xref: /freebsd/contrib/googletest/googletest/include/gtest/internal/gtest-internal.h (revision 46333229c6a0187ebf231805682ee0bceed704d1)
1 // Copyright 2005, Google Inc.
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 //     * Redistributions of source code must retain the above copyright
9 // notice, this list of conditions and the following disclaimer.
10 //     * Redistributions in binary form must reproduce the above
11 // copyright notice, this list of conditions and the following disclaimer
12 // in the documentation and/or other materials provided with the
13 // distribution.
14 //     * Neither the name of Google Inc. nor the names of its
15 // contributors may be used to endorse or promote products derived from
16 // this software without specific prior written permission.
17 //
18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 
30 // The Google C++ Testing and Mocking Framework (Google Test)
31 //
32 // This header file declares functions and macros used internally by
33 // Google Test.  They are subject to change without notice.
34 
35 // IWYU pragma: private, include "gtest/gtest.h"
36 // IWYU pragma: friend gtest/.*
37 // IWYU pragma: friend gmock/.*
38 
39 #ifndef GOOGLETEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
40 #define GOOGLETEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
41 
42 #include "gtest/internal/gtest-port.h"
43 
44 #ifdef GTEST_OS_LINUX
45 #include <stdlib.h>
46 #include <sys/types.h>
47 #include <sys/wait.h>
48 #include <unistd.h>
49 #endif  // GTEST_OS_LINUX
50 
51 #if GTEST_HAS_EXCEPTIONS
52 #include <stdexcept>
53 #endif
54 
55 #include <ctype.h>
56 #include <float.h>
57 #include <string.h>
58 
59 #include <cstdint>
60 #include <functional>
61 #include <limits>
62 #include <map>
63 #include <set>
64 #include <string>
65 #include <type_traits>
66 #include <utility>
67 #include <vector>
68 
69 #include "gtest/gtest-message.h"
70 #include "gtest/internal/gtest-filepath.h"
71 #include "gtest/internal/gtest-string.h"
72 #include "gtest/internal/gtest-type-util.h"
73 
74 // Due to C++ preprocessor weirdness, we need double indirection to
75 // concatenate two tokens when one of them is __LINE__.  Writing
76 //
77 //   foo ## __LINE__
78 //
79 // will result in the token foo__LINE__, instead of foo followed by
80 // the current line number.  For more details, see
81 // https://www.parashift.com/c++-faq-lite/misc-technical-issues.html#faq-39.6
82 #define GTEST_CONCAT_TOKEN_(foo, bar) GTEST_CONCAT_TOKEN_IMPL_(foo, bar)
83 #define GTEST_CONCAT_TOKEN_IMPL_(foo, bar) foo##bar
84 
85 // Stringifies its argument.
86 // Work around a bug in visual studio which doesn't accept code like this:
87 //
88 //   #define GTEST_STRINGIFY_(name) #name
89 //   #define MACRO(a, b, c) ... GTEST_STRINGIFY_(a) ...
90 //   MACRO(, x, y)
91 //
92 // Complaining about the argument to GTEST_STRINGIFY_ being empty.
93 // This is allowed by the spec.
94 #define GTEST_STRINGIFY_HELPER_(name, ...) #name
95 #define GTEST_STRINGIFY_(...) GTEST_STRINGIFY_HELPER_(__VA_ARGS__, )
96 
97 namespace proto2 {
98 class MessageLite;
99 }
100 
101 namespace testing {
102 
103 // Forward declarations.
104 
105 class AssertionResult;  // Result of an assertion.
106 class Message;          // Represents a failure message.
107 class Test;             // Represents a test.
108 class TestInfo;         // Information about a test.
109 class TestPartResult;   // Result of a test part.
110 class UnitTest;         // A collection of test suites.
111 
112 template <typename T>
113 ::std::string PrintToString(const T& value);
114 
115 namespace internal {
116 
117 struct TraceInfo;    // Information about a trace point.
118 class TestInfoImpl;  // Opaque implementation of TestInfo
119 class UnitTestImpl;  // Opaque implementation of UnitTest
120 
121 // The text used in failure messages to indicate the start of the
122 // stack trace.
123 GTEST_API_ extern const char kStackTraceMarker[];
124 
125 // An IgnoredValue object can be implicitly constructed from ANY value.
126 class IgnoredValue {
127   struct Sink {};
128 
129  public:
130   // This constructor template allows any value to be implicitly
131   // converted to IgnoredValue.  The object has no data member and
132   // doesn't try to remember anything about the argument.  We
133   // deliberately omit the 'explicit' keyword in order to allow the
134   // conversion to be implicit.
135   // Disable the conversion if T already has a magical conversion operator.
136   // Otherwise we get ambiguity.
137   template <typename T,
138             typename std::enable_if<!std::is_convertible<T, Sink>::value,
139                                     int>::type = 0>
IgnoredValue(const T &)140   IgnoredValue(const T& /* ignored */) {}  // NOLINT(runtime/explicit)
141 };
142 
143 // Appends the user-supplied message to the Google-Test-generated message.
144 GTEST_API_ std::string AppendUserMessage(const std::string& gtest_msg,
145                                          const Message& user_msg);
146 
147 #if GTEST_HAS_EXCEPTIONS
148 
149 GTEST_DISABLE_MSC_WARNINGS_PUSH_(
150     4275 /* an exported class was derived from a class that was not exported */)
151 
152 // This exception is thrown by (and only by) a failed Google Test
153 // assertion when GTEST_FLAG(throw_on_failure) is true (if exceptions
154 // are enabled).  We derive it from std::runtime_error, which is for
155 // errors presumably detectable only at run time.  Since
156 // std::runtime_error inherits from std::exception, many testing
157 // frameworks know how to extract and print the message inside it.
158 class GTEST_API_ GoogleTestFailureException : public ::std::runtime_error {
159  public:
160   explicit GoogleTestFailureException(const TestPartResult& failure);
161 };
162 
GTEST_DISABLE_MSC_WARNINGS_POP_()163 GTEST_DISABLE_MSC_WARNINGS_POP_()  //  4275
164 
165 #endif  // GTEST_HAS_EXCEPTIONS
166 
167 namespace edit_distance {
168 // Returns the optimal edits to go from 'left' to 'right'.
169 // All edits cost the same, with replace having lower priority than
170 // add/remove.
171 // Simple implementation of the Wagner-Fischer algorithm.
172 // See https://en.wikipedia.org/wiki/Wagner-Fischer_algorithm
173 enum EditType { kMatch, kAdd, kRemove, kReplace };
174 GTEST_API_ std::vector<EditType> CalculateOptimalEdits(
175     const std::vector<size_t>& left, const std::vector<size_t>& right);
176 
177 // Same as above, but the input is represented as strings.
178 GTEST_API_ std::vector<EditType> CalculateOptimalEdits(
179     const std::vector<std::string>& left,
180     const std::vector<std::string>& right);
181 
182 // Create a diff of the input strings in Unified diff format.
183 GTEST_API_ std::string CreateUnifiedDiff(const std::vector<std::string>& left,
184                                          const std::vector<std::string>& right,
185                                          size_t context = 2);
186 
187 }  // namespace edit_distance
188 
189 // Constructs and returns the message for an equality assertion
190 // (e.g. ASSERT_EQ, EXPECT_STREQ, etc) failure.
191 //
192 // The first four parameters are the expressions used in the assertion
193 // and their values, as strings.  For example, for ASSERT_EQ(foo, bar)
194 // where foo is 5 and bar is 6, we have:
195 //
196 //   expected_expression: "foo"
197 //   actual_expression:   "bar"
198 //   expected_value:      "5"
199 //   actual_value:        "6"
200 //
201 // The ignoring_case parameter is true if and only if the assertion is a
202 // *_STRCASEEQ*.  When it's true, the string " (ignoring case)" will
203 // be inserted into the message.
204 GTEST_API_ AssertionResult EqFailure(const char* expected_expression,
205                                      const char* actual_expression,
206                                      const std::string& expected_value,
207                                      const std::string& actual_value,
208                                      bool ignoring_case);
209 
210 // Constructs a failure message for Boolean assertions such as EXPECT_TRUE.
211 GTEST_API_ std::string GetBoolAssertionFailureMessage(
212     const AssertionResult& assertion_result, const char* expression_text,
213     const char* actual_predicate_value, const char* expected_predicate_value);
214 
215 // This template class represents an IEEE floating-point number
216 // (either single-precision or double-precision, depending on the
217 // template parameters).
