xref: /linux/fs/ext4/super.c (revision 65989db7f88456273d0913d8d21f6097fa6aad19)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/super.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  Big-endian to little-endian byte-swapping/bitmaps by
17  *        David S. Miller (davem@caip.rutgers.edu), 1995
18  */
19 
20 #include <linux/module.h>
21 #include <linux/string.h>
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/vmalloc.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/parser.h>
30 #include <linux/buffer_head.h>
31 #include <linux/exportfs.h>
32 #include <linux/vfs.h>
33 #include <linux/random.h>
34 #include <linux/mount.h>
35 #include <linux/namei.h>
36 #include <linux/quotaops.h>
37 #include <linux/seq_file.h>
38 #include <linux/ctype.h>
39 #include <linux/log2.h>
40 #include <linux/crc16.h>
41 #include <linux/dax.h>
42 #include <linux/uaccess.h>
43 #include <linux/iversion.h>
44 #include <linux/unicode.h>
45 #include <linux/part_stat.h>
46 #include <linux/kthread.h>
47 #include <linux/freezer.h>
48 #include <linux/fsnotify.h>
49 #include <linux/fs_context.h>
50 #include <linux/fs_parser.h>
51 
52 #include "ext4.h"
53 #include "ext4_extents.h"	/* Needed for trace points definition */
54 #include "ext4_jbd2.h"
55 #include "xattr.h"
56 #include "acl.h"
57 #include "mballoc.h"
58 #include "fsmap.h"
59 
60 #define CREATE_TRACE_POINTS
61 #include <trace/events/ext4.h>
62 
63 static struct ext4_lazy_init *ext4_li_info;
64 static DEFINE_MUTEX(ext4_li_mtx);
65 static struct ratelimit_state ext4_mount_msg_ratelimit;
66 
67 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
68 			     unsigned long journal_devnum);
69 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
70 static void ext4_update_super(struct super_block *sb);
71 static int ext4_commit_super(struct super_block *sb);
72 static int ext4_mark_recovery_complete(struct super_block *sb,
73 					struct ext4_super_block *es);
74 static int ext4_clear_journal_err(struct super_block *sb,
75 				  struct ext4_super_block *es);
76 static int ext4_sync_fs(struct super_block *sb, int wait);
77 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
78 static int ext4_unfreeze(struct super_block *sb);
79 static int ext4_freeze(struct super_block *sb);
80 static inline int ext2_feature_set_ok(struct super_block *sb);
81 static inline int ext3_feature_set_ok(struct super_block *sb);
82 static void ext4_unregister_li_request(struct super_block *sb);
83 static void ext4_clear_request_list(void);
84 static struct inode *ext4_get_journal_inode(struct super_block *sb,
85 					    unsigned int journal_inum);
86 static int ext4_validate_options(struct fs_context *fc);
87 static int ext4_check_opt_consistency(struct fs_context *fc,
88 				      struct super_block *sb);
89 static void ext4_apply_options(struct fs_context *fc, struct super_block *sb);
90 static int ext4_parse_param(struct fs_context *fc, struct fs_parameter *param);
91 static int ext4_get_tree(struct fs_context *fc);
92 static int ext4_reconfigure(struct fs_context *fc);
93 static void ext4_fc_free(struct fs_context *fc);
94 static int ext4_init_fs_context(struct fs_context *fc);
95 static void ext4_kill_sb(struct super_block *sb);
96 static const struct fs_parameter_spec ext4_param_specs[];
97 
98 /*
99  * Lock ordering
100  *
101  * page fault path:
102  * mmap_lock -> sb_start_pagefault -> invalidate_lock (r) -> transaction start
103  *   -> page lock -> i_data_sem (rw)
104  *
105  * buffered write path:
106  * sb_start_write -> i_mutex -> mmap_lock
107  * sb_start_write -> i_mutex -> transaction start -> page lock ->
108  *   i_data_sem (rw)
109  *
110  * truncate:
111  * sb_start_write -> i_mutex -> invalidate_lock (w) -> i_mmap_rwsem (w) ->
112  *   page lock
113  * sb_start_write -> i_mutex -> invalidate_lock (w) -> transaction start ->
114  *   i_data_sem (rw)
115  *
116  * direct IO:
117  * sb_start_write -> i_mutex -> mmap_lock
118  * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw)
119  *
120  * writepages:
121  * transaction start -> page lock(s) -> i_data_sem (rw)
122  */
123 
124 static const struct fs_context_operations ext4_context_ops = {
125 	.parse_param	= ext4_parse_param,
126 	.get_tree	= ext4_get_tree,
127 	.reconfigure	= ext4_reconfigure,
128 	.free		= ext4_fc_free,
129 };
130 
131 
132 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
133 static struct file_system_type ext2_fs_type = {
134 	.owner			= THIS_MODULE,
135 	.name			= "ext2",
136 	.init_fs_context	= ext4_init_fs_context,
137 	.parameters		= ext4_param_specs,
138 	.kill_sb		= ext4_kill_sb,
139 	.fs_flags		= FS_REQUIRES_DEV,
140 };
141 MODULE_ALIAS_FS("ext2");
142 MODULE_ALIAS("ext2");
143 #define IS_EXT2_SB(sb) ((sb)->s_type == &ext2_fs_type)
144 #else
145 #define IS_EXT2_SB(sb) (0)
146 #endif
147 
148 
149 static struct file_system_type ext3_fs_type = {
150 	.owner			= THIS_MODULE,
151 	.name			= "ext3",
152 	.init_fs_context	= ext4_init_fs_context,
153 	.parameters		= ext4_param_specs,
154 	.kill_sb		= ext4_kill_sb,
155 	.fs_flags		= FS_REQUIRES_DEV,
156 };
157 MODULE_ALIAS_FS("ext3");
158 MODULE_ALIAS("ext3");
159 #define IS_EXT3_SB(sb) ((sb)->s_type == &ext3_fs_type)
160 
161 
__ext4_read_bh(struct buffer_head * bh,blk_opf_t op_flags,bh_end_io_t * end_io,bool simu_fail)162 static inline void __ext4_read_bh(struct buffer_head *bh, blk_opf_t op_flags,
163 				  bh_end_io_t *end_io, bool simu_fail)
164 {
165 	if (simu_fail) {
166 		clear_buffer_uptodate(bh);
167 		unlock_buffer(bh);
168 		return;
169 	}
170 
171 	/*
172 	 * buffer's verified bit is no longer valid after reading from
173 	 * disk again due to write out error, clear it to make sure we
174 	 * recheck the buffer contents.
175 	 */
176 	clear_buffer_verified(bh);
177 
178 	bh->b_end_io = end_io ? end_io : end_buffer_read_sync;
179 	get_bh(bh);
180 	submit_bh(REQ_OP_READ | op_flags, bh);
181 }
182 
ext4_read_bh_nowait(struct buffer_head * bh,blk_opf_t op_flags,bh_end_io_t * end_io,bool simu_fail)183 void ext4_read_bh_nowait(struct buffer_head *bh, blk_opf_t op_flags,
184 			 bh_end_io_t *end_io, bool simu_fail)
185 {
186 	BUG_ON(!buffer_locked(bh));
187 
188 	if (ext4_buffer_uptodate(bh)) {
189 		unlock_buffer(bh);
190 		return;
191 	}
192 	__ext4_read_bh(bh, op_flags, end_io, simu_fail);
193 }
194 
ext4_read_bh(struct buffer_head * bh,blk_opf_t op_flags,bh_end_io_t * end_io,bool simu_fail)195 int ext4_read_bh(struct buffer_head *bh, blk_opf_t op_flags,
196 		 bh_end_io_t *end_io, bool simu_fail)
197 {
198 	BUG_ON(!buffer_locked(bh));
199 
200 	if (ext4_buffer_uptodate(bh)) {
201 		unlock_buffer(bh);
202 		return 0;
203 	}
204 
205 	__ext4_read_bh(bh, op_flags, end_io, simu_fail);
206 
207 	wait_on_buffer(bh);
208 	if (buffer_uptodate(bh))
209 		return 0;
210 	return -EIO;
211 }
212 
ext4_read_bh_lock(struct buffer_head * bh,blk_opf_t op_flags,bool wait)213 int ext4_read_bh_lock(struct buffer_head *bh, blk_opf_t op_flags, bool wait)
214 {
215 	lock_buffer(bh);
216 	if (!wait) {
217 		ext4_read_bh_nowait(bh, op_flags, NULL, false);
218 		return 0;
219 	}
220 	return ext4_read_bh(bh, op_flags, NULL, false);
221 }
222 
223 /*
224  * This works like __bread_gfp() except it uses ERR_PTR for error
225  * returns.  Currently with sb_bread it's impossible to distinguish
226  * between ENOMEM and EIO situations (since both result in a NULL
227  * return.
