1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * TI K3 DSP Remote Processor(s) driver
4 *
5 * Copyright (C) 2018-2022 Texas Instruments Incorporated - https://www.ti.com/
6 * Suman Anna <s-anna@ti.com>
7 */
8
9 #include <linux/io.h>
10 #include <linux/mailbox_client.h>
11 #include <linux/module.h>
12 #include <linux/of.h>
13 #include <linux/of_reserved_mem.h>
14 #include <linux/omap-mailbox.h>
15 #include <linux/platform_device.h>
16 #include <linux/remoteproc.h>
17 #include <linux/reset.h>
18 #include <linux/slab.h>
19
20 #include "omap_remoteproc.h"
21 #include "remoteproc_internal.h"
22 #include "ti_sci_proc.h"
23
24 #define KEYSTONE_RPROC_LOCAL_ADDRESS_MASK (SZ_16M - 1)
25
26 /**
27 * struct k3_dsp_mem - internal memory structure
28 * @cpu_addr: MPU virtual address of the memory region
29 * @bus_addr: Bus address used to access the memory region
30 * @dev_addr: Device address of the memory region from DSP view
31 * @size: Size of the memory region
32 */
33 struct k3_dsp_mem {
34 void __iomem *cpu_addr;
35 phys_addr_t bus_addr;
36 u32 dev_addr;
37 size_t size;
38 };
39
40 /**
41 * struct k3_dsp_mem_data - memory definitions for a DSP
42 * @name: name for this memory entry
43 * @dev_addr: device address for the memory entry
44 */
45 struct k3_dsp_mem_data {
46 const char *name;
47 const u32 dev_addr;
48 };
49
50 /**
51 * struct k3_dsp_dev_data - device data structure for a DSP
52 * @mems: pointer to memory definitions for a DSP
53 * @num_mems: number of memory regions in @mems
54 * @boot_align_addr: boot vector address alignment granularity
55 * @uses_lreset: flag to denote the need for local reset management
56 */
57 struct k3_dsp_dev_data {
58 const struct k3_dsp_mem_data *mems;
59 u32 num_mems;
60 u32 boot_align_addr;
61 bool uses_lreset;
62 };
63
64 /**
65 * struct k3_dsp_rproc - k3 DSP remote processor driver structure
66 * @dev: cached device pointer
67 * @rproc: remoteproc device handle
68 * @mem: internal memory regions data
69 * @num_mems: number of internal memory regions
70 * @rmem: reserved memory regions data
71 * @num_rmems: number of reserved memory regions
72 * @reset: reset control handle
73 * @data: pointer to DSP-specific device data
74 * @tsp: TI-SCI processor control handle
75 * @ti_sci: TI-SCI handle
76 * @ti_sci_id: TI-SCI device identifier
77 * @mbox: mailbox channel handle
78 * @client: mailbox client to request the mailbox channel
79 */
80 struct k3_dsp_rproc {
81 struct device *dev;
82 struct rproc *rproc;
83 struct k3_dsp_mem *mem;
84 int num_mems;
85 struct k3_dsp_mem *rmem;
86 int num_rmems;
87 struct reset_control *reset;
88 const struct k3_dsp_dev_data *data;
89 struct ti_sci_proc *tsp;
90 const struct ti_sci_handle *ti_sci;
91 u32 ti_sci_id;
92 struct mbox_chan *mbox;
93 struct mbox_client client;
94 };
95
96 /**
97 * k3_dsp_rproc_mbox_callback() - inbound mailbox message handler
98 * @client: mailbox client pointer used for requesting the mailbox channel
99 * @data: mailbox payload
100 *
101 * This handler is invoked by the OMAP mailbox driver whenever a mailbox
102 * message is received. Usually, the mailbox payload simply contains
103 * the index of the virtqueue that is kicked by the remote processor,
104 * and we let remoteproc core handle it.
105 *
106 * In addition to virtqueue indices, we also have some out-of-band values
107 * that indicate different events. Those values are deliberately very
108 * large so they don't coincide with virtqueue indices.
