_to_use = i;
5517 
5518 	return 1;
5519 }
5520 
e1000_tx_csum(struct e1000_ring * tx_ring,struct sk_buff * skb,__be16 protocol)5521 static bool e1000_tx_csum(struct e1000_ring *tx_ring, struct sk_buff *skb,
5522 			  __be16 protocol)
5523 {
5524 	struct e1000_adapter *adapter = tx_ring->adapter;
5525 	struct e1000_context_desc *context_desc;
5526 	struct e1000_buffer *buffer_info;
5527 	unsigned int i;
5528 	u8 css;
5529 	u32 cmd_len = E1000_TXD_CMD_DEXT;
5530 
5531 	if (skb->ip_summed != CHECKSUM_PARTIAL)
5532 		return false;
5533 
5534 	switch (protocol) {
5535 	case cpu_to_be16(ETH_P_IP):
5536 		if (ip_hdr(skb)->protocol == IPPROTO_TCP)
5537 			cmd_len |= E1000_TXD_CMD_TCP;
5538 		break;
5539 	case cpu_to_be16(ETH_P_IPV6):
5540 		/* XXX not handling all IPV6 headers */
5541 		if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
5542 			cmd_len |= E1000_TXD_CMD_TCP;
5543 		break;
5544 	default:
5545 		if (unlikely(net_ratelimit()))
5546 			e_warn("checksum_partial proto=%x!\n",
5547 			       be16_to_cpu(protocol));
5548 		break;
5549 	}
5550 
5551 	css = skb_checksum_start_offset(skb);
5552 
5553 	i = tx_ring->next_to_use;
5554 	buffer_info = &tx_ring->buffer_info[i];
5555 	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5556 
5557 	context_desc->lower_setup.ip_config = 0;
5558 	context_desc->upper_setup.tcp_fields.tucss = css;
5559 	context_desc->upper_setup.tcp_fields.tucso = css + skb->csum_offset;
5560 	context_desc->upper_setup.tcp_fields.tucse = 0;
5561 	context_desc->tcp_seg_setup.data = 0;
5562 	context_desc->cmd_and_length = cpu_to_le32(cmd_len);
5563 
5564 	buffer_info->time_stamp = jiffies;
5565 	buffer_info->next_to_watch = i;
5566 
5567 	i++;
5568 	if (i == tx_ring->count)
5569 		i = 0;
5570 	tx_ring->next_to_use = i;
5571 
5572 	return true;
5573 }
5574 
e1000_tx_map(struct e1000_ring * tx_ring,struct sk_buff * skb,unsigned int first,unsigned int max_per_txd,unsigned int nr_frags)5575 static int e1000_tx_map(struct e1000_ring *tx_ring, struct sk_buff *skb,
5576 			unsigned int first, unsigned int max_per_txd,
5577 			unsigned int nr_frags)
5578 {
5579 	struct e1000_adapter *adapter = tx_ring->adapter;
5580 	struct pci_dev *pdev = adapter->pdev;
5581 	struct e1000_buffer *buffer_info;
5582 	unsigned int len = skb_headlen(skb);
5583 	unsigned int offset = 0, size, count = 0, i;
5584 	unsigned int f, bytecount, segs;
5585 
5586 	i = tx_ring->next_to_use;
5587 
5588 	while (len) {
5589 		buffer_info = &tx_ring->buffer_info[i];
5590 		size = min(len, max_per_txd);
5591 
5592 		buffer_info->length = size;
5593 		buffer_info->time_stamp = jiffies;
5594 		buffer_info->next_to_watch = i;
5595 		buffer_info->dma = dma_map_single(&pdev->dev,
5596 						  skb->data + offset,
5597 						  size, DMA_TO_DEVICE);
5598 		buffer_info->mapped_as_page = false;
5599 		if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5600 			goto dma_error;
5601 
5602 		len -= size;
5603 		offset += size;
5604 		count++;
5605 
5606 		if (len) {
5607 			i++;
5608 			if (i == tx_ring->count)
5609 				i = 0;
5610 		}
5611 	}
5612 
5613 	for (f = 0; f < nr_frags; f++) {
5614 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[f];
5615 
5616 		len = skb_frag_size(frag);
5617 		offset = 0;
5618 
5619 		while (len) {
5620 			i++;
5621 			if (i == tx_ring->count)
5622 				i = 0;
5623 
5624 			buffer_info = &tx_ring->buffer_info[i];
5625 			size = min(len, max_per_txd);
5626 
5627 			buffer_info->length = size;
5628 			buffer_info->time_stamp = jiffies;
5629 			buffer_info->next_to_watch = i;
5630 			buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
5631 							    offset, size,
5632 							    DMA_TO_DEVICE);
5633 			buffer_info->mapped_as_page = true;
5634 			if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5635 				goto dma_error;
5636 
5637 			len -= size;
5638 			offset += size;
5639 			count++;
5640 		}
5641 	}
5642 
5643 	segs = skb_shinfo(skb)->gso_segs ? : 1;
5644 	/* multiply data chunks by size of headers */
5645 	bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
5646 
5647 	tx_ring->buffer_info[i].skb = skb;
5648 	tx_ring->buffer_info[i].segs = segs;
5649 	tx_ring->buffer_info[i].bytecount = bytecount;
5650 	tx_ring->buffer_info[first].next_to_watch = i;
5651 
5652 	return count;
5653 
5654 dma_error:
5655 	dev_err(&pdev->dev, "Tx DMA map failed\n");
5656 	buffer_info->dma = 0;
5657 	if (count)
5658 		count--;
5659 
5660 	while (count--) {
5661 		if (i == 0)
5662 			i += tx_ring->count;
5663 		i--;
5664 		buffer_info = &tx_ring->buffer_info[i];
5665 		e1000_put_txbuf(tx_ring, buffer_info, true);
5666 	}
5667 
5668 	return 0;
5669 }
5670 
e1000_tx_queue(struct e1000_ring * tx_ring,int tx_flags,int count)5671 static void e1000_tx_queue(struct e1000_ring *tx_ring, int tx_flags, int count)
5672 {
5673 	struct e1000_adapter *adapter = tx_ring->adapter;
5674 	struct e1000_tx_desc *tx_desc = NULL;
5675 	struct e1000_buffer *buffer_info;
5676 	u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
5677 	unsigned int i;
5678 
5679 	if (tx_flags & E1000_TX_FLAGS_TSO) {
5680 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
5681 		    E1000_TXD_CMD_TSE;
5682 		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5683 
5684 		if (tx_flags & E1000_TX_FLAGS_IPV4)
5685 			txd_upper |= E1000_TXD_POPTS_IXSM << 8;
5686 	}
5687 
5688 	if (tx_flags & E1000_TX_FLAGS_CSUM) {
5689 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5690 		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5691 	}
5692 
5693 	if (tx_flags & E1000_TX_FLAGS_VLAN) {
5694 		txd_lower |= E1000_TXD_CMD_VLE;
5695 		txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
5696 	}
5697 
5698 	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5699 		txd_lower &= ~(E1000_TXD_CMD_IFCS);
5700 
5701 	if (unlikely(tx_flags & E1000_TX_FLAGS_HWTSTAMP)) {
5702 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5703 		txd_upper |= E1000_TXD_EXTCMD_TSTAMP;
5704 	}
5705 
5706 	i = tx_ring->next_to_use;
5707 
5708 	do {
5709 		buffer_info = &tx_ring->buffer_info[i];
5710 		tx_desc = E1000_TX_DESC(*tx_ring, i);
5711 		tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
5712 		tx_desc->lower.data = cpu_to_le32(txd_lower |
5713 						  buffer_info->length);
5714 		tx_desc->upper.data = cpu_to_le32(txd_upper);
5715 
5716 		i++;
5717 		if (i == tx_ring->count)
5718 			i = 0;
5719 	} while (--count > 0);
5720 
5721 	tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
5722 
5723 	/* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
5724 	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5725 		tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
5726 
5727 	/* Force memory writes to complete before letting h/w
5728 	 * know there are new descriptors to fetch.  (Only
5729 	 * applicable for weak-ordered memory model archs,
5730 	 * such as IA-64).
5731 	 */
5732 	wmb();
5733 
5734 	tx_ring->next_to_use = i;
5735 }
5736 
5737 #define MINIMUM_DHCP_PACKET_SIZE 282
e1000_transfer_dhcp_info(struct e1000_adapter * adapter,struct sk_buff * skb)5738 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
5739 				    struct sk_buff *skb)
5740 {
5741 	struct e1000_hw *hw = &adapter->hw;
5742 	u16 length, offset;
5743 
5744 	if (skb_vlan_tag_present(skb) &&
5745 	    !((skb_vlan_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
5746 	      (adapter->hw.mng_cookie.status &
5747 	       E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
5748 		return 0;
5749 
5750 	if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
5751 		return 0;
5752 
5753 	if (((struct ethhdr *)skb->data)->h_proto != htons(ETH_P_IP))
5754 		return 0;
5755 
5756 	{
5757 		const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data + 14);
5758 		struct udphdr *udp;
5759 
5760 		if (ip->protocol != IPPROTO_UDP)
5761 			return 0;
5762 
5763 		udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
5764 		if (ntohs(udp->dest) != 67)
5765 			return 0;
5766 
5767 		offset = (u8 *)udp + 8 - skb->data;
5768 		length = skb->len - offset;
5769 		return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
5770 	}
5771 
5772 	return 0;
5773 }
5774 
__e1000_maybe_stop_tx(struct e1000_ring * tx_ring,int size)5775 static int __e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5776 {
5777 	struct e1000_adapter *adapter = tx_ring->adapter;
5778 
5779 	netif_stop_queue(adapter->netdev);
5780 	/* Herbert's original patch had:
5781 	 *  smp_mb__after_netif_stop_queue();
5782 	 * but since that doesn't exist yet, just open code it.
5783 	 */
5784 	smp_mb();
5785 
5786 	/* We need to check again in a case another CPU has just
5787 	 * made room available.
5788 	 */
5789 	if (e1000_desc_unused(tx_ring) < size)
5790 		return -EBUSY;
5791 
5792 	/* A reprieve! */
5793 	netif_start_queue(adapter->netdev);
5794 	++adapter->restart_queue;
5795 	return 0;
5796 }
5797 
e1000_maybe_stop_tx(struct e1000_ring * tx_ring,int size)5798 static int e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5799 {
5800 	BUG_ON(size > tx_ring->count);
5801 
5802 	if (e1000_desc_unused(tx_ring) >= size)
5803 		return 0;
5804 	return __e1000_maybe_stop_tx(tx_ring, size);
5805 }
5806 
e1000_xmit_frame(struct sk_buff * skb,struct net_device * netdev)5807 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
5808 				    struct net_device *netdev)
5809 {
5810 	struct e1000_adapter *adapter = netdev_priv(netdev);
5811 	struct e1000_ring *tx_ring = adapter->tx_ring;
5812 	unsigned int first;
5813 	unsigned int tx_flags = 0;
5814 	unsigned int len = skb_headlen(skb);
5815 	unsigned int nr_frags;
5816 	unsigned int mss;
5817 	int count = 0;
5818 	int tso;
5819 	unsigned int f;
5820 	__be16 protocol = vlan_get_protocol(skb);
5821 
5822 	if (test_bit(__E1000_DOWN, &adapter->state)) {
5823 		dev_kfree_skb_any(skb);
5824 		return NETDEV_TX_OK;
5825 	}
5826 
5827 	if (skb->len <= 0) {
5828 		dev_kfree_skb_any(skb);
5829 		return NETDEV_TX_OK;
5830 	}
5831 
5832 	/* The minimum packet size with TCTL.PSP set is 17 bytes so
5833 	 * pad skb in order to meet this minimum size requirement
5834 	 */
5835 	if (skb_put_padto(skb, 17))
5836 		return NETDEV_TX_OK;
5837 
5838 	mss = skb_shinfo(skb)->gso_size;
5839 	if (mss) {
5840 		u8 hdr_len;
5841 
5842 		/* TSO Workaround for 82571/2/3 Controllers -- if skb->data
5843 		 * points to just header, pull a few bytes of payload from
5844 		 * frags into skb->data
5845 		 */
5846 		hdr_len = skb_tcp_all_headers(skb);
5847 		/* we do this workaround for ES2LAN, but it is un-necessary,
5848 		 * avoiding it could save a lot of cycles
5849 		 */
5850 		if (skb->data_len && (hdr_len == len)) {
5851 			unsigned int pull_size;
5852 
5853 			pull_size = min_t(unsigned int, 4, skb->data_len);
5854 			if (!__pskb_pull_tail(skb, pull_size)) {
5855 				e_err("__pskb_pull_tail failed.\n");
5856 				dev_kfree_skb_any(skb);
5857 				return NETDEV_TX_OK;
5858 			}
5859 			len = skb_headlen(skb);
5860 		}
5861 	}
5862 
5863 	/* reserve a descriptor for the offload context */
5864 	if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
5865 		count++;
5866 	count++;
5867 
5868 	count += DIV_ROUND_UP(len, adapter->tx_fifo_limit);
5869 
5870 	nr_frags = skb_shinfo(skb)->nr_frags;
5871 	for (f = 0; f < nr_frags; f++)
5872 		count += DIV_ROUND_UP(skb_frag_size(&skb_shinfo(skb)->frags[f]),
5873 				      adapter->tx_fifo_limit);
5874 
5875 	if (adapter->hw.mac.tx_pkt_filtering)
5876 		e1000_transfer_dhcp_info(adapter, skb);
5877 
5878 	/* need: count + 2 desc gap to keep tail from touching
5879 	 * head, otherwise try next time
5880 	 */
5881 	if (e1000_maybe_stop_tx(tx_ring, count + 2))
5882 		return NETDEV_TX_BUSY;
5883 
5884 	if (skb_vlan_tag_present(skb)) {
5885 		tx_flags |= E1000_TX_FLAGS_VLAN;
5886 		tx_flags |= (skb_vlan_tag_get(skb) <<
5887 			     E1000_TX_FLAGS_VLAN_SHIFT);
5888 	}
5889 
5890 	first = tx_ring->next_to_use;
5891 
5892 	tso = e1000_tso(tx_ring, skb, protocol);
5893 	if (tso < 0) {
5894 		dev_kfree_skb_any(skb);
5895 		return NETDEV_TX_OK;
5896 	}
5897 
5898 	if (tso)
5899 		tx_flags |= E1000_TX_FLAGS_TSO;
5900 	else if (e1000_tx_csum(tx_ring, skb, protocol))
5901 		tx_flags |= E1000_TX_FLAGS_CSUM;
5902 
5903 	/* Old method was to assume IPv4 packet by default if TSO was enabled.