228  */
__ext4_sb_bread_gfp(struct super_block * sb,sector_t block,blk_opf_t op_flags,gfp_t gfp)229 static struct buffer_head *__ext4_sb_bread_gfp(struct super_block *sb,
230 					       sector_t block,
231 					       blk_opf_t op_flags, gfp_t gfp)
232 {
233 	struct buffer_head *bh;
234 	int ret;
235 
236 	bh = sb_getblk_gfp(sb, block, gfp);
237 	if (bh == NULL)
238 		return ERR_PTR(-ENOMEM);
239 	if (ext4_buffer_uptodate(bh))
240 		return bh;
241 
242 	ret = ext4_read_bh_lock(bh, REQ_META | op_flags, true);
243 	if (ret) {
244 		put_bh(bh);
245 		return ERR_PTR(ret);
246 	}
247 	return bh;
248 }
249 
ext4_sb_bread(struct super_block * sb,sector_t block,blk_opf_t op_flags)250 struct buffer_head *ext4_sb_bread(struct super_block *sb, sector_t block,
251 				   blk_opf_t op_flags)
252 {
253 	gfp_t gfp = mapping_gfp_constraint(sb->s_bdev->bd_mapping,
254 			~__GFP_FS) | __GFP_MOVABLE;
255 
256 	return __ext4_sb_bread_gfp(sb, block, op_flags, gfp);
257 }
258 
ext4_sb_bread_unmovable(struct super_block * sb,sector_t block)259 struct buffer_head *ext4_sb_bread_unmovable(struct super_block *sb,
260 					    sector_t block)
261 {
262 	gfp_t gfp = mapping_gfp_constraint(sb->s_bdev->bd_mapping,
263 			~__GFP_FS);
264 
265 	return __ext4_sb_bread_gfp(sb, block, 0, gfp);
266 }
267 
ext4_sb_bread_nofail(struct super_block * sb,sector_t block)268 struct buffer_head *ext4_sb_bread_nofail(struct super_block *sb,
269 					 sector_t block)
270 {
271 	gfp_t gfp = mapping_gfp_constraint(sb->s_bdev->bd_mapping,
272 			~__GFP_FS) | __GFP_MOVABLE | __GFP_NOFAIL;
273 
274 	return __ext4_sb_bread_gfp(sb, block, 0, gfp);
275 }
276 
ext4_sb_breadahead_unmovable(struct super_block * sb,sector_t block)277 void ext4_sb_breadahead_unmovable(struct super_block *sb, sector_t block)
278 {
279 	struct buffer_head *bh = bdev_getblk(sb->s_bdev, block,
280 			sb->s_blocksize, GFP_NOWAIT);
281 
282 	if (likely(bh)) {
283 		if (trylock_buffer(bh))
284 			ext4_read_bh_nowait(bh, REQ_RAHEAD, NULL, false);
285 		brelse(bh);
286 	}
287 }
288 
ext4_verify_csum_type(struct super_block * sb,struct ext4_super_block * es)289 static int ext4_verify_csum_type(struct super_block *sb,
290 				 struct ext4_super_block *es)
291 {
292 	if (!ext4_has_feature_metadata_csum(sb))
293 		return 1;
294 
295 	return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
296 }
297 
ext4_superblock_csum(struct ext4_super_block * es)298 __le32 ext4_superblock_csum(struct ext4_super_block *es)
299 {
300 	int offset = offsetof(struct ext4_super_block, s_checksum);
301 	__u32 csum;
302 
303 	csum = ext4_chksum(~0, (char *)es, offset);
304 
305 	return cpu_to_le32(csum);
306 }
307 
ext4_superblock_csum_verify(struct super_block * sb,struct ext4_super_block * es)308 static int ext4_superblock_csum_verify(struct super_block *sb,
309 				       struct ext4_super_block *es)
310 {
311 	if (!ext4_has_feature_metadata_csum(sb))
312 		return 1;
313 
314 	return es->s_checksum == ext4_superblock_csum(es);
315 }
316 
ext4_superblock_csum_set(struct super_block * sb)317 void ext4_superblock_csum_set(struct super_block *sb)
318 {
319 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
320 
321 	if (!ext4_has_feature_metadata_csum(sb))
322 		return;
323 
324 	es->s_checksum = ext4_superblock_csum(es);
325 }
326 
ext4_block_bitmap(struct super_block * sb,struct ext4_group_desc * bg)327 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
328 			       struct ext4_group_desc *bg)
329 {
330 	return le32_to_cpu(bg->bg_block_bitmap_lo) |
331 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
332 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
333 }
334 
ext4_inode_bitmap(struct super_block * sb,struct ext4_group_desc * bg)335 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
336 			       struct ext4_group_desc *bg)
337 {
338 	return le32_to_cpu(bg->bg_inode_bitmap_lo) |
339 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
340 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
341 }
342 
ext4_inode_table(struct super_block * sb,struct ext4_group_desc * bg)343 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
344 			      struct ext4_group_desc *bg)
345 {
346 	return le32_to_cpu(bg->bg_inode_table_lo) |
347 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
348 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
349 }
350 
ext4_free_group_clusters(struct super_block * sb,struct ext4_group_desc * bg)351 __u32 ext4_free_group_clusters(struct super_block *sb,
352 			       struct ext4_group_desc *bg)
353 {
354 	return le16_to_cpu(bg->bg_free_blocks_count_lo) |
355 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