218 //
219 // The purpose of this class is to do more sophisticated number
220 // comparison.  (Due to round-off error, etc, it's very unlikely that
221 // two floating-points will be equal exactly.  Hence a naive
222 // comparison by the == operation often doesn't work.)
223 //
224 // Format of IEEE floating-point:
225 //
226 //   The most-significant bit being the leftmost, an IEEE
227 //   floating-point looks like
228 //
229 //     sign_bit exponent_bits fraction_bits
230 //
231 //   Here, sign_bit is a single bit that designates the sign of the
232 //   number.
233 //
234 //   For float, there are 8 exponent bits and 23 fraction bits.
235 //
236 //   For double, there are 11 exponent bits and 52 fraction bits.
237 //
238 //   More details can be found at
239 //   https://en.wikipedia.org/wiki/IEEE_floating-point_standard.
240 //
241 // Template parameter:
242 //
243 //   RawType: the raw floating-point type (either float or double)
244 template <typename RawType>
245 class FloatingPoint {
246  public:
247   // Defines the unsigned integer type that has the same size as the
248   // floating point number.
249   typedef typename TypeWithSize<sizeof(RawType)>::UInt Bits;
250 
251   // Constants.
252 
253   // # of bits in a number.
254   static const size_t kBitCount = 8 * sizeof(RawType);
255 
256   // # of fraction bits in a number.
257   static const size_t kFractionBitCount =
258       std::numeric_limits<RawType>::digits - 1;
259 
260   // # of exponent bits in a number.
261   static const size_t kExponentBitCount = kBitCount - 1 - kFractionBitCount;
262 
263   // The mask for the sign bit.
264   static const Bits kSignBitMask = static_cast<Bits>(1) << (kBitCount - 1);
265 
266   // The mask for the fraction bits.
267   static const Bits kFractionBitMask = ~static_cast<Bits>(0) >>
268                                        (kExponentBitCount + 1);
269 
270   // The mask for the exponent bits.
271   static const Bits kExponentBitMask = ~(kSignBitMask | kFractionBitMask);
272 
273   // How many ULP's (Units in the Last Place) we want to tolerate when
274   // comparing two numbers.  The larger the value, the more error we
275   // allow.  A 0 value means that two numbers must be exactly the same
276   // to be considered equal.
277   //
278   // The maximum error of a single floating-point operation is 0.5
279   // units in the last place.  On Intel CPU's, all floating-point
280   // calculations are done with 80-bit precision, while double has 64
281   // bits.  Therefore, 4 should be enough for ordinary use.
282   //
283   // See the following article for more details on ULP:
284   // https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/
285   static const uint32_t kMaxUlps = 4;
286 
287   // Constructs a FloatingPoint from a raw floating-point number.
288   //
289   // On an Intel CPU, passing a non-normalized NAN (Not a Number)
290   // around may change its bits, although the new value is guaranteed
291   // to be also a NAN.  Therefore, don't expect this constructor to
292   // preserve the bits in x when x is a NAN.
FloatingPoint(RawType x)293   explicit FloatingPoint(RawType x) { memcpy(&bits_, &x, sizeof(x)); }
294 
295   // Static methods
296 
297   // Reinterprets a bit pattern as a floating-point number.
298   //
299   // This function is needed to test the AlmostEquals() method.
ReinterpretBits(Bits bits)300   static RawType ReinterpretBits(Bits bits) {
301     RawType fp;
302     memcpy(&fp, &bits, sizeof(fp));
303     return fp;
304   }
305 
306   // Returns the floating-point number that represent positive infinity.
Infinity()307   static RawType Infinity() { return ReinterpretBits(kExponentBitMask); }
308 
309   // Non-static methods
310 
311   // Returns the bits that represents this number.
bits()312   const Bits& bits() const { return bits_; }
313 
314   // Returns the exponent bits of this number.
exponent_bits()315   Bits exponent_bits() const { return kExponentBitMask & bits_; }
316 
317   // Returns the fraction bits of this number.
fraction_bits()318   Bits fraction_bits() const { return kFractionBitMask & bits_; }
319 
320   // Returns the sign bit of this number.
sign_bit()321   Bits sign_bit() const { return kSignBitMask & bits_; }
322 
323   // Returns true if and only if this is NAN (not a number).
is_nan()324   bool is_nan() const {
325     // It's a NAN if the exponent bits are all ones and the fraction
326     // bits are not entirely zeros.
327     return (exponent_bits() == kExponentBitMask) && (fraction_bits() != 0);
328   }
329 
330   // Returns true if and only if this number is at most kMaxUlps ULP's away
331   // from rhs.  In particular, this function:
332   //
333   //   - returns false if either number is (or both are) NAN.
334   //   - treats really large numbers as almost equal to infinity.
335   //   - thinks +0.0 and -0.0 are 0 ULP's apart.
AlmostEquals(const FloatingPoint & rhs)336   bool AlmostEquals(const FloatingPoint& rhs) const {
337     // The IEEE standard says that any comparison operation involving
338     // a NAN must return false.
339     if (is_nan() || rhs.is_nan()) return false;
340 
341     return DistanceBetweenSignAndMagnitudeNumbers(bits_, rhs.bits_) <= kMaxUlps;
342   }
343 
344  private:
345   // Converts an integer from the sign-and-magnitude representation to
346   // the biased representation.  More precisely, let N be 2 to the
347   // power of (kBitCount - 1), an integer x is represented by the
348   // unsigned number x + N.
349   //
350   // For instance,
351   //
352   //   -N + 1 (the most negative number representable using
353   //          sign-and-magnitude) is represented by 1;
354   //   0      is represented by N; and
355   //   N - 1  (the biggest number representable using
356   //          sign-and-magnitude) is represented by 2N - 1.
357   //
358   // Read https://en.wikipedia.org/wiki/Signed_number_representations
359   // for more details on signed number representations.
SignAndMagnitudeToBiased(Bits sam)360   static Bits SignAndMagnitudeToBiased(Bits sam) {
361     if (kSignBitMask & sam) {
362       // sam represents a negative number.
363       return ~sam + 1;
364     } else {
365       // sam represents a positive number.
366       return kSignBitMask | sam;
367     }
368   }
369 
370   // Given two numbers in the sign-and-magnitude representation,
371   // returns the distance between them as an unsigned number.
DistanceBetweenSignAndMagnitudeNumbers(Bits sam1,Bits sam2)372   static Bits DistanceBetweenSignAndMagnitudeNumbers(Bits sam1, Bits sam2) {
373     const Bits biased1 = SignAndMagnitudeToBiased(sam1);
374     const Bits biased2 = SignAndMagnitudeToBiased(sam2);
375     return (biased1 >= biased2) ? (biased1 - biased2) : (biased2 - biased1);
376   }
377 
378   Bits bits_;  // The bits that represent the number.
379 };
380 
381 // Typedefs the instances of the FloatingPoint template class that we
382 // care to use.
383 typedef FloatingPoint<float> Float;
384 typedef FloatingPoint<double> Double;
385 
386 // In order to catch the mistake of putting tests that use different
387 // test fixture classes in the same test suite, we need to assign
388 // unique IDs to fixture classes and compare them.  The TypeId type is
389 // used to hold such IDs.  The user should treat TypeId as an opaque
390 // type: the only operation allowed on TypeId values is to compare
391 // them for equality using the == operator.
392 typedef const void* TypeId;
393 
394 template <typename T>
395 class TypeIdHelper {
396  public:
397   // dummy_ must not have a const type.  Otherwise an overly eager
398   // compiler (e.g. MSVC 7.1 & 8.0) may try to merge
399   // TypeIdHelper<T>::dummy_ for different Ts as an "optimization".
400   static bool dummy_;
401 };
402 
403 template <typename T>
404 bool TypeIdHelper<T>::dummy_ = false;
405 
406 // GetTypeId<T>() returns the ID of type T.  Different values will be
407 // returned for different types.  Calling the function twice with the
408 // same type argument is guaranteed to return the same ID.
409 template <typename T>
GetTypeId()410 TypeId GetTypeId() {
411   // The compiler is required to allocate a different
412   // TypeIdHelper<T>::dummy_ variable for each T used to instantiate
413   // the template.  Therefore, the address of dummy_ is guaranteed to
414   // be unique.