5904 	 * 82571 hardware supports TSO capabilities for IPv6 as well...
5905 	 * no longer assume, we must.
5906 	 */
5907 	if (protocol == htons(ETH_P_IP))
5908 		tx_flags |= E1000_TX_FLAGS_IPV4;
5909 
5910 	if (unlikely(skb->no_fcs))
5911 		tx_flags |= E1000_TX_FLAGS_NO_FCS;
5912 
5913 	/* if count is 0 then mapping error has occurred */
5914 	count = e1000_tx_map(tx_ring, skb, first, adapter->tx_fifo_limit,
5915 			     nr_frags);
5916 	if (count) {
5917 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
5918 		    (adapter->flags & FLAG_HAS_HW_TIMESTAMP)) {
5919 			if (!adapter->tx_hwtstamp_skb) {
5920 				skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
5921 				tx_flags |= E1000_TX_FLAGS_HWTSTAMP;
5922 				adapter->tx_hwtstamp_skb = skb_get(skb);
5923 				adapter->tx_hwtstamp_start = jiffies;
5924 				schedule_work(&adapter->tx_hwtstamp_work);
5925 			} else {
5926 				adapter->tx_hwtstamp_skipped++;
5927 			}
5928 		}
5929 
5930 		skb_tx_timestamp(skb);
5931 
5932 		netdev_sent_queue(netdev, skb->len);
5933 		e1000_tx_queue(tx_ring, tx_flags, count);
5934 		/* Make sure there is space in the ring for the next send. */
5935 		e1000_maybe_stop_tx(tx_ring,
5936 				    ((MAX_SKB_FRAGS + 1) *
5937 				     DIV_ROUND_UP(PAGE_SIZE,
5938 						  adapter->tx_fifo_limit) + 4));
5939 
5940 		if (!netdev_xmit_more() ||
5941 		    netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) {
5942 			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
5943 				e1000e_update_tdt_wa(tx_ring,
5944 						     tx_ring->next_to_use);
5945 			else
5946 				writel(tx_ring->next_to_use, tx_ring->tail);
5947 		}
5948 	} else {
5949 		dev_kfree_skb_any(skb);
5950 		tx_ring->buffer_info[first].time_stamp = 0;
5951 		tx_ring->next_to_use = first;
5952 	}
5953 
5954 	return NETDEV_TX_OK;
5955 }
5956 
5957 /**
5958  * e1000_tx_timeout - Respond to a Tx Hang
5959  * @netdev: network interface device structure
5960  * @txqueue: index of the hung queue (unused)
5961  **/
e1000_tx_timeout(struct net_device * netdev,unsigned int __always_unused txqueue)5962 static void e1000_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue)
5963 {
5964 	struct e1000_adapter *adapter = netdev_priv(netdev);
5965 
5966 	/* Do the reset outside of interrupt context */
5967 	adapter->tx_timeout_count++;
5968 	schedule_work(&adapter->reset_task);
5969 }
5970 
e1000_reset_task(struct work_struct * work)5971 static void e1000_reset_task(struct work_struct *work)
5972 {
5973 	struct e1000_adapter *adapter;
5974 	adapter = container_of(work, struct e1000_adapter, reset_task);
5975 
5976 	rtnl_lock();
5977 	/* don't run the task if already down */
5978 	if (test_bit(__E1000_DOWN, &adapter->state)) {
5979 		rtnl_unlock();
5980 		return;
5981 	}
5982 
5983 	if (!(adapter->flags & FLAG_RESTART_NOW)) {
5984 		e1000e_dump(adapter);
5985 		e_err("Reset adapter unexpectedly\n");
5986 	}
5987 	e1000e_reinit_locked(adapter);
5988 	rtnl_unlock();
5989 }
5990 
5991 /**
5992  * e1000e_get_stats64 - Get System Network Statistics
5993  * @netdev: network interface device structure
5994  * @stats: rtnl_link_stats64 pointer
5995  *
5996  * Returns the address of the device statistics structure.
5997  **/
e1000e_get_stats64(struct net_device * netdev,struct rtnl_link_stats64 * stats)5998 void e1000e_get_stats64(struct net_device *netdev,
5999 			struct rtnl_link_stats64 *stats)
6000 {
6001 	struct e1000_adapter *adapter = netdev_priv(netdev);
6002 
6003 	spin_lock(&adapter->stats64_lock);
6004 	e1000e_update_stats(adapter);
6005 	/* Fill out the OS statistics structure */
6006 	stats->rx_bytes = adapter->stats.gorc;
6007 	stats->rx_packets = adapter->stats.gprc;
6008 	stats->tx_bytes = adapter->stats.gotc;
6009 	stats->tx_packets = adapter->stats.gptc;
6010 	stats->multicast = adapter->stats.mprc;
6011 	stats->collisions = adapter->stats.colc;
6012 
6013 	/* Rx Errors */
6014 
6015 	/* RLEC on some newer hardware can be incorrect so build
6016 	 * our own version based on RUC and ROC
6017 	 */
6018 	stats->rx_errors = adapter->stats.rxerrc +
6019 	    adapter->stats.crcerrs + adapter->stats.algnerrc +
6020 	    adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
6021 	stats->rx_length_errors = adapter->stats.ruc + adapter->stats.roc;
6022 	stats->rx_crc_errors = adapter->stats.crcerrs;
6023 	stats->rx_frame_errors = adapter->stats.algnerrc;
6024 	stats->rx_missed_errors = adapter->stats.mpc;
6025 
6026 	/* Tx Errors */
6027 	stats->tx_errors = adapter->stats.ecol + adapter->stats.latecol;
6028 	stats->tx_aborted_errors = adapter->stats.ecol;
6029 	stats->tx_window_errors = adapter->stats.latecol;
6030 	stats->tx_carrier_errors = adapter->stats.tncrs;
6031 
6032 	/* Tx Dropped needs to be maintained elsewhere */
6033 
6034 	spin_unlock(&adapter->stats64_lock);
6035 }
6036 
6037 /**
6038  * e1000_change_mtu - Change the Maximum Transfer Unit
6039  * @netdev: network interface device structure
6040  * @new_mtu: new value for maximum frame size
6041  *
6042  * Returns 0 on success, negative on failure
6043  **/
e1000_change_mtu(struct net_device * netdev,int new_mtu)6044 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
6045 {
6046 	struct e1000_adapter *adapter = netdev_priv(netdev);
6047 	int max_frame = new_mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
6048 
6049 	/* Jumbo frame support */
6050 	if ((new_mtu > ETH_DATA_LEN) &&
6051 	    !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
6052 		e_err("Jumbo Frames not supported.\n");
6053 		return -EINVAL;
6054 	}
6055 
6056 	/* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
6057 	if ((adapter->hw.mac.type >= e1000_pch2lan) &&
6058 	    !(adapter->flags2 & FLAG2_CRC_STRIPPING) &&
6059 	    (new_mtu > ETH_DATA_LEN)) {
6060 		e_err("Jumbo Frames not supported on this device when CRC stripping is disabled.\n");
6061 		return -EINVAL;
6062 	}
6063 
6064 	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
6065 		usleep_range(1000, 1100);
6066 	/* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
6067 	adapter->max_frame_size = max_frame;
6068 	netdev_dbg(netdev, "changing MTU from %d to %d\n",
6069 		   netdev->mtu, new_mtu);
6070 	WRITE_ONCE(netdev->mtu, new_mtu);
6071 
6072 	pm_runtime_get_sync(netdev->dev.parent);
6073 
6074 	if (netif_running(netdev))
6075 		e1000e_down(adapter, true);
6076 
6077 	/* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
6078 	 * means we reserve 2 more, this pushes us to allocate from the next
6079 	 * larger slab size.
6080 	 * i.e. RXBUFFER_2048 --> size-4096 slab
6081 	 * However with the new *_jumbo_rx* routines, jumbo receives will use
6082 	 * fragmented skbs
6083 	 */
6084 
6085 	if (max_frame <= 2048)
6086 		adapter->rx_buffer_len = 2048;
6087 	else
6088 		adapter->rx_buffer_len = 4096;
6089 
6090 	/* adjust allocation if LPE protects us, and we aren't using SBP */
6091 	if (max_frame <= (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN))
6092 		adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
6093 
6094 	if (netif_running(netdev))
6095 		e1000e_up(adapter);
6096 	else
6097 		e1000e_reset(adapter);
6098 
6099 	pm_runtime_put_sync(netdev->dev.parent);
6100 
6101 	clear_bit(__E1000_RESETTING, &adapter->state);
6102 
6103 	return 0;
6104 }
6105 
e1000_ioctl(struct net_device * netdev,struct ifreq * ifr,int cmd)6106 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6107 {
6108 	struct e1000_adapter *adapter = netdev_priv(netdev);
6109 	struct mii_ioctl_data *data = if_mii(ifr);
6110 
6111 	if (adapter->hw.phy.media_type != e1000_media_type_copper)
6112 		return -EOPNOTSUPP;
6113 
6114 	switch (cmd) {
6115 	case SIOCGMIIPHY:
6116 		data->phy_id = adapter->hw.phy.addr;
6117 		break;
6118 	case SIOCGMIIREG:
6119 		e1000_phy_read_status(adapter);
6120 
6121 		switch (data->reg_num & 0x1F) {
6122 		case MII_BMCR:
6123 			data->val_out = adapter->phy_regs.bmcr;
6124 			break;
6125 		case MII_BMSR:
6126 			data->val_out = adapter->phy_regs.bmsr;
6127 			break;
6128 		case MII_PHYSID1:
6129 			data->val_out = (adapter->hw.phy.id >> 16);
6130 			break;
6131 		case MII_PHYSID2:
6132 			data->val_out = (adapter->hw.phy.id & 0xFFFF);
6133 			break;
6134 		case MII_ADVERTISE:
6135 			data->val_out = adapter->phy_regs.advertise;
6136 			break;
6137 		case MII_LPA:
6138 			data->val_out = adapter->phy_regs.lpa;
6139 			break;
6140 		case MII_EXPANSION:
6141 			data->val_out = adapter->phy_regs.expansion;
6142 			break;
6143 		case MII_CTRL1000:
6144 			data->val_out = adapter->phy_regs.ctrl1000;
6145 			break;
6146 		case MII_STAT1000:
6147 			data->val_out = adapter->phy_regs.stat1000;
6148 			break;
6149 		case MII_ESTATUS:
6150 			data->val_out = adapter->phy_regs.estatus;
6151 			break;
6152 		default:
6153 			return -EIO;
6154 		}
6155 		break;
6156 	case SIOCSMIIREG:
6157 	default:
6158 		return -EOPNOTSUPP;
6159 	}
6160 	return 0;
6161 }
6162 
6163 /**
6164  * e1000e_hwtstamp_set - control hardware time stamping
6165  * @netdev: network interface device structure
6166  * @config: timestamp configuration
6167  * @extack: netlink extended ACK report
6168  *
6169  * Outgoing time stamping can be enabled and disabled. Play nice and
6170  * disable it when requested, although it shouldn't cause any overhead
6171  * when no packet needs it. At most one packet in the queue may be
6172  * marked for time stamping, otherwise it would be impossible to tell
6173  * for sure to which packet the hardware time stamp belongs.
