1 //===-- sanitizer_common.h --------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is shared between run-time libraries of sanitizers.
10 //
11 // It declares common functions and classes that are used in both runtimes.
12 // Implementation of some functions are provided in sanitizer_common, while
13 // others must be defined by run-time library itself.
14 //===----------------------------------------------------------------------===//
15 #ifndef SANITIZER_COMMON_H
16 #define SANITIZER_COMMON_H
17
18 #include "sanitizer_flags.h"
19 #include "sanitizer_internal_defs.h"
20 #include "sanitizer_libc.h"
21 #include "sanitizer_list.h"
22 #include "sanitizer_mutex.h"
23
24 #if defined(_MSC_VER) && !defined(__clang__)
25 extern "C" void _ReadWriteBarrier();
26 #pragma intrinsic(_ReadWriteBarrier)
27 #endif
28
29 namespace __sanitizer {
30
31 struct AddressInfo;
32 struct BufferedStackTrace;
33 struct SignalContext;
34 struct StackTrace;
35 struct SymbolizedStack;
36
37 // Constants.
38 const uptr kWordSize = SANITIZER_WORDSIZE / 8;
39 const uptr kWordSizeInBits = 8 * kWordSize;
40
41 const uptr kCacheLineSize = SANITIZER_CACHE_LINE_SIZE;
42
43 const uptr kMaxPathLength = 4096;
44
45 const uptr kMaxThreadStackSize = 1 << 30; // 1Gb
46
47 const uptr kErrorMessageBufferSize = 1 << 16;
48
49 // Denotes fake PC values that come from JIT/JAVA/etc.
50 // For such PC values __tsan_symbolize_external_ex() will be called.
51 const u64 kExternalPCBit = 1ULL << 60;
52
53 extern const char *SanitizerToolName; // Can be changed by the tool.
54
55 extern atomic_uint32_t current_verbosity;
SetVerbosity(int verbosity)56 inline void SetVerbosity(int verbosity) {
57 atomic_store(¤t_verbosity, verbosity, memory_order_relaxed);
58 }
Verbosity()59 inline int Verbosity() {
60 return atomic_load(¤t_verbosity, memory_order_relaxed);
61 }
62
63 #if SANITIZER_ANDROID && !defined(__aarch64__)
64 // 32-bit Android only has 4k pages.
GetPageSize()65 inline uptr GetPageSize() { return 4096; }
GetPageSizeCached()66 inline uptr GetPageSizeCached() { return 4096; }
67 #else
68 uptr GetPageSize();
69 extern uptr PageSizeCached;
GetPageSizeCached()70 inline uptr GetPageSizeCached() {
71 if (!PageSizeCached)
72 PageSizeCached = GetPageSize();
73 return PageSizeCached;
74 }
75 #endif
76
77 uptr GetMmapGranularity();
78 uptr GetMaxVirtualAddress();
79 uptr GetMaxUserVirtualAddress();
80 // Threads
81 tid_t GetTid();
82 int TgKill(pid_t pid, tid_t tid, int sig);
83 uptr GetThreadSelf();
84 void GetThreadStackTopAndBottom(bool at_initialization, uptr *stack_top,
85 uptr *stack_bottom);
86 void GetThreadStackAndTls(bool main, uptr *stk_addr, uptr *stk_size,
87 uptr *tls_addr, uptr *tls_size);
88
89 // Memory management
90 void *MmapOrDie(uptr size, const char *mem_type, bool raw_report = false);
91
MmapOrDieQuietly(uptr size,const char * mem_type)92 inline void *MmapOrDieQuietly(uptr size, const char *mem_type) {
93 return MmapOrDie(size, mem_type, /*raw_report*/ true);
94 }
95 void UnmapOrDie(void *addr, uptr size, bool raw_report = false);
96 // Behaves just like MmapOrDie, but tolerates out of memory condition, in that
97 // case returns nullptr.
98 void *MmapOrDieOnFatalError(uptr size, const char *mem_type);
99 bool MmapFixedNoReserve(uptr fixed_addr, uptr size, const char *name = nullptr)
100 WARN_UNUSED_RESULT;
101 bool MmapFixedSuperNoReserve(uptr fixed_addr, uptr size,
102 const char *name = nullptr) WARN_UNUSED_RESULT;
103 void *MmapNoReserveOrDie(uptr size, const char *mem_type);
104 void *MmapFixedOrDie(uptr fixed_addr, uptr size, const char *name = nullptr);
105 // Behaves just like MmapFixedOrDie, but tolerates out of memory condition, in
106 // that case returns nullptr.
107 void *MmapFixedOrDieOnFatalError(uptr fixed_addr, uptr size,
108 const char *name = nullptr);
109 void *MmapFixedNoAccess(uptr fixed_addr, uptr size, const char *name = nullptr);
110 void *MmapNoAccess(uptr size);
111 // Map aligned chunk of address space; size and alignment are powers of two.
112 // Dies on all but out of memory errors, in the latter case returns nullptr.
113 void *MmapAlignedOrDieOnFatalError(uptr size, uptr alignment,
114 const char *mem_type);
115 // Disallow access to a memory range. Use MmapFixedNoAccess to allocate an
116 // unaccessible memory.
117 bool MprotectNoAccess(uptr addr, uptr size);
118 bool MprotectReadOnly(uptr addr, uptr size);
119 bool MprotectReadWrite(uptr addr, uptr size);
120
121 void MprotectMallocZones(void *addr, int prot);
122
123 #if SANITIZER_WINDOWS
124 // Zero previously mmap'd memory. Currently used only on Windows.
125 bool ZeroMmapFixedRegion(uptr fixed_addr, uptr size) WARN_UNUSED_RESULT;
126 #endif
127
128 #if SANITIZER_LINUX
129 // Unmap memory. Currently only used on Linux.
