1 // Copyright 2005, Google Inc.
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 // * Redistributions of source code must retain the above copyright
9 // notice, this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above
11 // copyright notice, this list of conditions and the following disclaimer
12 // in the documentation and/or other materials provided with the
13 // distribution.
14 // * Neither the name of Google Inc. nor the names of its
15 // contributors may be used to endorse or promote products derived from
16 // this software without specific prior written permission.
17 //
18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29
30 // The Google C++ Testing and Mocking Framework (Google Test)
31 //
32 // This header file declares functions and macros used internally by
33 // Google Test. They are subject to change without notice.
34
35 // IWYU pragma: private, include "gtest/gtest.h"
36 // IWYU pragma: friend gtest/.*
37 // IWYU pragma: friend gmock/.*
38
39 #ifndef GOOGLETEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
40 #define GOOGLETEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
41
42 #include "gtest/internal/gtest-port.h"
43
44 #ifdef GTEST_OS_LINUX
45 #include <stdlib.h>
46 #include <sys/types.h>
47 #include <sys/wait.h>
48 #include <unistd.h>
49 #endif // GTEST_OS_LINUX
50
51 #if GTEST_HAS_EXCEPTIONS
52 #include <stdexcept>
53 #endif
54
55 #include <ctype.h>
56 #include <float.h>
57 #include <string.h>
58
59 #include <cstdint>
60 #include <functional>
61 #include <limits>
62 #include <map>
63 #include <set>
64 #include <string>
65 #include <type_traits>
66 #include <utility>
67 #include <vector>
68
69 #include "gtest/gtest-message.h"
70 #include "gtest/internal/gtest-filepath.h"
71 #include "gtest/internal/gtest-string.h"
72 #include "gtest/internal/gtest-type-util.h"
73
74 // Due to C++ preprocessor weirdness, we need double indirection to
75 // concatenate two tokens when one of them is __LINE__. Writing
76 //
77 // foo ## __LINE__
78 //
79 // will result in the token foo__LINE__, instead of foo followed by
80 // the current line number. For more details, see
81 // https://www.parashift.com/c++-faq-lite/misc-technical-issues.html#faq-39.6
82 #define GTEST_CONCAT_TOKEN_(foo, bar) GTEST_CONCAT_TOKEN_IMPL_(foo, bar)
83 #define GTEST_CONCAT_TOKEN_IMPL_(foo, bar) foo##bar
84
85 // Stringifies its argument.
86 // Work around a bug in visual studio which doesn't accept code like this:
87 //
88 // #define GTEST_STRINGIFY_(name) #name
89 // #define MACRO(a, b, c) ... GTEST_STRINGIFY_(a) ...
90 // MACRO(, x, y)
91 //
92 // Complaining about the argument to GTEST_STRINGIFY_ being empty.
93 // This is allowed by the spec.
94 #define GTEST_STRINGIFY_HELPER_(name, ...) #name
95 #define GTEST_STRINGIFY_(...) GTEST_STRINGIFY_HELPER_(__VA_ARGS__, )
96
97 namespace proto2 {
98 class MessageLite;
99 }
100
101 namespace testing {
102
103 // Forward declarations.
104
105 class AssertionResult; // Result of an assertion.
106 class Message; // Represents a failure message.
107 class Test; // Represents a test.
108 class TestInfo; // Information about a test.
109 class TestPartResult; // Result of a test part.
110 class UnitTest; // A collection of test suites.
111
112 template <typename T>
113 ::std::string PrintToString(const T& value);
114
115 namespace internal {
116
117 struct TraceInfo; // Information about a trace point.
118 class TestInfoImpl; // Opaque implementation of TestInfo
119 class UnitTestImpl; // Opaque implementation of UnitTest
120
121 // The text used in failure messages to indicate the start of the
122 // stack trace.
123 GTEST_API_ extern const char kStackTraceMarker[];
124
125 // An IgnoredValue object can be implicitly constructed from ANY value.
126 class IgnoredValue {
127 struct Sink {};
128
129 public:
130 // This constructor template allows any value to be implicitly
131 // converted to IgnoredValue. The object has no data member and
132 // doesn't try to remember anything about the argument. We
133 // deliberately omit the 'explicit' keyword in order to allow the
134 // conversion to be implicit.
135 // Disable the conversion if T already has a magical conversion operator.
136 // Otherwise we get ambiguity.
137 template <typename T,
138 typename std::enable_if<!std::is_convertible<T, Sink>::value,
139 int>::type = 0>
IgnoredValue(const T &)140 IgnoredValue(const T& /* ignored */) {} // NOLINT(runtime/explicit)
141 };
142
143 // Appends the user-supplied message to the Google-Test-generated message.
144 GTEST_API_ std::string AppendUserMessage(const std::string& gtest_msg,
145 const Message& user_msg);
146
147 #if GTEST_HAS_EXCEPTIONS
148
149 GTEST_DISABLE_MSC_WARNINGS_PUSH_(
150 4275 /* an exported class was derived from a class that was not exported */)
151
152 // This exception is thrown by (and only by) a failed Google Test
153 // assertion when GTEST_FLAG(throw_on_failure) is true (if exceptions
154 // are enabled). We derive it from std::runtime_error, which is for
155 // errors presumably detectable only at run time. Since
156 // std::runtime_error inherits from std::exception, many testing
157 // frameworks know how to extract and print the message inside it.
158 class GTEST_API_ GoogleTestFailureException : public ::std::runtime_error {
159 public:
160 explicit GoogleTestFailureException(const TestPartResult& failure);
161 };
162
GTEST_DISABLE_MSC_WARNINGS_POP_()163 GTEST_DISABLE_MSC_WARNINGS_POP_() // 4275
164
165 #endif // GTEST_HAS_EXCEPTIONS
166
167 namespace edit_distance {
168 // Returns the optimal edits to go from 'left' to 'right'.
169 // All edits cost the same, with replace having lower priority than
170 // add/remove.
171 // Simple implementation of the Wagner-Fischer algorithm.
172 // See https://en.wikipedia.org/wiki/Wagner-Fischer_algorithm
173 enum EditType { kMatch, kAdd, kRemove, kReplace };
174 GTEST_API_ std::vector<EditType> CalculateOptimalEdits(
175 const std::vector<size_t>& left, const std::vector<size_t>& right);
176
177 // Same as above, but the input is represented as strings.
178 GTEST_API_ std::vector<EditType> CalculateOptimalEdits(
179 const std::vector<std::string>& left,
180 const std::vector<std::string>& right);
181
182 // Create a diff of the input strings in Unified diff format.
183 GTEST_API_ std::string CreateUnifiedDiff(const std::vector<std::string>& left,
184 const std::vector<std::string>& right,
185 size_t context = 2);
186
187 } // namespace edit_distance
188
189 // Constructs and returns the message for an equality assertion
190 // (e.g. ASSERT_EQ, EXPECT_STREQ, etc) failure.
191 //
192 // The first four parameters are the expressions used in the assertion
193 // and their values, as strings. For example, for ASSERT_EQ(foo, bar)
194 // where foo is 5 and bar is 6, we have:
195 //
196 // expected_expression: "foo"
197 // actual_expression: "bar"
198 // expected_value: "5"
199 // actual_value: "6"
200 //
201 // The ignoring_case parameter is true if and only if the assertion is a
202 // *_STRCASEEQ*. When it's true, the string " (ignoring case)" will
203 // be inserted into the message.
204 GTEST_API_ AssertionResult EqFailure(const char* expected_expression,
205 const char* actual_expression,
206 const std::string& expected_value,
207 const std::string& actual_value,
208 bool ignoring_case);
209
210 // Constructs a failure message for Boolean assertions such as EXPECT_TRUE.
211 GTEST_API_ std::string GetBoolAssertionFailureMessage(
212 const AssertionResult& assertion_result, const char* expression_text,
213 const char* actual_predicate_value, const char* expected_predicate_value);
214
215 // This template class represents an IEEE floating-point number
216 // (either single-precision or double-precision, depending on the
217 // template parameters).
