1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 1997, 1998, 2000 Justin T. Gibbs.
5 * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions, and the following disclaimer,
13 * without modification, immediately at the beginning of the file.
14 * 2. The name of the author may not be used to endorse or promote products
15 * derived from this software without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
21 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/kernel.h>
33 #include <sys/conf.h>
34 #include <sys/types.h>
35 #include <sys/bio.h>
36 #include <sys/bus.h>
37 #include <sys/devicestat.h>
38 #include <sys/errno.h>
39 #include <sys/fcntl.h>
40 #include <sys/malloc.h>
41 #include <sys/proc.h>
42 #include <sys/poll.h>
43 #include <sys/selinfo.h>
44 #include <sys/sdt.h>
45 #include <sys/sysent.h>
46 #include <sys/taskqueue.h>
47 #include <vm/uma.h>
48 #include <vm/vm.h>
49 #include <vm/vm_extern.h>
50
51 #include <machine/bus.h>
52
53 #include <cam/cam.h>
54 #include <cam/cam_ccb.h>
55 #include <cam/cam_periph.h>
56 #include <cam/cam_queue.h>
57 #include <cam/cam_xpt.h>
58 #include <cam/cam_xpt_periph.h>
59 #include <cam/cam_debug.h>
60 #include <cam/cam_compat.h>
61 #include <cam/cam_xpt_periph.h>
62
63 #include <cam/scsi/scsi_pass.h>
64
65 #define PERIPH_NAME "pass"
66
67 typedef enum {
68 PASS_FLAG_OPEN = 0x01,
69 PASS_FLAG_LOCKED = 0x02,
70 PASS_FLAG_INVALID = 0x04,
71 PASS_FLAG_INITIAL_PHYSPATH = 0x08,
72 PASS_FLAG_ZONE_INPROG = 0x10,
73 PASS_FLAG_ZONE_VALID = 0x20,
74 PASS_FLAG_UNMAPPED_CAPABLE = 0x40,
75 PASS_FLAG_ABANDONED_REF_SET = 0x80
76 } pass_flags;
77
78 typedef enum {
79 PASS_STATE_NORMAL
80 } pass_state;
81
82 typedef enum {
83 PASS_CCB_BUFFER_IO,
84 PASS_CCB_QUEUED_IO
85 } pass_ccb_types;
86
87 #define ccb_type ppriv_field0
88 #define ccb_ioreq ppriv_ptr1
89
90 /*
91 * The maximum number of memory segments we preallocate.
92 */
93 #define PASS_MAX_SEGS 16
94
95 typedef enum {
96 PASS_IO_NONE = 0x00,
97 PASS_IO_USER_SEG_MALLOC = 0x01,
98 PASS_IO_KERN_SEG_MALLOC = 0x02,
99 PASS_IO_ABANDONED = 0x04
100 } pass_io_flags;
101
102 struct pass_io_req {
103 union ccb ccb;
104 union ccb *alloced_ccb;
105 union ccb *user_ccb_ptr;
106 camq_entry user_periph_links;
107 ccb_ppriv_area user_periph_priv;
108 struct cam_periph_map_info mapinfo;
109 pass_io_flags flags;
110 ccb_flags data_flags;
111 int num_user_segs;
112 bus_dma_segment_t user_segs[PASS_MAX_SEGS];
113 int num_kern_segs;
114 bus_dma_segment_t kern_segs[PASS_MAX_SEGS];
115 bus_dma_segment_t *user_segptr;
116 bus_dma_segment_t *kern_segptr;
117 int num_bufs;
118 uint32_t dirs[CAM_PERIPH_MAXMAPS];
119 uint32_t lengths[CAM_PERIPH_MAXMAPS];
120 uint8_t *user_bufs[CAM_PERIPH_MAXMAPS];
121 uint8_t *kern_bufs[CAM_PERIPH_MAXMAPS];
122 struct bintime start_time;
123 TAILQ_ENTRY(pass_io_req) links;
124 };
125
126 struct pass_softc {
127 pass_state state;
128 pass_flags flags;
129 uint8_t pd_type;
130 int open_count;
131 u_int maxio;
132 struct devstat *device_stats;
133 struct cdev *dev;
134 struct cdev *alias_dev;
135 struct task add_physpath_task;
136 struct task shutdown_kqueue_task;
137 struct selinfo read_select;
138 TAILQ_HEAD(, pass_io_req) incoming_queue;
139 TAILQ_HEAD(, pass_io_req) active_queue;
140 TAILQ_HEAD(, pass_io_req) abandoned_queue;
141 TAILQ_HEAD(, pass_io_req) done_queue;
142 struct cam_periph *periph;
143 char zone_name[12];
144 char io_zone_name[12];
145 uma_zone_t pass_zone;
146 uma_zone_t pass_io_zone;
147 size_t io_zone_size;
148 };
149
150 static d_open_t passopen;
151 static d_close_t passclose;
152 static d_ioctl_t passioctl;
153 static d_ioctl_t passdoioctl;
154 static d_poll_t passpoll;
155 static d_kqfilter_t passkqfilter;
156 static void passreadfiltdetach(struct knote *kn);
157 static int passreadfilt(struct knote *kn, long hint);
158
159 static periph_init_t passinit;
160 static periph_ctor_t passregister;
161 static periph_oninv_t passoninvalidate;
162 static periph_dtor_t passcleanup;
163 static periph_start_t passstart;
164 static void pass_shutdown_kqueue(void *context, int pending);
165 static void pass_add_physpath(void *context, int pending);
166 static void passasync(void *callback_arg, uint32_t code,
167 struct cam_path *path, void *arg);
168 static void passdone(struct cam_periph *periph,
169 union ccb *done_ccb);
170 static int passcreatezone(struct cam_periph *periph);
171 static void passiocleanup(struct pass_softc *softc,
172 struct pass_io_req *io_req);
173 static int passcopysglist(struct cam_periph *periph,
174 struct pass_io_req *io_req,
175 ccb_flags direction);
176 static int passmemsetup(struct cam_periph *periph,
177 struct pass_io_req *io_req);
178 static int passmemdone(struct cam_periph *periph,
179 struct pass_io_req *io_req);
180 static int passerror(union ccb *ccb, uint32_t cam_flags,
181 uint32_t sense_flags);
182 static int passsendccb(struct cam_periph *periph, union ccb *ccb,
183 union ccb *inccb);
184 static void passflags(union ccb *ccb, uint32_t *cam_flags,
185 uint32_t *sense_flags);
186
187 static struct periph_driver passdriver =
188 {
189 passinit, PERIPH_NAME,
190 TAILQ_HEAD_INITIALIZER(passdriver.units), /* generation */ 0
191 };
192
193 PERIPHDRIVER_DECLARE(pass, passdriver);
194
195 static struct cdevsw pass_cdevsw = {
196 .d_version = D_VERSION,
197 .d_flags = D_TRACKCLOSE,
198 .d_open = passopen,
199 .d_close = passclose,
200 .d_ioctl = passioctl,
201 .d_poll = passpoll,
202 .d_kqfilter = passkqfilter,
203 .d_name = PERIPH_NAME,
204 };
205
206 static const struct filterops passread_filtops = {
207 .f_isfd = 1,
208 .f_detach = passreadfiltdetach,
209 .f_event = passreadfilt,
210 .f_copy = knote_triv_copy,
211 };
212
213 static MALLOC_DEFINE(M_SCSIPASS, "scsi_pass", "scsi passthrough buffers");
214
215 static void
passinit(void)216 passinit(void)
217 {
218 cam_status status;
219
220 /*
221 * Install a global async callback. This callback will
222 * receive async callbacks like "new device found".
223 */
224 status = xpt_register_async(AC_FOUND_DEVICE, passasync, NULL, NULL);
225
226 if (status != CAM_REQ_CMP) {
227 printf("pass: Failed to attach master async callback "
228 "due to status 0x%x!\n", status);
229 }
230
231 }
232
233 static void
passrejectios(struct cam_periph * periph)234 passrejectios(struct cam_periph *periph)
235 {
236 struct pass_io_req *io_req, *io_req2;
237 struct pass_softc *softc;
238
239 softc = (struct pass_softc *)periph->softc;
240
241 /*
242 * The user can no longer get status for I/O on the done queue, so
243 * clean up all outstanding I/O on the done queue.
244 */
245 TAILQ_FOREACH_SAFE(io_req, &softc->done_queue, links, io_req2) {
246 TAILQ_REMOVE(&softc->done_queue, io_req, links);
247 passiocleanup(softc, io_req);
248 uma_zfree(softc->pass_zone, io_req);
249 }
250
251 /*
252 * The underlying device is gone, so we can't issue these I/Os.
253 * The devfs node has been shut down, so we can't return status to
254 * the user. Free any I/O left on the incoming queue.
255 */
256 TAILQ_FOREACH_SAFE(io_req, &softc->incoming_queue, links, io_req2) {
257 TAILQ_REMOVE(&softc->incoming_queue, io_req, links);
258 passiocleanup(softc, io_req);
259 uma_zfree(softc->pass_zone, io_req);
260 }
261
262 /*
263 * Normally we would put I/Os on the abandoned queue and acquire a
264 * reference when we saw the final close. But, the device went
265 * away and devfs may have moved everything off to deadfs by the
266 * time the I/O done callback is called; as a result, we won't see
267 * any more closes. So, if we have any active I/Os, we need to put
268 * them on the abandoned queue. When the abandoned queue is empty,
269 * we'll release the remaining reference (see below) to the peripheral.
270 */
271 TAILQ_FOREACH_SAFE(io_req, &softc->active_queue, links, io_req2) {
272 TAILQ_REMOVE(&softc->active_queue, io_req, links);
273 io_req->flags |= PASS_IO_ABANDONED;
274 TAILQ_INSERT_TAIL(&softc->abandoned_queue, io_req, links);
275 }
276
277 /*
278 * If we put any I/O on the abandoned queue, acquire a reference.
279 */
280 if ((!TAILQ_EMPTY(&softc->abandoned_queue))
281 && ((softc->flags & PASS_FLAG_ABANDONED_REF_SET) == 0)) {
282 cam_periph_doacquire(periph);
283 softc->flags |= PASS_FLAG_ABANDONED_REF_SET;
284 }
285 }
286
287 static void
passdevgonecb(void * arg)288 passdevgonecb(void *arg)
289 {
290 struct cam_periph *periph;
291 struct mtx *mtx;
292 struct pass_softc *softc;
293 int i;
294
295 periph = (struct cam_periph *)arg;
296 mtx = cam_periph_mtx(periph);
297 mtx_lock(mtx);
298
299 softc = (struct pass_softc *)periph->softc;
300 KASSERT(softc->open_count >= 0, ("Negative open count %d",
301 softc->open_count));
302
303 /*
304 * When we get this callback, we will get no more close calls from
305 * devfs. So if we have any dangling opens, we need to release the
306 * reference held for that particular context.
