xref: /linux/mm/kasan/shadow.c (revision 8026aed072e1221f0a61e5acc48c64546341bd4d)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * This file contains KASAN runtime code that manages shadow memory for
4  * generic and software tag-based KASAN modes.
5  *
6  * Copyright (c) 2014 Samsung Electronics Co., Ltd.
7  * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com>
8  *
9  * Some code borrowed from https://github.com/xairy/kasan-prototype by
10  *        Andrey Konovalov <andreyknvl@gmail.com>
11  */
12 
13 #include <linux/init.h>
14 #include <linux/kasan.h>
15 #include <linux/kernel.h>
16 #include <linux/kfence.h>
17 #include <linux/kmemleak.h>
18 #include <linux/memory.h>
19 #include <linux/mm.h>
20 #include <linux/string.h>
21 #include <linux/types.h>
22 #include <linux/vmalloc.h>
23 
24 #include <asm/cacheflush.h>
25 #include <asm/tlbflush.h>
26 
27 #include "kasan.h"
28 
__kasan_check_read(const volatile void * p,unsigned int size)29 bool __kasan_check_read(const volatile void *p, unsigned int size)
30 {
31 	return kasan_check_range((void *)p, size, false, _RET_IP_);
32 }
33 EXPORT_SYMBOL(__kasan_check_read);
34 
__kasan_check_write(const volatile void * p,unsigned int size)35 bool __kasan_check_write(const volatile void *p, unsigned int size)
36 {
37 	return kasan_check_range((void *)p, size, true, _RET_IP_);
38 }
39 EXPORT_SYMBOL(__kasan_check_write);
40 
41 #if !defined(CONFIG_CC_HAS_KASAN_MEMINTRINSIC_PREFIX) && !defined(CONFIG_GENERIC_ENTRY)
42 /*
43  * CONFIG_GENERIC_ENTRY relies on compiler emitted mem*() calls to not be
44  * instrumented. KASAN enabled toolchains should emit __asan_mem*() functions
45  * for the sites they want to instrument.
46  *
47  * If we have a compiler that can instrument meminstrinsics, never override
48  * these, so that non-instrumented files can safely consider them as builtins.
49  */
50 #undef memset
memset(void * addr,int c,size_t len)51 void *memset(void *addr, int c, size_t len)
52 {
53 	if (!kasan_check_range(addr, len, true, _RET_IP_))
54 		return NULL;
55 
56 	return __memset(addr, c, len);
57 }
58 
59 #ifdef __HAVE_ARCH_MEMMOVE
60 #undef memmove
memmove(void * dest,const void * src,size_t len)61 void *memmove(void *dest, const void *src, size_t len)
62 {
63 	if (!kasan_check_range(src, len, false, _RET_IP_) ||
64 	    !kasan_check_range(dest, len, true, _RET_IP_))
65 		return NULL;
66 
67 	return __memmove(dest, src, len);
68 }
69 #endif
70 
71 #undef memcpy
memcpy(void * dest,const void * src,size_t len)72 void *memcpy(void *dest, const void *src, size_t len)
73 {
74 	if (!kasan_check_range(src, len, false, _RET_IP_) ||
75 	    !kasan_check_range(dest, len, true, _RET_IP_))
76 		return NULL;
77 
78 	return __memcpy(dest, src, len);
79 }
80 #endif
81 
__asan_memset(void * addr,int c,ssize_t len)82 void *__asan_memset(void *addr, int c, ssize_t len)
83 {