130 void UnmapFromTo(uptr from, uptr to);
131 #endif
132
133 // Maps shadow_size_bytes of shadow memory and returns shadow address. It will
134 // be aligned to the mmap granularity * 2^shadow_scale, or to
135 // 2^min_shadow_base_alignment if that is larger. The returned address will
136 // have max(2^min_shadow_base_alignment, mmap granularity) on the left, and
137 // shadow_size_bytes bytes on the right, which on linux is mapped no access.
138 // The high_mem_end may be updated if the original shadow size doesn't fit.
139 uptr MapDynamicShadow(uptr shadow_size_bytes, uptr shadow_scale,
140 uptr min_shadow_base_alignment, uptr &high_mem_end,
141 uptr granularity);
142
143 // Let S = max(shadow_size, num_aliases * alias_size, ring_buffer_size).
144 // Reserves 2*S bytes of address space to the right of the returned address and
145 // ring_buffer_size bytes to the left. The returned address is aligned to 2*S.
146 // Also creates num_aliases regions of accessible memory starting at offset S
147 // from the returned address. Each region has size alias_size and is backed by
148 // the same physical memory.
149 uptr MapDynamicShadowAndAliases(uptr shadow_size, uptr alias_size,
150 uptr num_aliases, uptr ring_buffer_size);
151
152 // Reserve memory range [beg, end]. If madvise_shadow is true then apply
153 // madvise (e.g. hugepages, core dumping) requested by options.
154 void ReserveShadowMemoryRange(uptr beg, uptr end, const char *name,
155 bool madvise_shadow = true);
156
157 // Protect size bytes of memory starting at addr. Also try to protect
158 // several pages at the start of the address space as specified by
159 // zero_base_shadow_start, at most up to the size or zero_base_max_shadow_start.
160 void ProtectGap(uptr addr, uptr size, uptr zero_base_shadow_start,
161 uptr zero_base_max_shadow_start);
162
163 // Find an available address space.
164 uptr FindAvailableMemoryRange(uptr size, uptr alignment, uptr left_padding,
165 uptr *largest_gap_found, uptr *max_occupied_addr);
166
167 // Used to check if we can map shadow memory to a fixed location.
168 bool MemoryRangeIsAvailable(uptr range_start, uptr range_end);
169 // Releases memory pages entirely within the [beg, end] address range. Noop if
170 // the provided range does not contain at least one entire page.
171 void ReleaseMemoryPagesToOS(uptr beg, uptr end);
172 void IncreaseTotalMmap(uptr size);
173 void DecreaseTotalMmap(uptr size);
174 uptr GetRSS();
175 void SetShadowRegionHugePageMode(uptr addr, uptr length);
176 bool DontDumpShadowMemory(uptr addr, uptr length);
177 // Check if the built VMA size matches the runtime one.
178 void CheckVMASize();
179 void RunMallocHooks(void *ptr, uptr size);
180 int RunFreeHooks(void *ptr);
181
182 class ReservedAddressRange {
183 public:
184 uptr Init(uptr size, const char *name = nullptr, uptr fixed_addr = 0);
185 uptr InitAligned(uptr size, uptr align, const char *name = nullptr);
186 uptr Map(uptr fixed_addr, uptr size, const char *name = nullptr);
187 uptr MapOrDie(uptr fixed_addr, uptr size, const char *name = nullptr);
188 void Unmap(uptr addr, uptr size);
base()189 void *base() const { return base_; }
size()190 uptr size() const { return size_; }
191
192 private:
193 void* base_;
194 uptr size_;
195 const char* name_;
196 uptr os_handle_;
197 };
198
199 typedef void (*fill_profile_f)(uptr start, uptr rss, bool file,
200 /*out*/ uptr *stats);
201
202 // Parse the contents of /proc/self/smaps and generate a memory profile.
203 // |cb| is a tool-specific callback that fills the |stats| array.
204 void GetMemoryProfile(fill_profile_f cb, uptr *stats);
205 void ParseUnixMemoryProfile(fill_profile_f cb, uptr *stats, char *smaps,
206 uptr smaps_len);
207
208 // Simple low-level (mmap-based) allocator for internal use. Doesn't have
209 // constructor, so all instances of LowLevelAllocator should be
210 // linker initialized.
211 //
212 // NOTE: Users should instead use the singleton provided via
213 // `GetGlobalLowLevelAllocator()` rather than create a new one. This way, the
214 // number of mmap fragments can be reduced and use the same contiguous mmap
215 // provided by this singleton.
216 class LowLevelAllocator {
217 public:
218 // Requires an external lock.
219 void *Allocate(uptr size);
220
221 private:
222 char *allocated_end_;
223 char *allocated_current_;
224 };
225 // Set the min alignment of LowLevelAllocator to at least alignment.
226 void SetLowLevelAllocateMinAlignment(uptr alignment);
227 typedef void (*LowLevelAllocateCallback)(uptr ptr, uptr size);
228 // Allows to register tool-specific callbacks for LowLevelAllocator.
229 // Passing NULL removes the callback.
230 void SetLowLevelAllocateCallback(LowLevelAllocateCallback callback);
231
232 LowLevelAllocator &GetGlobalLowLevelAllocator();
233
234 // IO
235 void CatastrophicErrorWrite(const char *buffer, uptr length);
236 void RawWrite(const char *buffer);
237 bool ColorizeReports();
238 void RemoveANSIEscapeSequencesFromString(char *buffer);
239 void Printf(const char *format, ...) FORMAT(1, 2);
240 void Report(const char *format, ...) FORMAT(1, 2);
241 void SetPrintfAndReportCallback(void (*callback)(const char *));
242 #define VReport(level, ...) \
243 do { \
244 if ((uptr)Verbosity() >= (level)) Report(__VA_ARGS__); \
245 } while (0)
246 #define VPrintf(level, ...) \
247 do { \
248 if ((uptr)Verbosity() >= (level)) Printf(__VA_ARGS__); \
249 } while (0)
250
251 // Lock sanitizer error reporting and protects against nested errors.