307 */
308 for (i = 0; i < softc->open_count; i++)
309 cam_periph_release_locked(periph);
310
311 softc->open_count = 0;
312
313 /*
314 * Release the reference held for the device node, it is gone now.
315 * Accordingly, inform all queued I/Os of their fate.
316 */
317 cam_periph_release_locked(periph);
318 passrejectios(periph);
319
320 /*
321 * We reference the SIM lock directly here, instead of using
322 * cam_periph_unlock(). The reason is that the final call to
323 * cam_periph_release_locked() above could result in the periph
324 * getting freed. If that is the case, dereferencing the periph
325 * with a cam_periph_unlock() call would cause a page fault.
326 */
327 mtx_unlock(mtx);
328
329 /*
330 * We have to remove our kqueue context from a thread because it
331 * may sleep. It would be nice if we could get a callback from
332 * kqueue when it is done cleaning up resources.
333 */
334 taskqueue_enqueue(taskqueue_thread, &softc->shutdown_kqueue_task);
335 }
336
337 static void
passoninvalidate(struct cam_periph * periph)338 passoninvalidate(struct cam_periph *periph)
339 {
340 struct pass_softc *softc;
341
342 softc = (struct pass_softc *)periph->softc;
343
344 /*
345 * De-register any async callbacks.
346 */
347 xpt_register_async(0, passasync, periph, periph->path);
348
349 softc->flags |= PASS_FLAG_INVALID;
350
351 /*
352 * Tell devfs this device has gone away, and ask for a callback
353 * when it has cleaned up its state.
354 */
355 destroy_dev_sched_cb(softc->dev, passdevgonecb, periph);
356 }
357
358 static void
passcleanup(struct cam_periph * periph)359 passcleanup(struct cam_periph *periph)
360 {
361 struct pass_softc *softc;
362
363 softc = (struct pass_softc *)periph->softc;
364
365 cam_periph_assert(periph, MA_OWNED);
366 KASSERT(TAILQ_EMPTY(&softc->active_queue),
367 ("%s called when there are commands on the active queue!\n",
368 __func__));
369 KASSERT(TAILQ_EMPTY(&softc->abandoned_queue),
370 ("%s called when there are commands on the abandoned queue!\n",
371 __func__));
372 KASSERT(TAILQ_EMPTY(&softc->incoming_queue),
373 ("%s called when there are commands on the incoming queue!\n",
374 __func__));
375 KASSERT(TAILQ_EMPTY(&softc->done_queue),
376 ("%s called when there are commands on the done queue!\n",
377 __func__));
378
379 devstat_remove_entry(softc->device_stats);
380
381 cam_periph_unlock(periph);
382
383 /*
384 * We call taskqueue_drain() for the physpath task to make sure it
385 * is complete. We drop the lock because this can potentially
386 * sleep. XXX KDM that is bad. Need a way to get a callback when
387 * a taskqueue is drained.
388 *
389 * Note that we don't drain the kqueue shutdown task queue. This
390 * is because we hold a reference on the periph for kqueue, and
391 * release that reference from the kqueue shutdown task queue. So
392 * we cannot come into this routine unless we've released that
393 * reference. Also, because that could be the last reference, we
394 * could be called from the cam_periph_release() call in
395 * pass_shutdown_kqueue(). In that case, the taskqueue_drain()
396 * would deadlock. It would be preferable if we had a way to
397 * get a callback when a taskqueue is done.
398 */
399 taskqueue_drain(taskqueue_thread, &softc->add_physpath_task);
400
401 /*
402 * It should be safe to destroy the zones from here, because all
403 * of the references to this peripheral have been freed, and all
404 * I/O has been terminated and freed. We check the zones for NULL
405 * because they may not have been allocated yet if the device went
406 * away before any asynchronous I/O has been issued.
407 */
408 if (softc->pass_zone != NULL)
409 uma_zdestroy(softc->pass_zone);
410 if (softc->pass_io_zone != NULL)
411 uma_zdestroy(softc->pass_io_zone);
412
413 cam_periph_lock(periph);
414
415 free(softc, M_DEVBUF);
416 }
417
418 static void
pass_shutdown_kqueue(void * context,int pending)419 pass_shutdown_kqueue(void *context, int pending)
420 {
421 struct cam_periph *periph;
422 struct pass_softc *softc;
423
424 periph = context;
425 softc = periph->softc;
426
427 knlist_clear(&softc->read_select.si_note, /*is_locked*/ 0);
428 knlist_destroy(&softc->read_select.si_note);
429
430 /*
431 * Release the reference we held for kqueue.
432 */
433 cam_periph_release(periph);
434 }
435
436 static void
pass_add_physpath(void * context,int pending)437 pass_add_physpath(void *context, int pending)
438 {
439 struct cam_periph *periph;
440 struct pass_softc *softc;
441 struct mtx *mtx;
442 char *physpath;
443
444 /*
445 * If we have one, create a devfs alias for our
446 * physical path.
447 */
448 periph = context;
449 softc = periph->softc;
450 physpath = malloc(MAXPATHLEN, M_DEVBUF, M_WAITOK);
451 mtx = cam_periph_mtx(periph);
452 mtx_lock(mtx);
453
454 if (periph->flags & CAM_PERIPH_INVALID)
455 goto out;
456
457 if (xpt_getattr(physpath, MAXPATHLEN,
458 "GEOM::physpath", periph->path) == 0
459 && strlen(physpath) != 0) {
460 mtx_unlock(mtx);
461 make_dev_physpath_alias(MAKEDEV_WAITOK | MAKEDEV_CHECKNAME,
462 &softc->alias_dev, softc->dev,
463 softc->alias_dev, physpath);
464 mtx_lock(mtx);
465 }
466
467 out:
468 /*
469 * Now that we've made our alias, we no longer have to have a
470 * reference to the device.
471 */
472 if ((softc->flags & PASS_FLAG_INITIAL_PHYSPATH) == 0)
473 softc->flags |= PASS_FLAG_INITIAL_PHYSPATH;
474
475 /*
476 * We always acquire a reference to the periph before queueing this
477 * task queue function, so it won't go away before we run.
478 */
479 while (pending-- > 0)
480 cam_periph_release_locked(periph);
481 mtx_unlock(mtx);
482
483 free(physpath, M_DEVBUF);
484 }
485
486 static void
passasync(void * callback_arg,uint32_t code,struct cam_path * path,void * arg)487 passasync(void *callback_arg, uint32_t code,
488 struct cam_path *path, void *arg)
489 {
490 struct cam_periph *periph;
491
492 periph = (struct cam_periph *)callback_arg;
493
494 switch (code) {
495 case AC_FOUND_DEVICE:
496 {
497 struct ccb_getdev *cgd;
498 cam_status status;
499
500 cgd = (struct ccb_getdev *)arg;
501 if (cgd == NULL)
502 break;
503
504 /*
505 * Allocate a peripheral instance for
506 * this device and start the probe
507 * process.
508 */
509 status = cam_periph_alloc(passregister, passoninvalidate,
510 passcleanup, passstart, PERIPH_NAME,
511 CAM_PERIPH_BIO, path,
512 passasync, AC_FOUND_DEVICE, cgd);
513
514 if (status != CAM_REQ_CMP
515 && status != CAM_REQ_INPROG) {
516 const struct cam_status_entry *entry;
517
518 entry = cam_fetch_status_entry(status);
519
520 printf("passasync: Unable to attach new device "
521 "due to status %#x: %s\n", status, entry ?
522 entry->status_text : "Unknown");
523 }
524
525 break;
526 }
527 case AC_ADVINFO_CHANGED:
528 {
529 uintptr_t buftype;
530
531 buftype = (uintptr_t)arg;
532 if (buftype == CDAI_TYPE_PHYS_PATH) {
533 struct pass_softc *softc;
534
535 softc = (struct pass_softc *)periph->softc;
536 /*
537 * Acquire a reference to the periph before we
538 * start the taskqueue, so that we don't run into
539 * a situation where the periph goes away before
540 * the task queue has a chance to run.
541 */
542 if (cam_periph_acquire(periph) != 0)
543 break;
544
545 taskqueue_enqueue(taskqueue_thread,
546 &softc->add_physpath_task);
547 }
548 break;
549 }
550 default:
551 cam_periph_async(periph, code, path, arg);
552 break;
553 }
554 }
555
556 static cam_status
passregister(struct cam_periph * periph,void * arg)557 passregister(struct cam_periph *periph, void *arg)
558 {
559 struct pass_softc *softc;
560 struct ccb_getdev *cgd;
561 struct ccb_pathinq cpi;
562 struct make_dev_args args;
563 int error, no_tags;
564
565 cgd = (struct ccb_getdev *)arg;
566 if (cgd == NULL) {
567 printf("%s: no getdev CCB, can't register device\n", __func__);
568 return(CAM_REQ_CMP_ERR);
569 }
570
571 softc = (struct pass_softc *)malloc(sizeof(*softc),
572 M_DEVBUF, M_NOWAIT);
573
574 if (softc == NULL) {
575 printf("%s: Unable to probe new device. "
576 "Unable to allocate softc\n", __func__);
577 return(CAM_REQ_CMP_ERR);
578 }
579
580 bzero(softc, sizeof(*softc));
581 softc->state = PASS_STATE_NORMAL;
582 if (cgd->protocol == PROTO_SCSI || cgd->protocol == PROTO_ATAPI)
583 softc->pd_type = SID_TYPE(&cgd->inq_data);
584 else if (cgd->protocol == PROTO_SATAPM)
585 softc->pd_type = T_ENCLOSURE;
586 else
587 softc->pd_type = T_DIRECT;
588
589 periph->softc = softc;
590 softc->periph = periph;
591 TAILQ_INIT(&softc->incoming_queue);
592 TAILQ_INIT(&softc->active_queue);
593 TAILQ_INIT(&softc->abandoned_queue);
594 TAILQ_INIT(&softc->done_queue);
595 snprintf(softc->zone_name, sizeof(softc->zone_name), "%s%d",
596 periph->periph_name, periph->unit_number);
597 snprintf(softc->io_zone_name, sizeof(softc->io_zone_name), "%s%dIO",
598 periph->periph_name, periph->unit_number);
599 softc->io_zone_size = maxphys;
600 knlist_init_mtx(&softc->read_select.si_note, cam_periph_mtx(periph));
601
602 xpt_path_inq(&cpi, periph->path);
603
604 if (cpi.maxio == 0)
605 softc->maxio = DFLTPHYS; /* traditional default */
606 else if (cpi.maxio > maxphys)
607 softc->maxio = maxphys; /* for safety */
608 else
609 softc->maxio = cpi.maxio; /* real value */
610
611 if (cpi.hba_misc & PIM_UNMAPPED)
612 softc->flags |= PASS_FLAG_UNMAPPED_CAPABLE;
613
614 /*
615 * We pass in 0 for a blocksize, since we don't know what the blocksize
616 * of this device is, if it even has a blocksize.