218 //
219 // The purpose of this class is to do more sophisticated number
220 // comparison. (Due to round-off error, etc, it's very unlikely that
221 // two floating-points will be equal exactly. Hence a naive
222 // comparison by the == operation often doesn't work.)
223 //
224 // Format of IEEE floating-point:
225 //
226 // The most-significant bit being the leftmost, an IEEE
227 // floating-point looks like
228 //
229 // sign_bit exponent_bits fraction_bits
230 //
231 // Here, sign_bit is a single bit that designates the sign of the
232 // number.
233 //
234 // For float, there are 8 exponent bits and 23 fraction bits.
235 //
236 // For double, there are 11 exponent bits and 52 fraction bits.
237 //
238 // More details can be found at
239 // https://en.wikipedia.org/wiki/IEEE_floating-point_standard.
240 //
241 // Template parameter:
242 //
243 // RawType: the raw floating-point type (either float or double)
244 template <typename RawType>
245 class FloatingPoint {
246 public:
247 // Defines the unsigned integer type that has the same size as the
248 // floating point number.
249 typedef typename TypeWithSize<sizeof(RawType)>::UInt Bits;
250
251 // Constants.
252
253 // # of bits in a number.
254 static const size_t kBitCount = 8 * sizeof(RawType);
255
256 // # of fraction bits in a number.
257 static const size_t kFractionBitCount =
258 std::numeric_limits<RawType>::digits - 1;
259
260 // # of exponent bits in a number.
261 static const size_t kExponentBitCount = kBitCount - 1 - kFractionBitCount;
262
263 // The mask for the sign bit.
264 static const Bits kSignBitMask = static_cast<Bits>(1) << (kBitCount - 1);
265
266 // The mask for the fraction bits.
267 static const Bits kFractionBitMask = ~static_cast<Bits>(0) >>
268 (kExponentBitCount + 1);
269
270 // The mask for the exponent bits.
271 static const Bits kExponentBitMask = ~(kSignBitMask | kFractionBitMask);
272
273 // How many ULP's (Units in the Last Place) we want to tolerate when
274 // comparing two numbers. The larger the value, the more error we
275 // allow. A 0 value means that two numbers must be exactly the same
276 // to be considered equal.
277 //
278 // The maximum error of a single floating-point operation is 0.5
279 // units in the last place. On Intel CPU's, all floating-point
280 // calculations are done with 80-bit precision, while double has 64
281 // bits. Therefore, 4 should be enough for ordinary use.
282 //
283 // See the following article for more details on ULP:
284 // https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/
285 static const uint32_t kMaxUlps = 4;
286
287 // Constructs a FloatingPoint from a raw floating-point number.
288 //
289 // On an Intel CPU, passing a non-normalized NAN (Not a Number)
290 // around may change its bits, although the new value is guaranteed
291 // to be also a NAN. Therefore, don't expect this constructor to
292 // preserve the bits in x when x is a NAN.
FloatingPoint(const RawType & x)293 explicit FloatingPoint(const RawType& x) { u_.value_ = x; }
294
295 // Static methods
296
297 // Reinterprets a bit pattern as a floating-point number.
298 //
299 // This function is needed to test the AlmostEquals() method.
ReinterpretBits(const Bits bits)300 static RawType ReinterpretBits(const Bits bits) {
301 FloatingPoint fp(0);
302 fp.u_.bits_ = bits;
303 return fp.u_.value_;
304 }
305
306 // Returns the floating-point number that represent positive infinity.
Infinity()307 static RawType Infinity() { return ReinterpretBits(kExponentBitMask); }
308
309 // Non-static methods
310
311 // Returns the bits that represents this number.
bits()312 const Bits& bits() const { return u_.bits_; }
313
314 // Returns the exponent bits of this number.
exponent_bits()315 Bits exponent_bits() const { return kExponentBitMask & u_.bits_; }
316
317 // Returns the fraction bits of this number.
fraction_bits()318 Bits fraction_bits() const { return kFractionBitMask & u_.bits_; }
319
320 // Returns the sign bit of this number.
sign_bit()321 Bits sign_bit() const { return kSignBitMask & u_.bits_; }
322
323 // Returns true if and only if this is NAN (not a number).
is_nan()324 bool is_nan() const {
325 // It's a NAN if the exponent bits are all ones and the fraction
326 // bits are not entirely zeros.
327 return (exponent_bits() == kExponentBitMask) && (fraction_bits() != 0);
328 }
329
330 // Returns true if and only if this number is at most kMaxUlps ULP's away
331 // from rhs. In particular, this function:
332 //
333 // - returns false if either number is (or both are) NAN.
334 // - treats really large numbers as almost equal to infinity.
335 // - thinks +0.0 and -0.0 are 0 DLP's apart.
AlmostEquals(const FloatingPoint & rhs)336 bool AlmostEquals(const FloatingPoint& rhs) const {
337 // The IEEE standard says that any comparison operation involving
338 // a NAN must return false.
339 if (is_nan() || rhs.is_nan()) return false;
340
341 return DistanceBetweenSignAndMagnitudeNumbers(u_.bits_, rhs.u_.bits_) <=
342 kMaxUlps;
343 }
344
345 private:
346 // The data type used to store the actual floating-point number.
347 union FloatingPointUnion {
348 RawType value_; // The raw floating-point number.
349 Bits bits_; // The bits that represent the number.
350 };
351
352 // Converts an integer from the sign-and-magnitude representation to
353 // the biased representation. More precisely, let N be 2 to the
354 // power of (kBitCount - 1), an integer x is represented by the
355 // unsigned number x + N.
356 //
357 // For instance,
358 //
359 // -N + 1 (the most negative number representable using
360 // sign-and-magnitude) is represented by 1;
361 // 0 is represented by N; and
362 // N - 1 (the biggest number representable using
363 // sign-and-magnitude) is represented by 2N - 1.
364 //
365 // Read https://en.wikipedia.org/wiki/Signed_number_representations
366 // for more details on signed number representations.
SignAndMagnitudeToBiased(const Bits & sam)367 static Bits SignAndMagnitudeToBiased(const Bits& sam) {
368 if (kSignBitMask & sam) {
369 // sam represents a negative number.
370 return ~sam + 1;
371 } else {
372 // sam represents a positive number.
373 return kSignBitMask | sam;
374 }
375 }
376
377 // Given two numbers in the sign-and-magnitude representation,
378 // returns the distance between them as an unsigned number.
DistanceBetweenSignAndMagnitudeNumbers(const Bits & sam1,const Bits & sam2)379 static Bits DistanceBetweenSignAndMagnitudeNumbers(const Bits& sam1,
380 const Bits& sam2) {
381 const Bits biased1 = SignAndMagnitudeToBiased(sam1);
382 const Bits biased2 = SignAndMagnitudeToBiased(sam2);
383 return (biased1 >= biased2) ? (biased1 - biased2) : (biased2 - biased1);
384 }
385
386 FloatingPointUnion u_;
387 };
388
389 // Typedefs the instances of the FloatingPoint template class that we
390 // care to use.
391 typedef FloatingPoint<float> Float;
392 typedef FloatingPoint<double> Double;
393
394 // In order to catch the mistake of putting tests that use different
395 // test fixture classes in the same test suite, we need to assign
396 // unique IDs to fixture classes and compare them. The TypeId type is
397 // used to hold such IDs. The user should treat TypeId as an opaque
398 // type: the only operation allowed on TypeId values is to compare
399 // them for equality using the == operator.
400 typedef const void* TypeId;
401
402 template <typename T>
403 class TypeIdHelper {
404 public:
405 // dummy_ must not have a const type. Otherwise an overly eager
406 // compiler (e.g. MSVC 7.1 & 8.0) may try to merge
407 // TypeIdHelper<T>::dummy_ for different Ts as an "optimization".
408 static bool dummy_;
409 };
410
411 template <typename T>
412 bool TypeIdHelper<T>::dummy_ = false;
413
414 // GetTypeId<T>() returns the ID of type T. Different values will be
415 // returned for different types. Calling the function twice with the
416 // same type argument is guaranteed to return the same ID.
