xref: /freebsd/sys/dev/jme/if_jme.c (revision ddaf6524682b3ab9e50f7575db319814dbbd053a)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice unmodified, this list of conditions, and the following
12  *    disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/bus.h>
33 #include <sys/endian.h>
34 #include <sys/kernel.h>
35 #include <sys/malloc.h>
36 #include <sys/mbuf.h>
37 #include <sys/rman.h>
38 #include <sys/module.h>
39 #include <sys/proc.h>
40 #include <sys/queue.h>
41 #include <sys/socket.h>
42 #include <sys/sockio.h>
43 #include <sys/sysctl.h>
44 #include <sys/taskqueue.h>
45 
46 #include <net/bpf.h>
47 #include <net/if.h>
48 #include <net/if_var.h>
49 #include <net/if_arp.h>
50 #include <net/ethernet.h>
51 #include <net/if_dl.h>
52 #include <net/if_media.h>
53 #include <net/if_types.h>
54 #include <net/if_vlan_var.h>
55 
56 #include <netinet/in.h>
57 #include <netinet/in_systm.h>
58 #include <netinet/ip.h>
59 #include <netinet/tcp.h>
60 
61 #include <dev/mii/mii.h>
62 #include <dev/mii/miivar.h>
63 
64 #include <dev/pci/pcireg.h>
65 #include <dev/pci/pcivar.h>
66 
67 #include <machine/bus.h>
68 #include <machine/in_cksum.h>
69 
70 #include <dev/jme/if_jmereg.h>
71 #include <dev/jme/if_jmevar.h>
72 
73 /* "device miibus" required.  See GENERIC if you get errors here. */
74 #include "miibus_if.h"
75 
76 /* Define the following to disable printing Rx errors. */
77 #undef	JME_SHOW_ERRORS
78 
79 #define	JME_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
80 
81 MODULE_DEPEND(jme, pci, 1, 1, 1);
82 MODULE_DEPEND(jme, ether, 1, 1, 1);
83 MODULE_DEPEND(jme, miibus, 1, 1, 1);
84 
85 /* Tunables. */
86 static int msi_disable = 0;
87 static int msix_disable = 0;
88 TUNABLE_INT("hw.jme.msi_disable", &msi_disable);
89 TUNABLE_INT("hw.jme.msix_disable", &msix_disable);
90 
91 /*
92  * Devices supported by this driver.
93  */
94 static struct jme_dev {
95 	uint16_t	jme_vendorid;
96 	uint16_t	jme_deviceid;
97 	const char	*jme_name;
98 } jme_devs[] = {
99 	{ VENDORID_JMICRON, DEVICEID_JMC250,
100 	    "JMicron Inc, JMC25x Gigabit Ethernet" },
101 	{ VENDORID_JMICRON, DEVICEID_JMC260,
102 	    "JMicron Inc, JMC26x Fast Ethernet" },
103 };
104 
105 static int jme_miibus_readreg(device_t, int, int);
106 static int jme_miibus_writereg(device_t, int, int, int);
107 static void jme_miibus_statchg(device_t);
108 static void jme_mediastatus(if_t, struct ifmediareq *);
109 static int jme_mediachange(if_t);
110 static int jme_probe(device_t);
111 static int jme_eeprom_read_byte(struct jme_softc *, uint8_t, uint8_t *);
112 static int jme_eeprom_macaddr(struct jme_softc *);
113 static int jme_efuse_macaddr(struct jme_softc *);
114 static void jme_reg_macaddr(struct jme_softc *);
115 static void jme_set_macaddr(struct jme_softc *, uint8_t *);
116 static void jme_map_intr_vector(struct jme_softc *);
117 static int jme_attach(device_t);
118 static int jme_detach(device_t);
119 static void jme_sysctl_node(struct jme_softc *);
120 static void jme_dmamap_cb(void *, bus_dma_segment_t *, int, int);
121 static int jme_dma_alloc(struct jme_softc *);
122 static void jme_dma_free(struct jme_softc *);
123 static int jme_shutdown(device_t);
124 static void jme_setlinkspeed(struct jme_softc *);
125 static void jme_setwol(struct jme_softc *);
126 static int jme_suspend(device_t);
127 static int jme_resume(device_t);
128 static int jme_encap(struct jme_softc *, struct mbuf **);
129 static void jme_start(if_t);
130 static void jme_start_locked(if_t);
131 static void jme_watchdog(struct jme_softc *);
132 static int jme_ioctl(if_t, u_long, caddr_t);
133 static void jme_mac_config(struct jme_softc *);
134 static void jme_link_task(void *, int);
135 static int jme_intr(void *);
136 static void jme_int_task(void *, int);
137 static void jme_txeof(struct jme_softc *);
138 static __inline void jme_discard_rxbuf(struct jme_softc *, int);
139 static void jme_rxeof(struct jme_softc *);
140 static int jme_rxintr(struct jme_softc *, int);
141 static void jme_tick(void *);
142 static void jme_reset(struct jme_softc *);
143 static void jme_init(void *);
144 static void jme_init_locked(struct jme_softc *);
145 static void jme_stop(struct jme_softc *);
146 static void jme_stop_tx(struct jme_softc *);
147 static void jme_stop_rx(struct jme_softc *);
148 static int jme_init_rx_ring(struct jme_softc *);
149 static void jme_init_tx_ring(struct jme_softc *);
150 static void jme_init_ssb(struct jme_softc *);
151 static int jme_newbuf(struct jme_softc *, struct jme_rxdesc *);
152 static void jme_set_vlan(struct jme_softc *);
153 static void jme_set_filter(struct jme_softc *);
154 static void jme_stats_clear(struct jme_softc *);
155 static void jme_stats_save(struct jme_softc *);
156 static void jme_stats_update(struct jme_softc *);
157 static void jme_phy_down(struct jme_softc *);
158 static void jme_phy_up(struct jme_softc *);
159 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
160 static int sysctl_hw_jme_tx_coal_to(SYSCTL_HANDLER_ARGS);
161 static int sysctl_hw_jme_tx_coal_pkt(SYSCTL_HANDLER_ARGS);
162 static int sysctl_hw_jme_rx_coal_to(SYSCTL_HANDLER_ARGS);
163 static int sysctl_hw_jme_rx_coal_pkt(SYSCTL_HANDLER_ARGS);
164 static int sysctl_hw_jme_proc_limit(SYSCTL_HANDLER_ARGS);
165 
166 
167 static device_method_t jme_methods[] = {
168 	/* Device interface. */
169 	DEVMETHOD(device_probe,		jme_probe),
170 	DEVMETHOD(device_attach,	jme_attach),
171 	DEVMETHOD(device_detach,	jme_detach),
172 	DEVMETHOD(device_shutdown,	jme_shutdown),
173 	DEVMETHOD(device_suspend,	jme_suspend),
174 	DEVMETHOD(device_resume,	jme_resume),
175 
176 	/* MII interface. */
177 	DEVMETHOD(miibus_readreg,	jme_miibus_readreg),
178 	DEVMETHOD(miibus_writereg,	jme_miibus_writereg),
179 	DEVMETHOD(miibus_statchg,	jme_miibus_statchg),
180 
181 	{ NULL, NULL }
182 };
183 
184 static driver_t jme_driver = {
185 	"jme",
186 	jme_methods,
187 	sizeof(struct jme_softc)
188 };
189 
190 DRIVER_MODULE(jme, pci, jme_driver, 0, 0);
191 DRIVER_MODULE(miibus, jme, miibus_driver, 0, 0);
192 
193 static struct resource_spec jme_res_spec_mem[] = {
194 	{ SYS_RES_MEMORY,	PCIR_BAR(0),	RF_ACTIVE },
195 	{ -1,			0,		0 }
196 };
197 
198 static struct resource_spec jme_irq_spec_legacy[] = {
199 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
200 	{ -1,			0,		0 }
201 };
202 
203 static struct resource_spec jme_irq_spec_msi[] = {
204 	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
205 	{ -1,			0,		0 }
206 };
207 
208 /*
209  *	Read a PHY register on the MII of the JMC250.
210  */
211 static int
jme_miibus_readreg(device_t dev,int phy,int reg)212 jme_miibus_readreg(device_t dev, int phy, int reg)
213 {
214 	struct jme_softc *sc;
215 	uint32_t val;
216 	int i;
217 
218 	sc = device_get_softc(dev);
219 
220 	/* For FPGA version, PHY address 0 should be ignored. */
221 	if ((sc->jme_flags & JME_FLAG_FPGA) != 0 && phy == 0)
222 		return (0);
223 
224 	CSR_WRITE_4(sc, JME_SMI, SMI_OP_READ | SMI_OP_EXECUTE |
225 	    SMI_PHY_ADDR(phy) | SMI_REG_ADDR(reg));
226 	for (i = JME_PHY_TIMEOUT; i > 0; i--) {
227 		DELAY(1);
228 		if (((val = CSR_READ_4(sc, JME_SMI)) & SMI_OP_EXECUTE) == 0)
229 			break;
230 	}
231 
232 	if (i == 0) {
233 		device_printf(sc->jme_dev, "phy read timeout : %d\n", reg);
234 		return (0);
235 	}
236 
237 	return ((val & SMI_DATA_MASK) >> SMI_DATA_SHIFT);
238 }
239 
240 /*
241  *	Write a PHY register on the MII of the JMC250.
242  */
243 static int
jme_miibus_writereg(device_t dev,int phy,int reg,int val)244 jme_miibus_writereg(device_t dev, int phy, int reg, int val)
245 {
246 	struct jme_softc *sc;
247 	int i;
248 
249 	sc = device_get_softc(dev);
250 
251 	/* For FPGA version, PHY address 0 should be ignored. */
252 	if ((sc->jme_flags & JME_FLAG_FPGA) != 0 && phy == 0)
253 		return (0);
254 
255 	CSR_WRITE_4(sc, JME_SMI, SMI_OP_WRITE | SMI_OP_EXECUTE |
256 	    ((val << SMI_DATA_SHIFT) & SMI_DATA_MASK) |
257 	    SMI_PHY_ADDR(phy) | SMI_REG_ADDR(reg));
258 	for (i = JME_PHY_TIMEOUT; i > 0; i--) {
259 		DELAY(1);
260 		if (((val = CSR_READ_4(sc, JME_SMI)) & SMI_OP_EXECUTE) == 0)
261 			break;
262 	}
263 
264 	if (i == 0)
265 		device_printf(sc->jme_dev, "phy write timeout : %d\n", reg);
266 
267 	return (0);
268 }
269 
270 /*
271  *	Callback from MII layer when media changes.
272  */
273 static void
jme_miibus_statchg(device_t dev)274 jme_miibus_statchg(device_t dev)
275 {
276 	struct jme_softc *sc;
277 
278 	sc = device_get_softc(dev);
279 	taskqueue_enqueue(taskqueue_swi, &sc->jme_link_task);
280 }
281 
282 /*
283  *	Get the current interface media status.
284  */
285 static void
jme_mediastatus(if_t ifp,struct ifmediareq * ifmr)286 jme_mediastatus(if_t ifp, struct ifmediareq *ifmr)
287 {
288 	struct jme_softc *sc;
289 	struct mii_data *mii;
290 
291 	sc = if_getsoftc(ifp);
292 	JME_LOCK(sc);
293 	if ((if_getflags(ifp) & IFF_UP) == 0) {
294 		JME_UNLOCK(sc);
295 		return;
296 	}
297 	mii = device_get_softc(sc->jme_miibus);
298 
299 	mii_pollstat(mii);
300 	ifmr->ifm_status = mii->mii_media_status;
301 	ifmr->ifm_active = mii->mii_media_active;
302 	JME_UNLOCK(sc);
303 }
304 
305 /*
306  *	Set hardware to newly-selected media.
307  */
308 static int
jme_mediachange(if_t ifp)309 jme_mediachange(if_t ifp)
310 {
311 	struct jme_softc *sc;
312 	struct mii_data *mii;
313 	struct mii_softc *miisc;
314 	int error;
315 
316 	sc = if_getsoftc(ifp);
317 	JME_LOCK(sc);
318 	mii = device_get_softc(sc->jme_miibus);
319 	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
320 		PHY_RESET(miisc);
321 	error = mii_mediachg(mii);
322 	JME_UNLOCK(sc);
323 
324 	return (error);
325 }
326 
327 static int
jme_probe(device_t dev)328 jme_probe(device_t dev)
329 {
330 	struct jme_dev *sp;
331 	int i;
332 	uint16_t vendor, devid;
333 
334 	vendor = pci_get_vendor(dev);
335 	devid = pci_get_device(dev);
336 	sp = jme_devs;
337 	for (i = 0; i < nitems(jme_devs); i++, sp++) {
338 		if (vendor == sp->jme_vendorid &&
339 		    devid == sp->jme_deviceid) {
340 			device_set_desc(dev, sp->jme_name);
341 			return (BUS_PROBE_DEFAULT);
342 		}
343 	}
344 
345 	return (ENXIO);
346 }
347 
348 static int
jme_eeprom_read_byte(struct jme_softc * sc,uint8_t addr,uint8_t * val)349 jme_eeprom_read_byte(struct jme_softc *sc, uint8_t addr, uint8_t *val)
350 {
351 	uint32_t reg;
352 	int i;
353 
354 	*val = 0;
355 	for (i = JME_TIMEOUT; i > 0; i--) {
356 		reg = CSR_READ_4(sc, JME_SMBCSR);
357 		if ((reg & SMBCSR_HW_BUSY_MASK) == SMBCSR_HW_IDLE)
358 			break;
359 		DELAY(1);
360 	}
361 
362 	if (i == 0) {
363 		device_printf(sc->jme_dev, "EEPROM idle timeout!\n");
364 		return (ETIMEDOUT);
365 	}
366 
367 	reg = ((uint32_t)addr << SMBINTF_ADDR_SHIFT) & SMBINTF_ADDR_MASK;
368 	CSR_WRITE_4(sc, JME_SMBINTF, reg | SMBINTF_RD | SMBINTF_CMD_TRIGGER);
369 	for (i = JME_TIMEOUT; i > 0; i--) {
370 		DELAY(1);
371 		reg = CSR_READ_4(sc, JME_SMBINTF);
372 		if ((reg & SMBINTF_CMD_TRIGGER) == 0)
373 			break;
374 	}
375 
376 	if (i == 0) {
377 		device_printf(sc->jme_dev, "EEPROM read timeout!\n");
378 		return (ETIMEDOUT);
379 	}
380 
381 	reg = CSR_READ_4(sc, JME_SMBINTF);
382 	*val = (reg & SMBINTF_RD_DATA_MASK) >> SMBINTF_RD_DATA_SHIFT;
383 
384 	return (0);
385 }
386 
387 static int
jme_eeprom_macaddr(struct jme_softc * sc)388 jme_eeprom_macaddr(struct jme_softc *sc)
389 {
390 	uint8_t eaddr[ETHER_ADDR_LEN];
391 	uint8_t fup, reg, val;
392 	uint32_t offset;
393 	int match;
394 
395 	offset = 0;
396 	if (jme_eeprom_read_byte(sc, offset++, &fup) != 0 ||
397 	    fup != JME_EEPROM_SIG0)
398 		return (ENOENT);
399 	if (jme_eeprom_read_byte(sc, offset++, &fup) != 0 ||
400 	    fup != JME_EEPROM_SIG1)
401 		return (ENOENT);
402 	match = 0;
403 	do {
404 		if (jme_eeprom_read_byte(sc, offset, &fup) != 0)
405 			break;
406 		if (JME_EEPROM_MKDESC(JME_EEPROM_FUNC0, JME_EEPROM_PAGE_BAR1) ==
407 		    (fup & (JME_EEPROM_FUNC_MASK | JME_EEPROM_PAGE_MASK))) {
408 			if (jme_eeprom_read_byte(sc, offset + 1, &reg) != 0)
409 				break;
410 			if (reg >= JME_PAR0 &&
411 			    reg < JME_PAR0 + ETHER_ADDR_LEN) {
412 				if (jme_eeprom_read_byte(sc, offset + 2,
413 				    &val) != 0)
414 					break;
415 				eaddr[reg - JME_PAR0] = val;
416 				match++;
417 			}
418 		}
419 		/* Check for the end of EEPROM descriptor. */
420 		if ((fup & JME_EEPROM_DESC_END) == JME_EEPROM_DESC_END)
421 			break;
422 		/* Try next eeprom descriptor. */
423 		offset += JME_EEPROM_DESC_BYTES;
424 	} while (match != ETHER_ADDR_LEN && offset < JME_EEPROM_END);
425 
426 	if (match == ETHER_ADDR_LEN) {
427 		bcopy(eaddr, sc->jme_eaddr, ETHER_ADDR_LEN);
428 		return (0);
429 	}
430 
431 	return (ENOENT);
432 }
433 
434 static int
jme_efuse_macaddr(struct jme_softc * sc)435 jme_efuse_macaddr(struct jme_softc *sc)
436 {
437 	uint32_t reg;
438 	int i;
439 
440 	reg = pci_read_config(sc->jme_dev, JME_EFUSE_CTL1, 4);
441 	if ((reg & (EFUSE_CTL1_AUTOLOAD_ERR | EFUSE_CTL1_AUTOLAOD_DONE)) !=
442 	    EFUSE_CTL1_AUTOLAOD_DONE)
443 		return (ENOENT);
444 	/* Reset eFuse controller. */
445 	reg = pci_read_config(sc->jme_dev, JME_EFUSE_CTL2, 4);
446 	reg |= EFUSE_CTL2_RESET;
447 	pci_write_config(sc->jme_dev, JME_EFUSE_CTL2, reg, 4);
448 	reg = pci_read_config(sc->jme_dev, JME_EFUSE_CTL2, 4);
449 	reg &= ~EFUSE_CTL2_RESET;
450 	pci_write_config(sc->jme_dev, JME_EFUSE_CTL2, reg, 4);
451 
452 	/* Have eFuse reload station address to MAC controller. */
453 	reg = pci_read_config(sc->jme_dev, JME_EFUSE_CTL1, 4);
454 	reg &= ~EFUSE_CTL1_CMD_MASK;
455 	reg |= EFUSE_CTL1_CMD_AUTOLOAD | EFUSE_CTL1_EXECUTE;
456 	pci_write_config(sc->jme_dev, JME_EFUSE_CTL1, reg, 4);
457 
458 	/*
459 	 * Verify completion of eFuse autload command.  It should be
460 	 * completed within 108us.
461 	 */
462 	DELAY(110);
463 	for (i = 10; i > 0; i--) {
464 		reg = pci_read_config(sc->jme_dev, JME_EFUSE_CTL1, 4);
465 		if ((reg & (EFUSE_CTL1_AUTOLOAD_ERR |
466 		    EFUSE_CTL1_AUTOLAOD_DONE)) != EFUSE_CTL1_AUTOLAOD_DONE) {
467 			DELAY(20);
468 			continue;
469 		}
470 		if ((reg & EFUSE_CTL1_EXECUTE) == 0)
471 			break;
472 		/* Station address loading is still in progress. */
473 		DELAY(20);
474 	}
475 	if (i == 0) {
476 		device_printf(sc->jme_dev, "eFuse autoload timed out.\n");
477 		return (ETIMEDOUT);
478 	}
479 
480 	return (0);
481 }
482 
483 static void
jme_reg_macaddr(struct jme_softc * sc)484 jme_reg_macaddr(struct jme_softc *sc)
485 {
486 	uint32_t par0, par1;
487 
488 	/* Read station address. */
489 	par0 = CSR_READ_4(sc, JME_PAR0);
490 	par1 = CSR_READ_4(sc, JME_PAR1);
491 	par1 &= 0xFFFF;
492 	if ((par0 == 0 && par1 == 0) ||
493 	    (par0 == 0xFFFFFFFF && par1 == 0xFFFF)) {
494 		device_printf(sc->jme_dev,
495 		    "Failed to retrieve Ethernet address.\n");
496 	} else {
497 		/*
498 		 * For controllers that use eFuse, the station address
499 		 * could also be extracted from JME_PCI_PAR0 and
500 		 * JME_PCI_PAR1 registers in PCI configuration space.