356 		 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
357 }
358 
ext4_free_inodes_count(struct super_block * sb,struct ext4_group_desc * bg)359 __u32 ext4_free_inodes_count(struct super_block *sb,
360 			      struct ext4_group_desc *bg)
361 {
362 	return le16_to_cpu(READ_ONCE(bg->bg_free_inodes_count_lo)) |
363 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
364 		 (__u32)le16_to_cpu(READ_ONCE(bg->bg_free_inodes_count_hi)) << 16 : 0);
365 }
366 
ext4_used_dirs_count(struct super_block * sb,struct ext4_group_desc * bg)367 __u32 ext4_used_dirs_count(struct super_block *sb,
368 			      struct ext4_group_desc *bg)
369 {
370 	return le16_to_cpu(bg->bg_used_dirs_count_lo) |
371 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
372 		 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
373 }
374 
ext4_itable_unused_count(struct super_block * sb,struct ext4_group_desc * bg)375 __u32 ext4_itable_unused_count(struct super_block *sb,
376 			      struct ext4_group_desc *bg)
377 {
378 	return le16_to_cpu(bg->bg_itable_unused_lo) |
379 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
380 		 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
381 }
382 
ext4_block_bitmap_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)383 void ext4_block_bitmap_set(struct super_block *sb,
384 			   struct ext4_group_desc *bg, ext4_fsblk_t blk)
385 {
386 	bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
387 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
388 		bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
389 }
390 
ext4_inode_bitmap_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)391 void ext4_inode_bitmap_set(struct super_block *sb,
392 			   struct ext4_group_desc *bg, ext4_fsblk_t blk)
393 {
394 	bg->bg_inode_bitmap_lo  = cpu_to_le32((u32)blk);
395 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
396 		bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
397 }
398 
ext4_inode_table_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)399 void ext4_inode_table_set(struct super_block *sb,
400 			  struct ext4_group_desc *bg, ext4_fsblk_t blk)
401 {
402 	bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
403 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
404 		bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
405 }
406 
ext4_free_group_clusters_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)407 void ext4_free_group_clusters_set(struct super_block *sb,
408 				  struct ext4_group_desc *bg, __u32 count)
409 {
410 	bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
411 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
412 		bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
413 }
414 
ext4_free_inodes_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)415 void ext4_free_inodes_set(struct super_block *sb,
416 			  struct ext4_group_desc *bg, __u32 count)
417 {
418 	WRITE_ONCE(bg->bg_free_inodes_count_lo, cpu_to_le16((__u16)count));
419 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
420 		WRITE_ONCE(bg->bg_free_inodes_count_hi, cpu_to_le16(count >> 16));
421 }
422 
ext4_used_dirs_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)423 void ext4_used_dirs_set(struct super_block *sb,
424 			  struct ext4_group_desc *bg, __u32 count)
425 {
426 	bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
427 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
428 		bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
429 }
430 
ext4_itable_unused_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)431 void ext4_itable_unused_set(struct super_block *sb,
432 			  struct ext4_group_desc *bg, __u32 count)
433 {
434 	bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
435 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
436 		bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
437 }
438 
__ext4_update_tstamp(__le32 * lo,__u8 * hi,time64_t now)439 static void __ext4_update_tstamp(__le32 *lo, __u8 *hi, time64_t now)
440 {
441 	now = clamp_val(now, 0, (1ull << 40) - 1);
442 
443 	*lo = cpu_to_le32(lower_32_bits(now));
444 	*hi = upper_32_bits(now);
445 }
446 
__ext4_get_tstamp(__le32 * lo,__u8 * hi)447 static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi)
448 {
449 	return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo);
450 }
451 #define ext4_update_tstamp(es, tstamp) \
452 	__ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi, \
453 			     ktime_get_real_seconds())
454 #define ext4_get_tstamp(es, tstamp) \
455 	__ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi)
456 
457 /*
458  * The ext4_maybe_update_superblock() function checks and updates the
459  * superblock if needed.