252 class ScopedErrorReportLock {
253 public:
ScopedErrorReportLock()254 ScopedErrorReportLock() SANITIZER_ACQUIRE(mutex_) { Lock(); }
SANITIZER_RELEASE(mutex_)255 ~ScopedErrorReportLock() SANITIZER_RELEASE(mutex_) { Unlock(); }
256
257 static void Lock() SANITIZER_ACQUIRE(mutex_);
258 static void Unlock() SANITIZER_RELEASE(mutex_);
259 static void CheckLocked() SANITIZER_CHECK_LOCKED(mutex_);
260
261 private:
262 static atomic_uintptr_t reporting_thread_;
263 static StaticSpinMutex mutex_;
264 };
265
266 extern uptr stoptheworld_tracer_pid;
267 extern uptr stoptheworld_tracer_ppid;
268
269 bool IsAccessibleMemoryRange(uptr beg, uptr size);
270
271 // Error report formatting.
272 const char *StripPathPrefix(const char *filepath,
273 const char *strip_file_prefix);
274 // Strip the directories from the module name.
275 const char *StripModuleName(const char *module);
276
277 // OS
278 uptr ReadBinaryName(/*out*/char *buf, uptr buf_len);
279 uptr ReadBinaryNameCached(/*out*/char *buf, uptr buf_len);
280 uptr ReadBinaryDir(/*out*/ char *buf, uptr buf_len);
281 uptr ReadLongProcessName(/*out*/ char *buf, uptr buf_len);
282 const char *GetProcessName();
283 void UpdateProcessName();
284 void CacheBinaryName();
285 void DisableCoreDumperIfNecessary();
286 void DumpProcessMap();
287 const char *GetEnv(const char *name);
288 bool SetEnv(const char *name, const char *value);
289
290 u32 GetUid();
291 void ReExec();
292 void CheckASLR();
293 void CheckMPROTECT();
294 char **GetArgv();
295 char **GetEnviron();
296 void PrintCmdline();
297 bool StackSizeIsUnlimited();
298 void SetStackSizeLimitInBytes(uptr limit);
299 bool AddressSpaceIsUnlimited();
300 void SetAddressSpaceUnlimited();
301 void AdjustStackSize(void *attr);
302 void PlatformPrepareForSandboxing(void *args);
303 void SetSandboxingCallback(void (*f)());
304
305 void InitializeCoverage(bool enabled, const char *coverage_dir);
306
307 void InitTlsSize();
308 uptr GetTlsSize();
309
310 // Other
311 void WaitForDebugger(unsigned seconds, const char *label);
312 void SleepForSeconds(unsigned seconds);
313 void SleepForMillis(unsigned millis);
314 u64 NanoTime();
315 u64 MonotonicNanoTime();
316 int Atexit(void (*function)(void));
317 bool TemplateMatch(const char *templ, const char *str);
318
319 // Exit
320 void NORETURN Abort();
321 void NORETURN Die();
322 void NORETURN
323 CheckFailed(const char *file, int line, const char *cond, u64 v1, u64 v2);
324 void NORETURN ReportMmapFailureAndDie(uptr size, const char *mem_type,
325 const char *mmap_type, error_t err,
326 bool raw_report = false);
327 void NORETURN ReportMunmapFailureAndDie(void *ptr, uptr size, error_t err,
328 bool raw_report = false);
329
330 // Returns true if the platform-specific error reported is an OOM error.
331 bool ErrorIsOOM(error_t err);
332
333 // This reports an error in the form:
334 //
335 // `ERROR: {{SanitizerToolName}}: out of memory: {{err_msg}}`
336 //
337 // Downstream tools that read sanitizer output will know that errors starting
338 // in this format are specifically OOM errors.
339 #define ERROR_OOM(err_msg, ...) \
340 Report("ERROR: %s: out of memory: " err_msg, SanitizerToolName, __VA_ARGS__)
341
342 // Specific tools may override behavior of "Die" function to do tool-specific
343 // job.
344 typedef void (*DieCallbackType)(void);
345
346 // It's possible to add several callbacks that would be run when "Die" is
347 // called. The callbacks will be run in the opposite order. The tools are
348 // strongly recommended to setup all callbacks during initialization, when there
349 // is only a single thread.
350 bool AddDieCallback(DieCallbackType callback);
351 bool RemoveDieCallback(DieCallbackType callback);
352
353 void SetUserDieCallback(DieCallbackType callback);
354
355 void SetCheckUnwindCallback(void (*callback)());
356
357 // Functions related to signal handling.
358 typedef void (*SignalHandlerType)(int, void *, void *);
359 HandleSignalMode GetHandleSignalMode(int signum);
360 void InstallDeadlySignalHandlers(SignalHandlerType handler);
361
362 // Signal reporting.
363 // Each sanitizer uses slightly different implementation of stack unwinding.
364 typedef void (*UnwindSignalStackCallbackType)(const SignalContext &sig,
365 const void *callback_context,
366 BufferedStackTrace *stack);
367 // Print deadly signal report and die.
368 void HandleDeadlySignal(void *siginfo, void *context, u32 tid,
369 UnwindSignalStackCallbackType unwind,
370 const void *unwind_context);
371
372 // Part of HandleDeadlySignal, exposed for asan.
373 void StartReportDeadlySignal();
374 // Part of HandleDeadlySignal, exposed for asan.