617 *
618 * Note: no_tags is valid only for SCSI peripherals, but we don't do any
619 * devstat accounting for tags on any other transport. SCSI is the only
620 * transport that uses the tag_action (ata has only vestigial references
621 * to it, others ignore it entirely).
622 */
623 cam_periph_unlock(periph);
624 no_tags = (cgd->inq_data.flags & SID_CmdQue) == 0;
625 softc->device_stats = devstat_new_entry(PERIPH_NAME,
626 periph->unit_number, 0,
627 DEVSTAT_NO_BLOCKSIZE
628 | (no_tags ? DEVSTAT_NO_ORDERED_TAGS : 0),
629 softc->pd_type |
630 XPORT_DEVSTAT_TYPE(cpi.transport) |
631 DEVSTAT_TYPE_PASS,
632 DEVSTAT_PRIORITY_PASS);
633
634 /*
635 * Initialize the taskqueue handler for shutting down kqueue.
636 */
637 TASK_INIT(&softc->shutdown_kqueue_task, /*priority*/ 0,
638 pass_shutdown_kqueue, periph);
639
640 /*
641 * Acquire a reference to the periph that we can release once we've
642 * cleaned up the kqueue.
643 */
644 if (cam_periph_acquire(periph) != 0) {
645 xpt_print(periph->path, "%s: lost periph during "
646 "registration!\n", __func__);
647 cam_periph_lock(periph);
648 return (CAM_REQ_CMP_ERR);
649 }
650
651 /*
652 * Acquire a reference to the periph before we create the devfs
653 * instance for it. We'll release this reference once the devfs
654 * instance has been freed.
655 */
656 if (cam_periph_acquire(periph) != 0) {
657 xpt_print(periph->path, "%s: lost periph during "
658 "registration!\n", __func__);
659 cam_periph_lock(periph);
660 return (CAM_REQ_CMP_ERR);
661 }
662
663 /* Register the device */
664 make_dev_args_init(&args);
665 args.mda_devsw = &pass_cdevsw;
666 args.mda_unit = periph->unit_number;
667 args.mda_uid = UID_ROOT;
668 args.mda_gid = GID_OPERATOR;
669 args.mda_mode = 0600;
670 args.mda_si_drv1 = periph;
671 args.mda_flags = MAKEDEV_NOWAIT;
672 error = make_dev_s(&args, &softc->dev, "%s%d", periph->periph_name,
673 periph->unit_number);
674 if (error != 0) {
675 cam_periph_lock(periph);
676 cam_periph_release_locked(periph);
677 return (CAM_REQ_CMP_ERR);
678 }
679
680 /*
681 * Hold a reference to the periph before we create the physical
682 * path alias so it can't go away.
683 */
684 if (cam_periph_acquire(periph) != 0) {
685 xpt_print(periph->path, "%s: lost periph during "
686 "registration!\n", __func__);
687 cam_periph_lock(periph);
688 return (CAM_REQ_CMP_ERR);
689 }
690
691 cam_periph_lock(periph);
692
693 TASK_INIT(&softc->add_physpath_task, /*priority*/0,
694 pass_add_physpath, periph);
695
696 /*
697 * See if physical path information is already available.
698 */
699 taskqueue_enqueue(taskqueue_thread, &softc->add_physpath_task);
700
701 /*
702 * Add an async callback so that we get notified if
703 * this device goes away or its physical path
704 * (stored in the advanced info data of the EDT) has
705 * changed.
706 */
707 xpt_register_async(AC_LOST_DEVICE | AC_ADVINFO_CHANGED,
708 passasync, periph, periph->path);
709
710 if (bootverbose)
711 xpt_announce_periph(periph, NULL);
712
713 return(CAM_REQ_CMP);
714 }
715
716 static int
passopen(struct cdev * dev,int flags,int fmt,struct thread * td)717 passopen(struct cdev *dev, int flags, int fmt, struct thread *td)
718 {
719 struct cam_periph *periph;
720 struct pass_softc *softc;
721 int error;
722
723 periph = (struct cam_periph *)dev->si_drv1;
724 if (cam_periph_acquire(periph) != 0)
725 return (ENXIO);
726
727 cam_periph_lock(periph);
728
729 softc = (struct pass_softc *)periph->softc;
730
731 if (softc->flags & PASS_FLAG_INVALID) {
732 cam_periph_release_locked(periph);
733 cam_periph_unlock(periph);
734 return(ENXIO);
735 }
736
737 /*
738 * Don't allow access when we're running at a high securelevel.
739 */
740 error = securelevel_gt(td->td_ucred, 1);
741 if (error) {
742 cam_periph_release_locked(periph);
743 cam_periph_unlock(periph);
744 return(error);
745 }
746
747 /*
748 * Only allow read-write access.
749 */
750 if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0)) {
751 cam_periph_release_locked(periph);
752 cam_periph_unlock(periph);
753 return(EPERM);
754 }
755
756 /*
757 * We don't allow nonblocking access.
758 */
759 if ((flags & O_NONBLOCK) != 0) {
760 xpt_print(periph->path, "can't do nonblocking access\n");
761 cam_periph_release_locked(periph);
762 cam_periph_unlock(periph);
763 return(EINVAL);
764 }
765
766 softc->open_count++;
767
768 cam_periph_unlock(periph);
769
770 return (error);
771 }
772
773 static int
passclose(struct cdev * dev,int flag,int fmt,struct thread * td)774 passclose(struct cdev *dev, int flag, int fmt, struct thread *td)
775 {
776 struct cam_periph *periph;
777 struct pass_softc *softc;
778 struct mtx *mtx;
779
780 periph = (struct cam_periph *)dev->si_drv1;
781 mtx = cam_periph_mtx(periph);
782 mtx_lock(mtx);
783
784 softc = periph->softc;
785 softc->open_count--;
786
787 if (softc->open_count == 0) {
788 struct pass_io_req *io_req, *io_req2;
789
790 TAILQ_FOREACH_SAFE(io_req, &softc->done_queue, links, io_req2) {
791 TAILQ_REMOVE(&softc->done_queue, io_req, links);
792 passiocleanup(softc, io_req);
793 uma_zfree(softc->pass_zone, io_req);
794 }
795
796 TAILQ_FOREACH_SAFE(io_req, &softc->incoming_queue, links,
797 io_req2) {
798 TAILQ_REMOVE(&softc->incoming_queue, io_req, links);
799 passiocleanup(softc, io_req);
800 uma_zfree(softc->pass_zone, io_req);
801 }
802
803 /*
804 * If there are any active I/Os, we need to forcibly acquire a
805 * reference to the peripheral so that we don't go away
806 * before they complete. We'll release the reference when
807 * the abandoned queue is empty.
808 */
809 io_req = TAILQ_FIRST(&softc->active_queue);
810 if ((io_req != NULL)
811 && (softc->flags & PASS_FLAG_ABANDONED_REF_SET) == 0) {
812 cam_periph_doacquire(periph);
813 softc->flags |= PASS_FLAG_ABANDONED_REF_SET;
814 }
815
816 /*
817 * Since the I/O in the active queue is not under our
818 * control, just set a flag so that we can clean it up when
819 * it completes and put it on the abandoned queue. This
820 * will prevent our sending spurious completions in the
821 * event that the device is opened again before these I/Os
822 * complete.
823 */
824 TAILQ_FOREACH_SAFE(io_req, &softc->active_queue, links,
825 io_req2) {
826 TAILQ_REMOVE(&softc->active_queue, io_req, links);
827 io_req->flags |= PASS_IO_ABANDONED;
828 TAILQ_INSERT_TAIL(&softc->abandoned_queue, io_req,
829 links);
830 }
831 }
832
833 cam_periph_release_locked(periph);
834
835 /*
836 * We reference the lock directly here, instead of using
837 * cam_periph_unlock(). The reason is that the call to
838 * cam_periph_release_locked() above could result in the periph
839 * getting freed. If that is the case, dereferencing the periph
840 * with a cam_periph_unlock() call would cause a page fault.
841 *
842 * cam_periph_release() avoids this problem using the same method,
843 * but we're manually acquiring and dropping the lock here to
844 * protect the open count and avoid another lock acquisition and
845 * release.
846 */
847 mtx_unlock(mtx);
848
849 return (0);
850 }
851
852 static void
passstart(struct cam_periph * periph,union ccb * start_ccb)853 passstart(struct cam_periph *periph, union ccb *start_ccb)
854 {
855 struct pass_softc *softc;
856
857 softc = (struct pass_softc *)periph->softc;
858
859 switch (softc->state) {
860 case PASS_STATE_NORMAL: {
861 struct pass_io_req *io_req;
862
863 /*
864 * Check for any queued I/O requests that require an
865 * allocated slot.
866 */
867 io_req = TAILQ_FIRST(&softc->incoming_queue);
868 if (io_req == NULL) {
869 xpt_release_ccb(start_ccb);
870 break;
871 }
872 TAILQ_REMOVE(&softc->incoming_queue, io_req, links);
873 TAILQ_INSERT_TAIL(&softc->active_queue, io_req, links);
874 /*
875 * Merge the user's CCB into the allocated CCB.
876 */
877 xpt_merge_ccb(start_ccb, &io_req->ccb);
878 start_ccb->ccb_h.ccb_type = PASS_CCB_QUEUED_IO;
879 start_ccb->ccb_h.ccb_ioreq = io_req;
880 start_ccb->ccb_h.cbfcnp = passdone;
881 io_req->alloced_ccb = start_ccb;
882 binuptime(&io_req->start_time);
883 devstat_start_transaction(softc->device_stats,
884 &io_req->start_time);
885
886 xpt_action(start_ccb);
887
888 /*
889 * If we have any more I/O waiting, schedule ourselves again.