6174  *
6175  * Incoming time stamping has to be configured via the hardware filters.
6176  * Not all combinations are supported, in particular event type has to be
6177  * specified. Matching the kind of event packet is not supported, with the
6178  * exception of "all V2 events regardless of level 2 or 4".
6179  **/
e1000e_hwtstamp_set(struct net_device * netdev,struct kernel_hwtstamp_config * config,struct netlink_ext_ack * extack)6180 static int e1000e_hwtstamp_set(struct net_device *netdev,
6181 			       struct kernel_hwtstamp_config *config,
6182 			       struct netlink_ext_ack *extack)
6183 {
6184 	struct e1000_adapter *adapter = netdev_priv(netdev);
6185 	int ret_val;
6186 
6187 	ret_val = e1000e_config_hwtstamp(adapter, config, extack);
6188 	if (ret_val)
6189 		return ret_val;
6190 
6191 	switch (config->rx_filter) {
6192 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
6193 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
6194 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
6195 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
6196 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
6197 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
6198 		/* With V2 type filters which specify a Sync or Delay Request,
6199 		 * Path Delay Request/Response messages are also time stamped
6200 		 * by hardware so notify the caller the requested packets plus
6201 		 * some others are time stamped.
6202 		 */
6203 		config->rx_filter = HWTSTAMP_FILTER_SOME;
6204 		break;
6205 	default:
6206 		break;
6207 	}
6208 
6209 	return 0;
6210 }
6211 
e1000e_hwtstamp_get(struct net_device * netdev,struct kernel_hwtstamp_config * kernel_config)6212 static int e1000e_hwtstamp_get(struct net_device *netdev,
6213 			       struct kernel_hwtstamp_config *kernel_config)
6214 {
6215 	struct e1000_adapter *adapter = netdev_priv(netdev);
6216 
6217 	*kernel_config = adapter->hwtstamp_config;
6218 
6219 	return 0;
6220 }
6221 
e1000_init_phy_wakeup(struct e1000_adapter * adapter,u32 wufc)6222 static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
6223 {
6224 	struct e1000_hw *hw = &adapter->hw;
6225 	u32 i, mac_reg, wuc;
6226 	u16 phy_reg, wuc_enable;
6227 	int retval;
6228 
6229 	/* copy MAC RARs to PHY RARs */
6230 	e1000_copy_rx_addrs_to_phy_ich8lan(hw);
6231 
6232 	retval = hw->phy.ops.acquire(hw);
6233 	if (retval) {
6234 		e_err("Could not acquire PHY\n");
6235 		return retval;
6236 	}
6237 
6238 	/* Enable access to wakeup registers on and set page to BM_WUC_PAGE */
6239 	retval = e1000_enable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
6240 	if (retval)
6241 		goto release;
6242 
6243 	/* copy MAC MTA to PHY MTA - only needed for pchlan */
6244 	for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
6245 		mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
6246 		hw->phy.ops.write_reg_page(hw, BM_MTA(i),
6247 					   (u16)(mac_reg & 0xFFFF));
6248 		hw->phy.ops.write_reg_page(hw, BM_MTA(i) + 1,
6249 					   (u16)((mac_reg >> 16) & 0xFFFF));
6250 	}
6251 
6252 	/* configure PHY Rx Control register */
6253 	hw->phy.ops.read_reg_page(&adapter->hw, BM_RCTL, &phy_reg);
6254 	mac_reg = er32(RCTL);
6255 	if (mac_reg & E1000_RCTL_UPE)
6256 		phy_reg |= BM_RCTL_UPE;
6257 	if (mac_reg & E1000_RCTL_MPE)
6258 		phy_reg |= BM_RCTL_MPE;
6259 	phy_reg &= ~(BM_RCTL_MO_MASK);
6260 	if (mac_reg & E1000_RCTL_MO_3)
6261 		phy_reg |= (FIELD_GET(E1000_RCTL_MO_3, mac_reg)
6262 			    << BM_RCTL_MO_SHIFT);
6263 	if (mac_reg & E1000_RCTL_BAM)
6264 		phy_reg |= BM_RCTL_BAM;
6265 	if (mac_reg & E1000_RCTL_PMCF)
6266 		phy_reg |= BM_RCTL_PMCF;
6267 	mac_reg = er32(CTRL);
6268 	if (mac_reg & E1000_CTRL_RFCE)
6269 		phy_reg |= BM_RCTL_RFCE;
6270 	hw->phy.ops.write_reg_page(&adapter->hw, BM_RCTL, phy_reg);
6271 
6272 	wuc = E1000_WUC_PME_EN;
6273 	if (wufc & (E1000_WUFC_MAG | E1000_WUFC_LNKC))
6274 		wuc |= E1000_WUC_APME;
6275 
6276 	/* enable PHY wakeup in MAC register */
6277 	ew32(WUFC, wufc);
6278 	ew32(WUC, (E1000_WUC_PHY_WAKE | E1000_WUC_APMPME |
6279 		   E1000_WUC_PME_STATUS | wuc));
6280 
6281 	/* configure and enable PHY wakeup in PHY registers */
6282 	hw->phy.ops.write_reg_page(&adapter->hw, BM_WUFC, wufc);
6283 	hw->phy.ops.write_reg_page(&adapter->hw, BM_WUC, wuc);
6284 
6285 	/* activate PHY wakeup */
6286 	wuc_enable |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
6287 	retval = e1000_disable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
6288 	if (retval)
6289 		e_err("Could not set PHY Host Wakeup bit\n");
6290 release:
6291 	hw->phy.ops.release(hw);
6292 
6293 	return retval;
6294 }
6295 
e1000e_flush_lpic(struct pci_dev * pdev)6296 static void e1000e_flush_lpic(struct pci_dev *pdev)
6297 {
6298 	struct net_device *netdev = pci_get_drvdata(pdev);
6299 	struct e1000_adapter *adapter = netdev_priv(netdev);
6300 	struct e1000_hw *hw = &adapter->hw;
6301 	u32 ret_val;
6302 
6303 	pm_runtime_get_sync(netdev->dev.parent);
6304 
6305 	ret_val = hw->phy.ops.acquire(hw);
6306 	if (ret_val)
6307 		goto fl_out;
6308 
6309 	pr_info("EEE TX LPI TIMER: %08X\n",
6310 		er32(LPIC) >> E1000_LPIC_LPIET_SHIFT);
6311 
6312 	hw->phy.ops.release(hw);
6313 
6314 fl_out:
6315 	pm_runtime_put_sync(netdev->dev.parent);
6316 }
6317 
6318 /* S0ix implementation */
e1000e_s0ix_entry_flow(struct e1000_adapter * adapter)6319 static void e1000e_s0ix_entry_flow(struct e1000_adapter *adapter)
6320 {
6321 	struct e1000_hw *hw = &adapter->hw;
6322 	u32 mac_data;
6323 	u16 phy_data;
6324 
6325 	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID &&
6326 	    hw->mac.type >= e1000_pch_adp) {
6327 		/* Request ME configure the device for S0ix */
6328 		mac_data = er32(H2ME);
6329 		mac_data |= E1000_H2ME_START_DPG;
6330 		mac_data &= ~E1000_H2ME_EXIT_DPG;
6331 		trace_e1000e_trace_mac_register(mac_data);
6332 		ew32(H2ME, mac_data);
6333 	} else {
6334 		/* Request driver configure the device to S0ix */
6335 		/* Disable the periodic inband message,
6336 		 * don't request PCIe clock in K1 page770_17[10:9] = 10b
6337 		 */
6338 		e1e_rphy(hw, HV_PM_CTRL, &phy_data);
6339 		phy_data &= ~HV_PM_CTRL_K1_CLK_REQ;
6340 		phy_data |= BIT(10);
6341 		e1e_wphy(hw, HV_PM_CTRL, phy_data);
6342 
6343 		/* Make sure we don't exit K1 every time a new packet arrives
6344 		 * 772_29[5] = 1 CS_Mode_Stay_In_K1
6345 		 */
6346 		e1e_rphy(hw, I217_CGFREG, &phy_data);
6347 		phy_data |= BIT(5);
6348 		e1e_wphy(hw, I217_CGFREG, phy_data);
6349 
6350 		/* Change the MAC/PHY interface to SMBus
6351 		 * Force the SMBus in PHY page769_23[0] = 1
6352 		 * Force the SMBus in MAC CTRL_EXT[11] = 1
6353 		 */
6354 		e1e_rphy(hw, CV_SMB_CTRL, &phy_data);
6355 		phy_data |= CV_SMB_CTRL_FORCE_SMBUS;
6356 		e1e_wphy(hw, CV_SMB_CTRL, phy_data);
6357 		mac_data = er32(CTRL_EXT);
6358 		mac_data |= E1000_CTRL_EXT_FORCE_SMBUS;
6359 		ew32(CTRL_EXT, mac_data);
6360 
6361 		/* DFT control: PHY bit: page769_20[0] = 1
6362 		 * page769_20[7] - PHY PLL stop
6363 		 * page769_20[8] - PHY go to the electrical idle
6364 		 * page769_20[9] - PHY serdes disable
6365 		 * Gate PPW via EXTCNF_CTRL - set 0x0F00[7] = 1
6366 		 */
6367 		e1e_rphy(hw, I82579_DFT_CTRL, &phy_data);
6368 		phy_data |= BIT(0);
6369 		phy_data |= BIT(7);
6370 		phy_data |= BIT(8);
6371 		phy_data |= BIT(9);
6372 		e1e_wphy(hw, I82579_DFT_CTRL, phy_data);
6373 
6374 		mac_data = er32(EXTCNF_CTRL);
6375 		mac_data |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
6376 		ew32(EXTCNF_CTRL, mac_data);
6377 
6378 		/* Disable disconnected cable conditioning for Power Gating */
6379 		mac_data = er32(DPGFR);
6380 		mac_data |= BIT(2);
6381 		ew32(DPGFR, mac_data);
6382 
6383 		/* Enable the Dynamic Clock Gating in the DMA and MAC */
6384 		mac_data = er32(CTRL_EXT);
6385 		mac_data |= E1000_CTRL_EXT_DMA_DYN_CLK_EN;
6386 		ew32(CTRL_EXT, mac_data);
6387 	}
6388 
6389 	/* Enable the Dynamic Power Gating in the MAC */
6390 	mac_data = er32(FEXTNVM7);
6391 	mac_data |= BIT(22);
6392 	ew32(FEXTNVM7, mac_data);
6393 
6394 	/* Don't wake from dynamic Power Gating with clock request */
6395 	mac_data = er32(FEXTNVM12);
6396 	mac_data |= BIT(12);
6397 	ew32(FEXTNVM12, mac_data);
6398 
6399 	/* Ungate PGCB clock */
6400 	mac_data = er32(FEXTNVM9);
6401 	mac_data &= ~BIT(28);
6402 	ew32(FEXTNVM9, mac_data);
6403 
6404 	/* Enable K1 off to enable mPHY Power Gating */
6405 	mac_data = er32(FEXTNVM6);
6406 	mac_data |= BIT(31);
6407 	ew32(FEXTNVM6, mac_data);
6408 
6409 	/* Enable mPHY power gating for any link and speed */
6410 	mac_data = er32(FEXTNVM8);
6411 	mac_data |= BIT(9);
6412 	ew32(FEXTNVM8, mac_data);
6413 
6414 	/* No MAC DPG gating SLP_S0 in modern standby
6415 	 * Switch the logic of the lanphypc to use PMC counter
6416 	 */
6417 	mac_data = er32(FEXTNVM5);
6418 	mac_data |= BIT(7);
6419 	ew32(FEXTNVM5, mac_data);
6420 
6421 	/* Disable the time synchronization clock */
6422 	mac_data = er32(FEXTNVM7);
6423 	mac_data |= BIT(31);
6424 	mac_data &= ~BIT(0);
6425 	ew32(FEXTNVM7, mac_data);
6426 
6427 	/* Dynamic Power Gating Enable */
6428 	mac_data = er32(CTRL_EXT);
6429 	mac_data |= BIT(3);
6430 	ew32(CTRL_EXT, mac_data);
6431 
6432 	/* Check MAC Tx/Rx packet buffer pointers.
