xref: /linux/fs/jbd2/journal.c (revision 5c2a430e85994f4873ea5ec42091baa1153bc731)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * linux/fs/jbd2/journal.c
4  *
5  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
6  *
7  * Copyright 1998 Red Hat corp --- All Rights Reserved
8  *
9  * Generic filesystem journal-writing code; part of the ext2fs
10  * journaling system.
11  *
12  * This file manages journals: areas of disk reserved for logging
13  * transactional updates.  This includes the kernel journaling thread
14  * which is responsible for scheduling updates to the log.
15  *
16  * We do not actually manage the physical storage of the journal in this
17  * file: that is left to a per-journal policy function, which allows us
18  * to store the journal within a filesystem-specified area for ext2
19  * journaling (ext2 can use a reserved inode for storing the log).
20  */
21 
22 #include <linux/module.h>
23 #include <linux/time.h>
24 #include <linux/fs.h>
25 #include <linux/jbd2.h>
26 #include <linux/errno.h>
27 #include <linux/slab.h>
28 #include <linux/init.h>
29 #include <linux/mm.h>
30 #include <linux/freezer.h>
31 #include <linux/pagemap.h>
32 #include <linux/kthread.h>
33 #include <linux/poison.h>
34 #include <linux/proc_fs.h>
35 #include <linux/seq_file.h>
36 #include <linux/math64.h>
37 #include <linux/hash.h>
38 #include <linux/log2.h>
39 #include <linux/vmalloc.h>
40 #include <linux/backing-dev.h>
41 #include <linux/bitops.h>
42 #include <linux/ratelimit.h>
43 #include <linux/sched/mm.h>
44 
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/jbd2.h>
47 
48 #include <linux/uaccess.h>
49 #include <asm/page.h>
50 
51 #ifdef CONFIG_JBD2_DEBUG
52 static ushort jbd2_journal_enable_debug __read_mostly;
53 
54 module_param_named(jbd2_debug, jbd2_journal_enable_debug, ushort, 0644);
55 MODULE_PARM_DESC(jbd2_debug, "Debugging level for jbd2");
56 #endif
57 
58 EXPORT_SYMBOL(jbd2_journal_extend);
59 EXPORT_SYMBOL(jbd2_journal_stop);
60 EXPORT_SYMBOL(jbd2_journal_lock_updates);
61 EXPORT_SYMBOL(jbd2_journal_unlock_updates);
62 EXPORT_SYMBOL(jbd2_journal_get_write_access);
63 EXPORT_SYMBOL(jbd2_journal_get_create_access);
64 EXPORT_SYMBOL(jbd2_journal_get_undo_access);
65 EXPORT_SYMBOL(jbd2_journal_set_triggers);
66 EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
67 EXPORT_SYMBOL(jbd2_journal_forget);
68 EXPORT_SYMBOL(jbd2_journal_flush);
69 EXPORT_SYMBOL(jbd2_journal_revoke);
70 
71 EXPORT_SYMBOL(jbd2_journal_init_dev);
72 EXPORT_SYMBOL(jbd2_journal_init_inode);
73 EXPORT_SYMBOL(jbd2_journal_check_used_features);
74 EXPORT_SYMBOL(jbd2_journal_check_available_features);
75 EXPORT_SYMBOL(jbd2_journal_set_features);
76 EXPORT_SYMBOL(jbd2_journal_load);
77 EXPORT_SYMBOL(jbd2_journal_destroy);
78 EXPORT_SYMBOL(jbd2_journal_abort);
79 EXPORT_SYMBOL(jbd2_journal_errno);
80 EXPORT_SYMBOL(jbd2_journal_ack_err);
81 EXPORT_SYMBOL(jbd2_journal_clear_err);
82 EXPORT_SYMBOL(jbd2_log_wait_commit);
83 EXPORT_SYMBOL(jbd2_journal_start_commit);
84 EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
85 EXPORT_SYMBOL(jbd2_journal_wipe);
86 EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
87 EXPORT_SYMBOL(jbd2_journal_invalidate_folio);
88 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
89 EXPORT_SYMBOL(jbd2_journal_force_commit);
90 EXPORT_SYMBOL(jbd2_journal_inode_ranged_write);
91 EXPORT_SYMBOL(jbd2_journal_inode_ranged_wait);
92 EXPORT_SYMBOL(jbd2_journal_finish_inode_data_buffers);
93 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
94 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
95 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
96 EXPORT_SYMBOL(jbd2_inode_cache);
97 
98 static int jbd2_journal_create_slab(size_t slab_size);
99 
100 #ifdef CONFIG_JBD2_DEBUG
__jbd2_debug(int level,const char * file,const char * func,unsigned int line,const char * fmt,...)101 void __jbd2_debug(int level, const char *file, const char *func,
102 		  unsigned int line, const char *fmt, ...)
103 {
104 	struct va_format vaf;
105 	va_list args;
106 
107 	if (level > jbd2_journal_enable_debug)
108 		return;
109 	va_start(args, fmt);
110 	vaf.fmt = fmt;
111 	vaf.va = &args;
112 	printk(KERN_DEBUG "%s: (%s, %u): %pV", file, func, line, &vaf);
113 	va_end(args);
114 }
115 #endif
116 
117 /* Checksumming functions */
jbd2_superblock_csum(journal_t * j,journal_superblock_t * sb)118 static __be32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb)
119 {
120 	__u32 csum;
121 	__be32 old_csum;
122 
123 	old_csum = sb->s_checksum;
124 	sb->s_checksum = 0;
125 	csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t));
126 	sb->s_checksum = old_csum;
127 
128 	return cpu_to_be32(csum);
129 }
130 
131 /*
132  * Helper function used to manage commit timeouts
133  */
134 
commit_timeout(struct timer_list * t)135 static void commit_timeout(struct timer_list *t)
136 {
137 	journal_t *journal = from_timer(journal, t, j_commit_timer);
138 
139 	wake_up_process(journal->j_task);
140 }
141 
142 /*
143  * kjournald2: The main thread function used to manage a logging device
144  * journal.
145  *
146  * This kernel thread is responsible for two things:
147  *
148  * 1) COMMIT:  Every so often we need to commit the current state of the
149  *    filesystem to disk.  The journal thread is responsible for writing
150  *    all of the metadata buffers to disk. If a fast commit is ongoing
151  *    journal thread waits until it's done and then continues from
152  *    there on.
153  *
154  * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
155  *    of the data in that part of the log has been rewritten elsewhere on
156  *    the disk.  Flushing these old buffers to reclaim space in the log is
157  *    known as checkpointing, and this thread is responsible for that job.
158  */
159 
kjournald2(void * arg)160 static int kjournald2(void *arg)
161 {
162 	journal_t *journal = arg;
163 	transaction_t *transaction;
164 
165 	/*
166 	 * Set up an interval timer which can be used to trigger a commit wakeup
167 	 * after the commit interval expires
168 	 */
169 	timer_setup(&journal->j_commit_timer, commit_timeout, 0);
170 
171 	set_freezable();
172 
173 	/* Record that the journal thread is running */
174 	journal->j_task = current;
175 	wake_up(&journal->j_wait_done_commit);
176 
177 	/*
178 	 * Make sure that no allocations from this kernel thread will ever
179 	 * recurse to the fs layer because we are responsible for the
180 	 * transaction commit and any fs involvement might get stuck waiting for
181 	 * the trasn. commit.
182 	 */
183 	memalloc_nofs_save();
184 
185 	/*
186 	 * And now, wait forever for commit wakeup events.
187 	 */
188 	write_lock(&journal->j_state_lock);
189 
190 loop:
191 	if (journal->j_flags & JBD2_UNMOUNT)
192 		goto end_loop;
193 
194 	jbd2_debug(1, "commit_sequence=%u, commit_request=%u\n",
195 		journal->j_commit_sequence, journal->j_commit_request);
196 
197 	if (journal->j_commit_sequence != journal->j_commit_request) {
198 		jbd2_debug(1, "OK, requests differ\n");
199 		write_unlock(&journal->j_state_lock);
200 		del_timer_sync(&journal->j_commit_timer);
201 		jbd2_journal_commit_transaction(journal);
202 		write_lock(&journal->j_state_lock);
203 		goto loop;
204 	}
205 
206 	wake_up(&journal->j_wait_done_commit);
207 	if (freezing(current)) {
208 		/*
209 		 * The simpler the better. Flushing journal isn't a
210 		 * good idea, because that depends on threads that may
211 		 * be already stopped.
212 		 */
213 		jbd2_debug(1, "Now suspending kjournald2\n");
214 		write_unlock(&journal->j_state_lock);
215 		try_to_freeze();
216 		write_lock(&journal->j_state_lock);
217 	} else {
218 		/*
219 		 * We assume on resume that commits are already there,
220 		 * so we don't sleep
221 		 */
222 		DEFINE_WAIT(wait);
223 
224 		prepare_to_wait(&journal->j_wait_commit, &wait,
225 				TASK_INTERRUPTIBLE);
226 		transaction = journal->j_running_transaction;
227 		if (transaction == NULL ||
228 		    time_before(jiffies, transaction->t_expires)) {
229 			write_unlock(&journal->j_state_lock);
230 			schedule();
231 			write_lock(&journal->j_state_lock);
232 		}
233 		finish_wait(&journal->j_wait_commit, &wait);
234 	}
235 
236 	jbd2_debug(1, "kjournald2 wakes\n");
237 
238 	/*
239 	 * Were we woken up by a commit wakeup event?
240 	 */
241 	transaction = journal->j_running_transaction;
242 	if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
243 		journal->j_commit_request = transaction->t_tid;
244 		jbd2_debug(1, "woke because of timeout\n");
245 	}
246 	goto loop;
247 
248 end_loop:
249 	del_timer_sync(&journal->j_commit_timer);
250 	journal->j_task = NULL;
251 	wake_up(&journal->j_wait_done_commit);
252 	jbd2_debug(1, "Journal thread exiting.\n");
253 	write_unlock(&journal->j_state_lock);
254 	return 0;
255 }
256 
jbd2_journal_start_thread(journal_t * journal)257 static int jbd2_journal_start_thread(journal_t *journal)
258 {
259 	struct task_struct *t;
260 
261 	t = kthread_run(kjournald2, journal, "jbd2/%s",
262 			journal->j_devname);
263 	if (IS_ERR(t))
264 		return PTR_ERR(t);
265 
266 	wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
267 	return 0;
268 }
269 
journal_kill_thread(journal_t * journal)270 static void journal_kill_thread(journal_t *journal)
271 {
272 	write_lock(&journal->j_state_lock);
273 	journal->j_flags |= JBD2_UNMOUNT;
274 
275 	while (journal->j_task) {
276 		write_unlock(&journal->j_state_lock);
277 		wake_up(&journal->j_wait_commit);
278 		wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
279 		write_lock(&journal->j_state_lock);
280 	}
281 	write_unlock(&journal->j_state_lock);
282 }
283 
jbd2_data_needs_escaping(char * data)284 static inline bool jbd2_data_needs_escaping(char *data)
285 {
286 	return *((__be32 *)data) == cpu_to_be32(JBD2_MAGIC_NUMBER);
287 }
288 
jbd2_data_do_escape(char * data)289 static inline void jbd2_data_do_escape(char *data)
290 {
291 	*((unsigned int *)data) = 0;
292 }
293 
294 /*
295  * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
296  *
297  * Writes a metadata buffer to a given disk block.  The actual IO is not
298  * performed but a new buffer_head is constructed which labels the data
299  * to be written with the correct destination disk block.
300  *
301  * Any magic-number escaping which needs to be done will cause a
302  * copy-out here.  If the buffer happens to start with the
303  * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
304  * magic number is only written to the log for descripter blocks.  In
305  * this case, we copy the data and replace the first word with 0, and we
306  * return a result code which indicates that this buffer needs to be
307  * marked as an escaped buffer in the corresponding log descriptor
308  * block.  The missing word can then be restored when the block is read
309  * during recovery.
310  *
311  * If the source buffer has already been modified by a new transaction
312  * since we took the last commit snapshot, we use the frozen copy of
313  * that data for IO. If we end up using the existing buffer_head's data
314  * for the write, then we have to make sure nobody modifies it while the
315  * IO is in progress. do_get_write_access() handles this.
316  *
317  * The function returns a pointer to the buffer_head to be used for IO.
318  *
319  *
320  * Return value:
321  *  =0: Finished OK without escape
322  *  =1: Finished OK with escape
323  */
324 
jbd2_journal_write_metadata_buffer(transaction_t * transaction,struct journal_head * jh_in,struct buffer_head ** bh_out,sector_t blocknr)325 int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
326 				  struct journal_head  *jh_in,
327 				  struct buffer_head **bh_out,
328 				  sector_t blocknr)
329 {
330 	int do_escape = 0;
331 	struct buffer_head *new_bh;
332 	struct folio *new_folio;
333 	unsigned int new_offset;
334 	struct buffer_head *bh_in = jh2bh(jh_in);
335 	journal_t *journal = transaction->t_journal;
336 
337 	/*
338 	 * The buffer really shouldn't be locked: only the current committing
339 	 * transaction is allowed to write it, so nobody else is allowed
340 	 * to do any IO.
341 	 *
342 	 * akpm: except if we're journalling data, and write() output is
343 	 * also part of a shared mapping, and another thread has
344 	 * decided to launch a writepage() against this buffer.
345 	 */
346 	J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
347 
348 	new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL);
349 
350 	/* keep subsequent assertions sane */
351 	atomic_set(&new_bh->b_count, 1);
352 
353 	spin_lock(&jh_in->b_state_lock);
354 	/*
355 	 * If a new transaction has already done a buffer copy-out, then
356 	 * we use that version of the data for the commit.
357 	 */
358 	if (jh_in->b_frozen_data) {
359 		new_folio = virt_to_folio(jh_in->b_frozen_data);
360 		new_offset = offset_in_folio(new_folio, jh_in->b_frozen_data);
361 		do_escape = jbd2_data_needs_escaping(jh_in->b_frozen_data);
362 		if (do_escape)
363 			jbd2_data_do_escape(jh_in->b_frozen_data);
364 	} else {
365 		char *tmp;
366 		char *mapped_data;
367 
368 		new_folio = bh_in->b_folio;
369 		new_offset = offset_in_folio(new_folio, bh_in->b_data);
370 		mapped_data = kmap_local_folio(new_folio, new_offset);
371 		/*
372 		 * Fire data frozen trigger if data already wasn't frozen. Do
373 		 * this before checking for escaping, as the trigger may modify
374 		 * the magic offset.  If a copy-out happens afterwards, it will
375 		 * have the correct data in the buffer.
376 		 */
377 		jbd2_buffer_frozen_trigger(jh_in, mapped_data,
378 					   jh_in->b_triggers);
379 		do_escape = jbd2_data_needs_escaping(mapped_data);
380 		kunmap_local(mapped_data);
381 		/*
382 		 * Do we need to do a data copy?
383 		 */
384 		if (!do_escape)
385 			goto escape_done;
386 
387 		spin_unlock(&jh_in->b_state_lock);
388 		tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS | __GFP_NOFAIL);
389 		spin_lock(&jh_in->b_state_lock);
390 		if (jh_in->b_frozen_data) {
391 			jbd2_free(tmp, bh_in->b_size);
392 			goto copy_done;
393 		}
394 
395 		jh_in->b_frozen_data = tmp;
396 		memcpy_from_folio(tmp, new_folio, new_offset, bh_in->b_size);
397 		/*
398 		 * This isn't strictly necessary, as we're using frozen
399 		 * data for the escaping, but it keeps consistency with
400 		 * b_frozen_data usage.