84 	if (!kasan_check_range(addr, len, true, _RET_IP_))
85 		return NULL;
86 
87 	return __memset(addr, c, len);
88 }
89 EXPORT_SYMBOL(__asan_memset);
90 
91 #ifdef __HAVE_ARCH_MEMMOVE
__asan_memmove(void * dest,const void * src,ssize_t len)92 void *__asan_memmove(void *dest, const void *src, ssize_t len)
93 {
94 	if (!kasan_check_range(src, len, false, _RET_IP_) ||
95 	    !kasan_check_range(dest, len, true, _RET_IP_))
96 		return NULL;
97 
98 	return __memmove(dest, src, len);
99 }
100 EXPORT_SYMBOL(__asan_memmove);
101 #endif
102 
__asan_memcpy(void * dest,const void * src,ssize_t len)103 void *__asan_memcpy(void *dest, const void *src, ssize_t len)
104 {
105 	if (!kasan_check_range(src, len, false, _RET_IP_) ||
106 	    !kasan_check_range(dest, len, true, _RET_IP_))
107 		return NULL;
108 
109 	return __memcpy(dest, src, len);
110 }
111 EXPORT_SYMBOL(__asan_memcpy);
112 
113 #ifdef CONFIG_KASAN_SW_TAGS
114 void *__hwasan_memset(void *addr, int c, ssize_t len) __alias(__asan_memset);
115 EXPORT_SYMBOL(__hwasan_memset);
116 #ifdef __HAVE_ARCH_MEMMOVE
117 void *__hwasan_memmove(void *dest, const void *src, ssize_t len) __alias(__asan_memmove);
118 EXPORT_SYMBOL(__hwasan_memmove);
119 #endif
120 void *__hwasan_memcpy(void *dest, const void *src, ssize_t len) __alias(__asan_memcpy);
121 EXPORT_SYMBOL(__hwasan_memcpy);
122 #endif
123 
kasan_poison(const void * addr,size_t size,u8 value,bool init)124 void kasan_poison(const void *addr, size_t size, u8 value, bool init)
125 {
126 	void *shadow_start, *shadow_end;
127 
128 	if (!kasan_arch_is_ready())
129 		return;
130 
131 	/*
132 	 * Perform shadow offset calculation based on untagged address, as
133 	 * some of the callers (e.g. kasan_poison_new_object) pass tagged
134 	 * addresses to this function.
135 	 */
136 	addr = kasan_reset_tag(addr);
137 
138 	if (WARN_ON((unsigned long)addr & KASAN_GRANULE_MASK))
139 		return;
140 	if (WARN_ON(size & KASAN_GRANULE_MASK))
141 		return;
142 
143 	shadow_start = kasan_mem_to_shadow(addr);
144 	shadow_end = kasan_mem_to_shadow(addr + size);
145 
146 	__memset(shadow_start, value, shadow_end - shadow_start);
147 }
148 EXPORT_SYMBOL_GPL(kasan_poison);
149 
150 #ifdef CONFIG_KASAN_GENERIC
kasan_poison_last_granule(const void * addr,size_t size)151 void kasan_poison_last_granule(const void *addr, size_t size)
152 {
153 	if (!kasan_arch_is_ready())
154 		return;
155 
156 	if (size & KASAN_GRANULE_MASK) {
157 		u8 *shadow = (u8 *)kasan_mem_to_shadow(addr + size);
158 		*shadow = size & KASAN_GRANULE_MASK;
159 	}
160 }
161 #endif
162 
kasan_unpoison(const void * addr,size_t size,bool init)163 void kasan_unpoison(const void *addr, size_t size, bool init)
164 {
165 	u8 tag = get_tag(addr);
166 
167 	/*
168 	 * Perform shadow offset calculation based on untagged address, as
169 	 * some of the callers (e.g. kasan_unpoison_new_object) pass tagged
170 	 * addresses to this function.