501 		 * Each register holds exactly half of station address(24bits)
502 		 * so use JME_PAR0, JME_PAR1 registers instead.
503 		 */
504 		sc->jme_eaddr[0] = (par0 >> 0) & 0xFF;
505 		sc->jme_eaddr[1] = (par0 >> 8) & 0xFF;
506 		sc->jme_eaddr[2] = (par0 >> 16) & 0xFF;
507 		sc->jme_eaddr[3] = (par0 >> 24) & 0xFF;
508 		sc->jme_eaddr[4] = (par1 >> 0) & 0xFF;
509 		sc->jme_eaddr[5] = (par1 >> 8) & 0xFF;
510 	}
511 }
512 
513 static void
jme_set_macaddr(struct jme_softc * sc,uint8_t * eaddr)514 jme_set_macaddr(struct jme_softc *sc, uint8_t *eaddr)
515 {
516 	uint32_t val;
517 	int i;
518 
519 	if ((sc->jme_flags & JME_FLAG_EFUSE) != 0) {
520 		/*
521 		 * Avoid reprogramming station address if the address
522 		 * is the same as previous one.  Note, reprogrammed
523 		 * station address is permanent as if it was written
524 		 * to EEPROM. So if station address was changed by
525 		 * admistrator it's possible to lose factory configured
526 		 * address when driver fails to restore its address.
527 		 * (e.g. reboot or system crash)
528 		 */
529 		if (bcmp(eaddr, sc->jme_eaddr, ETHER_ADDR_LEN) != 0) {
530 			for (i = 0; i < ETHER_ADDR_LEN; i++) {
531 				val = JME_EFUSE_EEPROM_FUNC0 <<
532 				    JME_EFUSE_EEPROM_FUNC_SHIFT;
533 				val |= JME_EFUSE_EEPROM_PAGE_BAR1 <<
534 				    JME_EFUSE_EEPROM_PAGE_SHIFT;
535 				val |= (JME_PAR0 + i) <<
536 				    JME_EFUSE_EEPROM_ADDR_SHIFT;
537 				val |= eaddr[i] << JME_EFUSE_EEPROM_DATA_SHIFT;
538 				pci_write_config(sc->jme_dev, JME_EFUSE_EEPROM,
539 				    val | JME_EFUSE_EEPROM_WRITE, 4);
540 			}
541 		}
542 	} else {
543 		CSR_WRITE_4(sc, JME_PAR0,
544 		    eaddr[3] << 24 | eaddr[2] << 16 | eaddr[1] << 8 | eaddr[0]);
545 		CSR_WRITE_4(sc, JME_PAR1, eaddr[5] << 8 | eaddr[4]);
546 	}
547 }
548 
549 static void
jme_map_intr_vector(struct jme_softc * sc)550 jme_map_intr_vector(struct jme_softc *sc)
551 {
552 	uint32_t map[MSINUM_NUM_INTR_SOURCE / JME_MSI_MESSAGES];
553 
554 	bzero(map, sizeof(map));
555 
556 	/* Map Tx interrupts source to MSI/MSIX vector 2. */
557 	map[MSINUM_REG_INDEX(N_INTR_TXQ0_COMP)] =
558 	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ0_COMP);
559 	map[MSINUM_REG_INDEX(N_INTR_TXQ1_COMP)] |=
560 	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ1_COMP);
561 	map[MSINUM_REG_INDEX(N_INTR_TXQ2_COMP)] |=
562 	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ2_COMP);
563 	map[MSINUM_REG_INDEX(N_INTR_TXQ3_COMP)] |=
564 	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ3_COMP);
565 	map[MSINUM_REG_INDEX(N_INTR_TXQ4_COMP)] |=
566 	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ4_COMP);
567 	map[MSINUM_REG_INDEX(N_INTR_TXQ5_COMP)] |=
568 	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ5_COMP);
569 	map[MSINUM_REG_INDEX(N_INTR_TXQ6_COMP)] |=
570 	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ6_COMP);
571 	map[MSINUM_REG_INDEX(N_INTR_TXQ7_COMP)] |=
572 	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ7_COMP);
573 	map[MSINUM_REG_INDEX(N_INTR_TXQ_COAL)] |=
574 	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ_COAL);
575 	map[MSINUM_REG_INDEX(N_INTR_TXQ_COAL_TO)] |=
576 	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ_COAL_TO);
577 
578 	/* Map Rx interrupts source to MSI/MSIX vector 1. */
579 	map[MSINUM_REG_INDEX(N_INTR_RXQ0_COMP)] =
580 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ0_COMP);
581 	map[MSINUM_REG_INDEX(N_INTR_RXQ1_COMP)] =
582 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ1_COMP);
583 	map[MSINUM_REG_INDEX(N_INTR_RXQ2_COMP)] =
584 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ2_COMP);
585 	map[MSINUM_REG_INDEX(N_INTR_RXQ3_COMP)] =
586 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ3_COMP);
587 	map[MSINUM_REG_INDEX(N_INTR_RXQ0_DESC_EMPTY)] =
588 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ0_DESC_EMPTY);
589 	map[MSINUM_REG_INDEX(N_INTR_RXQ1_DESC_EMPTY)] =
590 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ1_DESC_EMPTY);
591 	map[MSINUM_REG_INDEX(N_INTR_RXQ2_DESC_EMPTY)] =
592 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ2_DESC_EMPTY);
593 	map[MSINUM_REG_INDEX(N_INTR_RXQ3_DESC_EMPTY)] =
594 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ3_DESC_EMPTY);
595 	map[MSINUM_REG_INDEX(N_INTR_RXQ0_COAL)] =
596 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ0_COAL);
597 	map[MSINUM_REG_INDEX(N_INTR_RXQ1_COAL)] =
598 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ1_COAL);
599 	map[MSINUM_REG_INDEX(N_INTR_RXQ2_COAL)] =
600 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ2_COAL);
601 	map[MSINUM_REG_INDEX(N_INTR_RXQ3_COAL)] =
602 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ3_COAL);
603 	map[MSINUM_REG_INDEX(N_INTR_RXQ0_COAL_TO)] =
604 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ0_COAL_TO);
605 	map[MSINUM_REG_INDEX(N_INTR_RXQ1_COAL_TO)] =
606 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ1_COAL_TO);
607 	map[MSINUM_REG_INDEX(N_INTR_RXQ2_COAL_TO)] =
608 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ2_COAL_TO);
609 	map[MSINUM_REG_INDEX(N_INTR_RXQ3_COAL_TO)] =
610 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ3_COAL_TO);
611 
612 	/* Map all other interrupts source to MSI/MSIX vector 0. */
613 	CSR_WRITE_4(sc, JME_MSINUM_BASE + sizeof(uint32_t) * 0, map[0]);
614 	CSR_WRITE_4(sc, JME_MSINUM_BASE + sizeof(uint32_t) * 1, map[1]);
615 	CSR_WRITE_4(sc, JME_MSINUM_BASE + sizeof(uint32_t) * 2, map[2]);
616 	CSR_WRITE_4(sc, JME_MSINUM_BASE + sizeof(uint32_t) * 3, map[3]);
617 }
618 
619 static int
jme_attach(device_t dev)620 jme_attach(device_t dev)
621 {
622 	struct jme_softc *sc;
623 	if_t ifp;
624 	struct mii_softc *miisc;
625 	struct mii_data *mii;
626 	uint32_t reg;
627 	uint16_t burst;
628 	int error, i, mii_flags, msic, msixc;
629 
630 	error = 0;
631 	sc = device_get_softc(dev);
632 	sc->jme_dev = dev;
633 
634 	mtx_init(&sc->jme_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
635 	    MTX_DEF);
636 	callout_init_mtx(&sc->jme_tick_ch, &sc->jme_mtx, 0);
637 	TASK_INIT(&sc->jme_int_task, 0, jme_int_task, sc);
638 	TASK_INIT(&sc->jme_link_task, 0, jme_link_task, sc);
639 
640 	/*
641 	 * Map the device. JMC250 supports both memory mapped and I/O
642 	 * register space access. Because I/O register access should
643 	 * use different BARs to access registers it's waste of time
644 	 * to use I/O register spce access. JMC250 uses 16K to map
645 	 * entire memory space.
646 	 */
647 	pci_enable_busmaster(dev);
648 	sc->jme_res_spec = jme_res_spec_mem;
649 	sc->jme_irq_spec = jme_irq_spec_legacy;
650 	error = bus_alloc_resources(dev, sc->jme_res_spec, sc->jme_res);
651 	if (error != 0) {
652 		device_printf(dev, "cannot allocate memory resources.\n");
653 		goto fail;
654 	}
655 
656 	/* Allocate IRQ resources. */
657 	msixc = pci_msix_count(dev);
658 	msic = pci_msi_count(dev);
659 	if (bootverbose) {
660 		device_printf(dev, "MSIX count : %d\n", msixc);
661 		device_printf(dev, "MSI count : %d\n", msic);
662 	}
663 
664 	/* Use 1 MSI/MSI-X. */
665 	if (msixc > 1)
666 		msixc = 1;
667 	if (msic > 1)
668 		msic = 1;
669 	/* Prefer MSIX over MSI. */
670 	if (msix_disable == 0 || msi_disable == 0) {
671 		if (msix_disable == 0 && msixc > 0 &&
672 		    pci_alloc_msix(dev, &msixc) == 0) {
673 			if (msixc == 1) {
674 				device_printf(dev, "Using %d MSIX messages.\n",
675 				    msixc);
676 				sc->jme_flags |= JME_FLAG_MSIX;
677 				sc->jme_irq_spec = jme_irq_spec_msi;
678 			} else
679 				pci_release_msi(dev);
680 		}
681 		if (msi_disable == 0 && (sc->jme_flags & JME_FLAG_MSIX) == 0 &&
682 		    msic > 0 && pci_alloc_msi(dev, &msic) == 0) {
683 			if (msic == 1) {
684 				device_printf(dev, "Using %d MSI messages.\n",
685 				    msic);
686 				sc->jme_flags |= JME_FLAG_MSI;
687 				sc->jme_irq_spec = jme_irq_spec_msi;
688 			} else
689 				pci_release_msi(dev);
690 		}
691 		/* Map interrupt vector 0, 1 and 2. */
692 		if ((sc->jme_flags & JME_FLAG_MSI) != 0 ||
693 		    (sc->jme_flags & JME_FLAG_MSIX) != 0)
694 			jme_map_intr_vector(sc);
695 	}
696 
697 	error = bus_alloc_resources(dev, sc->jme_irq_spec, sc->jme_irq);
698 	if (error != 0) {
699 		device_printf(dev, "cannot allocate IRQ resources.\n");
700 		goto fail;
701 	}
702 
703 	sc->jme_rev = pci_get_device(dev);
704 	if ((sc->jme_rev & DEVICEID_JMC2XX_MASK) == DEVICEID_JMC260) {
705 		sc->jme_flags |= JME_FLAG_FASTETH;
706 		sc->jme_flags |= JME_FLAG_NOJUMBO;
707 	}
708 	reg = CSR_READ_4(sc, JME_CHIPMODE);
709 	sc->jme_chip_rev = (reg & CHIPMODE_REV_MASK) >> CHIPMODE_REV_SHIFT;
710 	if (((reg & CHIPMODE_FPGA_REV_MASK) >> CHIPMODE_FPGA_REV_SHIFT) !=
711 	    CHIPMODE_NOT_FPGA)
712 		sc->jme_flags |= JME_FLAG_FPGA;
713 	if (bootverbose) {
714 		device_printf(dev, "PCI device revision : 0x%04x\n",
715 		    sc->jme_rev);
716 		device_printf(dev, "Chip revision : 0x%02x\n",
717 		    sc->jme_chip_rev);
718 		if ((sc->jme_flags & JME_FLAG_FPGA) != 0)
719 			device_printf(dev, "FPGA revision : 0x%04x\n",
720 			    (reg & CHIPMODE_FPGA_REV_MASK) >>
721 			    CHIPMODE_FPGA_REV_SHIFT);
722 	}
723 	if (sc->jme_chip_rev == 0xFF) {
724 		device_printf(dev, "Unknown chip revision : 0x%02x\n",
725 		    sc->jme_rev);
726 		error = ENXIO;
727 		goto fail;
728 	}
729 
730 	/* Identify controller features and bugs. */
731 	if (CHIPMODE_REVFM(sc->jme_chip_rev) >= 2) {
732 		if ((sc->jme_rev & DEVICEID_JMC2XX_MASK) == DEVICEID_JMC260 &&
733 		    CHIPMODE_REVFM(sc->jme_chip_rev) == 2)
734 			sc->jme_flags |= JME_FLAG_DMA32BIT;
735 		if (CHIPMODE_REVFM(sc->jme_chip_rev) >= 5)
736 			sc->jme_flags |= JME_FLAG_EFUSE | JME_FLAG_PCCPCD;
737 		sc->jme_flags |= JME_FLAG_TXCLK | JME_FLAG_RXCLK;
738 		sc->jme_flags |= JME_FLAG_HWMIB;
739 	}
740 
741 	/* Reset the ethernet controller. */
742 	jme_reset(sc);
743 
744 	/* Get station address. */
745 	if ((sc->jme_flags & JME_FLAG_EFUSE) != 0) {
746 		error = jme_efuse_macaddr(sc);
747 		if (error == 0)
748 			jme_reg_macaddr(sc);
749 	} else {
750 		error = ENOENT;
751 		reg = CSR_READ_4(sc, JME_SMBCSR);
752 		if ((reg & SMBCSR_EEPROM_PRESENT) != 0)
753 			error = jme_eeprom_macaddr(sc);
754 		if (error != 0 && bootverbose)
755 			device_printf(sc->jme_dev,
756 			    "ethernet hardware address not found in EEPROM.\n");
757 		if (error != 0)
758 			jme_reg_macaddr(sc);
759 	}
760 
761 	/*
762 	 * Save PHY address.
763 	 * Integrated JR0211 has fixed PHY address whereas FPGA version
764 	 * requires PHY probing to get correct PHY address.
765 	 */
766 	if ((sc->jme_flags & JME_FLAG_FPGA) == 0) {
767 		sc->jme_phyaddr = CSR_READ_4(sc, JME_GPREG0) &
768 		    GPREG0_PHY_ADDR_MASK;
769 		if (bootverbose)
770 			device_printf(dev, "PHY is at address %d.\n",
771 			    sc->jme_phyaddr);
772 	} else
773 		sc->jme_phyaddr = 0;
774 
775 	/* Set max allowable DMA size. */
776 	if (pci_find_cap(dev, PCIY_EXPRESS, &i) == 0) {
777 		sc->jme_flags |= JME_FLAG_PCIE;
778 		burst = pci_read_config(dev, i + PCIER_DEVICE_CTL, 2);
779 		if (bootverbose) {
780 			device_printf(dev, "Read request size : %d bytes.\n",
781 			    128 << ((burst >> 12) & 0x07));
782 			device_printf(dev, "TLP payload size : %d bytes.\n",
783 			    128 << ((burst >> 5) & 0x07));
784 		}
785 		switch ((burst >> 12) & 0x07) {
786 		case 0:
787 			sc->jme_tx_dma_size = TXCSR_DMA_SIZE_128;
788 			break;
789 		case 1:
790 			sc->jme_tx_dma_size = TXCSR_DMA_SIZE_256;
791 			break;
792 		default:
793 			sc->jme_tx_dma_size = TXCSR_DMA_SIZE_512;
794 			break;
795 		}
796 		sc->jme_rx_dma_size = RXCSR_DMA_SIZE_128;
797 	} else {
798 		sc->jme_tx_dma_size = TXCSR_DMA_SIZE_512;
799 		sc->jme_rx_dma_size = RXCSR_DMA_SIZE_128;
800 	}
801 	/* Create coalescing sysctl node. */
802 	jme_sysctl_node(sc);
803 	if ((error = jme_dma_alloc(sc)) != 0)
804 		goto fail;
805 
806 	ifp = sc->jme_ifp = if_alloc(IFT_ETHER);
807 	if_setsoftc(ifp, sc);
808 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
809 	if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
810 	if_setioctlfn(ifp, jme_ioctl);
811 	if_setstartfn(ifp, jme_start);
812 	if_setinitfn(ifp, jme_init);
813 	if_setsendqlen(ifp, JME_TX_RING_CNT - 1);
814 	if_setsendqready(ifp);
815 	/* JMC250 supports Tx/Rx checksum offload as well as TSO. */
816 	if_setcapabilities(ifp, IFCAP_HWCSUM | IFCAP_TSO4);
817 	if_sethwassist(ifp, JME_CSUM_FEATURES | CSUM_TSO);
818 	if (pci_has_pm(dev)) {
819 		if_setcapabilitiesbit(ifp, IFCAP_WOL_MAGIC, 0);
820 	}
821 	if_setcapenable(ifp, if_getcapabilities(ifp));
822 
823 	/* Wakeup PHY. */
824 	jme_phy_up(sc);
825 	mii_flags = MIIF_DOPAUSE;
826 	/* Ask PHY calibration to PHY driver. */
827 	if (CHIPMODE_REVFM(sc->jme_chip_rev) >= 5)
828 		mii_flags |= MIIF_MACPRIV0;
829 	/* Set up MII bus. */
830 	error = mii_attach(dev, &sc->jme_miibus, ifp, jme_mediachange,
831 	    jme_mediastatus, BMSR_DEFCAPMASK,
832 	    sc->jme_flags & JME_FLAG_FPGA ? MII_PHY_ANY : sc->jme_phyaddr,
833 	    MII_OFFSET_ANY, mii_flags);
834 	if (error != 0) {
835 		device_printf(dev, "attaching PHYs failed\n");
836 		goto fail;
837 	}
838 
839 	/*
840 	 * Force PHY to FPGA mode.