401 		 */
402 		jh_in->b_frozen_triggers = jh_in->b_triggers;
403 
404 copy_done:
405 		new_folio = virt_to_folio(jh_in->b_frozen_data);
406 		new_offset = offset_in_folio(new_folio, jh_in->b_frozen_data);
407 		jbd2_data_do_escape(jh_in->b_frozen_data);
408 	}
409 
410 escape_done:
411 	folio_set_bh(new_bh, new_folio, new_offset);
412 	new_bh->b_size = bh_in->b_size;
413 	new_bh->b_bdev = journal->j_dev;
414 	new_bh->b_blocknr = blocknr;
415 	new_bh->b_private = bh_in;
416 	set_buffer_mapped(new_bh);
417 	set_buffer_dirty(new_bh);
418 
419 	*bh_out = new_bh;
420 
421 	/*
422 	 * The to-be-written buffer needs to get moved to the io queue,
423 	 * and the original buffer whose contents we are shadowing or
424 	 * copying is moved to the transaction's shadow queue.
425 	 */
426 	JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
427 	spin_lock(&journal->j_list_lock);
428 	__jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
429 	spin_unlock(&journal->j_list_lock);
430 	set_buffer_shadow(bh_in);
431 	spin_unlock(&jh_in->b_state_lock);
432 
433 	return do_escape;
434 }
435 
436 /*
437  * Allocation code for the journal file.  Manage the space left in the
438  * journal, so that we can begin checkpointing when appropriate.
439  */
440 
441 /*
442  * Called with j_state_lock locked for writing.
443  * Returns true if a transaction commit was started.
444  */
__jbd2_log_start_commit(journal_t * journal,tid_t target)445 static int __jbd2_log_start_commit(journal_t *journal, tid_t target)
446 {
447 	/* Return if the txn has already requested to be committed */
448 	if (journal->j_commit_request == target)
449 		return 0;
450 
451 	/*
452 	 * The only transaction we can possibly wait upon is the
453 	 * currently running transaction (if it exists).  Otherwise,
454 	 * the target tid must be an old one.
455 	 */
456 	if (journal->j_running_transaction &&
457 	    journal->j_running_transaction->t_tid == target) {
458 		/*
459 		 * We want a new commit: OK, mark the request and wakeup the
460 		 * commit thread.  We do _not_ do the commit ourselves.
461 		 */
462 
463 		journal->j_commit_request = target;
464 		jbd2_debug(1, "JBD2: requesting commit %u/%u\n",
465 			  journal->j_commit_request,
466 			  journal->j_commit_sequence);
467 		journal->j_running_transaction->t_requested = jiffies;
468 		wake_up(&journal->j_wait_commit);
469 		return 1;
470 	} else if (!tid_geq(journal->j_commit_request, target))
471 		/* This should never happen, but if it does, preserve
472 		   the evidence before kjournald goes into a loop and
473 		   increments j_commit_sequence beyond all recognition. */
474 		WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n",
475 			  journal->j_commit_request,
476 			  journal->j_commit_sequence,
477 			  target, journal->j_running_transaction ?
478 			  journal->j_running_transaction->t_tid : 0);
479 	return 0;
480 }
481 
jbd2_log_start_commit(journal_t * journal,tid_t tid)482 int jbd2_log_start_commit(journal_t *journal, tid_t tid)
483 {
484 	int ret;
485 
486 	write_lock(&journal->j_state_lock);
487 	ret = __jbd2_log_start_commit(journal, tid);
488 	write_unlock(&journal->j_state_lock);
489 	return ret;
490 }
491 
492 /*
493  * Force and wait any uncommitted transactions.  We can only force the running
494  * transaction if we don't have an active handle, otherwise, we will deadlock.
495  * Returns: <0 in case of error,
496  *           0 if nothing to commit,
497  *           1 if transaction was successfully committed.
498  */
__jbd2_journal_force_commit(journal_t * journal)499 static int __jbd2_journal_force_commit(journal_t *journal)
500 {
501 	transaction_t *transaction = NULL;
502 	tid_t tid;
503 	int need_to_start = 0, ret = 0;
504 
505 	read_lock(&journal->j_state_lock);
506 	if (journal->j_running_transaction && !current->journal_info) {
507 		transaction = journal->j_running_transaction;
508 		if (!tid_geq(journal->j_commit_request, transaction->t_tid))
509 			need_to_start = 1;
510 	} else if (journal->j_committing_transaction)
511 		transaction = journal->j_committing_transaction;
512 
513 	if (!transaction) {
514 		/* Nothing to commit */
515 		read_unlock(&journal->j_state_lock);
516 		return 0;
517 	}
518 	tid = transaction->t_tid;
519 	read_unlock(&journal->j_state_lock);
520 	if (need_to_start)
521 		jbd2_log_start_commit(journal, tid);
522 	ret = jbd2_log_wait_commit(journal, tid);
523 	if (!ret)
524 		ret = 1;
525 
526 	return ret;
527 }
528 
529 /**
530  * jbd2_journal_force_commit_nested - Force and wait upon a commit if the
531  * calling process is not within transaction.
532  *
533  * @journal: journal to force
534  * Returns true if progress was made.
535  *
536  * This is used for forcing out undo-protected data which contains
537  * bitmaps, when the fs is running out of space.
538  */
jbd2_journal_force_commit_nested(journal_t * journal)539 int jbd2_journal_force_commit_nested(journal_t *journal)
540 {
541 	int ret;
542 
543 	ret = __jbd2_journal_force_commit(journal);
544 	return ret > 0;
545 }
546 
547 /**
548  * jbd2_journal_force_commit() - force any uncommitted transactions
549  * @journal: journal to force
550  *
551  * Caller want unconditional commit. We can only force the running transaction
552  * if we don't have an active handle, otherwise, we will deadlock.
553  */
jbd2_journal_force_commit(journal_t * journal)554 int jbd2_journal_force_commit(journal_t *journal)
555 {
556 	int ret;
557 
558 	J_ASSERT(!current->journal_info);
559 	ret = __jbd2_journal_force_commit(journal);
560 	if (ret > 0)
561 		ret = 0;
562 	return ret;
563 }
564 
565 /*
566  * Start a commit of the current running transaction (if any).  Returns true
567  * if a transaction is going to be committed (or is currently already
568  * committing), and fills its tid in at *ptid
569  */
jbd2_journal_start_commit(journal_t * journal,tid_t * ptid)570 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
571 {
572 	int ret = 0;
573 
574 	write_lock(&journal->j_state_lock);
575 	if (journal->j_running_transaction) {
576 		tid_t tid = journal->j_running_transaction->t_tid;
577 
578 		__jbd2_log_start_commit(journal, tid);
579 		/* There's a running transaction and we've just made sure
580 		 * it's commit has been scheduled. */
581 		if (ptid)
582 			*ptid = tid;
583 		ret = 1;
584 	} else if (journal->j_committing_transaction) {
585 		/*
586 		 * If commit has been started, then we have to wait for
587 		 * completion of that transaction.
588 		 */
589 		if (ptid)
590 			*ptid = journal->j_committing_transaction->t_tid;
591 		ret = 1;
592 	}
593 	write_unlock(&journal->j_state_lock);
594 	return ret;
595 }
596 
597 /*
598  * Return 1 if a given transaction has not yet sent barrier request
599  * connected with a transaction commit. If 0 is returned, transaction
600  * may or may not have sent the barrier. Used to avoid sending barrier
601  * twice in common cases.
602  */
jbd2_trans_will_send_data_barrier(journal_t * journal,tid_t tid)603 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
604 {
605 	int ret = 0;
606 	transaction_t *commit_trans, *running_trans;
607 
608 	if (!(journal->j_flags & JBD2_BARRIER))
609 		return 0;
610 	read_lock(&journal->j_state_lock);
611 	/* Transaction already committed? */
612 	if (tid_geq(journal->j_commit_sequence, tid))
613 		goto out;
614 	commit_trans = journal->j_committing_transaction;
615 	if (!commit_trans || commit_trans->t_tid != tid) {
616 		running_trans = journal->j_running_transaction;
617 		/*
618 		 * The query transaction hasn't started committing,
619 		 * it must still be running.
620 		 */
621 		if (WARN_ON_ONCE(!running_trans ||
622 				 running_trans->t_tid != tid))
623 			goto out;
624 
625 		running_trans->t_need_data_flush = 1;
626 		ret = 1;
627 		goto out;
628 	}
629 	/*
630 	 * Transaction is being committed and we already proceeded to
631 	 * submitting a flush to fs partition?
632 	 */
633 	if (journal->j_fs_dev != journal->j_dev) {
634 		if (!commit_trans->t_need_data_flush ||
635 		    commit_trans->t_state >= T_COMMIT_DFLUSH)
636 			goto out;
637 	} else {
638 		if (commit_trans->t_state >= T_COMMIT_JFLUSH)
639 			goto out;
640 	}
641 	ret = 1;
642 out:
643 	read_unlock(&journal->j_state_lock);
644 	return ret;
645 }
646 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier);
647 
648 /*
649  * Wait for a specified commit to complete.
650  * The caller may not hold the journal lock.
651  */
jbd2_log_wait_commit(journal_t * journal,tid_t tid)652 int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
653 {
654 	int err = 0;
655 
656 	read_lock(&journal->j_state_lock);
657 #ifdef CONFIG_PROVE_LOCKING
658 	/*
659 	 * Some callers make sure transaction is already committing and in that
660 	 * case we cannot block on open handles anymore. So don't warn in that
661 	 * case.
662 	 */
663 	if (tid_gt(tid, journal->j_commit_sequence) &&
664 	    (!journal->j_committing_transaction ||
665 	     journal->j_committing_transaction->t_tid != tid)) {
666 		read_unlock(&journal->j_state_lock);
667 		jbd2_might_wait_for_commit(journal);
668 		read_lock(&journal->j_state_lock);
669 	}
670 #endif
671 #ifdef CONFIG_JBD2_DEBUG
672 	if (!tid_geq(journal->j_commit_request, tid)) {
673 		printk(KERN_ERR
674 		       "%s: error: j_commit_request=%u, tid=%u\n",
675 		       __func__, journal->j_commit_request, tid);
676 	}
677 #endif
678 	while (tid_gt(tid, journal->j_commit_sequence)) {
679 		jbd2_debug(1, "JBD2: want %u, j_commit_sequence=%u\n",
680 				  tid, journal->j_commit_sequence);
681 		read_unlock(&journal->j_state_lock);
682 		wake_up(&journal->j_wait_commit);
683 		wait_event(journal->j_wait_done_commit,
684 				!tid_gt(tid, journal->j_commit_sequence));
685 		read_lock(&journal->j_state_lock);
686 	}
687 	read_unlock(&journal->j_state_lock);
688 
689 	if (unlikely(is_journal_aborted(journal)))
690 		err = -EIO;
691 	return err;
692 }
693 
694 /*
695  * Start a fast commit. If there's an ongoing fast or full commit wait for
696  * it to complete. Returns 0 if a new fast commit was started. Returns -EALREADY
697  * if a fast commit is not needed, either because there's an already a commit
698  * going on or this tid has already been committed. Returns -EINVAL if no jbd2
699  * commit has yet been performed.
700  */
jbd2_fc_begin_commit(journal_t * journal,tid_t tid)701 int jbd2_fc_begin_commit(journal_t *journal, tid_t tid)
702 {
703 	if (unlikely(is_journal_aborted(journal)))
704 		return -EIO;
705 	/*
706 	 * Fast commits only allowed if at least one full commit has
707 	 * been processed.
708 	 */
709 	if (!journal->j_stats.ts_tid)
710 		return -EINVAL;
711 
712 	write_lock(&journal->j_state_lock);
713 	if (tid_geq(journal->j_commit_sequence, tid)) {
714 		write_unlock(&journal->j_state_lock);
715 		return -EALREADY;
716 	}
717 
718 	if (journal->j_flags & JBD2_FULL_COMMIT_ONGOING ||
719 	    (journal->j_flags & JBD2_FAST_COMMIT_ONGOING)) {
720 		DEFINE_WAIT(wait);
721 
722 		prepare_to_wait(&journal->j_fc_wait, &wait,
723 				TASK_UNINTERRUPTIBLE);
724 		write_unlock(&journal->j_state_lock);
725 		schedule();
726 		finish_wait(&journal->j_fc_wait, &wait);
727 		return -EALREADY;
728 	}
729 	journal->j_flags |= JBD2_FAST_COMMIT_ONGOING;
730 	write_unlock(&journal->j_state_lock);
731 	jbd2_journal_lock_updates(journal);
732 
733 	return 0;
734 }
735 EXPORT_SYMBOL(jbd2_fc_begin_commit);
736 
737 /*
738  * Stop a fast commit. If fallback is set, this function starts commit of
739  * TID tid before any other fast commit can start.
740  */
__jbd2_fc_end_commit(journal_t * journal,tid_t tid,bool fallback)741 static int __jbd2_fc_end_commit(journal_t *journal, tid_t tid, bool fallback)
742 {
743 	if (journal->j_fc_cleanup_callback)
744 		journal->j_fc_cleanup_callback(journal, 0, tid);
745 	jbd2_journal_unlock_updates(journal);
746 	write_lock(&journal->j_state_lock);
747 	journal->j_flags &= ~JBD2_FAST_COMMIT_ONGOING;
748 	if (fallback)
749 		journal->j_flags |= JBD2_FULL_COMMIT_ONGOING;
750 	write_unlock(&journal->j_state_lock);
751 	wake_up(&journal->j_fc_wait);
752 	if (fallback)
753 		return jbd2_complete_transaction(journal, tid);
754 	return 0;
755 }
756 
jbd2_fc_end_commit(journal_t * journal)757 int jbd2_fc_end_commit(journal_t *journal)
758 {
759 	return __jbd2_fc_end_commit(journal, 0, false);
760 }
761 EXPORT_SYMBOL(jbd2_fc_end_commit);
762 
jbd2_fc_end_commit_fallback(journal_t * journal)763 int jbd2_fc_end_commit_fallback(journal_t *journal)
764 {
765 	tid_t tid;
766 
767 	read_lock(&journal->j_state_lock);
768 	tid = journal->j_running_transaction ?
769 		journal->j_running_transaction->t_tid : 0;
770 	read_unlock(&journal->j_state_lock);
771 	return __jbd2_fc_end_commit(journal, tid, true);
772 }
773 EXPORT_SYMBOL(jbd2_fc_end_commit_fallback);
774 
775 /* Return 1 when transaction with given tid has already committed. */
jbd2_transaction_committed(journal_t * journal,tid_t tid)776 int jbd2_transaction_committed(journal_t *journal, tid_t tid)
777 {
778 	return tid_geq(READ_ONCE(journal->j_commit_sequence), tid);
779 }
780 EXPORT_SYMBOL(jbd2_transaction_committed);
781 
782 /*
783  * When this function returns the transaction corresponding to tid
784  * will be completed.  If the transaction has currently running, start
785  * committing that transaction before waiting for it to complete.  If
786  * the transaction id is stale, it is by definition already completed,
787  * so just return SUCCESS.