890 */
891 if (!TAILQ_EMPTY(&softc->incoming_queue))
892 xpt_schedule(periph, CAM_PRIORITY_NORMAL);
893 break;
894 }
895 default:
896 break;
897 }
898 }
899
900 static void
passdone(struct cam_periph * periph,union ccb * done_ccb)901 passdone(struct cam_periph *periph, union ccb *done_ccb)
902 {
903 struct pass_softc *softc;
904 struct ccb_hdr *hdr;
905
906 softc = (struct pass_softc *)periph->softc;
907
908 cam_periph_assert(periph, MA_OWNED);
909
910 hdr = &done_ccb->ccb_h;
911 switch (hdr->ccb_type) {
912 case PASS_CCB_QUEUED_IO: {
913 struct pass_io_req *io_req;
914
915 io_req = hdr->ccb_ioreq;
916 #if 0
917 xpt_print(periph->path, "%s: called for user CCB %p\n",
918 __func__, io_req->user_ccb_ptr);
919 #endif
920 if (((hdr->status & CAM_STATUS_MASK) != CAM_REQ_CMP) &&
921 ((io_req->flags & PASS_IO_ABANDONED) == 0)) {
922 int error;
923 uint32_t cam_flags, sense_flags;
924
925 passflags(done_ccb, &cam_flags, &sense_flags);
926 error = passerror(done_ccb, cam_flags, sense_flags);
927
928 if (error == ERESTART) {
929 KASSERT(((sense_flags & SF_NO_RETRY) == 0),
930 ("passerror returned ERESTART with no retry requested\n"));
931 return;
932 }
933 }
934
935 /*
936 * Copy the allocated CCB contents back to the malloced CCB
937 * so we can give status back to the user when he requests it.
938 */
939 bcopy(done_ccb, &io_req->ccb, sizeof(*done_ccb));
940
941 /*
942 * Log data/transaction completion with devstat(9).
943 */
944 switch (hdr->func_code) {
945 case XPT_SCSI_IO:
946 devstat_end_transaction(softc->device_stats,
947 done_ccb->csio.dxfer_len - done_ccb->csio.resid,
948 done_ccb->csio.tag_action & 0x3,
949 ((hdr->flags & CAM_DIR_MASK) ==
950 CAM_DIR_NONE) ? DEVSTAT_NO_DATA :
951 (hdr->flags & CAM_DIR_OUT) ?
952 DEVSTAT_WRITE : DEVSTAT_READ, NULL,
953 &io_req->start_time);
954 break;
955 case XPT_ATA_IO:
956 devstat_end_transaction(softc->device_stats,
957 done_ccb->ataio.dxfer_len - done_ccb->ataio.resid,
958 0, /* Not used in ATA */
959 ((hdr->flags & CAM_DIR_MASK) ==
960 CAM_DIR_NONE) ? DEVSTAT_NO_DATA :
961 (hdr->flags & CAM_DIR_OUT) ?
962 DEVSTAT_WRITE : DEVSTAT_READ, NULL,
963 &io_req->start_time);
964 break;
965 case XPT_SMP_IO:
966 /*
967 * XXX KDM this isn't quite right, but there isn't
968 * currently an easy way to represent a bidirectional
969 * transfer in devstat. The only way to do it
970 * and have the byte counts come out right would
971 * mean that we would have to record two
972 * transactions, one for the request and one for the
973 * response. For now, so that we report something,
974 * just treat the entire thing as a read.
975 */
976 devstat_end_transaction(softc->device_stats,
977 done_ccb->smpio.smp_request_len +
978 done_ccb->smpio.smp_response_len,
979 DEVSTAT_TAG_SIMPLE, DEVSTAT_READ, NULL,
980 &io_req->start_time);
981 break;
982 /* XXX XPT_NVME_IO and XPT_NVME_ADMIN need cases here for resid */
983 default:
984 devstat_end_transaction(softc->device_stats, 0,
985 DEVSTAT_TAG_NONE, DEVSTAT_NO_DATA, NULL,
986 &io_req->start_time);
987 break;
988 }
989
990 /*
991 * In the normal case, take the completed I/O off of the
992 * active queue and put it on the done queue. Notitfy the
993 * user that we have a completed I/O.
994 */
995 if ((io_req->flags & PASS_IO_ABANDONED) == 0) {
996 TAILQ_REMOVE(&softc->active_queue, io_req, links);
997 TAILQ_INSERT_TAIL(&softc->done_queue, io_req, links);
998 selwakeuppri(&softc->read_select, PRIBIO);
999 KNOTE_LOCKED(&softc->read_select.si_note, 0);
1000 } else {
1001 /*
1002 * In the case of an abandoned I/O (final close
1003 * without fetching the I/O), take it off of the
1004 * abandoned queue and free it.
1005 */
1006 TAILQ_REMOVE(&softc->abandoned_queue, io_req, links);
1007 passiocleanup(softc, io_req);
1008 uma_zfree(softc->pass_zone, io_req);
1009
1010 /*
1011 * Release the done_ccb here, since we may wind up
1012 * freeing the peripheral when we decrement the
1013 * reference count below.
1014 */
1015 xpt_release_ccb(done_ccb);
1016
1017 /*
1018 * If the abandoned queue is empty, we can release
1019 * our reference to the periph since we won't have
1020 * any more completions coming.
1021 */
1022 if ((TAILQ_EMPTY(&softc->abandoned_queue))
1023 && (softc->flags & PASS_FLAG_ABANDONED_REF_SET)) {
1024 softc->flags &= ~PASS_FLAG_ABANDONED_REF_SET;
1025 cam_periph_release_locked(periph);
1026 }
1027
1028 /*
1029 * We have already released the CCB, so we can
1030 * return.
1031 */
1032 return;
1033 }
1034 break;
1035 }
1036 }
1037 xpt_release_ccb(done_ccb);
1038 }
1039
1040 static int
passcreatezone(struct cam_periph * periph)1041 passcreatezone(struct cam_periph *periph)
1042 {
1043 struct pass_softc *softc;
1044 int error;
1045
1046 error = 0;
1047 softc = (struct pass_softc *)periph->softc;
1048
1049 cam_periph_assert(periph, MA_OWNED);
1050 KASSERT(((softc->flags & PASS_FLAG_ZONE_VALID) == 0),
1051 ("%s called when the pass(4) zone is valid!\n", __func__));
1052 KASSERT((softc->pass_zone == NULL),
1053 ("%s called when the pass(4) zone is allocated!\n", __func__));
1054
1055 if ((softc->flags & PASS_FLAG_ZONE_INPROG) == 0) {
1056 /*
1057 * We're the first context through, so we need to create
1058 * the pass(4) UMA zone for I/O requests.
1059 */
1060 softc->flags |= PASS_FLAG_ZONE_INPROG;
1061
1062 /*
1063 * uma_zcreate() does a blocking (M_WAITOK) allocation,
1064 * so we cannot hold a mutex while we call it.
1065 */
1066 cam_periph_unlock(periph);
1067
1068 softc->pass_zone = uma_zcreate(softc->zone_name,
1069 sizeof(struct pass_io_req), NULL, NULL, NULL, NULL,
1070 /*align*/ 0, /*flags*/ 0);
1071
1072 softc->pass_io_zone = uma_zcreate(softc->io_zone_name,
1073 softc->io_zone_size, NULL, NULL, NULL, NULL,
1074 /*align*/ 0, /*flags*/ 0);
1075
1076 cam_periph_lock(periph);
1077
1078 if ((softc->pass_zone == NULL)
1079 || (softc->pass_io_zone == NULL)) {
1080 if (softc->pass_zone == NULL)
1081 xpt_print(periph->path, "unable to allocate "
1082 "IO Req UMA zone\n");
1083 else
1084 xpt_print(periph->path, "unable to allocate "
1085 "IO UMA zone\n");
1086 softc->flags &= ~PASS_FLAG_ZONE_INPROG;
1087 goto bailout;
1088 }
1089
1090 /*
1091 * Set the flags appropriately and notify any other waiters.
1092 */
1093 softc->flags &= ~PASS_FLAG_ZONE_INPROG;
1094 softc->flags |= PASS_FLAG_ZONE_VALID;
1095 wakeup(&softc->pass_zone);
1096 } else {
1097 /*
1098 * In this case, the UMA zone has not yet been created, but
1099 * another context is in the process of creating it. We
1100 * need to sleep until the creation is either done or has
1101 * failed.
1102 */
1103 while ((softc->flags & PASS_FLAG_ZONE_INPROG)
1104 && ((softc->flags & PASS_FLAG_ZONE_VALID) == 0)) {
1105 error = msleep(&softc->pass_zone,
1106 cam_periph_mtx(periph), PRIBIO,
1107 "paszon", 0);
1108 if (error != 0)
1109 goto bailout;
1110 }
1111 /*
1112 * If the zone creation failed, no luck for the user.
1113 */
1114 if ((softc->flags & PASS_FLAG_ZONE_VALID) == 0){
1115 error = ENOMEM;
1116 goto bailout;
1117 }
1118 }
1119 bailout:
1120 return (error);
1121 }
1122
1123 static void
passiocleanup(struct pass_softc * softc,struct pass_io_req * io_req)1124 passiocleanup(struct pass_softc *softc, struct pass_io_req *io_req)
1125 {
1126 union ccb *ccb;
1127 struct ccb_hdr *hdr;
1128 uint8_t **data_ptrs[CAM_PERIPH_MAXMAPS];
1129 int i, numbufs;
1130
1131 ccb = &io_req->ccb;
1132 hdr = &ccb->ccb_h;
1133
1134 switch (hdr->func_code) {
1135 case XPT_DEV_MATCH:
1136 numbufs = min(io_req->num_bufs, 2);
1137
1138 if (numbufs == 1) {
1139 data_ptrs[0] = (uint8_t **)&ccb->cdm.matches;
1140 } else {
1141 data_ptrs[0] = (uint8_t **)&ccb->cdm.patterns;
1142 data_ptrs[1] = (uint8_t **)&ccb->cdm.matches;
1143 }
1144 break;
1145 case XPT_SCSI_IO:
1146 case XPT_CONT_TARGET_IO:
1147 data_ptrs[0] = &ccb->csio.data_ptr;
1148 numbufs = min(io_req->num_bufs, 1);
1149 break;
1150 case XPT_ATA_IO:
1151 data_ptrs[0] = &ccb->ataio.data_ptr;
1152 numbufs = min(io_req->num_bufs, 1);
1153 break;
1154 case XPT_SMP_IO:
1155 numbufs = min(io_req->num_bufs, 2);
1156 data_ptrs[0] = &ccb->smpio.smp_request;
1157 data_ptrs[1] = &ccb->smpio.smp_response;
1158 break;
1159 case XPT_DEV_ADVINFO:
1160 numbufs = min(io_req->num_bufs, 1);
1161 data_ptrs[0] = (uint8_t **)&ccb->cdai.buf;
1162 break;
1163 case XPT_NVME_IO:
1164 case XPT_NVME_ADMIN:
1165 data_ptrs[0] = &ccb->nvmeio.data_ptr;
1166 numbufs = min(io_req->num_bufs, 1);
1167 break;
1168 default:
1169 /* allow ourselves to be swapped once again */
1170 return;
1171 break; /* NOTREACHED */
1172 }
1173
1174 if (io_req->flags & PASS_IO_USER_SEG_MALLOC) {
1175 free(io_req->user_segptr, M_SCSIPASS);
1176 io_req->user_segptr = NULL;
1177 }
1178
1179 /*
1180 * We only want to free memory we malloced.