841 	 */
842 	if ((sc->jme_flags & JME_FLAG_FPGA) != 0) {
843 		mii = device_get_softc(sc->jme_miibus);
844 		if (mii->mii_instance != 0) {
845 			LIST_FOREACH(miisc, &mii->mii_phys, mii_list) {
846 				if (miisc->mii_phy != 0) {
847 					sc->jme_phyaddr = miisc->mii_phy;
848 					break;
849 				}
850 			}
851 			if (sc->jme_phyaddr != 0) {
852 				device_printf(sc->jme_dev,
853 				    "FPGA PHY is at %d\n", sc->jme_phyaddr);
854 				/* vendor magic. */
855 				jme_miibus_writereg(dev, sc->jme_phyaddr, 27,
856 				    0x0004);
857 			}
858 		}
859 	}
860 
861 	ether_ifattach(ifp, sc->jme_eaddr);
862 
863 	/* VLAN capability setup */
864 	if_setcapabilitiesbit(ifp, IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |
865 	    IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO, 0);
866 	if_setcapenable(ifp, if_getcapabilities(ifp));
867 
868 	/* Tell the upper layer(s) we support long frames. */
869 	if_setifheaderlen(ifp, sizeof(struct ether_vlan_header));
870 
871 	/* Create local taskq. */
872 	sc->jme_tq = taskqueue_create_fast("jme_taskq", M_WAITOK,
873 	    taskqueue_thread_enqueue, &sc->jme_tq);
874 	taskqueue_start_threads(&sc->jme_tq, 1, PI_NET, "%s taskq",
875 	    device_get_nameunit(sc->jme_dev));
876 
877 	for (i = 0; i < 1; i++) {
878 		error = bus_setup_intr(dev, sc->jme_irq[i],
879 		    INTR_TYPE_NET | INTR_MPSAFE, jme_intr, NULL, sc,
880 		    &sc->jme_intrhand[i]);
881 		if (error != 0)
882 			break;
883 	}
884 
885 	if (error != 0) {
886 		device_printf(dev, "could not set up interrupt handler.\n");
887 		taskqueue_free(sc->jme_tq);
888 		sc->jme_tq = NULL;
889 		ether_ifdetach(ifp);
890 		goto fail;
891 	}
892 
893 fail:
894 	if (error != 0)
895 		jme_detach(dev);
896 
897 	return (error);
898 }
899 
900 static int
jme_detach(device_t dev)901 jme_detach(device_t dev)
902 {
903 	struct jme_softc *sc;
904 	if_t ifp;
905 	int i;
906 
907 	sc = device_get_softc(dev);
908 
909 	ifp = sc->jme_ifp;
910 	if (device_is_attached(dev)) {
911 		JME_LOCK(sc);
912 		sc->jme_flags |= JME_FLAG_DETACH;
913 		jme_stop(sc);
914 		JME_UNLOCK(sc);
915 		callout_drain(&sc->jme_tick_ch);
916 		taskqueue_drain(sc->jme_tq, &sc->jme_int_task);
917 		taskqueue_drain(taskqueue_swi, &sc->jme_link_task);
918 		/* Restore possibly modified station address. */
919 		if ((sc->jme_flags & JME_FLAG_EFUSE) != 0)
920 			jme_set_macaddr(sc, sc->jme_eaddr);
921 		ether_ifdetach(ifp);
922 	}
923 
924 	if (sc->jme_tq != NULL) {
925 		taskqueue_drain(sc->jme_tq, &sc->jme_int_task);
926 		taskqueue_free(sc->jme_tq);
927 		sc->jme_tq = NULL;
928 	}
929 
930 	bus_generic_detach(dev);
931 	jme_dma_free(sc);
932 
933 	if (ifp != NULL) {
934 		if_free(ifp);
935 		sc->jme_ifp = NULL;
936 	}
937 
938 	for (i = 0; i < 1; i++) {
939 		if (sc->jme_intrhand[i] != NULL) {
940 			bus_teardown_intr(dev, sc->jme_irq[i],
941 			    sc->jme_intrhand[i]);
942 			sc->jme_intrhand[i] = NULL;
943 		}
944 	}
945 
946 	if (sc->jme_irq[0] != NULL)
947 		bus_release_resources(dev, sc->jme_irq_spec, sc->jme_irq);
948 	if ((sc->jme_flags & (JME_FLAG_MSIX | JME_FLAG_MSI)) != 0)
949 		pci_release_msi(dev);
950 	if (sc->jme_res[0] != NULL)
951 		bus_release_resources(dev, sc->jme_res_spec, sc->jme_res);
952 	mtx_destroy(&sc->jme_mtx);
953 
954 	return (0);
955 }
956 
957 #define	JME_SYSCTL_STAT_ADD32(c, h, n, p, d)	\
958 	    SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
959 
960 static void
jme_sysctl_node(struct jme_softc * sc)961 jme_sysctl_node(struct jme_softc *sc)
962 {
963 	struct sysctl_ctx_list *ctx;
964 	struct sysctl_oid_list *child, *parent;
965 	struct sysctl_oid *tree;
966 	struct jme_hw_stats *stats;
967 	int error;
968 
969 	stats = &sc->jme_stats;
970 	ctx = device_get_sysctl_ctx(sc->jme_dev);
971 	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->jme_dev));
972 
973 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "tx_coal_to",
974 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &sc->jme_tx_coal_to,
975 	    0, sysctl_hw_jme_tx_coal_to, "I", "jme tx coalescing timeout");
976 
977 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "tx_coal_pkt",
978 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &sc->jme_tx_coal_pkt,
979 	    0, sysctl_hw_jme_tx_coal_pkt, "I", "jme tx coalescing packet");
980 
981 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "rx_coal_to",
982 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &sc->jme_rx_coal_to,
983 	    0, sysctl_hw_jme_rx_coal_to, "I", "jme rx coalescing timeout");
984 
985 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "rx_coal_pkt",
986 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &sc->jme_rx_coal_pkt,
987 	    0, sysctl_hw_jme_rx_coal_pkt, "I", "jme rx coalescing packet");
988 
989 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "process_limit",
990 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
991 	    &sc->jme_process_limit, 0, sysctl_hw_jme_proc_limit, "I",
992 	    "max number of Rx events to process");
993 
994 	/* Pull in device tunables. */
995 	sc->jme_process_limit = JME_PROC_DEFAULT;
996 	error = resource_int_value(device_get_name(sc->jme_dev),
997 	    device_get_unit(sc->jme_dev), "process_limit",
998 	    &sc->jme_process_limit);
999 	if (error == 0) {
1000 		if (sc->jme_process_limit < JME_PROC_MIN ||
1001 		    sc->jme_process_limit > JME_PROC_MAX) {
1002 			device_printf(sc->jme_dev,
1003 			    "process_limit value out of range; "
1004 			    "using default: %d\n", JME_PROC_DEFAULT);
1005 			sc->jme_process_limit = JME_PROC_DEFAULT;
1006 		}
1007 	}
1008 
1009 	sc->jme_tx_coal_to = PCCTX_COAL_TO_DEFAULT;
1010 	error = resource_int_value(device_get_name(sc->jme_dev),
1011 	    device_get_unit(sc->jme_dev), "tx_coal_to", &sc->jme_tx_coal_to);
1012 	if (error == 0) {
1013 		if (sc->jme_tx_coal_to < PCCTX_COAL_TO_MIN ||
1014 		    sc->jme_tx_coal_to > PCCTX_COAL_TO_MAX) {
1015 			device_printf(sc->jme_dev,
1016 			    "tx_coal_to value out of range; "
1017 			    "using default: %d\n", PCCTX_COAL_TO_DEFAULT);
1018 			sc->jme_tx_coal_to = PCCTX_COAL_TO_DEFAULT;
1019 		}
1020 	}
1021 
1022 	sc->jme_tx_coal_pkt = PCCTX_COAL_PKT_DEFAULT;
1023 	error = resource_int_value(device_get_name(sc->jme_dev),
1024 	    device_get_unit(sc->jme_dev), "tx_coal_pkt", &sc->jme_tx_coal_to);
1025 	if (error == 0) {
1026 		if (sc->jme_tx_coal_pkt < PCCTX_COAL_PKT_MIN ||
1027 		    sc->jme_tx_coal_pkt > PCCTX_COAL_PKT_MAX) {
1028 			device_printf(sc->jme_dev,
1029 			    "tx_coal_pkt value out of range; "
1030 			    "using default: %d\n", PCCTX_COAL_PKT_DEFAULT);
1031 			sc->jme_tx_coal_pkt = PCCTX_COAL_PKT_DEFAULT;
1032 		}
1033 	}
1034 
1035 	sc->jme_rx_coal_to = PCCRX_COAL_TO_DEFAULT;
1036 	error = resource_int_value(device_get_name(sc->jme_dev),
1037 	    device_get_unit(sc->jme_dev), "rx_coal_to", &sc->jme_rx_coal_to);
1038 	if (error == 0) {
1039 		if (sc->jme_rx_coal_to < PCCRX_COAL_TO_MIN ||
1040 		    sc->jme_rx_coal_to > PCCRX_COAL_TO_MAX) {
1041 			device_printf(sc->jme_dev,
1042 			    "rx_coal_to value out of range; "
1043 			    "using default: %d\n", PCCRX_COAL_TO_DEFAULT);
1044 			sc->jme_rx_coal_to = PCCRX_COAL_TO_DEFAULT;
1045 		}
1046 	}
1047 
1048 	sc->jme_rx_coal_pkt = PCCRX_COAL_PKT_DEFAULT;
1049 	error = resource_int_value(device_get_name(sc->jme_dev),
1050 	    device_get_unit(sc->jme_dev), "rx_coal_pkt", &sc->jme_rx_coal_to);
1051 	if (error == 0) {
1052 		if (sc->jme_rx_coal_pkt < PCCRX_COAL_PKT_MIN ||
1053 		    sc->jme_rx_coal_pkt > PCCRX_COAL_PKT_MAX) {
1054 			device_printf(sc->jme_dev,
1055 			    "tx_coal_pkt value out of range; "
1056 			    "using default: %d\n", PCCRX_COAL_PKT_DEFAULT);
1057 			sc->jme_rx_coal_pkt = PCCRX_COAL_PKT_DEFAULT;
1058 		}
1059 	}
1060 
1061 	if ((sc->jme_flags & JME_FLAG_HWMIB) == 0)
1062 		return;
1063 
1064 	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats",
1065 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "JME statistics");
1066 	parent = SYSCTL_CHILDREN(tree);
1067 
1068 	/* Rx statistics. */
1069 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx",
1070 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Rx MAC statistics");
1071 	child = SYSCTL_CHILDREN(tree);
1072 	JME_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
1073 	    &stats->rx_good_frames, "Good frames");
1074 	JME_SYSCTL_STAT_ADD32(ctx, child, "crc_errs",
1075 	    &stats->rx_crc_errs, "CRC errors");
1076 	JME_SYSCTL_STAT_ADD32(ctx, child, "mii_errs",
1077 	    &stats->rx_mii_errs, "MII errors");
1078 	JME_SYSCTL_STAT_ADD32(ctx, child, "fifo_oflows",
1079 	    &stats->rx_fifo_oflows, "FIFO overflows");
1080 	JME_SYSCTL_STAT_ADD32(ctx, child, "desc_empty",
1081 	    &stats->rx_desc_empty, "Descriptor empty");
1082 	JME_SYSCTL_STAT_ADD32(ctx, child, "bad_frames",
1083 	    &stats->rx_bad_frames, "Bad frames");
1084 
1085 	/* Tx statistics. */
1086 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx",
1087 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Tx MAC statistics");
1088 	child = SYSCTL_CHILDREN(tree);
1089 	JME_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
1090 	    &stats->tx_good_frames, "Good frames");
1091 	JME_SYSCTL_STAT_ADD32(ctx, child, "bad_frames",
1092 	    &stats->tx_bad_frames, "Bad frames");
1093 }
1094 
1095 #undef	JME_SYSCTL_STAT_ADD32
1096 
1097 struct jme_dmamap_arg {
1098 	bus_addr_t	jme_busaddr;
1099 };
1100 
1101 static void
jme_dmamap_cb(void * arg,bus_dma_segment_t * segs,int nsegs,int error)1102 jme_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1103 {
1104 	struct jme_dmamap_arg *ctx;
1105 
1106 	if (error != 0)
1107 		return;
1108 
1109 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1110 
1111 	ctx = (struct jme_dmamap_arg *)arg;
1112 	ctx->jme_busaddr = segs[0].ds_addr;
1113 }
1114 
1115 static int
jme_dma_alloc(struct jme_softc * sc)1116 jme_dma_alloc(struct jme_softc *sc)
1117 {
1118 	struct jme_dmamap_arg ctx;
1119 	struct jme_txdesc *txd;
1120 	struct jme_rxdesc *rxd;
1121 	bus_addr_t lowaddr, rx_ring_end, tx_ring_end;
1122 	int error, i;
1123 
1124 	lowaddr = BUS_SPACE_MAXADDR;
1125 	if ((sc->jme_flags & JME_FLAG_DMA32BIT) != 0)
1126 		lowaddr = BUS_SPACE_MAXADDR_32BIT;
1127 
1128 again:
1129 	/* Create parent ring tag. */
1130 	error = bus_dma_tag_create(bus_get_dma_tag(sc->jme_dev),/* parent */
1131 	    1, 0,			/* algnmnt, boundary */
1132 	    lowaddr,			/* lowaddr */
1133 	    BUS_SPACE_MAXADDR,		/* highaddr */
1134 	    NULL, NULL,			/* filter, filterarg */
1135 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1136 	    0,				/* nsegments */
1137 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1138 	    0,				/* flags */
1139 	    NULL, NULL,			/* lockfunc, lockarg */
1140 	    &sc->jme_cdata.jme_ring_tag);
1141 	if (error != 0) {
1142 		device_printf(sc->jme_dev,
1143 		    "could not create parent ring DMA tag.\n");
1144 		goto fail;
1145 	}
1146 	/* Create tag for Tx ring. */
1147 	error = bus_dma_tag_create(sc->jme_cdata.jme_ring_tag,/* parent */
1148 	    JME_TX_RING_ALIGN, 0,	/* algnmnt, boundary */
1149 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1150 	    BUS_SPACE_MAXADDR,		/* highaddr */
1151 	    NULL, NULL,			/* filter, filterarg */
1152 	    JME_TX_RING_SIZE,		/* maxsize */
1153 	    1,				/* nsegments */
1154 	    JME_TX_RING_SIZE,		/* maxsegsize */
1155 	    0,				/* flags */
1156 	    NULL, NULL,			/* lockfunc, lockarg */
1157 	    &sc->jme_cdata.jme_tx_ring_tag);
1158 	if (error != 0) {
1159 		device_printf(sc->jme_dev,
1160 		    "could not allocate Tx ring DMA tag.\n");
1161 		goto fail;
1162 	}
1163 
1164 	/* Create tag for Rx ring. */
1165 	error = bus_dma_tag_create(sc->jme_cdata.jme_ring_tag,/* parent */
1166 	    JME_RX_RING_ALIGN, 0,	/* algnmnt, boundary */
1167 	    lowaddr,			/* lowaddr */
1168 	    BUS_SPACE_MAXADDR,		/* highaddr */
1169 	    NULL, NULL,			/* filter, filterarg */
1170 	    JME_RX_RING_SIZE,		/* maxsize */
1171 	    1,				/* nsegments */
1172 	    JME_RX_RING_SIZE,		/* maxsegsize */
1173 	    0,				/* flags */
1174 	    NULL, NULL,			/* lockfunc, lockarg */
1175 	    &sc->jme_cdata.jme_rx_ring_tag);
1176 	if (error != 0) {
1177 		device_printf(sc->jme_dev,
1178 		    "could not allocate Rx ring DMA tag.\n");
1179 		goto fail;
1180 	}
1181 
1182 	/* Allocate DMA'able memory and load the DMA map for Tx ring. */
1183 	error = bus_dmamem_alloc(sc->jme_cdata.jme_tx_ring_tag,
1184 	    (void **)&sc->jme_rdata.jme_tx_ring,
1185 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1186 	    &sc->jme_cdata.jme_tx_ring_map);
1187 	if (error != 0) {
1188 		device_printf(sc->jme_dev,
1189 		    "could not allocate DMA'able memory for Tx ring.\n");
1190 		goto fail;
1191 	}
1192 
1193 	ctx.jme_busaddr = 0;
1194 	error = bus_dmamap_load(sc->jme_cdata.jme_tx_ring_tag,
1195 	    sc->jme_cdata.jme_tx_ring_map, sc->jme_rdata.jme_tx_ring,
1196 	    JME_TX_RING_SIZE, jme_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
1197 	if (error != 0 || ctx.jme_busaddr == 0) {
1198 		device_printf(sc->jme_dev,
1199 		    "could not load DMA'able memory for Tx ring.\n");
1200 		goto fail;
1201 	}
1202 	sc->jme_rdata.jme_tx_ring_paddr = ctx.jme_busaddr;
1203 
1204 	/* Allocate DMA'able memory and load the DMA map for Rx ring. */
1205 	error = bus_dmamem_alloc(sc->jme_cdata.jme_rx_ring_tag,
1206 	    (void **)&sc->jme_rdata.jme_rx_ring,
1207 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1208 	    &sc->jme_cdata.jme_rx_ring_map);
1209 	if (error != 0) {
1210 		device_printf(sc->jme_dev,
1211 		    "could not allocate DMA'able memory for Rx ring.\n");
1212 		goto fail;
1213 	}
1214 
1215 	ctx.jme_busaddr = 0;
1216 	error = bus_dmamap_load(sc->jme_cdata.jme_rx_ring_tag,
1217 	    sc->jme_cdata.jme_rx_ring_map, sc->jme_rdata.jme_rx_ring,
1218 	    JME_RX_RING_SIZE, jme_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
1219 	if (error != 0 || ctx.jme_busaddr == 0) {
1220 		device_printf(sc->jme_dev,
1221 		    "could not load DMA'able memory for Rx ring.\n");
1222 		goto fail;
1223 	}
1224 	sc->jme_rdata.jme_rx_ring_paddr = ctx.jme_busaddr;
1225 
1226 	if (lowaddr != BUS_SPACE_MAXADDR_32BIT) {
1227 		/* Tx/Rx descriptor queue should reside within 4GB boundary. */
1228 		tx_ring_end = sc->jme_rdata.jme_tx_ring_paddr +
1229 		    JME_TX_RING_SIZE;
1230 		rx_ring_end = sc->jme_rdata.jme_rx_ring_paddr +
1231 		    JME_RX_RING_SIZE;
1232 		if ((JME_ADDR_HI(tx_ring_end) !=
1233 		    JME_ADDR_HI(sc->jme_rdata.jme_tx_ring_paddr)) ||
1234 		    (JME_ADDR_HI(rx_ring_end) !=
1235 		     JME_ADDR_HI(sc->jme_rdata.jme_rx_ring_paddr))) {
1236 			device_printf(sc->jme_dev, "4GB boundary crossed, "
1237 			    "switching to 32bit DMA address mode.\n");
1238 			jme_dma_free(sc);
1239 			/* Limit DMA address space to 32bit and try again. */
1240 			lowaddr = BUS_SPACE_MAXADDR_32BIT;
1241 			goto again;
1242 		}
1243 	}
1244 
1245 	lowaddr = BUS_SPACE_MAXADDR;
1246 	if ((sc->jme_flags & JME_FLAG_DMA32BIT) != 0)
1247 		lowaddr = BUS_SPACE_MAXADDR_32BIT;
1248 	/* Create parent buffer tag. */
1249 	error = bus_dma_tag_create(bus_get_dma_tag(sc->jme_dev),/* parent */
1250 	    1, 0,			/* algnmnt, boundary */
1251 	    lowaddr,			/* lowaddr */
1252 	    BUS_SPACE_MAXADDR,		/* highaddr */
1253 	    NULL, NULL,			/* filter, filterarg */
1254 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1255 	    0,				/* nsegments */
1256 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1257 	    0,				/* flags */
1258 	    NULL, NULL,			/* lockfunc, lockarg */
1259 	    &sc->jme_cdata.jme_buffer_tag);
1260 	if (error != 0) {
1261 		device_printf(sc->jme_dev,
1262 		    "could not create parent buffer DMA tag.\n");
1263 		goto fail;
1264 	}
1265 
1266 	/* Create shadow status block tag. */
1267 	error = bus_dma_tag_create(sc->jme_cdata.jme_buffer_tag,/* parent */
1268 	    JME_SSB_ALIGN, 0,		/* algnmnt, boundary */
1269 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1270 	    BUS_SPACE_MAXADDR,		/* highaddr */
1271 	    NULL, NULL,			/* filter, filterarg */
1272 	    JME_SSB_SIZE,		/* maxsize */
1273 	    1,				/* nsegments */
1274 	    JME_SSB_SIZE,		/* maxsegsize */
1275 	    0,				/* flags */
1276 	    NULL, NULL,			/* lockfunc, lockarg */
1277 	    &sc->jme_cdata.jme_ssb_tag);
1278 	if (error != 0) {
1279 		device_printf(sc->jme_dev,
1280 		    "could not create shared status block DMA tag.\n");
1281 		goto fail;
1282 	}
1283 
1284 	/* Create tag for Tx buffers. */
1285 	error = bus_dma_tag_create(sc->jme_cdata.jme_buffer_tag,/* parent */
1286 	    1, 0,			/* algnmnt, boundary */
1287 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1288 	    BUS_SPACE_MAXADDR,		/* highaddr */
1289 	    NULL, NULL,			/* filter, filterarg */
1290 	    JME_TSO_MAXSIZE,		/* maxsize */
1291 	    JME_MAXTXSEGS,		/* nsegments */
1292 	    JME_TSO_MAXSEGSIZE,		/* maxsegsize */
1293 	    0,				/* flags */
1294 	    NULL, NULL,			/* lockfunc, lockarg */
1295 	    &sc->jme_cdata.jme_tx_tag);
1296 	if (error != 0) {
1297 		device_printf(sc->jme_dev, "could not create Tx DMA tag.\n");
1298 		goto fail;
1299 	}
1300 
1301 	/* Create tag for Rx buffers. */
1302 	error = bus_dma_tag_create(sc->jme_cdata.jme_buffer_tag,/* parent */
1303 	    JME_RX_BUF_ALIGN, 0,	/* algnmnt, boundary */
1304 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1305 	    BUS_SPACE_MAXADDR,		/* highaddr */
1306 	    NULL, NULL,			/* filter, filterarg */
1307 	    MCLBYTES,			/* maxsize */
1308 	    1,				/* nsegments */
1309 	    MCLBYTES,			/* maxsegsize */
1310 	    0,				/* flags */
1311 	    NULL, NULL,			/* lockfunc, lockarg */
1312 	    &sc->jme_cdata.jme_rx_tag);
1313 	if (error != 0) {
1314 		device_printf(sc->jme_dev, "could not create Rx DMA tag.\n");
1315 		goto fail;
1316 	}
1317 
1318 	/*
1319 	 * Allocate DMA'able memory and load the DMA map for shared
1320 	 * status block.