788  */
jbd2_complete_transaction(journal_t * journal,tid_t tid)789 int jbd2_complete_transaction(journal_t *journal, tid_t tid)
790 {
791 	int	need_to_wait = 1;
792 
793 	read_lock(&journal->j_state_lock);
794 	if (journal->j_running_transaction &&
795 	    journal->j_running_transaction->t_tid == tid) {
796 		if (journal->j_commit_request != tid) {
797 			/* transaction not yet started, so request it */
798 			read_unlock(&journal->j_state_lock);
799 			jbd2_log_start_commit(journal, tid);
800 			goto wait_commit;
801 		}
802 	} else if (!(journal->j_committing_transaction &&
803 		     journal->j_committing_transaction->t_tid == tid))
804 		need_to_wait = 0;
805 	read_unlock(&journal->j_state_lock);
806 	if (!need_to_wait)
807 		return 0;
808 wait_commit:
809 	return jbd2_log_wait_commit(journal, tid);
810 }
811 EXPORT_SYMBOL(jbd2_complete_transaction);
812 
813 /*
814  * Log buffer allocation routines:
815  */
816 
jbd2_journal_next_log_block(journal_t * journal,unsigned long long * retp)817 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
818 {
819 	unsigned long blocknr;
820 
821 	write_lock(&journal->j_state_lock);
822 	J_ASSERT(journal->j_free > 1);
823 
824 	blocknr = journal->j_head;
825 	journal->j_head++;
826 	journal->j_free--;
827 	if (journal->j_head == journal->j_last)
828 		journal->j_head = journal->j_first;
829 	write_unlock(&journal->j_state_lock);
830 	return jbd2_journal_bmap(journal, blocknr, retp);
831 }
832 
833 /* Map one fast commit buffer for use by the file system */
jbd2_fc_get_buf(journal_t * journal,struct buffer_head ** bh_out)834 int jbd2_fc_get_buf(journal_t *journal, struct buffer_head **bh_out)
835 {
836 	unsigned long long pblock;
837 	unsigned long blocknr;
838 	int ret = 0;
839 	struct buffer_head *bh;
840 	int fc_off;
841 
842 	*bh_out = NULL;
843 
844 	if (journal->j_fc_off + journal->j_fc_first >= journal->j_fc_last)
845 		return -EINVAL;
846 
847 	fc_off = journal->j_fc_off;
848 	blocknr = journal->j_fc_first + fc_off;
849 	journal->j_fc_off++;
850 	ret = jbd2_journal_bmap(journal, blocknr, &pblock);
851 	if (ret)
852 		return ret;
853 
854 	bh = __getblk(journal->j_dev, pblock, journal->j_blocksize);
855 	if (!bh)
856 		return -ENOMEM;
857 
858 	journal->j_fc_wbuf[fc_off] = bh;
859 
860 	*bh_out = bh;
861 
862 	return 0;
863 }
864 EXPORT_SYMBOL(jbd2_fc_get_buf);
865 
866 /*
867  * Wait on fast commit buffers that were allocated by jbd2_fc_get_buf
868  * for completion.
869  */
jbd2_fc_wait_bufs(journal_t * journal,int num_blks)870 int jbd2_fc_wait_bufs(journal_t *journal, int num_blks)
871 {
872 	struct buffer_head *bh;
873 	int i, j_fc_off;
874 
875 	j_fc_off = journal->j_fc_off;
876 
877 	/*
878 	 * Wait in reverse order to minimize chances of us being woken up before
879 	 * all IOs have completed
880 	 */
881 	for (i = j_fc_off - 1; i >= j_fc_off - num_blks; i--) {
882 		bh = journal->j_fc_wbuf[i];
883 		wait_on_buffer(bh);
884 		/*
885 		 * Update j_fc_off so jbd2_fc_release_bufs can release remain
886 		 * buffer head.
887 		 */
888 		if (unlikely(!buffer_uptodate(bh))) {
889 			journal->j_fc_off = i + 1;
890 			return -EIO;
891 		}
892 		put_bh(bh);
893 		journal->j_fc_wbuf[i] = NULL;
894 	}
895 
896 	return 0;
897 }
898 EXPORT_SYMBOL(jbd2_fc_wait_bufs);
899 
jbd2_fc_release_bufs(journal_t * journal)900 void jbd2_fc_release_bufs(journal_t *journal)
901 {
902 	struct buffer_head *bh;
903 	int i, j_fc_off;
904 
905 	j_fc_off = journal->j_fc_off;
906 
907 	for (i = j_fc_off - 1; i >= 0; i--) {
908 		bh = journal->j_fc_wbuf[i];
909 		if (!bh)
910 			break;
911 		put_bh(bh);
912 		journal->j_fc_wbuf[i] = NULL;
913 	}
914 }
915 EXPORT_SYMBOL(jbd2_fc_release_bufs);
916 
917 /*
918  * Conversion of logical to physical block numbers for the journal
919  *
920  * On external journals the journal blocks are identity-mapped, so
921  * this is a no-op.  If needed, we can use j_blk_offset - everything is
922  * ready.
923  */
jbd2_journal_bmap(journal_t * journal,unsigned long blocknr,unsigned long long * retp)924 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
925 		 unsigned long long *retp)
926 {
927 	int err = 0;
928 	unsigned long long ret;
929 	sector_t block = blocknr;
930 
931 	if (journal->j_bmap) {
932 		err = journal->j_bmap(journal, &block);
933 		if (err == 0)
934 			*retp = block;
935 	} else if (journal->j_inode) {
936 		ret = bmap(journal->j_inode, &block);
937 
938 		if (ret || !block) {
939 			printk(KERN_ALERT "%s: journal block not found "
940 					"at offset %lu on %s\n",
941 			       __func__, blocknr, journal->j_devname);
942 			err = -EIO;
943 			jbd2_journal_abort(journal, err);
944 		} else {
945 			*retp = block;
946 		}
947 
948 	} else {
949 		*retp = blocknr; /* +journal->j_blk_offset */
950 	}
951 	return err;
952 }
953 
954 /*
955  * We play buffer_head aliasing tricks to write data/metadata blocks to
956  * the journal without copying their contents, but for journal
957  * descriptor blocks we do need to generate bona fide buffers.
958  *
959  * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
960  * the buffer's contents they really should run flush_dcache_folio(bh->b_folio).
961  * But we don't bother doing that, so there will be coherency problems with
962  * mmaps of blockdevs which hold live JBD-controlled filesystems.
963  */
964 struct buffer_head *
jbd2_journal_get_descriptor_buffer(transaction_t * transaction,int type)965 jbd2_journal_get_descriptor_buffer(transaction_t *transaction, int type)
966 {
967 	journal_t *journal = transaction->t_journal;
968 	struct buffer_head *bh;
969 	unsigned long long blocknr;
970 	journal_header_t *header;
971 	int err;
972 
973 	err = jbd2_journal_next_log_block(journal, &blocknr);
974 
975 	if (err)
976 		return NULL;
977 
978 	bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
979 	if (!bh)
980 		return NULL;
981 	atomic_dec(&transaction->t_outstanding_credits);
982 	lock_buffer(bh);
983 	memset(bh->b_data, 0, journal->j_blocksize);
984 	header = (journal_header_t *)bh->b_data;
985 	header->h_magic = cpu_to_be32(JBD2_MAGIC_NUMBER);
986 	header->h_blocktype = cpu_to_be32(type);
987 	header->h_sequence = cpu_to_be32(transaction->t_tid);
988 	set_buffer_uptodate(bh);
989 	unlock_buffer(bh);
990 	BUFFER_TRACE(bh, "return this buffer");
991 	return bh;
992 }
993 
jbd2_descriptor_block_csum_set(journal_t * j,struct buffer_head * bh)994 void jbd2_descriptor_block_csum_set(journal_t *j, struct buffer_head *bh)
995 {
996 	struct jbd2_journal_block_tail *tail;
997 	__u32 csum;
998 
999 	if (!jbd2_journal_has_csum_v2or3(j))
1000 		return;
1001 
1002 	tail = (struct jbd2_journal_block_tail *)(bh->b_data + j->j_blocksize -
1003 			sizeof(struct jbd2_journal_block_tail));
1004 	tail->t_checksum = 0;
1005 	csum = jbd2_chksum(j, j->j_csum_seed, bh->b_data, j->j_blocksize);
1006 	tail->t_checksum = cpu_to_be32(csum);
1007 }
1008 
1009 /*
1010  * Return tid of the oldest transaction in the journal and block in the journal
1011  * where the transaction starts.
1012  *
1013  * If the journal is now empty, return which will be the next transaction ID
1014  * we will write and where will that transaction start.
1015  *
1016  * The return value is 0 if journal tail cannot be pushed any further, 1 if
1017  * it can.
1018  */
jbd2_journal_get_log_tail(journal_t * journal,tid_t * tid,unsigned long * block)1019 int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid,
1020 			      unsigned long *block)
1021 {
1022 	transaction_t *transaction;
1023 	int ret;
1024 
1025 	read_lock(&journal->j_state_lock);
1026 	spin_lock(&journal->j_list_lock);
1027 	transaction = journal->j_checkpoint_transactions;
1028 	if (transaction) {
1029 		*tid = transaction->t_tid;
1030 		*block = transaction->t_log_start;
1031 	} else if ((transaction = journal->j_committing_transaction) != NULL) {
1032 		*tid = transaction->t_tid;
1033 		*block = transaction->t_log_start;
1034 	} else if ((transaction = journal->j_running_transaction) != NULL) {
1035 		*tid = transaction->t_tid;
1036 		*block = journal->j_head;
1037 	} else {
1038 		*tid = journal->j_transaction_sequence;
1039 		*block = journal->j_head;
1040 	}
1041 	ret = tid_gt(*tid, journal->j_tail_sequence);
1042 	spin_unlock(&journal->j_list_lock);
1043 	read_unlock(&journal->j_state_lock);
1044 
1045 	return ret;
1046 }
1047 
1048 /*
1049  * Update information in journal structure and in on disk journal superblock
1050  * about log tail. This function does not check whether information passed in
1051  * really pushes log tail further. It's responsibility of the caller to make
1052  * sure provided log tail information is valid (e.g. by holding
1053  * j_checkpoint_mutex all the time between computing log tail and calling this
1054  * function as is the case with jbd2_cleanup_journal_tail()).
1055  *
1056  * Requires j_checkpoint_mutex
1057  */
__jbd2_update_log_tail(journal_t * journal,tid_t tid,unsigned long block)1058 int __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
1059 {
1060 	unsigned long freed;
1061 	int ret;
1062 
1063 	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1064 
1065 	/*
1066 	 * We cannot afford for write to remain in drive's caches since as
1067 	 * soon as we update j_tail, next transaction can start reusing journal
1068 	 * space and if we lose sb update during power failure we'd replay
1069 	 * old transaction with possibly newly overwritten data.
1070 	 */
1071 	ret = jbd2_journal_update_sb_log_tail(journal, tid, block, REQ_FUA);
1072 	if (ret)
1073 		goto out;
1074 
1075 	write_lock(&journal->j_state_lock);
1076 	freed = block - journal->j_tail;
1077 	if (block < journal->j_tail)
1078 		freed += journal->j_last - journal->j_first;
1079 
1080 	trace_jbd2_update_log_tail(journal, tid, block, freed);
1081 	jbd2_debug(1,
1082 		  "Cleaning journal tail from %u to %u (offset %lu), "
1083 		  "freeing %lu\n",
1084 		  journal->j_tail_sequence, tid, block, freed);
1085 
1086 	journal->j_free += freed;
1087 	journal->j_tail_sequence = tid;
1088 	journal->j_tail = block;
1089 	write_unlock(&journal->j_state_lock);
1090 
1091 out:
1092 	return ret;
1093 }
1094 
1095 /*
1096  * This is a variation of __jbd2_update_log_tail which checks for validity of
1097  * provided log tail and locks j_checkpoint_mutex. So it is safe against races
1098  * with other threads updating log tail.
1099  */
jbd2_update_log_tail(journal_t * journal,tid_t tid,unsigned long block)1100 void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
1101 {
1102 	mutex_lock_io(&journal->j_checkpoint_mutex);
1103 	if (tid_gt(tid, journal->j_tail_sequence))
1104 		__jbd2_update_log_tail(journal, tid, block);
1105 	mutex_unlock(&journal->j_checkpoint_mutex);
1106 }
1107 
1108 struct jbd2_stats_proc_session {
1109 	journal_t *journal;
1110 	struct transaction_stats_s *stats;
1111 	int start;
1112 	int max;
1113 };
1114 
jbd2_seq_info_start(struct seq_file * seq,loff_t * pos)1115 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
1116 {
1117 	return *pos ? NULL : SEQ_START_TOKEN;
1118 }
1119 
jbd2_seq_info_next(struct seq_file * seq,void * v,loff_t * pos)1120 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
1121 {
1122 	(*pos)++;
1123 	return NULL;
1124 }
1125 
jbd2_seq_info_show(struct seq_file * seq,void * v)1126 static int jbd2_seq_info_show(struct seq_file *seq, void *v)
1127 {
1128 	struct jbd2_stats_proc_session *s = seq->private;
1129 
1130 	if (v != SEQ_START_TOKEN)
1131 		return 0;
1132 	seq_printf(seq, "%lu transactions (%lu requested), "
1133 		   "each up to %u blocks\n",
1134 		   s->stats->ts_tid, s->stats->ts_requested,
1135 		   s->journal->j_max_transaction_buffers);
1136 	if (s->stats->ts_tid == 0)
1137 		return 0;
1138 	seq_printf(seq, "average: \n  %ums waiting for transaction\n",
1139 	    jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
1140 	seq_printf(seq, "  %ums request delay\n",
1141 	    (s->stats->ts_requested == 0) ? 0 :
1142 	    jiffies_to_msecs(s->stats->run.rs_request_delay /
1143 			     s->stats->ts_requested));
1144 	seq_printf(seq, "  %ums running transaction\n",
1145 	    jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
1146 	seq_printf(seq, "  %ums transaction was being locked\n",
1147 	    jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
1148 	seq_printf(seq, "  %ums flushing data (in ordered mode)\n",
1149 	    jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
1150 	seq_printf(seq, "  %ums logging transaction\n",
1151 	    jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
1152 	seq_printf(seq, "  %lluus average transaction commit time\n",
1153 		   div_u64(s->journal->j_average_commit_time, 1000));
1154 	seq_printf(seq, "  %lu handles per transaction\n",
1155 	    s->stats->run.rs_handle_count / s->stats->ts_tid);
1156 	seq_printf(seq, "  %lu blocks per transaction\n",
1157 	    s->stats->run.rs_blocks / s->stats->ts_tid);
1158 	seq_printf(seq, "  %lu logged blocks per transaction\n",
1159 	    s->stats->run.rs_blocks_logged / s->stats->ts_tid);
1160 	return 0;
1161 }
1162 
jbd2_seq_info_stop(struct seq_file * seq,void * v)1163 static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
1164 {
1165 }
1166 
1167 static const struct seq_operations jbd2_seq_info_ops = {
1168 	.start  = jbd2_seq_info_start,
1169 	.next   = jbd2_seq_info_next,
1170 	.stop   = jbd2_seq_info_stop,
1171 	.show   = jbd2_seq_info_show,
1172 };
1173 
jbd2_seq_info_open(struct inode * inode,struct file * file)1174 static int jbd2_seq_info_open(struct inode *inode, struct file *file)
1175 {
1176 	journal_t *journal = pde_data(inode);
1177 	struct jbd2_stats_proc_session *s;
1178 	int rc, size;
1179 
1180 	s = kmalloc(sizeof(*s), GFP_KERNEL);
1181 	if (s == NULL)
1182 		return -ENOMEM;
1183 	size = sizeof(struct transaction_stats_s);
1184 	s->stats = kmalloc(size, GFP_KERNEL);
1185 	if (s->stats == NULL) {
1186 		kfree(s);
1187 		return -ENOMEM;
1188 	}
1189 	spin_lock(&journal->j_history_lock);
1190 	memcpy(s->stats, &journal->j_stats, size);
1191 	s->journal = journal;
1192 	spin_unlock(&journal->j_history_lock);
1193 
1194 	rc = seq_open(file, &jbd2_seq_info_ops);
1195 	if (rc == 0) {
1196 		struct seq_file *m = file->private_data;
1197 		m->private = s;
1198 	} else {
1199 		kfree(s->stats);
1200 		kfree(s);
1201 	}
1202 	return rc;
1203 
1204 }
1205 
jbd2_seq_info_release(struct inode * inode,struct file * file)1206 static int jbd2_seq_info_release(struct inode *inode, struct file *file)
1207 {
1208 	struct seq_file *seq = file->private_data;
1209 	struct jbd2_stats_proc_session *s = seq->private;
1210 	kfree(s->stats);
1211 	kfree(s);
1212 	return seq_release(inode, file);
1213 }
1214 
1215 static const struct proc_ops jbd2_info_proc_ops = {
1216 	.proc_open	= jbd2_seq_info_open,
1217 	.proc_read	= seq_read,
1218 	.proc_lseek	= seq_lseek,
1219 	.proc_release	= jbd2_seq_info_release,
1220 };
1221 
1222 static struct proc_dir_entry *proc_jbd2_stats;
1223 
jbd2_stats_proc_init(journal_t * journal)1224 static void jbd2_stats_proc_init(journal_t *journal)
1225 {
1226 	journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
1227 	if (journal->j_proc_entry) {
1228 		proc_create_data("info", S_IRUGO, journal->j_proc_entry,
1229 				 &jbd2_info_proc_ops, journal);
1230 	}
1231 }
1232 
jbd2_stats_proc_exit(journal_t * journal)1233 static void jbd2_stats_proc_exit(journal_t *journal)
1234 {
1235 	remove_proc_entry("info", journal->j_proc_entry);
1236 	remove_proc_entry(journal->j_devname, proc_jbd2_stats);
1237 }
1238 
1239 /* Minimum size of descriptor tag */
jbd2_min_tag_size(void)1240 static int jbd2_min_tag_size(void)
1241 {
1242 	/*
1243 	 * Tag with 32-bit block numbers does not use last four bytes of the
1244 	 * structure
1245 	 */
1246 	return sizeof(journal_block_tag_t) - 4;
1247 }
1248 
1249 /**
1250  * jbd2_journal_shrink_scan()
1251  * @shrink: shrinker to work on
1252  * @sc: reclaim request to process
1253  *
1254  * Scan the checkpointed buffer on the checkpoint list and release the
1255  * journal_head.