375 void ReportDeadlySignal(const SignalContext &sig, u32 tid,
376 UnwindSignalStackCallbackType unwind,
377 const void *unwind_context);
378
379 // Alternative signal stack (POSIX-only).
380 void SetAlternateSignalStack();
381 void UnsetAlternateSignalStack();
382
383 // Construct a one-line string:
384 // SUMMARY: SanitizerToolName: error_message
385 // and pass it to __sanitizer_report_error_summary.
386 // If alt_tool_name is provided, it's used in place of SanitizerToolName.
387 void ReportErrorSummary(const char *error_message,
388 const char *alt_tool_name = nullptr);
389 // Same as above, but construct error_message as:
390 // error_type file:line[:column][ function]
391 void ReportErrorSummary(const char *error_type, const AddressInfo &info,
392 const char *alt_tool_name = nullptr);
393 // Same as above, but obtains AddressInfo by symbolizing top stack trace frame.
394 void ReportErrorSummary(const char *error_type, const StackTrace *trace,
395 const char *alt_tool_name = nullptr);
396 // Skips frames which we consider internal and not usefull to the users.
397 const SymbolizedStack *SkipInternalFrames(const SymbolizedStack *frames);
398
399 void ReportMmapWriteExec(int prot, int mflags);
400
401 // Math
402 #if SANITIZER_WINDOWS && !defined(__clang__) && !defined(__GNUC__)
403 extern "C" {
404 unsigned char _BitScanForward(unsigned long *index, unsigned long mask);
405 unsigned char _BitScanReverse(unsigned long *index, unsigned long mask);
406 #if defined(_WIN64)
407 unsigned char _BitScanForward64(unsigned long *index, unsigned __int64 mask);
408 unsigned char _BitScanReverse64(unsigned long *index, unsigned __int64 mask);
409 #endif
410 }
411 #endif
412
MostSignificantSetBitIndex(uptr x)413 inline uptr MostSignificantSetBitIndex(uptr x) {
414 CHECK_NE(x, 0U);
415 unsigned long up;
416 #if !SANITIZER_WINDOWS || defined(__clang__) || defined(__GNUC__)
417 # ifdef _WIN64
418 up = SANITIZER_WORDSIZE - 1 - __builtin_clzll(x);
419 # else
420 up = SANITIZER_WORDSIZE - 1 - __builtin_clzl(x);
421 # endif
422 #elif defined(_WIN64)
423 _BitScanReverse64(&up, x);
424 #else
425 _BitScanReverse(&up, x);
426 #endif
427 return up;
428 }
429
LeastSignificantSetBitIndex(uptr x)430 inline uptr LeastSignificantSetBitIndex(uptr x) {
431 CHECK_NE(x, 0U);
432 unsigned long up;
433 #if !SANITIZER_WINDOWS || defined(__clang__) || defined(__GNUC__)
434 # ifdef _WIN64
435 up = __builtin_ctzll(x);
436 # else
437 up = __builtin_ctzl(x);
438 # endif
439 #elif defined(_WIN64)
440 _BitScanForward64(&up, x);
441 #else
442 _BitScanForward(&up, x);
443 #endif
444 return up;
445 }
446
IsPowerOfTwo(uptr x)447 inline constexpr bool IsPowerOfTwo(uptr x) { return (x & (x - 1)) == 0; }
448
RoundUpToPowerOfTwo(uptr size)449 inline uptr RoundUpToPowerOfTwo(uptr size) {
450 CHECK(size);
451 if (IsPowerOfTwo(size)) return size;
452
453 uptr up = MostSignificantSetBitIndex(size);
454 CHECK_LT(size, (1ULL << (up + 1)));
455 CHECK_GT(size, (1ULL << up));
456 return 1ULL << (up + 1);
457 }
458
RoundUpTo(uptr size,uptr boundary)459 inline constexpr uptr RoundUpTo(uptr size, uptr boundary) {
460 RAW_CHECK(IsPowerOfTwo(boundary));
461 return (size + boundary - 1) & ~(boundary - 1);
462 }
463
RoundDownTo(uptr x,uptr boundary)464 inline constexpr uptr RoundDownTo(uptr x, uptr boundary) {
465 return x & ~(boundary - 1);
466 }
467
IsAligned(uptr a,uptr alignment)468 inline constexpr bool IsAligned(uptr a, uptr alignment) {
469 return (a & (alignment - 1)) == 0;
470 }
471
Log2(uptr x)472 inline uptr Log2(uptr x) {
473 CHECK(IsPowerOfTwo(x));
474 return LeastSignificantSetBitIndex(x);
475 }
476
477 // Don't use std::min, std::max or std::swap, to minimize dependency
478 // on libstdc++.
479 template <class T>
Min(T a,T b)480 constexpr T Min(T a, T b) {
481 return a < b ? a : b;
482 }
483 template <class T>
Max(T a,T b)484 constexpr T Max(T a, T b) {
485 return a > b ? a : b;
486 }
487 template <class T>
Abs(T a)488 constexpr T Abs(T a) {
489 return a < 0 ? -a : a;
490 }
Swap(T & a,T & b)491 template<class T> void Swap(T& a, T& b) {
492 T tmp = a;
493 a = b;
494 b = tmp;
495 }
496
497 // Char handling
IsSpace(int c)498 inline bool IsSpace(int c) {
499 return (c == ' ') || (c == '\n') || (c == '\t') ||
500 (c == '\f') || (c == '\r') || (c == '\v');
501 }
IsDigit(int c)502 inline bool IsDigit(int c) {
503 return (c >= '0') && (c <= '9');
504 }
ToLower(int c)505 inline int ToLower(int c) {
506 return (c >= 'A' && c <= 'Z') ? (c + 'a' - 'A') : c;
507 }
508
509 // A low-level vector based on mmap. May incur a significant memory overhead for
510 // small vectors.