171 	 */
172 	addr = kasan_reset_tag(addr);
173 
174 	if (WARN_ON((unsigned long)addr & KASAN_GRANULE_MASK))
175 		return;
176 
177 	/* Unpoison all granules that cover the object. */
178 	kasan_poison(addr, round_up(size, KASAN_GRANULE_SIZE), tag, false);
179 
180 	/* Partially poison the last granule for the generic mode. */
181 	if (IS_ENABLED(CONFIG_KASAN_GENERIC))
182 		kasan_poison_last_granule(addr, size);
183 }
184 
185 #ifdef CONFIG_MEMORY_HOTPLUG
shadow_mapped(unsigned long addr)186 static bool shadow_mapped(unsigned long addr)
187 {
188 	pgd_t *pgd = pgd_offset_k(addr);
189 	p4d_t *p4d;
190 	pud_t *pud;
191 	pmd_t *pmd;
192 	pte_t *pte;
193 
194 	if (pgd_none(*pgd))
195 		return false;
196 	p4d = p4d_offset(pgd, addr);
197 	if (p4d_none(*p4d))
198 		return false;
199 	pud = pud_offset(p4d, addr);
200 	if (pud_none(*pud))
201 		return false;
202 	if (pud_leaf(*pud))
203 		return true;
204 	pmd = pmd_offset(pud, addr);
205 	if (pmd_none(*pmd))
206 		return false;
207 	if (pmd_leaf(*pmd))
208 		return true;
209 	pte = pte_offset_kernel(pmd, addr);
210 	return !pte_none(ptep_get(pte));
211 }
212 
kasan_mem_notifier(struct notifier_block * nb,unsigned long action,void * data)213 static int __meminit kasan_mem_notifier(struct notifier_block *nb,
214 			unsigned long action, void *data)
215 {
216 	struct memory_notify *mem_data = data;
217 	unsigned long nr_shadow_pages, start_kaddr, shadow_start;
218 	unsigned long shadow_end, shadow_size;
219 
220 	nr_shadow_pages = mem_data->nr_pages >> KASAN_SHADOW_SCALE_SHIFT;
221 	start_kaddr = (unsigned long)pfn_to_kaddr(mem_data->start_pfn);
222 	shadow_start = (unsigned long)kasan_mem_to_shadow((void *)start_kaddr);
223 	shadow_size = nr_shadow_pages << PAGE_SHIFT;
224 	shadow_end = shadow_start + shadow_size;
225 
226 	if (WARN_ON(mem_data->nr_pages % KASAN_GRANULE_SIZE) ||
227 		WARN_ON(start_kaddr % KASAN_MEMORY_PER_SHADOW_PAGE))
228 		return NOTIFY_BAD;
229 
230 	switch (action) {
231 	case MEM_GOING_ONLINE: {
232 		void *ret;
233 
234 		/*
235 		 * If shadow is mapped already than it must have been mapped
236 		 * during the boot. This could happen if we onlining previously
237 		 * offlined memory.
238 		 */
239 		if (shadow_mapped(shadow_start))
240 			return NOTIFY_OK;
241 
242 		ret = __vmalloc_node_range(shadow_size, PAGE_SIZE, shadow_start,
243 					shadow_end, GFP_KERNEL,
244 					PAGE_KERNEL, VM_NO_GUARD,
245 					pfn_to_nid(mem_data->start_pfn),
246 					__builtin_return_address(0));
247 		if (!ret)
248 			return NOTIFY_BAD;
249 
250 		kmemleak_ignore(ret);
251 		return NOTIFY_OK;
252 	}
253 	case MEM_CANCEL_ONLINE:
254 	case MEM_OFFLINE: {
255 		struct vm_struct *vm;
256 
257 		/*
258 		 * shadow_start was either mapped during boot by kasan_init()
259 		 * or during memory online by __vmalloc_node_range().
260 		 * In the latter case we can use vfree() to free shadow.
261 		 * Non-NULL result of the find_vm_area() will tell us if
262 		 * that was the second case.
263 		 *
264 		 * Currently it's not possible to free shadow mapped
265 		 * during boot by kasan_init(). It's because the code
266 		 * to do that hasn't been written yet. So we'll just
267 		 * leak the memory.