1256  */
jbd2_journal_shrink_scan(struct shrinker * shrink,struct shrink_control * sc)1257 static unsigned long jbd2_journal_shrink_scan(struct shrinker *shrink,
1258 					      struct shrink_control *sc)
1259 {
1260 	journal_t *journal = shrink->private_data;
1261 	unsigned long nr_to_scan = sc->nr_to_scan;
1262 	unsigned long nr_shrunk;
1263 	unsigned long count;
1264 
1265 	count = percpu_counter_read_positive(&journal->j_checkpoint_jh_count);
1266 	trace_jbd2_shrink_scan_enter(journal, sc->nr_to_scan, count);
1267 
1268 	nr_shrunk = jbd2_journal_shrink_checkpoint_list(journal, &nr_to_scan);
1269 
1270 	count = percpu_counter_read_positive(&journal->j_checkpoint_jh_count);
1271 	trace_jbd2_shrink_scan_exit(journal, nr_to_scan, nr_shrunk, count);
1272 
1273 	return nr_shrunk;
1274 }
1275 
1276 /**
1277  * jbd2_journal_shrink_count()
1278  * @shrink: shrinker to work on
1279  * @sc: reclaim request to process
1280  *
1281  * Count the number of checkpoint buffers on the checkpoint list.
1282  */
jbd2_journal_shrink_count(struct shrinker * shrink,struct shrink_control * sc)1283 static unsigned long jbd2_journal_shrink_count(struct shrinker *shrink,
1284 					       struct shrink_control *sc)
1285 {
1286 	journal_t *journal = shrink->private_data;
1287 	unsigned long count;
1288 
1289 	count = percpu_counter_read_positive(&journal->j_checkpoint_jh_count);
1290 	trace_jbd2_shrink_count(journal, sc->nr_to_scan, count);
1291 
1292 	return count;
1293 }
1294 
1295 /*
1296  * If the journal init or create aborts, we need to mark the journal
1297  * superblock as being NULL to prevent the journal destroy from writing
1298  * back a bogus superblock.
1299  */
journal_fail_superblock(journal_t * journal)1300 static void journal_fail_superblock(journal_t *journal)
1301 {
1302 	struct buffer_head *bh = journal->j_sb_buffer;
1303 	brelse(bh);
1304 	journal->j_sb_buffer = NULL;
1305 }
1306 
1307 /*
1308  * Check the superblock for a given journal, performing initial
1309  * validation of the format.
1310  */
journal_check_superblock(journal_t * journal)1311 static int journal_check_superblock(journal_t *journal)
1312 {
1313 	journal_superblock_t *sb = journal->j_superblock;
1314 	int num_fc_blks;
1315 	int err = -EINVAL;
1316 
1317 	if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1318 	    sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1319 		printk(KERN_WARNING "JBD2: no valid journal superblock found\n");
1320 		return err;
1321 	}
1322 
1323 	if (be32_to_cpu(sb->s_header.h_blocktype) != JBD2_SUPERBLOCK_V1 &&
1324 	    be32_to_cpu(sb->s_header.h_blocktype) != JBD2_SUPERBLOCK_V2) {
1325 		printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n");
1326 		return err;
1327 	}
1328 
1329 	if (be32_to_cpu(sb->s_maxlen) > journal->j_total_len) {
1330 		printk(KERN_WARNING "JBD2: journal file too short\n");
1331 		return err;
1332 	}
1333 
1334 	if (be32_to_cpu(sb->s_first) == 0 ||
1335 	    be32_to_cpu(sb->s_first) >= journal->j_total_len) {
1336 		printk(KERN_WARNING
1337 			"JBD2: Invalid start block of journal: %u\n",
1338 			be32_to_cpu(sb->s_first));
1339 		return err;
1340 	}
1341 
1342 	/*
1343 	 * If this is a V2 superblock, then we have to check the
1344 	 * features flags on it.
1345 	 */
1346 	if (!jbd2_format_support_feature(journal))
1347 		return 0;
1348 
1349 	if ((sb->s_feature_ro_compat &
1350 			~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1351 	    (sb->s_feature_incompat &
1352 			~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1353 		printk(KERN_WARNING "JBD2: Unrecognised features on journal\n");
1354 		return err;
1355 	}
1356 
1357 	num_fc_blks = jbd2_has_feature_fast_commit(journal) ?
1358 				jbd2_journal_get_num_fc_blks(sb) : 0;
1359 	if (be32_to_cpu(sb->s_maxlen) < JBD2_MIN_JOURNAL_BLOCKS ||
1360 	    be32_to_cpu(sb->s_maxlen) - JBD2_MIN_JOURNAL_BLOCKS < num_fc_blks) {
1361 		printk(KERN_ERR "JBD2: journal file too short %u,%d\n",
1362 		       be32_to_cpu(sb->s_maxlen), num_fc_blks);
1363 		return err;
1364 	}
1365 
1366 	if (jbd2_has_feature_csum2(journal) &&
1367 	    jbd2_has_feature_csum3(journal)) {
1368 		/* Can't have checksum v2 and v3 at the same time! */
1369 		printk(KERN_ERR "JBD2: Can't enable checksumming v2 and v3 "
1370 		       "at the same time!\n");
1371 		return err;
1372 	}
1373 
1374 	if (jbd2_journal_has_csum_v2or3(journal) &&
1375 	    jbd2_has_feature_checksum(journal)) {
1376 		/* Can't have checksum v1 and v2 on at the same time! */
1377 		printk(KERN_ERR "JBD2: Can't enable checksumming v1 and v2/3 "
1378 		       "at the same time!\n");
1379 		return err;
1380 	}
1381 
1382 	if (jbd2_journal_has_csum_v2or3(journal)) {
1383 		if (sb->s_checksum_type != JBD2_CRC32C_CHKSUM) {
1384 			printk(KERN_ERR "JBD2: Unknown checksum type\n");
1385 			return err;
1386 		}
1387 
1388 		/* Check superblock checksum */
1389 		if (sb->s_checksum != jbd2_superblock_csum(journal, sb)) {
1390 			printk(KERN_ERR "JBD2: journal checksum error\n");
1391 			err = -EFSBADCRC;
1392 			return err;
1393 		}
1394 	}
1395 
1396 	return 0;
1397 }
1398 
journal_revoke_records_per_block(journal_t * journal)1399 static int journal_revoke_records_per_block(journal_t *journal)
1400 {
1401 	int record_size;
1402 	int space = journal->j_blocksize - sizeof(jbd2_journal_revoke_header_t);
1403 
1404 	if (jbd2_has_feature_64bit(journal))
1405 		record_size = 8;
1406 	else
1407 		record_size = 4;
1408 
1409 	if (jbd2_journal_has_csum_v2or3(journal))
1410 		space -= sizeof(struct jbd2_journal_block_tail);
1411 	return space / record_size;
1412 }
1413 
jbd2_journal_get_max_txn_bufs(journal_t * journal)1414 static int jbd2_journal_get_max_txn_bufs(journal_t *journal)
1415 {
1416 	return (journal->j_total_len - journal->j_fc_wbufsize) / 3;
1417 }
1418 
1419 /*
1420  * Base amount of descriptor blocks we reserve for each transaction.
1421  */
jbd2_descriptor_blocks_per_trans(journal_t * journal)1422 static int jbd2_descriptor_blocks_per_trans(journal_t *journal)
1423 {
1424 	int tag_space = journal->j_blocksize - sizeof(journal_header_t);
1425 	int tags_per_block;
1426 
1427 	/* Subtract UUID */
1428 	tag_space -= 16;
1429 	if (jbd2_journal_has_csum_v2or3(journal))
1430 		tag_space -= sizeof(struct jbd2_journal_block_tail);
1431 	/* Commit code leaves a slack space of 16 bytes at the end of block */
1432 	tags_per_block = (tag_space - 16) / journal_tag_bytes(journal);
1433 	/*
1434 	 * Revoke descriptors are accounted separately so we need to reserve
1435 	 * space for commit block and normal transaction descriptor blocks.
1436 	 */
1437 	return 1 + DIV_ROUND_UP(jbd2_journal_get_max_txn_bufs(journal),
1438 				tags_per_block);
1439 }
1440 
1441 /*
1442  * Initialize number of blocks each transaction reserves for its bookkeeping
1443  * and maximum number of blocks a transaction can use. This needs to be called
1444  * after the journal size and the fastcommit area size are initialized.
1445  */
jbd2_journal_init_transaction_limits(journal_t * journal)1446 static void jbd2_journal_init_transaction_limits(journal_t *journal)
1447 {
1448 	journal->j_revoke_records_per_block =
1449 				journal_revoke_records_per_block(journal);
1450 	journal->j_transaction_overhead_buffers =
1451 				jbd2_descriptor_blocks_per_trans(journal);
1452 	journal->j_max_transaction_buffers =
1453 				jbd2_journal_get_max_txn_bufs(journal);
1454 }
1455 
1456 /*
1457  * Load the on-disk journal superblock and read the key fields into the
1458  * journal_t.
1459  */
journal_load_superblock(journal_t * journal)1460 static int journal_load_superblock(journal_t *journal)
1461 {
1462 	int err;
1463 	struct buffer_head *bh;
1464 	journal_superblock_t *sb;
1465 
1466 	bh = getblk_unmovable(journal->j_dev, journal->j_blk_offset,
1467 			      journal->j_blocksize);
1468 	if (bh)
1469 		err = bh_read(bh, 0);
1470 	if (!bh || err < 0) {
1471 		pr_err("%s: Cannot read journal superblock\n", __func__);
1472 		brelse(bh);
1473 		return -EIO;
1474 	}
1475 
1476 	journal->j_sb_buffer = bh;
1477 	sb = (journal_superblock_t *)bh->b_data;
1478 	journal->j_superblock = sb;
1479 	err = journal_check_superblock(journal);
1480 	if (err) {
1481 		journal_fail_superblock(journal);
1482 		return err;
1483 	}
1484 
1485 	journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1486 	journal->j_tail = be32_to_cpu(sb->s_start);
1487 	journal->j_first = be32_to_cpu(sb->s_first);
1488 	journal->j_errno = be32_to_cpu(sb->s_errno);
1489 	journal->j_last = be32_to_cpu(sb->s_maxlen);
1490 
1491 	if (be32_to_cpu(sb->s_maxlen) < journal->j_total_len)
1492 		journal->j_total_len = be32_to_cpu(sb->s_maxlen);
1493 	/* Precompute checksum seed for all metadata */
1494 	if (jbd2_journal_has_csum_v2or3(journal))
1495 		journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1496 						   sizeof(sb->s_uuid));
1497 	/* After journal features are set, we can compute transaction limits */
1498 	jbd2_journal_init_transaction_limits(journal);
1499 
1500 	if (jbd2_has_feature_fast_commit(journal)) {
1501 		journal->j_fc_last = be32_to_cpu(sb->s_maxlen);
1502 		journal->j_last = journal->j_fc_last -
1503 				  jbd2_journal_get_num_fc_blks(sb);
1504 		journal->j_fc_first = journal->j_last + 1;
1505 		journal->j_fc_off = 0;
1506 	}
1507 
1508 	return 0;
1509 }
1510 
1511 
1512 /*
1513  * Management for journal control blocks: functions to create and
1514  * destroy journal_t structures, and to initialise and read existing
1515  * journal blocks from disk.  */
1516 
1517 /* The journal_init_common() function creates and fills a journal_t object
1518  * in memory. It calls journal_load_superblock() to load the on-disk journal
1519  * superblock and initialize the journal_t object.
1520  */
1521 
journal_init_common(struct block_device * bdev,struct block_device * fs_dev,unsigned long long start,int len,int blocksize)1522 static journal_t *journal_init_common(struct block_device *bdev,
1523 			struct block_device *fs_dev,
1524 			unsigned long long start, int len, int blocksize)
1525 {
1526 	static struct lock_class_key jbd2_trans_commit_key;
1527 	journal_t *journal;
1528 	int err;
1529 	int n;
1530 
1531 	journal = kzalloc(sizeof(*journal), GFP_KERNEL);
1532 	if (!journal)
1533 		return ERR_PTR(-ENOMEM);
1534 
1535 	journal->j_blocksize = blocksize;
1536 	journal->j_dev = bdev;
1537 	journal->j_fs_dev = fs_dev;
1538 	journal->j_blk_offset = start;
1539 	journal->j_total_len = len;
1540 	jbd2_init_fs_dev_write_error(journal);
1541 
1542 	err = journal_load_superblock(journal);
1543 	if (err)
1544 		goto err_cleanup;
1545 
1546 	init_waitqueue_head(&journal->j_wait_transaction_locked);
1547 	init_waitqueue_head(&journal->j_wait_done_commit);
1548 	init_waitqueue_head(&journal->j_wait_commit);
1549 	init_waitqueue_head(&journal->j_wait_updates);
1550 	init_waitqueue_head(&journal->j_wait_reserved);
1551 	init_waitqueue_head(&journal->j_fc_wait);
1552 	mutex_init(&journal->j_abort_mutex);
1553 	mutex_init(&journal->j_barrier);
1554 	mutex_init(&journal->j_checkpoint_mutex);
1555 	spin_lock_init(&journal->j_revoke_lock);
1556 	spin_lock_init(&journal->j_list_lock);
1557 	spin_lock_init(&journal->j_history_lock);
1558 	rwlock_init(&journal->j_state_lock);
1559 
1560 	journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
1561 	journal->j_min_batch_time = 0;
1562 	journal->j_max_batch_time = 15000; /* 15ms */
1563 	atomic_set(&journal->j_reserved_credits, 0);
1564 	lockdep_init_map(&journal->j_trans_commit_map, "jbd2_handle",
1565 			 &jbd2_trans_commit_key, 0);
1566 
1567 	/* The journal is marked for error until we succeed with recovery! */
1568 	journal->j_flags = JBD2_ABORT;
1569 
1570 	/* Set up a default-sized revoke table for the new mount. */
1571 	err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
1572 	if (err)
1573 		goto err_cleanup;
1574 
1575 	/*
1576 	 * journal descriptor can store up to n blocks, we need enough
1577 	 * buffers to write out full descriptor block.