417 template <typename T>
GetTypeId()418 TypeId GetTypeId() {
419 // The compiler is required to allocate a different
420 // TypeIdHelper<T>::dummy_ variable for each T used to instantiate
421 // the template. Therefore, the address of dummy_ is guaranteed to
422 // be unique.
423 return &(TypeIdHelper<T>::dummy_);
424 }
425
426 // Returns the type ID of ::testing::Test. Always call this instead
427 // of GetTypeId< ::testing::Test>() to get the type ID of
428 // ::testing::Test, as the latter may give the wrong result due to a
429 // suspected linker bug when compiling Google Test as a Mac OS X
430 // framework.
431 GTEST_API_ TypeId GetTestTypeId();
432
433 // Defines the abstract factory interface that creates instances
434 // of a Test object.
435 class TestFactoryBase {
436 public:
437 virtual ~TestFactoryBase() = default;
438
439 // Creates a test instance to run. The instance is both created and destroyed
440 // within TestInfoImpl::Run()
441 virtual Test* CreateTest() = 0;
442
443 protected:
TestFactoryBase()444 TestFactoryBase() {}
445
446 private:
447 TestFactoryBase(const TestFactoryBase&) = delete;
448 TestFactoryBase& operator=(const TestFactoryBase&) = delete;
449 };
450
451 // This class provides implementation of TestFactoryBase interface.
452 // It is used in TEST and TEST_F macros.
453 template <class TestClass>
454 class TestFactoryImpl : public TestFactoryBase {
455 public:
CreateTest()456 Test* CreateTest() override { return new TestClass; }
457 };
458
459 #ifdef GTEST_OS_WINDOWS
460
461 // Predicate-formatters for implementing the HRESULT checking macros
462 // {ASSERT|EXPECT}_HRESULT_{SUCCEEDED|FAILED}
463 // We pass a long instead of HRESULT to avoid causing an
464 // include dependency for the HRESULT type.
465 GTEST_API_ AssertionResult IsHRESULTSuccess(const char* expr,
466 long hr); // NOLINT
467 GTEST_API_ AssertionResult IsHRESULTFailure(const char* expr,
468 long hr); // NOLINT
469
470 #endif // GTEST_OS_WINDOWS
471
472 // Types of SetUpTestSuite() and TearDownTestSuite() functions.
473 using SetUpTestSuiteFunc = void (*)();
474 using TearDownTestSuiteFunc = void (*)();
475
476 struct CodeLocation {
CodeLocationCodeLocation477 CodeLocation(std::string a_file, int a_line)
478 : file(std::move(a_file)), line(a_line) {}
479
480 std::string file;
481 int line;
482 };
483
484 // Helper to identify which setup function for TestCase / TestSuite to call.
485 // Only one function is allowed, either TestCase or TestSute but not both.
486
487 // Utility functions to help SuiteApiResolver
488 using SetUpTearDownSuiteFuncType = void (*)();
489
GetNotDefaultOrNull(SetUpTearDownSuiteFuncType a,SetUpTearDownSuiteFuncType def)490 inline SetUpTearDownSuiteFuncType GetNotDefaultOrNull(
491 SetUpTearDownSuiteFuncType a, SetUpTearDownSuiteFuncType def) {
492 return a == def ? nullptr : a;
493 }
494
495 template <typename T>
496 // Note that SuiteApiResolver inherits from T because
497 // SetUpTestSuite()/TearDownTestSuite() could be protected. This way
498 // SuiteApiResolver can access them.
499 struct SuiteApiResolver : T {
500 // testing::Test is only forward declared at this point. So we make it a
501 // dependent class for the compiler to be OK with it.
502 using Test =
503 typename std::conditional<sizeof(T) != 0, ::testing::Test, void>::type;
504
GetSetUpCaseOrSuiteSuiteApiResolver505 static SetUpTearDownSuiteFuncType GetSetUpCaseOrSuite(const char* filename,
506 int line_num) {
507 #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_
508 SetUpTearDownSuiteFuncType test_case_fp =
509 GetNotDefaultOrNull(&T::SetUpTestCase, &Test::SetUpTestCase);
510 SetUpTearDownSuiteFuncType test_suite_fp =
511 GetNotDefaultOrNull(&T::SetUpTestSuite, &Test::SetUpTestSuite);
512
513 GTEST_CHECK_(!test_case_fp || !test_suite_fp)
514 << "Test can not provide both SetUpTestSuite and SetUpTestCase, please "
515 "make sure there is only one present at "
516 << filename << ":" << line_num;
517
518 return test_case_fp != nullptr ? test_case_fp : test_suite_fp;
519 #else
520 (void)(filename);
521 (void)(line_num);
522 return &T::SetUpTestSuite;
523 #endif
524 }
525
GetTearDownCaseOrSuiteSuiteApiResolver526 static SetUpTearDownSuiteFuncType GetTearDownCaseOrSuite(const char* filename,
527 int line_num) {
528 #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_
529 SetUpTearDownSuiteFuncType test_case_fp =
530 GetNotDefaultOrNull(&T::TearDownTestCase, &Test::TearDownTestCase);
531 SetUpTearDownSuiteFuncType test_suite_fp =
532 GetNotDefaultOrNull(&T::TearDownTestSuite, &Test::TearDownTestSuite);
533
534 GTEST_CHECK_(!test_case_fp || !test_suite_fp)
535 << "Test can not provide both TearDownTestSuite and TearDownTestCase,"
536 " please make sure there is only one present at"
537 << filename << ":" << line_num;
538
539 return test_case_fp != nullptr ? test_case_fp : test_suite_fp;
540 #else
541 (void)(filename);
542 (void)(line_num);
543 return &T::TearDownTestSuite;
544 #endif
545 }
546 };
547
548 // Creates a new TestInfo object and registers it with Google Test;
549 // returns the created object.
550 //
551 // Arguments:
552 //
553 // test_suite_name: name of the test suite
554 // name: name of the test
555 // type_param: the name of the test's type parameter, or NULL if
556 // this is not a typed or a type-parameterized test.
557 // value_param: text representation of the test's value parameter,
558 // or NULL if this is not a value-parameterized test.
559 // code_location: code location where the test is defined
560 // fixture_class_id: ID of the test fixture class
561 // set_up_tc: pointer to the function that sets up the test suite
562 // tear_down_tc: pointer to the function that tears down the test suite
563 // factory: pointer to the factory that creates a test object.
564 // The newly created TestInfo instance will assume
565 // ownership of the factory object.
566 GTEST_API_ TestInfo* MakeAndRegisterTestInfo(
567 std::string test_suite_name, const char* name, const char* type_param,
568 const char* value_param, CodeLocation code_location,
569 TypeId fixture_class_id, SetUpTestSuiteFunc set_up_tc,
570 TearDownTestSuiteFunc tear_down_tc, TestFactoryBase* factory);
571
572 // If *pstr starts with the given prefix, modifies *pstr to be right
573 // past the prefix and returns true; otherwise leaves *pstr unchanged
574 // and returns false. None of pstr, *pstr, and prefix can be NULL.
575 GTEST_API_ bool SkipPrefix(const char* prefix, const char** pstr);
576
577 GTEST_DISABLE_MSC_WARNINGS_PUSH_(4251 \
578 /* class A needs to have dll-interface to be used by clients of class B */)
579
580 // State of the definition of a type-parameterized test suite.
581 class GTEST_API_ TypedTestSuitePState {
582 public:
TypedTestSuitePState()583 TypedTestSuitePState() : registered_(false) {}
584
585 // Adds the given test name to defined_test_names_ and return true
586 // if the test suite hasn't been registered; otherwise aborts the
587 // program.