511 // WARNING: The current implementation supports only POD types.
512 template <typename T, bool raw_report = false>
513 class InternalMmapVectorNoCtor {
514 public:
515 using value_type = T;
Initialize(uptr initial_capacity)516 void Initialize(uptr initial_capacity) {
517 capacity_bytes_ = 0;
518 size_ = 0;
519 data_ = 0;
520 reserve(initial_capacity);
521 }
Destroy()522 void Destroy() { UnmapOrDie(data_, capacity_bytes_, raw_report); }
523 T &operator[](uptr i) {
524 CHECK_LT(i, size_);
525 return data_[i];
526 }
527 const T &operator[](uptr i) const {
528 CHECK_LT(i, size_);
529 return data_[i];
530 }
push_back(const T & element)531 void push_back(const T &element) {
532 if (UNLIKELY(size_ >= capacity())) {
533 CHECK_EQ(size_, capacity());
534 uptr new_capacity = RoundUpToPowerOfTwo(size_ + 1);
535 Realloc(new_capacity);
536 }
537 internal_memcpy(&data_[size_++], &element, sizeof(T));
538 }
back()539 T &back() {
540 CHECK_GT(size_, 0);
541 return data_[size_ - 1];
542 }
pop_back()543 void pop_back() {
544 CHECK_GT(size_, 0);
545 size_--;
546 }
size()547 uptr size() const {
548 return size_;
549 }
data()550 const T *data() const {
551 return data_;
552 }
data()553 T *data() {
554 return data_;
555 }
capacity()556 uptr capacity() const { return capacity_bytes_ / sizeof(T); }
reserve(uptr new_size)557 void reserve(uptr new_size) {
558 // Never downsize internal buffer.
559 if (new_size > capacity())
560 Realloc(new_size);
561 }
resize(uptr new_size)562 void resize(uptr new_size) {
563 if (new_size > size_) {
564 reserve(new_size);
565 internal_memset(&data_[size_], 0, sizeof(T) * (new_size - size_));
566 }
567 size_ = new_size;
568 }
569
clear()570 void clear() { size_ = 0; }
empty()571 bool empty() const { return size() == 0; }
572
begin()573 const T *begin() const {
574 return data();
575 }
begin()576 T *begin() {
577 return data();
578 }
end()579 const T *end() const {
580 return data() + size();
581 }
end()582 T *end() {
583 return data() + size();
584 }
585
swap(InternalMmapVectorNoCtor & other)586 void swap(InternalMmapVectorNoCtor &other) {
587 Swap(data_, other.data_);
588 Swap(capacity_bytes_, other.capacity_bytes_);
589 Swap(size_, other.size_);
590 }
591
592 private:
Realloc(uptr new_capacity)593 NOINLINE void Realloc(uptr new_capacity) {
594 CHECK_GT(new_capacity, 0);
595 CHECK_LE(size_, new_capacity);
596 uptr new_capacity_bytes =
597 RoundUpTo(new_capacity * sizeof(T), GetPageSizeCached());
598 T *new_data =
599 (T *)MmapOrDie(new_capacity_bytes, "InternalMmapVector", raw_report);
600 internal_memcpy(new_data, data_, size_ * sizeof(T));
601 UnmapOrDie(data_, capacity_bytes_, raw_report);
602 data_ = new_data;
603 capacity_bytes_ = new_capacity_bytes;
604 }
605
606 T *data_;
607 uptr capacity_bytes_;
608 uptr size_;
609 };
610
611 template <typename T>
612 bool operator==(const InternalMmapVectorNoCtor<T> &lhs,
613 const InternalMmapVectorNoCtor<T> &rhs) {
614 if (lhs.size() != rhs.size()) return false;
615 return internal_memcmp(lhs.data(), rhs.data(), lhs.size() * sizeof(T)) == 0;
616 }
617
618 template <typename T>
619 bool operator!=(const InternalMmapVectorNoCtor<T> &lhs,
620 const InternalMmapVectorNoCtor<T> &rhs) {
621 return !(lhs == rhs);
622 }
623
624 template<typename T>
625 class InternalMmapVector : public InternalMmapVectorNoCtor<T> {
626 public:
InternalMmapVector()627 InternalMmapVector() { InternalMmapVectorNoCtor<T>::Initialize(0); }
InternalMmapVector(uptr cnt)628 explicit InternalMmapVector(uptr cnt) {
629 InternalMmapVectorNoCtor<T>::Initialize(cnt);
630 this->resize(cnt);
631 }
~InternalMmapVector()632 ~InternalMmapVector() { InternalMmapVectorNoCtor<T>::Destroy(); }
633 // Disallow copies and moves.
634 InternalMmapVector(const InternalMmapVector &) = delete;
635 InternalMmapVector &operator=(const InternalMmapVector &) = delete;
636 InternalMmapVector(InternalMmapVector &&) = delete;
637 InternalMmapVector &operator=(InternalMmapVector &&) = delete;
638 };
639
640 class InternalScopedString {
641 public:
InternalScopedString()642 InternalScopedString() : buffer_(1) { buffer_[0] = '\0'; }
643
length()644 uptr length() const { return buffer_.size() - 1; }
clear()645 void clear() {
646 buffer_.resize(1);
647 buffer_[0] = '\0';
648 }
649 void Append(const char *str);
650 void AppendF(const char *format, ...) FORMAT(2, 3);
data()651 const char *data() const { return buffer_.data(); }
data()652 char *data() { return buffer_.data(); }
653
654 private:
655 InternalMmapVector<char> buffer_;
656 };
657
658 template <class T>
659 struct CompareLess {
operatorCompareLess660 bool operator()(const T &a, const T &b) const { return a < b; }
661 };
662
663 // HeapSort for arrays and InternalMmapVector.