1181 */
1182 if (io_req->data_flags == CAM_DATA_VADDR) {
1183 for (i = 0; i < io_req->num_bufs; i++) {
1184 if (io_req->kern_bufs[i] == NULL)
1185 continue;
1186
1187 free(io_req->kern_bufs[i], M_SCSIPASS);
1188 io_req->kern_bufs[i] = NULL;
1189 }
1190 } else if (io_req->data_flags == CAM_DATA_SG) {
1191 for (i = 0; i < io_req->num_kern_segs; i++) {
1192 if ((uint8_t *)(uintptr_t)
1193 io_req->kern_segptr[i].ds_addr == NULL)
1194 continue;
1195
1196 uma_zfree(softc->pass_io_zone, (uint8_t *)(uintptr_t)
1197 io_req->kern_segptr[i].ds_addr);
1198 io_req->kern_segptr[i].ds_addr = 0;
1199 }
1200 }
1201
1202 if (io_req->flags & PASS_IO_KERN_SEG_MALLOC) {
1203 free(io_req->kern_segptr, M_SCSIPASS);
1204 io_req->kern_segptr = NULL;
1205 }
1206
1207 if (io_req->data_flags != CAM_DATA_PADDR) {
1208 for (i = 0; i < numbufs; i++) {
1209 /*
1210 * Restore the user's buffer pointers to their
1211 * previous values.
1212 */
1213 if (io_req->user_bufs[i] != NULL)
1214 *data_ptrs[i] = io_req->user_bufs[i];
1215 }
1216 }
1217
1218 }
1219
1220 static int
passcopysglist(struct cam_periph * periph,struct pass_io_req * io_req,ccb_flags direction)1221 passcopysglist(struct cam_periph *periph, struct pass_io_req *io_req,
1222 ccb_flags direction)
1223 {
1224 bus_size_t kern_watermark, user_watermark, len_to_copy;
1225 bus_dma_segment_t *user_sglist, *kern_sglist;
1226 int i, j, error;
1227
1228 error = 0;
1229 kern_watermark = 0;
1230 user_watermark = 0;
1231 len_to_copy = 0;
1232 user_sglist = io_req->user_segptr;
1233 kern_sglist = io_req->kern_segptr;
1234
1235 for (i = 0, j = 0; i < io_req->num_user_segs &&
1236 j < io_req->num_kern_segs;) {
1237 uint8_t *user_ptr, *kern_ptr;
1238
1239 len_to_copy = min(user_sglist[i].ds_len -user_watermark,
1240 kern_sglist[j].ds_len - kern_watermark);
1241
1242 user_ptr = (uint8_t *)(uintptr_t)user_sglist[i].ds_addr;
1243 user_ptr = user_ptr + user_watermark;
1244 kern_ptr = (uint8_t *)(uintptr_t)kern_sglist[j].ds_addr;
1245 kern_ptr = kern_ptr + kern_watermark;
1246
1247 user_watermark += len_to_copy;
1248 kern_watermark += len_to_copy;
1249
1250 if (direction == CAM_DIR_IN) {
1251 error = copyout(kern_ptr, user_ptr, len_to_copy);
1252 if (error != 0) {
1253 xpt_print(periph->path, "%s: copyout of %u "
1254 "bytes from %p to %p failed with "
1255 "error %d\n", __func__, len_to_copy,
1256 kern_ptr, user_ptr, error);
1257 goto bailout;
1258 }
1259 } else {
1260 error = copyin(user_ptr, kern_ptr, len_to_copy);
1261 if (error != 0) {
1262 xpt_print(periph->path, "%s: copyin of %u "
1263 "bytes from %p to %p failed with "
1264 "error %d\n", __func__, len_to_copy,
1265 user_ptr, kern_ptr, error);
1266 goto bailout;
1267 }
1268 }
1269
1270 if (user_sglist[i].ds_len == user_watermark) {
1271 i++;
1272 user_watermark = 0;
1273 }
1274
1275 if (kern_sglist[j].ds_len == kern_watermark) {
1276 j++;
1277 kern_watermark = 0;
1278 }
1279 }
1280
1281 bailout:
1282
1283 return (error);
1284 }
1285
1286 static int
passmemsetup(struct cam_periph * periph,struct pass_io_req * io_req)1287 passmemsetup(struct cam_periph *periph, struct pass_io_req *io_req)
1288 {
1289 union ccb *ccb;
1290 struct ccb_hdr *hdr;
1291 struct pass_softc *softc;
1292 int numbufs, i;
1293 uint8_t **data_ptrs[CAM_PERIPH_MAXMAPS];
1294 uint32_t lengths[CAM_PERIPH_MAXMAPS];
1295 uint32_t dirs[CAM_PERIPH_MAXMAPS];
1296 uint32_t num_segs;
1297 uint16_t *seg_cnt_ptr;
1298 size_t maxmap;
1299 int error;
1300
1301 cam_periph_assert(periph, MA_NOTOWNED);
1302
1303 softc = periph->softc;
1304
1305 error = 0;
1306 ccb = &io_req->ccb;
1307 hdr = &ccb->ccb_h;
1308 maxmap = 0;
1309 num_segs = 0;
1310 seg_cnt_ptr = NULL;
1311
1312 switch(hdr->func_code) {
1313 case XPT_DEV_MATCH:
1314 if (ccb->cdm.match_buf_len == 0) {
1315 printf("%s: invalid match buffer length 0\n", __func__);
1316 return(EINVAL);
1317 }
1318 if (ccb->cdm.pattern_buf_len > 0) {
1319 data_ptrs[0] = (uint8_t **)&ccb->cdm.patterns;
1320 lengths[0] = ccb->cdm.pattern_buf_len;
1321 dirs[0] = CAM_DIR_OUT;
1322 data_ptrs[1] = (uint8_t **)&ccb->cdm.matches;
1323 lengths[1] = ccb->cdm.match_buf_len;
1324 dirs[1] = CAM_DIR_IN;
1325 numbufs = 2;
1326 } else {
1327 data_ptrs[0] = (uint8_t **)&ccb->cdm.matches;
1328 lengths[0] = ccb->cdm.match_buf_len;
1329 dirs[0] = CAM_DIR_IN;
1330 numbufs = 1;
1331 }
1332 io_req->data_flags = CAM_DATA_VADDR;
1333 break;
1334 case XPT_SCSI_IO:
1335 case XPT_CONT_TARGET_IO:
1336 if ((hdr->flags & CAM_DIR_MASK) == CAM_DIR_NONE)
1337 return(0);
1338
1339 /*
1340 * The user shouldn't be able to supply a bio.
1341 */
1342 if ((hdr->flags & CAM_DATA_MASK) == CAM_DATA_BIO)
1343 return (EINVAL);
1344
1345 io_req->data_flags = hdr->flags & CAM_DATA_MASK;
1346
1347 data_ptrs[0] = &ccb->csio.data_ptr;
1348 lengths[0] = ccb->csio.dxfer_len;
1349 dirs[0] = hdr->flags & CAM_DIR_MASK;
1350 num_segs = ccb->csio.sglist_cnt;
1351 seg_cnt_ptr = &ccb->csio.sglist_cnt;
1352 numbufs = 1;
1353 maxmap = softc->maxio;
1354 break;
1355 case XPT_ATA_IO:
1356 if ((hdr->flags & CAM_DIR_MASK) == CAM_DIR_NONE)
1357 return(0);
1358
1359 /*
1360 * We only support a single virtual address for ATA I/O.
1361 */
1362 if ((hdr->flags & CAM_DATA_MASK) != CAM_DATA_VADDR)
1363 return (EINVAL);
1364
1365 io_req->data_flags = CAM_DATA_VADDR;
1366
1367 data_ptrs[0] = &ccb->ataio.data_ptr;
1368 lengths[0] = ccb->ataio.dxfer_len;
1369 dirs[0] = hdr->flags & CAM_DIR_MASK;
1370 numbufs = 1;
1371 maxmap = softc->maxio;
1372 break;
1373 case XPT_SMP_IO:
1374 io_req->data_flags = CAM_DATA_VADDR;
1375
1376 data_ptrs[0] = &ccb->smpio.smp_request;
1377 lengths[0] = ccb->smpio.smp_request_len;
1378 dirs[0] = CAM_DIR_OUT;
1379 data_ptrs[1] = &ccb->smpio.smp_response;
1380 lengths[1] = ccb->smpio.smp_response_len;
1381 dirs[1] = CAM_DIR_IN;
1382 numbufs = 2;
1383 maxmap = softc->maxio;
1384 break;
1385 case XPT_DEV_ADVINFO:
1386 if (ccb->cdai.bufsiz == 0)
1387 return (0);
1388
1389 io_req->data_flags = CAM_DATA_VADDR;
1390
1391 data_ptrs[0] = (uint8_t **)&ccb->cdai.buf;
1392 lengths[0] = ccb->cdai.bufsiz;
1393 dirs[0] = CAM_DIR_IN;
1394 numbufs = 1;
1395 break;
1396 case XPT_NVME_ADMIN:
1397 case XPT_NVME_IO:
1398 if ((hdr->flags & CAM_DIR_MASK) == CAM_DIR_NONE)
1399 return (0);
1400
1401 io_req->data_flags = hdr->flags & CAM_DATA_MASK;
1402
1403 data_ptrs[0] = &ccb->nvmeio.data_ptr;
1404 lengths[0] = ccb->nvmeio.dxfer_len;
1405 dirs[0] = hdr->flags & CAM_DIR_MASK;
1406 num_segs = ccb->nvmeio.sglist_cnt;
1407 seg_cnt_ptr = &ccb->nvmeio.sglist_cnt;
1408 numbufs = 1;
1409 maxmap = softc->maxio;
1410 break;
1411 default:
1412 return(EINVAL);
1413 break; /* NOTREACHED */
1414 }
1415
1416 io_req->num_bufs = numbufs;
1417
1418 /*
1419 * If there is a maximum, check to make sure that the user's
1420 * request fits within the limit. In general, we should only have
1421 * a maximum length for requests that go to hardware. Otherwise it
1422 * is whatever we're able to malloc.