268 		 */
269 		vm = find_vm_area((void *)shadow_start);
270 		if (vm)
271 			vfree((void *)shadow_start);
272 	}
273 	}
274 
275 	return NOTIFY_OK;
276 }
277 
kasan_memhotplug_init(void)278 static int __init kasan_memhotplug_init(void)
279 {
280 	hotplug_memory_notifier(kasan_mem_notifier, DEFAULT_CALLBACK_PRI);
281 
282 	return 0;
283 }
284 
285 core_initcall(kasan_memhotplug_init);
286 #endif
287 
288 #ifdef CONFIG_KASAN_VMALLOC
289 
kasan_populate_early_vm_area_shadow(void * start,unsigned long size)290 void __init __weak kasan_populate_early_vm_area_shadow(void *start,
291 						       unsigned long size)
292 {
293 }
294 
295 struct vmalloc_populate_data {
296 	unsigned long start;
297 	struct page **pages;
298 };
299 
kasan_populate_vmalloc_pte(pte_t * ptep,unsigned long addr,void * _data)300 static int kasan_populate_vmalloc_pte(pte_t *ptep, unsigned long addr,
301 				      void *_data)
302 {
303 	struct vmalloc_populate_data *data = _data;
304 	struct page *page;
305 	pte_t pte;
306 	int index;
307 
308 	arch_leave_lazy_mmu_mode();
309 
310 	index = PFN_DOWN(addr - data->start);
311 	page = data->pages[index];
312 	__memset(page_to_virt(page), KASAN_VMALLOC_INVALID, PAGE_SIZE);
313 	pte = pfn_pte(page_to_pfn(page), PAGE_KERNEL);
314 
315 	spin_lock(&init_mm.page_table_lock);
316 	if (likely(pte_none(ptep_get(ptep)))) {
317 		set_pte_at(&init_mm, addr, ptep, pte);
318 		data->pages[index] = NULL;
319 	}
320 	spin_unlock(&init_mm.page_table_lock);
321 
322 	arch_enter_lazy_mmu_mode();
323 
324 	return 0;
325 }
326 
___free_pages_bulk(struct page ** pages,int nr_pages)327 static void ___free_pages_bulk(struct page **pages, int nr_pages)
328 {
329 	int i;
330 
331 	for (i = 0; i < nr_pages; i++) {
332 		if (pages[i]) {
333 			__free_pages(pages[i], 0);
334 			pages[i] = NULL;
335 		}
336 	}
337 }
338 
___alloc_pages_bulk(struct page ** pages,int nr_pages)339 static int ___alloc_pages_bulk(struct page **pages, int nr_pages)
340 {
341 	unsigned long nr_populated, nr_total = nr_pages;
342 	struct page **page_array = pages;
343 
344 	while (nr_pages) {
345 		nr_populated = alloc_pages_bulk(GFP_KERNEL, nr_pages, pages);
346 		if (!nr_populated) {
347 			___free_pages_bulk(page_array, nr_total - nr_pages);
348 			return -ENOMEM;
349 		}
350 		pages += nr_populated;
351 		nr_pages -= nr_populated;
352 	}
353 
354 	return 0;
355 }
356 
__kasan_populate_vmalloc(unsigned long start,unsigned long end)357 static int __kasan_populate_vmalloc(unsigned long start, unsigned long end)
358 {
359 	unsigned long nr_pages, nr_total = PFN_UP(end - start);
360 	struct vmalloc_populate_data data;
361 	int ret = 0;
362 
363 	data.pages = (struct page **)__get_free_page(GFP_KERNEL | __GFP_ZERO);
364 	if (!data.pages)
365 		return -ENOMEM;
366 
367 	while (nr_total) {
368 		nr_pages = min(nr_total, PAGE_SIZE / sizeof(data.pages[0]));
369 		ret = ___alloc_pages_bulk(data.pages, nr_pages);
370 		if (ret)
371 			break;
372 
373 		data.start = start;
374 		ret = apply_to_page_range(&init_mm, start, nr_pages * PAGE_SIZE,
375 					  kasan_populate_vmalloc_pte, &data);
376 		___free_pages_bulk(data.pages, nr_pages);
377 		if (ret)
378 			break;
379 
380 		start += nr_pages * PAGE_SIZE;
381 		nr_total -= nr_pages;
382 	}
383 
384 	free_page((unsigned long)data.pages);
385 
386 	return ret;
387 }
388 
kasan_populate_vmalloc(unsigned long addr,unsigned long size)389 int kasan_populate_vmalloc(unsigned long addr, unsigned long size)
390 {
391 	unsigned long shadow_start, shadow_end;
392 	int ret;
393 
394 	if (!kasan_arch_is_ready())
395 		return 0;
396 
397 	if (!is_vmalloc_or_module_addr((void *)addr))
398 		return 0;
399 
400 	shadow_start = (unsigned long)kasan_mem_to_shadow((void *)addr);
401 	shadow_end = (unsigned long)kasan_mem_to_shadow((void *)addr + size);
402 
403 	/*
404 	 * User Mode Linux maps enough shadow memory for all of virtual memory
405 	 * at boot, so doesn't need to allocate more on vmalloc, just clear it.
406 	 *
407 	 * The remaining CONFIG_UML checks in this file exist for the same
408 	 * reason.