664 template <class T, class Compare = CompareLess<T>>
665 void Sort(T *v, uptr size, Compare comp = {}) {
666 if (size < 2)
667 return;
668 // Stage 1: insert elements to the heap.
669 for (uptr i = 1; i < size; i++) {
670 uptr j, p;
671 for (j = i; j > 0; j = p) {
672 p = (j - 1) / 2;
673 if (comp(v[p], v[j]))
674 Swap(v[j], v[p]);
675 else
676 break;
677 }
678 }
679 // Stage 2: swap largest element with the last one,
680 // and sink the new top.
681 for (uptr i = size - 1; i > 0; i--) {
682 Swap(v[0], v[i]);
683 uptr j, max_ind;
684 for (j = 0; j < i; j = max_ind) {
685 uptr left = 2 * j + 1;
686 uptr right = 2 * j + 2;
687 max_ind = j;
688 if (left < i && comp(v[max_ind], v[left]))
689 max_ind = left;
690 if (right < i && comp(v[max_ind], v[right]))
691 max_ind = right;
692 if (max_ind != j)
693 Swap(v[j], v[max_ind]);
694 else
695 break;
696 }
697 }
698 }
699
700 // Works like std::lower_bound: finds the first element that is not less
701 // than the val.
702 template <class Container, class T,
703 class Compare = CompareLess<typename Container::value_type>>
704 uptr InternalLowerBound(const Container &v, const T &val, Compare comp = {}) {
705 uptr first = 0;
706 uptr last = v.size();
707 while (last > first) {
708 uptr mid = (first + last) / 2;
709 if (comp(v[mid], val))
710 first = mid + 1;
711 else
712 last = mid;
713 }
714 return first;
715 }
716
717 enum ModuleArch {
718 kModuleArchUnknown,
719 kModuleArchI386,
720 kModuleArchX86_64,
721 kModuleArchX86_64H,
722 kModuleArchARMV6,
723 kModuleArchARMV7,
724 kModuleArchARMV7S,
725 kModuleArchARMV7K,
726 kModuleArchARM64,
727 kModuleArchLoongArch64,
728 kModuleArchRISCV64,
729 kModuleArchHexagon
730 };
731
732 // Sorts and removes duplicates from the container.
733 template <class Container,
734 class Compare = CompareLess<typename Container::value_type>>
735 void SortAndDedup(Container &v, Compare comp = {}) {
736 Sort(v.data(), v.size(), comp);
737 uptr size = v.size();
738 if (size < 2)
739 return;
740 uptr last = 0;
741 for (uptr i = 1; i < size; ++i) {
742 if (comp(v[last], v[i])) {
743 ++last;
744 if (last != i)
745 v[last] = v[i];
746 } else {
747 CHECK(!comp(v[i], v[last]));
748 }
749 }
750 v.resize(last + 1);
751 }
752
753 constexpr uptr kDefaultFileMaxSize = FIRST_32_SECOND_64(1 << 26, 1 << 28);
754
755 // Opens the file 'file_name" and reads up to 'max_len' bytes.
756 // The resulting buffer is mmaped and stored in '*buff'.
757 // Returns true if file was successfully opened and read.
758 bool ReadFileToVector(const char *file_name,
759 InternalMmapVectorNoCtor<char> *buff,
760 uptr max_len = kDefaultFileMaxSize,
761 error_t *errno_p = nullptr);
762
763 // Opens the file 'file_name" and reads up to 'max_len' bytes.
764 // This function is less I/O efficient than ReadFileToVector as it may reread
765 // file multiple times to avoid mmap during read attempts. It's used to read
766 // procmap, so short reads with mmap in between can produce inconsistent result.
767 // The resulting buffer is mmaped and stored in '*buff'.
768 // The size of the mmaped region is stored in '*buff_size'.
769 // The total number of read bytes is stored in '*read_len'.
770 // Returns true if file was successfully opened and read.
771 bool ReadFileToBuffer(const char *file_name, char **buff, uptr *buff_size,
772 uptr *read_len, uptr max_len = kDefaultFileMaxSize,
773 error_t *errno_p = nullptr);
774
775 int GetModuleAndOffsetForPc(uptr pc, char *module_name, uptr module_name_len,
776 uptr *pc_offset);
777
778 // When adding a new architecture, don't forget to also update
779 // script/asan_symbolize.py and sanitizer_symbolizer_libcdep.cpp.
ModuleArchToString(ModuleArch arch)780 inline const char *ModuleArchToString(ModuleArch arch) {
781 switch (arch) {
782 case kModuleArchUnknown:
783 return "";
784 case kModuleArchI386:
785 return "i386";
786 case kModuleArchX86_64:
787 return "x86_64";
788 case kModuleArchX86_64H:
789 return "x86_64h";
790 case kModuleArchARMV6:
791 return "armv6";
792 case kModuleArchARMV7:
793 return "armv7";
794 case kModuleArchARMV7S:
795 return "armv7s";
796 case kModuleArchARMV7K:
797 return "armv7k";
798 case kModuleArchARM64:
799 return "arm64";
800 case kModuleArchLoongArch64:
801 return "loongarch64";
802 case kModuleArchRISCV64:
803 return "riscv64";
804 case kModuleArchHexagon:
805 return "hexagon";
806 }
807 CHECK(0 && "Invalid module arch");
808 return "";
809 }
810
811 #if SANITIZER_APPLE
812 const uptr kModuleUUIDSize = 16;
813 #else
814 const uptr kModuleUUIDSize = 32;
815 #endif
816 const uptr kMaxSegName = 16;
817
818 // Represents a binary loaded into virtual memory (e.g. this can be an
819 // executable or a shared object).