109 */
k3_dsp_rproc_mbox_callback(struct mbox_client * client,void * data)110 static void k3_dsp_rproc_mbox_callback(struct mbox_client *client, void *data)
111 {
112 struct k3_dsp_rproc *kproc = container_of(client, struct k3_dsp_rproc,
113 client);
114 struct device *dev = kproc->rproc->dev.parent;
115 const char *name = kproc->rproc->name;
116 u32 msg = omap_mbox_message(data);
117
118 /* Do not forward messages from a detached core */
119 if (kproc->rproc->state == RPROC_DETACHED)
120 return;
121
122 dev_dbg(dev, "mbox msg: 0x%x\n", msg);
123
124 switch (msg) {
125 case RP_MBOX_CRASH:
126 /*
127 * remoteproc detected an exception, but error recovery is not
128 * supported. So, just log this for now
129 */
130 dev_err(dev, "K3 DSP rproc %s crashed\n", name);
131 break;
132 case RP_MBOX_ECHO_REPLY:
133 dev_info(dev, "received echo reply from %s\n", name);
134 break;
135 default:
136 /* silently handle all other valid messages */
137 if (msg >= RP_MBOX_READY && msg < RP_MBOX_END_MSG)
138 return;
139 if (msg > kproc->rproc->max_notifyid) {
140 dev_dbg(dev, "dropping unknown message 0x%x", msg);
141 return;
142 }
143 /* msg contains the index of the triggered vring */
144 if (rproc_vq_interrupt(kproc->rproc, msg) == IRQ_NONE)
145 dev_dbg(dev, "no message was found in vqid %d\n", msg);
146 }
147 }
148
149 /*
150 * Kick the remote processor to notify about pending unprocessed messages.
151 * The vqid usage is not used and is inconsequential, as the kick is performed
152 * through a simulated GPIO (a bit in an IPC interrupt-triggering register),
153 * the remote processor is expected to process both its Tx and Rx virtqueues.
154 */
k3_dsp_rproc_kick(struct rproc * rproc,int vqid)155 static void k3_dsp_rproc_kick(struct rproc *rproc, int vqid)
156 {
157 struct k3_dsp_rproc *kproc = rproc->priv;
158 struct device *dev = rproc->dev.parent;
159 mbox_msg_t msg = (mbox_msg_t)vqid;
160 int ret;
161
162 /* Do not forward messages to a detached core */
163 if (kproc->rproc->state == RPROC_DETACHED)
164 return;
165
166 /* send the index of the triggered virtqueue in the mailbox payload */
167 ret = mbox_send_message(kproc->mbox, (void *)msg);
168 if (ret < 0)
169 dev_err(dev, "failed to send mailbox message (%pe)\n",
170 ERR_PTR(ret));
171 }
172
173 /* Put the DSP processor into reset */
k3_dsp_rproc_reset(struct k3_dsp_rproc * kproc)174 static int k3_dsp_rproc_reset(struct k3_dsp_rproc *kproc)
175 {
176 struct device *dev = kproc->dev;
177 int ret;
178
179 ret = reset_control_assert(kproc->reset);
180 if (ret) {
181 dev_err(dev, "local-reset assert failed (%pe)\n", ERR_PTR(ret));
182 return ret;
183 }
184
185 if (kproc->data->uses_lreset)
186 return ret;
187
188 ret = kproc->ti_sci->ops.dev_ops.put_device(kproc->ti_sci,
189 kproc->ti_sci_id);
190 if (ret) {
191 dev_err(dev, "module-reset assert failed (%pe)\n", ERR_PTR(ret));
192 if (reset_control_deassert(kproc->reset))
193 dev_warn(dev, "local-reset deassert back failed\n");
194 }
195
196 return ret;
197 }
198
199 /* Release the DSP processor from reset */
k3_dsp_rproc_release(struct k3_dsp_rproc * kproc)200 static int k3_dsp_rproc_release(struct k3_dsp_rproc *kproc)
201 {
202 struct device *dev = kproc->dev;
203 int ret;
204
205 if (kproc->data->uses_lreset)
206 goto lreset;
207
208 ret = kproc->ti_sci->ops.dev_ops.get_device(kproc->ti_sci,
209 kproc->ti_sci_id);
210 if (ret) {
211 dev_err(dev, "module-reset deassert failed (%pe)\n", ERR_PTR(ret));
212 return ret;
213 }
214
215 lreset:
216 ret = reset_control_deassert(kproc->reset);
217 if (ret) {
218 dev_err(dev, "local-reset deassert failed, (%pe)\n", ERR_PTR(ret));
219 if (kproc->ti_sci->ops.dev_ops.put_device(kproc->ti_sci,
220 kproc->ti_sci_id))
221 dev_warn(dev, "module-reset assert back failed\n");
222 }
223
224 return ret;
225 }
226
k3_dsp_rproc_request_mbox(struct rproc * rproc)227 static int k3_dsp_rproc_request_mbox(struct rproc *rproc)
228 {
229 struct k3_dsp_rproc *kproc = rproc->priv;
230 struct mbox_client *client = &kproc->client;
231 struct device *dev = kproc->dev;
232 int ret;
233
234 client->dev = dev;
235 client->tx_done = NULL;
236 client->rx_callback = k3_dsp_rproc_mbox_callback;
237 client->tx_block = false;
238 client->knows_txdone = false;
239
240 kproc->mbox = mbox_request_channel(client, 0);
241 if (IS_ERR(kproc->mbox))
242 return dev_err_probe(dev, PTR_ERR(kproc->mbox),
243 "mbox_request_channel failed\n");
244
245 /*
246 * Ping the remote processor, this is only for sanity-sake for now;
247 * there is no functional effect whatsoever.
248 *
249 * Note that the reply will _not_ arrive immediately: this message
250 * will wait in the mailbox fifo until the remote processor is booted.
251 */
252 ret = mbox_send_message(kproc->mbox, (void *)RP_MBOX_ECHO_REQUEST);
253 if (ret < 0) {
254 dev_err(dev, "mbox_send_message failed (%pe)\n", ERR_PTR(ret));
255 mbox_free_channel(kproc->mbox);
256 return ret;
257 }
258
259 return 0;
260 }
261 /*
262 * The C66x DSP cores have a local reset that affects only the CPU, and a
263 * generic module reset that powers on the device and allows the DSP internal
264 * memories to be accessed while the local reset is asserted. This function is
265 * used to release the global reset on C66x DSPs to allow loading into the DSP
266 * internal RAMs. The .prepare() ops is invoked by remoteproc core before any
267 * firmware loading, and is followed by the .start() ops after loading to
268 * actually let the C66x DSP cores run. This callback is invoked only in
269 * remoteproc mode.
270 */
k3_dsp_rproc_prepare(struct rproc * rproc)271 static int k3_dsp_rproc_prepare(struct rproc *rproc)
272 {
273 struct k3_dsp_rproc *kproc = rproc->priv;
274 struct device *dev = kproc->dev;
275 int ret;
276
277 ret = kproc->ti_sci->ops.dev_ops.get_device(kproc->ti_sci,
278 kproc->ti_sci_id);
279 if (ret)
280 dev_err(dev, "module-reset deassert failed, cannot enable internal RAM loading (%pe)\n",
281 ERR_PTR(ret));
282
283 return ret;
284 }
285
286 /*
287 * This function implements the .unprepare() ops and performs the complimentary
288 * operations to that of the .prepare() ops. The function is used to assert the
289 * global reset on applicable C66x cores. This completes the second portion of
290 * powering down the C66x DSP cores. The cores themselves are only halted in the
291 * .stop() callback through the local reset, and the .unprepare() ops is invoked
292 * by the remoteproc core after the remoteproc is stopped to balance the global
293 * reset. This callback is invoked only in remoteproc mode.
294 */
k3_dsp_rproc_unprepare(struct rproc * rproc)295 static int k3_dsp_rproc_unprepare(struct rproc *rproc)
296 {
297 struct k3_dsp_rproc *kproc = rproc->priv;
298 struct device *dev = kproc->dev;
299 int ret;
300
301 ret = kproc->ti_sci->ops.dev_ops.put_device(kproc->ti_sci,
302 kproc->ti_sci_id);
303 if (ret)
304 dev_err(dev, "module-reset assert failed (%pe)\n", ERR_PTR(ret));
305
306 return ret;
307 }
308
309 /*
310 * Power up the DSP remote processor.