AddTestName(const char * file,int line,const char * case_name,const char * test_name)588 bool AddTestName(const char* file, int line, const char* case_name,
589 const char* test_name) {
590 if (registered_) {
591 fprintf(stderr,
592 "%s Test %s must be defined before "
593 "REGISTER_TYPED_TEST_SUITE_P(%s, ...).\n",
594 FormatFileLocation(file, line).c_str(), test_name, case_name);
595 fflush(stderr);
596 posix::Abort();
597 }
598 registered_tests_.emplace(test_name, CodeLocation(file, line));
599 return true;
600 }
601
TestExists(const std::string & test_name)602 bool TestExists(const std::string& test_name) const {
603 return registered_tests_.count(test_name) > 0;
604 }
605
GetCodeLocation(const std::string & test_name)606 const CodeLocation& GetCodeLocation(const std::string& test_name) const {
607 RegisteredTestsMap::const_iterator it = registered_tests_.find(test_name);
608 GTEST_CHECK_(it != registered_tests_.end());
609 return it->second;
610 }
611
612 // Verifies that registered_tests match the test names in
613 // defined_test_names_; returns registered_tests if successful, or
614 // aborts the program otherwise.
615 const char* VerifyRegisteredTestNames(const char* test_suite_name,
616 const char* file, int line,
617 const char* registered_tests);
618
619 private:
620 typedef ::std::map<std::string, CodeLocation, std::less<>> RegisteredTestsMap;
621
622 bool registered_;
623 RegisteredTestsMap registered_tests_;
624 };
625
626 // Legacy API is deprecated but still available
627 #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_
628 using TypedTestCasePState = TypedTestSuitePState;
629 #endif // GTEST_REMOVE_LEGACY_TEST_CASEAPI_
630
GTEST_DISABLE_MSC_WARNINGS_POP_()631 GTEST_DISABLE_MSC_WARNINGS_POP_() // 4251
632
633 // Skips to the first non-space char after the first comma in 'str';
634 // returns NULL if no comma is found in 'str'.
635 inline const char* SkipComma(const char* str) {
636 const char* comma = strchr(str, ',');
637 if (comma == nullptr) {
638 return nullptr;
639 }
640 while (IsSpace(*(++comma))) {
641 }
642 return comma;
643 }
644
645 // Returns the prefix of 'str' before the first comma in it; returns
646 // the entire string if it contains no comma.
GetPrefixUntilComma(const char * str)647 inline std::string GetPrefixUntilComma(const char* str) {
648 const char* comma = strchr(str, ',');
649 return comma == nullptr ? str : std::string(str, comma);
650 }
651
652 // Splits a given string on a given delimiter, populating a given
653 // vector with the fields.
654 void SplitString(const ::std::string& str, char delimiter,
655 ::std::vector<::std::string>* dest);
656
657 // The default argument to the template below for the case when the user does
658 // not provide a name generator.
659 struct DefaultNameGenerator {
660 template <typename T>
GetNameDefaultNameGenerator661 static std::string GetName(int i) {
662 return StreamableToString(i);
663 }
664 };
665
666 template <typename Provided = DefaultNameGenerator>
667 struct NameGeneratorSelector {
668 typedef Provided type;
669 };
670
671 template <typename NameGenerator>
GenerateNamesRecursively(internal::None,std::vector<std::string> *,int)672 void GenerateNamesRecursively(internal::None, std::vector<std::string>*, int) {}
673
674 template <typename NameGenerator, typename Types>
GenerateNamesRecursively(Types,std::vector<std::string> * result,int i)675 void GenerateNamesRecursively(Types, std::vector<std::string>* result, int i) {
676 result->push_back(NameGenerator::template GetName<typename Types::Head>(i));
677 GenerateNamesRecursively<NameGenerator>(typename Types::Tail(), result,
678 i + 1);
679 }
680
681 template <typename NameGenerator, typename Types>
GenerateNames()682 std::vector<std::string> GenerateNames() {
683 std::vector<std::string> result;
684 GenerateNamesRecursively<NameGenerator>(Types(), &result, 0);
685 return result;
686 }
687
688 // TypeParameterizedTest<Fixture, TestSel, Types>::Register()
689 // registers a list of type-parameterized tests with Google Test. The
690 // return value is insignificant - we just need to return something
691 // such that we can call this function in a namespace scope.
692 //
693 // Implementation note: The GTEST_TEMPLATE_ macro declares a template
694 // template parameter. It's defined in gtest-type-util.h.
695 template <GTEST_TEMPLATE_ Fixture, class TestSel, typename Types>
696 class TypeParameterizedTest {
697 public:
698 // 'index' is the index of the test in the type list 'Types'
699 // specified in INSTANTIATE_TYPED_TEST_SUITE_P(Prefix, TestSuite,
700 // Types). Valid values for 'index' are [0, N - 1] where N is the
701 // length of Types.
702 static bool Register(const char* prefix, CodeLocation code_location,
703 const char* case_name, const char* test_names, int index,
704 const std::vector<std::string>& type_names =
705 GenerateNames<DefaultNameGenerator, Types>()) {
706 typedef typename Types::Head Type;
707 typedef Fixture<Type> FixtureClass;
708 typedef typename GTEST_BIND_(TestSel, Type) TestClass;
709
710 // First, registers the first type-parameterized test in the type
711 // list.
712 MakeAndRegisterTestInfo(
713 (std::string(prefix) + (prefix[0] == '\0' ? "" : "/") + case_name +
714 "/" + type_names[static_cast<size_t>(index)]),
715 StripTrailingSpaces(GetPrefixUntilComma(test_names)).c_str(),
716 GetTypeName<Type>().c_str(),
717 nullptr, // No value parameter.
718 code_location, GetTypeId<FixtureClass>(),
719 SuiteApiResolver<TestClass>::GetSetUpCaseOrSuite(
720 code_location.file.c_str(), code_location.line),
721 SuiteApiResolver<TestClass>::GetTearDownCaseOrSuite(
722 code_location.file.c_str(), code_location.line),
723 new TestFactoryImpl<TestClass>);
724
725 // Next, recurses (at compile time) with the tail of the type list.
726 return TypeParameterizedTest<Fixture, TestSel, typename Types::Tail>::
727 Register(prefix, std::move(code_location), case_name, test_names,
728 index + 1, type_names);
729 }
730 };
731
732 // The base case for the compile time recursion.
733 template <GTEST_TEMPLATE_ Fixture, class TestSel>
734 class TypeParameterizedTest<Fixture, TestSel, internal::None> {
735 public:
736 static bool Register(const char* /*prefix*/, CodeLocation,
737 const char* /*case_name*/, const char* /*test_names*/,
738 int /*index*/,
739 const std::vector<std::string>& =
740 std::vector<std::string>() /*type_names*/) {
741 return true;
742 }
743 };
744
745 GTEST_API_ void RegisterTypeParameterizedTestSuite(const char* test_suite_name,
746 CodeLocation code_location);
747 GTEST_API_ void RegisterTypeParameterizedTestSuiteInstantiation(
748 const char* case_name);
749
750 // TypeParameterizedTestSuite<Fixture, Tests, Types>::Register()
751 // registers *all combinations* of 'Tests' and 'Types' with Google
752 // Test. The return value is insignificant - we just need to return
753 // something such that we can call this function in a namespace scope.
754 template <GTEST_TEMPLATE_ Fixture, typename Tests, typename Types>
755 class TypeParameterizedTestSuite {
756 public:
757 static bool Register(const char* prefix, CodeLocation code_location,
758 const TypedTestSuitePState* state, const char* case_name,
759 const char* test_names,
760 const std::vector<std::string>& type_names =
761 GenerateNames<DefaultNameGenerator, Types>()) {
762 RegisterTypeParameterizedTestSuiteInstantiation(case_name);
763 std::string test_name =
764 StripTrailingSpaces(GetPrefixUntilComma(test_names));
765 if (!state->TestExists(test_name)) {
766 fprintf(stderr, "Failed to get code location for test %s.%s at %s.",
767 case_name, test_name.c_str(),
768 FormatFileLocation(code_location.file.c_str(), code_location.line)
769 .c_str());
770 fflush(stderr);
771 posix::Abort();
772 }
773 const CodeLocation& test_location = state->GetCodeLocation(test_name);
774
775 typedef typename Tests::Head Head;
776
777 // First, register the first test in 'Test' for each type in 'Types'.
778 TypeParameterizedTest<Fixture, Head, Types>::Register(
779 prefix, test_location, case_name, test_names, 0, type_names);
780
781 // Next, recurses (at compile time) with the tail of the test list.