415   return &(TypeIdHelper<T>::dummy_);
416 }
417 
418 // Returns the type ID of ::testing::Test.  Always call this instead
419 // of GetTypeId< ::testing::Test>() to get the type ID of
420 // ::testing::Test, as the latter may give the wrong result due to a
421 // suspected linker bug when compiling Google Test as a Mac OS X
422 // framework.
423 GTEST_API_ TypeId GetTestTypeId();
424 
425 // Defines the abstract factory interface that creates instances
426 // of a Test object.
427 class TestFactoryBase {
428  public:
429   virtual ~TestFactoryBase() = default;
430 
431   // Creates a test instance to run. The instance is both created and destroyed
432   // within TestInfoImpl::Run()
433   virtual Test* CreateTest() = 0;
434 
435  protected:
TestFactoryBase()436   TestFactoryBase() {}
437 
438  private:
439   TestFactoryBase(const TestFactoryBase&) = delete;
440   TestFactoryBase& operator=(const TestFactoryBase&) = delete;
441 };
442 
443 // This class provides implementation of TestFactoryBase interface.
444 // It is used in TEST and TEST_F macros.
445 template <class TestClass>
446 class TestFactoryImpl : public TestFactoryBase {
447  public:
CreateTest()448   Test* CreateTest() override { return new TestClass; }
449 };
450 
451 #ifdef GTEST_OS_WINDOWS
452 
453 // Predicate-formatters for implementing the HRESULT checking macros
454 // {ASSERT|EXPECT}_HRESULT_{SUCCEEDED|FAILED}
455 // We pass a long instead of HRESULT to avoid causing an
456 // include dependency for the HRESULT type.
457 GTEST_API_ AssertionResult IsHRESULTSuccess(const char* expr,
458                                             long hr);  // NOLINT
459 GTEST_API_ AssertionResult IsHRESULTFailure(const char* expr,
460                                             long hr);  // NOLINT
461 
462 #endif  // GTEST_OS_WINDOWS
463 
464 // Types of SetUpTestSuite() and TearDownTestSuite() functions.
465 using SetUpTestSuiteFunc = void (*)();
466 using TearDownTestSuiteFunc = void (*)();
467 
468 struct CodeLocation {
CodeLocationCodeLocation469   CodeLocation(std::string a_file, int a_line)
470       : file(std::move(a_file)), line(a_line) {}
471 
472   std::string file;
473   int line;
474 };
475 
476 //  Helper to identify which setup function for TestCase / TestSuite to call.
477 //  Only one function is allowed, either TestCase or TestSute but not both.
478 
479 // Utility functions to help SuiteApiResolver
480 using SetUpTearDownSuiteFuncType = void (*)();
481 
GetNotDefaultOrNull(SetUpTearDownSuiteFuncType a,SetUpTearDownSuiteFuncType def)482 inline SetUpTearDownSuiteFuncType GetNotDefaultOrNull(
483     SetUpTearDownSuiteFuncType a, SetUpTearDownSuiteFuncType def) {
484   return a == def ? nullptr : a;
485 }
486 
487 template <typename T>
488 //  Note that SuiteApiResolver inherits from T because
489 //  SetUpTestSuite()/TearDownTestSuite() could be protected. This way
490 //  SuiteApiResolver can access them.
491 struct SuiteApiResolver : T {
492   // testing::Test is only forward declared at this point. So we make it a
493   // dependent class for the compiler to be OK with it.
494   using Test =
495       typename std::conditional<sizeof(T) != 0, ::testing::Test, void>::type;
496 
GetSetUpCaseOrSuiteSuiteApiResolver497   static SetUpTearDownSuiteFuncType GetSetUpCaseOrSuite(const char* filename,
498                                                         int line_num) {
499 #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_
500     SetUpTearDownSuiteFuncType test_case_fp =
501         GetNotDefaultOrNull(&T::SetUpTestCase, &Test::SetUpTestCase);
502     SetUpTearDownSuiteFuncType test_suite_fp =
503         GetNotDefaultOrNull(&T::SetUpTestSuite, &Test::SetUpTestSuite);
504 
505     GTEST_CHECK_(!test_case_fp || !test_suite_fp)
506         << "Test can not provide both SetUpTestSuite and SetUpTestCase, please "
507            "make sure there is only one present at "
508         << filename << ":" << line_num;
509 
510     return test_case_fp != nullptr ? test_case_fp : test_suite_fp;
511 #else
512     (void)(filename);
513     (void)(line_num);
514     return &T::SetUpTestSuite;
515 #endif
516   }
517 
GetTearDownCaseOrSuiteSuiteApiResolver518   static SetUpTearDownSuiteFuncType GetTearDownCaseOrSuite(const char* filename,
519                                                            int line_num) {
520 #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_
521     SetUpTearDownSuiteFuncType test_case_fp =
522         GetNotDefaultOrNull(&T::TearDownTestCase, &Test::TearDownTestCase);
523     SetUpTearDownSuiteFuncType test_suite_fp =
524         GetNotDefaultOrNull(&T::TearDownTestSuite, &Test::TearDownTestSuite);
525 
526     GTEST_CHECK_(!test_case_fp || !test_suite_fp)
527         << "Test can not provide both TearDownTestSuite and TearDownTestCase,"
528            " please make sure there is only one present at"
529         << filename << ":" << line_num;
530 
531     return test_case_fp != nullptr ? test_case_fp : test_suite_fp;
532 #else
533     (void)(filename);
534     (void)(line_num);
535     return &T::TearDownTestSuite;
536 #endif
537   }
538 };
539 
540 // Creates a new TestInfo object and registers it with Google Test;
541 // returns the created object.
542 //
543 // Arguments:
544 //
545 //   test_suite_name:  name of the test suite
546 //   name:             name of the test
547 //   type_param:       the name of the test's type parameter, or NULL if
548 //                     this is not a typed or a type-parameterized test.
549 //   value_param:      text representation of the test's value parameter,
550 //                     or NULL if this is not a value-parameterized test.
551 //   code_location:    code location where the test is defined
552 //   fixture_class_id: ID of the test fixture class
553 //   set_up_tc:        pointer to the function that sets up the test suite
554 //   tear_down_tc:     pointer to the function that tears down the test suite
555 //   factory:          pointer to the factory that creates a test object.
556 //                     The newly created TestInfo instance will assume
557 //                     ownership of the factory object.
558 GTEST_API_ TestInfo* MakeAndRegisterTestInfo(
559     std::string test_suite_name, const char* name, const char* type_param,
560     const char* value_param, CodeLocation code_location,
561     TypeId fixture_class_id, SetUpTestSuiteFunc set_up_tc,
562     TearDownTestSuiteFunc tear_down_tc, TestFactoryBase* factory);
563 
564 // If *pstr starts with the given prefix, modifies *pstr to be right
565 // past the prefix and returns true; otherwise leaves *pstr unchanged
566 // and returns false.  None of pstr, *pstr, and prefix can be NULL.
567 GTEST_API_ bool SkipPrefix(const char* prefix, const char** pstr);
568 
569 GTEST_DISABLE_MSC_WARNINGS_PUSH_(4251 \
570 /* class A needs to have dll-interface to be used by clients of class B */)
571 
572 // State of the definition of a type-parameterized test suite.
573 class GTEST_API_ TypedTestSuitePState {
574  public:
TypedTestSuitePState()575   TypedTestSuitePState() : registered_(false) {}
576 
577   // Adds the given test name to defined_test_names_ and return true
578   // if the test suite hasn't been registered; otherwise aborts the
579   // program.
AddTestName(const char * file,int line,const char * case_name,const char * test_name)580   bool AddTestName(const char* file, int line, const char* case_name,
581                    const char* test_name) {
582     if (registered_) {
583       fprintf(stderr,
584               "%s Test %s must be defined before "
585               "REGISTER_TYPED_TEST_SUITE_P(%s, ...).\n",
586               FormatFileLocation(file, line).c_str(), test_name, case_name);
587       fflush(stderr);
588       posix::Abort();
589     }
590     registered_tests_.emplace(test_name, CodeLocation(file, line));
591     return true;
592   }
593 
TestExists(const std::string & test_name)594   bool TestExists(const std::string& test_name) const {
595     return registered_tests_.count(test_name) > 0;
596   }
597 
GetCodeLocation(const std::string & test_name)598   const CodeLocation& GetCodeLocation(const std::string& test_name) const {
599     RegisteredTestsMap::const_iterator it = registered_tests_.find(test_name);
600     GTEST_CHECK_(it != registered_tests_.end());
601     return it->second;
602   }
603 
604   // Verifies that registered_tests match the test names in
605   // defined_test_names_; returns registered_tests if successful, or
606   // aborts the program otherwise.