6433 	 * Reset MAC Tx/Rx packet buffer pointers to suppress any
6434 	 * pending traffic indication that would prevent power gating.
6435 	 */
6436 	mac_data = er32(TDFH);
6437 	if (mac_data)
6438 		ew32(TDFH, 0);
6439 	mac_data = er32(TDFT);
6440 	if (mac_data)
6441 		ew32(TDFT, 0);
6442 	mac_data = er32(TDFHS);
6443 	if (mac_data)
6444 		ew32(TDFHS, 0);
6445 	mac_data = er32(TDFTS);
6446 	if (mac_data)
6447 		ew32(TDFTS, 0);
6448 	mac_data = er32(TDFPC);
6449 	if (mac_data)
6450 		ew32(TDFPC, 0);
6451 	mac_data = er32(RDFH);
6452 	if (mac_data)
6453 		ew32(RDFH, 0);
6454 	mac_data = er32(RDFT);
6455 	if (mac_data)
6456 		ew32(RDFT, 0);
6457 	mac_data = er32(RDFHS);
6458 	if (mac_data)
6459 		ew32(RDFHS, 0);
6460 	mac_data = er32(RDFTS);
6461 	if (mac_data)
6462 		ew32(RDFTS, 0);
6463 	mac_data = er32(RDFPC);
6464 	if (mac_data)
6465 		ew32(RDFPC, 0);
6466 }
6467 
e1000e_s0ix_exit_flow(struct e1000_adapter * adapter)6468 static void e1000e_s0ix_exit_flow(struct e1000_adapter *adapter)
6469 {
6470 	struct e1000_hw *hw = &adapter->hw;
6471 	bool firmware_bug = false;
6472 	u32 mac_data;
6473 	u16 phy_data;
6474 	u32 i = 0;
6475 
6476 	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID &&
6477 	    hw->mac.type >= e1000_pch_adp) {
6478 		/* Keep the GPT clock enabled for CSME */
6479 		mac_data = er32(FEXTNVM);
6480 		mac_data |= BIT(3);
6481 		ew32(FEXTNVM, mac_data);
6482 		/* Request ME unconfigure the device from S0ix */
6483 		mac_data = er32(H2ME);
6484 		mac_data &= ~E1000_H2ME_START_DPG;
6485 		mac_data |= E1000_H2ME_EXIT_DPG;
6486 		trace_e1000e_trace_mac_register(mac_data);
6487 		ew32(H2ME, mac_data);
6488 
6489 		/* Poll up to 2.5 seconds for ME to unconfigure DPG.
6490 		 * If this takes more than 1 second, show a warning indicating a
6491 		 * firmware bug
6492 		 */
6493 		while (!(er32(EXFWSM) & E1000_EXFWSM_DPG_EXIT_DONE)) {
6494 			if (i > 100 && !firmware_bug)
6495 				firmware_bug = true;
6496 
6497 			if (i++ == 250) {
6498 				e_dbg("Timeout (firmware bug): %d msec\n",
6499 				      i * 10);
6500 				break;
6501 			}
6502 
6503 			usleep_range(10000, 11000);
6504 		}
6505 		if (firmware_bug)
6506 			e_warn("DPG_EXIT_DONE took %d msec. This is a firmware bug\n",
6507 			       i * 10);
6508 		else
6509 			e_dbg("DPG_EXIT_DONE cleared after %d msec\n", i * 10);
6510 	} else {
6511 		/* Request driver unconfigure the device from S0ix */
6512 
6513 		/* Cancel disable disconnected cable conditioning
6514 		 * for Power Gating
6515 		 */
6516 		mac_data = er32(DPGFR);
6517 		mac_data &= ~BIT(2);
6518 		ew32(DPGFR, mac_data);
6519 
6520 		/* Disable the Dynamic Clock Gating in the DMA and MAC */
6521 		mac_data = er32(CTRL_EXT);
6522 		mac_data &= 0xFFF7FFFF;
6523 		ew32(CTRL_EXT, mac_data);
6524 
6525 		/* Enable the periodic inband message,
6526 		 * Request PCIe clock in K1 page770_17[10:9] =01b
6527 		 */
6528 		e1e_rphy(hw, HV_PM_CTRL, &phy_data);
6529 		phy_data &= 0xFBFF;
6530 		phy_data |= HV_PM_CTRL_K1_CLK_REQ;
6531 		e1e_wphy(hw, HV_PM_CTRL, phy_data);
6532 
6533 		/* Return back configuration
6534 		 * 772_29[5] = 0 CS_Mode_Stay_In_K1
6535 		 */
6536 		e1e_rphy(hw, I217_CGFREG, &phy_data);
6537 		phy_data &= 0xFFDF;
6538 		e1e_wphy(hw, I217_CGFREG, phy_data);
6539 
6540 		/* Change the MAC/PHY interface to Kumeran
6541 		 * Unforce the SMBus in PHY page769_23[0] = 0
6542 		 * Unforce the SMBus in MAC CTRL_EXT[11] = 0
6543 		 */
6544 		e1e_rphy(hw, CV_SMB_CTRL, &phy_data);
6545 		phy_data &= ~CV_SMB_CTRL_FORCE_SMBUS;
6546 		e1e_wphy(hw, CV_SMB_CTRL, phy_data);
6547 		mac_data = er32(CTRL_EXT);
6548 		mac_data &= ~E1000_CTRL_EXT_FORCE_SMBUS;
6549 		ew32(CTRL_EXT, mac_data);
6550 	}
6551 
6552 	/* Disable Dynamic Power Gating */
6553 	mac_data = er32(CTRL_EXT);
6554 	mac_data &= 0xFFFFFFF7;
6555 	ew32(CTRL_EXT, mac_data);
6556 
6557 	/* Enable the time synchronization clock */
6558 	mac_data = er32(FEXTNVM7);
6559 	mac_data &= ~BIT(31);
6560 	mac_data |= BIT(0);
6561 	ew32(FEXTNVM7, mac_data);
6562 
6563 	/* Disable the Dynamic Power Gating in the MAC */
6564 	mac_data = er32(FEXTNVM7);
6565 	mac_data &= 0xFFBFFFFF;
6566 	ew32(FEXTNVM7, mac_data);
6567 
6568 	/* Disable mPHY power gating for any link and speed */
6569 	mac_data = er32(FEXTNVM8);
6570 	mac_data &= ~BIT(9);
6571 	ew32(FEXTNVM8, mac_data);
6572 
6573 	/* Disable K1 off */
6574 	mac_data = er32(FEXTNVM6);
6575 	mac_data &= ~BIT(31);
6576 	ew32(FEXTNVM6, mac_data);
6577 
6578 	/* Disable Ungate PGCB clock */
6579 	mac_data = er32(FEXTNVM9);
6580 	mac_data |= BIT(28);
6581 	ew32(FEXTNVM9, mac_data);
6582 
6583 	/* Cancel not waking from dynamic
6584 	 * Power Gating with clock request
6585 	 */
6586 	mac_data = er32(FEXTNVM12);
6587 	mac_data &= ~BIT(12);
6588 	ew32(FEXTNVM12, mac_data);
6589 
6590 	/* Revert the lanphypc logic to use the internal Gbe counter
6591 	 * and not the PMC counter
6592 	 */
6593 	mac_data = er32(FEXTNVM5);
6594 	mac_data &= 0xFFFFFF7F;
6595 	ew32(FEXTNVM5, mac_data);
6596 }
6597 
e1000e_pm_freeze(struct device * dev)6598 static int e1000e_pm_freeze(struct device *dev)
6599 {
6600 	struct net_device *netdev = dev_get_drvdata(dev);
6601 	struct e1000_adapter *adapter = netdev_priv(netdev);
6602 	bool present;
6603 
6604 	rtnl_lock();
6605 
6606 	present = netif_device_present(netdev);
6607 	netif_device_detach(netdev);
6608 
6609 	if (present && netif_running(netdev)) {
6610 		int count = E1000_CHECK_RESET_COUNT;
6611 
6612 		while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
6613 			usleep_range(10000, 11000);
6614 
6615 		WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
6616 
6617 		/* Quiesce the device without resetting the hardware */
6618 		e1000e_down(adapter, false);
6619 		e1000_free_irq(adapter);
6620 	}
6621 	rtnl_unlock();
6622 
6623 	e1000e_reset_interrupt_capability(adapter);
6624 
6625 	/* Allow time for pending master requests to run */
6626 	e1000e_disable_pcie_master(&adapter->hw);
6627 
6628 	return 0;
6629 }
6630 
__e1000_shutdown(struct pci_dev * pdev,bool runtime)6631 static int __e1000_shutdown(struct pci_dev *pdev, bool runtime)
6632 {
6633 	struct net_device *netdev = pci_get_drvdata(pdev);
6634 	struct e1000_adapter *adapter = netdev_priv(netdev);
6635 	struct e1000_hw *hw = &adapter->hw;
6636 	u32 ctrl, ctrl_ext, rctl, status, wufc;
6637 	int retval = 0;
6638 
6639 	/* Runtime suspend should only enable wakeup for link changes */
6640 	if (runtime)
6641 		wufc = E1000_WUFC_LNKC;
6642 	else if (device_may_wakeup(&pdev->dev))
6643 		wufc = adapter->wol;
6644 	else
6645 		wufc = 0;
6646 
6647 	status = er32(STATUS);
6648 	if (status & E1000_STATUS_LU)
6649 		wufc &= ~E1000_WUFC_LNKC;
6650 
6651 	if (wufc) {
6652 		e1000_setup_rctl(adapter);
6653 		e1000e_set_rx_mode(netdev);
6654 
6655 		/* turn on all-multi mode if wake on multicast is enabled */
6656 		if (wufc & E1000_WUFC_MC) {
6657 			rctl = er32(RCTL);
6658 			rctl |= E1000_RCTL_MPE;
6659 			ew32(RCTL, rctl);
6660 		}
6661 
6662 		ctrl = er32(CTRL);
6663 		ctrl |= E1000_CTRL_ADVD3WUC;
6664 		if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
6665 			ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
6666 		ew32(CTRL, ctrl);
6667 
6668 		if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
6669 		    adapter->hw.phy.media_type ==
6670 		    e1000_media_type_internal_serdes) {
6671 			/* keep the laser running in D3 */
6672 			ctrl_ext = er32(CTRL_EXT);
6673 			ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
6674 			ew32(CTRL_EXT, ctrl_ext);
6675 		}
6676 
6677 		if (!runtime)
6678 			e1000e_power_up_phy(adapter);
6679 
6680 		if (adapter->flags & FLAG_IS_ICH)
6681 			e1000_suspend_workarounds_ich8lan(&adapter->hw);
6682 
6683 		if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6684 			/* enable wakeup by the PHY */
6685 			retval = e1000_init_phy_wakeup(adapter, wufc);
6686 			if (retval) {
6687 				e_err("Failed to enable wakeup\n");
6688 				goto skip_phy_configurations;
6689 			}
6690 		} else {
6691 			/* enable wakeup by the MAC */
6692 			ew32(WUFC, wufc);
6693 			ew32(WUC, E1000_WUC_PME_EN);
6694 		}
6695 	} else {
6696 		ew32(WUC, 0);
6697 		ew32(WUFC, 0);
6698 
6699 		e1000_power_down_phy(adapter);
6700 	}
6701 
6702 	if (adapter->hw.phy.type == e1000_phy_igp_3) {
6703 		e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
6704 	} else if (hw->mac.type >= e1000_pch_lpt) {
6705 		if (wufc && !(wufc & (E1000_WUFC_EX | E1000_WUFC_MC | E1000_WUFC_BC))) {
6706 			/* ULP does not support wake from unicast, multicast
6707 			 * or broadcast.
6708 			 */
6709 			retval = e1000_enable_ulp_lpt_lp(hw, !runtime);
6710 			if (retval) {
6711 				e_err("Failed to enable ULP\n");
6712 				goto skip_phy_configurations;
6713 			}
6714 		}
6715 	}
6716 
6717 	/* Ensure that the appropriate bits are set in LPI_CTRL
6718 	 * for EEE in Sx
6719 	 */
6720 	if ((hw->phy.type >= e1000_phy_i217) &&
6721 	    adapter->eee_advert && hw->dev_spec.ich8lan.eee_lp_ability) {
6722 		u16 lpi_ctrl = 0;
6723 
6724 		retval = hw->phy.ops.acquire(hw);
6725 		if (!retval) {
6726 			retval = e1e_rphy_locked(hw, I82579_LPI_CTRL,
6727 						 &lpi_ctrl);
6728 			if (!retval) {
6729 				if (adapter->eee_advert &
6730 				    hw->dev_spec.ich8lan.eee_lp_ability &
6731 				    I82579_EEE_100_SUPPORTED)
6732 					lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
6733 				if (adapter->eee_advert &
6734 				    hw->dev_spec.ich8lan.eee_lp_ability &
6735 				    I82579_EEE_1000_SUPPORTED)
6736 					lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
6737 
6738 				retval = e1e_wphy_locked(hw, I82579_LPI_CTRL,
6739 							 lpi_ctrl);
6740 			}
6741 		}
6742 		hw->phy.ops.release(hw);
6743 	}
6744 
6745 skip_phy_configurations:
6746 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
6747 	 * would have already happened in close and is redundant.