820 class LoadedModule {
821 public:
LoadedModule()822 LoadedModule()
823 : full_name_(nullptr),
824 base_address_(0),
825 max_address_(0),
826 arch_(kModuleArchUnknown),
827 uuid_size_(0),
828 instrumented_(false) {
829 internal_memset(uuid_, 0, kModuleUUIDSize);
830 ranges_.clear();
831 }
832 void set(const char *module_name, uptr base_address);
833 void set(const char *module_name, uptr base_address, ModuleArch arch,
834 u8 uuid[kModuleUUIDSize], bool instrumented);
835 void setUuid(const char *uuid, uptr size);
836 void clear();
837 void addAddressRange(uptr beg, uptr end, bool executable, bool writable,
838 const char *name = nullptr);
839 bool containsAddress(uptr address) const;
840
full_name()841 const char *full_name() const { return full_name_; }
base_address()842 uptr base_address() const { return base_address_; }
max_address()843 uptr max_address() const { return max_address_; }
arch()844 ModuleArch arch() const { return arch_; }
uuid()845 const u8 *uuid() const { return uuid_; }
uuid_size()846 uptr uuid_size() const { return uuid_size_; }
instrumented()847 bool instrumented() const { return instrumented_; }
848
849 struct AddressRange {
850 AddressRange *next;
851 uptr beg;
852 uptr end;
853 bool executable;
854 bool writable;
855 char name[kMaxSegName];
856
AddressRangeAddressRange857 AddressRange(uptr beg, uptr end, bool executable, bool writable,
858 const char *name)
859 : next(nullptr),
860 beg(beg),
861 end(end),
862 executable(executable),
863 writable(writable) {
864 internal_strncpy(this->name, (name ? name : ""), ARRAY_SIZE(this->name));
865 }
866 };
867
ranges()868 const IntrusiveList<AddressRange> &ranges() const { return ranges_; }
869
870 private:
871 char *full_name_; // Owned.
872 uptr base_address_;
873 uptr max_address_;
874 ModuleArch arch_;
875 uptr uuid_size_;
876 u8 uuid_[kModuleUUIDSize];
877 bool instrumented_;
878 IntrusiveList<AddressRange> ranges_;
879 };
880
881 // List of LoadedModules. OS-dependent implementation is responsible for
882 // filling this information.
883 class ListOfModules {
884 public:
ListOfModules()885 ListOfModules() : initialized(false) {}
~ListOfModules()886 ~ListOfModules() { clear(); }
887 void init();
888 void fallbackInit(); // Uses fallback init if available, otherwise clears
begin()889 const LoadedModule *begin() const { return modules_.begin(); }
begin()890 LoadedModule *begin() { return modules_.begin(); }
end()891 const LoadedModule *end() const { return modules_.end(); }
end()892 LoadedModule *end() { return modules_.end(); }
size()893 uptr size() const { return modules_.size(); }
894 const LoadedModule &operator[](uptr i) const {
895 CHECK_LT(i, modules_.size());
896 return modules_[i];
897 }
898
899 private:
clear()900 void clear() {
901 for (auto &module : modules_) module.clear();
902 modules_.clear();
903 }
clearOrInit()904 void clearOrInit() {
905 initialized ? clear() : modules_.Initialize(kInitialCapacity);
906 initialized = true;
907 }
908
909 InternalMmapVectorNoCtor<LoadedModule> modules_;
910 // We rarely have more than 16K loaded modules.
911 static const uptr kInitialCapacity = 1 << 14;
912 bool initialized;
913 };
914
915 // Callback type for iterating over a set of memory ranges.
916 typedef void (*RangeIteratorCallback)(uptr begin, uptr end, void *arg);
917
918 enum AndroidApiLevel {
919 ANDROID_NOT_ANDROID = 0,
920 ANDROID_KITKAT = 19,
921 ANDROID_LOLLIPOP_MR1 = 22,
922 ANDROID_POST_LOLLIPOP = 23
923 };
924
925 void WriteToSyslog(const char *buffer);
926
927 #if defined(SANITIZER_WINDOWS) && defined(_MSC_VER) && !defined(__clang__)
928 #define SANITIZER_WIN_TRACE 1
929 #else
930 #define SANITIZER_WIN_TRACE 0
931 #endif
932
933 #if SANITIZER_APPLE || SANITIZER_WIN_TRACE
934 void LogFullErrorReport(const char *buffer);
935 #else
LogFullErrorReport(const char * buffer)936 inline void LogFullErrorReport(const char *buffer) {}
937 #endif
938
939 #if SANITIZER_LINUX || SANITIZER_APPLE
940 void WriteOneLineToSyslog(const char *s);
941 void LogMessageOnPrintf(const char *str);
942 #else
WriteOneLineToSyslog(const char * s)943 inline void WriteOneLineToSyslog(const char *s) {}
LogMessageOnPrintf(const char * str)944 inline void LogMessageOnPrintf(const char *str) {}
945 #endif
946
947 #if SANITIZER_LINUX || SANITIZER_WIN_TRACE
948 // Initialize Android logging. Any writes before this are silently lost.
949 void AndroidLogInit();
950 void SetAbortMessage(const char *);
951 #else
AndroidLogInit()952 inline void AndroidLogInit() {}
953 // FIXME: MacOS implementation could use CRSetCrashLogMessage.
SetAbortMessage(const char *)954 inline void SetAbortMessage(const char *) {}
955 #endif
956
957 #if SANITIZER_ANDROID
958 void SanitizerInitializeUnwinder();
959 AndroidApiLevel AndroidGetApiLevel();
960 #else
AndroidLogWrite(const char * buffer_unused)961 inline void AndroidLogWrite(const char *buffer_unused) {}
SanitizerInitializeUnwinder()962 inline void SanitizerInitializeUnwinder() {}
AndroidGetApiLevel()963 inline AndroidApiLevel AndroidGetApiLevel() { return ANDROID_NOT_ANDROID; }
964 #endif
965
GetPthreadDestructorIterations()966 inline uptr GetPthreadDestructorIterations() {
967 #if SANITIZER_ANDROID
968 return (AndroidGetApiLevel() == ANDROID_LOLLIPOP_MR1) ? 8 : 4;
969 #elif SANITIZER_POSIX
970 return 4;
971 #else
972 // Unused on Windows.