607   const char* VerifyRegisteredTestNames(const char* test_suite_name,
608                                         const char* file, int line,
609                                         const char* registered_tests);
610 
611  private:
612   typedef ::std::map<std::string, CodeLocation, std::less<>> RegisteredTestsMap;
613 
614   bool registered_;
615   RegisteredTestsMap registered_tests_;
616 };
617 
618 //  Legacy API is deprecated but still available
619 #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_
620 using TypedTestCasePState = TypedTestSuitePState;
621 #endif  //  GTEST_REMOVE_LEGACY_TEST_CASEAPI_
622 
GTEST_DISABLE_MSC_WARNINGS_POP_()623 GTEST_DISABLE_MSC_WARNINGS_POP_()  //  4251
624 
625 // Skips to the first non-space char after the first comma in 'str';
626 // returns NULL if no comma is found in 'str'.
627 inline const char* SkipComma(const char* str) {
628   const char* comma = strchr(str, ',');
629   if (comma == nullptr) {
630     return nullptr;
631   }
632   while (IsSpace(*(++comma))) {
633   }
634   return comma;
635 }
636 
637 // Returns the prefix of 'str' before the first comma in it; returns
638 // the entire string if it contains no comma.
GetPrefixUntilComma(const char * str)639 inline std::string GetPrefixUntilComma(const char* str) {
640   const char* comma = strchr(str, ',');
641   return comma == nullptr ? str : std::string(str, comma);
642 }
643 
644 // Splits a given string on a given delimiter, populating a given
645 // vector with the fields.
646 void SplitString(const ::std::string& str, char delimiter,
647                  ::std::vector<::std::string>* dest);
648 
649 // The default argument to the template below for the case when the user does
650 // not provide a name generator.
651 struct DefaultNameGenerator {
652   template <typename T>
GetNameDefaultNameGenerator653   static std::string GetName(int i) {
654     return StreamableToString(i);
655   }
656 };
657 
658 template <typename Provided = DefaultNameGenerator>
659 struct NameGeneratorSelector {
660   typedef Provided type;
661 };
662 
663 template <typename NameGenerator>
GenerateNamesRecursively(internal::None,std::vector<std::string> *,int)664 void GenerateNamesRecursively(internal::None, std::vector<std::string>*, int) {}
665 
666 template <typename NameGenerator, typename Types>
GenerateNamesRecursively(Types,std::vector<std::string> * result,int i)667 void GenerateNamesRecursively(Types, std::vector<std::string>* result, int i) {
668   result->push_back(NameGenerator::template GetName<typename Types::Head>(i));
669   GenerateNamesRecursively<NameGenerator>(typename Types::Tail(), result,
670                                           i + 1);
671 }
672 
673 template <typename NameGenerator, typename Types>
GenerateNames()674 std::vector<std::string> GenerateNames() {
675   std::vector<std::string> result;
676   GenerateNamesRecursively<NameGenerator>(Types(), &result, 0);
677   return result;
678 }
679 
680 // TypeParameterizedTest<Fixture, TestSel, Types>::Register()
681 // registers a list of type-parameterized tests with Google Test.  The
682 // return value is insignificant - we just need to return something
683 // such that we can call this function in a namespace scope.
684 //
685 // Implementation note: The GTEST_TEMPLATE_ macro declares a template
686 // template parameter.  It's defined in gtest-type-util.h.
687 template <GTEST_TEMPLATE_ Fixture, class TestSel, typename Types>
688 class TypeParameterizedTest {
689  public:
690   // 'index' is the index of the test in the type list 'Types'
691   // specified in INSTANTIATE_TYPED_TEST_SUITE_P(Prefix, TestSuite,
692   // Types).  Valid values for 'index' are [0, N - 1] where N is the
693   // length of Types.
694   static bool Register(const char* prefix, CodeLocation code_location,
695                        const char* case_name, const char* test_names, int index,
696                        const std::vector<std::string>& type_names =
697                            GenerateNames<DefaultNameGenerator, Types>()) {
698     typedef typename Types::Head Type;
699     typedef Fixture<Type> FixtureClass;
700     typedef typename GTEST_BIND_(TestSel, Type) TestClass;
701 
702     // First, registers the first type-parameterized test in the type
703     // list.
704     MakeAndRegisterTestInfo(
705         (std::string(prefix) + (prefix[0] == '\0' ? "" : "/") + case_name +
706          "/" + type_names[static_cast<size_t>(index)]),
707         StripTrailingSpaces(GetPrefixUntilComma(test_names)).c_str(),
708         GetTypeName<Type>().c_str(),
709         nullptr,  // No value parameter.
710         code_location, GetTypeId<FixtureClass>(),
711         SuiteApiResolver<TestClass>::GetSetUpCaseOrSuite(
712             code_location.file.c_str(), code_location.line),
713         SuiteApiResolver<TestClass>::GetTearDownCaseOrSuite(
714             code_location.file.c_str(), code_location.line),
715         new TestFactoryImpl<TestClass>);
716 
717     // Next, recurses (at compile time) with the tail of the type list.
718     return TypeParameterizedTest<Fixture, TestSel, typename Types::Tail>::
719         Register(prefix, std::move(code_location), case_name, test_names,
720                  index + 1, type_names);
721   }
722 };
723 
724 // The base case for the compile time recursion.
725 template <GTEST_TEMPLATE_ Fixture, class TestSel>
726 class TypeParameterizedTest<Fixture, TestSel, internal::None> {
727  public:
728   static bool Register(const char* /*prefix*/, CodeLocation,
729                        const char* /*case_name*/, const char* /*test_names*/,
730                        int /*index*/,
731                        const std::vector<std::string>& =
732                            std::vector<std::string>() /*type_names*/) {
733     return true;
734   }
735 };
736 
737 GTEST_API_ void RegisterTypeParameterizedTestSuite(const char* test_suite_name,
738                                                    CodeLocation code_location);
739 GTEST_API_ void RegisterTypeParameterizedTestSuiteInstantiation(
740     const char* case_name);
741 
742 // TypeParameterizedTestSuite<Fixture, Tests, Types>::Register()
743 // registers *all combinations* of 'Tests' and 'Types' with Google
744 // Test.  The return value is insignificant - we just need to return
745 // something such that we can call this function in a namespace scope.
746 template <GTEST_TEMPLATE_ Fixture, typename Tests, typename Types>
747 class TypeParameterizedTestSuite {
748  public:
749   static bool Register(const char* prefix, CodeLocation code_location,
750                        const TypedTestSuitePState* state, const char* case_name,
751                        const char* test_names,
752                        const std::vector<std::string>& type_names =
753                            GenerateNames<DefaultNameGenerator, Types>()) {
754     RegisterTypeParameterizedTestSuiteInstantiation(case_name);
755     std::string test_name =
756         StripTrailingSpaces(GetPrefixUntilComma(test_names));
757     if (!state->TestExists(test_name)) {
758       fprintf(stderr, "Failed to get code location for test %s.%s at %s.",
759               case_name, test_name.c_str(),
760               FormatFileLocation(code_location.file.c_str(), code_location.line)
761                   .c_str());
762       fflush(stderr);
763       posix::Abort();
764     }
765     const CodeLocation& test_location = state->GetCodeLocation(test_name);
766 
767     typedef typename Tests::Head Head;
768 
769     // First, register the first test in 'Test' for each type in 'Types'.
770     TypeParameterizedTest<Fixture, Head, Types>::Register(
771         prefix, test_location, case_name, test_names, 0, type_names);
772 
773     // Next, recurses (at compile time) with the tail of the test list.
774     return TypeParameterizedTestSuite<Fixture, typename Tests::Tail,
775                                       Types>::Register(prefix,
776                                                        std::move(code_location),
777                                                        state, case_name,
778                                                        SkipComma(test_names),
779                                                        type_names);
780   }
781 };
782 
783 // The base case for the compile time recursion.