1321 	 */
1322 	error = bus_dmamem_alloc(sc->jme_cdata.jme_ssb_tag,
1323 	    (void **)&sc->jme_rdata.jme_ssb_block,
1324 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1325 	    &sc->jme_cdata.jme_ssb_map);
1326 	if (error != 0) {
1327 		device_printf(sc->jme_dev, "could not allocate DMA'able "
1328 		    "memory for shared status block.\n");
1329 		goto fail;
1330 	}
1331 
1332 	ctx.jme_busaddr = 0;
1333 	error = bus_dmamap_load(sc->jme_cdata.jme_ssb_tag,
1334 	    sc->jme_cdata.jme_ssb_map, sc->jme_rdata.jme_ssb_block,
1335 	    JME_SSB_SIZE, jme_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
1336 	if (error != 0 || ctx.jme_busaddr == 0) {
1337 		device_printf(sc->jme_dev, "could not load DMA'able memory "
1338 		    "for shared status block.\n");
1339 		goto fail;
1340 	}
1341 	sc->jme_rdata.jme_ssb_block_paddr = ctx.jme_busaddr;
1342 
1343 	/* Create DMA maps for Tx buffers. */
1344 	for (i = 0; i < JME_TX_RING_CNT; i++) {
1345 		txd = &sc->jme_cdata.jme_txdesc[i];
1346 		txd->tx_m = NULL;
1347 		txd->tx_dmamap = NULL;
1348 		error = bus_dmamap_create(sc->jme_cdata.jme_tx_tag, 0,
1349 		    &txd->tx_dmamap);
1350 		if (error != 0) {
1351 			device_printf(sc->jme_dev,
1352 			    "could not create Tx dmamap.\n");
1353 			goto fail;
1354 		}
1355 	}
1356 	/* Create DMA maps for Rx buffers. */
1357 	if ((error = bus_dmamap_create(sc->jme_cdata.jme_rx_tag, 0,
1358 	    &sc->jme_cdata.jme_rx_sparemap)) != 0) {
1359 		device_printf(sc->jme_dev,
1360 		    "could not create spare Rx dmamap.\n");
1361 		goto fail;
1362 	}
1363 	for (i = 0; i < JME_RX_RING_CNT; i++) {
1364 		rxd = &sc->jme_cdata.jme_rxdesc[i];
1365 		rxd->rx_m = NULL;
1366 		rxd->rx_dmamap = NULL;
1367 		error = bus_dmamap_create(sc->jme_cdata.jme_rx_tag, 0,
1368 		    &rxd->rx_dmamap);
1369 		if (error != 0) {
1370 			device_printf(sc->jme_dev,
1371 			    "could not create Rx dmamap.\n");
1372 			goto fail;
1373 		}
1374 	}
1375 
1376 fail:
1377 	return (error);
1378 }
1379 
1380 static void
jme_dma_free(struct jme_softc * sc)1381 jme_dma_free(struct jme_softc *sc)
1382 {
1383 	struct jme_txdesc *txd;
1384 	struct jme_rxdesc *rxd;
1385 	int i;
1386 
1387 	/* Tx ring */
1388 	if (sc->jme_cdata.jme_tx_ring_tag != NULL) {
1389 		if (sc->jme_rdata.jme_tx_ring_paddr)
1390 			bus_dmamap_unload(sc->jme_cdata.jme_tx_ring_tag,
1391 			    sc->jme_cdata.jme_tx_ring_map);
1392 		if (sc->jme_rdata.jme_tx_ring)
1393 			bus_dmamem_free(sc->jme_cdata.jme_tx_ring_tag,
1394 			    sc->jme_rdata.jme_tx_ring,
1395 			    sc->jme_cdata.jme_tx_ring_map);
1396 		sc->jme_rdata.jme_tx_ring = NULL;
1397 		sc->jme_rdata.jme_tx_ring_paddr = 0;
1398 		bus_dma_tag_destroy(sc->jme_cdata.jme_tx_ring_tag);
1399 		sc->jme_cdata.jme_tx_ring_tag = NULL;
1400 	}
1401 	/* Rx ring */
1402 	if (sc->jme_cdata.jme_rx_ring_tag != NULL) {
1403 		if (sc->jme_rdata.jme_rx_ring_paddr)
1404 			bus_dmamap_unload(sc->jme_cdata.jme_rx_ring_tag,
1405 			    sc->jme_cdata.jme_rx_ring_map);
1406 		if (sc->jme_rdata.jme_rx_ring)
1407 			bus_dmamem_free(sc->jme_cdata.jme_rx_ring_tag,
1408 			    sc->jme_rdata.jme_rx_ring,
1409 			    sc->jme_cdata.jme_rx_ring_map);
1410 		sc->jme_rdata.jme_rx_ring = NULL;
1411 		sc->jme_rdata.jme_rx_ring_paddr = 0;
1412 		bus_dma_tag_destroy(sc->jme_cdata.jme_rx_ring_tag);
1413 		sc->jme_cdata.jme_rx_ring_tag = NULL;
1414 	}
1415 	/* Tx buffers */
1416 	if (sc->jme_cdata.jme_tx_tag != NULL) {
1417 		for (i = 0; i < JME_TX_RING_CNT; i++) {
1418 			txd = &sc->jme_cdata.jme_txdesc[i];
1419 			if (txd->tx_dmamap != NULL) {
1420 				bus_dmamap_destroy(sc->jme_cdata.jme_tx_tag,
1421 				    txd->tx_dmamap);
1422 				txd->tx_dmamap = NULL;
1423 			}
1424 		}
1425 		bus_dma_tag_destroy(sc->jme_cdata.jme_tx_tag);
1426 		sc->jme_cdata.jme_tx_tag = NULL;
1427 	}
1428 	/* Rx buffers */
1429 	if (sc->jme_cdata.jme_rx_tag != NULL) {
1430 		for (i = 0; i < JME_RX_RING_CNT; i++) {
1431 			rxd = &sc->jme_cdata.jme_rxdesc[i];
1432 			if (rxd->rx_dmamap != NULL) {
1433 				bus_dmamap_destroy(sc->jme_cdata.jme_rx_tag,
1434 				    rxd->rx_dmamap);
1435 				rxd->rx_dmamap = NULL;
1436 			}
1437 		}
1438 		if (sc->jme_cdata.jme_rx_sparemap != NULL) {
1439 			bus_dmamap_destroy(sc->jme_cdata.jme_rx_tag,
1440 			    sc->jme_cdata.jme_rx_sparemap);
1441 			sc->jme_cdata.jme_rx_sparemap = NULL;
1442 		}
1443 		bus_dma_tag_destroy(sc->jme_cdata.jme_rx_tag);
1444 		sc->jme_cdata.jme_rx_tag = NULL;
1445 	}
1446 
1447 	/* Shared status block. */
1448 	if (sc->jme_cdata.jme_ssb_tag != NULL) {
1449 		if (sc->jme_rdata.jme_ssb_block_paddr)
1450 			bus_dmamap_unload(sc->jme_cdata.jme_ssb_tag,
1451 			    sc->jme_cdata.jme_ssb_map);
1452 		if (sc->jme_rdata.jme_ssb_block)
1453 			bus_dmamem_free(sc->jme_cdata.jme_ssb_tag,
1454 			    sc->jme_rdata.jme_ssb_block,
1455 			    sc->jme_cdata.jme_ssb_map);
1456 		sc->jme_rdata.jme_ssb_block = NULL;
1457 		sc->jme_rdata.jme_ssb_block_paddr = 0;
1458 		bus_dma_tag_destroy(sc->jme_cdata.jme_ssb_tag);
1459 		sc->jme_cdata.jme_ssb_tag = NULL;
1460 	}
1461 
1462 	if (sc->jme_cdata.jme_buffer_tag != NULL) {
1463 		bus_dma_tag_destroy(sc->jme_cdata.jme_buffer_tag);
1464 		sc->jme_cdata.jme_buffer_tag = NULL;
1465 	}
1466 	if (sc->jme_cdata.jme_ring_tag != NULL) {
1467 		bus_dma_tag_destroy(sc->jme_cdata.jme_ring_tag);
1468 		sc->jme_cdata.jme_ring_tag = NULL;
1469 	}
1470 }
1471 
1472 /*
1473  *	Make sure the interface is stopped at reboot time.
1474  */
1475 static int
jme_shutdown(device_t dev)1476 jme_shutdown(device_t dev)
1477 {
1478 
1479 	return (jme_suspend(dev));
1480 }
1481 
1482 /*
1483  * Unlike other ethernet controllers, JMC250 requires
1484  * explicit resetting link speed to 10/100Mbps as gigabit
1485  * link will cunsume more power than 375mA.
1486  * Note, we reset the link speed to 10/100Mbps with
1487  * auto-negotiation but we don't know whether that operation
1488  * would succeed or not as we have no control after powering
1489  * off. If the renegotiation fail WOL may not work. Running
1490  * at 1Gbps draws more power than 375mA at 3.3V which is
1491  * specified in PCI specification and that would result in
1492  * complete shutdowning power to ethernet controller.
1493  *
1494  * TODO
1495  *  Save current negotiated media speed/duplex/flow-control
1496  *  to softc and restore the same link again after resuming.
1497  *  PHY handling such as power down/resetting to 100Mbps
1498  *  may be better handled in suspend method in phy driver.
1499  */
1500 static void
jme_setlinkspeed(struct jme_softc * sc)1501 jme_setlinkspeed(struct jme_softc *sc)
1502 {
1503 	struct mii_data *mii;
1504 	int aneg, i;
1505 
1506 	JME_LOCK_ASSERT(sc);
1507 
1508 	mii = device_get_softc(sc->jme_miibus);
1509 	mii_pollstat(mii);
1510 	aneg = 0;
1511 	if ((mii->mii_media_status & IFM_AVALID) != 0) {
1512 		switch IFM_SUBTYPE(mii->mii_media_active) {
1513 		case IFM_10_T:
1514 		case IFM_100_TX:
1515 			return;
1516 		case IFM_1000_T:
1517 			aneg++;
1518 		default:
1519 			break;
1520 		}
1521 	}
1522 	jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_100T2CR, 0);
1523 	jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_ANAR,
1524 	    ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA);
1525 	jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_BMCR,
1526 	    BMCR_AUTOEN | BMCR_STARTNEG);
1527 	DELAY(1000);
1528 	if (aneg != 0) {
1529 		/* Poll link state until jme(4) get a 10/100 link. */
1530 		for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
1531 			mii_pollstat(mii);
1532 			if ((mii->mii_media_status & IFM_AVALID) != 0) {
1533 				switch (IFM_SUBTYPE(mii->mii_media_active)) {
1534 				case IFM_10_T:
1535 				case IFM_100_TX:
1536 					jme_mac_config(sc);
1537 					return;
1538 				default:
1539 					break;
1540 				}
1541 			}
1542 			JME_UNLOCK(sc);
1543 			pause("jmelnk", hz);
1544 			JME_LOCK(sc);
1545 		}
1546 		if (i == MII_ANEGTICKS_GIGE)
1547 			device_printf(sc->jme_dev, "establishing link failed, "
1548 			    "WOL may not work!");
1549 	}
1550 	/*
1551 	 * No link, force MAC to have 100Mbps, full-duplex link.
1552 	 * This is the last resort and may/may not work.
1553 	 */
1554 	mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
1555 	mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
1556 	jme_mac_config(sc);
1557 }
1558 
1559 static void
jme_setwol(struct jme_softc * sc)1560 jme_setwol(struct jme_softc *sc)
1561 {
1562 	if_t ifp;
1563 	uint32_t gpr, pmcs;
1564 
1565 	JME_LOCK_ASSERT(sc);
1566 
1567 	if (!pci_has_pm(sc->jme_dev)) {
1568 		/* Remove Tx MAC/offload clock to save more power. */
1569 		if ((sc->jme_flags & JME_FLAG_TXCLK) != 0)
1570 			CSR_WRITE_4(sc, JME_GHC, CSR_READ_4(sc, JME_GHC) &
1571 			    ~(GHC_TX_OFFLD_CLK_100 | GHC_TX_MAC_CLK_100 |
1572 			    GHC_TX_OFFLD_CLK_1000 | GHC_TX_MAC_CLK_1000));
1573 		if ((sc->jme_flags & JME_FLAG_RXCLK) != 0)
1574 			CSR_WRITE_4(sc, JME_GPREG1,
1575 			    CSR_READ_4(sc, JME_GPREG1) | GPREG1_RX_MAC_CLK_DIS);
1576 		/* No PME capability, PHY power down. */
1577 		jme_phy_down(sc);
1578 		return;
1579 	}
1580 
1581 	ifp = sc->jme_ifp;
1582 	gpr = CSR_READ_4(sc, JME_GPREG0) & ~GPREG0_PME_ENB;
1583 	pmcs = CSR_READ_4(sc, JME_PMCS);
1584 	pmcs &= ~PMCS_WOL_ENB_MASK;
1585 	if ((if_getcapenable(ifp) & IFCAP_WOL_MAGIC) != 0) {
1586 		pmcs |= PMCS_MAGIC_FRAME | PMCS_MAGIC_FRAME_ENB;
1587 		/* Enable PME message. */
1588 		gpr |= GPREG0_PME_ENB;
1589 		/* For gigabit controllers, reset link speed to 10/100. */
1590 		if ((sc->jme_flags & JME_FLAG_FASTETH) == 0)
1591 			jme_setlinkspeed(sc);
1592 	}
1593 
1594 	CSR_WRITE_4(sc, JME_PMCS, pmcs);
1595 	CSR_WRITE_4(sc, JME_GPREG0, gpr);
1596 	/* Remove Tx MAC/offload clock to save more power. */
1597 	if ((sc->jme_flags & JME_FLAG_TXCLK) != 0)
1598 		CSR_WRITE_4(sc, JME_GHC, CSR_READ_4(sc, JME_GHC) &
1599 		    ~(GHC_TX_OFFLD_CLK_100 | GHC_TX_MAC_CLK_100 |
1600 		    GHC_TX_OFFLD_CLK_1000 | GHC_TX_MAC_CLK_1000));
1601 	/* Request PME. */
1602 	if ((if_getcapenable(ifp) & IFCAP_WOL) != 0)
1603 		pci_enable_pme(sc->jme_dev);
1604 	if ((if_getcapenable(ifp) & IFCAP_WOL) == 0) {
1605 		/* No WOL, PHY power down. */
1606 		jme_phy_down(sc);
1607 	}
1608 }
1609 
1610 static int
jme_suspend(device_t dev)1611 jme_suspend(device_t dev)
1612 {
1613 	struct jme_softc *sc;
1614 
1615 	sc = device_get_softc(dev);
1616 
1617 	JME_LOCK(sc);
1618 	jme_stop(sc);
1619 	jme_setwol(sc);
1620 	JME_UNLOCK(sc);
1621 
1622 	return (0);
1623 }
1624 
1625 static int
jme_resume(device_t dev)1626 jme_resume(device_t dev)
1627 {
1628 	struct jme_softc *sc;
1629 	if_t ifp;
1630 
1631 	sc = device_get_softc(dev);
1632 
1633 	/* Wakeup PHY. */
1634 	JME_LOCK(sc);
1635 	jme_phy_up(sc);
1636 	ifp = sc->jme_ifp;
1637 	if ((if_getflags(ifp) & IFF_UP) != 0) {
1638 		if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1639 		jme_init_locked(sc);
1640 	}
1641 
1642 	JME_UNLOCK(sc);
1643 
1644 	return (0);
1645 }
1646 
1647 static int
jme_encap(struct jme_softc * sc,struct mbuf ** m_head)1648 jme_encap(struct jme_softc *sc, struct mbuf **m_head)
1649 {
1650 	struct jme_txdesc *txd;
1651 	struct jme_desc *desc;
1652 	struct mbuf *m;
1653 	bus_dma_segment_t txsegs[JME_MAXTXSEGS];
1654 	int error, i, nsegs, prod;
1655 	uint32_t cflags, tsosegsz;
1656 
1657 	JME_LOCK_ASSERT(sc);
1658 
1659 	M_ASSERTPKTHDR((*m_head));
1660 
1661 	if (((*m_head)->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1662 		/*
1663 		 * Due to the adherence to NDIS specification JMC250
1664 		 * assumes upper stack computed TCP pseudo checksum
1665 		 * without including payload length. This breaks
1666 		 * checksum offload for TSO case so recompute TCP
1667 		 * pseudo checksum for JMC250. Hopefully this wouldn't
1668 		 * be much burden on modern CPUs.
1669 		 */
1670 		struct ether_header *eh;
1671 		struct ip *ip;
1672 		struct tcphdr *tcp;
1673 		uint32_t ip_off, poff;
1674 
1675 		if (M_WRITABLE(*m_head) == 0) {
1676 			/* Get a writable copy. */
1677 			m = m_dup(*m_head, M_NOWAIT);
1678 			m_freem(*m_head);
1679 			if (m == NULL) {
1680 				*m_head = NULL;
1681 				return (ENOBUFS);
1682 			}
1683 			*m_head = m;
1684 		}
1685 		ip_off = sizeof(struct ether_header);
1686 		m = m_pullup(*m_head, ip_off);
1687 		if (m == NULL) {
1688 			*m_head = NULL;
1689 			return (ENOBUFS);
1690 		}
1691 		eh = mtod(m, struct ether_header *);
1692 		/* Check the existence of VLAN tag. */
1693 		if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
1694 			ip_off = sizeof(struct ether_vlan_header);
1695 			m = m_pullup(m, ip_off);
1696 			if (m == NULL) {
1697 				*m_head = NULL;
1698 				return (ENOBUFS);
1699 			}
1700 		}
1701 		m = m_pullup(m, ip_off + sizeof(struct ip));
1702 		if (m == NULL) {
1703 			*m_head = NULL;
1704 			return (ENOBUFS);
1705 		}
1706 		ip = (struct ip *)(mtod(m, char *) + ip_off);
1707 		poff = ip_off + (ip->ip_hl << 2);
1708 		m = m_pullup(m, poff + sizeof(struct tcphdr));
1709 		if (m == NULL) {
1710 			*m_head = NULL;
1711 			return (ENOBUFS);
1712 		}
1713 		/*
1714 		 * Reset IP checksum and recompute TCP pseudo
1715 		 * checksum that NDIS specification requires.
1716 		 */
1717 		ip = (struct ip *)(mtod(m, char *) + ip_off);
1718 		tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1719 		ip->ip_sum = 0;
1720 		if (poff + (tcp->th_off << 2) == m->m_pkthdr.len) {
1721 			tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
1722 			    ip->ip_dst.s_addr,
1723 			    htons((tcp->th_off << 2) + IPPROTO_TCP));
1724 			/* No need to TSO, force IP checksum offload. */
1725 			(*m_head)->m_pkthdr.csum_flags &= ~CSUM_TSO;
1726 			(*m_head)->m_pkthdr.csum_flags |= CSUM_IP;
1727 		} else
1728 			tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
1729 			    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
1730 		*m_head = m;
1731 	}
1732 
1733 	prod = sc->jme_cdata.jme_tx_prod;
1734 	txd = &sc->jme_cdata.jme_txdesc[prod];
1735 
1736 	error = bus_dmamap_load_mbuf_sg(sc->jme_cdata.jme_tx_tag,
1737 	    txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1738 	if (error == EFBIG) {
1739 		m = m_collapse(*m_head, M_NOWAIT, JME_MAXTXSEGS);
1740 		if (m == NULL) {
1741 			m_freem(*m_head);
1742 			*m_head = NULL;
1743 			return (ENOMEM);
1744 		}
1745 		*m_head = m;
1746 		error = bus_dmamap_load_mbuf_sg(sc->jme_cdata.jme_tx_tag,
1747 		    txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1748 		if (error != 0) {
1749 			m_freem(*m_head);
1750 			*m_head = NULL;
1751 			return (error);
1752 		}
1753 	} else if (error != 0)
1754 		return (error);
1755 	if (nsegs == 0) {
1756 		m_freem(*m_head);
1757 		*m_head = NULL;
1758 		return (EIO);
1759 	}
1760 
1761 	/*
1762 	 * Check descriptor overrun. Leave one free descriptor.