1578 	 */
1579 	err = -ENOMEM;
1580 	n = journal->j_blocksize / jbd2_min_tag_size();
1581 	journal->j_wbufsize = n;
1582 	journal->j_fc_wbuf = NULL;
1583 	journal->j_wbuf = kmalloc_array(n, sizeof(struct buffer_head *),
1584 					GFP_KERNEL);
1585 	if (!journal->j_wbuf)
1586 		goto err_cleanup;
1587 
1588 	err = percpu_counter_init(&journal->j_checkpoint_jh_count, 0,
1589 				  GFP_KERNEL);
1590 	if (err)
1591 		goto err_cleanup;
1592 
1593 	journal->j_shrink_transaction = NULL;
1594 
1595 	journal->j_shrinker = shrinker_alloc(0, "jbd2-journal:(%u:%u)",
1596 					     MAJOR(bdev->bd_dev),
1597 					     MINOR(bdev->bd_dev));
1598 	if (!journal->j_shrinker) {
1599 		err = -ENOMEM;
1600 		goto err_cleanup;
1601 	}
1602 
1603 	journal->j_shrinker->scan_objects = jbd2_journal_shrink_scan;
1604 	journal->j_shrinker->count_objects = jbd2_journal_shrink_count;
1605 	journal->j_shrinker->private_data = journal;
1606 
1607 	shrinker_register(journal->j_shrinker);
1608 
1609 	return journal;
1610 
1611 err_cleanup:
1612 	percpu_counter_destroy(&journal->j_checkpoint_jh_count);
1613 	kfree(journal->j_wbuf);
1614 	jbd2_journal_destroy_revoke(journal);
1615 	journal_fail_superblock(journal);
1616 	kfree(journal);
1617 	return ERR_PTR(err);
1618 }
1619 
1620 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
1621  *
1622  * Create a journal structure assigned some fixed set of disk blocks to
1623  * the journal.  We don't actually touch those disk blocks yet, but we
1624  * need to set up all of the mapping information to tell the journaling
1625  * system where the journal blocks are.
1626  *
1627  */
1628 
1629 /**
1630  *  journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
1631  *  @bdev: Block device on which to create the journal
1632  *  @fs_dev: Device which hold journalled filesystem for this journal.
1633  *  @start: Block nr Start of journal.
1634  *  @len:  Length of the journal in blocks.
1635  *  @blocksize: blocksize of journalling device
1636  *
1637  *  Returns: a newly created journal_t *
1638  *
1639  *  jbd2_journal_init_dev creates a journal which maps a fixed contiguous
1640  *  range of blocks on an arbitrary block device.
1641  *
1642  */
jbd2_journal_init_dev(struct block_device * bdev,struct block_device * fs_dev,unsigned long long start,int len,int blocksize)1643 journal_t *jbd2_journal_init_dev(struct block_device *bdev,
1644 			struct block_device *fs_dev,
1645 			unsigned long long start, int len, int blocksize)
1646 {
1647 	journal_t *journal;
1648 
1649 	journal = journal_init_common(bdev, fs_dev, start, len, blocksize);
1650 	if (IS_ERR(journal))
1651 		return ERR_CAST(journal);
1652 
1653 	snprintf(journal->j_devname, sizeof(journal->j_devname),
1654 		 "%pg", journal->j_dev);
1655 	strreplace(journal->j_devname, '/', '!');
1656 	jbd2_stats_proc_init(journal);
1657 
1658 	return journal;
1659 }
1660 
1661 /**
1662  *  journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
1663  *  @inode: An inode to create the journal in
1664  *
1665  * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1666  * the journal.  The inode must exist already, must support bmap() and
1667  * must have all data blocks preallocated.
1668  */
jbd2_journal_init_inode(struct inode * inode)1669 journal_t *jbd2_journal_init_inode(struct inode *inode)
1670 {
1671 	journal_t *journal;
1672 	sector_t blocknr;
1673 	int err = 0;
1674 
1675 	blocknr = 0;
1676 	err = bmap(inode, &blocknr);
1677 	if (err || !blocknr) {
1678 		pr_err("%s: Cannot locate journal superblock\n", __func__);
1679 		return err ? ERR_PTR(err) : ERR_PTR(-EINVAL);
1680 	}
1681 
1682 	jbd2_debug(1, "JBD2: inode %s/%ld, size %lld, bits %d, blksize %ld\n",
1683 		  inode->i_sb->s_id, inode->i_ino, (long long) inode->i_size,
1684 		  inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
1685 
1686 	journal = journal_init_common(inode->i_sb->s_bdev, inode->i_sb->s_bdev,
1687 			blocknr, inode->i_size >> inode->i_sb->s_blocksize_bits,
1688 			inode->i_sb->s_blocksize);
1689 	if (IS_ERR(journal))
1690 		return ERR_CAST(journal);
1691 
1692 	journal->j_inode = inode;
1693 	snprintf(journal->j_devname, sizeof(journal->j_devname),
1694 		 "%pg-%lu", journal->j_dev, journal->j_inode->i_ino);
1695 	strreplace(journal->j_devname, '/', '!');
1696 	jbd2_stats_proc_init(journal);
1697 
1698 	return journal;
1699 }
1700 
1701 /*
1702  * Given a journal_t structure, initialise the various fields for
1703  * startup of a new journaling session.  We use this both when creating
1704  * a journal, and after recovering an old journal to reset it for
1705  * subsequent use.
1706  */
1707 
journal_reset(journal_t * journal)1708 static int journal_reset(journal_t *journal)
1709 {
1710 	journal_superblock_t *sb = journal->j_superblock;
1711 	unsigned long long first, last;
1712 
1713 	first = be32_to_cpu(sb->s_first);
1714 	last = be32_to_cpu(sb->s_maxlen);
1715 	if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1716 		printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n",
1717 		       first, last);
1718 		journal_fail_superblock(journal);
1719 		return -EINVAL;
1720 	}
1721 
1722 	journal->j_first = first;
1723 	journal->j_last = last;
1724 
1725 	if (journal->j_head != 0 && journal->j_flags & JBD2_CYCLE_RECORD) {
1726 		/*
1727 		 * Disable the cycled recording mode if the journal head block
1728 		 * number is not correct.
1729 		 */
1730 		if (journal->j_head < first || journal->j_head >= last) {
1731 			printk(KERN_WARNING "JBD2: Incorrect Journal head block %lu, "
1732 			       "disable journal_cycle_record\n",
1733 			       journal->j_head);
1734 			journal->j_head = journal->j_first;
1735 		}
1736 	} else {
1737 		journal->j_head = journal->j_first;
1738 	}
1739 	journal->j_tail = journal->j_head;
1740 	journal->j_free = journal->j_last - journal->j_first;
1741 
1742 	journal->j_tail_sequence = journal->j_transaction_sequence;
1743 	journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1744 	journal->j_commit_request = journal->j_commit_sequence;
1745 
1746 	/*
1747 	 * Now that journal recovery is done, turn fast commits off here. This
1748 	 * way, if fast commit was enabled before the crash but if now FS has
1749 	 * disabled it, we don't enable fast commits.
1750 	 */
1751 	jbd2_clear_feature_fast_commit(journal);
1752 
1753 	/*
1754 	 * As a special case, if the on-disk copy is already marked as needing
1755 	 * no recovery (s_start == 0), then we can safely defer the superblock
1756 	 * update until the next commit by setting JBD2_FLUSHED.  This avoids
1757 	 * attempting a write to a potential-readonly device.
1758 	 */
1759 	if (sb->s_start == 0) {
1760 		jbd2_debug(1, "JBD2: Skipping superblock update on recovered sb "
1761 			"(start %ld, seq %u, errno %d)\n",
1762 			journal->j_tail, journal->j_tail_sequence,
1763 			journal->j_errno);
1764 		journal->j_flags |= JBD2_FLUSHED;
1765 	} else {
1766 		/* Lock here to make assertions happy... */
1767 		mutex_lock_io(&journal->j_checkpoint_mutex);
1768 		/*
1769 		 * Update log tail information. We use REQ_FUA since new
1770 		 * transaction will start reusing journal space and so we
1771 		 * must make sure information about current log tail is on
1772 		 * disk before that.
1773 		 */
1774 		jbd2_journal_update_sb_log_tail(journal,
1775 						journal->j_tail_sequence,
1776 						journal->j_tail, REQ_FUA);
1777 		mutex_unlock(&journal->j_checkpoint_mutex);
1778 	}
1779 	return jbd2_journal_start_thread(journal);
1780 }
1781 
1782 /*
1783  * This function expects that the caller will have locked the journal
1784  * buffer head, and will return with it unlocked
1785  */
jbd2_write_superblock(journal_t * journal,blk_opf_t write_flags)1786 static int jbd2_write_superblock(journal_t *journal, blk_opf_t write_flags)
1787 {
1788 	struct buffer_head *bh = journal->j_sb_buffer;
1789 	journal_superblock_t *sb = journal->j_superblock;
1790 	int ret = 0;
1791 
1792 	/* Buffer got discarded which means block device got invalidated */
1793 	if (!buffer_mapped(bh)) {
1794 		unlock_buffer(bh);
1795 		return -EIO;
1796 	}
1797 
1798 	/*
1799 	 * Always set high priority flags to exempt from block layer's
1800 	 * QOS policies, e.g. writeback throttle.
1801 	 */
1802 	write_flags |= JBD2_JOURNAL_REQ_FLAGS;
1803 	if (!(journal->j_flags & JBD2_BARRIER))
1804 		write_flags &= ~(REQ_FUA | REQ_PREFLUSH);
1805 
1806 	trace_jbd2_write_superblock(journal, write_flags);
1807 
1808 	if (buffer_write_io_error(bh)) {
1809 		/*
1810 		 * Oh, dear.  A previous attempt to write the journal
1811 		 * superblock failed.  This could happen because the
1812 		 * USB device was yanked out.  Or it could happen to
1813 		 * be a transient write error and maybe the block will
1814 		 * be remapped.  Nothing we can do but to retry the
1815 		 * write and hope for the best.
1816 		 */
1817 		printk(KERN_ERR "JBD2: previous I/O error detected "
1818 		       "for journal superblock update for %s.\n",
1819 		       journal->j_devname);
1820 		clear_buffer_write_io_error(bh);
1821 		set_buffer_uptodate(bh);
1822 	}
1823 	if (jbd2_journal_has_csum_v2or3(journal))
1824 		sb->s_checksum = jbd2_superblock_csum(journal, sb);
1825 	get_bh(bh);
1826 	bh->b_end_io = end_buffer_write_sync;
1827 	submit_bh(REQ_OP_WRITE | write_flags, bh);
1828 	wait_on_buffer(bh);
1829 	if (buffer_write_io_error(bh)) {
1830 		clear_buffer_write_io_error(bh);
1831 		set_buffer_uptodate(bh);
1832 		ret = -EIO;
1833 	}
1834 	if (ret) {
1835 		printk(KERN_ERR "JBD2: I/O error when updating journal superblock for %s.\n",
1836 				journal->j_devname);
1837 		if (!is_journal_aborted(journal))
1838 			jbd2_journal_abort(journal, ret);
1839 	}
1840 
1841 	return ret;
1842 }
1843 
1844 /**
1845  * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1846  * @journal: The journal to update.
1847  * @tail_tid: TID of the new transaction at the tail of the log
1848  * @tail_block: The first block of the transaction at the tail of the log
1849  * @write_flags: Flags for the journal sb write operation
1850  *
1851  * Update a journal's superblock information about log tail and write it to
1852  * disk, waiting for the IO to complete.
1853  */
jbd2_journal_update_sb_log_tail(journal_t * journal,tid_t tail_tid,unsigned long tail_block,blk_opf_t write_flags)1854 int jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid,
1855 				    unsigned long tail_block,
1856 				    blk_opf_t write_flags)
1857 {
1858 	journal_superblock_t *sb = journal->j_superblock;
1859 	int ret;
1860 
1861 	if (is_journal_aborted(journal))
1862 		return -EIO;
1863 	if (jbd2_check_fs_dev_write_error(journal)) {
1864 		jbd2_journal_abort(journal, -EIO);
1865 		return -EIO;
1866 	}
1867 
1868 	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1869 	jbd2_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n",
1870 		  tail_block, tail_tid);
1871 
1872 	lock_buffer(journal->j_sb_buffer);
1873 	sb->s_sequence = cpu_to_be32(tail_tid);
1874 	sb->s_start    = cpu_to_be32(tail_block);
1875 
1876 	ret = jbd2_write_superblock(journal, write_flags);
1877 	if (ret)
1878 		goto out;
1879 
1880 	/* Log is no longer empty */
1881 	write_lock(&journal->j_state_lock);
1882 	journal->j_flags &= ~JBD2_FLUSHED;
1883 	write_unlock(&journal->j_state_lock);
1884 
1885 out:
1886 	return ret;
1887 }
1888 
1889 /**
1890  * jbd2_mark_journal_empty() - Mark on disk journal as empty.
1891  * @journal: The journal to update.
1892  * @write_flags: Flags for the journal sb write operation
1893  *
1894  * Update a journal's dynamic superblock fields to show that journal is empty.
1895  * Write updated superblock to disk waiting for IO to complete.
1896  */
jbd2_mark_journal_empty(journal_t * journal,blk_opf_t write_flags)1897 static void jbd2_mark_journal_empty(journal_t *journal, blk_opf_t write_flags)
1898 {
1899 	journal_superblock_t *sb = journal->j_superblock;
1900 	bool had_fast_commit = false;
1901 
1902 	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1903 	lock_buffer(journal->j_sb_buffer);
1904 	if (sb->s_start == 0) {		/* Is it already empty? */
1905 		unlock_buffer(journal->j_sb_buffer);
1906 		return;
1907 	}
1908 
1909 	jbd2_debug(1, "JBD2: Marking journal as empty (seq %u)\n",
1910 		  journal->j_tail_sequence);
1911 
1912 	sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1913 	sb->s_start    = cpu_to_be32(0);
1914 	sb->s_head     = cpu_to_be32(journal->j_head);
1915 	if (jbd2_has_feature_fast_commit(journal)) {
1916 		/*
1917 		 * When journal is clean, no need to commit fast commit flag and
1918 		 * make file system incompatible with older kernels.
1919 		 */
1920 		jbd2_clear_feature_fast_commit(journal);
1921 		had_fast_commit = true;
1922 	}
1923 
1924 	jbd2_write_superblock(journal, write_flags);
1925 
1926 	if (had_fast_commit)
1927 		jbd2_set_feature_fast_commit(journal);
1928 
1929 	/* Log is empty */
1930 	write_lock(&journal->j_state_lock);
1931 	journal->j_flags |= JBD2_FLUSHED;
1932 	write_unlock(&journal->j_state_lock);
1933 }
1934 
1935 /**
1936  * __jbd2_journal_erase() - Discard or zeroout journal blocks (excluding superblock)
1937  * @journal: The journal to erase.
1938  * @flags: A discard/zeroout request is sent for each physically contigous
1939  *	region of the journal. Either JBD2_JOURNAL_FLUSH_DISCARD or
1940  *	JBD2_JOURNAL_FLUSH_ZEROOUT must be set to determine which operation
1941  *	to perform.
1942  *
1943  * Note: JBD2_JOURNAL_FLUSH_ZEROOUT attempts to use hardware offload. Zeroes
1944  * will be explicitly written if no hardware offload is available, see
1945  * blkdev_issue_zeroout for more details.