782 return TypeParameterizedTestSuite<Fixture, typename Tests::Tail,
783 Types>::Register(prefix,
784 std::move(code_location),
785 state, case_name,
786 SkipComma(test_names),
787 type_names);
788 }
789 };
790
791 // The base case for the compile time recursion.
792 template <GTEST_TEMPLATE_ Fixture, typename Types>
793 class TypeParameterizedTestSuite<Fixture, internal::None, Types> {
794 public:
795 static bool Register(const char* /*prefix*/, const CodeLocation&,
796 const TypedTestSuitePState* /*state*/,
797 const char* /*case_name*/, const char* /*test_names*/,
798 const std::vector<std::string>& =
799 std::vector<std::string>() /*type_names*/) {
800 return true;
801 }
802 };
803
804 // Returns the current OS stack trace as an std::string.
805 //
806 // The maximum number of stack frames to be included is specified by
807 // the gtest_stack_trace_depth flag. The skip_count parameter
808 // specifies the number of top frames to be skipped, which doesn't
809 // count against the number of frames to be included.
810 //
811 // For example, if Foo() calls Bar(), which in turn calls
812 // GetCurrentOsStackTraceExceptTop(..., 1), Foo() will be included in
813 // the trace but Bar() and GetCurrentOsStackTraceExceptTop() won't.
814 GTEST_API_ std::string GetCurrentOsStackTraceExceptTop(int skip_count);
815
816 // Helpers for suppressing warnings on unreachable code or constant
817 // condition.
818
819 // Always returns true.
820 GTEST_API_ bool AlwaysTrue();
821
822 // Always returns false.
AlwaysFalse()823 inline bool AlwaysFalse() { return !AlwaysTrue(); }
824
825 // Helper for suppressing false warning from Clang on a const char*
826 // variable declared in a conditional expression always being NULL in
827 // the else branch.
828 struct GTEST_API_ ConstCharPtr {
ConstCharPtrConstCharPtr829 ConstCharPtr(const char* str) : value(str) {}
830 operator bool() const { return true; }
831 const char* value;
832 };
833
834 // Helper for declaring std::string within 'if' statement
835 // in pre C++17 build environment.
836 struct TrueWithString {
837 TrueWithString() = default;
TrueWithStringTrueWithString838 explicit TrueWithString(const char* str) : value(str) {}
TrueWithStringTrueWithString839 explicit TrueWithString(const std::string& str) : value(str) {}
840 explicit operator bool() const { return true; }
841 std::string value;
842 };
843
844 // A simple Linear Congruential Generator for generating random
845 // numbers with a uniform distribution. Unlike rand() and srand(), it
846 // doesn't use global state (and therefore can't interfere with user
847 // code). Unlike rand_r(), it's portable. An LCG isn't very random,
848 // but it's good enough for our purposes.
849 class GTEST_API_ Random {
850 public:
851 static const uint32_t kMaxRange = 1u << 31;
852
Random(uint32_t seed)853 explicit Random(uint32_t seed) : state_(seed) {}
854
Reseed(uint32_t seed)855 void Reseed(uint32_t seed) { state_ = seed; }
856
857 // Generates a random number from [0, range). Crashes if 'range' is
858 // 0 or greater than kMaxRange.
859 uint32_t Generate(uint32_t range);
860
861 private:
862 uint32_t state_;
863 Random(const Random&) = delete;
864 Random& operator=(const Random&) = delete;
865 };
866
867 // Turns const U&, U&, const U, and U all into U.
868 #define GTEST_REMOVE_REFERENCE_AND_CONST_(T) \
869 typename std::remove_const<typename std::remove_reference<T>::type>::type
870
871 // HasDebugStringAndShortDebugString<T>::value is a compile-time bool constant
872 // that's true if and only if T has methods DebugString() and ShortDebugString()
873 // that return std::string.
874 template <typename T>
875 class HasDebugStringAndShortDebugString {
876 private:
877 template <typename C>
878 static auto CheckDebugString(C*) -> typename std::is_same<
879 std::string, decltype(std::declval<const C>().DebugString())>::type;
880 template <typename>
881 static std::false_type CheckDebugString(...);
882
883 template <typename C>
884 static auto CheckShortDebugString(C*) -> typename std::is_same<
885 std::string, decltype(std::declval<const C>().ShortDebugString())>::type;
886 template <typename>
887 static std::false_type CheckShortDebugString(...);
888
889 using HasDebugStringType = decltype(CheckDebugString<T>(nullptr));
890 using HasShortDebugStringType = decltype(CheckShortDebugString<T>(nullptr));
891
892 public:
893 static constexpr bool value =
894 HasDebugStringType::value && HasShortDebugStringType::value;
895 };
896
897 #ifdef GTEST_INTERNAL_NEED_REDUNDANT_CONSTEXPR_DECL
898 template <typename T>
899 constexpr bool HasDebugStringAndShortDebugString<T>::value;
900 #endif
901
902 // When the compiler sees expression IsContainerTest<C>(0), if C is an
903 // STL-style container class, the first overload of IsContainerTest
904 // will be viable (since both C::iterator* and C::const_iterator* are
905 // valid types and NULL can be implicitly converted to them). It will
906 // be picked over the second overload as 'int' is a perfect match for
907 // the type of argument 0. If C::iterator or C::const_iterator is not
908 // a valid type, the first overload is not viable, and the second
909 // overload will be picked. Therefore, we can determine whether C is
910 // a container class by checking the type of IsContainerTest<C>(0).
911 // The value of the expression is insignificant.
912 //
913 // In C++11 mode we check the existence of a const_iterator and that an
914 // iterator is properly implemented for the container.
915 //
916 // For pre-C++11 that we look for both C::iterator and C::const_iterator.
917 // The reason is that C++ injects the name of a class as a member of the
918 // class itself (e.g. you can refer to class iterator as either
919 // 'iterator' or 'iterator::iterator'). If we look for C::iterator
920 // only, for example, we would mistakenly think that a class named
921 // iterator is an STL container.
922 //
923 // Also note that the simpler approach of overloading
924 // IsContainerTest(typename C::const_iterator*) and
925 // IsContainerTest(...) doesn't work with Visual Age C++ and Sun C++.
926 typedef int IsContainer;
927 template <class C,
928 class Iterator = decltype(::std::declval<const C&>().begin()),
929 class = decltype(::std::declval<const C&>().end()),
930 class = decltype(++::std::declval<Iterator&>()),
931 class = decltype(*::std::declval<Iterator>()),
932 class = typename C::const_iterator>
IsContainerTest(int)933 IsContainer IsContainerTest(int /* dummy */) {
934 return 0;
935 }
936
937 typedef char IsNotContainer;
938 template <class C>
IsContainerTest(long)939 IsNotContainer IsContainerTest(long /* dummy */) {
940 return '\0';
941 }
942
943 // Trait to detect whether a type T is a hash table.
944 // The heuristic used is that the type contains an inner type `hasher` and does
945 // not contain an inner type `reverse_iterator`.
946 // If the container is iterable in reverse, then order might actually matter.
947 template <typename T>
948 struct IsHashTable {
949 private:
950 template <typename U>
951 static char test(typename U::hasher*, typename U::reverse_iterator*);
952 template <typename U>
953 static int test(typename U::hasher*, ...);
954 template <typename U>
955 static char test(...);
956
957 public:
958 static const bool value = sizeof(test<T>(nullptr, nullptr)) == sizeof(int);
959 };
960
961 template <typename T>
962 const bool IsHashTable<T>::value;
963
964 template <typename C,
965 bool = sizeof(IsContainerTest<C>(0)) == sizeof(IsContainer)>
966 struct IsRecursiveContainerImpl;
967
968 template <typename C>
969 struct IsRecursiveContainerImpl<C, false> : public std::false_type {};
970
971 // Since the IsRecursiveContainerImpl depends on the IsContainerTest we need to
972 // obey the same inconsistencies as the IsContainerTest, namely check if
973 // something is a container is relying on only const_iterator in C++11 and
974 // is relying on both const_iterator and iterator otherwise
975 template <typename C>
976 struct IsRecursiveContainerImpl<C, true> {
977 using value_type = decltype(*std::declval<typename C::const_iterator>());
978 using type =
979 std::is_same<typename std::remove_const<
980 typename std::remove_reference<value_type>::type>::type,
981 C>;
982 };
983
984 // IsRecursiveContainer<Type> is a unary compile-time predicate that
985 // evaluates whether C is a recursive container type. A recursive container
986 // type is a container type whose value_type is equal to the container type
987 // itself. An example for a recursive container type is
988 // boost::filesystem::path, whose iterator has a value_type that is equal to
989 // boost::filesystem::path.