6748 	 */
6749 	e1000e_release_hw_control(adapter);
6750 
6751 	pci_clear_master(pdev);
6752 
6753 	/* The pci-e switch on some quad port adapters will report a
6754 	 * correctable error when the MAC transitions from D0 to D3.  To
6755 	 * prevent this we need to mask off the correctable errors on the
6756 	 * downstream port of the pci-e switch.
6757 	 *
6758 	 * We don't have the associated upstream bridge while assigning
6759 	 * the PCI device into guest. For example, the KVM on power is
6760 	 * one of the cases.
6761 	 */
6762 	if (adapter->flags & FLAG_IS_QUAD_PORT) {
6763 		struct pci_dev *us_dev = pdev->bus->self;
6764 		u16 devctl;
6765 
6766 		if (!us_dev)
6767 			return 0;
6768 
6769 		pcie_capability_read_word(us_dev, PCI_EXP_DEVCTL, &devctl);
6770 		pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL,
6771 					   (devctl & ~PCI_EXP_DEVCTL_CERE));
6772 
6773 		pci_save_state(pdev);
6774 		pci_prepare_to_sleep(pdev);
6775 
6776 		pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL, devctl);
6777 	}
6778 
6779 	return 0;
6780 }
6781 
6782 /**
6783  * __e1000e_disable_aspm - Disable ASPM states
6784  * @pdev: pointer to PCI device struct
6785  * @state: bit-mask of ASPM states to disable
6786  * @locked: indication if this context holds pci_bus_sem locked.
6787  *
6788  * Some devices *must* have certain ASPM states disabled per hardware errata.
6789  **/
__e1000e_disable_aspm(struct pci_dev * pdev,u16 state,int locked)6790 static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state, int locked)
6791 {
6792 	struct pci_dev *parent = pdev->bus->self;
6793 	u16 aspm_dis_mask = 0;
6794 	u16 pdev_aspmc, parent_aspmc;
6795 
6796 	switch (state) {
6797 	case PCIE_LINK_STATE_L0S:
6798 	case PCIE_LINK_STATE_L0S | PCIE_LINK_STATE_L1:
6799 		aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L0S;
6800 		fallthrough; /* can't have L1 without L0s */
6801 	case PCIE_LINK_STATE_L1:
6802 		aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L1;
6803 		break;
6804 	default:
6805 		return;
6806 	}
6807 
6808 	pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6809 	pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6810 
6811 	if (parent) {
6812 		pcie_capability_read_word(parent, PCI_EXP_LNKCTL,
6813 					  &parent_aspmc);
6814 		parent_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6815 	}
6816 
6817 	/* Nothing to do if the ASPM states to be disabled already are */
6818 	if (!(pdev_aspmc & aspm_dis_mask) &&
6819 	    (!parent || !(parent_aspmc & aspm_dis_mask)))
6820 		return;
6821 
6822 	dev_info(&pdev->dev, "Disabling ASPM %s %s\n",
6823 		 (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L0S) ?
6824 		 "L0s" : "",
6825 		 (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L1) ?
6826 		 "L1" : "");
6827 
6828 #ifdef CONFIG_PCIEASPM
6829 	if (locked)
6830 		pci_disable_link_state_locked(pdev, state);
6831 	else
6832 		pci_disable_link_state(pdev, state);
6833 
6834 	/* Double-check ASPM control.  If not disabled by the above, the
6835 	 * BIOS is preventing that from happening (or CONFIG_PCIEASPM is
6836 	 * not enabled); override by writing PCI config space directly.
6837 	 */
6838 	pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6839 	pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6840 
6841 	if (!(aspm_dis_mask & pdev_aspmc))
6842 		return;
6843 #endif
6844 
6845 	/* Both device and parent should have the same ASPM setting.
6846 	 * Disable ASPM in downstream component first and then upstream.
6847 	 */
6848 	pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, aspm_dis_mask);
6849 
6850 	if (parent)
6851 		pcie_capability_clear_word(parent, PCI_EXP_LNKCTL,
6852 					   aspm_dis_mask);
6853 }
6854 
6855 /**
6856  * e1000e_disable_aspm - Disable ASPM states.
6857  * @pdev: pointer to PCI device struct
6858  * @state: bit-mask of ASPM states to disable
6859  *
6860  * This function acquires the pci_bus_sem!
6861  * Some devices *must* have certain ASPM states disabled per hardware errata.
6862  **/
e1000e_disable_aspm(struct pci_dev * pdev,u16 state)6863 static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
6864 {
6865 	__e1000e_disable_aspm(pdev, state, 0);
6866 }
6867 
6868 /**
6869  * e1000e_disable_aspm_locked - Disable ASPM states.
6870  * @pdev: pointer to PCI device struct
6871  * @state: bit-mask of ASPM states to disable
6872  *
6873  * This function must be called with pci_bus_sem acquired!
6874  * Some devices *must* have certain ASPM states disabled per hardware errata.
6875  **/
e1000e_disable_aspm_locked(struct pci_dev * pdev,u16 state)6876 static void e1000e_disable_aspm_locked(struct pci_dev *pdev, u16 state)
6877 {
6878 	__e1000e_disable_aspm(pdev, state, 1);
6879 }
6880 
e1000e_pm_thaw(struct device * dev)6881 static int e1000e_pm_thaw(struct device *dev)
6882 {
6883 	struct net_device *netdev = dev_get_drvdata(dev);
6884 	struct e1000_adapter *adapter = netdev_priv(netdev);
6885 	int rc = 0;
6886 
6887 	e1000e_set_interrupt_capability(adapter);
6888 
6889 	rtnl_lock();
6890 	if (netif_running(netdev)) {
6891 		rc = e1000_request_irq(adapter);
6892 		if (rc)
6893 			goto err_irq;
6894 
6895 		e1000e_up(adapter);
6896 	}
6897 
6898 	netif_device_attach(netdev);
6899 err_irq:
6900 	rtnl_unlock();
6901 
6902 	return rc;
6903 }
6904 
__e1000_resume(struct pci_dev * pdev)6905 static int __e1000_resume(struct pci_dev *pdev)
6906 {
6907 	struct net_device *netdev = pci_get_drvdata(pdev);
6908 	struct e1000_adapter *adapter = netdev_priv(netdev);
6909 	struct e1000_hw *hw = &adapter->hw;
6910 	u16 aspm_disable_flag = 0;
6911 
6912 	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
6913 		aspm_disable_flag = PCIE_LINK_STATE_L0S;
6914 	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
6915 		aspm_disable_flag |= PCIE_LINK_STATE_L1;
6916 	if (aspm_disable_flag)
6917 		e1000e_disable_aspm(pdev, aspm_disable_flag);
6918 
6919 	pci_set_master(pdev);
6920 
6921 	if (hw->mac.type >= e1000_pch2lan)
6922 		e1000_resume_workarounds_pchlan(&adapter->hw);
6923 
6924 	e1000e_power_up_phy(adapter);
6925 
6926 	/* report the system wakeup cause from S3/S4 */
6927 	if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6928 		u16 phy_data;
6929 
6930 		e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
6931 		if (phy_data) {
6932 			e_info("PHY Wakeup cause - %s\n",
6933 			       phy_data & E1000_WUS_EX ? "Unicast Packet" :
6934 			       phy_data & E1000_WUS_MC ? "Multicast Packet" :
6935 			       phy_data & E1000_WUS_BC ? "Broadcast Packet" :
6936 			       phy_data & E1000_WUS_MAG ? "Magic Packet" :
6937 			       phy_data & E1000_WUS_LNKC ?
6938 			       "Link Status Change" : "other");
6939 		}
6940 		e1e_wphy(&adapter->hw, BM_WUS, ~0);
6941 	} else {
6942 		u32 wus = er32(WUS);
6943 
6944 		if (wus) {
6945 			e_info("MAC Wakeup cause - %s\n",
6946 			       wus & E1000_WUS_EX ? "Unicast Packet" :
6947 			       wus & E1000_WUS_MC ? "Multicast Packet" :
6948 			       wus & E1000_WUS_BC ? "Broadcast Packet" :
6949 			       wus & E1000_WUS_MAG ? "Magic Packet" :
6950 			       wus & E1000_WUS_LNKC ? "Link Status Change" :
6951 			       "other");
6952 		}
6953 		ew32(WUS, ~0);
6954 	}
6955 
6956 	e1000e_reset(adapter);
6957 
6958 	e1000_init_manageability_pt(adapter);
6959 
6960 	/* If the controller has AMT, do not set DRV_LOAD until the interface
6961 	 * is up.  For all other cases, let the f/w know that the h/w is now
6962 	 * under the control of the driver.
6963 	 */
6964 	if (!(adapter->flags & FLAG_HAS_AMT))
6965 		e1000e_get_hw_control(adapter);
6966 
6967 	return 0;
6968 }
6969 
e1000e_pm_prepare(struct device * dev)6970 static int e1000e_pm_prepare(struct device *dev)
6971 {
6972 	return pm_runtime_suspended(dev) &&
6973 		pm_suspend_via_firmware();
6974 }
6975 
e1000e_pm_suspend(struct device * dev)6976 static int e1000e_pm_suspend(struct device *dev)
6977 {
6978 	struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
6979 	struct e1000_adapter *adapter = netdev_priv(netdev);
6980 	struct pci_dev *pdev = to_pci_dev(dev);
6981 	int rc;
6982 
6983 	e1000e_flush_lpic(pdev);
6984 
6985 	e1000e_pm_freeze(dev);
6986 
6987 	rc = __e1000_shutdown(pdev, false);
6988 	if (!rc) {
6989 		/* Introduce S0ix implementation */
6990 		if (adapter->flags2 & FLAG2_ENABLE_S0IX_FLOWS)
6991 			e1000e_s0ix_entry_flow(adapter);
6992 	}
6993 
6994 	return 0;
6995 }
6996 
e1000e_pm_resume(struct device * dev)6997 static int e1000e_pm_resume(struct device *dev)
6998 {
6999 	struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
7000 	struct e1000_adapter *adapter = netdev_priv(netdev);
7001 	struct pci_dev *pdev = to_pci_dev(dev);
7002 	int rc;
7003 
7004 	/* Introduce S0ix implementation */
7005 	if (adapter->flags2 & FLAG2_ENABLE_S0IX_FLOWS)
7006 		e1000e_s0ix_exit_flow(adapter);
7007 
7008 	rc = __e1000_resume(pdev);
7009 	if (rc)
7010 		return rc;
7011 
7012 	return e1000e_pm_thaw(dev);
7013 }
7014 
e1000e_pm_runtime_idle(struct device * dev)7015 static __maybe_unused int e1000e_pm_runtime_idle(struct device *dev)
7016 {
7017 	struct net_device *netdev = dev_get_drvdata(dev);
7018 	struct e1000_adapter *adapter = netdev_priv(netdev);
7019 	u16 eee_lp;
7020 
7021 	eee_lp = adapter->hw.dev_spec.ich8lan.eee_lp_ability;
7022 
7023 	if (!e1000e_has_link(adapter)) {
7024 		adapter->hw.dev_spec.ich8lan.eee_lp_ability = eee_lp;
7025 		pm_schedule_suspend(dev, 5 * MSEC_PER_SEC);
7026 	}
7027 
7028 	return -EBUSY;
7029 }
7030 
e1000e_pm_runtime_resume(struct device * dev)7031 static int e1000e_pm_runtime_resume(struct device *dev)
7032 {
7033 	struct pci_dev *pdev = to_pci_dev(dev);
7034 	struct net_device *netdev = pci_get_drvdata(pdev);
7035 	struct e1000_adapter *adapter = netdev_priv(netdev);
7036 	int rc;
7037 
7038 	pdev->pme_poll = true;
7039 
7040 	rc = __e1000_resume(pdev);
7041 	if (rc)
7042 		return rc;
7043 
7044 	if (netdev->flags & IFF_UP)
7045 		e1000e_up(adapter);
7046 
7047 	return rc;
7048 }
7049 
e1000e_pm_runtime_suspend(struct device * dev)7050 static int e1000e_pm_runtime_suspend(struct device *dev)
7051 {
7052 	struct pci_dev *pdev = to_pci_dev(dev);
7053 	struct net_device *netdev = pci_get_drvdata(pdev);
7054 	struct e1000_adapter *adapter = netdev_priv(netdev);
7055 
7056 	if (netdev->flags & IFF_UP) {
7057 		int count = E1000_CHECK_RESET_COUNT;
7058 
7059 		while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
7060 			usleep_range(10000, 11000);
7061 
7062 		WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
7063 
7064 		/* Down the device without resetting the hardware */
7065 		e1000e_down(adapter, false);
7066 	}
7067 
7068 	if (__e1000_shutdown(pdev, true)) {
7069 		e1000e_pm_runtime_resume(dev);
7070 		return -EBUSY;
7071 	}
7072 
7073 	return 0;
7074 }
7075 
e1000_shutdown(struct pci_dev * pdev)7076 static void e1000_shutdown(struct pci_dev *pdev)
7077 {
7078 	e1000e_flush_lpic(pdev);
7079 
7080 	e1000e_pm_freeze(&pdev->dev);
7081 
7082 	__e1000_shutdown(pdev, false);
7083 }
7084 
7085 #ifdef CONFIG_NET_POLL_CONTROLLER
7086 
e1000_intr_msix(int __always_unused irq,void * data)7087 static irqreturn_t e1000_intr_msix(int __always_unused irq, void *data)
7088 {
7089 	struct net_device *netdev = data;
7090 	struct e1000_adapter *adapter = netdev_priv(netdev);
7091 
7092 	if (adapter->msix_entries) {
7093 		int vector, msix_irq;
7094 
7095 		vector = 0;
7096 		msix_irq = adapter->msix_entries[vector].vector;
7097 		if (disable_hardirq(msix_irq))
7098 			e1000_intr_msix_rx(msix_irq, netdev);
7099 		enable_irq(msix_irq);
7100 
7101 		vector++;
7102 		msix_irq = adapter->msix_entries[vector].vector;
7103 		if (disable_hardirq(msix_irq))
7104 			e1000_intr_msix_tx(msix_irq, netdev);
7105 		enable_irq(msix_irq);
7106 
7107 		vector++;
7108 		msix_irq = adapter->msix_entries[vector].vector;
7109 		if (disable_hardirq(msix_irq))
7110 			e1000_msix_other(msix_irq, netdev);
7111 		enable_irq(msix_irq);
7112 	}
7113 
7114 	return IRQ_HANDLED;
7115 }
7116 
7117 /**
7118  * e1000_netpoll
7119  * @netdev: network interface device structure
7120  *
7121  * Polling 'interrupt' - used by things like netconsole to send skbs
7122  * without having to re-enable interrupts. It's not called while
7123  * the interrupt routine is executing.