1423 */
1424 for (i = 0; i < numbufs; i++) {
1425 io_req->user_bufs[i] = *data_ptrs[i];
1426 io_req->dirs[i] = dirs[i];
1427 io_req->lengths[i] = lengths[i];
1428
1429 if (maxmap == 0)
1430 continue;
1431
1432 if (lengths[i] <= maxmap)
1433 continue;
1434
1435 xpt_print(periph->path, "%s: data length %u > max allowed %u "
1436 "bytes\n", __func__, lengths[i], maxmap);
1437 error = EINVAL;
1438 goto bailout;
1439 }
1440
1441 switch (io_req->data_flags) {
1442 case CAM_DATA_VADDR:
1443 /* Map or copy the buffer into kernel address space */
1444 for (i = 0; i < numbufs; i++) {
1445 uint8_t *tmp_buf;
1446
1447 /*
1448 * If for some reason no length is specified, we
1449 * don't need to allocate anything.
1450 */
1451 if (io_req->lengths[i] == 0)
1452 continue;
1453
1454 tmp_buf = malloc(lengths[i], M_SCSIPASS,
1455 M_WAITOK | M_ZERO);
1456 io_req->kern_bufs[i] = tmp_buf;
1457 *data_ptrs[i] = tmp_buf;
1458
1459 #if 0
1460 xpt_print(periph->path, "%s: malloced %p len %u, user "
1461 "buffer %p, operation: %s\n", __func__,
1462 tmp_buf, lengths[i], io_req->user_bufs[i],
1463 (dirs[i] == CAM_DIR_IN) ? "read" : "write");
1464 #endif
1465 /*
1466 * We only need to copy in if the user is writing.
1467 */
1468 if (dirs[i] != CAM_DIR_OUT)
1469 continue;
1470
1471 error = copyin(io_req->user_bufs[i],
1472 io_req->kern_bufs[i], lengths[i]);
1473 if (error != 0) {
1474 xpt_print(periph->path, "%s: copy of user "
1475 "buffer from %p to %p failed with "
1476 "error %d\n", __func__,
1477 io_req->user_bufs[i],
1478 io_req->kern_bufs[i], error);
1479 goto bailout;
1480 }
1481 }
1482 break;
1483 case CAM_DATA_PADDR:
1484 /* Pass down the pointer as-is */
1485 break;
1486 case CAM_DATA_SG: {
1487 size_t sg_length, size_to_go, alloc_size;
1488 uint32_t num_segs_needed;
1489
1490 /*
1491 * Copy the user S/G list in, and then copy in the
1492 * individual segments.
1493 */
1494 /*
1495 * We shouldn't see this, but check just in case.
1496 */
1497 if (numbufs != 1) {
1498 xpt_print(periph->path, "%s: cannot currently handle "
1499 "more than one S/G list per CCB\n", __func__);
1500 error = EINVAL;
1501 goto bailout;
1502 }
1503
1504 /*
1505 * We have to have at least one segment.
1506 */
1507 if (num_segs == 0) {
1508 xpt_print(periph->path, "%s: CAM_DATA_SG flag set, "
1509 "but sglist_cnt=0!\n", __func__);
1510 error = EINVAL;
1511 goto bailout;
1512 }
1513
1514 /*
1515 * Make sure the user specified the total length and didn't
1516 * just leave it to us to decode the S/G list.
1517 */
1518 if (lengths[0] == 0) {
1519 xpt_print(periph->path, "%s: no dxfer_len specified, "
1520 "but CAM_DATA_SG flag is set!\n", __func__);
1521 error = EINVAL;
1522 goto bailout;
1523 }
1524
1525 /*
1526 * We allocate buffers in io_zone_size increments for an
1527 * S/G list. This will generally be maxphys.
1528 */
1529 if (lengths[0] <= softc->io_zone_size)
1530 num_segs_needed = 1;
1531 else {
1532 num_segs_needed = lengths[0] / softc->io_zone_size;
1533 if ((lengths[0] % softc->io_zone_size) != 0)
1534 num_segs_needed++;
1535 }
1536
1537 /* Figure out the size of the S/G list */
1538 sg_length = num_segs * sizeof(bus_dma_segment_t);
1539 io_req->num_user_segs = num_segs;
1540 io_req->num_kern_segs = num_segs_needed;
1541
1542 /* Save the user's S/G list pointer for later restoration */
1543 io_req->user_bufs[0] = *data_ptrs[0];
1544
1545 /*
1546 * If we have enough segments allocated by default to handle
1547 * the length of the user's S/G list,
1548 */
1549 if (num_segs > PASS_MAX_SEGS) {
1550 io_req->user_segptr = malloc(sizeof(bus_dma_segment_t) *
1551 num_segs, M_SCSIPASS, M_WAITOK | M_ZERO);
1552 io_req->flags |= PASS_IO_USER_SEG_MALLOC;
1553 } else
1554 io_req->user_segptr = io_req->user_segs;
1555
1556 error = copyin(*data_ptrs[0], io_req->user_segptr, sg_length);
1557 if (error != 0) {
1558 xpt_print(periph->path, "%s: copy of user S/G list "
1559 "from %p to %p failed with error %d\n",
1560 __func__, *data_ptrs[0], io_req->user_segptr,
1561 error);
1562 goto bailout;
1563 }
1564
1565 if (num_segs_needed > PASS_MAX_SEGS) {
1566 io_req->kern_segptr = malloc(sizeof(bus_dma_segment_t) *
1567 num_segs_needed, M_SCSIPASS, M_WAITOK | M_ZERO);
1568 io_req->flags |= PASS_IO_KERN_SEG_MALLOC;
1569 } else {
1570 io_req->kern_segptr = io_req->kern_segs;
1571 }
1572
1573 /*
1574 * Allocate the kernel S/G list.
1575 */
1576 for (size_to_go = lengths[0], i = 0;
1577 size_to_go > 0 && i < num_segs_needed;
1578 i++, size_to_go -= alloc_size) {
1579 uint8_t *kern_ptr;
1580
1581 alloc_size = min(size_to_go, softc->io_zone_size);
1582 kern_ptr = uma_zalloc(softc->pass_io_zone, M_WAITOK);
1583 io_req->kern_segptr[i].ds_addr =
1584 (bus_addr_t)(uintptr_t)kern_ptr;
1585 io_req->kern_segptr[i].ds_len = alloc_size;
1586 }
1587 if (size_to_go > 0) {
1588 printf("%s: size_to_go = %zu, software error!\n",
1589 __func__, size_to_go);
1590 error = EINVAL;
1591 goto bailout;
1592 }
1593
1594 *data_ptrs[0] = (uint8_t *)io_req->kern_segptr;
1595 *seg_cnt_ptr = io_req->num_kern_segs;
1596
1597 /*
1598 * We only need to copy data here if the user is writing.
1599 */
1600 if (dirs[0] == CAM_DIR_OUT)
1601 error = passcopysglist(periph, io_req, dirs[0]);
1602 break;
1603 }
1604 case CAM_DATA_SG_PADDR: {
1605 size_t sg_length;
1606
1607 /*
1608 * We shouldn't see this, but check just in case.
1609 */
1610 if (numbufs != 1) {
1611 printf("%s: cannot currently handle more than one "
1612 "S/G list per CCB\n", __func__);
1613 error = EINVAL;
1614 goto bailout;
1615 }
1616
1617 /*
1618 * We have to have at least one segment.
1619 */
1620 if (num_segs == 0) {
1621 xpt_print(periph->path, "%s: CAM_DATA_SG_PADDR flag "
1622 "set, but sglist_cnt=0!\n", __func__);
1623 error = EINVAL;
1624 goto bailout;
1625 }
1626
1627 /*
1628 * Make sure the user specified the total length and didn't
1629 * just leave it to us to decode the S/G list.
1630 */
1631 if (lengths[0] == 0) {
1632 xpt_print(periph->path, "%s: no dxfer_len specified, "
1633 "but CAM_DATA_SG flag is set!\n", __func__);
1634 error = EINVAL;
1635 goto bailout;
1636 }
1637
1638 /* Figure out the size of the S/G list */
1639 sg_length = num_segs * sizeof(bus_dma_segment_t);
1640 io_req->num_user_segs = num_segs;
1641 io_req->num_kern_segs = io_req->num_user_segs;
1642
1643 /* Save the user's S/G list pointer for later restoration */
1644 io_req->user_bufs[0] = *data_ptrs[0];
1645
1646 if (num_segs > PASS_MAX_SEGS) {
1647 io_req->user_segptr = malloc(sizeof(bus_dma_segment_t) *
1648 num_segs, M_SCSIPASS, M_WAITOK | M_ZERO);
1649 io_req->flags |= PASS_IO_USER_SEG_MALLOC;
1650 } else
1651 io_req->user_segptr = io_req->user_segs;
1652
1653 io_req->kern_segptr = io_req->user_segptr;
1654
1655 error = copyin(*data_ptrs[0], io_req->user_segptr, sg_length);
1656 if (error != 0) {
1657 xpt_print(periph->path, "%s: copy of user S/G list "
1658 "from %p to %p failed with error %d\n",
1659 __func__, *data_ptrs[0], io_req->user_segptr,
1660 error);
1661 goto bailout;
1662 }
1663 break;
1664 }
1665 default:
1666 case CAM_DATA_BIO:
1667 /*
1668 * A user shouldn't be attaching a bio to the CCB. It
1669 * isn't a user-accessible structure.
1670 */
1671 error = EINVAL;
1672 break;
1673 }
1674
1675 bailout:
1676 if (error != 0)
1677 passiocleanup(softc, io_req);
1678
1679 return (error);
1680 }
1681
1682 static int
passmemdone(struct cam_periph * periph,struct pass_io_req * io_req)1683 passmemdone(struct cam_periph *periph, struct pass_io_req *io_req)
1684 {
1685 struct pass_softc *softc;
1686 int error;
1687 int i;
1688
1689 error = 0;
1690 softc = (struct pass_softc *)periph->softc;
1691
1692 switch (io_req->data_flags) {
1693 case CAM_DATA_VADDR:
1694 /*
1695 * Copy back to the user buffer if this was a read.
1696 */
1697 for (i = 0; i < io_req->num_bufs; i++) {
1698 if (io_req->dirs[i] != CAM_DIR_IN)
1699 continue;
1700
1701 error = copyout(io_req->kern_bufs[i],
1702 io_req->user_bufs[i], io_req->lengths[i]);
1703 if (error != 0) {
1704 xpt_print(periph->path, "Unable to copy %u "
1705 "bytes from %p to user address %p\n",
1706 io_req->lengths[i],
1707 io_req->kern_bufs[i],
1708 io_req->user_bufs[i]);
1709 goto bailout;
1710 }
1711 }
1712 break;
1713 case CAM_DATA_PADDR:
1714 /* Do nothing. The pointer is a physical address already */
1715 break;
1716 case CAM_DATA_SG:
1717 /*
1718 * Copy back to the user buffer if this was a read.