990 template <typename C>
991 struct IsRecursiveContainer : public IsRecursiveContainerImpl<C>::type {};
992
993 // Utilities for native arrays.
994
995 // ArrayEq() compares two k-dimensional native arrays using the
996 // elements' operator==, where k can be any integer >= 0. When k is
997 // 0, ArrayEq() degenerates into comparing a single pair of values.
998
999 template <typename T, typename U>
1000 bool ArrayEq(const T* lhs, size_t size, const U* rhs);
1001
1002 // This generic version is used when k is 0.
1003 template <typename T, typename U>
1004 inline bool ArrayEq(const T& lhs, const U& rhs) {
1005 return lhs == rhs;
1006 }
1007
1008 // This overload is used when k >= 1.
1009 template <typename T, typename U, size_t N>
1010 inline bool ArrayEq(const T (&lhs)[N], const U (&rhs)[N]) {
1011 return internal::ArrayEq(lhs, N, rhs);
1012 }
1013
1014 // This helper reduces code bloat. If we instead put its logic inside
1015 // the previous ArrayEq() function, arrays with different sizes would
1016 // lead to different copies of the template code.
1017 template <typename T, typename U>
1018 bool ArrayEq(const T* lhs, size_t size, const U* rhs) {
1019 for (size_t i = 0; i != size; i++) {
1020 if (!internal::ArrayEq(lhs[i], rhs[i])) return false;
1021 }
1022 return true;
1023 }
1024
1025 // Finds the first element in the iterator range [begin, end) that
1026 // equals elem. Element may be a native array type itself.
1027 template <typename Iter, typename Element>
1028 Iter ArrayAwareFind(Iter begin, Iter end, const Element& elem) {
1029 for (Iter it = begin; it != end; ++it) {
1030 if (internal::ArrayEq(*it, elem)) return it;
1031 }
1032 return end;
1033 }
1034
1035 // CopyArray() copies a k-dimensional native array using the elements'
1036 // operator=, where k can be any integer >= 0. When k is 0,
1037 // CopyArray() degenerates into copying a single value.
1038
1039 template <typename T, typename U>
1040 void CopyArray(const T* from, size_t size, U* to);
1041
1042 // This generic version is used when k is 0.
1043 template <typename T, typename U>
1044 inline void CopyArray(const T& from, U* to) {
1045 *to = from;
1046 }
1047
1048 // This overload is used when k >= 1.
1049 template <typename T, typename U, size_t N>
1050 inline void CopyArray(const T (&from)[N], U (*to)[N]) {
1051 internal::CopyArray(from, N, *to);
1052 }
1053
1054 // This helper reduces code bloat. If we instead put its logic inside
1055 // the previous CopyArray() function, arrays with different sizes
1056 // would lead to different copies of the template code.
1057 template <typename T, typename U>
1058 void CopyArray(const T* from, size_t size, U* to) {
1059 for (size_t i = 0; i != size; i++) {
1060 internal::CopyArray(from[i], to + i);
1061 }
1062 }
1063
1064 // The relation between an NativeArray object (see below) and the
1065 // native array it represents.
1066 // We use 2 different structs to allow non-copyable types to be used, as long
1067 // as RelationToSourceReference() is passed.
1068 struct RelationToSourceReference {};
1069 struct RelationToSourceCopy {};
1070
1071 // Adapts a native array to a read-only STL-style container. Instead
1072 // of the complete STL container concept, this adaptor only implements
1073 // members useful for Google Mock's container matchers. New members
1074 // should be added as needed. To simplify the implementation, we only
1075 // support Element being a raw type (i.e. having no top-level const or
1076 // reference modifier). It's the client's responsibility to satisfy
1077 // this requirement. Element can be an array type itself (hence
1078 // multi-dimensional arrays are supported).
1079 template <typename Element>
1080 class NativeArray {
1081 public:
1082 // STL-style container typedefs.
1083 typedef Element value_type;
1084 typedef Element* iterator;
1085 typedef const Element* const_iterator;
1086
1087 // Constructs from a native array. References the source.
1088 NativeArray(const Element* array, size_t count, RelationToSourceReference) {
1089 InitRef(array, count);
1090 }
1091
1092 // Constructs from a native array. Copies the source.
1093 NativeArray(const Element* array, size_t count, RelationToSourceCopy) {
1094 InitCopy(array, count);
1095 }
1096
1097 // Copy constructor.
1098 NativeArray(const NativeArray& rhs) {
1099 (this->*rhs.clone_)(rhs.array_, rhs.size_);
1100 }
1101
1102 ~NativeArray() {
1103 if (clone_ != &NativeArray::InitRef) delete[] array_;
1104 }
1105
1106 // STL-style container methods.
1107 size_t size() const { return size_; }
1108 const_iterator begin() const { return array_; }
1109 const_iterator end() const { return array_ + size_; }
1110 bool operator==(const NativeArray& rhs) const {
1111 return size() == rhs.size() && ArrayEq(begin(), size(), rhs.begin());
1112 }
1113
1114 private:
1115 static_assert(!std::is_const<Element>::value, "Type must not be const");
1116 static_assert(!std::is_reference<Element>::value,
1117 "Type must not be a reference");
1118
1119 // Initializes this object with a copy of the input.
1120 void InitCopy(const Element* array, size_t a_size) {
1121 Element* const copy = new Element[a_size];
1122 CopyArray(array, a_size, copy);
1123 array_ = copy;
1124 size_ = a_size;
1125 clone_ = &NativeArray::InitCopy;
1126 }
1127
1128 // Initializes this object with a reference of the input.
1129 void InitRef(const Element* array, size_t a_size) {
1130 array_ = array;
1131 size_ = a_size;
1132 clone_ = &NativeArray::InitRef;
1133 }
1134
1135 const Element* array_;
1136 size_t size_;
1137 void (NativeArray::*clone_)(const Element*, size_t);
1138 };
1139
1140 template <size_t>
1141 struct Ignore {
1142 Ignore(...); // NOLINT
1143 };
1144
1145 template <typename>
1146 struct ElemFromListImpl;
1147 template <size_t... I>
1148 struct ElemFromListImpl<std::index_sequence<I...>> {
1149 // We make Ignore a template to solve a problem with MSVC.
1150 // A non-template Ignore would work fine with `decltype(Ignore(I))...`, but
1151 // MSVC doesn't understand how to deal with that pack expansion.
1152 // Use `0 * I` to have a single instantiation of Ignore.