7124  */
e1000_netpoll(struct net_device * netdev)7125 static void e1000_netpoll(struct net_device *netdev)
7126 {
7127 	struct e1000_adapter *adapter = netdev_priv(netdev);
7128 
7129 	switch (adapter->int_mode) {
7130 	case E1000E_INT_MODE_MSIX:
7131 		e1000_intr_msix(adapter->pdev->irq, netdev);
7132 		break;
7133 	case E1000E_INT_MODE_MSI:
7134 		if (disable_hardirq(adapter->pdev->irq))
7135 			e1000_intr_msi(adapter->pdev->irq, netdev);
7136 		enable_irq(adapter->pdev->irq);
7137 		break;
7138 	default:		/* E1000E_INT_MODE_LEGACY */
7139 		if (disable_hardirq(adapter->pdev->irq))
7140 			e1000_intr(adapter->pdev->irq, netdev);
7141 		enable_irq(adapter->pdev->irq);
7142 		break;
7143 	}
7144 }
7145 #endif
7146 
7147 /**
7148  * e1000_io_error_detected - called when PCI error is detected
7149  * @pdev: Pointer to PCI device
7150  * @state: The current pci connection state
7151  *
7152  * This function is called after a PCI bus error affecting
7153  * this device has been detected.
7154  */
e1000_io_error_detected(struct pci_dev * pdev,pci_channel_state_t state)7155 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
7156 						pci_channel_state_t state)
7157 {
7158 	e1000e_pm_freeze(&pdev->dev);
7159 
7160 	if (state == pci_channel_io_perm_failure)
7161 		return PCI_ERS_RESULT_DISCONNECT;
7162 
7163 	pci_disable_device(pdev);
7164 
7165 	/* Request a slot reset. */
7166 	return PCI_ERS_RESULT_NEED_RESET;
7167 }
7168 
7169 /**
7170  * e1000_io_slot_reset - called after the pci bus has been reset.
7171  * @pdev: Pointer to PCI device
7172  *
7173  * Restart the card from scratch, as if from a cold-boot. Implementation
7174  * resembles the first-half of the e1000e_pm_resume routine.
7175  */
e1000_io_slot_reset(struct pci_dev * pdev)7176 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
7177 {
7178 	struct net_device *netdev = pci_get_drvdata(pdev);
7179 	struct e1000_adapter *adapter = netdev_priv(netdev);
7180 	struct e1000_hw *hw = &adapter->hw;
7181 	u16 aspm_disable_flag = 0;
7182 	int err;
7183 	pci_ers_result_t result;
7184 
7185 	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
7186 		aspm_disable_flag = PCIE_LINK_STATE_L0S;
7187 	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
7188 		aspm_disable_flag |= PCIE_LINK_STATE_L1;
7189 	if (aspm_disable_flag)
7190 		e1000e_disable_aspm_locked(pdev, aspm_disable_flag);
7191 
7192 	err = pci_enable_device_mem(pdev);
7193 	if (err) {
7194 		dev_err(&pdev->dev,
7195 			"Cannot re-enable PCI device after reset.\n");
7196 		result = PCI_ERS_RESULT_DISCONNECT;
7197 	} else {
7198 		pdev->state_saved = true;
7199 		pci_restore_state(pdev);
7200 		pci_set_master(pdev);
7201 
7202 		pci_enable_wake(pdev, PCI_D3hot, 0);
7203 		pci_enable_wake(pdev, PCI_D3cold, 0);
7204 
7205 		e1000e_reset(adapter);
7206 		ew32(WUS, ~0);
7207 		result = PCI_ERS_RESULT_RECOVERED;
7208 	}
7209 
7210 	return result;
7211 }
7212 
7213 /**
7214  * e1000_io_resume - called when traffic can start flowing again.
7215  * @pdev: Pointer to PCI device
7216  *
7217  * This callback is called when the error recovery driver tells us that
7218  * its OK to resume normal operation. Implementation resembles the
7219  * second-half of the e1000e_pm_resume routine.
7220  */
e1000_io_resume(struct pci_dev * pdev)7221 static void e1000_io_resume(struct pci_dev *pdev)
7222 {
7223 	struct net_device *netdev = pci_get_drvdata(pdev);
7224 	struct e1000_adapter *adapter = netdev_priv(netdev);
7225 
7226 	e1000_init_manageability_pt(adapter);
7227 
7228 	e1000e_pm_thaw(&pdev->dev);
7229 
7230 	/* If the controller has AMT, do not set DRV_LOAD until the interface
7231 	 * is up.  For all other cases, let the f/w know that the h/w is now
7232 	 * under the control of the driver.
7233 	 */
7234 	if (!(adapter->flags & FLAG_HAS_AMT))
7235 		e1000e_get_hw_control(adapter);
7236 }
7237 
e1000_print_device_info(struct e1000_adapter * adapter)7238 static void e1000_print_device_info(struct e1000_adapter *adapter)
7239 {
7240 	struct e1000_hw *hw = &adapter->hw;
7241 	struct net_device *netdev = adapter->netdev;
7242 	u32 ret_val;
7243 	u8 pba_str[E1000_PBANUM_LENGTH];
7244 
7245 	/* print bus type/speed/width info */
7246 	e_info("(PCI Express:2.5GT/s:%s) %pM\n",
7247 	       /* bus width */
7248 	       ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
7249 		"Width x1"),
7250 	       /* MAC address */
7251 	       netdev->dev_addr);
7252 	e_info("Intel(R) PRO/%s Network Connection\n",
7253 	       (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
7254 	ret_val = e1000_read_pba_string_generic(hw, pba_str,
7255 						E1000_PBANUM_LENGTH);
7256 	if (ret_val)
7257 		strscpy((char *)pba_str, "Unknown", sizeof(pba_str));
7258 	e_info("MAC: %d, PHY: %d, PBA No: %s\n",
7259 	       hw->mac.type, hw->phy.type, pba_str);
7260 }
7261 
e1000_eeprom_checks(struct e1000_adapter * adapter)7262 static void e1000_eeprom_checks(struct e1000_adapter *adapter)
7263 {
7264 	struct e1000_hw *hw = &adapter->hw;
7265 	int ret_val;
7266 	u16 buf = 0;
7267 
7268 	if (hw->mac.type != e1000_82573)
7269 		return;
7270 
7271 	ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
7272 	le16_to_cpus(&buf);
7273 	if (!ret_val && (!(buf & BIT(0)))) {
7274 		/* Deep Smart Power Down (DSPD) */
7275 		dev_warn(&adapter->pdev->dev,
7276 			 "Warning: detected DSPD enabled in EEPROM\n");
7277 	}
7278 }
7279 
e1000_fix_features(struct net_device * netdev,netdev_features_t features)7280 static netdev_features_t e1000_fix_features(struct net_device *netdev,
7281 					    netdev_features_t features)
7282 {
7283 	struct e1000_adapter *adapter = netdev_priv(netdev);
7284 	struct e1000_hw *hw = &adapter->hw;
7285 
7286 	/* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
7287 	if ((hw->mac.type >= e1000_pch2lan) && (netdev->mtu > ETH_DATA_LEN))
7288 		features &= ~NETIF_F_RXFCS;
7289 
7290 	/* Since there is no support for separate Rx/Tx vlan accel
7291 	 * enable/disable make sure Tx flag is always in same state as Rx.
7292 	 */
7293 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
7294 		features |= NETIF_F_HW_VLAN_CTAG_TX;
7295 	else
7296 		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
7297 
7298 	return features;
7299 }
7300 
e1000_set_features(struct net_device * netdev,netdev_features_t features)7301 static int e1000_set_features(struct net_device *netdev,
7302 			      netdev_features_t features)
7303 {
7304 	struct e1000_adapter *adapter = netdev_priv(netdev);
7305 	netdev_features_t changed = features ^ netdev->features;
7306 
7307 	if (changed & (NETIF_F_TSO | NETIF_F_TSO6))
7308 		adapter->flags |= FLAG_TSO_FORCE;
7309 
7310 	if (!(changed & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX |
7311 			 NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_RXFCS |
7312 			 NETIF_F_RXALL)))
7313 		return 0;
7314 
7315 	if (changed & NETIF_F_RXFCS) {
7316 		if (features & NETIF_F_RXFCS) {
7317 			adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
7318 		} else {
7319 			/* We need to take it back to defaults, which might mean
7320 			 * stripping is still disabled at the adapter level.
7321 			 */
7322 			if (adapter->flags2 & FLAG2_DFLT_CRC_STRIPPING)
7323 				adapter->flags2 |= FLAG2_CRC_STRIPPING;
7324 			else
7325 				adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
7326 		}
7327 	}
7328 
7329 	netdev->features = features;
7330 
7331 	if (netif_running(netdev))
7332 		e1000e_reinit_locked(adapter);
7333 	else
7334 		e1000e_reset(adapter);
7335 
7336 	return 1;
7337 }
7338 
7339 static const struct net_device_ops e1000e_netdev_ops = {
7340 	.ndo_open		= e1000e_open,
7341 	.ndo_stop		= e1000e_close,
7342 	.ndo_start_xmit		= e1000_xmit_frame,
7343 	.ndo_get_stats64	= e1000e_get_stats64,
7344 	.ndo_set_rx_mode	= e1000e_set_rx_mode,
7345 	.ndo_set_mac_address	= e1000_set_mac,
7346 	.ndo_change_mtu		= e1000_change_mtu,
7347 	.ndo_eth_ioctl		= e1000_ioctl,
7348 	.ndo_tx_timeout		= e1000_tx_timeout,
7349 	.ndo_validate_addr	= eth_validate_addr,
7350 
7351 	.ndo_vlan_rx_add_vid	= e1000_vlan_rx_add_vid,
7352 	.ndo_vlan_rx_kill_vid	= e1000_vlan_rx_kill_vid,
7353 #ifdef CONFIG_NET_POLL_CONTROLLER
7354 	.ndo_poll_controller	= e1000_netpoll,
7355 #endif
7356 	.ndo_set_features	= e1000_set_features,
7357 	.ndo_fix_features	= e1000_fix_features,
7358 	.ndo_features_check	= passthru_features_check,
7359 	.ndo_hwtstamp_get	= e1000e_hwtstamp_get,
7360 	.ndo_hwtstamp_set	= e1000e_hwtstamp_set,
7361 };
7362 
7363 /**
7364  * e1000_probe - Device Initialization Routine
7365  * @pdev: PCI device information struct
7366  * @ent: entry in e1000_pci_tbl
7367  *
7368  * Returns 0 on success, negative on failure
7369  *
7370  * e1000_probe initializes an adapter identified by a pci_dev structure.