1763 	 * Since we always use 64bit address mode for transmitting,
1764 	 * each Tx request requires one more dummy descriptor.
1765 	 */
1766 	if (sc->jme_cdata.jme_tx_cnt + nsegs + 1 > JME_TX_RING_CNT - 1) {
1767 		bus_dmamap_unload(sc->jme_cdata.jme_tx_tag, txd->tx_dmamap);
1768 		return (ENOBUFS);
1769 	}
1770 
1771 	m = *m_head;
1772 	cflags = 0;
1773 	tsosegsz = 0;
1774 	/* Configure checksum offload and TSO. */
1775 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1776 		tsosegsz = (uint32_t)m->m_pkthdr.tso_segsz <<
1777 		    JME_TD_MSS_SHIFT;
1778 		cflags |= JME_TD_TSO;
1779 	} else {
1780 		if ((m->m_pkthdr.csum_flags & CSUM_IP) != 0)
1781 			cflags |= JME_TD_IPCSUM;
1782 		if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
1783 			cflags |= JME_TD_TCPCSUM;
1784 		if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
1785 			cflags |= JME_TD_UDPCSUM;
1786 	}
1787 	/* Configure VLAN. */
1788 	if ((m->m_flags & M_VLANTAG) != 0) {
1789 		cflags |= (m->m_pkthdr.ether_vtag & JME_TD_VLAN_MASK);
1790 		cflags |= JME_TD_VLAN_TAG;
1791 	}
1792 
1793 	desc = &sc->jme_rdata.jme_tx_ring[prod];
1794 	desc->flags = htole32(cflags);
1795 	desc->buflen = htole32(tsosegsz);
1796 	desc->addr_hi = htole32(m->m_pkthdr.len);
1797 	desc->addr_lo = 0;
1798 	sc->jme_cdata.jme_tx_cnt++;
1799 	JME_DESC_INC(prod, JME_TX_RING_CNT);
1800 	for (i = 0; i < nsegs; i++) {
1801 		desc = &sc->jme_rdata.jme_tx_ring[prod];
1802 		desc->flags = htole32(JME_TD_OWN | JME_TD_64BIT);
1803 		desc->buflen = htole32(txsegs[i].ds_len);
1804 		desc->addr_hi = htole32(JME_ADDR_HI(txsegs[i].ds_addr));
1805 		desc->addr_lo = htole32(JME_ADDR_LO(txsegs[i].ds_addr));
1806 		sc->jme_cdata.jme_tx_cnt++;
1807 		JME_DESC_INC(prod, JME_TX_RING_CNT);
1808 	}
1809 
1810 	/* Update producer index. */
1811 	sc->jme_cdata.jme_tx_prod = prod;
1812 	/*
1813 	 * Finally request interrupt and give the first descriptor
1814 	 * owenership to hardware.
1815 	 */
1816 	desc = txd->tx_desc;
1817 	desc->flags |= htole32(JME_TD_OWN | JME_TD_INTR);
1818 
1819 	txd->tx_m = m;
1820 	txd->tx_ndesc = nsegs + 1;
1821 
1822 	/* Sync descriptors. */
1823 	bus_dmamap_sync(sc->jme_cdata.jme_tx_tag, txd->tx_dmamap,
1824 	    BUS_DMASYNC_PREWRITE);
1825 	bus_dmamap_sync(sc->jme_cdata.jme_tx_ring_tag,
1826 	    sc->jme_cdata.jme_tx_ring_map,
1827 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1828 
1829 	return (0);
1830 }
1831 
1832 static void
jme_start(if_t ifp)1833 jme_start(if_t ifp)
1834 {
1835         struct jme_softc *sc;
1836 
1837 	sc = if_getsoftc(ifp);
1838 	JME_LOCK(sc);
1839 	jme_start_locked(ifp);
1840 	JME_UNLOCK(sc);
1841 }
1842 
1843 static void
jme_start_locked(if_t ifp)1844 jme_start_locked(if_t ifp)
1845 {
1846         struct jme_softc *sc;
1847         struct mbuf *m_head;
1848 	int enq;
1849 
1850 	sc = if_getsoftc(ifp);
1851 
1852 	JME_LOCK_ASSERT(sc);
1853 
1854 	if (sc->jme_cdata.jme_tx_cnt >= JME_TX_DESC_HIWAT)
1855 		jme_txeof(sc);
1856 
1857 	if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1858 	    IFF_DRV_RUNNING || (sc->jme_flags & JME_FLAG_LINK) == 0)
1859 		return;
1860 
1861 	for (enq = 0; !if_sendq_empty(ifp); ) {
1862 		m_head = if_dequeue(ifp);
1863 		if (m_head == NULL)
1864 			break;
1865 		/*
1866 		 * Pack the data into the transmit ring. If we
1867 		 * don't have room, set the OACTIVE flag and wait
1868 		 * for the NIC to drain the ring.
1869 		 */
1870 		if (jme_encap(sc, &m_head)) {
1871 			if (m_head == NULL)
1872 				break;
1873 			if_sendq_prepend(ifp, m_head);
1874 			if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
1875 			break;
1876 		}
1877 
1878 		enq++;
1879 		/*
1880 		 * If there's a BPF listener, bounce a copy of this frame
1881 		 * to him.
1882 		 */
1883 		ETHER_BPF_MTAP(ifp, m_head);
1884 	}
1885 
1886 	if (enq > 0) {
1887 		/*
1888 		 * Reading TXCSR takes very long time under heavy load
1889 		 * so cache TXCSR value and writes the ORed value with
1890 		 * the kick command to the TXCSR. This saves one register
1891 		 * access cycle.
1892 		 */
1893 		CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr | TXCSR_TX_ENB |
1894 		    TXCSR_TXQ_N_START(TXCSR_TXQ0));
1895 		/* Set a timeout in case the chip goes out to lunch. */
1896 		sc->jme_watchdog_timer = JME_TX_TIMEOUT;
1897 	}
1898 }
1899 
1900 static void
jme_watchdog(struct jme_softc * sc)1901 jme_watchdog(struct jme_softc *sc)
1902 {
1903 	if_t ifp;
1904 
1905 	JME_LOCK_ASSERT(sc);
1906 
1907 	if (sc->jme_watchdog_timer == 0 || --sc->jme_watchdog_timer)
1908 		return;
1909 
1910 	ifp = sc->jme_ifp;
1911 	if ((sc->jme_flags & JME_FLAG_LINK) == 0) {
1912 		if_printf(sc->jme_ifp, "watchdog timeout (missed link)\n");
1913 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1914 		if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1915 		jme_init_locked(sc);
1916 		return;
1917 	}
1918 	jme_txeof(sc);
1919 	if (sc->jme_cdata.jme_tx_cnt == 0) {
1920 		if_printf(sc->jme_ifp,
1921 		    "watchdog timeout (missed Tx interrupts) -- recovering\n");
1922 		if (!if_sendq_empty(ifp))
1923 			jme_start_locked(ifp);
1924 		return;
1925 	}
1926 
1927 	if_printf(sc->jme_ifp, "watchdog timeout\n");
1928 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1929 	if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1930 	jme_init_locked(sc);
1931 	if (!if_sendq_empty(ifp))
1932 		jme_start_locked(ifp);
1933 }
1934 
1935 static int
jme_ioctl(if_t ifp,u_long cmd,caddr_t data)1936 jme_ioctl(if_t ifp, u_long cmd, caddr_t data)
1937 {
1938 	struct jme_softc *sc;
1939 	struct ifreq *ifr;
1940 	struct mii_data *mii;
1941 	uint32_t reg;
1942 	int error, mask;
1943 
1944 	sc = if_getsoftc(ifp);
1945 	ifr = (struct ifreq *)data;
1946 	error = 0;
1947 	switch (cmd) {
1948 	case SIOCSIFMTU:
1949 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > JME_JUMBO_MTU ||
1950 		    ((sc->jme_flags & JME_FLAG_NOJUMBO) != 0 &&
1951 		    ifr->ifr_mtu > JME_MAX_MTU)) {
1952 			error = EINVAL;
1953 			break;
1954 		}
1955 
1956 		if (if_getmtu(ifp) != ifr->ifr_mtu) {
1957 			/*
1958 			 * No special configuration is required when interface
1959 			 * MTU is changed but availability of TSO/Tx checksum
1960 			 * offload should be chcked against new MTU size as
1961 			 * FIFO size is just 2K.
1962 			 */
1963 			JME_LOCK(sc);
1964 			if (ifr->ifr_mtu >= JME_TX_FIFO_SIZE) {
1965 				if_setcapenablebit(ifp, 0,
1966 				    IFCAP_TXCSUM | IFCAP_TSO4);
1967 				if_sethwassistbits(ifp, 0,
1968 				    JME_CSUM_FEATURES | CSUM_TSO);
1969 				VLAN_CAPABILITIES(ifp);
1970 			}
1971 			if_setmtu(ifp, ifr->ifr_mtu);
1972 			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
1973 				if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1974 				jme_init_locked(sc);
1975 			}
1976 			JME_UNLOCK(sc);
1977 		}
1978 		break;
1979 	case SIOCSIFFLAGS:
1980 		JME_LOCK(sc);
1981 		if ((if_getflags(ifp) & IFF_UP) != 0) {
1982 			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
1983 				if (((if_getflags(ifp) ^ sc->jme_if_flags)
1984 				    & (IFF_PROMISC | IFF_ALLMULTI)) != 0)
1985 					jme_set_filter(sc);
1986 			} else {
1987 				if ((sc->jme_flags & JME_FLAG_DETACH) == 0)
1988 					jme_init_locked(sc);
1989 			}
1990 		} else {
1991 			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
1992 				jme_stop(sc);
1993 		}
1994 		sc->jme_if_flags = if_getflags(ifp);
1995 		JME_UNLOCK(sc);
1996 		break;
1997 	case SIOCADDMULTI:
1998 	case SIOCDELMULTI:
1999 		JME_LOCK(sc);
2000 		if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
2001 			jme_set_filter(sc);
2002 		JME_UNLOCK(sc);
2003 		break;
2004 	case SIOCSIFMEDIA:
2005 	case SIOCGIFMEDIA:
2006 		mii = device_get_softc(sc->jme_miibus);
2007 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
2008 		break;
2009 	case SIOCSIFCAP:
2010 		JME_LOCK(sc);
2011 		mask = ifr->ifr_reqcap ^ if_getcapenable(ifp);
2012 		if ((mask & IFCAP_TXCSUM) != 0 &&
2013 		    if_getmtu(ifp) < JME_TX_FIFO_SIZE) {
2014 			if ((IFCAP_TXCSUM & if_getcapabilities(ifp)) != 0) {
2015 				if_togglecapenable(ifp, IFCAP_TXCSUM);
2016 				if ((IFCAP_TXCSUM & if_getcapenable(ifp)) != 0)
2017 					if_sethwassistbits(ifp, JME_CSUM_FEATURES, 0);
2018 				else
2019 					if_sethwassistbits(ifp, 0, JME_CSUM_FEATURES);
2020 			}
2021 		}
2022 		if ((mask & IFCAP_RXCSUM) != 0 &&
2023 		    (IFCAP_RXCSUM & if_getcapabilities(ifp)) != 0) {
2024 			if_togglecapenable(ifp, IFCAP_RXCSUM);
2025 			reg = CSR_READ_4(sc, JME_RXMAC);
2026 			reg &= ~RXMAC_CSUM_ENB;
2027 			if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0)
2028 				reg |= RXMAC_CSUM_ENB;
2029 			CSR_WRITE_4(sc, JME_RXMAC, reg);
2030 		}
2031 		if ((mask & IFCAP_TSO4) != 0 &&
2032 		    if_getmtu(ifp) < JME_TX_FIFO_SIZE) {
2033 			if ((IFCAP_TSO4 & if_getcapabilities(ifp)) != 0) {
2034 				if_togglecapenable(ifp, IFCAP_TSO4);
2035 				if ((IFCAP_TSO4 & if_getcapenable(ifp)) != 0)
2036 					if_sethwassistbits(ifp, CSUM_TSO, 0);
2037 				else
2038 					if_sethwassistbits(ifp, 0, CSUM_TSO);
2039 			}
2040 		}
2041 		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
2042 		    (IFCAP_WOL_MAGIC & if_getcapabilities(ifp)) != 0)
2043 			if_togglecapenable(ifp, IFCAP_WOL_MAGIC);
2044 		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
2045 		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWCSUM) != 0)
2046 			if_togglecapenable(ifp, IFCAP_VLAN_HWCSUM);
2047 		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
2048 		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWTSO) != 0)
2049 			if_togglecapenable(ifp, IFCAP_VLAN_HWTSO);
2050 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
2051 		    (IFCAP_VLAN_HWTAGGING & if_getcapabilities(ifp)) != 0) {
2052 			if_togglecapenable(ifp, IFCAP_VLAN_HWTAGGING);
2053 			jme_set_vlan(sc);
2054 		}
2055 		JME_UNLOCK(sc);
2056 		VLAN_CAPABILITIES(ifp);
2057 		break;
2058 	default:
2059 		error = ether_ioctl(ifp, cmd, data);
2060 		break;
2061 	}
2062 
2063 	return (error);
2064 }
2065 
2066 static void
jme_mac_config(struct jme_softc * sc)2067 jme_mac_config(struct jme_softc *sc)
2068 {
2069 	struct mii_data *mii;
2070 	uint32_t ghc, gpreg, rxmac, txmac, txpause;
2071 	uint32_t txclk;
2072 
2073 	JME_LOCK_ASSERT(sc);
2074 
2075 	mii = device_get_softc(sc->jme_miibus);
2076 
2077 	CSR_WRITE_4(sc, JME_GHC, GHC_RESET);
2078 	DELAY(10);
2079 	CSR_WRITE_4(sc, JME_GHC, 0);
2080 	ghc = 0;
2081 	txclk = 0;
2082 	rxmac = CSR_READ_4(sc, JME_RXMAC);
2083 	rxmac &= ~RXMAC_FC_ENB;
2084 	txmac = CSR_READ_4(sc, JME_TXMAC);
2085 	txmac &= ~(TXMAC_CARRIER_EXT | TXMAC_FRAME_BURST);
2086 	txpause = CSR_READ_4(sc, JME_TXPFC);
2087 	txpause &= ~TXPFC_PAUSE_ENB;
2088 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
2089 		ghc |= GHC_FULL_DUPLEX;
2090 		rxmac &= ~RXMAC_COLL_DET_ENB;
2091 		txmac &= ~(TXMAC_COLL_ENB | TXMAC_CARRIER_SENSE |
2092 		    TXMAC_BACKOFF | TXMAC_CARRIER_EXT |
2093 		    TXMAC_FRAME_BURST);
2094 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
2095 			txpause |= TXPFC_PAUSE_ENB;
2096 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
2097 			rxmac |= RXMAC_FC_ENB;
2098 		/* Disable retry transmit timer/retry limit. */
2099 		CSR_WRITE_4(sc, JME_TXTRHD, CSR_READ_4(sc, JME_TXTRHD) &
2100 		    ~(TXTRHD_RT_PERIOD_ENB | TXTRHD_RT_LIMIT_ENB));
2101 	} else {
2102 		rxmac |= RXMAC_COLL_DET_ENB;
2103 		txmac |= TXMAC_COLL_ENB | TXMAC_CARRIER_SENSE | TXMAC_BACKOFF;
2104 		/* Enable retry transmit timer/retry limit. */
2105 		CSR_WRITE_4(sc, JME_TXTRHD, CSR_READ_4(sc, JME_TXTRHD) |
2106 		    TXTRHD_RT_PERIOD_ENB | TXTRHD_RT_LIMIT_ENB);
2107 	}
2108 		/* Reprogram Tx/Rx MACs with resolved speed/duplex. */
2109 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
2110 	case IFM_10_T:
2111 		ghc |= GHC_SPEED_10;
2112 		txclk |= GHC_TX_OFFLD_CLK_100 | GHC_TX_MAC_CLK_100;
2113 		break;
2114 	case IFM_100_TX:
2115 		ghc |= GHC_SPEED_100;
2116 		txclk |= GHC_TX_OFFLD_CLK_100 | GHC_TX_MAC_CLK_100;
2117 		break;
2118 	case IFM_1000_T:
2119 		if ((sc->jme_flags & JME_FLAG_FASTETH) != 0)
2120 			break;
2121 		ghc |= GHC_SPEED_1000;
2122 		txclk |= GHC_TX_OFFLD_CLK_1000 | GHC_TX_MAC_CLK_1000;
2123 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) == 0)
2124 			txmac |= TXMAC_CARRIER_EXT | TXMAC_FRAME_BURST;
2125 		break;
2126 	default:
2127 		break;
2128 	}
2129 	if (sc->jme_rev == DEVICEID_JMC250 &&
2130 	    sc->jme_chip_rev == DEVICEREVID_JMC250_A2) {
2131 		/*
2132 		 * Workaround occasional packet loss issue of JMC250 A2
2133 		 * when it runs on half-duplex media.
2134 		 */
2135 		gpreg = CSR_READ_4(sc, JME_GPREG1);
2136 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0)
2137 			gpreg &= ~GPREG1_HDPX_FIX;
2138 		else
2139 			gpreg |= GPREG1_HDPX_FIX;
2140 		CSR_WRITE_4(sc, JME_GPREG1, gpreg);
2141 		/* Workaround CRC errors at 100Mbps on JMC250 A2. */
2142 		if (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX) {
2143 			/* Extend interface FIFO depth. */
2144 			jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr,
2145 			    0x1B, 0x0000);
2146 		} else {
2147 			/* Select default interface FIFO depth. */
2148 			jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr,
2149 			    0x1B, 0x0004);
2150 		}
2151 	}
2152 	if ((sc->jme_flags & JME_FLAG_TXCLK) != 0)
2153 		ghc |= txclk;
2154 	CSR_WRITE_4(sc, JME_GHC, ghc);
2155 	CSR_WRITE_4(sc, JME_RXMAC, rxmac);
2156 	CSR_WRITE_4(sc, JME_TXMAC, txmac);
2157 	CSR_WRITE_4(sc, JME_TXPFC, txpause);
2158 }
2159 
2160 static void
jme_link_task(void * arg,int pending)2161 jme_link_task(void *arg, int pending)
2162 {
2163 	struct jme_softc *sc;
2164 	struct mii_data *mii;
2165 	if_t ifp;
2166 	struct jme_txdesc *txd;
2167 	bus_addr_t paddr;
2168 	int i;
2169 
2170 	sc = (struct jme_softc *)arg;
2171 
2172 	JME_LOCK(sc);
2173 	mii = device_get_softc(sc->jme_miibus);
2174 	ifp = sc->jme_ifp;
2175 	if (mii == NULL || ifp == NULL ||
2176 	    (if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) {
2177 		JME_UNLOCK(sc);
2178 		return;
2179 	}
2180 
2181 	sc->jme_flags &= ~JME_FLAG_LINK;
2182 	if ((mii->mii_media_status & IFM_AVALID) != 0) {
2183 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
2184 		case IFM_10_T:
2185 		case IFM_100_TX:
2186 			sc->jme_flags |= JME_FLAG_LINK;
2187 			break;
2188 		case IFM_1000_T:
2189 			if ((sc->jme_flags & JME_FLAG_FASTETH) != 0)
2190 				break;
2191 			sc->jme_flags |= JME_FLAG_LINK;
2192 			break;
2193 		default:
2194 			break;
2195 		}
2196 	}
2197 
2198 	/*
2199 	 * Disabling Rx/Tx MACs have a side-effect of resetting
2200 	 * JME_TXNDA/JME_RXNDA register to the first address of
2201 	 * Tx/Rx descriptor address. So driver should reset its
2202 	 * internal procucer/consumer pointer and reclaim any
2203 	 * allocated resources. Note, just saving the value of
2204 	 * JME_TXNDA and JME_RXNDA registers before stopping MAC
2205 	 * and restoring JME_TXNDA/JME_RXNDA register is not
2206 	 * sufficient to make sure correct MAC state because
2207 	 * stopping MAC operation can take a while and hardware
2208 	 * might have updated JME_TXNDA/JME_RXNDA registers
2209 	 * during the stop operation.