784 template <GTEST_TEMPLATE_ Fixture, typename Types>
785 class TypeParameterizedTestSuite<Fixture, internal::None, Types> {
786  public:
787   static bool Register(const char* /*prefix*/, const CodeLocation&,
788                        const TypedTestSuitePState* /*state*/,
789                        const char* /*case_name*/, const char* /*test_names*/,
790                        const std::vector<std::string>& =
791                            std::vector<std::string>() /*type_names*/) {
792     return true;
793   }
794 };
795 
796 // Returns the current OS stack trace as an std::string.
797 //
798 // The maximum number of stack frames to be included is specified by
799 // the gtest_stack_trace_depth flag.  The skip_count parameter
800 // specifies the number of top frames to be skipped, which doesn't
801 // count against the number of frames to be included.
802 //
803 // For example, if Foo() calls Bar(), which in turn calls
804 // GetCurrentOsStackTraceExceptTop(..., 1), Foo() will be included in
805 // the trace but Bar() and GetCurrentOsStackTraceExceptTop() won't.
806 GTEST_API_ std::string GetCurrentOsStackTraceExceptTop(int skip_count);
807 
808 // Helpers for suppressing warnings on unreachable code or constant
809 // condition.
810 
811 // Always returns true.
812 GTEST_API_ bool AlwaysTrue();
813 
814 // Always returns false.
AlwaysFalse()815 inline bool AlwaysFalse() { return !AlwaysTrue(); }
816 
817 // Helper for suppressing false warning from Clang on a const char*
818 // variable declared in a conditional expression always being NULL in
819 // the else branch.
820 struct GTEST_API_ ConstCharPtr {
ConstCharPtrConstCharPtr821   ConstCharPtr(const char* str) : value(str) {}
822   operator bool() const { return true; }
823   const char* value;
824 };
825 
826 // Helper for declaring std::string within 'if' statement
827 // in pre C++17 build environment.
828 struct TrueWithString {
829   TrueWithString() = default;
TrueWithStringTrueWithString830   explicit TrueWithString(const char* str) : value(str) {}
TrueWithStringTrueWithString831   explicit TrueWithString(const std::string& str) : value(str) {}
832   explicit operator bool() const { return true; }
833   std::string value;
834 };
835 
836 // A simple Linear Congruential Generator for generating random
837 // numbers with a uniform distribution.  Unlike rand() and srand(), it
838 // doesn't use global state (and therefore can't interfere with user
839 // code).  Unlike rand_r(), it's portable.  An LCG isn't very random,
840 // but it's good enough for our purposes.
841 class GTEST_API_ Random {
842  public:
843   static const uint32_t kMaxRange = 1u << 31;
844 
Random(uint32_t seed)845   explicit Random(uint32_t seed) : state_(seed) {}
846 
Reseed(uint32_t seed)847   void Reseed(uint32_t seed) { state_ = seed; }
848 
849   // Generates a random number from [0, range).  Crashes if 'range' is
850   // 0 or greater than kMaxRange.
851   uint32_t Generate(uint32_t range);
852 
853  private:
854   uint32_t state_;
855   Random(const Random&) = delete;
856   Random& operator=(const Random&) = delete;
857 };
858 
859 // Turns const U&, U&, const U, and U all into U.
860 #define GTEST_REMOVE_REFERENCE_AND_CONST_(T) \
861   typename std::remove_const<typename std::remove_reference<T>::type>::type
862 
863 // HasDebugStringAndShortDebugString<T>::value is a compile-time bool constant
864 // that's true if and only if T has methods DebugString() and ShortDebugString()
865 // that return std::string.
866 template <typename T>
867 class HasDebugStringAndShortDebugString {
868  private:
869   template <typename C>
870   static auto CheckDebugString(C*) -> typename std::is_same<
871       std::string, decltype(std::declval<const C>().DebugString())>::type;
872   template <typename>
873   static std::false_type CheckDebugString(...);
874 
875   template <typename C>
876   static auto CheckShortDebugString(C*) -> typename std::is_same<
877       std::string, decltype(std::declval<const C>().ShortDebugString())>::type;
878   template <typename>
879   static std::false_type CheckShortDebugString(...);
880 
881   using HasDebugStringType = decltype(CheckDebugString<T>(nullptr));
882   using HasShortDebugStringType = decltype(CheckShortDebugString<T>(nullptr));
883 
884  public:
885   static constexpr bool value =
886       HasDebugStringType::value && HasShortDebugStringType::value;
887 };
888 
889 // When the compiler sees expression IsContainerTest<C>(0), if C is an
890 // STL-style container class, the first overload of IsContainerTest
891 // will be viable (since both C::iterator* and C::const_iterator* are
892 // valid types and NULL can be implicitly converted to them).  It will
893 // be picked over the second overload as 'int' is a perfect match for
894 // the type of argument 0.  If C::iterator or C::const_iterator is not
895 // a valid type, the first overload is not viable, and the second
896 // overload will be picked.  Therefore, we can determine whether C is
897 // a container class by checking the type of IsContainerTest<C>(0).
898 // The value of the expression is insignificant.
899 //
900 // In C++11 mode we check the existence of a const_iterator and that an
901 // iterator is properly implemented for the container.
902 //
903 // For pre-C++11 that we look for both C::iterator and C::const_iterator.
904 // The reason is that C++ injects the name of a class as a member of the
905 // class itself (e.g. you can refer to class iterator as either
906 // 'iterator' or 'iterator::iterator').  If we look for C::iterator
907 // only, for example, we would mistakenly think that a class named
908 // iterator is an STL container.
909 //
910 // Also note that the simpler approach of overloading
911 // IsContainerTest(typename C::const_iterator*) and
912 // IsContainerTest(...) doesn't work with Visual Age C++ and Sun C++.
913 typedef int IsContainer;
914 template <class C,
915           class Iterator = decltype(::std::declval<const C&>().begin()),
916           class = decltype(::std::declval<const C&>().end()),
917           class = decltype(++::std::declval<Iterator&>()),
918           class = decltype(*::std::declval<Iterator>()),
919           class = typename C::const_iterator>
IsContainerTest(int)920 IsContainer IsContainerTest(int /* dummy */) {
921   return 0;
922 }
923 
924 typedef char IsNotContainer;
925 template <class C>
IsContainerTest(long)926 IsNotContainer IsContainerTest(long /* dummy */) {
927   return '\0';
928 }
929 
930 // Trait to detect whether a type T is a hash table.
931 // The heuristic used is that the type contains an inner type `hasher` and does
932 // not contain an inner type `reverse_iterator`.
933 // If the container is iterable in reverse, then order might actually matter.
934 template <typename T>
935 struct IsHashTable {
936  private:
937   template <typename U>
938   static char test(typename U::hasher*, typename U::reverse_iterator*);
939   template <typename U>
940   static int test(typename U::hasher*, ...);
941   template <typename U>
942   static char test(...);
943 
944  public:
945   static const bool value = sizeof(test<T>(nullptr, nullptr)) == sizeof(int);
946 };
947 
948 template <typename T>
949 const bool IsHashTable<T>::value;
950 
951 template <typename C,
952           bool = sizeof(IsContainerTest<C>(0)) == sizeof(IsContainer)>
953 struct IsRecursiveContainerImpl;
954 
955 template <typename C>
956 struct IsRecursiveContainerImpl<C, false> : public std::false_type {};
957 
958 // Since the IsRecursiveContainerImpl depends on the IsContainerTest we need to
959 // obey the same inconsistencies as the IsContainerTest, namely check if
960 // something is a container is relying on only const_iterator in C++11 and
961 // is relying on both const_iterator and iterator otherwise
962 template <typename C>
963 struct IsRecursiveContainerImpl<C, true> {
964   using value_type = decltype(*std::declval<typename C::const_iterator>());
965   using type =
966       std::is_same<typename std::remove_const<
967                        typename std::remove_reference<value_type>::type>::type,
968                    C>;
969 };
970 
971 // IsRecursiveContainer<Type> is a unary compile-time predicate that
972 // evaluates whether C is a recursive container type. A recursive container
973 // type is a container type whose value_type is equal to the container type
974 // itself. An example for a recursive container type is
975 // boost::filesystem::path, whose iterator has a value_type that is equal to
976 // boost::filesystem::path.