7371  * The OS initialization, configuring of the adapter private structure,
7372  * and a hardware reset occur.
7373  **/
e1000_probe(struct pci_dev * pdev,const struct pci_device_id * ent)7374 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
7375 {
7376 	struct net_device *netdev;
7377 	struct e1000_adapter *adapter;
7378 	struct e1000_hw *hw;
7379 	const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
7380 	resource_size_t mmio_start, mmio_len;
7381 	resource_size_t flash_start, flash_len;
7382 	static int cards_found;
7383 	u16 aspm_disable_flag = 0;
7384 	u16 eeprom_data = 0;
7385 	u16 eeprom_apme_mask = E1000_EEPROM_APME;
7386 	int bars, i, err;
7387 	s32 ret_val = 0;
7388 
7389 	if (ei->flags2 & FLAG2_DISABLE_ASPM_L0S)
7390 		aspm_disable_flag = PCIE_LINK_STATE_L0S;
7391 	if (ei->flags2 & FLAG2_DISABLE_ASPM_L1)
7392 		aspm_disable_flag |= PCIE_LINK_STATE_L1;
7393 	if (aspm_disable_flag)
7394 		e1000e_disable_aspm(pdev, aspm_disable_flag);
7395 
7396 	err = pci_enable_device_mem(pdev);
7397 	if (err)
7398 		return err;
7399 
7400 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
7401 	if (err) {
7402 		dev_err(&pdev->dev,
7403 			"No usable DMA configuration, aborting\n");
7404 		goto err_dma;
7405 	}
7406 
7407 	bars = pci_select_bars(pdev, IORESOURCE_MEM);
7408 	err = pci_request_selected_regions_exclusive(pdev, bars,
7409 						     e1000e_driver_name);
7410 	if (err)
7411 		goto err_pci_reg;
7412 
7413 	pci_set_master(pdev);
7414 	/* PCI config space info */
7415 	err = pci_save_state(pdev);
7416 	if (err)
7417 		goto err_alloc_etherdev;
7418 
7419 	err = -ENOMEM;
7420 	netdev = alloc_etherdev(sizeof(struct e1000_adapter));
7421 	if (!netdev)
7422 		goto err_alloc_etherdev;
7423 
7424 	SET_NETDEV_DEV(netdev, &pdev->dev);
7425 
7426 	netdev->irq = pdev->irq;
7427 
7428 	pci_set_drvdata(pdev, netdev);
7429 	adapter = netdev_priv(netdev);
7430 	hw = &adapter->hw;
7431 	adapter->netdev = netdev;
7432 	adapter->pdev = pdev;
7433 	adapter->ei = ei;
7434 	adapter->pba = ei->pba;
7435 	adapter->flags = ei->flags;
7436 	adapter->flags2 = ei->flags2;
7437 	adapter->hw.adapter = adapter;
7438 	adapter->hw.mac.type = ei->mac;
7439 	adapter->max_hw_frame_size = ei->max_hw_frame_size;
7440 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
7441 
7442 	mmio_start = pci_resource_start(pdev, 0);
7443 	mmio_len = pci_resource_len(pdev, 0);
7444 
7445 	err = -EIO;
7446 	adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
7447 	if (!adapter->hw.hw_addr)
7448 		goto err_ioremap;
7449 
7450 	if ((adapter->flags & FLAG_HAS_FLASH) &&
7451 	    (pci_resource_flags(pdev, 1) & IORESOURCE_MEM) &&
7452 	    (hw->mac.type < e1000_pch_spt)) {
7453 		flash_start = pci_resource_start(pdev, 1);
7454 		flash_len = pci_resource_len(pdev, 1);
7455 		adapter->hw.flash_address = ioremap(flash_start, flash_len);
7456 		if (!adapter->hw.flash_address)
7457 			goto err_flashmap;
7458 	}
7459 
7460 	/* Set default EEE advertisement */
7461 	if (adapter->flags2 & FLAG2_HAS_EEE)
7462 		adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
7463 
7464 	/* construct the net_device struct */
7465 	netdev->netdev_ops = &e1000e_netdev_ops;
7466 	e1000e_set_ethtool_ops(netdev);
7467 	netdev->watchdog_timeo = 5 * HZ;
7468 	netif_napi_add(netdev, &adapter->napi, e1000e_poll);
7469 	strscpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
7470 
7471 	netdev->mem_start = mmio_start;
7472 	netdev->mem_end = mmio_start + mmio_len;
7473 
7474 	adapter->bd_number = cards_found++;
7475 
7476 	e1000e_check_options(adapter);
7477 
7478 	/* setup adapter struct */
7479 	err = e1000_sw_init(adapter);
7480 	if (err)
7481 		goto err_sw_init;
7482 
7483 	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
7484 	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
7485 	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
7486 
7487 	err = ei->get_variants(adapter);
7488 	if (err)
7489 		goto err_hw_init;
7490 
7491 	if ((adapter->flags & FLAG_IS_ICH) &&
7492 	    (adapter->flags & FLAG_READ_ONLY_NVM) &&
7493 	    (hw->mac.type < e1000_pch_spt))
7494 		e1000e_write_protect_nvm_ich8lan(&adapter->hw);
7495 
7496 	hw->mac.ops.get_bus_info(&adapter->hw);
7497 
7498 	adapter->hw.phy.autoneg_wait_to_complete = 0;
7499 
7500 	/* Copper options */
7501 	if (adapter->hw.phy.media_type == e1000_media_type_copper) {
7502 		adapter->hw.phy.mdix = AUTO_ALL_MODES;
7503 		adapter->hw.phy.disable_polarity_correction = 0;
7504 		adapter->hw.phy.ms_type = e1000_ms_hw_default;
7505 	}
7506 
7507 	if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
7508 		dev_info(&pdev->dev,
7509 			 "PHY reset is blocked due to SOL/IDER session.\n");
7510 
7511 	/* Set initial default active device features */
7512 	netdev->features = (NETIF_F_SG |
7513 			    NETIF_F_HW_VLAN_CTAG_RX |
7514 			    NETIF_F_HW_VLAN_CTAG_TX |
7515 			    NETIF_F_TSO |
7516 			    NETIF_F_TSO6 |
7517 			    NETIF_F_RXHASH |
7518 			    NETIF_F_RXCSUM |
7519 			    NETIF_F_HW_CSUM);
7520 
7521 	/* disable TSO for pcie and 10/100 speeds to avoid
7522 	 * some hardware issues and for i219 to fix transfer
7523 	 * speed being capped at 60%
7524 	 */
7525 	if (!(adapter->flags & FLAG_TSO_FORCE)) {
7526 		switch (adapter->link_speed) {
7527 		case SPEED_10:
7528 		case SPEED_100:
7529 			e_info("10/100 speed: disabling TSO\n");
7530 			netdev->features &= ~NETIF_F_TSO;
7531 			netdev->features &= ~NETIF_F_TSO6;
7532 			break;
7533 		case SPEED_1000:
7534 			netdev->features |= NETIF_F_TSO;
7535 			netdev->features |= NETIF_F_TSO6;
7536 			break;
7537 		default:
7538 			/* oops */
7539 			break;
7540 		}
7541 		if (hw->mac.type == e1000_pch_spt) {
7542 			netdev->features &= ~NETIF_F_TSO;
7543 			netdev->features &= ~NETIF_F_TSO6;
7544 		}
7545 	}
7546 
7547 	/* Set user-changeable features (subset of all device features) */
7548 	netdev->hw_features = netdev->features;
7549 	netdev->hw_features |= NETIF_F_RXFCS;
7550 	netdev->priv_flags |= IFF_SUPP_NOFCS;
7551 	netdev->hw_features |= NETIF_F_RXALL;
7552 
7553 	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
7554 		netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
7555 
7556 	netdev->vlan_features |= (NETIF_F_SG |
7557 				  NETIF_F_TSO |
7558 				  NETIF_F_TSO6 |
7559 				  NETIF_F_HW_CSUM);
7560 
7561 	netdev->priv_flags |= IFF_UNICAST_FLT;
7562 
7563 	netdev->features |= NETIF_F_HIGHDMA;
7564 	netdev->vlan_features |= NETIF_F_HIGHDMA;
7565 
7566 	/* MTU range: 68 - max_hw_frame_size */
7567 	netdev->min_mtu = ETH_MIN_MTU;
7568 	netdev->max_mtu = adapter->max_hw_frame_size -
7569 			  (VLAN_ETH_HLEN + ETH_FCS_LEN);
7570 
7571 	if (e1000e_enable_mng_pass_thru(&adapter->hw))
7572 		adapter->flags |= FLAG_MNG_PT_ENABLED;
7573 
7574 	/* before reading the NVM, reset the controller to
7575 	 * put the device in a known good starting state
7576 	 */
7577 	adapter->hw.mac.ops.reset_hw(&adapter->hw);
7578 
7579 	/* systems with ASPM and others may see the checksum fail on the first
7580 	 * attempt. Let's give it a few tries
7581 	 */
7582 	for (i = 0;; i++) {
7583 		if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
7584 			break;
7585 		if (i == 2) {
7586 			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
7587 			err = -EIO;
7588 			goto err_eeprom;
7589 		}
7590 	}
7591 
7592 	e1000_eeprom_checks(adapter);
7593 
7594 	/* copy the MAC address */
7595 	if (e1000e_read_mac_addr(&adapter->hw))
7596 		dev_err(&pdev->dev,
7597 			"NVM Read Error while reading MAC address\n");
7598 
7599 	eth_hw_addr_set(netdev, adapter->hw.mac.addr);
7600 
7601 	if (!is_valid_ether_addr(netdev->dev_addr)) {
7602 		dev_err(&pdev->dev, "Invalid MAC Address: %pM\n",
7603 			netdev->dev_addr);
7604 		err = -EIO;
7605 		goto err_eeprom;
7606 	}
7607 
7608 	timer_setup(&adapter->watchdog_timer, e1000_watchdog, 0);
7609 	timer_setup(&adapter->phy_info_timer, e1000_update_phy_info, 0);
7610 
7611 	INIT_WORK(&adapter->reset_task, e1000_reset_task);
7612 	INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
7613 	INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
7614 	INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
7615 	INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
7616 
7617 	/* Initialize link parameters. User can change them with ethtool */
7618 	adapter->hw.mac.autoneg = 1;
7619 	adapter->fc_autoneg = true;
7620 	adapter->hw.fc.requested_mode = e1000_fc_default;
7621 	adapter->hw.fc.current_mode = e1000_fc_default;
7622 	adapter->hw.phy.autoneg_advertised = 0x2f;
7623 
7624 	/* Initial Wake on LAN setting - If APM wake is enabled in
7625 	 * the EEPROM, enable the ACPI Magic Packet filter
7626 	 */
7627 	if (adapter->flags & FLAG_APME_IN_WUC) {
7628 		/* APME bit in EEPROM is mapped to WUC.APME */
7629 		eeprom_data = er32(WUC);
7630 		eeprom_apme_mask = E1000_WUC_APME;
7631 		if ((hw->mac.type > e1000_ich10lan) &&
7632 		    (eeprom_data & E1000_WUC_PHY_WAKE))
7633 			adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
7634 	} else if (adapter->flags & FLAG_APME_IN_CTRL3) {
7635 		if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
7636 		    (adapter->hw.bus.func == 1))
7637 			ret_val = e1000_read_nvm(&adapter->hw,
7638 					      NVM_INIT_CONTROL3_PORT_B,
7639 					      1, &eeprom_data);
7640 		else
7641 			ret_val = e1000_read_nvm(&adapter->hw,
7642 					      NVM_INIT_CONTROL3_PORT_A,
7643 					      1, &eeprom_data);
7644 	}
7645 
7646 	/* fetch WoL from EEPROM */
7647 	if (ret_val)
7648 		e_dbg("NVM read error getting WoL initial values: %d\n", ret_val);
7649 	else if (eeprom_data & eeprom_apme_mask)
7650 		adapter->eeprom_wol |= E1000_WUFC_MAG;
7651 
7652 	/* now that we have the eeprom settings, apply the special cases
7653 	 * where the eeprom may be wrong or the board simply won't support
7654 	 * wake on lan on a particular port
7655 	 */
7656 	if (!(adapter->flags & FLAG_HAS_WOL))
7657 		adapter->eeprom_wol = 0;
7658 
7659 	/* initialize the wol settings based on the eeprom settings */
7660 	adapter->wol = adapter->eeprom_wol;
7661 
7662 	/* make sure adapter isn't asleep if manageability is enabled */
7663 	if (adapter->wol || (adapter->flags & FLAG_MNG_PT_ENABLED) ||
7664 	    (hw->mac.ops.check_mng_mode(hw)))
7665 		device_wakeup_enable(&pdev->dev);
7666 
7667 	/* save off EEPROM version number */
7668 	ret_val = e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);
7669 
7670 	if (ret_val) {
7671 		e_dbg("NVM read error getting EEPROM version: %d\n", ret_val);
7672 		adapter->eeprom_vers = 0;
7673 	}
7674 
7675 	/* init PTP hardware clock */
7676 	e1000e_ptp_init(adapter);
7677 
7678 	/* reset the hardware with the new settings */
7679 	e1000e_reset(adapter);
7680 
7681 	/* If the controller has AMT, do not set DRV_LOAD until the interface
7682 	 * is up.  For all other cases, let the f/w know that the h/w is now
7683 	 * under the control of the driver.