2210 	 */
2211 	/* Block execution of task. */
2212 	taskqueue_block(sc->jme_tq);
2213 	/* Disable interrupts and stop driver. */
2214 	CSR_WRITE_4(sc, JME_INTR_MASK_CLR, JME_INTRS);
2215 	if_setdrvflagbits(ifp, 0, (IFF_DRV_RUNNING | IFF_DRV_OACTIVE));
2216 	callout_stop(&sc->jme_tick_ch);
2217 	sc->jme_watchdog_timer = 0;
2218 
2219 	/* Stop receiver/transmitter. */
2220 	jme_stop_rx(sc);
2221 	jme_stop_tx(sc);
2222 
2223 	/* XXX Drain all queued tasks. */
2224 	JME_UNLOCK(sc);
2225 	taskqueue_drain(sc->jme_tq, &sc->jme_int_task);
2226 	JME_LOCK(sc);
2227 
2228 	if (sc->jme_cdata.jme_rxhead != NULL)
2229 		m_freem(sc->jme_cdata.jme_rxhead);
2230 	JME_RXCHAIN_RESET(sc);
2231 	jme_txeof(sc);
2232 	if (sc->jme_cdata.jme_tx_cnt != 0) {
2233 		/* Remove queued packets for transmit. */
2234 		for (i = 0; i < JME_TX_RING_CNT; i++) {
2235 			txd = &sc->jme_cdata.jme_txdesc[i];
2236 			if (txd->tx_m != NULL) {
2237 				bus_dmamap_sync(
2238 				    sc->jme_cdata.jme_tx_tag,
2239 				    txd->tx_dmamap,
2240 				    BUS_DMASYNC_POSTWRITE);
2241 				bus_dmamap_unload(
2242 				    sc->jme_cdata.jme_tx_tag,
2243 				    txd->tx_dmamap);
2244 				m_freem(txd->tx_m);
2245 				txd->tx_m = NULL;
2246 				txd->tx_ndesc = 0;
2247 				if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2248 			}
2249 		}
2250 	}
2251 
2252 	/*
2253 	 * Reuse configured Rx descriptors and reset
2254 	 * producer/consumer index.
2255 	 */
2256 	sc->jme_cdata.jme_rx_cons = 0;
2257 	sc->jme_morework = 0;
2258 	jme_init_tx_ring(sc);
2259 	/* Initialize shadow status block. */
2260 	jme_init_ssb(sc);
2261 
2262 	/* Program MAC with resolved speed/duplex/flow-control. */
2263 	if ((sc->jme_flags & JME_FLAG_LINK) != 0) {
2264 		jme_mac_config(sc);
2265 		jme_stats_clear(sc);
2266 
2267 		CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr);
2268 		CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr);
2269 
2270 		/* Set Tx ring address to the hardware. */
2271 		paddr = JME_TX_RING_ADDR(sc, 0);
2272 		CSR_WRITE_4(sc, JME_TXDBA_HI, JME_ADDR_HI(paddr));
2273 		CSR_WRITE_4(sc, JME_TXDBA_LO, JME_ADDR_LO(paddr));
2274 
2275 		/* Set Rx ring address to the hardware. */
2276 		paddr = JME_RX_RING_ADDR(sc, 0);
2277 		CSR_WRITE_4(sc, JME_RXDBA_HI, JME_ADDR_HI(paddr));
2278 		CSR_WRITE_4(sc, JME_RXDBA_LO, JME_ADDR_LO(paddr));
2279 
2280 		/* Restart receiver/transmitter. */
2281 		CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr | RXCSR_RX_ENB |
2282 		    RXCSR_RXQ_START);
2283 		CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr | TXCSR_TX_ENB);
2284 		/* Lastly enable TX/RX clock. */
2285 		if ((sc->jme_flags & JME_FLAG_TXCLK) != 0)
2286 			CSR_WRITE_4(sc, JME_GHC,
2287 			    CSR_READ_4(sc, JME_GHC) & ~GHC_TX_MAC_CLK_DIS);
2288 		if ((sc->jme_flags & JME_FLAG_RXCLK) != 0)
2289 			CSR_WRITE_4(sc, JME_GPREG1,
2290 			    CSR_READ_4(sc, JME_GPREG1) & ~GPREG1_RX_MAC_CLK_DIS);
2291 	}
2292 
2293 	if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0);
2294 	if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
2295 	callout_reset(&sc->jme_tick_ch, hz, jme_tick, sc);
2296 	/* Unblock execution of task. */
2297 	taskqueue_unblock(sc->jme_tq);
2298 	/* Reenable interrupts. */
2299 	CSR_WRITE_4(sc, JME_INTR_MASK_SET, JME_INTRS);
2300 
2301 	JME_UNLOCK(sc);
2302 }
2303 
2304 static int
jme_intr(void * arg)2305 jme_intr(void *arg)
2306 {
2307 	struct jme_softc *sc;
2308 	uint32_t status;
2309 
2310 	sc = (struct jme_softc *)arg;
2311 
2312 	status = CSR_READ_4(sc, JME_INTR_REQ_STATUS);
2313 	if (status == 0 || status == 0xFFFFFFFF)
2314 		return (FILTER_STRAY);
2315 	/* Disable interrupts. */
2316 	CSR_WRITE_4(sc, JME_INTR_MASK_CLR, JME_INTRS);
2317 	taskqueue_enqueue(sc->jme_tq, &sc->jme_int_task);
2318 
2319 	return (FILTER_HANDLED);
2320 }
2321 
2322 static void
jme_int_task(void * arg,int pending)2323 jme_int_task(void *arg, int pending)
2324 {
2325 	struct jme_softc *sc;
2326 	if_t ifp;
2327 	uint32_t status;
2328 	int more;
2329 
2330 	sc = (struct jme_softc *)arg;
2331 	ifp = sc->jme_ifp;
2332 
2333 	JME_LOCK(sc);
2334 	status = CSR_READ_4(sc, JME_INTR_STATUS);
2335 	if (sc->jme_morework != 0) {
2336 		sc->jme_morework = 0;
2337 		status |= INTR_RXQ_COAL | INTR_RXQ_COAL_TO;
2338 	}
2339 	if ((status & JME_INTRS) == 0 || status == 0xFFFFFFFF)
2340 		goto done;
2341 	/* Reset PCC counter/timer and Ack interrupts. */
2342 	status &= ~(INTR_TXQ_COMP | INTR_RXQ_COMP);
2343 	if ((status & (INTR_TXQ_COAL | INTR_TXQ_COAL_TO)) != 0)
2344 		status |= INTR_TXQ_COAL | INTR_TXQ_COAL_TO | INTR_TXQ_COMP;
2345 	if ((status & (INTR_RXQ_COAL | INTR_RXQ_COAL_TO)) != 0)
2346 		status |= INTR_RXQ_COAL | INTR_RXQ_COAL_TO | INTR_RXQ_COMP;
2347 	CSR_WRITE_4(sc, JME_INTR_STATUS, status);
2348 	more = 0;
2349 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
2350 		if ((status & (INTR_RXQ_COAL | INTR_RXQ_COAL_TO)) != 0) {
2351 			more = jme_rxintr(sc, sc->jme_process_limit);
2352 			if (more != 0)
2353 				sc->jme_morework = 1;
2354 		}
2355 		if ((status & INTR_RXQ_DESC_EMPTY) != 0) {
2356 			/*
2357 			 * Notify hardware availability of new Rx
2358 			 * buffers.
2359 			 * Reading RXCSR takes very long time under
2360 			 * heavy load so cache RXCSR value and writes
2361 			 * the ORed value with the kick command to
2362 			 * the RXCSR. This saves one register access
2363 			 * cycle.
2364 			 */
2365 			CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr |
2366 			    RXCSR_RX_ENB | RXCSR_RXQ_START);
2367 		}
2368 		if (!if_sendq_empty(ifp))
2369 			jme_start_locked(ifp);
2370 	}
2371 
2372 	if (more != 0 || (CSR_READ_4(sc, JME_INTR_STATUS) & JME_INTRS) != 0) {
2373 		taskqueue_enqueue(sc->jme_tq, &sc->jme_int_task);
2374 		JME_UNLOCK(sc);
2375 		return;
2376 	}
2377 done:
2378 	JME_UNLOCK(sc);
2379 
2380 	/* Reenable interrupts. */
2381 	CSR_WRITE_4(sc, JME_INTR_MASK_SET, JME_INTRS);
2382 }
2383 
2384 static void
jme_txeof(struct jme_softc * sc)2385 jme_txeof(struct jme_softc *sc)
2386 {
2387 	if_t ifp;
2388 	struct jme_txdesc *txd;
2389 	uint32_t status;
2390 	int cons, nsegs;
2391 
2392 	JME_LOCK_ASSERT(sc);
2393 
2394 	ifp = sc->jme_ifp;
2395 
2396 	cons = sc->jme_cdata.jme_tx_cons;
2397 	if (cons == sc->jme_cdata.jme_tx_prod)
2398 		return;
2399 
2400 	bus_dmamap_sync(sc->jme_cdata.jme_tx_ring_tag,
2401 	    sc->jme_cdata.jme_tx_ring_map,
2402 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2403 
2404 	/*
2405 	 * Go through our Tx list and free mbufs for those
2406 	 * frames which have been transmitted.
2407 	 */
2408 	for (; cons != sc->jme_cdata.jme_tx_prod;) {
2409 		txd = &sc->jme_cdata.jme_txdesc[cons];
2410 		status = le32toh(txd->tx_desc->flags);
2411 		if ((status & JME_TD_OWN) == JME_TD_OWN)
2412 			break;
2413 
2414 		if ((status & (JME_TD_TMOUT | JME_TD_RETRY_EXP)) != 0)
2415 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2416 		else {
2417 			if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
2418 			if ((status & JME_TD_COLLISION) != 0)
2419 				if_inc_counter(ifp, IFCOUNTER_COLLISIONS,
2420 				    le32toh(txd->tx_desc->buflen) &
2421 				    JME_TD_BUF_LEN_MASK);
2422 		}
2423 		/*
2424 		 * Only the first descriptor of multi-descriptor
2425 		 * transmission is updated so driver have to skip entire
2426 		 * chained buffers for the transmiited frame. In other
2427 		 * words, JME_TD_OWN bit is valid only at the first
2428 		 * descriptor of a multi-descriptor transmission.
2429 		 */
2430 		for (nsegs = 0; nsegs < txd->tx_ndesc; nsegs++) {
2431 			sc->jme_rdata.jme_tx_ring[cons].flags = 0;
2432 			JME_DESC_INC(cons, JME_TX_RING_CNT);
2433 		}
2434 
2435 		/* Reclaim transferred mbufs. */
2436 		bus_dmamap_sync(sc->jme_cdata.jme_tx_tag, txd->tx_dmamap,
2437 		    BUS_DMASYNC_POSTWRITE);
2438 		bus_dmamap_unload(sc->jme_cdata.jme_tx_tag, txd->tx_dmamap);
2439 
2440 		KASSERT(txd->tx_m != NULL,
2441 		    ("%s: freeing NULL mbuf!\n", __func__));
2442 		m_freem(txd->tx_m);
2443 		txd->tx_m = NULL;
2444 		sc->jme_cdata.jme_tx_cnt -= txd->tx_ndesc;
2445 		KASSERT(sc->jme_cdata.jme_tx_cnt >= 0,
2446 		    ("%s: Active Tx desc counter was garbled\n", __func__));
2447 		txd->tx_ndesc = 0;
2448 		if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
2449 	}
2450 	sc->jme_cdata.jme_tx_cons = cons;
2451 	/* Unarm watchdog timer when there is no pending descriptors in queue. */
2452 	if (sc->jme_cdata.jme_tx_cnt == 0)
2453 		sc->jme_watchdog_timer = 0;
2454 
2455 	bus_dmamap_sync(sc->jme_cdata.jme_tx_ring_tag,
2456 	    sc->jme_cdata.jme_tx_ring_map,
2457 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2458 }
2459 
2460 static __inline void
jme_discard_rxbuf(struct jme_softc * sc,int cons)2461 jme_discard_rxbuf(struct jme_softc *sc, int cons)
2462 {
2463 	struct jme_desc *desc;
2464 
2465 	desc = &sc->jme_rdata.jme_rx_ring[cons];
2466 	desc->flags = htole32(JME_RD_OWN | JME_RD_INTR | JME_RD_64BIT);
2467 	desc->buflen = htole32(MCLBYTES);
2468 }
2469 
2470 /* Receive a frame. */
2471 static void
jme_rxeof(struct jme_softc * sc)2472 jme_rxeof(struct jme_softc *sc)
2473 {
2474 	if_t ifp;
2475 	struct jme_desc *desc;
2476 	struct jme_rxdesc *rxd;
2477 	struct mbuf *mp, *m;
2478 	uint32_t flags, status;
2479 	int cons, count, nsegs;
2480 
2481 	JME_LOCK_ASSERT(sc);
2482 
2483 	ifp = sc->jme_ifp;
2484 
2485 	cons = sc->jme_cdata.jme_rx_cons;
2486 	desc = &sc->jme_rdata.jme_rx_ring[cons];
2487 	flags = le32toh(desc->flags);
2488 	status = le32toh(desc->buflen);
2489 	nsegs = JME_RX_NSEGS(status);
2490 	sc->jme_cdata.jme_rxlen = JME_RX_BYTES(status) - JME_RX_PAD_BYTES;
2491 	if ((status & JME_RX_ERR_STAT) != 0) {
2492 		if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
2493 		jme_discard_rxbuf(sc, sc->jme_cdata.jme_rx_cons);
2494 #ifdef JME_SHOW_ERRORS
2495 		device_printf(sc->jme_dev, "%s : receive error = 0x%b\n",
2496 		    __func__, JME_RX_ERR(status), JME_RX_ERR_BITS);
2497 #endif
2498 		sc->jme_cdata.jme_rx_cons += nsegs;
2499 		sc->jme_cdata.jme_rx_cons %= JME_RX_RING_CNT;
2500 		return;
2501 	}
2502 
2503 	for (count = 0; count < nsegs; count++,
2504 	    JME_DESC_INC(cons, JME_RX_RING_CNT)) {
2505 		rxd = &sc->jme_cdata.jme_rxdesc[cons];
2506 		mp = rxd->rx_m;
2507 		/* Add a new receive buffer to the ring. */
2508 		if (jme_newbuf(sc, rxd) != 0) {
2509 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2510 			/* Reuse buffer. */
2511 			for (; count < nsegs; count++) {
2512 				jme_discard_rxbuf(sc, cons);
2513 				JME_DESC_INC(cons, JME_RX_RING_CNT);
2514 			}
2515 			if (sc->jme_cdata.jme_rxhead != NULL) {
2516 				m_freem(sc->jme_cdata.jme_rxhead);
2517 				JME_RXCHAIN_RESET(sc);
2518 			}
2519 			break;
2520 		}
2521 
2522 		/*
2523 		 * Assume we've received a full sized frame.
2524 		 * Actual size is fixed when we encounter the end of
2525 		 * multi-segmented frame.
2526 		 */
2527 		mp->m_len = MCLBYTES;
2528 
2529 		/* Chain received mbufs. */
2530 		if (sc->jme_cdata.jme_rxhead == NULL) {
2531 			sc->jme_cdata.jme_rxhead = mp;
2532 			sc->jme_cdata.jme_rxtail = mp;
2533 		} else {
2534 			/*
2535 			 * Receive processor can receive a maximum frame
2536 			 * size of 65535 bytes.
2537 			 */
2538 			mp->m_flags &= ~M_PKTHDR;
2539 			sc->jme_cdata.jme_rxtail->m_next = mp;
2540 			sc->jme_cdata.jme_rxtail = mp;
2541 		}
2542 
2543 		if (count == nsegs - 1) {
2544 			/* Last desc. for this frame. */
2545 			m = sc->jme_cdata.jme_rxhead;
2546 			m->m_flags |= M_PKTHDR;
2547 			m->m_pkthdr.len = sc->jme_cdata.jme_rxlen;
2548 			if (nsegs > 1) {
2549 				/* Set first mbuf size. */
2550 				m->m_len = MCLBYTES - JME_RX_PAD_BYTES;
2551 				/* Set last mbuf size. */
2552 				mp->m_len = sc->jme_cdata.jme_rxlen -
2553 				    ((MCLBYTES - JME_RX_PAD_BYTES) +
2554 				    (MCLBYTES * (nsegs - 2)));
2555 			} else
2556 				m->m_len = sc->jme_cdata.jme_rxlen;
2557 			m->m_pkthdr.rcvif = ifp;
2558 
2559 			/*
2560 			 * Account for 10bytes auto padding which is used
2561 			 * to align IP header on 32bit boundary. Also note,
2562 			 * CRC bytes is automatically removed by the
2563 			 * hardware.
2564 			 */
2565 			m->m_data += JME_RX_PAD_BYTES;
2566 
2567 			/* Set checksum information. */
2568 			if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0 &&
2569 			    (flags & JME_RD_IPV4) != 0) {
2570 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2571 				if ((flags & JME_RD_IPCSUM) != 0)
2572 					m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2573 				if (((flags & JME_RD_MORE_FRAG) == 0) &&
2574 				    ((flags & (JME_RD_TCP | JME_RD_TCPCSUM)) ==
2575 				    (JME_RD_TCP | JME_RD_TCPCSUM) ||
2576 				    (flags & (JME_RD_UDP | JME_RD_UDPCSUM)) ==
2577 				    (JME_RD_UDP | JME_RD_UDPCSUM))) {
2578 					m->m_pkthdr.csum_flags |=
2579 					    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2580 					m->m_pkthdr.csum_data = 0xffff;
2581 				}
2582 			}
2583 
2584 			/* Check for VLAN tagged packets. */
2585 			if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0 &&
2586 			    (flags & JME_RD_VLAN_TAG) != 0) {
2587 				m->m_pkthdr.ether_vtag =
2588 				    flags & JME_RD_VLAN_MASK;
2589 				m->m_flags |= M_VLANTAG;
2590 			}
2591 
2592 			if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
2593 			/* Pass it on. */
2594 			JME_UNLOCK(sc);
2595 			if_input(ifp, m);
2596 			JME_LOCK(sc);
2597 
2598 			/* Reset mbuf chains. */
2599 			JME_RXCHAIN_RESET(sc);
2600 		}
2601 	}
2602 
2603 	sc->jme_cdata.jme_rx_cons += nsegs;
2604 	sc->jme_cdata.jme_rx_cons %= JME_RX_RING_CNT;
2605 }
2606 
2607 static int
jme_rxintr(struct jme_softc * sc,int count)2608 jme_rxintr(struct jme_softc *sc, int count)
2609 {
2610 	struct jme_desc *desc;
2611 	int nsegs, prog, pktlen;
2612 
2613 	bus_dmamap_sync(sc->jme_cdata.jme_rx_ring_tag,
2614 	    sc->jme_cdata.jme_rx_ring_map,
2615 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2616 
2617 	for (prog = 0; count > 0; prog++) {
2618 		desc = &sc->jme_rdata.jme_rx_ring[sc->jme_cdata.jme_rx_cons];
2619 		if ((le32toh(desc->flags) & JME_RD_OWN) == JME_RD_OWN)
2620 			break;
2621 		if ((le32toh(desc->buflen) & JME_RD_VALID) == 0)
2622 			break;
2623 		nsegs = JME_RX_NSEGS(le32toh(desc->buflen));
2624 		/*
2625 		 * Check number of segments against received bytes.