409 	 */
410 	if (IS_ENABLED(CONFIG_UML)) {
411 		__memset((void *)shadow_start, KASAN_VMALLOC_INVALID, shadow_end - shadow_start);
412 		return 0;
413 	}
414 
415 	shadow_start = PAGE_ALIGN_DOWN(shadow_start);
416 	shadow_end = PAGE_ALIGN(shadow_end);
417 
418 	ret = __kasan_populate_vmalloc(shadow_start, shadow_end);
419 	if (ret)
420 		return ret;
421 
422 	flush_cache_vmap(shadow_start, shadow_end);
423 
424 	/*
425 	 * We need to be careful about inter-cpu effects here. Consider:
426 	 *
427 	 *   CPU#0				  CPU#1
428 	 * WRITE_ONCE(p, vmalloc(100));		while (x = READ_ONCE(p)) ;
429 	 *					p[99] = 1;
430 	 *
431 	 * With compiler instrumentation, that ends up looking like this:
432 	 *
433 	 *   CPU#0				  CPU#1
434 	 * // vmalloc() allocates memory
435 	 * // let a = area->addr
436 	 * // we reach kasan_populate_vmalloc
437 	 * // and call kasan_unpoison:
438 	 * STORE shadow(a), unpoison_val
439 	 * ...
440 	 * STORE shadow(a+99), unpoison_val	x = LOAD p
441 	 * // rest of vmalloc process		<data dependency>
442 	 * STORE p, a				LOAD shadow(x+99)
443 	 *
444 	 * If there is no barrier between the end of unpoisoning the shadow
445 	 * and the store of the result to p, the stores could be committed
446 	 * in a different order by CPU#0, and CPU#1 could erroneously observe
447 	 * poison in the shadow.
448 	 *
449 	 * We need some sort of barrier between the stores.
450 	 *
451 	 * In the vmalloc() case, this is provided by a smp_wmb() in
452 	 * clear_vm_uninitialized_flag(). In the per-cpu allocator and in
453 	 * get_vm_area() and friends, the caller gets shadow allocated but
454 	 * doesn't have any pages mapped into the virtual address space that
455 	 * has been reserved. Mapping those pages in will involve taking and
456 	 * releasing a page-table lock, which will provide the barrier.
457 	 */
458 
459 	return 0;
460 }
461 
kasan_depopulate_vmalloc_pte(pte_t * ptep,unsigned long addr,void * unused)462 static int kasan_depopulate_vmalloc_pte(pte_t *ptep, unsigned long addr,
463 					void *unused)
464 {
465 	pte_t pte;
466 	int none;
467 
468 	arch_leave_lazy_mmu_mode();
469 
470 	spin_lock(&init_mm.page_table_lock);
471 	pte = ptep_get(ptep);
472 	none = pte_none(pte);
473 	if (likely(!none))
474 		pte_clear(&init_mm, addr, ptep);
475 	spin_unlock(&init_mm.page_table_lock);
476 
477 	if (likely(!none))
478 		__free_page(pfn_to_page(pte_pfn(pte)));
479 
480 	arch_enter_lazy_mmu_mode();
481 
482 	return 0;
483 }
484 
485 /*
486  * Release the backing for the vmalloc region [start, end), which
487  * lies within the free region [free_region_start, free_region_end).
488  *
489  * This can be run lazily, long after the region was freed. It runs
490  * under vmap_area_lock, so it's not safe to interact with the vmalloc/vmap
491  * infrastructure.
492  *
493  * How does this work?
494  * -------------------
495  *
496  * We have a region that is page aligned, labeled as A.
497  * That might not map onto the shadow in a way that is page-aligned:
498  *
499  *                    start                     end
500  *                    v                         v
501  * |????????|????????|AAAAAAAA|AA....AA|AAAAAAAA|????????| < vmalloc
502  *  -------- -------- --------          -------- --------
503  *      |        |       |                 |        |
504  *      |        |       |         /-------/        |
505  *      \-------\|/------/         |/---------------/
506  *              |||                ||
507  *             |??AAAAAA|AAAAAAAA|AA??????|                < shadow
508  *                 (1)      (2)      (3)
509  *
510  * First we align the start upwards and the end downwards, so that the
511  * shadow of the region aligns with shadow page boundaries. In the
512  * example, this gives us the shadow page (2). This is the shadow entirely
513  * covered by this allocation.