1946  */
__jbd2_journal_erase(journal_t * journal,unsigned int flags)1947 static int __jbd2_journal_erase(journal_t *journal, unsigned int flags)
1948 {
1949 	int err = 0;
1950 	unsigned long block, log_offset; /* logical */
1951 	unsigned long long phys_block, block_start, block_stop; /* physical */
1952 	loff_t byte_start, byte_stop, byte_count;
1953 
1954 	/* flags must be set to either discard or zeroout */
1955 	if ((flags & ~JBD2_JOURNAL_FLUSH_VALID) || !flags ||
1956 			((flags & JBD2_JOURNAL_FLUSH_DISCARD) &&
1957 			(flags & JBD2_JOURNAL_FLUSH_ZEROOUT)))
1958 		return -EINVAL;
1959 
1960 	if ((flags & JBD2_JOURNAL_FLUSH_DISCARD) &&
1961 	    !bdev_max_discard_sectors(journal->j_dev))
1962 		return -EOPNOTSUPP;
1963 
1964 	/*
1965 	 * lookup block mapping and issue discard/zeroout for each
1966 	 * contiguous region
1967 	 */
1968 	log_offset = be32_to_cpu(journal->j_superblock->s_first);
1969 	block_start =  ~0ULL;
1970 	for (block = log_offset; block < journal->j_total_len; block++) {
1971 		err = jbd2_journal_bmap(journal, block, &phys_block);
1972 		if (err) {
1973 			pr_err("JBD2: bad block at offset %lu", block);
1974 			return err;
1975 		}
1976 
1977 		if (block_start == ~0ULL)
1978 			block_stop = block_start = phys_block;
1979 
1980 		/*
1981 		 * last block not contiguous with current block,
1982 		 * process last contiguous region and return to this block on
1983 		 * next loop
1984 		 */
1985 		if (phys_block != block_stop) {
1986 			block--;
1987 		} else {
1988 			block_stop++;
1989 			/*
1990 			 * if this isn't the last block of journal,
1991 			 * no need to process now because next block may also
1992 			 * be part of this contiguous region
1993 			 */
1994 			if (block != journal->j_total_len - 1)
1995 				continue;
1996 		}
1997 
1998 		/*
1999 		 * end of contiguous region or this is last block of journal,
2000 		 * take care of the region
2001 		 */
2002 		byte_start = block_start * journal->j_blocksize;
2003 		byte_stop = block_stop * journal->j_blocksize;
2004 		byte_count = (block_stop - block_start) * journal->j_blocksize;
2005 
2006 		truncate_inode_pages_range(journal->j_dev->bd_mapping,
2007 				byte_start, byte_stop - 1);
2008 
2009 		if (flags & JBD2_JOURNAL_FLUSH_DISCARD) {
2010 			err = blkdev_issue_discard(journal->j_dev,
2011 					byte_start >> SECTOR_SHIFT,
2012 					byte_count >> SECTOR_SHIFT,
2013 					GFP_NOFS);
2014 		} else if (flags & JBD2_JOURNAL_FLUSH_ZEROOUT) {
2015 			err = blkdev_issue_zeroout(journal->j_dev,
2016 					byte_start >> SECTOR_SHIFT,
2017 					byte_count >> SECTOR_SHIFT,
2018 					GFP_NOFS, 0);
2019 		}
2020 
2021 		if (unlikely(err != 0)) {
2022 			pr_err("JBD2: (error %d) unable to wipe journal at physical blocks [%llu, %llu)",
2023 					err, block_start, block_stop);
2024 			return err;
2025 		}
2026 
2027 		/* reset start and stop after processing a region */
2028 		block_start = ~0ULL;
2029 	}
2030 
2031 	return blkdev_issue_flush(journal->j_dev);
2032 }
2033 
2034 /**
2035  * jbd2_journal_update_sb_errno() - Update error in the journal.
2036  * @journal: The journal to update.
2037  *
2038  * Update a journal's errno.  Write updated superblock to disk waiting for IO
2039  * to complete.
2040  */
jbd2_journal_update_sb_errno(journal_t * journal)2041 void jbd2_journal_update_sb_errno(journal_t *journal)
2042 {
2043 	journal_superblock_t *sb = journal->j_superblock;
2044 	int errcode;
2045 
2046 	lock_buffer(journal->j_sb_buffer);
2047 	errcode = journal->j_errno;
2048 	if (errcode == -ESHUTDOWN)
2049 		errcode = 0;
2050 	jbd2_debug(1, "JBD2: updating superblock error (errno %d)\n", errcode);
2051 	sb->s_errno    = cpu_to_be32(errcode);
2052 
2053 	jbd2_write_superblock(journal, REQ_FUA);
2054 }
2055 EXPORT_SYMBOL(jbd2_journal_update_sb_errno);
2056 
2057 /**
2058  * jbd2_journal_load() - Read journal from disk.
2059  * @journal: Journal to act on.
2060  *
2061  * Given a journal_t structure which tells us which disk blocks contain
2062  * a journal, read the journal from disk to initialise the in-memory
2063  * structures.
2064  */
jbd2_journal_load(journal_t * journal)2065 int jbd2_journal_load(journal_t *journal)
2066 {
2067 	int err;
2068 	journal_superblock_t *sb = journal->j_superblock;
2069 
2070 	/*
2071 	 * Create a slab for this blocksize
2072 	 */
2073 	err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
2074 	if (err)
2075 		return err;
2076 
2077 	/* Let the recovery code check whether it needs to recover any
2078 	 * data from the journal. */
2079 	err = jbd2_journal_recover(journal);
2080 	if (err) {
2081 		pr_warn("JBD2: journal recovery failed\n");
2082 		return err;
2083 	}
2084 
2085 	if (journal->j_failed_commit) {
2086 		printk(KERN_ERR "JBD2: journal transaction %u on %s "
2087 		       "is corrupt.\n", journal->j_failed_commit,
2088 		       journal->j_devname);
2089 		return -EFSCORRUPTED;
2090 	}
2091 	/*
2092 	 * clear JBD2_ABORT flag initialized in journal_init_common
2093 	 * here to update log tail information with the newest seq.
2094 	 */
2095 	journal->j_flags &= ~JBD2_ABORT;
2096 
2097 	/* OK, we've finished with the dynamic journal bits:
2098 	 * reinitialise the dynamic contents of the superblock in memory
2099 	 * and reset them on disk. */
2100 	err = journal_reset(journal);
2101 	if (err) {
2102 		pr_warn("JBD2: journal reset failed\n");
2103 		return err;
2104 	}
2105 
2106 	journal->j_flags |= JBD2_LOADED;
2107 	return 0;
2108 }
2109 
2110 /**
2111  * jbd2_journal_destroy() - Release a journal_t structure.
2112  * @journal: Journal to act on.
2113  *
2114  * Release a journal_t structure once it is no longer in use by the
2115  * journaled object.
2116  * Return <0 if we couldn't clean up the journal.
2117  */
jbd2_journal_destroy(journal_t * journal)2118 int jbd2_journal_destroy(journal_t *journal)
2119 {
2120 	int err = 0;
2121 
2122 	/* Wait for the commit thread to wake up and die. */
2123 	journal_kill_thread(journal);
2124 
2125 	/* Force a final log commit */
2126 	if (journal->j_running_transaction)
2127 		jbd2_journal_commit_transaction(journal);
2128 
2129 	/* Force any old transactions to disk */
2130 
2131 	/* Totally anal locking here... */
2132 	spin_lock(&journal->j_list_lock);
2133 	while (journal->j_checkpoint_transactions != NULL) {
2134 		spin_unlock(&journal->j_list_lock);
2135 		mutex_lock_io(&journal->j_checkpoint_mutex);
2136 		err = jbd2_log_do_checkpoint(journal);
2137 		mutex_unlock(&journal->j_checkpoint_mutex);
2138 		/*
2139 		 * If checkpointing failed, just free the buffers to avoid
2140 		 * looping forever
2141 		 */
2142 		if (err) {
2143 			jbd2_journal_destroy_checkpoint(journal);
2144 			spin_lock(&journal->j_list_lock);
2145 			break;
2146 		}
2147 		spin_lock(&journal->j_list_lock);
2148 	}
2149 
2150 	J_ASSERT(journal->j_running_transaction == NULL);
2151 	J_ASSERT(journal->j_committing_transaction == NULL);
2152 	J_ASSERT(journal->j_checkpoint_transactions == NULL);
2153 	spin_unlock(&journal->j_list_lock);
2154 
2155 	/*
2156 	 * OK, all checkpoint transactions have been checked, now check the
2157 	 * writeback errseq of fs dev and abort the journal if some buffer
2158 	 * failed to write back to the original location, otherwise the
2159 	 * filesystem may become inconsistent.
2160 	 */
2161 	if (!is_journal_aborted(journal) &&
2162 	    jbd2_check_fs_dev_write_error(journal))
2163 		jbd2_journal_abort(journal, -EIO);
2164 
2165 	if (journal->j_sb_buffer) {
2166 		if (!is_journal_aborted(journal)) {
2167 			mutex_lock_io(&journal->j_checkpoint_mutex);
2168 
2169 			write_lock(&journal->j_state_lock);
2170 			journal->j_tail_sequence =
2171 				++journal->j_transaction_sequence;
2172 			write_unlock(&journal->j_state_lock);
2173 
2174 			jbd2_mark_journal_empty(journal, REQ_PREFLUSH | REQ_FUA);
2175 			mutex_unlock(&journal->j_checkpoint_mutex);
2176 		} else
2177 			err = -EIO;
2178 		brelse(journal->j_sb_buffer);
2179 	}
2180 
2181 	if (journal->j_shrinker) {
2182 		percpu_counter_destroy(&journal->j_checkpoint_jh_count);
2183 		shrinker_free(journal->j_shrinker);
2184 	}
2185 	if (journal->j_proc_entry)
2186 		jbd2_stats_proc_exit(journal);
2187 	iput(journal->j_inode);
2188 	if (journal->j_revoke)
2189 		jbd2_journal_destroy_revoke(journal);
2190 	kfree(journal->j_fc_wbuf);
2191 	kfree(journal->j_wbuf);
2192 	kfree(journal);
2193 
2194 	return err;
2195 }
2196 
2197 
2198 /**
2199  * jbd2_journal_check_used_features() - Check if features specified are used.
2200  * @journal: Journal to check.
2201  * @compat: bitmask of compatible features
2202  * @ro: bitmask of features that force read-only mount
2203  * @incompat: bitmask of incompatible features
2204  *
2205  * Check whether the journal uses all of a given set of
2206  * features.  Return true (non-zero) if it does.
2207  **/
2208 
jbd2_journal_check_used_features(journal_t * journal,unsigned long compat,unsigned long ro,unsigned long incompat)2209 int jbd2_journal_check_used_features(journal_t *journal, unsigned long compat,
2210 				 unsigned long ro, unsigned long incompat)
2211 {
2212 	journal_superblock_t *sb;
2213 
2214 	if (!compat && !ro && !incompat)
2215 		return 1;
2216 	if (!jbd2_format_support_feature(journal))
2217 		return 0;
2218 
2219 	sb = journal->j_superblock;
2220 
2221 	if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
2222 	    ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
2223 	    ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
2224 		return 1;
2225 
2226 	return 0;
2227 }
2228 
2229 /**
2230  * jbd2_journal_check_available_features() - Check feature set in journalling layer
2231  * @journal: Journal to check.
2232  * @compat: bitmask of compatible features
2233  * @ro: bitmask of features that force read-only mount
2234  * @incompat: bitmask of incompatible features
2235  *
2236  * Check whether the journaling code supports the use of
2237  * all of a given set of features on this journal.  Return true
2238  * (non-zero) if it can. */
2239 
jbd2_journal_check_available_features(journal_t * journal,unsigned long compat,unsigned long ro,unsigned long incompat)2240 int jbd2_journal_check_available_features(journal_t *journal, unsigned long compat,
2241 				      unsigned long ro, unsigned long incompat)
2242 {
2243 	if (!compat && !ro && !incompat)
2244 		return 1;
2245 
2246 	if (!jbd2_format_support_feature(journal))
2247 		return 0;
2248 
2249 	if ((compat   & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
2250 	    (ro       & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
2251 	    (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
2252 		return 1;
2253 
2254 	return 0;
2255 }
2256 
2257 static int
jbd2_journal_initialize_fast_commit(journal_t * journal)2258 jbd2_journal_initialize_fast_commit(journal_t *journal)
2259 {
2260 	journal_superblock_t *sb = journal->j_superblock;
2261 	unsigned long long num_fc_blks;
2262 
2263 	num_fc_blks = jbd2_journal_get_num_fc_blks(sb);
2264 	if (journal->j_last - num_fc_blks < JBD2_MIN_JOURNAL_BLOCKS)
2265 		return -ENOSPC;
2266 
2267 	/* Are we called twice? */
2268 	WARN_ON(journal->j_fc_wbuf != NULL);
2269 	journal->j_fc_wbuf = kmalloc_array(num_fc_blks,
2270 				sizeof(struct buffer_head *), GFP_KERNEL);
2271 	if (!journal->j_fc_wbuf)
2272 		return -ENOMEM;
2273 
2274 	journal->j_fc_wbufsize = num_fc_blks;
2275 	journal->j_fc_last = journal->j_last;
2276 	journal->j_last = journal->j_fc_last - num_fc_blks;
2277 	journal->j_fc_first = journal->j_last + 1;
2278 	journal->j_fc_off = 0;
2279 	journal->j_free = journal->j_last - journal->j_first;
2280 
2281 	return 0;
2282 }
2283 
2284 /**
2285  * jbd2_journal_set_features() - Mark a given journal feature in the superblock
2286  * @journal: Journal to act on.
2287  * @compat: bitmask of compatible features
2288  * @ro: bitmask of features that force read-only mount
2289  * @incompat: bitmask of incompatible features
2290  *
2291  * Mark a given journal feature as present on the
2292  * superblock.  Returns true if the requested features could be set.
2293  *
2294  */
2295 
jbd2_journal_set_features(journal_t * journal,unsigned long compat,unsigned long ro,unsigned long incompat)2296 int jbd2_journal_set_features(journal_t *journal, unsigned long compat,
2297 			  unsigned long ro, unsigned long incompat)
2298 {
2299 #define INCOMPAT_FEATURE_ON(f) \
2300 		((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f)))
2301 #define COMPAT_FEATURE_ON(f) \
2302 		((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f)))
2303 	journal_superblock_t *sb;
2304 
2305 	if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
2306 		return 1;
2307 
2308 	if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
2309 		return 0;
2310 
2311 	/* If enabling v2 checksums, turn on v3 instead */
2312 	if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2) {
2313 		incompat &= ~JBD2_FEATURE_INCOMPAT_CSUM_V2;
2314 		incompat |= JBD2_FEATURE_INCOMPAT_CSUM_V3;
2315 	}
2316 
2317 	/* Asking for checksumming v3 and v1?  Only give them v3. */
2318 	if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V3 &&
2319 	    compat & JBD2_FEATURE_COMPAT_CHECKSUM)
2320 		compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM;
2321 
2322 	jbd2_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
2323 		  compat, ro, incompat);
2324 
2325 	sb = journal->j_superblock;
2326 
2327 	if (incompat & JBD2_FEATURE_INCOMPAT_FAST_COMMIT) {
2328 		if (jbd2_journal_initialize_fast_commit(journal)) {
2329 			pr_err("JBD2: Cannot enable fast commits.\n");
2330 			return 0;
2331 		}
2332 	}
2333 
2334 	lock_buffer(journal->j_sb_buffer);
2335 
2336 	/* If enabling v3 checksums, update superblock and precompute seed */
2337 	if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
2338 		sb->s_checksum_type = JBD2_CRC32C_CHKSUM;
2339 		sb->s_feature_compat &=
2340 			~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM);
2341 		journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
2342 						   sizeof(sb->s_uuid));
2343 	}
2344 
2345 	/* If enabling v1 checksums, downgrade superblock */
2346 	if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM))
2347 		sb->s_feature_incompat &=
2348 			~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2 |
2349 				     JBD2_FEATURE_INCOMPAT_CSUM_V3);
2350 
2351 	sb->s_feature_compat    |= cpu_to_be32(compat);
2352 	sb->s_feature_ro_compat |= cpu_to_be32(ro);
2353 	sb->s_feature_incompat  |= cpu_to_be32(incompat);
2354 	unlock_buffer(journal->j_sb_buffer);
2355 	jbd2_journal_init_transaction_limits(journal);
2356 
2357 	return 1;
2358 #undef COMPAT_FEATURE_ON
2359 #undef INCOMPAT_FEATURE_ON
2360 }
2361 
2362 /*
2363  * jbd2_journal_clear_features() - Clear a given journal feature in the
2364  * 				    superblock
2365  * @journal: Journal to act on.