311 *
312 * This function will be invoked only after the firmware for this rproc
313 * was loaded, parsed successfully, and all of its resource requirements
314 * were met. This callback is invoked only in remoteproc mode.
315 */
k3_dsp_rproc_start(struct rproc * rproc)316 static int k3_dsp_rproc_start(struct rproc *rproc)
317 {
318 struct k3_dsp_rproc *kproc = rproc->priv;
319 struct device *dev = kproc->dev;
320 u32 boot_addr;
321 int ret;
322
323 boot_addr = rproc->bootaddr;
324 if (boot_addr & (kproc->data->boot_align_addr - 1)) {
325 dev_err(dev, "invalid boot address 0x%x, must be aligned on a 0x%x boundary\n",
326 boot_addr, kproc->data->boot_align_addr);
327 return -EINVAL;
328 }
329
330 dev_dbg(dev, "booting DSP core using boot addr = 0x%x\n", boot_addr);
331 ret = ti_sci_proc_set_config(kproc->tsp, boot_addr, 0, 0);
332 if (ret)
333 return ret;
334
335 ret = k3_dsp_rproc_release(kproc);
336 if (ret)
337 return ret;
338
339 return 0;
340 }
341
342 /*
343 * Stop the DSP remote processor.
344 *
345 * This function puts the DSP processor into reset, and finishes processing
346 * of any pending messages. This callback is invoked only in remoteproc mode.
347 */
k3_dsp_rproc_stop(struct rproc * rproc)348 static int k3_dsp_rproc_stop(struct rproc *rproc)
349 {
350 struct k3_dsp_rproc *kproc = rproc->priv;
351
352 k3_dsp_rproc_reset(kproc);
353
354 return 0;
355 }
356
357 /*
358 * Attach to a running DSP remote processor (IPC-only mode)
359 *
360 * This rproc attach callback is a NOP. The remote processor is already booted,
361 * and all required resources have been acquired during probe routine, so there
362 * is no need to issue any TI-SCI commands to boot the DSP core. This callback
363 * is invoked only in IPC-only mode and exists because rproc_validate() checks
364 * for its existence.
365 */
k3_dsp_rproc_attach(struct rproc * rproc)366 static int k3_dsp_rproc_attach(struct rproc *rproc) { return 0; }
367
368 /*
369 * Detach from a running DSP remote processor (IPC-only mode)
370 *
371 * This rproc detach callback is a NOP. The DSP core is not stopped and will be
372 * left to continue to run its booted firmware. This callback is invoked only in
373 * IPC-only mode and exists for sanity sake.
374 */
k3_dsp_rproc_detach(struct rproc * rproc)375 static int k3_dsp_rproc_detach(struct rproc *rproc) { return 0; }
376
377 /*
378 * This function implements the .get_loaded_rsc_table() callback and is used
379 * to provide the resource table for a booted DSP in IPC-only mode. The K3 DSP
380 * firmwares follow a design-by-contract approach and are expected to have the
381 * resource table at the base of the DDR region reserved for firmware usage.
382 * This provides flexibility for the remote processor to be booted by different
383 * bootloaders that may or may not have the ability to publish the resource table
384 * address and size through a DT property. This callback is invoked only in
385 * IPC-only mode.
386 */
k3_dsp_get_loaded_rsc_table(struct rproc * rproc,size_t * rsc_table_sz)387 static struct resource_table *k3_dsp_get_loaded_rsc_table(struct rproc *rproc,
388 size_t *rsc_table_sz)
389 {
390 struct k3_dsp_rproc *kproc = rproc->priv;
391 struct device *dev = kproc->dev;
392
393 if (!kproc->rmem[0].cpu_addr) {
394 dev_err(dev, "memory-region #1 does not exist, loaded rsc table can't be found");
395 return ERR_PTR(-ENOMEM);
396 }
397
398 /*
399 * NOTE: The resource table size is currently hard-coded to a maximum
400 * of 256 bytes. The most common resource table usage for K3 firmwares
401 * is to only have the vdev resource entry and an optional trace entry.
402 * The exact size could be computed based on resource table address, but
403 * the hard-coded value suffices to support the IPC-only mode.