7684 	 */
7685 	if (!(adapter->flags & FLAG_HAS_AMT))
7686 		e1000e_get_hw_control(adapter);
7687 
7688 	if (hw->mac.type >= e1000_pch_cnp)
7689 		adapter->flags2 |= FLAG2_ENABLE_S0IX_FLOWS;
7690 
7691 	strscpy(netdev->name, "eth%d", sizeof(netdev->name));
7692 	err = register_netdev(netdev);
7693 	if (err)
7694 		goto err_register;
7695 
7696 	/* carrier off reporting is important to ethtool even BEFORE open */
7697 	netif_carrier_off(netdev);
7698 
7699 	e1000_print_device_info(adapter);
7700 
7701 	dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_SMART_PREPARE);
7702 
7703 	if (pci_dev_run_wake(pdev))
7704 		pm_runtime_put_noidle(&pdev->dev);
7705 
7706 	return 0;
7707 
7708 err_register:
7709 	if (!(adapter->flags & FLAG_HAS_AMT))
7710 		e1000e_release_hw_control(adapter);
7711 err_eeprom:
7712 	if (hw->phy.ops.check_reset_block && !hw->phy.ops.check_reset_block(hw))
7713 		e1000_phy_hw_reset(&adapter->hw);
7714 err_hw_init:
7715 	kfree(adapter->tx_ring);
7716 	kfree(adapter->rx_ring);
7717 err_sw_init:
7718 	if ((adapter->hw.flash_address) && (hw->mac.type < e1000_pch_spt))
7719 		iounmap(adapter->hw.flash_address);
7720 	e1000e_reset_interrupt_capability(adapter);
7721 err_flashmap:
7722 	iounmap(adapter->hw.hw_addr);
7723 err_ioremap:
7724 	free_netdev(netdev);
7725 err_alloc_etherdev:
7726 	pci_release_mem_regions(pdev);
7727 err_pci_reg:
7728 err_dma:
7729 	pci_disable_device(pdev);
7730 	return err;
7731 }
7732 
7733 /**
7734  * e1000_remove - Device Removal Routine
7735  * @pdev: PCI device information struct
7736  *
7737  * e1000_remove is called by the PCI subsystem to alert the driver
7738  * that it should release a PCI device.  This could be caused by a
7739  * Hot-Plug event, or because the driver is going to be removed from
7740  * memory.
7741  **/
e1000_remove(struct pci_dev * pdev)7742 static void e1000_remove(struct pci_dev *pdev)
7743 {
7744 	struct net_device *netdev = pci_get_drvdata(pdev);
7745 	struct e1000_adapter *adapter = netdev_priv(netdev);
7746 
7747 	e1000e_ptp_remove(adapter);
7748 
7749 	/* The timers may be rescheduled, so explicitly disable them
7750 	 * from being rescheduled.
7751 	 */
7752 	set_bit(__E1000_DOWN, &adapter->state);
7753 	timer_delete_sync(&adapter->watchdog_timer);
7754 	timer_delete_sync(&adapter->phy_info_timer);
7755 
7756 	cancel_work_sync(&adapter->reset_task);
7757 	cancel_work_sync(&adapter->watchdog_task);
7758 	cancel_work_sync(&adapter->downshift_task);
7759 	cancel_work_sync(&adapter->update_phy_task);
7760 	cancel_work_sync(&adapter->print_hang_task);
7761 
7762 	if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
7763 		cancel_work_sync(&adapter->tx_hwtstamp_work);
7764 		if (adapter->tx_hwtstamp_skb) {
7765 			dev_consume_skb_any(adapter->tx_hwtstamp_skb);
7766 			adapter->tx_hwtstamp_skb = NULL;
7767 		}
7768 	}
7769 
7770 	unregister_netdev(netdev);
7771 
7772 	if (pci_dev_run_wake(pdev))
7773 		pm_runtime_get_noresume(&pdev->dev);
7774 
7775 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
7776 	 * would have already happened in close and is redundant.
7777 	 */
7778 	e1000e_release_hw_control(adapter);
7779 
7780 	e1000e_reset_interrupt_capability(adapter);
7781 	kfree(adapter->tx_ring);
7782 	kfree(adapter->rx_ring);
7783 
7784 	iounmap(adapter->hw.hw_addr);
7785 	if ((adapter->hw.flash_address) &&
7786 	    (adapter->hw.mac.type < e1000_pch_spt))
7787 		iounmap(adapter->hw.flash_address);
7788 	pci_release_mem_regions(pdev);
7789 
7790 	free_netdev(netdev);
7791 
7792 	pci_disable_device(pdev);
7793 }
7794 
7795 /* PCI Error Recovery (ERS) */
7796 static const struct pci_error_handlers e1000_err_handler = {
7797 	.error_detected = e1000_io_error_detected,
7798 	.slot_reset = e1000_io_slot_reset,
7799 	.resume = e1000_io_resume,
7800 };
7801 
7802 static const struct pci_device_id e1000_pci_tbl[] = {
7803 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
7804 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
7805 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
7806 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP),
7807 	  board_82571 },
7808 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
7809 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
7810 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
7811 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
7812 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
7813 
7814 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
7815 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
7816 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
7817 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
7818 
7819 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
7820 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
7821 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
7822 
7823 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
7824 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
7825 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
7826 
7827 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
7828 	  board_80003es2lan },
7829 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
7830 	  board_80003es2lan },
7831 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
7832 	  board_80003es2lan },
7833 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
7834 	  board_80003es2lan },
7835 
7836 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
7837 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
7838 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
7839 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
7840 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
7841 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
7842 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
7843 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
7844 
7845 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
7846 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
7847 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
7848 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
7849 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
7850 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
7851 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
7852 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
7853 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
7854 
7855 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
7856 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
7857 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
7858 
7859 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
7860 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
7861 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan },
7862 
7863 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
7864 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
7865 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
7866 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },
7867 
7868 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan },
7869 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan },
7870 
7871 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_LM), board_pch_lpt },
7872 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_V), board_pch_lpt },
7873 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_LM), board_pch_lpt },
7874 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_V), board_pch_lpt },
7875 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM2), board_pch_lpt },
7876 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V2), board_pch_lpt },
7877 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM3), board_pch_lpt },
7878 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V3), board_pch_lpt },
7879 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM), board_pch_spt },
7880 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V), board_pch_spt },
7881 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM2), board_pch_spt },
7882 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V2), board_pch_spt },
7883 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LBG_I219_LM3), board_pch_spt },
7884 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM4), board_pch_spt },
7885 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V4), board_pch_spt },
7886 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM5), board_pch_spt },
7887 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V5), board_pch_spt },
7888 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_LM6), board_pch_cnp },
7889 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_V6), board_pch_cnp },
7890 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_LM7), board_pch_cnp },
7891 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_V7), board_pch_cnp },
7892 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_LM8), board_pch_cnp },
7893 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_V8), board_pch_cnp },
7894 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_LM9), board_pch_cnp },
7895 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_V9), board_pch_cnp },
7896 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_LM10), board_pch_cnp },
7897 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_V10), board_pch_cnp },
7898 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_LM11), board_pch_cnp },
7899 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_V11), board_pch_cnp },
7900 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_LM12), board_pch_spt },
7901 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_V12), board_pch_spt },
7902 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_LM13), board_pch_tgp },
7903 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_V13), board_pch_tgp },
7904 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_LM14), board_pch_tgp },
7905 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_V14), board_pch_tgp },
7906 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_LM15), board_pch_tgp },
7907 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_V15), board_pch_tgp },
7908 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_RPL_I219_LM23), board_pch_adp },
7909 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_RPL_I219_V23), board_pch_adp },
7910 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_LM16), board_pch_adp },
7911 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_V16), board_pch_adp },
7912 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_LM17), board_pch_adp },
7913 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_V17), board_pch_adp },
7914 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_RPL_I219_LM22), board_pch_adp },
7915 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_RPL_I219_V22), board_pch_adp },
7916 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_LM19), board_pch_adp },
7917 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_V19), board_pch_adp },
7918 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_MTP_I219_LM18), board_pch_mtp },
7919 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_MTP_I219_V18), board_pch_mtp },
7920 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LNP_I219_LM20), board_pch_mtp },
7921 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LNP_I219_V20), board_pch_mtp },
7922 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LNP_I219_LM21), board_pch_mtp },
7923 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LNP_I219_V21), board_pch_mtp },
7924 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ARL_I219_LM24), board_pch_mtp },
7925 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ARL_I219_V24), board_pch_mtp },
7926 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_PTP_I219_LM25), board_pch_mtp },
7927 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_PTP_I219_V25), board_pch_mtp },
7928 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_PTP_I219_LM26), board_pch_mtp },
7929 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_PTP_I219_V26), board_pch_mtp },
7930 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_PTP_I219_LM27), board_pch_mtp },
7931 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_PTP_I219_V27), board_pch_mtp },
7932 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_NVL_I219_LM29), board_pch_mtp },
7933 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_NVL_I219_V29), board_pch_mtp },
7934 
7935 	{ 0, 0, 0, 0, 0, 0, 0 }	/* terminate list */
7936 };
7937 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
7938 
7939 static const struct dev_pm_ops e1000e_pm_ops = {
7940 	.prepare	= e1000e_pm_prepare,
7941 	.suspend	= e1000e_pm_suspend,
7942 	.resume		= e1000e_pm_resume,
7943 	.freeze		= e1000e_pm_freeze,
7944 	.thaw		= e1000e_pm_thaw,
7945 	.poweroff	= e1000e_pm_suspend,
7946 	.restore	= e1000e_pm_resume,
7947 	RUNTIME_PM_OPS(e1000e_pm_runtime_suspend, e1000e_pm_runtime_resume,
7948 		       e1000e_pm_runtime_idle)
7949 };
7950 
7951 /* PCI Device API Driver */
7952 static struct pci_driver e1000_driver = {
7953 	.name     = e1000e_driver_name,
7954 	.id_table = e1000_pci_tbl,
7955 	.probe    = e1000_probe,
7956 	.remove   = e1000_remove,
7957 	.driver.pm = pm_ptr(&e1000e_pm_ops),
7958 	.shutdown = e1000_shutdown,
7959 	.err_handler = &e1000_err_handler
7960 };
7961 
7962 /**
7963  * e1000_init_module - Driver Registration Routine
7964  *
7965  * e1000_init_module is the first routine called when the driver is
7966  * loaded. All it does is register with the PCI subsystem.
7967  **/
e1000_init_module(void)7968 static int __init e1000_init_module(void)
7969 {
7970 	pr_info("Intel(R) PRO/1000 Network Driver\n");
7971 	pr_info("Copyright(c) 1999 - 2015 Intel Corporation.\n");
7972 
7973 	return pci_register_driver(&e1000_driver);
7974 }
7975 module_init(e1000_init_module);
7976 
7977 /**
7978  * e1000_exit_module - Driver Exit Cleanup Routine
7979  *
7980  * e1000_exit_module is called just before the driver is removed
7981  * from memory.
7982  **/
e1000_exit_module(void)7983 static void __exit e1000_exit_module(void)
7984 {
7985 	pci_unregister_driver(&e1000_driver);
7986 }
7987 module_exit(e1000_exit_module);
7988 
7989 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
7990 MODULE_LICENSE("GPL v2");
7991 
7992 /* netdev.c */
7993