2626 		 * Non-matching value would indicate that hardware
2627 		 * is still trying to update Rx descriptors. I'm not
2628 		 * sure whether this check is needed.
2629 		 */
2630 		pktlen = JME_RX_BYTES(le32toh(desc->buflen));
2631 		if (nsegs != howmany(pktlen, MCLBYTES))
2632 			break;
2633 		prog++;
2634 		/* Received a frame. */
2635 		jme_rxeof(sc);
2636 		count -= nsegs;
2637 	}
2638 
2639 	if (prog > 0)
2640 		bus_dmamap_sync(sc->jme_cdata.jme_rx_ring_tag,
2641 		    sc->jme_cdata.jme_rx_ring_map,
2642 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2643 
2644 	return (count > 0 ? 0 : EAGAIN);
2645 }
2646 
2647 static void
jme_tick(void * arg)2648 jme_tick(void *arg)
2649 {
2650 	struct jme_softc *sc;
2651 	struct mii_data *mii;
2652 
2653 	sc = (struct jme_softc *)arg;
2654 
2655 	JME_LOCK_ASSERT(sc);
2656 
2657 	mii = device_get_softc(sc->jme_miibus);
2658 	mii_tick(mii);
2659 	/*
2660 	 * Reclaim Tx buffers that have been completed. It's not
2661 	 * needed here but it would release allocated mbuf chains
2662 	 * faster and limit the maximum delay to a hz.
2663 	 */
2664 	jme_txeof(sc);
2665 	jme_stats_update(sc);
2666 	jme_watchdog(sc);
2667 	callout_reset(&sc->jme_tick_ch, hz, jme_tick, sc);
2668 }
2669 
2670 static void
jme_reset(struct jme_softc * sc)2671 jme_reset(struct jme_softc *sc)
2672 {
2673 	uint32_t ghc, gpreg;
2674 
2675 	/* Stop receiver, transmitter. */
2676 	jme_stop_rx(sc);
2677 	jme_stop_tx(sc);
2678 
2679 	/* Reset controller. */
2680 	CSR_WRITE_4(sc, JME_GHC, GHC_RESET);
2681 	CSR_READ_4(sc, JME_GHC);
2682 	DELAY(10);
2683 	/*
2684 	 * Workaround Rx FIFO overruns seen under certain conditions.
2685 	 * Explicitly synchorize TX/RX clock.  TX/RX clock should be
2686 	 * enabled only after enabling TX/RX MACs.
2687 	 */
2688 	if ((sc->jme_flags & (JME_FLAG_TXCLK | JME_FLAG_RXCLK)) != 0) {
2689 		/* Disable TX clock. */
2690 		CSR_WRITE_4(sc, JME_GHC, GHC_RESET | GHC_TX_MAC_CLK_DIS);
2691 		/* Disable RX clock. */
2692 		gpreg = CSR_READ_4(sc, JME_GPREG1);
2693 		CSR_WRITE_4(sc, JME_GPREG1, gpreg | GPREG1_RX_MAC_CLK_DIS);
2694 		gpreg = CSR_READ_4(sc, JME_GPREG1);
2695 		/* De-assert RESET but still disable TX clock. */
2696 		CSR_WRITE_4(sc, JME_GHC, GHC_TX_MAC_CLK_DIS);
2697 		ghc = CSR_READ_4(sc, JME_GHC);
2698 
2699 		/* Enable TX clock. */
2700 		CSR_WRITE_4(sc, JME_GHC, ghc & ~GHC_TX_MAC_CLK_DIS);
2701 		/* Enable RX clock. */
2702 		CSR_WRITE_4(sc, JME_GPREG1, gpreg & ~GPREG1_RX_MAC_CLK_DIS);
2703 		CSR_READ_4(sc, JME_GPREG1);
2704 
2705 		/* Disable TX/RX clock again. */
2706 		CSR_WRITE_4(sc, JME_GHC, GHC_TX_MAC_CLK_DIS);
2707 		CSR_WRITE_4(sc, JME_GPREG1, gpreg | GPREG1_RX_MAC_CLK_DIS);
2708 	} else
2709 		CSR_WRITE_4(sc, JME_GHC, 0);
2710 	CSR_READ_4(sc, JME_GHC);
2711 	DELAY(10);
2712 }
2713 
2714 static void
jme_init(void * xsc)2715 jme_init(void *xsc)
2716 {
2717 	struct jme_softc *sc;
2718 
2719 	sc = (struct jme_softc *)xsc;
2720 	JME_LOCK(sc);
2721 	jme_init_locked(sc);
2722 	JME_UNLOCK(sc);
2723 }
2724 
2725 static void
jme_init_locked(struct jme_softc * sc)2726 jme_init_locked(struct jme_softc *sc)
2727 {
2728 	if_t ifp;
2729 	struct mii_data *mii;
2730 	bus_addr_t paddr;
2731 	uint32_t reg;
2732 	int error;
2733 
2734 	JME_LOCK_ASSERT(sc);
2735 
2736 	ifp = sc->jme_ifp;
2737 	mii = device_get_softc(sc->jme_miibus);
2738 
2739 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
2740 		return;
2741 	/*
2742 	 * Cancel any pending I/O.
2743 	 */
2744 	jme_stop(sc);
2745 
2746 	/*
2747 	 * Reset the chip to a known state.
2748 	 */
2749 	jme_reset(sc);
2750 
2751 	/* Init descriptors. */
2752 	error = jme_init_rx_ring(sc);
2753         if (error != 0) {
2754                 device_printf(sc->jme_dev,
2755                     "%s: initialization failed: no memory for Rx buffers.\n",
2756 		    __func__);
2757                 jme_stop(sc);
2758 		return;
2759         }
2760 	jme_init_tx_ring(sc);
2761 	/* Initialize shadow status block. */
2762 	jme_init_ssb(sc);
2763 
2764 	/* Reprogram the station address. */
2765 	jme_set_macaddr(sc, if_getlladdr(sc->jme_ifp));
2766 
2767 	/*
2768 	 * Configure Tx queue.
2769 	 *  Tx priority queue weight value : 0
2770 	 *  Tx FIFO threshold for processing next packet : 16QW
2771 	 *  Maximum Tx DMA length : 512
2772 	 *  Allow Tx DMA burst.
2773 	 */
2774 	sc->jme_txcsr = TXCSR_TXQ_N_SEL(TXCSR_TXQ0);
2775 	sc->jme_txcsr |= TXCSR_TXQ_WEIGHT(TXCSR_TXQ_WEIGHT_MIN);
2776 	sc->jme_txcsr |= TXCSR_FIFO_THRESH_16QW;
2777 	sc->jme_txcsr |= sc->jme_tx_dma_size;
2778 	sc->jme_txcsr |= TXCSR_DMA_BURST;
2779 	CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr);
2780 
2781 	/* Set Tx descriptor counter. */
2782 	CSR_WRITE_4(sc, JME_TXQDC, JME_TX_RING_CNT);
2783 
2784 	/* Set Tx ring address to the hardware. */
2785 	paddr = JME_TX_RING_ADDR(sc, 0);
2786 	CSR_WRITE_4(sc, JME_TXDBA_HI, JME_ADDR_HI(paddr));
2787 	CSR_WRITE_4(sc, JME_TXDBA_LO, JME_ADDR_LO(paddr));
2788 
2789 	/* Configure TxMAC parameters. */
2790 	reg = TXMAC_IFG1_DEFAULT | TXMAC_IFG2_DEFAULT | TXMAC_IFG_ENB;
2791 	reg |= TXMAC_THRESH_1_PKT;
2792 	reg |= TXMAC_CRC_ENB | TXMAC_PAD_ENB;
2793 	CSR_WRITE_4(sc, JME_TXMAC, reg);
2794 
2795 	/*
2796 	 * Configure Rx queue.
2797 	 *  FIFO full threshold for transmitting Tx pause packet : 128T
2798 	 *  FIFO threshold for processing next packet : 128QW
2799 	 *  Rx queue 0 select
2800 	 *  Max Rx DMA length : 128
2801 	 *  Rx descriptor retry : 32
2802 	 *  Rx descriptor retry time gap : 256ns
2803 	 *  Don't receive runt/bad frame.
2804 	 */
2805 	sc->jme_rxcsr = RXCSR_FIFO_FTHRESH_128T;
2806 	/*
2807 	 * Since Rx FIFO size is 4K bytes, receiving frames larger
2808 	 * than 4K bytes will suffer from Rx FIFO overruns. So
2809 	 * decrease FIFO threshold to reduce the FIFO overruns for
2810 	 * frames larger than 4000 bytes.
2811 	 * For best performance of standard MTU sized frames use
2812 	 * maximum allowable FIFO threshold, 128QW. Note these do
2813 	 * not hold on chip full mask version >=2. For these
2814 	 * controllers 64QW and 128QW are not valid value.
2815 	 */
2816 	if (CHIPMODE_REVFM(sc->jme_chip_rev) >= 2)
2817 		sc->jme_rxcsr |= RXCSR_FIFO_THRESH_16QW;
2818 	else {
2819 		if ((if_getmtu(ifp) + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN +
2820 		    ETHER_CRC_LEN) > JME_RX_FIFO_SIZE)
2821 			sc->jme_rxcsr |= RXCSR_FIFO_THRESH_16QW;
2822 		else
2823 			sc->jme_rxcsr |= RXCSR_FIFO_THRESH_128QW;
2824 	}
2825 	sc->jme_rxcsr |= sc->jme_rx_dma_size | RXCSR_RXQ_N_SEL(RXCSR_RXQ0);
2826 	sc->jme_rxcsr |= RXCSR_DESC_RT_CNT(RXCSR_DESC_RT_CNT_DEFAULT);
2827 	sc->jme_rxcsr |= RXCSR_DESC_RT_GAP_256 & RXCSR_DESC_RT_GAP_MASK;
2828 	CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr);
2829 
2830 	/* Set Rx descriptor counter. */
2831 	CSR_WRITE_4(sc, JME_RXQDC, JME_RX_RING_CNT);
2832 
2833 	/* Set Rx ring address to the hardware. */
2834 	paddr = JME_RX_RING_ADDR(sc, 0);
2835 	CSR_WRITE_4(sc, JME_RXDBA_HI, JME_ADDR_HI(paddr));
2836 	CSR_WRITE_4(sc, JME_RXDBA_LO, JME_ADDR_LO(paddr));
2837 
2838 	/* Clear receive filter. */
2839 	CSR_WRITE_4(sc, JME_RXMAC, 0);
2840 	/* Set up the receive filter. */
2841 	jme_set_filter(sc);
2842 	jme_set_vlan(sc);
2843 
2844 	/*
2845 	 * Disable all WOL bits as WOL can interfere normal Rx
2846 	 * operation. Also clear WOL detection status bits.
2847 	 */
2848 	reg = CSR_READ_4(sc, JME_PMCS);
2849 	reg &= ~PMCS_WOL_ENB_MASK;
2850 	CSR_WRITE_4(sc, JME_PMCS, reg);
2851 
2852 	reg = CSR_READ_4(sc, JME_RXMAC);
2853 	/*
2854 	 * Pad 10bytes right before received frame. This will greatly
2855 	 * help Rx performance on strict-alignment architectures as
2856 	 * it does not need to copy the frame to align the payload.
2857 	 */
2858 	reg |= RXMAC_PAD_10BYTES;
2859 	if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0)
2860 		reg |= RXMAC_CSUM_ENB;
2861 	CSR_WRITE_4(sc, JME_RXMAC, reg);
2862 
2863 	/* Configure general purpose reg0 */
2864 	reg = CSR_READ_4(sc, JME_GPREG0);
2865 	reg &= ~GPREG0_PCC_UNIT_MASK;
2866 	/* Set PCC timer resolution to micro-seconds unit. */
2867 	reg |= GPREG0_PCC_UNIT_US;
2868 	/*
2869 	 * Disable all shadow register posting as we have to read
2870 	 * JME_INTR_STATUS register in jme_int_task. Also it seems
2871 	 * that it's hard to synchronize interrupt status between
2872 	 * hardware and software with shadow posting due to
2873 	 * requirements of bus_dmamap_sync(9).
2874 	 */
2875 	reg |= GPREG0_SH_POST_DW7_DIS | GPREG0_SH_POST_DW6_DIS |
2876 	    GPREG0_SH_POST_DW5_DIS | GPREG0_SH_POST_DW4_DIS |
2877 	    GPREG0_SH_POST_DW3_DIS | GPREG0_SH_POST_DW2_DIS |
2878 	    GPREG0_SH_POST_DW1_DIS | GPREG0_SH_POST_DW0_DIS;
2879 	/* Disable posting of DW0. */
2880 	reg &= ~GPREG0_POST_DW0_ENB;
2881 	/* Clear PME message. */
2882 	reg &= ~GPREG0_PME_ENB;
2883 	/* Set PHY address. */
2884 	reg &= ~GPREG0_PHY_ADDR_MASK;
2885 	reg |= sc->jme_phyaddr;
2886 	CSR_WRITE_4(sc, JME_GPREG0, reg);
2887 
2888 	/* Configure Tx queue 0 packet completion coalescing. */
2889 	reg = (sc->jme_tx_coal_to << PCCTX_COAL_TO_SHIFT) &
2890 	    PCCTX_COAL_TO_MASK;
2891 	reg |= (sc->jme_tx_coal_pkt << PCCTX_COAL_PKT_SHIFT) &
2892 	    PCCTX_COAL_PKT_MASK;
2893 	reg |= PCCTX_COAL_TXQ0;
2894 	CSR_WRITE_4(sc, JME_PCCTX, reg);
2895 
2896 	/* Configure Rx queue 0 packet completion coalescing. */
2897 	reg = (sc->jme_rx_coal_to << PCCRX_COAL_TO_SHIFT) &
2898 	    PCCRX_COAL_TO_MASK;
2899 	reg |= (sc->jme_rx_coal_pkt << PCCRX_COAL_PKT_SHIFT) &
2900 	    PCCRX_COAL_PKT_MASK;
2901 	CSR_WRITE_4(sc, JME_PCCRX0, reg);
2902 
2903 	/*
2904 	 * Configure PCD(Packet Completion Deferring).  It seems PCD
2905 	 * generates an interrupt when the time interval between two
2906 	 * back-to-back incoming/outgoing packet is long enough for
2907 	 * it to reach its timer value 0. The arrival of new packets
2908 	 * after timer has started causes the PCD timer to restart.
2909 	 * Unfortunately, it's not clear how PCD is useful at this
2910 	 * moment, so just use the same of PCC parameters.
2911 	 */
2912 	if ((sc->jme_flags & JME_FLAG_PCCPCD) != 0) {
2913 		sc->jme_rx_pcd_to = sc->jme_rx_coal_to;
2914 		if (sc->jme_rx_coal_to > PCDRX_TO_MAX)
2915 			sc->jme_rx_pcd_to = PCDRX_TO_MAX;
2916 		sc->jme_tx_pcd_to = sc->jme_tx_coal_to;
2917 		if (sc->jme_tx_coal_to > PCDTX_TO_MAX)
2918 			sc->jme_tx_pcd_to = PCDTX_TO_MAX;
2919 		reg = sc->jme_rx_pcd_to << PCDRX0_TO_THROTTLE_SHIFT;
2920 		reg |= sc->jme_rx_pcd_to << PCDRX0_TO_SHIFT;
2921 		CSR_WRITE_4(sc, PCDRX_REG(0), reg);
2922 		reg = sc->jme_tx_pcd_to << PCDTX_TO_THROTTLE_SHIFT;
2923 		reg |= sc->jme_tx_pcd_to << PCDTX_TO_SHIFT;
2924 		CSR_WRITE_4(sc, JME_PCDTX, reg);
2925 	}
2926 
2927 	/* Configure shadow status block but don't enable posting. */
2928 	paddr = sc->jme_rdata.jme_ssb_block_paddr;
2929 	CSR_WRITE_4(sc, JME_SHBASE_ADDR_HI, JME_ADDR_HI(paddr));
2930 	CSR_WRITE_4(sc, JME_SHBASE_ADDR_LO, JME_ADDR_LO(paddr));
2931 
2932 	/* Disable Timer 1 and Timer 2. */
2933 	CSR_WRITE_4(sc, JME_TIMER1, 0);
2934 	CSR_WRITE_4(sc, JME_TIMER2, 0);
2935 
2936 	/* Configure retry transmit period, retry limit value. */
2937 	CSR_WRITE_4(sc, JME_TXTRHD,
2938 	    ((TXTRHD_RT_PERIOD_DEFAULT << TXTRHD_RT_PERIOD_SHIFT) &
2939 	    TXTRHD_RT_PERIOD_MASK) |
2940 	    ((TXTRHD_RT_LIMIT_DEFAULT << TXTRHD_RT_LIMIT_SHIFT) &
2941 	    TXTRHD_RT_LIMIT_SHIFT));
2942 
2943 	/* Disable RSS. */
2944 	CSR_WRITE_4(sc, JME_RSSC, RSSC_DIS_RSS);
2945 
2946 	/* Initialize the interrupt mask. */
2947 	CSR_WRITE_4(sc, JME_INTR_MASK_SET, JME_INTRS);
2948 	CSR_WRITE_4(sc, JME_INTR_STATUS, 0xFFFFFFFF);
2949 
2950 	/*
2951 	 * Enabling Tx/Rx DMA engines and Rx queue processing is
2952 	 * done after detection of valid link in jme_link_task.
2953 	 */
2954 
2955 	sc->jme_flags &= ~JME_FLAG_LINK;
2956 	/* Set the current media. */
2957 	mii_mediachg(mii);
2958 
2959 	callout_reset(&sc->jme_tick_ch, hz, jme_tick, sc);
2960 
2961 	if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0);
2962 	if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
2963 }
2964 
2965 static void
jme_stop(struct jme_softc * sc)2966 jme_stop(struct jme_softc *sc)
2967 {
2968 	if_t ifp;
2969 	struct jme_txdesc *txd;
2970 	struct jme_rxdesc *rxd;
2971 	int i;
2972 
2973 	JME_LOCK_ASSERT(sc);
2974 	/*
2975 	 * Mark the interface down and cancel the watchdog timer.
2976 	 */
2977 	ifp = sc->jme_ifp;
2978 	if_setdrvflagbits(ifp, 0, (IFF_DRV_RUNNING | IFF_DRV_OACTIVE));
2979 	sc->jme_flags &= ~JME_FLAG_LINK;
2980 	callout_stop(&sc->jme_tick_ch);
2981 	sc->jme_watchdog_timer = 0;
2982 
2983 	/*
2984 	 * Disable interrupts.
2985 	 */
2986 	CSR_WRITE_4(sc, JME_INTR_MASK_CLR, JME_INTRS);
2987 	CSR_WRITE_4(sc, JME_INTR_STATUS, 0xFFFFFFFF);
2988 
2989 	/* Disable updating shadow status block. */
2990 	CSR_WRITE_4(sc, JME_SHBASE_ADDR_LO,
2991 	    CSR_READ_4(sc, JME_SHBASE_ADDR_LO) & ~SHBASE_POST_ENB);
2992 
2993 	/* Stop receiver, transmitter. */
2994 	jme_stop_rx(sc);
2995 	jme_stop_tx(sc);
2996 
2997 	 /* Reclaim Rx/Tx buffers that have been completed. */
2998 	jme_rxintr(sc, JME_RX_RING_CNT);
2999 	if (sc->jme_cdata.jme_rxhead != NULL)
3000 		m_freem(sc->jme_cdata.jme_rxhead);
3001 	JME_RXCHAIN_RESET(sc);
3002 	jme_txeof(sc);
3003 	/*
3004 	 * Free RX and TX mbufs still in the queues.