460  *
461  * This function is designed to update the on-disk superblock only under
462  * certain conditions to prevent excessive disk writes and unnecessary
463  * waking of the disk from sleep. The superblock will be updated if:
464  * 1. More than sbi->s_sb_update_sec (def: 1 hour) has passed since the last
465  *    superblock update
466  * 2. More than sbi->s_sb_update_kb (def: 16MB) kbs have been written since the
467  *    last superblock update.
468  *
469  * @sb: The superblock
470  */
ext4_maybe_update_superblock(struct super_block * sb)471 static void ext4_maybe_update_superblock(struct super_block *sb)
472 {
473 	struct ext4_sb_info *sbi = EXT4_SB(sb);
474 	struct ext4_super_block *es = sbi->s_es;
475 	journal_t *journal = sbi->s_journal;
476 	time64_t now;
477 	__u64 last_update;
478 	__u64 lifetime_write_kbytes;
479 	__u64 diff_size;
480 
481 	if (ext4_emergency_state(sb) || sb_rdonly(sb) ||
482 	    !(sb->s_flags & SB_ACTIVE) || !journal ||
483 	    journal->j_flags & JBD2_UNMOUNT)
484 		return;
485 
486 	now = ktime_get_real_seconds();
487 	last_update = ext4_get_tstamp(es, s_wtime);
488 
489 	if (likely(now - last_update < sbi->s_sb_update_sec))
490 		return;
491 
492 	lifetime_write_kbytes = sbi->s_kbytes_written +
493 		((part_stat_read(sb->s_bdev, sectors[STAT_WRITE]) -
494 		  sbi->s_sectors_written_start) >> 1);
495 
496 	/* Get the number of kilobytes not written to disk to account
497 	 * for statistics and compare with a multiple of 16 MB. This
498 	 * is used to determine when the next superblock commit should
499 	 * occur (i.e. not more often than once per 16MB if there was
500 	 * less written in an hour).
501 	 */
502 	diff_size = lifetime_write_kbytes - le64_to_cpu(es->s_kbytes_written);
503 
504 	if (diff_size > sbi->s_sb_update_kb)
505 		schedule_work(&EXT4_SB(sb)->s_sb_upd_work);
506 }
507 
ext4_journal_commit_callback(journal_t * journal,transaction_t * txn)508 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
509 {
510 	struct super_block		*sb = journal->j_private;
511 
512 	BUG_ON(txn->t_state == T_FINISHED);
513 
514 	ext4_process_freed_data(sb, txn->t_tid);
515 	ext4_maybe_update_superblock(sb);
516 }
517 
ext4_journalled_writepage_needs_redirty(struct jbd2_inode * jinode,struct folio * folio)518 static bool ext4_journalled_writepage_needs_redirty(struct jbd2_inode *jinode,
519 		struct folio *folio)
520 {
521 	struct buffer_head *bh, *head;
522 	struct journal_head *jh;
523 
524 	bh = head = folio_buffers(folio);
525 	do {
526 		/*
527 		 * We have to redirty a page in these cases:
528 		 * 1) If buffer is dirty, it means the page was dirty because it
529 		 * contains a buffer that needs checkpointing. So the dirty bit
530 		 * needs to be preserved so that checkpointing writes the buffer
531 		 * properly.