977 template <typename C>
978 struct IsRecursiveContainer : public IsRecursiveContainerImpl<C>::type {};
979 
980 // Utilities for native arrays.
981 
982 // ArrayEq() compares two k-dimensional native arrays using the
983 // elements' operator==, where k can be any integer >= 0.  When k is
984 // 0, ArrayEq() degenerates into comparing a single pair of values.
985 
986 template <typename T, typename U>
987 bool ArrayEq(const T* lhs, size_t size, const U* rhs);
988 
989 // This generic version is used when k is 0.
990 template <typename T, typename U>
991 inline bool ArrayEq(const T& lhs, const U& rhs) {
992   return lhs == rhs;
993 }
994 
995 // This overload is used when k >= 1.
996 template <typename T, typename U, size_t N>
997 inline bool ArrayEq(const T (&lhs)[N], const U (&rhs)[N]) {
998   return internal::ArrayEq(lhs, N, rhs);
999 }
1000 
1001 // This helper reduces code bloat.  If we instead put its logic inside
1002 // the previous ArrayEq() function, arrays with different sizes would
1003 // lead to different copies of the template code.
1004 template <typename T, typename U>
1005 bool ArrayEq(const T* lhs, size_t size, const U* rhs) {
1006   for (size_t i = 0; i != size; i++) {
1007     if (!internal::ArrayEq(lhs[i], rhs[i])) return false;
1008   }
1009   return true;
1010 }
1011 
1012 // Finds the first element in the iterator range [begin, end) that
1013 // equals elem.  Element may be a native array type itself.
1014 template <typename Iter, typename Element>
1015 Iter ArrayAwareFind(Iter begin, Iter end, const Element& elem) {
1016   for (Iter it = begin; it != end; ++it) {
1017     if (internal::ArrayEq(*it, elem)) return it;
1018   }
1019   return end;
1020 }
1021 
1022 // CopyArray() copies a k-dimensional native array using the elements'
1023 // operator=, where k can be any integer >= 0.  When k is 0,
1024 // CopyArray() degenerates into copying a single value.
1025 
1026 template <typename T, typename U>
1027 void CopyArray(const T* from, size_t size, U* to);
1028 
1029 // This generic version is used when k is 0.
1030 template <typename T, typename U>
1031 inline void CopyArray(const T& from, U* to) {
1032   *to = from;
1033 }
1034 
1035 // This overload is used when k >= 1.
1036 template <typename T, typename U, size_t N>
1037 inline void CopyArray(const T (&from)[N], U (*to)[N]) {
1038   internal::CopyArray(from, N, *to);
1039 }
1040 
1041 // This helper reduces code bloat.  If we instead put its logic inside
1042 // the previous CopyArray() function, arrays with different sizes
1043 // would lead to different copies of the template code.
1044 template <typename T, typename U>
1045 void CopyArray(const T* from, size_t size, U* to) {
1046   for (size_t i = 0; i != size; i++) {
1047     internal::CopyArray(from[i], to + i);
1048   }
1049 }
1050 
1051 // The relation between an NativeArray object (see below) and the
1052 // native array it represents.
1053 // We use 2 different structs to allow non-copyable types to be used, as long
1054 // as RelationToSourceReference() is passed.
1055 struct RelationToSourceReference {};
1056 struct RelationToSourceCopy {};
1057 
1058 // Adapts a native array to a read-only STL-style container.  Instead
1059 // of the complete STL container concept, this adaptor only implements
1060 // members useful for Google Mock's container matchers.  New members
1061 // should be added as needed.  To simplify the implementation, we only
1062 // support Element being a raw type (i.e. having no top-level const or
1063 // reference modifier).  It's the client's responsibility to satisfy
1064 // this requirement.  Element can be an array type itself (hence
1065 // multi-dimensional arrays are supported).
1066 template <typename Element>
1067 class NativeArray {
1068  public:
1069   // STL-style container typedefs.
1070   typedef Element value_type;
1071   typedef Element* iterator;
1072   typedef const Element* const_iterator;
1073 
1074   // Constructs from a native array. References the source.
1075   NativeArray(const Element* array, size_t count, RelationToSourceReference) {
1076     InitRef(array, count);
1077   }
1078 
1079   // Constructs from a native array. Copies the source.
1080   NativeArray(const Element* array, size_t count, RelationToSourceCopy) {
1081     InitCopy(array, count);
1082   }
1083 
1084   // Copy constructor.
1085   NativeArray(const NativeArray& rhs) {
1086     (this->*rhs.clone_)(rhs.array_, rhs.size_);
1087   }
1088 
1089   ~NativeArray() {
1090     if (clone_ != &NativeArray::InitRef) delete[] array_;
1091   }
1092 
1093   // STL-style container methods.
1094   size_t size() const { return size_; }
1095   const_iterator begin() const { return array_; }
1096   const_iterator end() const { return array_ + size_; }
1097   bool operator==(const NativeArray& rhs) const {
1098     return size() == rhs.size() && ArrayEq(begin(), size(), rhs.begin());
1099   }
1100 
1101  private:
1102   static_assert(!std::is_const<Element>::value, "Type must not be const");
1103   static_assert(!std::is_reference<Element>::value,
1104                 "Type must not be a reference");
1105 
1106   // Initializes this object with a copy of the input.
1107   void InitCopy(const Element* array, size_t a_size) {
1108     Element* const copy = new Element[a_size];
1109     CopyArray(array, a_size, copy);
1110     array_ = copy;
1111     size_ = a_size;
1112     clone_ = &NativeArray::InitCopy;
1113   }
1114 
1115   // Initializes this object with a reference of the input.
1116   void InitRef(const Element* array, size_t a_size) {
1117     array_ = array;
1118     size_ = a_size;
1119     clone_ = &NativeArray::InitRef;
1120   }
1121 
1122   const Element* array_;
1123   size_t size_;
1124   void (NativeArray::*clone_)(const Element*, size_t);
1125 };
1126 
1127 template <size_t>
1128 struct Ignore {
1129   Ignore(...);  // NOLINT
1130 };
1131 
1132 template <typename>
1133 struct ElemFromListImpl;
1134 template <size_t... I>
1135 struct ElemFromListImpl<std::index_sequence<I...>> {
1136   // We make Ignore a template to solve a problem with MSVC.
1137   // A non-template Ignore would work fine with `decltype(Ignore(I))...`, but
1138   // MSVC doesn't understand how to deal with that pack expansion.
1139   // Use `0 * I` to have a single instantiation of Ignore.
1140   template <typename R>
1141   static R Apply(Ignore<0 * I>..., R (*)(), ...);
1142 };
1143 
1144 template <size_t N, typename... T>
1145 struct ElemFromList {
1146   using type = decltype(ElemFromListImpl<std::make_index_sequence<N>>::Apply(
1147       static_cast<T (*)()>(nullptr)...));
1148 };
1149 
1150 struct FlatTupleConstructTag {};
1151 
1152 template <typename... T>
1153 class FlatTuple;
1154 
1155 template <typename Derived, size_t I>
1156 struct FlatTupleElemBase;
1157 
1158 template <typename... T, size_t I>
1159 struct FlatTupleElemBase<FlatTuple<T...>, I> {
1160   using value_type = typename ElemFromList<I, T...>::type;
1161   FlatTupleElemBase() = default;
1162   template <typename Arg>
1163   explicit FlatTupleElemBase(FlatTupleConstructTag, Arg&& t)
1164       : value(std::forward<Arg>(t)) {}
1165   value_type value;
1166 };
1167 
1168 template <typename Derived, typename Idx>
1169 struct FlatTupleBase;
1170 
1171 template <size_t... Idx, typename... T>
1172 struct FlatTupleBase<FlatTuple<T...>, std::index_sequence<Idx...>>
1173     : FlatTupleElemBase<FlatTuple<T...>, Idx>... {
1174   using Indices = std::index_sequence<Idx...>;
1175   FlatTupleBase() = default;
1176   template <typename... Args>
1177   explicit FlatTupleBase(FlatTupleConstructTag, Args&&... args)
1178       : FlatTupleElemBase<FlatTuple<T...>, Idx>(FlatTupleConstructTag{},
1179                                                 std::forward<Args>(args))... {}
1180 
1181   template <size_t I>
1182   const typename ElemFromList<I, T...>::type& Get() const {
1183     return FlatTupleElemBase<FlatTuple<T...>, I>::value;
1184   }
1185 
1186   template <size_t I>
1187   typename ElemFromList<I, T...>::type& Get() {
1188     return FlatTupleElemBase<FlatTuple<T...>, I>::value;
1189   }
1190 
1191   template <typename F>
1192   auto Apply(F&& f) -> decltype(std::forward<F>(f)(this->Get<Idx>()...)) {
1193     return std::forward<F>(f)(Get<Idx>()...);
1194   }
1195 
1196   template <typename F>
1197   auto Apply(F&& f) const -> decltype(std::forward<F>(f)(this->Get<Idx>()...)) {
1198     return std::forward<F>(f)(Get<Idx>()...);
1199   }
1200 };
1201 
1202 // Analog to std::tuple but with different tradeoffs.