514  *
515  * Then we have the tricky bits. We want to know if we can free the
516  * partially covered shadow pages - (1) and (3) in the example. For this,
517  * we are given the start and end of the free region that contains this
518  * allocation. Extending our previous example, we could have:
519  *
520  *  free_region_start                                    free_region_end
521  *  |                 start                     end      |
522  *  v                 v                         v        v
523  * |FFFFFFFF|FFFFFFFF|AAAAAAAA|AA....AA|AAAAAAAA|FFFFFFFF| < vmalloc
524  *  -------- -------- --------          -------- --------
525  *      |        |       |                 |        |
526  *      |        |       |         /-------/        |
527  *      \-------\|/------/         |/---------------/
528  *              |||                ||
529  *             |FFAAAAAA|AAAAAAAA|AAF?????|                < shadow
530  *                 (1)      (2)      (3)
531  *
532  * Once again, we align the start of the free region up, and the end of
533  * the free region down so that the shadow is page aligned. So we can free
534  * page (1) - we know no allocation currently uses anything in that page,
535  * because all of it is in the vmalloc free region. But we cannot free
536  * page (3), because we can't be sure that the rest of it is unused.
537  *
538  * We only consider pages that contain part of the original region for
539  * freeing: we don't try to free other pages from the free region or we'd
540  * end up trying to free huge chunks of virtual address space.
541  *
542  * Concurrency
543  * -----------
544  *
545  * How do we know that we're not freeing a page that is simultaneously
546  * being used for a fresh allocation in kasan_populate_vmalloc(_pte)?
547  *
548  * We _can_ have kasan_release_vmalloc and kasan_populate_vmalloc running
549  * at the same time. While we run under free_vmap_area_lock, the population
550  * code does not.
551  *
552  * free_vmap_area_lock instead operates to ensure that the larger range
553  * [free_region_start, free_region_end) is safe: because __alloc_vmap_area and
554  * the per-cpu region-finding algorithm both run under free_vmap_area_lock,
555  * no space identified as free will become used while we are running. This
556  * means that so long as we are careful with alignment and only free shadow
557  * pages entirely covered by the free region, we will not run in to any
558  * trouble - any simultaneous allocations will be for disjoint regions.
559  */
kasan_release_vmalloc(unsigned long start,unsigned long end,unsigned long free_region_start,unsigned long free_region_end,unsigned long flags)560 void kasan_release_vmalloc(unsigned long start, unsigned long end,
561 			   unsigned long free_region_start,
562 			   unsigned long free_region_end,
563 			   unsigned long flags)
564 {
565 	void *shadow_start, *shadow_end;
566 	unsigned long region_start, region_end;
567 	unsigned long size;
568 
569 	if (!kasan_arch_is_ready())
570 		return;
571 
572 	region_start = ALIGN(start, KASAN_MEMORY_PER_SHADOW_PAGE);
573 	region_end = ALIGN_DOWN(end, KASAN_MEMORY_PER_SHADOW_PAGE);
574 
575 	free_region_start = ALIGN(free_region_start, KASAN_MEMORY_PER_SHADOW_PAGE);
576 
577 	if (start != region_start &&
578 	    free_region_start < region_start)
579 		region_start -= KASAN_MEMORY_PER_SHADOW_PAGE;
580 
581 	free_region_end = ALIGN_DOWN(free_region_end, KASAN_MEMORY_PER_SHADOW_PAGE);
582 
583 	if (end != region_end &&
584 	    free_region_end > region_end)
585 		region_end += KASAN_MEMORY_PER_SHADOW_PAGE;
586 
587 	shadow_start = kasan_mem_to_shadow((void *)region_start);
588 	shadow_end = kasan_mem_to_shadow((void *)region_end);
589 
590 	if (shadow_end > shadow_start) {
591 		size = shadow_end - shadow_start;
592 		if (IS_ENABLED(CONFIG_UML)) {
593 			__memset(shadow_start, KASAN_SHADOW_INIT, shadow_end - shadow_start);
594 			return;
595 		}
596 
597 
598 		if (flags & KASAN_VMALLOC_PAGE_RANGE)
599 			apply_to_existing_page_range(&init_mm,
600 					     (unsigned long)shadow_start,
601 					     size, kasan_depopulate_vmalloc_pte,
602 					     NULL);
603 
604 		if (flags & KASAN_VMALLOC_TLB_FLUSH)
605 			flush_tlb_kernel_range((unsigned long)shadow_start,
606 					       (unsigned long)shadow_end);
607 	}
608 }
609 
__kasan_unpoison_vmalloc(const void * start,unsigned long size,kasan_vmalloc_flags_t flags)610 void *__kasan_unpoison_vmalloc(const void *start, unsigned long size,
611 			       kasan_vmalloc_flags_t flags)
612 {
613 	/*
614 	 * Software KASAN modes unpoison both VM_ALLOC and non-VM_ALLOC
615 	 * mappings, so the KASAN_VMALLOC_VM_ALLOC flag is ignored.