3005 	 */
3006 	for (i = 0; i < JME_RX_RING_CNT; i++) {
3007 		rxd = &sc->jme_cdata.jme_rxdesc[i];
3008 		if (rxd->rx_m != NULL) {
3009 			bus_dmamap_sync(sc->jme_cdata.jme_rx_tag,
3010 			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
3011 			bus_dmamap_unload(sc->jme_cdata.jme_rx_tag,
3012 			    rxd->rx_dmamap);
3013 			m_freem(rxd->rx_m);
3014 			rxd->rx_m = NULL;
3015 		}
3016         }
3017 	for (i = 0; i < JME_TX_RING_CNT; i++) {
3018 		txd = &sc->jme_cdata.jme_txdesc[i];
3019 		if (txd->tx_m != NULL) {
3020 			bus_dmamap_sync(sc->jme_cdata.jme_tx_tag,
3021 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
3022 			bus_dmamap_unload(sc->jme_cdata.jme_tx_tag,
3023 			    txd->tx_dmamap);
3024 			m_freem(txd->tx_m);
3025 			txd->tx_m = NULL;
3026 			txd->tx_ndesc = 0;
3027 		}
3028         }
3029 	jme_stats_update(sc);
3030 	jme_stats_save(sc);
3031 }
3032 
3033 static void
jme_stop_tx(struct jme_softc * sc)3034 jme_stop_tx(struct jme_softc *sc)
3035 {
3036 	uint32_t reg;
3037 	int i;
3038 
3039 	reg = CSR_READ_4(sc, JME_TXCSR);
3040 	if ((reg & TXCSR_TX_ENB) == 0)
3041 		return;
3042 	reg &= ~TXCSR_TX_ENB;
3043 	CSR_WRITE_4(sc, JME_TXCSR, reg);
3044 	for (i = JME_TIMEOUT; i > 0; i--) {
3045 		DELAY(1);
3046 		if ((CSR_READ_4(sc, JME_TXCSR) & TXCSR_TX_ENB) == 0)
3047 			break;
3048 	}
3049 	if (i == 0)
3050 		device_printf(sc->jme_dev, "stopping transmitter timeout!\n");
3051 }
3052 
3053 static void
jme_stop_rx(struct jme_softc * sc)3054 jme_stop_rx(struct jme_softc *sc)
3055 {
3056 	uint32_t reg;
3057 	int i;
3058 
3059 	reg = CSR_READ_4(sc, JME_RXCSR);
3060 	if ((reg & RXCSR_RX_ENB) == 0)
3061 		return;
3062 	reg &= ~RXCSR_RX_ENB;
3063 	CSR_WRITE_4(sc, JME_RXCSR, reg);
3064 	for (i = JME_TIMEOUT; i > 0; i--) {
3065 		DELAY(1);
3066 		if ((CSR_READ_4(sc, JME_RXCSR) & RXCSR_RX_ENB) == 0)
3067 			break;
3068 	}
3069 	if (i == 0)
3070 		device_printf(sc->jme_dev, "stopping recevier timeout!\n");
3071 }
3072 
3073 static void
jme_init_tx_ring(struct jme_softc * sc)3074 jme_init_tx_ring(struct jme_softc *sc)
3075 {
3076 	struct jme_ring_data *rd;
3077 	struct jme_txdesc *txd;
3078 	int i;
3079 
3080 	sc->jme_cdata.jme_tx_prod = 0;
3081 	sc->jme_cdata.jme_tx_cons = 0;
3082 	sc->jme_cdata.jme_tx_cnt = 0;
3083 
3084 	rd = &sc->jme_rdata;
3085 	bzero(rd->jme_tx_ring, JME_TX_RING_SIZE);
3086 	for (i = 0; i < JME_TX_RING_CNT; i++) {
3087 		txd = &sc->jme_cdata.jme_txdesc[i];
3088 		txd->tx_m = NULL;
3089 		txd->tx_desc = &rd->jme_tx_ring[i];
3090 		txd->tx_ndesc = 0;
3091 	}
3092 
3093 	bus_dmamap_sync(sc->jme_cdata.jme_tx_ring_tag,
3094 	    sc->jme_cdata.jme_tx_ring_map,
3095 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3096 }
3097 
3098 static void
jme_init_ssb(struct jme_softc * sc)3099 jme_init_ssb(struct jme_softc *sc)
3100 {
3101 	struct jme_ring_data *rd;
3102 
3103 	rd = &sc->jme_rdata;
3104 	bzero(rd->jme_ssb_block, JME_SSB_SIZE);
3105 	bus_dmamap_sync(sc->jme_cdata.jme_ssb_tag, sc->jme_cdata.jme_ssb_map,
3106 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3107 }
3108 
3109 static int
jme_init_rx_ring(struct jme_softc * sc)3110 jme_init_rx_ring(struct jme_softc *sc)
3111 {
3112 	struct jme_ring_data *rd;
3113 	struct jme_rxdesc *rxd;
3114 	int i;
3115 
3116 	sc->jme_cdata.jme_rx_cons = 0;
3117 	JME_RXCHAIN_RESET(sc);
3118 	sc->jme_morework = 0;
3119 
3120 	rd = &sc->jme_rdata;
3121 	bzero(rd->jme_rx_ring, JME_RX_RING_SIZE);
3122 	for (i = 0; i < JME_RX_RING_CNT; i++) {
3123 		rxd = &sc->jme_cdata.jme_rxdesc[i];
3124 		rxd->rx_m = NULL;
3125 		rxd->rx_desc = &rd->jme_rx_ring[i];
3126 		if (jme_newbuf(sc, rxd) != 0)
3127 			return (ENOBUFS);
3128 	}
3129 
3130 	bus_dmamap_sync(sc->jme_cdata.jme_rx_ring_tag,
3131 	    sc->jme_cdata.jme_rx_ring_map,
3132 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3133 
3134 	return (0);
3135 }
3136 
3137 static int
jme_newbuf(struct jme_softc * sc,struct jme_rxdesc * rxd)3138 jme_newbuf(struct jme_softc *sc, struct jme_rxdesc *rxd)
3139 {
3140 	struct jme_desc *desc;
3141 	struct mbuf *m;
3142 	bus_dma_segment_t segs[1];
3143 	bus_dmamap_t map;
3144 	int nsegs;
3145 
3146 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
3147 	if (m == NULL)
3148 		return (ENOBUFS);
3149 	/*
3150 	 * JMC250 has 64bit boundary alignment limitation so jme(4)
3151 	 * takes advantage of 10 bytes padding feature of hardware
3152 	 * in order not to copy entire frame to align IP header on
3153 	 * 32bit boundary.
3154 	 */
3155 	m->m_len = m->m_pkthdr.len = MCLBYTES;
3156 
3157 	if (bus_dmamap_load_mbuf_sg(sc->jme_cdata.jme_rx_tag,
3158 	    sc->jme_cdata.jme_rx_sparemap, m, segs, &nsegs, 0) != 0) {
3159 		m_freem(m);
3160 		return (ENOBUFS);
3161 	}
3162 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
3163 
3164 	if (rxd->rx_m != NULL) {
3165 		bus_dmamap_sync(sc->jme_cdata.jme_rx_tag, rxd->rx_dmamap,
3166 		    BUS_DMASYNC_POSTREAD);
3167 		bus_dmamap_unload(sc->jme_cdata.jme_rx_tag, rxd->rx_dmamap);
3168 	}
3169 	map = rxd->rx_dmamap;
3170 	rxd->rx_dmamap = sc->jme_cdata.jme_rx_sparemap;
3171 	sc->jme_cdata.jme_rx_sparemap = map;
3172 	bus_dmamap_sync(sc->jme_cdata.jme_rx_tag, rxd->rx_dmamap,
3173 	    BUS_DMASYNC_PREREAD);
3174 	rxd->rx_m = m;
3175 
3176 	desc = rxd->rx_desc;
3177 	desc->buflen = htole32(segs[0].ds_len);
3178 	desc->addr_lo = htole32(JME_ADDR_LO(segs[0].ds_addr));
3179 	desc->addr_hi = htole32(JME_ADDR_HI(segs[0].ds_addr));
3180 	desc->flags = htole32(JME_RD_OWN | JME_RD_INTR | JME_RD_64BIT);
3181 
3182 	return (0);
3183 }
3184 
3185 static void
jme_set_vlan(struct jme_softc * sc)3186 jme_set_vlan(struct jme_softc *sc)
3187 {
3188 	if_t ifp;
3189 	uint32_t reg;
3190 
3191 	JME_LOCK_ASSERT(sc);
3192 
3193 	ifp = sc->jme_ifp;
3194 	reg = CSR_READ_4(sc, JME_RXMAC);
3195 	reg &= ~RXMAC_VLAN_ENB;
3196 	if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0)
3197 		reg |= RXMAC_VLAN_ENB;
3198 	CSR_WRITE_4(sc, JME_RXMAC, reg);
3199 }
3200 
3201 static u_int
jme_hash_maddr(void * arg,struct sockaddr_dl * sdl,u_int cnt)3202 jme_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
3203 {
3204 	uint32_t crc, *mchash = arg;
3205 
3206 	crc = ether_crc32_be(LLADDR(sdl), ETHER_ADDR_LEN);
3207 
3208 	/* Just want the 6 least significant bits. */
3209 	crc &= 0x3f;
3210 
3211 	/* Set the corresponding bit in the hash table. */
3212 	mchash[crc >> 5] |= 1 << (crc & 0x1f);
3213 
3214 	return (1);
3215 }
3216 
3217 static void
jme_set_filter(struct jme_softc * sc)3218 jme_set_filter(struct jme_softc *sc)
3219 {
3220 	if_t ifp;
3221 	uint32_t mchash[2];
3222 	uint32_t rxcfg;
3223 
3224 	JME_LOCK_ASSERT(sc);
3225 
3226 	ifp = sc->jme_ifp;
3227 
3228 	rxcfg = CSR_READ_4(sc, JME_RXMAC);
3229 	rxcfg &= ~ (RXMAC_BROADCAST | RXMAC_PROMISC | RXMAC_MULTICAST |
3230 	    RXMAC_ALLMULTI);
3231 	/* Always accept frames destined to our station address. */
3232 	rxcfg |= RXMAC_UNICAST;
3233 	if ((if_getflags(ifp) & IFF_BROADCAST) != 0)
3234 		rxcfg |= RXMAC_BROADCAST;
3235 	if ((if_getflags(ifp) & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
3236 		if ((if_getflags(ifp) & IFF_PROMISC) != 0)
3237 			rxcfg |= RXMAC_PROMISC;
3238 		if ((if_getflags(ifp) & IFF_ALLMULTI) != 0)
3239 			rxcfg |= RXMAC_ALLMULTI;
3240 		CSR_WRITE_4(sc, JME_MAR0, 0xFFFFFFFF);
3241 		CSR_WRITE_4(sc, JME_MAR1, 0xFFFFFFFF);
3242 		CSR_WRITE_4(sc, JME_RXMAC, rxcfg);
3243 		return;
3244 	}
3245 
3246 	/*
3247 	 * Set up the multicast address filter by passing all multicast
3248 	 * addresses through a CRC generator, and then using the low-order
3249 	 * 6 bits as an index into the 64 bit multicast hash table.  The
3250 	 * high order bits select the register, while the rest of the bits
3251 	 * select the bit within the register.
3252 	 */
3253 	rxcfg |= RXMAC_MULTICAST;
3254 	bzero(mchash, sizeof(mchash));
3255 	if_foreach_llmaddr(ifp, jme_hash_maddr, &mchash);
3256 
3257 	CSR_WRITE_4(sc, JME_MAR0, mchash[0]);
3258 	CSR_WRITE_4(sc, JME_MAR1, mchash[1]);
3259 	CSR_WRITE_4(sc, JME_RXMAC, rxcfg);
3260 }
3261 
3262 static void
jme_stats_clear(struct jme_softc * sc)3263 jme_stats_clear(struct jme_softc *sc)
3264 {
3265 
3266 	JME_LOCK_ASSERT(sc);
3267 
3268 	if ((sc->jme_flags & JME_FLAG_HWMIB) == 0)
3269 		return;
3270 
3271 	/* Disable and clear counters. */
3272 	CSR_WRITE_4(sc, JME_STATCSR, 0xFFFFFFFF);
3273 	/* Activate hw counters. */
3274 	CSR_WRITE_4(sc, JME_STATCSR, 0);
3275 	CSR_READ_4(sc, JME_STATCSR);
3276 	bzero(&sc->jme_stats, sizeof(struct jme_hw_stats));
3277 }
3278 
3279 static void
jme_stats_save(struct jme_softc * sc)3280 jme_stats_save(struct jme_softc *sc)
3281 {
3282 
3283 	JME_LOCK_ASSERT(sc);
3284 
3285 	if ((sc->jme_flags & JME_FLAG_HWMIB) == 0)
3286 		return;
3287 	/* Save current counters. */
3288 	bcopy(&sc->jme_stats, &sc->jme_ostats, sizeof(struct jme_hw_stats));
3289 	/* Disable and clear counters. */
3290 	CSR_WRITE_4(sc, JME_STATCSR, 0xFFFFFFFF);
3291 }
3292 
3293 static void
jme_stats_update(struct jme_softc * sc)3294 jme_stats_update(struct jme_softc *sc)
3295 {
3296 	struct jme_hw_stats *stat, *ostat;
3297 	uint32_t reg;
3298 
3299 	JME_LOCK_ASSERT(sc);
3300 
3301 	if ((sc->jme_flags & JME_FLAG_HWMIB) == 0)
3302 		return;
3303 	stat = &sc->jme_stats;
3304 	ostat = &sc->jme_ostats;
3305 	stat->tx_good_frames = CSR_READ_4(sc, JME_STAT_TXGOOD);
3306 	stat->rx_good_frames = CSR_READ_4(sc, JME_STAT_RXGOOD);
3307 	reg = CSR_READ_4(sc, JME_STAT_CRCMII);
3308 	stat->rx_crc_errs = (reg & STAT_RX_CRC_ERR_MASK) >>
3309 	    STAT_RX_CRC_ERR_SHIFT;
3310 	stat->rx_mii_errs = (reg & STAT_RX_MII_ERR_MASK) >>
3311 	    STAT_RX_MII_ERR_SHIFT;
3312 	reg = CSR_READ_4(sc, JME_STAT_RXERR);
3313 	stat->rx_fifo_oflows = (reg & STAT_RXERR_OFLOW_MASK) >>
3314 	    STAT_RXERR_OFLOW_SHIFT;
3315 	stat->rx_desc_empty = (reg & STAT_RXERR_MPTY_MASK) >>
3316 	    STAT_RXERR_MPTY_SHIFT;
3317 	reg = CSR_READ_4(sc, JME_STAT_FAIL);
3318 	stat->rx_bad_frames = (reg & STAT_FAIL_RX_MASK) >> STAT_FAIL_RX_SHIFT;
3319 	stat->tx_bad_frames = (reg & STAT_FAIL_TX_MASK) >> STAT_FAIL_TX_SHIFT;
3320 
3321 	/* Account for previous counters. */
3322 	stat->rx_good_frames += ostat->rx_good_frames;
3323 	stat->rx_crc_errs += ostat->rx_crc_errs;
3324 	stat->rx_mii_errs += ostat->rx_mii_errs;
3325 	stat->rx_fifo_oflows += ostat->rx_fifo_oflows;
3326 	stat->rx_desc_empty += ostat->rx_desc_empty;
3327 	stat->rx_bad_frames += ostat->rx_bad_frames;
3328 	stat->tx_good_frames += ostat->tx_good_frames;
3329 	stat->tx_bad_frames += ostat->tx_bad_frames;
3330 }
3331 
3332 static void
jme_phy_down(struct jme_softc * sc)3333 jme_phy_down(struct jme_softc *sc)
3334 {
3335 	uint32_t reg;
3336 
3337 	jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_BMCR, BMCR_PDOWN);
3338 	if (CHIPMODE_REVFM(sc->jme_chip_rev) >= 5) {
3339 		reg = CSR_READ_4(sc, JME_PHYPOWDN);
3340 		reg |= 0x0000000F;
3341 		CSR_WRITE_4(sc, JME_PHYPOWDN, reg);
3342 		reg = pci_read_config(sc->jme_dev, JME_PCI_PE1, 4);
3343 		reg &= ~PE1_GIGA_PDOWN_MASK;
3344 		reg |= PE1_GIGA_PDOWN_D3;
3345 		pci_write_config(sc->jme_dev, JME_PCI_PE1, reg, 4);
3346 	}
3347 }
3348 
3349 static void
jme_phy_up(struct jme_softc * sc)3350 jme_phy_up(struct jme_softc *sc)
3351 {
3352 	uint32_t reg;
3353 	uint16_t bmcr;
3354 
3355 	bmcr = jme_miibus_readreg(sc->jme_dev, sc->jme_phyaddr, MII_BMCR);
3356 	bmcr &= ~BMCR_PDOWN;
3357 	jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_BMCR, bmcr);
3358 	if (CHIPMODE_REVFM(sc->jme_chip_rev) >= 5) {
3359 		reg = CSR_READ_4(sc, JME_PHYPOWDN);
3360 		reg &= ~0x0000000F;
3361 		CSR_WRITE_4(sc, JME_PHYPOWDN, reg);
3362 		reg = pci_read_config(sc->jme_dev, JME_PCI_PE1, 4);
3363 		reg &= ~PE1_GIGA_PDOWN_MASK;
3364 		reg |= PE1_GIGA_PDOWN_DIS;
3365 		pci_write_config(sc->jme_dev, JME_PCI_PE1, reg, 4);
3366 	}
3367 }
3368 
3369 static int
sysctl_int_range(SYSCTL_HANDLER_ARGS,int low,int high)3370 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3371 {
3372 	int error, value;
3373 
3374 	if (arg1 == NULL)
3375 		return (EINVAL);
3376 	value = *(int *)arg1;
3377 	error = sysctl_handle_int(oidp, &value, 0, req);
3378 	if (error || req->newptr == NULL)
3379 		return (error);
3380 	if (value < low || value > high)
3381 		return (EINVAL);
3382         *(int *)arg1 = value;
3383 
3384         return (0);
3385 }
3386 
3387 static int
sysctl_hw_jme_tx_coal_to(SYSCTL_HANDLER_ARGS)3388 sysctl_hw_jme_tx_coal_to(SYSCTL_HANDLER_ARGS)
3389 {
3390 	return (sysctl_int_range(oidp, arg1, arg2, req,
3391 	    PCCTX_COAL_TO_MIN, PCCTX_COAL_TO_MAX));
3392 }
3393 
3394 static int
sysctl_hw_jme_tx_coal_pkt(SYSCTL_HANDLER_ARGS)3395 sysctl_hw_jme_tx_coal_pkt(SYSCTL_HANDLER_ARGS)
3396 {
3397 	return (sysctl_int_range(oidp, arg1, arg2, req,
3398 	    PCCTX_COAL_PKT_MIN, PCCTX_COAL_PKT_MAX));
3399 }
3400 
3401 static int
sysctl_hw_jme_rx_coal_to(SYSCTL_HANDLER_ARGS)3402 sysctl_hw_jme_rx_coal_to(SYSCTL_HANDLER_ARGS)
3403 {
3404 	return (sysctl_int_range(oidp, arg1, arg2, req,
3405 	    PCCRX_COAL_TO_MIN, PCCRX_COAL_TO_MAX));
3406 }
3407 
3408 static int
sysctl_hw_jme_rx_coal_pkt(SYSCTL_HANDLER_ARGS)3409 sysctl_hw_jme_rx_coal_pkt(SYSCTL_HANDLER_ARGS)
3410 {
3411 	return (sysctl_int_range(oidp, arg1, arg2, req,
3412 	    PCCRX_COAL_PKT_MIN, PCCRX_COAL_PKT_MAX));
3413 }
3414 
3415 static int
sysctl_hw_jme_proc_limit(SYSCTL_HANDLER_ARGS)3416 sysctl_hw_jme_proc_limit(SYSCTL_HANDLER_ARGS)
3417 {
3418 	return (sysctl_int_range(oidp, arg1, arg2, req,
3419 	    JME_PROC_MIN, JME_PROC_MAX));
3420 }
3421