1203 // This class minimizes the template instantiation depth, thus allowing more
1204 // elements than std::tuple would. std::tuple has been seen to require an
1205 // instantiation depth of more than 10x the number of elements in some
1206 // implementations.
1207 // FlatTuple and ElemFromList are not recursive and have a fixed depth
1208 // regardless of T...
1209 // std::make_index_sequence, on the other hand, it is recursive but with an
1210 // instantiation depth of O(ln(N)).
1211 template <typename... T>
1212 class FlatTuple
1213     : private FlatTupleBase<FlatTuple<T...>,
1214                             std::make_index_sequence<sizeof...(T)>> {
1215   using Indices =
1216       typename FlatTupleBase<FlatTuple<T...>,
1217                              std::make_index_sequence<sizeof...(T)>>::Indices;
1218 
1219  public:
1220   FlatTuple() = default;
1221   template <typename... Args>
1222   explicit FlatTuple(FlatTupleConstructTag tag, Args&&... args)
1223       : FlatTuple::FlatTupleBase(tag, std::forward<Args>(args)...) {}
1224 
1225   using FlatTuple::FlatTupleBase::Apply;
1226   using FlatTuple::FlatTupleBase::Get;
1227 };
1228 
1229 // Utility functions to be called with static_assert to induce deprecation
1230 // warnings.
1231 [[deprecated(
1232     "INSTANTIATE_TEST_CASE_P is deprecated, please use "
1233     "INSTANTIATE_TEST_SUITE_P")]]
1234 constexpr bool InstantiateTestCase_P_IsDeprecated() {
1235   return true;
1236 }
1237 
1238 [[deprecated(
1239     "TYPED_TEST_CASE_P is deprecated, please use "
1240     "TYPED_TEST_SUITE_P")]]
1241 constexpr bool TypedTestCase_P_IsDeprecated() {
1242   return true;
1243 }
1244 
1245 [[deprecated(
1246     "TYPED_TEST_CASE is deprecated, please use "
1247     "TYPED_TEST_SUITE")]]
1248 constexpr bool TypedTestCaseIsDeprecated() {
1249   return true;
1250 }
1251 
1252 [[deprecated(
1253     "REGISTER_TYPED_TEST_CASE_P is deprecated, please use "
1254     "REGISTER_TYPED_TEST_SUITE_P")]]
1255 constexpr bool RegisterTypedTestCase_P_IsDeprecated() {
1256   return true;
1257 }
1258 
1259 [[deprecated(
1260     "INSTANTIATE_TYPED_TEST_CASE_P is deprecated, please use "
1261     "INSTANTIATE_TYPED_TEST_SUITE_P")]]
1262 constexpr bool InstantiateTypedTestCase_P_IsDeprecated() {
1263   return true;
1264 }
1265 
1266 }  // namespace internal
1267 }  // namespace testing
1268 
1269 namespace std {
1270 // Some standard library implementations use `struct tuple_size` and some use
1271 // `class tuple_size`. Clang warns about the mismatch.
1272 // https://reviews.llvm.org/D55466
1273 #ifdef __clang__
1274 #pragma clang diagnostic push
1275 #pragma clang diagnostic ignored "-Wmismatched-tags"
1276 #endif
1277 template <typename... Ts>
1278 struct tuple_size<testing::internal::FlatTuple<Ts...>>
1279     : std::integral_constant<size_t, sizeof...(Ts)> {};
1280 #ifdef __clang__
1281 #pragma clang diagnostic pop
1282 #endif
1283 }  // namespace std
1284 
1285 #define GTEST_MESSAGE_AT_(file, line, message, result_type)             \
1286   ::testing::internal::AssertHelper(result_type, file, line, message) = \
1287       ::testing::Message()
1288 
1289 #define GTEST_MESSAGE_(message, result_type) \
1290   GTEST_MESSAGE_AT_(__FILE__, __LINE__, message, result_type)
1291 
1292 #define GTEST_FATAL_FAILURE_(message) \
1293   return GTEST_MESSAGE_(message, ::testing::TestPartResult::kFatalFailure)
1294 
1295 #define GTEST_NONFATAL_FAILURE_(message) \
1296   GTEST_MESSAGE_(message, ::testing::TestPartResult::kNonFatalFailure)
1297 
1298 #define GTEST_SUCCESS_(message) \
1299   GTEST_MESSAGE_(message, ::testing::TestPartResult::kSuccess)
1300 
1301 #define GTEST_SKIP_(message) \
1302   return GTEST_MESSAGE_(message, ::testing::TestPartResult::kSkip)
1303 
1304 // Suppress MSVC warning 4072 (unreachable code) for the code following
1305 // statement if it returns or throws (or doesn't return or throw in some
1306 // situations).
1307 // NOTE: The "else" is important to keep this expansion to prevent a top-level
1308 // "else" from attaching to our "if".
1309 #define GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement) \
1310   if (::testing::internal::AlwaysTrue()) {                        \
1311     statement;                                                    \
1312   } else                     /* NOLINT */                         \
1313     static_assert(true, "")  // User must have a semicolon after expansion.