532 		 * 2) If buffer is not part of the committing transaction
533 		 * (we may have just accidentally come across this buffer because
534 		 * inode range tracking is not exact) or if the currently running
535 		 * transaction already contains this buffer as well, dirty bit
536 		 * needs to be preserved so that the buffer gets writeprotected
537 		 * properly on running transaction's commit.
538 		 */
539 		jh = bh2jh(bh);
540 		if (buffer_dirty(bh) ||
541 		    (jh && (jh->b_transaction != jinode->i_transaction ||
542 			    jh->b_next_transaction)))
543 			return true;
544 	} while ((bh = bh->b_this_page) != head);
545 
546 	return false;
547 }
548 
ext4_journalled_submit_inode_data_buffers(struct jbd2_inode * jinode)549 static int ext4_journalled_submit_inode_data_buffers(struct jbd2_inode *jinode)
550 {
551 	struct address_space *mapping = jinode->i_vfs_inode->i_mapping;
552 	struct writeback_control wbc = {
553 		.sync_mode =  WB_SYNC_ALL,
554 		.nr_to_write = LONG_MAX,
555 		.range_start = jinode->i_dirty_start,
556 		.range_end = jinode->i_dirty_end,
557         };
558 	struct folio *folio = NULL;
559 	int error;
560 
561 	/*
562 	 * writeback_iter() already checks for dirty pages and calls
563 	 * folio_clear_dirty_for_io(), which we want to write protect the
564 	 * folios.
565 	 *
566 	 * However, we may have to redirty a folio sometimes.
567 	 */
568 	while ((folio = writeback_iter(mapping, &wbc, folio, &error))) {
569 		if (ext4_journalled_writepage_needs_redirty(jinode, folio))
570 			folio_redirty_for_writepage(&wbc, folio);
571 		folio_unlock(folio);
572 	}
573 
574 	return error;
575 }
576 
ext4_journal_submit_inode_data_buffers(struct jbd2_inode * jinode)577 static int ext4_journal_submit_inode_data_buffers(struct jbd2_inode *jinode)
578 {
579 	int ret;
580 
581 	if (ext4_should_journal_data(jinode->i_vfs_inode))
582 		ret = ext4_journalled_submit_inode_data_buffers(jinode);
583 	else
584 		ret = ext4_normal_submit_inode_data_buffers(jinode);
585 	return ret;
586 }
587 
ext4_journal_finish_inode_data_buffers(struct jbd2_inode * jinode)588 static int ext4_journal_finish_inode_data_buffers(struct jbd2_inode *jinode)
589 {
590 	int ret = 0;
591 
592 	if (!ext4_should_journal_data(jinode->i_vfs_inode))
593 		ret = jbd2_journal_finish_inode_data_buffers(jinode);
594 
595 	return ret;
596 }
597 
system_going_down(void)598 static bool system_going_down(void)
599 {
600 	return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF
601 		|| system_state == SYSTEM_RESTART;
602 }
603 
604 struct ext4_err_translation {
605 	int code;
606 	int errno;
607 };
608 
609 #define EXT4_ERR_TRANSLATE(err) { .code = EXT4_ERR_##err, .errno = err }
610 
611 static struct ext4_err_translation err_translation[] = {
612 	EXT4_ERR_TRANSLATE(EIO),
613 	EXT4_ERR_TRANSLATE(ENOMEM),
614 	EXT4_ERR_TRANSLATE(EFSBADCRC),
615 	EXT4_ERR_TRANSLATE(EFSCORRUPTED),
616 	EXT4_ERR_TRANSLATE(ENOSPC),
617 	EXT4_ERR_TRANSLATE(ENOKEY),
618 	EXT4_ERR_TRANSLATE(EROFS),
619 	EXT4_ERR_TRANSLATE(EFBIG),
620 	EXT4_ERR_TRANSLATE(EEXIST),
621 	EXT4_ERR_TRANSLATE(ERANGE),
622 	EXT4_ERR_TRANSLATE(EOVERFLOW),
623 	EXT4_ERR_TRANSLATE(EBUSY),
624 	EXT4_ERR_TRANSLATE(ENOTDIR),
625 	EXT4_ERR_TRANSLATE(ENOTEMPTY),
626 	EXT4_ERR_TRANSLATE(ESHUTDOWN),
627 	EXT4_ERR_TRANSLATE(EFAULT),
628 };
629 
ext4_errno_to_code(int errno)630 static int ext4_errno_to_code(int errno)
631 {
632 	int i;
633 
634 	for (i = 0; i < ARRAY_SIZE(err_translation); i++)
635 		if (err_translation[i].errno == errno)
636 			return err_translation[i].code;
637 	return EXT4_ERR_UNKNOWN;
638 }
639 