1153 template <typename R>
1154 static R Apply(Ignore<0 * I>..., R (*)(), ...);
1155 };
1156
1157 template <size_t N, typename... T>
1158 struct ElemFromList {
1159 using type = decltype(ElemFromListImpl<std::make_index_sequence<N>>::Apply(
1160 static_cast<T (*)()>(nullptr)...));
1161 };
1162
1163 struct FlatTupleConstructTag {};
1164
1165 template <typename... T>
1166 class FlatTuple;
1167
1168 template <typename Derived, size_t I>
1169 struct FlatTupleElemBase;
1170
1171 template <typename... T, size_t I>
1172 struct FlatTupleElemBase<FlatTuple<T...>, I> {
1173 using value_type = typename ElemFromList<I, T...>::type;
1174 FlatTupleElemBase() = default;
1175 template <typename Arg>
1176 explicit FlatTupleElemBase(FlatTupleConstructTag, Arg&& t)
1177 : value(std::forward<Arg>(t)) {}
1178 value_type value;
1179 };
1180
1181 template <typename Derived, typename Idx>
1182 struct FlatTupleBase;
1183
1184 template <size_t... Idx, typename... T>
1185 struct FlatTupleBase<FlatTuple<T...>, std::index_sequence<Idx...>>
1186 : FlatTupleElemBase<FlatTuple<T...>, Idx>... {
1187 using Indices = std::index_sequence<Idx...>;
1188 FlatTupleBase() = default;
1189 template <typename... Args>
1190 explicit FlatTupleBase(FlatTupleConstructTag, Args&&... args)
1191 : FlatTupleElemBase<FlatTuple<T...>, Idx>(FlatTupleConstructTag{},
1192 std::forward<Args>(args))... {}
1193
1194 template <size_t I>
1195 const typename ElemFromList<I, T...>::type& Get() const {
1196 return FlatTupleElemBase<FlatTuple<T...>, I>::value;
1197 }
1198
1199 template <size_t I>
1200 typename ElemFromList<I, T...>::type& Get() {
1201 return FlatTupleElemBase<FlatTuple<T...>, I>::value;
1202 }
1203
1204 template <typename F>
1205 auto Apply(F&& f) -> decltype(std::forward<F>(f)(this->Get<Idx>()...)) {
1206 return std::forward<F>(f)(Get<Idx>()...);
1207 }
1208
1209 template <typename F>
1210 auto Apply(F&& f) const -> decltype(std::forward<F>(f)(this->Get<Idx>()...)) {
1211 return std::forward<F>(f)(Get<Idx>()...);
1212 }
1213 };
1214
1215 // Analog to std::tuple but with different tradeoffs.
1216 // This class minimizes the template instantiation depth, thus allowing more
1217 // elements than std::tuple would. std::tuple has been seen to require an
1218 // instantiation depth of more than 10x the number of elements in some
1219 // implementations.
1220 // FlatTuple and ElemFromList are not recursive and have a fixed depth
1221 // regardless of T...
1222 // std::make_index_sequence, on the other hand, it is recursive but with an
1223 // instantiation depth of O(ln(N)).
1224 template <typename... T>
1225 class FlatTuple
1226 : private FlatTupleBase<FlatTuple<T...>,
1227 std::make_index_sequence<sizeof...(T)>> {
1228 using Indices =
1229 typename FlatTupleBase<FlatTuple<T...>,
1230 std::make_index_sequence<sizeof...(T)>>::Indices;
1231
1232 public:
1233 FlatTuple() = default;
1234 template <typename... Args>
1235 explicit FlatTuple(FlatTupleConstructTag tag, Args&&... args)
1236 : FlatTuple::FlatTupleBase(tag, std::forward<Args>(args)...) {}
1237
1238 using FlatTuple::FlatTupleBase::Apply;
1239 using FlatTuple::FlatTupleBase::Get;
1240 };
1241
1242 // Utility functions to be called with static_assert to induce deprecation
1243 // warnings.
1244 GTEST_INTERNAL_DEPRECATED(
1245 "INSTANTIATE_TEST_CASE_P is deprecated, please use "
1246 "INSTANTIATE_TEST_SUITE_P")
1247 constexpr bool InstantiateTestCase_P_IsDeprecated() { return true; }
1248
1249 GTEST_INTERNAL_DEPRECATED(
1250 "TYPED_TEST_CASE_P is deprecated, please use "
1251 "TYPED_TEST_SUITE_P")
1252 constexpr bool TypedTestCase_P_IsDeprecated() { return true; }
1253
1254 GTEST_INTERNAL_DEPRECATED(
1255 "TYPED_TEST_CASE is deprecated, please use "
1256 "TYPED_TEST_SUITE")
1257 constexpr bool TypedTestCaseIsDeprecated() { return true; }
1258
1259 GTEST_INTERNAL_DEPRECATED(
1260 "REGISTER_TYPED_TEST_CASE_P is deprecated, please use "
1261 "REGISTER_TYPED_TEST_SUITE_P")
1262 constexpr bool RegisterTypedTestCase_P_IsDeprecated() { return true; }
1263
1264 GTEST_INTERNAL_DEPRECATED(
1265 "INSTANTIATE_TYPED_TEST_CASE_P is deprecated, please use "
1266 "INSTANTIATE_TYPED_TEST_SUITE_P")
1267 constexpr bool InstantiateTypedTestCase_P_IsDeprecated() { return true; }
1268
1269 } // namespace internal
1270 } // namespace testing
1271
1272 namespace std {
1273 // Some standard library implementations use `struct tuple_size` and some use
1274 // `class tuple_size`. Clang warns about the mismatch.
1275 // https://reviews.llvm.org/D55466
1276 #ifdef __clang__
1277 #pragma clang diagnostic push
1278 #pragma clang diagnostic ignored "-Wmismatched-tags"
1279 #endif
1280 template <typename... Ts>
1281 struct tuple_size<testing::internal::FlatTuple<Ts...>>
1282 : std::integral_constant<size_t, sizeof...(Ts)> {};
1283 #ifdef __clang__
1284 #pragma clang diagnostic pop
1285 #endif
1286 } // namespace std
1287
1288 #define GTEST_MESSAGE_AT_(file, line, message, result_type) \
1289 ::testing::internal::AssertHelper(result_type, file, line, message) = \
1290 ::testing::Message()
1291
1292 #define GTEST_MESSAGE_(message, result_type) \
1293 GTEST_MESSAGE_AT_(__FILE__, __LINE__, message, result_type)
1294
1295 #define GTEST_FATAL_FAILURE_(message) \
1296 return GTEST_MESSAGE_(message, ::testing::TestPartResult::kFatalFailure)
1297
1298 #define GTEST_NONFATAL_FAILURE_(message) \
1299 GTEST_MESSAGE_(message, ::testing::TestPartResult::kNonFatalFailure)
1300
1301 #define GTEST_SUCCESS_(message) \
1302 GTEST_MESSAGE_(message, ::testing::TestPartResult::kSuccess)
1303
1304 #define GTEST_SKIP_(message) \
1305 return GTEST_MESSAGE_(message, ::testing::TestPartResult::kSkip)
1306
1307 // Suppress MSVC warning 4072 (unreachable code) for the code following
1308 // statement if it returns or throws (or doesn't return or throw in some
1309 // situations).
1310 // NOTE: The "else" is important to keep this expansion to prevent a top-level
1311 // "else" from attaching to our "if".
1312 #define GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement) \
1313 if (::testing::internal::AlwaysTrue()) { \
1314 statement; \
1315 } else /* NOLINT */ \
1316 static_assert(true, "") // User must have a semicolon after expansion.