1719 * Restore the user's S/G list buffer pointer.
1720 */
1721 if (io_req->dirs[0] == CAM_DIR_IN)
1722 error = passcopysglist(periph, io_req, io_req->dirs[0]);
1723 break;
1724 case CAM_DATA_SG_PADDR:
1725 /*
1726 * Restore the user's S/G list buffer pointer. No need to
1727 * copy.
1728 */
1729 break;
1730 default:
1731 case CAM_DATA_BIO:
1732 error = EINVAL;
1733 break;
1734 }
1735
1736 bailout:
1737 /*
1738 * Reset the user's pointers to their original values and free
1739 * allocated memory.
1740 */
1741 passiocleanup(softc, io_req);
1742
1743 return (error);
1744 }
1745
1746 static int
passioctl(struct cdev * dev,u_long cmd,caddr_t addr,int flag,struct thread * td)1747 passioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
1748 {
1749 int error;
1750
1751 if ((error = passdoioctl(dev, cmd, addr, flag, td)) == ENOTTY) {
1752 error = cam_compat_ioctl(dev, cmd, addr, flag, td, passdoioctl);
1753 }
1754 return (error);
1755 }
1756
1757 static int
passdoioctl(struct cdev * dev,u_long cmd,caddr_t addr,int flag,struct thread * td)1758 passdoioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
1759 {
1760 struct cam_periph *periph;
1761 struct pass_softc *softc;
1762 int error;
1763 uint32_t priority;
1764
1765 periph = (struct cam_periph *)dev->si_drv1;
1766 cam_periph_lock(periph);
1767 softc = (struct pass_softc *)periph->softc;
1768
1769 error = 0;
1770
1771 switch (cmd) {
1772 case CAMIOCOMMAND:
1773 {
1774 union ccb *inccb;
1775 union ccb *ccb;
1776 int ccb_malloced;
1777
1778 inccb = (union ccb *)addr;
1779 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
1780 if (inccb->ccb_h.func_code == XPT_SCSI_IO)
1781 inccb->csio.bio = NULL;
1782 #endif
1783
1784 if (inccb->ccb_h.flags & CAM_UNLOCKED) {
1785 error = EINVAL;
1786 break;
1787 }
1788
1789 /*
1790 * Some CCB types, like scan bus and scan lun can only go
1791 * through the transport layer device.
1792 */
1793 if (inccb->ccb_h.func_code & XPT_FC_XPT_ONLY) {
1794 xpt_print(periph->path, "CCB function code %#x is "
1795 "restricted to the XPT device\n",
1796 inccb->ccb_h.func_code);
1797 error = ENODEV;
1798 break;
1799 }
1800
1801 /* Compatibility for RL/priority-unaware code. */
1802 priority = inccb->ccb_h.pinfo.priority;
1803 if (priority <= CAM_PRIORITY_OOB)
1804 priority += CAM_PRIORITY_OOB + 1;
1805
1806 /*
1807 * Non-immediate CCBs need a CCB from the per-device pool
1808 * of CCBs, which is scheduled by the transport layer.
1809 * Immediate CCBs and user-supplied CCBs should just be
1810 * malloced.
1811 */
1812 if ((inccb->ccb_h.func_code & XPT_FC_QUEUED)
1813 && ((inccb->ccb_h.func_code & XPT_FC_USER_CCB) == 0)) {
1814 ccb = cam_periph_getccb(periph, priority);
1815 ccb_malloced = 0;
1816 } else {
1817 ccb = xpt_alloc_ccb_nowait();
1818
1819 if (ccb != NULL)
1820 xpt_setup_ccb(&ccb->ccb_h, periph->path,
1821 priority);
1822 ccb_malloced = 1;
1823 }
1824
1825 if (ccb == NULL) {
1826 xpt_print(periph->path, "unable to allocate CCB\n");
1827 error = ENOMEM;
1828 break;
1829 }
1830
1831 error = passsendccb(periph, ccb, inccb);
1832
1833 if (ccb_malloced)
1834 xpt_free_ccb(ccb);
1835 else
1836 xpt_release_ccb(ccb);
1837
1838 break;
1839 }
1840 case CAMIOQUEUE:
1841 {
1842 struct pass_io_req *io_req;
1843 union ccb **user_ccb, *ccb;
1844 xpt_opcode fc;
1845
1846 #ifdef COMPAT_FREEBSD32
1847 if (SV_PROC_FLAG(td->td_proc, SV_ILP32)) {
1848 error = ENOTTY;
1849 goto bailout;
1850 }
1851 #endif
1852 if ((softc->flags & PASS_FLAG_ZONE_VALID) == 0) {
1853 error = passcreatezone(periph);
1854 if (error != 0)
1855 goto bailout;
1856 }
1857
1858 /*
1859 * We're going to do a blocking allocation for this I/O
1860 * request, so we have to drop the lock.
1861 */
1862 cam_periph_unlock(periph);
1863
1864 io_req = uma_zalloc(softc->pass_zone, M_WAITOK | M_ZERO);
1865 ccb = &io_req->ccb;
1866 user_ccb = (union ccb **)addr;
1867
1868 /*
1869 * Unlike the CAMIOCOMMAND ioctl above, we only have a
1870 * pointer to the user's CCB, so we have to copy the whole
1871 * thing in to a buffer we have allocated (above) instead
1872 * of allowing the ioctl code to malloc a buffer and copy
1873 * it in.
1874 *
1875 * This is an advantage for this asynchronous interface,
1876 * since we don't want the memory to get freed while the
1877 * CCB is outstanding.
1878 */
1879 #if 0
1880 xpt_print(periph->path, "Copying user CCB %p to "
1881 "kernel address %p\n", *user_ccb, ccb);
1882 #endif
1883 error = copyin(*user_ccb, ccb, sizeof(*ccb));
1884 if (error != 0) {
1885 xpt_print(periph->path, "Copy of user CCB %p to "
1886 "kernel address %p failed with error %d\n",
1887 *user_ccb, ccb, error);
1888 goto camioqueue_error;
1889 }
1890 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
1891 if (ccb->ccb_h.func_code == XPT_SCSI_IO)
1892 ccb->csio.bio = NULL;
1893 #endif
1894
1895 if (ccb->ccb_h.flags & CAM_UNLOCKED) {
1896 error = EINVAL;
1897 goto camioqueue_error;
1898 }
1899
1900 if (ccb->ccb_h.flags & CAM_CDB_POINTER) {
1901 if (ccb->csio.cdb_len > IOCDBLEN) {
1902 error = EINVAL;
1903 goto camioqueue_error;
1904 }
1905 error = copyin(ccb->csio.cdb_io.cdb_ptr,
1906 ccb->csio.cdb_io.cdb_bytes, ccb->csio.cdb_len);
1907 if (error != 0)
1908 goto camioqueue_error;
1909 ccb->ccb_h.flags &= ~CAM_CDB_POINTER;
1910 }
1911
1912 /*
1913 * Some CCB types, like scan bus and scan lun can only go
1914 * through the transport layer device.
1915 */
1916 if (ccb->ccb_h.func_code & XPT_FC_XPT_ONLY) {
1917 xpt_print(periph->path, "CCB function code %#x is "
1918 "restricted to the XPT device\n",
1919 ccb->ccb_h.func_code);
1920 error = ENODEV;
1921 goto camioqueue_error;
1922 }
1923
1924 /*
1925 * Save the user's CCB pointer as well as his linked list
1926 * pointers and peripheral private area so that we can
1927 * restore these later.
1928 */
1929 io_req->user_ccb_ptr = *user_ccb;
1930 io_req->user_periph_links = ccb->ccb_h.periph_links;
1931 io_req->user_periph_priv = ccb->ccb_h.periph_priv;
1932
1933 /*
1934 * Now that we've saved the user's values, we can set our
1935 * own peripheral private entry.
1936 */
1937 ccb->ccb_h.ccb_ioreq = io_req;
1938
1939 /* Compatibility for RL/priority-unaware code. */
1940 priority = ccb->ccb_h.pinfo.priority;
1941 if (priority <= CAM_PRIORITY_OOB)
1942 priority += CAM_PRIORITY_OOB + 1;
1943
1944 /*
1945 * Setup fields in the CCB like the path and the priority.
1946 * The path in particular cannot be done in userland, since
1947 * it is a pointer to a kernel data structure.
1948 */
1949 xpt_setup_ccb_flags(&ccb->ccb_h, periph->path, priority,
1950 ccb->ccb_h.flags);
1951
1952 /*
1953 * Setup our done routine. There is no way for the user to
1954 * have a valid pointer here.
1955 */
1956 ccb->ccb_h.cbfcnp = passdone;
1957
1958 fc = ccb->ccb_h.func_code;
1959 /*
1960 * If this function code has memory that can be mapped in
1961 * or out, we need to call passmemsetup().
1962 */
1963 if ((fc == XPT_SCSI_IO) || (fc == XPT_ATA_IO)
1964 || (fc == XPT_SMP_IO) || (fc == XPT_DEV_MATCH)
1965 || (fc == XPT_DEV_ADVINFO)
1966 || (fc == XPT_NVME_ADMIN) || (fc == XPT_NVME_IO)) {
1967 error = passmemsetup(periph, io_req);
1968 if (error != 0)
1969 goto camioqueue_error;
1970 } else
1971 io_req->mapinfo.num_bufs_used = 0;
1972
1973 cam_periph_lock(periph);
1974
1975 /*
1976 * Everything goes on the incoming queue initially.
1977 */
1978 TAILQ_INSERT_TAIL(&softc->incoming_queue, io_req, links);
1979
1980 /*
1981 * If the CCB is queued, and is not a user CCB, then
1982 * we need to allocate a slot for it. Call xpt_schedule()
1983 * so that our start routine will get called when a CCB is
1984 * available.
1985 */
1986 if ((fc & XPT_FC_QUEUED)
1987 && ((fc & XPT_FC_USER_CCB) == 0)) {
1988 xpt_schedule(periph, priority);
1989 break;
1990 }
1991
1992 /*
1993 * At this point, the CCB in question is either an
1994 * immediate CCB (like XPT_DEV_ADVINFO) or it is a user CCB
1995 * and therefore should be malloced, not allocated via a slot.
1996 * Remove the CCB from the incoming queue and add it to the
1997 * active queue.