616 	 * Software KASAN modes can't optimize zeroing memory by combining it
617 	 * with setting memory tags, so the KASAN_VMALLOC_INIT flag is ignored.
618 	 */
619 
620 	if (!kasan_arch_is_ready())
621 		return (void *)start;
622 
623 	if (!is_vmalloc_or_module_addr(start))
624 		return (void *)start;
625 
626 	/*
627 	 * Don't tag executable memory with the tag-based mode.
628 	 * The kernel doesn't tolerate having the PC register tagged.
629 	 */
630 	if (IS_ENABLED(CONFIG_KASAN_SW_TAGS) &&
631 	    !(flags & KASAN_VMALLOC_PROT_NORMAL))
632 		return (void *)start;
633 
634 	start = set_tag(start, kasan_random_tag());
635 	kasan_unpoison(start, size, false);
636 	return (void *)start;
637 }
638 
639 /*
640  * Poison the shadow for a vmalloc region. Called as part of the
641  * freeing process at the time the region is freed.
642  */
__kasan_poison_vmalloc(const void * start,unsigned long size)643 void __kasan_poison_vmalloc(const void *start, unsigned long size)
644 {
645 	if (!kasan_arch_is_ready())
646 		return;
647 
648 	if (!is_vmalloc_or_module_addr(start))
649 		return;
650 
651 	size = round_up(size, KASAN_GRANULE_SIZE);
652 	kasan_poison(start, size, KASAN_VMALLOC_INVALID, false);
653 }
654 
655 #else /* CONFIG_KASAN_VMALLOC */
656 
kasan_alloc_module_shadow(void * addr,size_t size,gfp_t gfp_mask)657 int kasan_alloc_module_shadow(void *addr, size_t size, gfp_t gfp_mask)
658 {
659 	void *ret;
660 	size_t scaled_size;
661 	size_t shadow_size;
662 	unsigned long shadow_start;
663 
664 	shadow_start = (unsigned long)kasan_mem_to_shadow(addr);
665 	scaled_size = (size + KASAN_GRANULE_SIZE - 1) >>
666 				KASAN_SHADOW_SCALE_SHIFT;
667 	shadow_size = round_up(scaled_size, PAGE_SIZE);
668 
669 	if (WARN_ON(!PAGE_ALIGNED(shadow_start)))
670 		return -EINVAL;
671 
672 	if (IS_ENABLED(CONFIG_UML)) {
673 		__memset((void *)shadow_start, KASAN_SHADOW_INIT, shadow_size);
674 		return 0;
675 	}
676 
677 	ret = __vmalloc_node_range(shadow_size, 1, shadow_start,
678 			shadow_start + shadow_size,
679 			GFP_KERNEL,
680 			PAGE_KERNEL, VM_NO_GUARD, NUMA_NO_NODE,
681 			__builtin_return_address(0));
682 
683 	if (ret) {
684 		struct vm_struct *vm = find_vm_area(addr);
685 		__memset(ret, KASAN_SHADOW_INIT, shadow_size);
686 		vm->flags |= VM_KASAN;
687 		kmemleak_ignore(ret);
688 
689 		if (vm->flags & VM_DEFER_KMEMLEAK)
690 			kmemleak_vmalloc(vm, size, gfp_mask);
691 
692 		return 0;
693 	}
694 
695 	return -ENOMEM;
696 }
697 
kasan_free_module_shadow(const struct vm_struct * vm)698 void kasan_free_module_shadow(const struct vm_struct *vm)
699 {
700 	if (IS_ENABLED(CONFIG_UML))
701 		return;
702 
703 	if (vm->flags & VM_KASAN)
704 		vfree(kasan_mem_to_shadow(vm->addr));
705 }
706 
707 #endif
708