2366  * @compat: bitmask of compatible features
2367  * @ro: bitmask of features that force read-only mount
2368  * @incompat: bitmask of incompatible features
2369  *
2370  * Clear a given journal feature as present on the
2371  * superblock.
2372  */
jbd2_journal_clear_features(journal_t * journal,unsigned long compat,unsigned long ro,unsigned long incompat)2373 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
2374 				unsigned long ro, unsigned long incompat)
2375 {
2376 	journal_superblock_t *sb;
2377 
2378 	jbd2_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
2379 		  compat, ro, incompat);
2380 
2381 	sb = journal->j_superblock;
2382 
2383 	sb->s_feature_compat    &= ~cpu_to_be32(compat);
2384 	sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
2385 	sb->s_feature_incompat  &= ~cpu_to_be32(incompat);
2386 	jbd2_journal_init_transaction_limits(journal);
2387 }
2388 EXPORT_SYMBOL(jbd2_journal_clear_features);
2389 
2390 /**
2391  * jbd2_journal_flush() - Flush journal
2392  * @journal: Journal to act on.
2393  * @flags: optional operation on the journal blocks after the flush (see below)
2394  *
2395  * Flush all data for a given journal to disk and empty the journal.
2396  * Filesystems can use this when remounting readonly to ensure that
2397  * recovery does not need to happen on remount. Optionally, a discard or zeroout
2398  * can be issued on the journal blocks after flushing.
2399  *
2400  * flags:
2401  *	JBD2_JOURNAL_FLUSH_DISCARD: issues discards for the journal blocks
2402  *	JBD2_JOURNAL_FLUSH_ZEROOUT: issues zeroouts for the journal blocks
2403  */
jbd2_journal_flush(journal_t * journal,unsigned int flags)2404 int jbd2_journal_flush(journal_t *journal, unsigned int flags)
2405 {
2406 	int err = 0;
2407 	transaction_t *transaction = NULL;
2408 
2409 	write_lock(&journal->j_state_lock);
2410 
2411 	/* Force everything buffered to the log... */
2412 	if (journal->j_running_transaction) {
2413 		transaction = journal->j_running_transaction;
2414 		__jbd2_log_start_commit(journal, transaction->t_tid);
2415 	} else if (journal->j_committing_transaction)
2416 		transaction = journal->j_committing_transaction;
2417 
2418 	/* Wait for the log commit to complete... */
2419 	if (transaction) {
2420 		tid_t tid = transaction->t_tid;
2421 
2422 		write_unlock(&journal->j_state_lock);
2423 		jbd2_log_wait_commit(journal, tid);
2424 	} else {
2425 		write_unlock(&journal->j_state_lock);
2426 	}
2427 
2428 	/* ...and flush everything in the log out to disk. */
2429 	spin_lock(&journal->j_list_lock);
2430 	while (!err && journal->j_checkpoint_transactions != NULL) {
2431 		spin_unlock(&journal->j_list_lock);
2432 		mutex_lock_io(&journal->j_checkpoint_mutex);
2433 		err = jbd2_log_do_checkpoint(journal);
2434 		mutex_unlock(&journal->j_checkpoint_mutex);
2435 		spin_lock(&journal->j_list_lock);
2436 	}
2437 	spin_unlock(&journal->j_list_lock);
2438 
2439 	if (is_journal_aborted(journal))
2440 		return -EIO;
2441 
2442 	mutex_lock_io(&journal->j_checkpoint_mutex);
2443 	if (!err) {
2444 		err = jbd2_cleanup_journal_tail(journal);
2445 		if (err < 0) {
2446 			mutex_unlock(&journal->j_checkpoint_mutex);
2447 			goto out;
2448 		}
2449 		err = 0;
2450 	}
2451 
2452 	/* Finally, mark the journal as really needing no recovery.
2453 	 * This sets s_start==0 in the underlying superblock, which is
2454 	 * the magic code for a fully-recovered superblock.  Any future
2455 	 * commits of data to the journal will restore the current
2456 	 * s_start value. */
2457 	jbd2_mark_journal_empty(journal, REQ_FUA);
2458 
2459 	if (flags)
2460 		err = __jbd2_journal_erase(journal, flags);
2461 
2462 	mutex_unlock(&journal->j_checkpoint_mutex);
2463 	write_lock(&journal->j_state_lock);
2464 	J_ASSERT(!journal->j_running_transaction);
2465 	J_ASSERT(!journal->j_committing_transaction);
2466 	J_ASSERT(!journal->j_checkpoint_transactions);
2467 	J_ASSERT(journal->j_head == journal->j_tail);
2468 	J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
2469 	write_unlock(&journal->j_state_lock);
2470 out:
2471 	return err;
2472 }
2473 
2474 /**
2475  * jbd2_journal_wipe() - Wipe journal contents
2476  * @journal: Journal to act on.
2477  * @write: flag (see below)
2478  *
2479  * Wipe out all of the contents of a journal, safely.  This will produce
2480  * a warning if the journal contains any valid recovery information.
2481  * Must be called between journal_init_*() and jbd2_journal_load().
2482  *
2483  * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
2484  * we merely suppress recovery.
2485  */
2486 
jbd2_journal_wipe(journal_t * journal,int write)2487 int jbd2_journal_wipe(journal_t *journal, int write)
2488 {
2489 	int err;
2490 
2491 	J_ASSERT (!(journal->j_flags & JBD2_LOADED));
2492 
2493 	if (!journal->j_tail)
2494 		return 0;
2495 
2496 	printk(KERN_WARNING "JBD2: %s recovery information on journal\n",
2497 		write ? "Clearing" : "Ignoring");
2498 
2499 	err = jbd2_journal_skip_recovery(journal);
2500 	if (write) {
2501 		/* Lock to make assertions happy... */
2502 		mutex_lock_io(&journal->j_checkpoint_mutex);
2503 		jbd2_mark_journal_empty(journal, REQ_FUA);
2504 		mutex_unlock(&journal->j_checkpoint_mutex);
2505 	}
2506 
2507 	return err;
2508 }
2509 
2510 /**
2511  * jbd2_journal_abort () - Shutdown the journal immediately.
2512  * @journal: the journal to shutdown.
2513  * @errno:   an error number to record in the journal indicating
2514  *           the reason for the shutdown.
2515  *
2516  * Perform a complete, immediate shutdown of the ENTIRE
2517  * journal (not of a single transaction).  This operation cannot be
2518  * undone without closing and reopening the journal.
2519  *
2520  * The jbd2_journal_abort function is intended to support higher level error
2521  * recovery mechanisms such as the ext2/ext3 remount-readonly error
2522  * mode.
2523  *
2524  * Journal abort has very specific semantics.  Any existing dirty,
2525  * unjournaled buffers in the main filesystem will still be written to
2526  * disk by bdflush, but the journaling mechanism will be suspended
2527  * immediately and no further transaction commits will be honoured.
2528  *
2529  * Any dirty, journaled buffers will be written back to disk without
2530  * hitting the journal.  Atomicity cannot be guaranteed on an aborted
2531  * filesystem, but we _do_ attempt to leave as much data as possible
2532  * behind for fsck to use for cleanup.
2533  *
2534  * Any attempt to get a new transaction handle on a journal which is in
2535  * ABORT state will just result in an -EROFS error return.  A
2536  * jbd2_journal_stop on an existing handle will return -EIO if we have
2537  * entered abort state during the update.
2538  *
2539  * Recursive transactions are not disturbed by journal abort until the
2540  * final jbd2_journal_stop, which will receive the -EIO error.
2541  *
2542  * Finally, the jbd2_journal_abort call allows the caller to supply an errno
2543  * which will be recorded (if possible) in the journal superblock.  This
2544  * allows a client to record failure conditions in the middle of a
2545  * transaction without having to complete the transaction to record the
2546  * failure to disk.  ext3_error, for example, now uses this
2547  * functionality.
2548  *
2549  */
2550 
jbd2_journal_abort(journal_t * journal,int errno)2551 void jbd2_journal_abort(journal_t *journal, int errno)
2552 {
2553 	transaction_t *transaction;
2554 
2555 	/*
2556 	 * Lock the aborting procedure until everything is done, this avoid
2557 	 * races between filesystem's error handling flow (e.g. ext4_abort()),
2558 	 * ensure panic after the error info is written into journal's
2559 	 * superblock.
2560 	 */
2561 	mutex_lock(&journal->j_abort_mutex);
2562 	/*
2563 	 * ESHUTDOWN always takes precedence because a file system check
2564 	 * caused by any other journal abort error is not required after
2565 	 * a shutdown triggered.
2566 	 */
2567 	write_lock(&journal->j_state_lock);
2568 	if (journal->j_flags & JBD2_ABORT) {
2569 		int old_errno = journal->j_errno;
2570 
2571 		write_unlock(&journal->j_state_lock);
2572 		if (old_errno != -ESHUTDOWN && errno == -ESHUTDOWN) {
2573 			journal->j_errno = errno;
2574 			jbd2_journal_update_sb_errno(journal);
2575 		}
2576 		mutex_unlock(&journal->j_abort_mutex);
2577 		return;
2578 	}
2579 
2580 	/*
2581 	 * Mark the abort as occurred and start current running transaction
2582 	 * to release all journaled buffer.
2583 	 */
2584 	pr_err("Aborting journal on device %s.\n", journal->j_devname);
2585 
2586 	journal->j_flags |= JBD2_ABORT;
2587 	journal->j_errno = errno;
2588 	transaction = journal->j_running_transaction;
2589 	if (transaction)
2590 		__jbd2_log_start_commit(journal, transaction->t_tid);
2591 	write_unlock(&journal->j_state_lock);
2592 
2593 	/*
2594 	 * Record errno to the journal super block, so that fsck and jbd2
2595 	 * layer could realise that a filesystem check is needed.
2596 	 */
2597 	jbd2_journal_update_sb_errno(journal);
2598 	mutex_unlock(&journal->j_abort_mutex);
2599 }
2600 
2601 /**
2602  * jbd2_journal_errno() - returns the journal's error state.
2603  * @journal: journal to examine.
2604  *
2605  * This is the errno number set with jbd2_journal_abort(), the last
2606  * time the journal was mounted - if the journal was stopped
2607  * without calling abort this will be 0.
2608  *
2609  * If the journal has been aborted on this mount time -EROFS will
2610  * be returned.
2611  */
jbd2_journal_errno(journal_t * journal)2612 int jbd2_journal_errno(journal_t *journal)
2613 {
2614 	int err;
2615 
2616 	read_lock(&journal->j_state_lock);
2617 	if (journal->j_flags & JBD2_ABORT)
2618 		err = -EROFS;
2619 	else
2620 		err = journal->j_errno;
2621 	read_unlock(&journal->j_state_lock);
2622 	return err;
2623 }
2624 
2625 /**
2626  * jbd2_journal_clear_err() - clears the journal's error state
2627  * @journal: journal to act on.
2628  *
2629  * An error must be cleared or acked to take a FS out of readonly
2630  * mode.
2631  */
jbd2_journal_clear_err(journal_t * journal)2632 int jbd2_journal_clear_err(journal_t *journal)
2633 {
2634 	int err = 0;
2635 
2636 	write_lock(&journal->j_state_lock);
2637 	if (journal->j_flags & JBD2_ABORT)
2638 		err = -EROFS;
2639 	else
2640 		journal->j_errno = 0;
2641 	write_unlock(&journal->j_state_lock);
2642 	return err;
2643 }
2644 
2645 /**
2646  * jbd2_journal_ack_err() - Ack journal err.
2647  * @journal: journal to act on.
2648  *
2649  * An error must be cleared or acked to take a FS out of readonly
2650  * mode.
2651  */
jbd2_journal_ack_err(journal_t * journal)2652 void jbd2_journal_ack_err(journal_t *journal)
2653 {
2654 	write_lock(&journal->j_state_lock);
2655 	if (journal->j_errno)
2656 		journal->j_flags |= JBD2_ACK_ERR;
2657 	write_unlock(&journal->j_state_lock);
2658 }
2659 
jbd2_journal_blocks_per_page(struct inode * inode)2660 int jbd2_journal_blocks_per_page(struct inode *inode)
2661 {
2662 	return 1 << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
2663 }
2664 
2665 /*
2666  * helper functions to deal with 32 or 64bit block numbers.
2667  */
journal_tag_bytes(journal_t * journal)2668 size_t journal_tag_bytes(journal_t *journal)
2669 {
2670 	size_t sz;
2671 
2672 	if (jbd2_has_feature_csum3(journal))
2673 		return sizeof(journal_block_tag3_t);
2674 
2675 	sz = sizeof(journal_block_tag_t);
2676 
2677 	if (jbd2_has_feature_csum2(journal))
2678 		sz += sizeof(__u16);
2679 
2680 	if (jbd2_has_feature_64bit(journal))
2681 		return sz;
2682 	else
2683 		return sz - sizeof(__u32);
2684 }
2685 
2686 /*
2687  * JBD memory management
2688  *
2689  * These functions are used to allocate block-sized chunks of memory
2690  * used for making copies of buffer_head data.  Very often it will be
2691  * page-sized chunks of data, but sometimes it will be in
2692  * sub-page-size chunks.  (For example, 16k pages on Power systems
2693  * with a 4k block file system.)  For blocks smaller than a page, we
2694  * use a SLAB allocator.  There are slab caches for each block size,
2695  * which are allocated at mount time, if necessary, and we only free
2696  * (all of) the slab caches when/if the jbd2 module is unloaded.  For
2697  * this reason we don't need to a mutex to protect access to
2698  * jbd2_slab[] allocating or releasing memory; only in
2699  * jbd2_journal_create_slab().