404 */
405 *rsc_table_sz = 256;
406 return (struct resource_table *)kproc->rmem[0].cpu_addr;
407 }
408
409 /*
410 * Custom function to translate a DSP device address (internal RAMs only) to a
411 * kernel virtual address. The DSPs can access their RAMs at either an internal
412 * address visible only from a DSP, or at the SoC-level bus address. Both these
413 * addresses need to be looked through for translation. The translated addresses
414 * can be used either by the remoteproc core for loading (when using kernel
415 * remoteproc loader), or by any rpmsg bus drivers.
416 */
k3_dsp_rproc_da_to_va(struct rproc * rproc,u64 da,size_t len,bool * is_iomem)417 static void *k3_dsp_rproc_da_to_va(struct rproc *rproc, u64 da, size_t len, bool *is_iomem)
418 {
419 struct k3_dsp_rproc *kproc = rproc->priv;
420 void __iomem *va = NULL;
421 phys_addr_t bus_addr;
422 u32 dev_addr, offset;
423 size_t size;
424 int i;
425
426 if (len == 0)
427 return NULL;
428
429 for (i = 0; i < kproc->num_mems; i++) {
430 bus_addr = kproc->mem[i].bus_addr;
431 dev_addr = kproc->mem[i].dev_addr;
432 size = kproc->mem[i].size;
433
434 if (da < KEYSTONE_RPROC_LOCAL_ADDRESS_MASK) {
435 /* handle DSP-view addresses */
436 if (da >= dev_addr &&
437 ((da + len) <= (dev_addr + size))) {
438 offset = da - dev_addr;
439 va = kproc->mem[i].cpu_addr + offset;
440 return (__force void *)va;
441 }
442 } else {
443 /* handle SoC-view addresses */
444 if (da >= bus_addr &&
445 (da + len) <= (bus_addr + size)) {
446 offset = da - bus_addr;
447 va = kproc->mem[i].cpu_addr + offset;
448 return (__force void *)va;
449 }
450 }
451 }
452
453 /* handle static DDR reserved memory regions */
454 for (i = 0; i < kproc->num_rmems; i++) {
455 dev_addr = kproc->rmem[i].dev_addr;
456 size = kproc->rmem[i].size;
457
458 if (da >= dev_addr && ((da + len) <= (dev_addr + size))) {
459 offset = da - dev_addr;
460 va = kproc->rmem[i].cpu_addr + offset;
461 return (__force void *)va;
462 }
463 }
464
465 return NULL;
466 }
467
468 static const struct rproc_ops k3_dsp_rproc_ops = {
469 .start = k3_dsp_rproc_start,
470 .stop = k3_dsp_rproc_stop,
471 .kick = k3_dsp_rproc_kick,
472 .da_to_va = k3_dsp_rproc_da_to_va,
473 };
474
k3_dsp_rproc_of_get_memories(struct platform_device * pdev,struct k3_dsp_rproc * kproc)475 static int k3_dsp_rproc_of_get_memories(struct platform_device *pdev,
476 struct k3_dsp_rproc *kproc)
477 {
478 const struct k3_dsp_dev_data *data = kproc->data;
479 struct device *dev = &pdev->dev;
480 struct resource *res;
481 int num_mems = 0;
482 int i;
483
484 num_mems = kproc->data->num_mems;
485 kproc->mem = devm_kcalloc(kproc->dev, num_mems,
486 sizeof(*kproc->mem), GFP_KERNEL);
487 if (!kproc->mem)
488 return -ENOMEM;
489
490 for (i = 0; i < num_mems; i++) {
491 res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
492 data->mems[i].name);
493 if (!res) {
494 dev_err(dev, "found no memory resource for %s\n",
495 data->mems[i].name);
496 return -EINVAL;
497 }
498 if (!devm_request_mem_region(dev, res->start,
499 resource_size(res),
500 dev_name(dev))) {
501 dev_err(dev, "could not request %s region for resource\n",
502 data->mems[i].name);
503 return -EBUSY;
504 }
505
506 kproc->mem[i].cpu_addr = devm_ioremap_wc(dev, res->start,