1317
1318 #if GTEST_HAS_EXCEPTIONS
1319
1320 namespace testing {
1321 namespace internal {
1322
1323 class NeverThrown {
1324 public:
1325 const char* what() const noexcept {
1326 return "this exception should never be thrown";
1327 }
1328 };
1329
1330 } // namespace internal
1331 } // namespace testing
1332
1333 #if GTEST_HAS_RTTI
1334
1335 #define GTEST_EXCEPTION_TYPE_(e) ::testing::internal::GetTypeName(typeid(e))
1336
1337 #else // GTEST_HAS_RTTI
1338
1339 #define GTEST_EXCEPTION_TYPE_(e) \
1340 std::string { "an std::exception-derived error" }
1341
1342 #endif // GTEST_HAS_RTTI
1343
1344 #define GTEST_TEST_THROW_CATCH_STD_EXCEPTION_(statement, expected_exception) \
1345 catch (typename std::conditional< \
1346 std::is_same<typename std::remove_cv<typename std::remove_reference< \
1347 expected_exception>::type>::type, \
1348 std::exception>::value, \
1349 const ::testing::internal::NeverThrown&, const std::exception&>::type \
1350 e) { \
1351 gtest_msg.value = "Expected: " #statement \
1352 " throws an exception of type " #expected_exception \
1353 ".\n Actual: it throws "; \
1354 gtest_msg.value += GTEST_EXCEPTION_TYPE_(e); \
1355 gtest_msg.value += " with description \""; \
1356 gtest_msg.value += e.what(); \
1357 gtest_msg.value += "\"."; \
1358 goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__); \
1359 }
1360
1361 #else // GTEST_HAS_EXCEPTIONS
1362
1363 #define GTEST_TEST_THROW_CATCH_STD_EXCEPTION_(statement, expected_exception)
1364
1365 #endif // GTEST_HAS_EXCEPTIONS
1366
1367 #define GTEST_TEST_THROW_(statement, expected_exception, fail) \
1368 GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
1369 if (::testing::internal::TrueWithString gtest_msg{}) { \
1370 bool gtest_caught_expected = false; \
1371 try { \
1372 GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
1373 } catch (expected_exception const&) { \
1374 gtest_caught_expected = true; \
1375 } \
1376 GTEST_TEST_THROW_CATCH_STD_EXCEPTION_(statement, expected_exception) \
1377 catch (...) { \
1378 gtest_msg.value = "Expected: " #statement \
1379 " throws an exception of type " #expected_exception \
1380 ".\n Actual: it throws a different type."; \
1381 goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__); \
1382 } \
1383 if (!gtest_caught_expected) { \
1384 gtest_msg.value = "Expected: " #statement \
1385 " throws an exception of type " #expected_exception \
1386 ".\n Actual: it throws nothing."; \
1387 goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__); \
1388 } \
1389 } else /*NOLINT*/ \
1390 GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__) \
1391 : fail(gtest_msg.value.c_str())
1392
1393 #if GTEST_HAS_EXCEPTIONS
1394
1395 #define GTEST_TEST_NO_THROW_CATCH_STD_EXCEPTION_() \
1396 catch (std::exception const& e) { \
1397 gtest_msg.value = "it throws "; \
1398 gtest_msg.value += GTEST_EXCEPTION_TYPE_(e); \
1399 gtest_msg.value += " with description \""; \
1400 gtest_msg.value += e.what(); \
1401 gtest_msg.value += "\"."; \
1402 goto GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__); \
1403 }
1404
1405 #else // GTEST_HAS_EXCEPTIONS
1406
1407 #define GTEST_TEST_NO_THROW_CATCH_STD_EXCEPTION_()
1408
1409 #endif // GTEST_HAS_EXCEPTIONS
1410
1411 #define GTEST_TEST_NO_THROW_(statement, fail) \
1412 GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
1413 if (::testing::internal::TrueWithString gtest_msg{}) { \
1414 try { \
1415 GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
1416 } \
1417 GTEST_TEST_NO_THROW_CATCH_STD_EXCEPTION_() \
1418 catch (...) { \
1419 gtest_msg.value = "it throws."; \
1420 goto GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__); \
1421 } \
1422 } else \
1423 GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__) \
1424 : fail(("Expected: " #statement " doesn't throw an exception.\n" \
1425 " Actual: " + \
1426 gtest_msg.value) \
1427 .c_str())
1428
1429 #define GTEST_TEST_ANY_THROW_(statement, fail) \
1430 GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
1431 if (::testing::internal::AlwaysTrue()) { \
1432 bool gtest_caught_any = false; \
1433 try { \
1434 GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
1435 } catch (...) { \
1436 gtest_caught_any = true; \
1437 } \
1438 if (!gtest_caught_any) { \
1439 goto GTEST_CONCAT_TOKEN_(gtest_label_testanythrow_, __LINE__); \
1440 } \
1441 } else \
1442 GTEST_CONCAT_TOKEN_(gtest_label_testanythrow_, __LINE__) \
1443 : fail("Expected: " #statement \
1444 " throws an exception.\n" \
1445 " Actual: it doesn't.")
1446
1447 // Implements Boolean test assertions such as EXPECT_TRUE. expression can be
1448 // either a boolean expression or an AssertionResult. text is a textual
1449 // representation of expression as it was passed into the EXPECT_TRUE.
1450 #define GTEST_TEST_BOOLEAN_(expression, text, actual, expected, fail) \
1451 GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
1452 if (const ::testing::AssertionResult gtest_ar_ = \
1453 ::testing::AssertionResult(expression)) \
1454 ; \
1455 else \
1456 fail(::testing::internal::GetBoolAssertionFailureMessage( \
1457 gtest_ar_, text, #actual, #expected) \
1458 .c_str())
1459
1460 #define GTEST_TEST_NO_FATAL_FAILURE_(statement, fail) \
1461 GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
1462 if (::testing::internal::AlwaysTrue()) { \
1463 const ::testing::internal::HasNewFatalFailureHelper \
1464 gtest_fatal_failure_checker; \
1465 GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
1466 if (gtest_fatal_failure_checker.has_new_fatal_failure()) { \
1467 goto GTEST_CONCAT_TOKEN_(gtest_label_testnofatal_, __LINE__); \
1468 } \
1469 } else /* NOLINT */ \
1470 GTEST_CONCAT_TOKEN_(gtest_label_testnofatal_, __LINE__) \
1471 : fail("Expected: " #statement \
1472 " doesn't generate new fatal " \
1473 "failures in the current thread.\n" \
1474 " Actual: it does.")
1475
1476 // Expands to the name of the class that implements the given test.
1477 #define GTEST_TEST_CLASS_NAME_(test_suite_name, test_name) \
1478 test_suite_name##_##test_name##_Test
1479
1480 // Helper macro for defining tests.
1481 #define GTEST_TEST_(test_suite_name, test_name, parent_class, parent_id) \
1482 static_assert(sizeof(GTEST_STRINGIFY_(test_suite_name)) > 1, \
1483 "test_suite_name must not be empty"); \
1484 static_assert(sizeof(GTEST_STRINGIFY_(test_name)) > 1, \
1485 "test_name must not be empty"); \
1486 class GTEST_TEST_CLASS_NAME_(test_suite_name, test_name) \
1487 : public parent_class { \
1488 public: \
1489 GTEST_TEST_CLASS_NAME_(test_suite_name, test_name)() = default; \
1490 ~GTEST_TEST_CLASS_NAME_(test_suite_name, test_name)() override = default; \
1491 GTEST_TEST_CLASS_NAME_(test_suite_name, test_name) \
1492 (const GTEST_TEST_CLASS_NAME_(test_suite_name, test_name) &) = delete; \
1493 GTEST_TEST_CLASS_NAME_(test_suite_name, test_name) & operator=( \
1494 const GTEST_TEST_CLASS_NAME_(test_suite_name, \
1495 test_name) &) = delete; /* NOLINT */ \
1496 GTEST_TEST_CLASS_NAME_(test_suite_name, test_name) \
1497 (GTEST_TEST_CLASS_NAME_(test_suite_name, test_name) &&) noexcept = delete; \
1498 GTEST_TEST_CLASS_NAME_(test_suite_name, test_name) & operator=( \
1499 GTEST_TEST_CLASS_NAME_(test_suite_name, \
1500 test_name) &&) noexcept = delete; /* NOLINT */ \
1501 \
1502 private: \
1503 void TestBody() override; \
1504 GTEST_INTERNAL_ATTRIBUTE_MAYBE_UNUSED static ::testing::TestInfo* const \
1505 test_info_; \
1506 }; \
1507 \
1508 ::testing::TestInfo* const GTEST_TEST_CLASS_NAME_(test_suite_name, \
1509 test_name)::test_info_ = \
1510 ::testing::internal::MakeAndRegisterTestInfo( \
1511 #test_suite_name, #test_name, nullptr, nullptr, \
1512 ::testing::internal::CodeLocation(__FILE__, __LINE__), (parent_id), \
1513 ::testing::internal::SuiteApiResolver< \
1514 parent_class>::GetSetUpCaseOrSuite(__FILE__, __LINE__), \
1515 ::testing::internal::SuiteApiResolver< \
1516 parent_class>::GetTearDownCaseOrSuite(__FILE__, __LINE__), \
1517 new ::testing::internal::TestFactoryImpl<GTEST_TEST_CLASS_NAME_( \
1518 test_suite_name, test_name)>); \
1519 void GTEST_TEST_CLASS_NAME_(test_suite_name, test_name)::TestBody()
1520
1521 #endif // GOOGLETEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
1522