1998 */
1999 TAILQ_REMOVE(&softc->incoming_queue, io_req, links);
2000 TAILQ_INSERT_TAIL(&softc->active_queue, io_req, links);
2001
2002 xpt_action(ccb);
2003
2004 /*
2005 * If this is not a queued CCB (i.e. it is an immediate CCB),
2006 * then it is already done. We need to put it on the done
2007 * queue for the user to fetch.
2008 */
2009 if ((fc & XPT_FC_QUEUED) == 0) {
2010 TAILQ_REMOVE(&softc->active_queue, io_req, links);
2011 TAILQ_INSERT_TAIL(&softc->done_queue, io_req, links);
2012 }
2013 break;
2014
2015 camioqueue_error:
2016 uma_zfree(softc->pass_zone, io_req);
2017 cam_periph_lock(periph);
2018 break;
2019 }
2020 case CAMIOGET:
2021 {
2022 union ccb **user_ccb;
2023 struct pass_io_req *io_req;
2024 int old_error;
2025
2026 #ifdef COMPAT_FREEBSD32
2027 if (SV_PROC_FLAG(td->td_proc, SV_ILP32)) {
2028 error = ENOTTY;
2029 goto bailout;
2030 }
2031 #endif
2032 user_ccb = (union ccb **)addr;
2033 old_error = 0;
2034
2035 io_req = TAILQ_FIRST(&softc->done_queue);
2036 if (io_req == NULL) {
2037 error = ENOENT;
2038 break;
2039 }
2040
2041 /*
2042 * Remove the I/O from the done queue.
2043 */
2044 TAILQ_REMOVE(&softc->done_queue, io_req, links);
2045
2046 /*
2047 * We have to drop the lock during the copyout because the
2048 * copyout can result in VM faults that require sleeping.
2049 */
2050 cam_periph_unlock(periph);
2051
2052 /*
2053 * Do any needed copies (e.g. for reads) and revert the
2054 * pointers in the CCB back to the user's pointers.
2055 */
2056 error = passmemdone(periph, io_req);
2057
2058 old_error = error;
2059
2060 io_req->ccb.ccb_h.periph_links = io_req->user_periph_links;
2061 io_req->ccb.ccb_h.periph_priv = io_req->user_periph_priv;
2062
2063 #if 0
2064 xpt_print(periph->path, "Copying to user CCB %p from "
2065 "kernel address %p\n", *user_ccb, &io_req->ccb);
2066 #endif
2067
2068 error = copyout(&io_req->ccb, *user_ccb, sizeof(union ccb));
2069 if (error != 0) {
2070 xpt_print(periph->path, "Copy to user CCB %p from "
2071 "kernel address %p failed with error %d\n",
2072 *user_ccb, &io_req->ccb, error);
2073 }
2074
2075 /*
2076 * Prefer the first error we got back, and make sure we
2077 * don't overwrite bad status with good.
2078 */
2079 if (old_error != 0)
2080 error = old_error;
2081
2082 cam_periph_lock(periph);
2083
2084 /*
2085 * At this point, if there was an error, we could potentially
2086 * re-queue the I/O and try again. But why? The error
2087 * would almost certainly happen again. We might as well
2088 * not leak memory.
2089 */
2090 uma_zfree(softc->pass_zone, io_req);
2091 break;
2092 }
2093 default:
2094 error = cam_periph_ioctl(periph, cmd, addr, passerror);
2095 break;
2096 }
2097
2098 bailout:
2099 cam_periph_unlock(periph);
2100
2101 return(error);
2102 }
2103
2104 static int
passpoll(struct cdev * dev,int poll_events,struct thread * td)2105 passpoll(struct cdev *dev, int poll_events, struct thread *td)
2106 {
2107 struct cam_periph *periph;
2108 struct pass_softc *softc;
2109 int revents;
2110
2111 periph = (struct cam_periph *)dev->si_drv1;
2112 softc = (struct pass_softc *)periph->softc;
2113
2114 revents = poll_events & (POLLOUT | POLLWRNORM);
2115 if ((poll_events & (POLLIN | POLLRDNORM)) != 0) {
2116 cam_periph_lock(periph);
2117
2118 if (!TAILQ_EMPTY(&softc->done_queue)) {
2119 revents |= poll_events & (POLLIN | POLLRDNORM);
2120 }
2121 cam_periph_unlock(periph);
2122 if (revents == 0)
2123 selrecord(td, &softc->read_select);
2124 }
2125
2126 return (revents);
2127 }
2128
2129 static int
passkqfilter(struct cdev * dev,struct knote * kn)2130 passkqfilter(struct cdev *dev, struct knote *kn)
2131 {
2132 struct cam_periph *periph;
2133 struct pass_softc *softc;
2134
2135 periph = (struct cam_periph *)dev->si_drv1;
2136 softc = (struct pass_softc *)periph->softc;
2137
2138 kn->kn_hook = (caddr_t)periph;
2139 kn->kn_fop = &passread_filtops;
2140 knlist_add(&softc->read_select.si_note, kn, 0);
2141
2142 return (0);
2143 }
2144
2145 static void
passreadfiltdetach(struct knote * kn)2146 passreadfiltdetach(struct knote *kn)
2147 {
2148 struct cam_periph *periph;
2149 struct pass_softc *softc;
2150
2151 periph = (struct cam_periph *)kn->kn_hook;
2152 softc = (struct pass_softc *)periph->softc;
2153
2154 knlist_remove(&softc->read_select.si_note, kn, 0);
2155 }
2156
2157 static int
passreadfilt(struct knote * kn,long hint)2158 passreadfilt(struct knote *kn, long hint)
2159 {
2160 struct cam_periph *periph;
2161 struct pass_softc *softc;
2162 int retval;
2163
2164 periph = (struct cam_periph *)kn->kn_hook;
2165 softc = (struct pass_softc *)periph->softc;
2166
2167 cam_periph_assert(periph, MA_OWNED);
2168
2169 if (TAILQ_EMPTY(&softc->done_queue))
2170 retval = 0;
2171 else
2172 retval = 1;
2173
2174 return (retval);
2175 }
2176
2177 /*
2178 * Generally, "ccb" should be the CCB supplied by the kernel. "inccb"
2179 * should be the CCB that is copied in from the user.
2180 */
2181 static int
passsendccb(struct cam_periph * periph,union ccb * ccb,union ccb * inccb)2182 passsendccb(struct cam_periph *periph, union ccb *ccb, union ccb *inccb)
2183 {
2184 struct pass_softc *softc;
2185 struct cam_periph_map_info mapinfo;
2186 uint8_t *cmd;
2187 xpt_opcode fc;
2188 int error;
2189
2190 softc = (struct pass_softc *)periph->softc;
2191
2192 /*
2193 * There are some fields in the CCB header that need to be
2194 * preserved, the rest we get from the user.
2195 */
2196 xpt_merge_ccb(ccb, inccb);
2197
2198 if (ccb->ccb_h.flags & CAM_CDB_POINTER) {
2199 cmd = __builtin_alloca(ccb->csio.cdb_len);
2200 error = copyin(ccb->csio.cdb_io.cdb_ptr, cmd, ccb->csio.cdb_len);
2201 if (error)
2202 return (error);
2203 ccb->csio.cdb_io.cdb_ptr = cmd;
2204 }
2205
2206 /*
2207 * Let cam_periph_mapmem do a sanity check on the data pointer format.
2208 * Even if no data transfer is needed, it's a cheap check and it
2209 * simplifies the code.
2210 */
2211 fc = ccb->ccb_h.func_code;
2212 if ((fc == XPT_SCSI_IO) || (fc == XPT_ATA_IO) || (fc == XPT_SMP_IO)
2213 || (fc == XPT_DEV_MATCH) || (fc == XPT_DEV_ADVINFO) || (fc == XPT_MMC_IO)
2214 || (fc == XPT_NVME_ADMIN) || (fc == XPT_NVME_IO)) {
2215 bzero(&mapinfo, sizeof(mapinfo));
2216
2217 /*
2218 * cam_periph_mapmem calls into proc and vm functions that can
2219 * sleep as well as trigger I/O, so we can't hold the lock.
2220 * Dropping it here is reasonably safe.
2221 */
2222 cam_periph_unlock(periph);
2223 error = cam_periph_mapmem(ccb, &mapinfo, softc->maxio);
2224 cam_periph_lock(periph);
2225
2226 /*
2227 * cam_periph_mapmem returned an error, we can't continue.
2228 * Return the error to the user.
2229 */
2230 if (error)
2231 return(error);
2232 } else
2233 /* Ensure that the unmap call later on is a no-op. */
2234 mapinfo.num_bufs_used = 0;
2235
2236 /*
2237 * If the user wants us to perform any error recovery, then honor
2238 * that request. Otherwise, it's up to the user to perform any
2239 * error recovery.
2240 */
2241 {
2242 uint32_t cam_flags, sense_flags;
2243
2244 passflags(ccb, &cam_flags, &sense_flags);
2245 cam_periph_runccb(ccb, passerror, cam_flags,
2246 sense_flags, softc->device_stats);
2247 }
2248
2249 cam_periph_unlock(periph);
2250 error = cam_periph_unmapmem(ccb, &mapinfo);
2251 cam_periph_lock(periph);
2252
2253 ccb->ccb_h.cbfcnp = NULL;
2254 ccb->ccb_h.periph_priv = inccb->ccb_h.periph_priv;
2255 bcopy(ccb, inccb, sizeof(union ccb));
2256
2257 return (error);
2258 }
2259
2260 /*
2261 * Set the cam_flags and sense_flags based on whether or not the request wants
2262 * error recovery. In order to log errors via devctl, we need to do at least
2263 * minimal recovery. We do this by not retrying unit attention (we let the
2264 * requester do it, or not, if appropriate) and specifically asking for no
2265 * recovery, like we do during device probing.
2266 */
2267 static void
passflags(union ccb * ccb,uint32_t * cam_flags,uint32_t * sense_flags)2268 passflags(union ccb *ccb, uint32_t *cam_flags, uint32_t *sense_flags)
2269 {
2270 if ((ccb->ccb_h.flags & CAM_PASS_ERR_RECOVER) != 0) {
2271 *cam_flags = CAM_RETRY_SELTO;
2272 *sense_flags = SF_RETRY_UA | SF_NO_PRINT;
2273 } else {
2274 *cam_flags = 0;
2275 *sense_flags = SF_NO_RETRY | SF_NO_RECOVERY | SF_NO_PRINT;
2276 }
2277 }
2278
2279 static int
passerror(union ccb * ccb,uint32_t cam_flags,uint32_t sense_flags)2280 passerror(union ccb *ccb, uint32_t cam_flags, uint32_t sense_flags)
2281 {
2282
2283 return(cam_periph_error(ccb, cam_flags, sense_flags));
2284 }
2285