973 return 0;
974 #endif
975 }
976
977 void *internal_start_thread(void *(*func)(void*), void *arg);
978 void internal_join_thread(void *th);
979 void MaybeStartBackgroudThread();
980
981 // Make the compiler think that something is going on there.
982 // Use this inside a loop that looks like memset/memcpy/etc to prevent the
983 // compiler from recognising it and turning it into an actual call to
984 // memset/memcpy/etc.
SanitizerBreakOptimization(void * arg)985 static inline void SanitizerBreakOptimization(void *arg) {
986 #if defined(_MSC_VER) && !defined(__clang__)
987 _ReadWriteBarrier();
988 #else
989 __asm__ __volatile__("" : : "r" (arg) : "memory");
990 #endif
991 }
992
993 struct SignalContext {
994 void *siginfo;
995 void *context;
996 uptr addr;
997 uptr pc;
998 uptr sp;
999 uptr bp;
1000 bool is_memory_access;
1001 enum WriteFlag { Unknown, Read, Write } write_flag;
1002
1003 // In some cases the kernel cannot provide the true faulting address; `addr`
1004 // will be zero then. This field allows to distinguish between these cases
1005 // and dereferences of null.
1006 bool is_true_faulting_addr;
1007
1008 // VS2013 doesn't implement unrestricted unions, so we need a trivial default
1009 // constructor
1010 SignalContext() = default;
1011
1012 // Creates signal context in a platform-specific manner.
1013 // SignalContext is going to keep pointers to siginfo and context without
1014 // owning them.
SignalContextSignalContext1015 SignalContext(void *siginfo, void *context)
1016 : siginfo(siginfo),
1017 context(context),
1018 addr(GetAddress()),
1019 is_memory_access(IsMemoryAccess()),
1020 write_flag(GetWriteFlag()),
1021 is_true_faulting_addr(IsTrueFaultingAddress()) {
1022 InitPcSpBp();
1023 }
1024
1025 static void DumpAllRegisters(void *context);
1026
1027 // Type of signal e.g. SIGSEGV or EXCEPTION_ACCESS_VIOLATION.
1028 int GetType() const;
1029
1030 // String description of the signal.
1031 const char *Describe() const;
1032
1033 // Returns true if signal is stack overflow.
1034 bool IsStackOverflow() const;
1035
1036 private:
1037 // Platform specific initialization.
1038 void InitPcSpBp();
1039 uptr GetAddress() const;
1040 WriteFlag GetWriteFlag() const;
1041 bool IsMemoryAccess() const;
1042 bool IsTrueFaultingAddress() const;
1043 };
1044
1045 void InitializePlatformEarly();
1046
1047 template <typename Fn>
1048 class RunOnDestruction {
1049 public:
RunOnDestruction(Fn fn)1050 explicit RunOnDestruction(Fn fn) : fn_(fn) {}
~RunOnDestruction()1051 ~RunOnDestruction() { fn_(); }
1052
1053 private:
1054 Fn fn_;
1055 };
1056
1057 // A simple scope guard. Usage:
1058 // auto cleanup = at_scope_exit([]{ do_cleanup; });
1059 template <typename Fn>
at_scope_exit(Fn fn)1060 RunOnDestruction<Fn> at_scope_exit(Fn fn) {
1061 return RunOnDestruction<Fn>(fn);
1062 }
1063
1064 // Linux on 64-bit s390 had a nasty bug that crashes the whole machine
1065 // if a process uses virtual memory over 4TB (as many sanitizers like
1066 // to do). This function will abort the process if running on a kernel
1067 // that looks vulnerable.
1068 #if SANITIZER_LINUX && SANITIZER_S390_64
1069 void AvoidCVE_2016_2143();
1070 #else
AvoidCVE_2016_2143()1071 inline void AvoidCVE_2016_2143() {}
1072 #endif
1073
1074 struct StackDepotStats {
1075 uptr n_uniq_ids;
1076 uptr allocated;
1077 };
1078
1079 // The default value for allocator_release_to_os_interval_ms common flag to
1080 // indicate that sanitizer allocator should not attempt to release memory to OS.
1081 const s32 kReleaseToOSIntervalNever = -1;
1082
1083 void CheckNoDeepBind(const char *filename, int flag);
1084
1085 // Returns the requested amount of random data (up to 256 bytes) that can then
1086 // be used to seed a PRNG. Defaults to blocking like the underlying syscall.
1087 bool GetRandom(void *buffer, uptr length, bool blocking = true);
1088
1089 // Returns the number of logical processors on the system.
1090 u32 GetNumberOfCPUs();
1091 extern u32 NumberOfCPUsCached;
GetNumberOfCPUsCached()1092 inline u32 GetNumberOfCPUsCached() {
1093 if (!NumberOfCPUsCached)
1094 NumberOfCPUsCached = GetNumberOfCPUs();
1095 return NumberOfCPUsCached;
1096 }
1097
1098 } // namespace __sanitizer
1099
new(__sanitizer::usize size,__sanitizer::LowLevelAllocator & alloc)1100 inline void *operator new(__sanitizer::usize size,
1101 __sanitizer::LowLevelAllocator &alloc) {
1102 return alloc.Allocate(size);
1103 }
1104
1105 #endif // SANITIZER_COMMON_H
1106