507 resource_size(res));
508 if (!kproc->mem[i].cpu_addr) {
509 dev_err(dev, "failed to map %s memory\n",
510 data->mems[i].name);
511 return -ENOMEM;
512 }
513 kproc->mem[i].bus_addr = res->start;
514 kproc->mem[i].dev_addr = data->mems[i].dev_addr;
515 kproc->mem[i].size = resource_size(res);
516
517 dev_dbg(dev, "memory %8s: bus addr %pa size 0x%zx va %pK da 0x%x\n",
518 data->mems[i].name, &kproc->mem[i].bus_addr,
519 kproc->mem[i].size, kproc->mem[i].cpu_addr,
520 kproc->mem[i].dev_addr);
521 }
522 kproc->num_mems = num_mems;
523
524 return 0;
525 }
526
k3_dsp_mem_release(void * data)527 static void k3_dsp_mem_release(void *data)
528 {
529 struct device *dev = data;
530
531 of_reserved_mem_device_release(dev);
532 }
533
k3_dsp_reserved_mem_init(struct k3_dsp_rproc * kproc)534 static int k3_dsp_reserved_mem_init(struct k3_dsp_rproc *kproc)
535 {
536 struct device *dev = kproc->dev;
537 struct device_node *np = dev->of_node;
538 struct device_node *rmem_np;
539 struct reserved_mem *rmem;
540 int num_rmems;
541 int ret, i;
542
543 num_rmems = of_property_count_elems_of_size(np, "memory-region",
544 sizeof(phandle));
545 if (num_rmems < 0) {
546 dev_err(dev, "device does not reserved memory regions (%pe)\n",
547 ERR_PTR(num_rmems));
548 return -EINVAL;
549 }
550 if (num_rmems < 2) {
551 dev_err(dev, "device needs at least two memory regions to be defined, num = %d\n",
552 num_rmems);
553 return -EINVAL;
554 }
555
556 /* use reserved memory region 0 for vring DMA allocations */
557 ret = of_reserved_mem_device_init_by_idx(dev, np, 0);
558 if (ret) {
559 dev_err(dev, "device cannot initialize DMA pool (%pe)\n",
560 ERR_PTR(ret));
561 return ret;
562 }
563 ret = devm_add_action_or_reset(dev, k3_dsp_mem_release, dev);
564 if (ret)
565 return ret;
566
567 num_rmems--;
568 kproc->rmem = devm_kcalloc(dev, num_rmems, sizeof(*kproc->rmem), GFP_KERNEL);
569 if (!kproc->rmem)
570 return -ENOMEM;
571
572 /* use remaining reserved memory regions for static carveouts */
573 for (i = 0; i < num_rmems; i++) {
574 rmem_np = of_parse_phandle(np, "memory-region", i + 1);
575 if (!rmem_np)
576 return -EINVAL;
577
578 rmem = of_reserved_mem_lookup(rmem_np);
579 if (!rmem) {
580 of_node_put(rmem_np);
581 return -EINVAL;
582 }
583 of_node_put(rmem_np);
584
585 kproc->rmem[i].bus_addr = rmem->base;
586 /* 64-bit address regions currently not supported */
587 kproc->rmem[i].dev_addr = (u32)rmem->base;
588 kproc->rmem[i].size = rmem->size;
589 kproc->rmem[i].cpu_addr = devm_ioremap_wc(dev, rmem->base, rmem->size);
590 if (!kproc->rmem[i].cpu_addr) {
591 dev_err(dev, "failed to map reserved memory#%d at %pa of size %pa\n",
592 i + 1, &rmem->base, &rmem->size);
593 return -ENOMEM;
594 }
595
596 dev_dbg(dev, "reserved memory%d: bus addr %pa size 0x%zx va %pK da 0x%x\n",
597 i + 1, &kproc->rmem[i].bus_addr,
598 kproc->rmem[i].size, kproc->rmem[i].cpu_addr,
599 kproc->rmem[i].dev_addr);
600 }
601 kproc->num_rmems = num_rmems;
602
603 return 0;
604 }
605
k3_dsp_release_tsp(void * data)606 static void k3_dsp_release_tsp(void *data)
607 {
608 struct ti_sci_proc *tsp = data;
609
610 ti_sci_proc_release(tsp);
611 }
612
k3_dsp_rproc_probe(struct platform_device * pdev)613 static int k3_dsp_rproc_probe(struct platform_device *pdev)