1314 
1315 #if GTEST_HAS_EXCEPTIONS
1316 
1317 namespace testing {
1318 namespace internal {
1319 
1320 class NeverThrown {
1321  public:
1322   const char* what() const noexcept {
1323     return "this exception should never be thrown";
1324   }
1325 };
1326 
1327 }  // namespace internal
1328 }  // namespace testing
1329 
1330 #if GTEST_HAS_RTTI
1331 
1332 #define GTEST_EXCEPTION_TYPE_(e) ::testing::internal::GetTypeName(typeid(e))
1333 
1334 #else  // GTEST_HAS_RTTI
1335 
1336 #define GTEST_EXCEPTION_TYPE_(e) \
1337   std::string { "an std::exception-derived error" }
1338 
1339 #endif  // GTEST_HAS_RTTI
1340 
1341 #define GTEST_TEST_THROW_CATCH_STD_EXCEPTION_(statement, expected_exception)   \
1342   catch (typename std::conditional<                                            \
1343          std::is_same<typename std::remove_cv<typename std::remove_reference<  \
1344                           expected_exception>::type>::type,                    \
1345                       std::exception>::value,                                  \
1346          const ::testing::internal::NeverThrown&, const std::exception&>::type \
1347              e) {                                                              \
1348     gtest_msg.value = "Expected: " #statement                                  \
1349                       " throws an exception of type " #expected_exception      \
1350                       ".\n  Actual: it throws ";                               \
1351     gtest_msg.value += GTEST_EXCEPTION_TYPE_(e);                               \
1352     gtest_msg.value += " with description \"";                                 \
1353     gtest_msg.value += e.what();                                               \
1354     gtest_msg.value += "\".";                                                  \
1355     goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__);                \
1356   }
1357 
1358 #else  // GTEST_HAS_EXCEPTIONS
1359 
1360 #define GTEST_TEST_THROW_CATCH_STD_EXCEPTION_(statement, expected_exception)
1361 
1362 #endif  // GTEST_HAS_EXCEPTIONS
1363 
1364 #define GTEST_TEST_THROW_(statement, expected_exception, fail)              \
1365   GTEST_AMBIGUOUS_ELSE_BLOCKER_                                             \
1366   if (::testing::internal::TrueWithString gtest_msg{}) {                    \
1367     bool gtest_caught_expected = false;                                     \
1368     try {                                                                   \
1369       GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement);            \
1370     } catch (expected_exception const&) {                                   \
1371       gtest_caught_expected = true;                                         \
1372     }                                                                       \
1373     GTEST_TEST_THROW_CATCH_STD_EXCEPTION_(statement, expected_exception)    \
1374     catch (...) {                                                           \
1375       gtest_msg.value = "Expected: " #statement                             \
1376                         " throws an exception of type " #expected_exception \
1377                         ".\n  Actual: it throws a different type.";         \
1378       goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__);           \
1379     }                                                                       \
1380     if (!gtest_caught_expected) {                                           \
1381       gtest_msg.value = "Expected: " #statement                             \
1382                         " throws an exception of type " #expected_exception \
1383                         ".\n  Actual: it throws nothing.";                  \
1384       goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__);           \
1385     }                                                                       \
1386   } else /*NOLINT*/                                                         \
1387     GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__)                   \
1388         : fail(gtest_msg.value.c_str())
1389 
1390 #if GTEST_HAS_EXCEPTIONS
1391 
1392 #define GTEST_TEST_NO_THROW_CATCH_STD_EXCEPTION_()                \
1393   catch (std::exception const& e) {                               \
1394     gtest_msg.value = "it throws ";                               \
1395     gtest_msg.value += GTEST_EXCEPTION_TYPE_(e);                  \
1396     gtest_msg.value += " with description \"";                    \
1397     gtest_msg.value += e.what();                                  \
1398     gtest_msg.value += "\".";                                     \
1399     goto GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__); \
1400   }
1401 
1402 #else  // GTEST_HAS_EXCEPTIONS
1403 
1404 #define GTEST_TEST_NO_THROW_CATCH_STD_EXCEPTION_()
1405 
1406 #endif  // GTEST_HAS_EXCEPTIONS
1407 
1408 #define GTEST_TEST_NO_THROW_(statement, fail)                            \
1409   GTEST_AMBIGUOUS_ELSE_BLOCKER_                                          \
1410   if (::testing::internal::TrueWithString gtest_msg{}) {                 \
1411     try {                                                                \
1412       GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement);         \
1413     }                                                                    \
1414     GTEST_TEST_NO_THROW_CATCH_STD_EXCEPTION_()                           \
1415     catch (...) {                                                        \
1416       gtest_msg.value = "it throws.";                                    \
1417       goto GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__);      \
1418     }                                                                    \
1419   } else                                                                 \
1420     GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__)              \
1421         : fail(("Expected: " #statement " doesn't throw an exception.\n" \
1422                 "  Actual: " +                                           \
1423                 gtest_msg.value)                                         \
1424                    .c_str())
1425 
1426 #define GTEST_TEST_ANY_THROW_(statement, fail)                       \
1427   GTEST_AMBIGUOUS_ELSE_BLOCKER_                                      \
1428   if (::testing::internal::AlwaysTrue()) {                           \
1429     bool gtest_caught_any = false;                                   \
1430     try {                                                            \
1431       GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement);     \
1432     } catch (...) {                                                  \
1433       gtest_caught_any = true;                                       \
1434     }                                                                \
1435     if (!gtest_caught_any) {                                         \
1436       goto GTEST_CONCAT_TOKEN_(gtest_label_testanythrow_, __LINE__); \
1437     }                                                                \
1438   } else                                                             \
1439     GTEST_CONCAT_TOKEN_(gtest_label_testanythrow_, __LINE__)         \
1440         : fail("Expected: " #statement                               \
1441                " throws an exception.\n"                             \
1442                "  Actual: it doesn't.")
1443 
1444 // Implements Boolean test assertions such as EXPECT_TRUE. expression can be
1445 // either a boolean expression or an AssertionResult. text is a textual
1446 // representation of expression as it was passed into the EXPECT_TRUE.
1447 #define GTEST_TEST_BOOLEAN_(expression, text, actual, expected, fail) \
1448   GTEST_AMBIGUOUS_ELSE_BLOCKER_                                       \
1449   if (const ::testing::AssertionResult gtest_ar_ =                    \
1450           ::testing::AssertionResult(expression))                     \
1451     ;                                                                 \
1452   else                                                                \
1453     fail(::testing::internal::GetBoolAssertionFailureMessage(         \
1454              gtest_ar_, text, #actual, #expected)                     \
1455              .c_str())
1456 
1457 #define GTEST_TEST_NO_FATAL_FAILURE_(statement, fail)               \
1458   GTEST_AMBIGUOUS_ELSE_BLOCKER_                                     \
1459   if (::testing::internal::AlwaysTrue()) {                          \
1460     const ::testing::internal::HasNewFatalFailureHelper             \
1461         gtest_fatal_failure_checker;                                \
1462     GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement);      \
1463     if (gtest_fatal_failure_checker.has_new_fatal_failure()) {      \
1464       goto GTEST_CONCAT_TOKEN_(gtest_label_testnofatal_, __LINE__); \
1465     }                                                               \
1466   } else /* NOLINT */                                               \
1467     GTEST_CONCAT_TOKEN_(gtest_label_testnofatal_, __LINE__)         \
1468         : fail("Expected: " #statement                              \
1469                " doesn't generate new fatal "                       \
1470                "failures in the current thread.\n"                  \
1471                "  Actual: it does.")
1472 
1473 // Expands to the name of the class that implements the given test.
1474 #define GTEST_TEST_CLASS_NAME_(test_suite_name, test_name) \
1475   test_suite_name##_##test_name##_Test
1476 
1477 // Helper macro for defining tests.
1478 #define GTEST_TEST_(test_suite_name, test_name, parent_class, parent_id)       \
1479   static_assert(sizeof(GTEST_STRINGIFY_(test_suite_name)) > 1,                 \
1480                 "test_suite_name must not be empty");                          \
1481   static_assert(sizeof(GTEST_STRINGIFY_(test_name)) > 1,                       \
1482                 "test_name must not be empty");                                \
1483   class GTEST_TEST_CLASS_NAME_(test_suite_name, test_name)                     \
1484       : public parent_class {                                                  \
1485    public:                                                                     \
1486     GTEST_TEST_CLASS_NAME_(test_suite_name, test_name)() = default;            \
1487     ~GTEST_TEST_CLASS_NAME_(test_suite_name, test_name)() override = default;  \
1488     GTEST_TEST_CLASS_NAME_(test_suite_name, test_name)                         \
1489     (const GTEST_TEST_CLASS_NAME_(test_suite_name, test_name) &) = delete;     \
1490     GTEST_TEST_CLASS_NAME_(test_suite_name, test_name) & operator=(            \
1491         const GTEST_TEST_CLASS_NAME_(test_suite_name,                          \
1492                                      test_name) &) = delete; /* NOLINT */      \
1493     GTEST_TEST_CLASS_NAME_(test_suite_name, test_name)                         \
1494     (GTEST_TEST_CLASS_NAME_(test_suite_name, test_name) &&) noexcept = delete; \
1495     GTEST_TEST_CLASS_NAME_(test_suite_name, test_name) & operator=(            \
1496         GTEST_TEST_CLASS_NAME_(test_suite_name,                                \
1497                                test_name) &&) noexcept = delete; /* NOLINT */  \
1498                                                                                \
1499    private:                                                                    \
1500     void TestBody() override;                                                  \
1501     [[maybe_unused]] static ::testing::TestInfo* const test_info_;             \
1502   };                                                                           \
1503                                                                                \
1504   ::testing::TestInfo* const GTEST_TEST_CLASS_NAME_(test_suite_name,           \
1505                                                     test_name)::test_info_ =   \
1506       ::testing::internal::MakeAndRegisterTestInfo(                            \
1507           #test_suite_name, #test_name, nullptr, nullptr,                      \
1508           ::testing::internal::CodeLocation(__FILE__, __LINE__), (parent_id),  \
1509           ::testing::internal::SuiteApiResolver<                               \
1510               parent_class>::GetSetUpCaseOrSuite(__FILE__, __LINE__),          \
1511           ::testing::internal::SuiteApiResolver<                               \
1512               parent_class>::GetTearDownCaseOrSuite(__FILE__, __LINE__),       \
1513           new ::testing::internal::TestFactoryImpl<GTEST_TEST_CLASS_NAME_(     \
1514               test_suite_name, test_name)>);                                   \
1515   void GTEST_TEST_CLASS_NAME_(test_suite_name, test_name)::TestBody()
1516 
1517 #endif  // GOOGLETEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
1518