2700  */
2701 #define JBD2_MAX_SLABS 8
2702 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];
2703 
2704 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
2705 	"jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
2706 	"jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
2707 };
2708 
2709 
jbd2_journal_destroy_slabs(void)2710 static void jbd2_journal_destroy_slabs(void)
2711 {
2712 	int i;
2713 
2714 	for (i = 0; i < JBD2_MAX_SLABS; i++) {
2715 		kmem_cache_destroy(jbd2_slab[i]);
2716 		jbd2_slab[i] = NULL;
2717 	}
2718 }
2719 
jbd2_journal_create_slab(size_t size)2720 static int jbd2_journal_create_slab(size_t size)
2721 {
2722 	static DEFINE_MUTEX(jbd2_slab_create_mutex);
2723 	int i = order_base_2(size) - 10;
2724 	size_t slab_size;
2725 
2726 	if (size == PAGE_SIZE)
2727 		return 0;
2728 
2729 	if (i >= JBD2_MAX_SLABS)
2730 		return -EINVAL;
2731 
2732 	if (unlikely(i < 0))
2733 		i = 0;
2734 	mutex_lock(&jbd2_slab_create_mutex);
2735 	if (jbd2_slab[i]) {
2736 		mutex_unlock(&jbd2_slab_create_mutex);
2737 		return 0;	/* Already created */
2738 	}
2739 
2740 	slab_size = 1 << (i+10);
2741 	jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
2742 					 slab_size, 0, NULL);
2743 	mutex_unlock(&jbd2_slab_create_mutex);
2744 	if (!jbd2_slab[i]) {
2745 		printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
2746 		return -ENOMEM;
2747 	}
2748 	return 0;
2749 }
2750 
get_slab(size_t size)2751 static struct kmem_cache *get_slab(size_t size)
2752 {
2753 	int i = order_base_2(size) - 10;
2754 
2755 	BUG_ON(i >= JBD2_MAX_SLABS);
2756 	if (unlikely(i < 0))
2757 		i = 0;
2758 	BUG_ON(jbd2_slab[i] == NULL);
2759 	return jbd2_slab[i];
2760 }
2761 
jbd2_alloc(size_t size,gfp_t flags)2762 void *jbd2_alloc(size_t size, gfp_t flags)
2763 {
2764 	void *ptr;
2765 
2766 	BUG_ON(size & (size-1)); /* Must be a power of 2 */
2767 
2768 	if (size < PAGE_SIZE)
2769 		ptr = kmem_cache_alloc(get_slab(size), flags);
2770 	else
2771 		ptr = (void *)__get_free_pages(flags, get_order(size));
2772 
2773 	/* Check alignment; SLUB has gotten this wrong in the past,
2774 	 * and this can lead to user data corruption! */
2775 	BUG_ON(((unsigned long) ptr) & (size-1));
2776 
2777 	return ptr;
2778 }
2779 
jbd2_free(void * ptr,size_t size)2780 void jbd2_free(void *ptr, size_t size)
2781 {
2782 	if (size < PAGE_SIZE)
2783 		kmem_cache_free(get_slab(size), ptr);
2784 	else
2785 		free_pages((unsigned long)ptr, get_order(size));
2786 };
2787 
2788 /*
2789  * Journal_head storage management
2790  */
2791 static struct kmem_cache *jbd2_journal_head_cache;
2792 #ifdef CONFIG_JBD2_DEBUG
2793 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
2794 #endif
2795 
jbd2_journal_init_journal_head_cache(void)2796 static int __init jbd2_journal_init_journal_head_cache(void)
2797 {
2798 	J_ASSERT(!jbd2_journal_head_cache);
2799 	jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
2800 				sizeof(struct journal_head),
2801 				0,		/* offset */
2802 				SLAB_TEMPORARY | SLAB_TYPESAFE_BY_RCU,
2803 				NULL);		/* ctor */
2804 	if (!jbd2_journal_head_cache) {
2805 		printk(KERN_EMERG "JBD2: no memory for journal_head cache\n");
2806 		return -ENOMEM;
2807 	}
2808 	return 0;
2809 }
2810 
jbd2_journal_destroy_journal_head_cache(void)2811 static void jbd2_journal_destroy_journal_head_cache(void)
2812 {
2813 	kmem_cache_destroy(jbd2_journal_head_cache);
2814 	jbd2_journal_head_cache = NULL;
2815 }
2816 
2817 /*
2818  * journal_head splicing and dicing
2819  */
journal_alloc_journal_head(void)2820 static struct journal_head *journal_alloc_journal_head(void)
2821 {
2822 	struct journal_head *ret;
2823 
2824 #ifdef CONFIG_JBD2_DEBUG
2825 	atomic_inc(&nr_journal_heads);
2826 #endif
2827 	ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS);
2828 	if (!ret) {
2829 		jbd2_debug(1, "out of memory for journal_head\n");
2830 		pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__);
2831 		ret = kmem_cache_zalloc(jbd2_journal_head_cache,
2832 				GFP_NOFS | __GFP_NOFAIL);
2833 	}
2834 	spin_lock_init(&ret->b_state_lock);
2835 	return ret;
2836 }
2837 
journal_free_journal_head(struct journal_head * jh)2838 static void journal_free_journal_head(struct journal_head *jh)
2839 {
2840 #ifdef CONFIG_JBD2_DEBUG
2841 	atomic_dec(&nr_journal_heads);
2842 	memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2843 #endif
2844 	kmem_cache_free(jbd2_journal_head_cache, jh);
2845 }
2846 
2847 /*
2848  * A journal_head is attached to a buffer_head whenever JBD has an
2849  * interest in the buffer.
2850  *
2851  * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2852  * is set.  This bit is tested in core kernel code where we need to take
2853  * JBD-specific actions.  Testing the zeroness of ->b_private is not reliable
2854  * there.
2855  *
2856  * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2857  *
2858  * When a buffer has its BH_JBD bit set it is immune from being released by
2859  * core kernel code, mainly via ->b_count.
2860  *
2861  * A journal_head is detached from its buffer_head when the journal_head's
2862  * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
2863  * transaction (b_cp_transaction) hold their references to b_jcount.
2864  *
2865  * Various places in the kernel want to attach a journal_head to a buffer_head
2866  * _before_ attaching the journal_head to a transaction.  To protect the
2867  * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2868  * journal_head's b_jcount refcount by one.  The caller must call
2869  * jbd2_journal_put_journal_head() to undo this.
2870  *
2871  * So the typical usage would be:
2872  *
2873  *	(Attach a journal_head if needed.  Increments b_jcount)
2874  *	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2875  *	...
2876  *      (Get another reference for transaction)
2877  *	jbd2_journal_grab_journal_head(bh);
2878  *	jh->b_transaction = xxx;
2879  *	(Put original reference)
2880  *	jbd2_journal_put_journal_head(jh);
2881  */
2882 
2883 /*
2884  * Give a buffer_head a journal_head.
2885  *
2886  * May sleep.
2887  */
jbd2_journal_add_journal_head(struct buffer_head * bh)2888 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2889 {
2890 	struct journal_head *jh;
2891 	struct journal_head *new_jh = NULL;
2892 
2893 repeat:
2894 	if (!buffer_jbd(bh))
2895 		new_jh = journal_alloc_journal_head();
2896 
2897 	jbd_lock_bh_journal_head(bh);
2898 	if (buffer_jbd(bh)) {
2899 		jh = bh2jh(bh);
2900 	} else {
2901 		J_ASSERT_BH(bh,
2902 			(atomic_read(&bh->b_count) > 0) ||
2903 			(bh->b_folio && bh->b_folio->mapping));
2904 
2905 		if (!new_jh) {
2906 			jbd_unlock_bh_journal_head(bh);
2907 			goto repeat;
2908 		}
2909 
2910 		jh = new_jh;
2911 		new_jh = NULL;		/* We consumed it */
2912 		set_buffer_jbd(bh);
2913 		bh->b_private = jh;
2914 		jh->b_bh = bh;
2915 		get_bh(bh);
2916 		BUFFER_TRACE(bh, "added journal_head");
2917 	}
2918 	jh->b_jcount++;
2919 	jbd_unlock_bh_journal_head(bh);
2920 	if (new_jh)
2921 		journal_free_journal_head(new_jh);
2922 	return bh->b_private;
2923 }
2924 
2925 /*
2926  * Grab a ref against this buffer_head's journal_head.  If it ended up not
2927  * having a journal_head, return NULL
2928  */
jbd2_journal_grab_journal_head(struct buffer_head * bh)2929 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2930 {
2931 	struct journal_head *jh = NULL;
2932 
2933 	jbd_lock_bh_journal_head(bh);
2934 	if (buffer_jbd(bh)) {
2935 		jh = bh2jh(bh);
2936 		jh->b_jcount++;
2937 	}
2938 	jbd_unlock_bh_journal_head(bh);
2939 	return jh;
2940 }
2941 EXPORT_SYMBOL(jbd2_journal_grab_journal_head);
2942 
__journal_remove_journal_head(struct buffer_head * bh)2943 static void __journal_remove_journal_head(struct buffer_head *bh)
2944 {
2945 	struct journal_head *jh = bh2jh(bh);
2946 
2947 	J_ASSERT_JH(jh, jh->b_transaction == NULL);
2948 	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2949 	J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
2950 	J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2951 	J_ASSERT_BH(bh, buffer_jbd(bh));
2952 	J_ASSERT_BH(bh, jh2bh(jh) == bh);
2953 	BUFFER_TRACE(bh, "remove journal_head");
2954 
2955 	/* Unlink before dropping the lock */
2956 	bh->b_private = NULL;
2957 	jh->b_bh = NULL;	/* debug, really */
2958 	clear_buffer_jbd(bh);
2959 }
2960 
journal_release_journal_head(struct journal_head * jh,size_t b_size)2961 static void journal_release_journal_head(struct journal_head *jh, size_t b_size)
2962 {
2963 	if (jh->b_frozen_data) {
2964 		printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
2965 		jbd2_free(jh->b_frozen_data, b_size);
2966 	}
2967 	if (jh->b_committed_data) {
2968 		printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
2969 		jbd2_free(jh->b_committed_data, b_size);
2970 	}
2971 	journal_free_journal_head(jh);
2972 }
2973 
2974 /*
2975  * Drop a reference on the passed journal_head.  If it fell to zero then
2976  * release the journal_head from the buffer_head.
2977  */
jbd2_journal_put_journal_head(struct journal_head * jh)2978 void jbd2_journal_put_journal_head(struct journal_head *jh)
2979 {
2980 	struct buffer_head *bh = jh2bh(jh);
2981 
2982 	jbd_lock_bh_journal_head(bh);
2983 	J_ASSERT_JH(jh, jh->b_jcount > 0);
2984 	--jh->b_jcount;
2985 	if (!jh->b_jcount) {
2986 		__journal_remove_journal_head(bh);
2987 		jbd_unlock_bh_journal_head(bh);
2988 		journal_release_journal_head(jh, bh->b_size);
2989 		__brelse(bh);
2990 	} else {
2991 		jbd_unlock_bh_journal_head(bh);
2992 	}
2993 }
2994 EXPORT_SYMBOL(jbd2_journal_put_journal_head);
2995 
2996 /*
2997  * Initialize jbd inode head
2998  */
jbd2_journal_init_jbd_inode(struct jbd2_inode * jinode,struct inode * inode)2999 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
3000 {
3001 	jinode->i_transaction = NULL;
3002 	jinode->i_next_transaction = NULL;
3003 	jinode->i_vfs_inode = inode;
3004 	jinode->i_flags = 0;
3005 	jinode->i_dirty_start = 0;
3006 	jinode->i_dirty_end = 0;
3007 	INIT_LIST_HEAD(&jinode->i_list);
3008 }
3009 
3010 /*
3011  * Function to be called before we start removing inode from memory (i.e.,
3012  * clear_inode() is a fine place to be called from). It removes inode from
3013  * transaction's lists.
3014  */
jbd2_journal_release_jbd_inode(journal_t * journal,struct jbd2_inode * jinode)3015 void jbd2_journal_release_jbd_inode(journal_t *journal,
3016 				    struct jbd2_inode *jinode)
3017 {
3018 	if (!journal)
3019 		return;
3020 restart:
3021 	spin_lock(&journal->j_list_lock);
3022 	/* Is commit writing out inode - we have to wait */
3023 	if (jinode->i_flags & JI_COMMIT_RUNNING) {
3024 		wait_queue_head_t *wq;
3025 		DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
3026 		wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
3027 		prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
3028 		spin_unlock(&journal->j_list_lock);
3029 		schedule();
3030 		finish_wait(wq, &wait.wq_entry);
3031 		goto restart;
3032 	}
3033 
3034 	if (jinode->i_transaction) {
3035 		list_del(&jinode->i_list);
3036 		jinode->i_transaction = NULL;
3037 	}
3038 	spin_unlock(&journal->j_list_lock);
3039 }
3040 
3041 
3042 #ifdef CONFIG_PROC_FS
3043 
3044 #define JBD2_STATS_PROC_NAME "fs/jbd2"
3045 
jbd2_create_jbd_stats_proc_entry(void)3046 static void __init jbd2_create_jbd_stats_proc_entry(void)
3047 {
3048 	proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
3049 }
3050 
jbd2_remove_jbd_stats_proc_entry(void)3051 static void __exit jbd2_remove_jbd_stats_proc_entry(void)
3052 {
3053 	if (proc_jbd2_stats)
3054 		remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
3055 }
3056 
3057 #else
3058 
3059 #define jbd2_create_jbd_stats_proc_entry() do {} while (0)
3060 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
3061 
3062 #endif
3063 
3064 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache;
3065 
jbd2_journal_init_inode_cache(void)3066 static int __init jbd2_journal_init_inode_cache(void)
3067 {
3068 	J_ASSERT(!jbd2_inode_cache);
3069 	jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0);
3070 	if (!jbd2_inode_cache) {
3071 		pr_emerg("JBD2: failed to create inode cache\n");
3072 		return -ENOMEM;
3073 	}
3074 	return 0;
3075 }
3076 
jbd2_journal_init_handle_cache(void)3077 static int __init jbd2_journal_init_handle_cache(void)
3078 {
3079 	J_ASSERT(!jbd2_handle_cache);
3080 	jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY);
3081 	if (!jbd2_handle_cache) {
3082 		printk(KERN_EMERG "JBD2: failed to create handle cache\n");
3083 		return -ENOMEM;
3084 	}
3085 	return 0;
3086 }
3087 
jbd2_journal_destroy_inode_cache(void)3088 static void jbd2_journal_destroy_inode_cache(void)
3089 {
3090 	kmem_cache_destroy(jbd2_inode_cache);
3091 	jbd2_inode_cache = NULL;
3092 }
3093 
jbd2_journal_destroy_handle_cache(void)3094 static void jbd2_journal_destroy_handle_cache(void)
3095 {
3096 	kmem_cache_destroy(jbd2_handle_cache);
3097 	jbd2_handle_cache = NULL;
3098 }
3099 
3100 /*
3101  * Module startup and shutdown
3102  */
3103 
journal_init_caches(void)3104 static int __init journal_init_caches(void)
3105 {
3106 	int ret;
3107 
3108 	ret = jbd2_journal_init_revoke_record_cache();
3109 	if (ret == 0)
3110 		ret = jbd2_journal_init_revoke_table_cache();
3111 	if (ret == 0)
3112 		ret = jbd2_journal_init_journal_head_cache();
3113 	if (ret == 0)
3114 		ret = jbd2_journal_init_handle_cache();
3115 	if (ret == 0)
3116 		ret = jbd2_journal_init_inode_cache();
3117 	if (ret == 0)
3118 		ret = jbd2_journal_init_transaction_cache();
3119 	return ret;
3120 }
3121 
jbd2_journal_destroy_caches(void)3122 static void jbd2_journal_destroy_caches(void)
3123 {
3124 	jbd2_journal_destroy_revoke_record_cache();
3125 	jbd2_journal_destroy_revoke_table_cache();
3126 	jbd2_journal_destroy_journal_head_cache();
3127 	jbd2_journal_destroy_handle_cache();
3128 	jbd2_journal_destroy_inode_cache();
3129 	jbd2_journal_destroy_transaction_cache();
3130 	jbd2_journal_destroy_slabs();
3131 }
3132 
journal_init(void)3133 static int __init journal_init(void)
3134 {
3135 	int ret;
3136 
3137 	BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
3138 
3139 	ret = journal_init_caches();
3140 	if (ret == 0) {
3141 		jbd2_create_jbd_stats_proc_entry();
3142 	} else {
3143 		jbd2_journal_destroy_caches();
3144 	}
3145 	return ret;
3146 }
3147 
journal_exit(void)3148 static void __exit journal_exit(void)
3149 {
3150 #ifdef CONFIG_JBD2_DEBUG
3151 	int n = atomic_read(&nr_journal_heads);
3152 	if (n)
3153 		printk(KERN_ERR "JBD2: leaked %d journal_heads!\n", n);
3154 #endif
3155 	jbd2_remove_jbd_stats_proc_entry();
3156 	jbd2_journal_destroy_caches();
3157 }
3158 
3159 MODULE_DESCRIPTION("Generic filesystem journal-writing module");
3160 MODULE_LICENSE("GPL");
3161 module_init(journal_init);
3162 module_exit(journal_exit);
3163 
3164