614 {
615 struct device *dev = &pdev->dev;
616 struct device_node *np = dev->of_node;
617 const struct k3_dsp_dev_data *data;
618 struct k3_dsp_rproc *kproc;
619 struct rproc *rproc;
620 const char *fw_name;
621 bool p_state = false;
622 int ret = 0;
623
624 data = of_device_get_match_data(dev);
625 if (!data)
626 return -ENODEV;
627
628 ret = rproc_of_parse_firmware(dev, 0, &fw_name);
629 if (ret)
630 return dev_err_probe(dev, ret, "failed to parse firmware-name property\n");
631
632 rproc = devm_rproc_alloc(dev, dev_name(dev), &k3_dsp_rproc_ops,
633 fw_name, sizeof(*kproc));
634 if (!rproc)
635 return -ENOMEM;
636
637 rproc->has_iommu = false;
638 rproc->recovery_disabled = true;
639 if (data->uses_lreset) {
640 rproc->ops->prepare = k3_dsp_rproc_prepare;
641 rproc->ops->unprepare = k3_dsp_rproc_unprepare;
642 }
643 kproc = rproc->priv;
644 kproc->rproc = rproc;
645 kproc->dev = dev;
646 kproc->data = data;
647
648 ret = k3_dsp_rproc_request_mbox(rproc);
649 if (ret)
650 return ret;
651
652 kproc->ti_sci = devm_ti_sci_get_by_phandle(dev, "ti,sci");
653 if (IS_ERR(kproc->ti_sci))
654 return dev_err_probe(dev, PTR_ERR(kproc->ti_sci),
655 "failed to get ti-sci handle\n");
656
657 ret = of_property_read_u32(np, "ti,sci-dev-id", &kproc->ti_sci_id);
658 if (ret)
659 return dev_err_probe(dev, ret, "missing 'ti,sci-dev-id' property\n");
660
661 kproc->reset = devm_reset_control_get_exclusive(dev, NULL);
662 if (IS_ERR(kproc->reset))
663 return dev_err_probe(dev, PTR_ERR(kproc->reset),
664 "failed to get reset\n");
665
666 kproc->tsp = ti_sci_proc_of_get_tsp(dev, kproc->ti_sci);
667 if (IS_ERR(kproc->tsp))
668 return dev_err_probe(dev, PTR_ERR(kproc->tsp),
669 "failed to construct ti-sci proc control\n");
670
671 ret = ti_sci_proc_request(kproc->tsp);
672 if (ret < 0) {
673 dev_err_probe(dev, ret, "ti_sci_proc_request failed\n");
674 return ret;
675 }
676 ret = devm_add_action_or_reset(dev, k3_dsp_release_tsp, kproc->tsp);
677 if (ret)
678 return ret;
679
680 ret = k3_dsp_rproc_of_get_memories(pdev, kproc);
681 if (ret)
682 return ret;
683
684 ret = k3_dsp_reserved_mem_init(kproc);
685 if (ret)
686 return dev_err_probe(dev, ret, "reserved memory init failed\n");
687
688 ret = kproc->ti_sci->ops.dev_ops.is_on(kproc->ti_sci, kproc->ti_sci_id,
689 NULL, &p_state);
690 if (ret)
691 return dev_err_probe(dev, ret, "failed to get initial state, mode cannot be determined\n");
692
693 /* configure J721E devices for either remoteproc or IPC-only mode */
694 if (p_state) {
695 dev_info(dev, "configured DSP for IPC-only mode\n");
696 rproc->state = RPROC_DETACHED;
697 /* override rproc ops with only required IPC-only mode ops */
698 rproc->ops->prepare = NULL;
699 rproc->ops->unprepare = NULL;
700 rproc->ops->start = NULL;
701 rproc->ops->stop = NULL;
702 rproc->ops->attach = k3_dsp_rproc_attach;
703 rproc->ops->detach = k3_dsp_rproc_detach;
704 rproc->ops->get_loaded_rsc_table = k3_dsp_get_loaded_rsc_table;
705 } else {
706 dev_info(dev, "configured DSP for remoteproc mode\n");
707 /*
708 * ensure the DSP local reset is asserted to ensure the DSP
709 * doesn't execute bogus code in .prepare() when the module
710 * reset is released.
711 */
712 if (data->uses_lreset) {
713 ret = reset_control_status(kproc->reset);
714 if (ret < 0) {
715 return dev_err_probe(dev, ret, "failed to get reset status\n");
716 } else if (ret == 0) {
717 dev_warn(dev, "local reset is deasserted for device\n");
718 k3_dsp_rproc_reset(kproc);
719 }
720 }
721 }
722
723 ret = devm_rproc_add(dev, rproc);
724 if (ret)
725 return dev_err_probe(dev, ret, "failed to add register device with remoteproc core\n");
726
727 platform_set_drvdata(pdev, kproc);
728
729 return 0;
730 }
731
k3_dsp_rproc_remove(struct platform_device * pdev)732 static void k3_dsp_rproc_remove(struct platform_device *pdev)
733 {
734 struct k3_dsp_rproc *kproc = platform_get_drvdata(pdev);
735 struct rproc *rproc = kproc->rproc;
736 struct device *dev = &pdev->dev;
737 int ret;
738
739 if (rproc->state == RPROC_ATTACHED) {
740 ret = rproc_detach(rproc);
741 if (ret)
742 dev_err(dev, "failed to detach proc (%pe)\n", ERR_PTR(ret));
743 }
744
745 mbox_free_channel(kproc->mbox);
746 }
747
748 static const struct k3_dsp_mem_data c66_mems[] = {
749 { .name = "l2sram", .dev_addr = 0x800000 },
750 { .name = "l1pram", .dev_addr = 0xe00000 },
751 { .name = "l1dram", .dev_addr = 0xf00000 },
752 };
753
754 /* C71x cores only have a L1P Cache, there are no L1P SRAMs */
755 static const struct k3_dsp_mem_data c71_mems[] = {
756 { .name = "l2sram", .dev_addr = 0x800000 },
757 { .name = "l1dram", .dev_addr = 0xe00000 },
758 };
759
760 static const struct k3_dsp_mem_data c7xv_mems[] = {
761 { .name = "l2sram", .dev_addr = 0x800000 },
762 };
763
764 static const struct k3_dsp_dev_data c66_data = {
765 .mems = c66_mems,
766 .num_mems = ARRAY_SIZE(c66_mems),
767 .boot_align_addr = SZ_1K,
768 .uses_lreset = true,
769 };
770
771 static const struct k3_dsp_dev_data c71_data = {
772 .mems = c71_mems,
773 .num_mems = ARRAY_SIZE(c71_mems),
774 .boot_align_addr = SZ_2M,
775 .uses_lreset = false,
776 };
777
778 static const struct k3_dsp_dev_data c7xv_data = {
779 .mems = c7xv_mems,
780 .num_mems = ARRAY_SIZE(c7xv_mems),
781 .boot_align_addr = SZ_2M,
782 .uses_lreset = false,
783 };
784
785 static const struct of_device_id k3_dsp_of_match[] = {
786 { .compatible = "ti,j721e-c66-dsp", .data = &c66_data, },
787 { .compatible = "ti,j721e-c71-dsp", .data = &c71_data, },
788 { .compatible = "ti,j721s2-c71-dsp", .data = &c71_data, },
789 { .compatible = "ti,am62a-c7xv-dsp", .data = &c7xv_data, },
790 { /* sentinel */ },
791 };
792 MODULE_DEVICE_TABLE(of, k3_dsp_of_match);
793
794 static struct platform_driver k3_dsp_rproc_driver = {
795 .probe = k3_dsp_rproc_probe,
796 .remove_new = k3_dsp_rproc_remove,
797 .driver = {
798 .name = "k3-dsp-rproc",
799 .of_match_table = k3_dsp_of_match,
800 },
801 };
802
803 module_platform_driver(k3_dsp_rproc_driver);
804
805 MODULE_AUTHOR("Suman Anna <s-anna@ti.com>");
806 MODULE_LICENSE("GPL v2");
807 MODULE_DESCRIPTION("TI K3 DSP Remoteproc driver");
808