save_error_info(struct super_block * sb,int error,__u32 ino,__u64 block,const char * func,unsigned int line)640 static void save_error_info(struct super_block *sb, int error,
641 			    __u32 ino, __u64 block,
642 			    const char *func, unsigned int line)
643 {
644 	struct ext4_sb_info *sbi = EXT4_SB(sb);
645 
646 	/* We default to EFSCORRUPTED error... */
647 	if (error == 0)
648 		error = EFSCORRUPTED;
649 
650 	spin_lock(&sbi->s_error_lock);
651 	sbi->s_add_error_count++;
652 	sbi->s_last_error_code = error;
653 	sbi->s_last_error_line = line;
654 	sbi->s_last_error_ino = ino;
655 	sbi->s_last_error_block = block;
656 	sbi->s_last_error_func = func;
657 	sbi->s_last_error_time = ktime_get_real_seconds();
658 	if (!sbi->s_first_error_time) {
659 		sbi->s_first_error_code = error;
660 		sbi->s_first_error_line = line;
661 		sbi->s_first_error_ino = ino;
662 		sbi->s_first_error_block = block;
663 		sbi->s_first_error_func = func;
664 		sbi->s_first_error_time = sbi->s_last_error_time;
665 	}
666 	spin_unlock(&sbi->s_error_lock);
667 }
668 
669 /* Deal with the reporting of failure conditions on a filesystem such as
670  * inconsistencies detected or read IO failures.
671  *
672  * On ext2, we can store the error state of the filesystem in the
673  * superblock.  That is not possible on ext4, because we may have other
674  * write ordering constraints on the superblock which prevent us from
675  * writing it out straight away; and given that the journal is about to
676  * be aborted, we can't rely on the current, or future, transactions to
677  * write out the superblock safely.
678  *
679  * We'll just use the jbd2_journal_abort() error code to record an error in
680  * the journal instead.  On recovery, the journal will complain about
681  * that error until we've noted it down and cleared it.
682  *
683  * If force_ro is set, we unconditionally force the filesystem into an
684  * ABORT|READONLY state, unless the error response on the fs has been set to
685  * panic in which case we take the easy way out and panic immediately. This is
686  * used to deal with unrecoverable failures such as journal IO errors or ENOMEM
687  * at a critical moment in log management.
688  */
ext4_handle_error(struct super_block * sb,bool force_ro,int error,__u32 ino,__u64 block,const char * func,unsigned int line)689 static void ext4_handle_error(struct super_block *sb, bool force_ro, int error,
690 			      __u32 ino, __u64 block,
691 			      const char *func, unsigned int line)
692 {
693 	journal_t *journal = EXT4_SB(sb)->s_journal;
694 	bool continue_fs = !force_ro && test_opt(sb, ERRORS_CONT);
695 
696 	EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
697 	if (test_opt(sb, WARN_ON_ERROR))
698 		WARN_ON_ONCE(1);
699 
700 	if (!continue_fs && !ext4_emergency_ro(sb) && journal)
701 		jbd2_journal_abort(journal, -EIO);
702 
703 	if (!bdev_read_only(sb->s_bdev)) {
704 		save_error_info(sb, error, ino, block, func, line);
705 		/*
706 		 * In case the fs should keep running, we need to writeout
707 		 * superblock through the journal. Due to lock ordering
708 		 * constraints, it may not be safe to do it right here so we
709 		 * defer superblock flushing to a workqueue. We just need to be
710 		 * careful when the journal is already shutting down. If we get
711 		 * here in that case, just update the sb directly as the last
712 		 * transaction won't commit anyway.
713 		 */
714 		if (continue_fs && journal &&
715 		    !ext4_test_mount_flag(sb, EXT4_MF_JOURNAL_DESTROY))
716 			schedule_work(&EXT4_SB(sb)->s_sb_upd_work);
717 		else
718 			ext4_commit_super(sb);
719 	}
720 
721 	/*
722 	 * We force ERRORS_RO behavior when system is rebooting. Otherwise we
723 	 * could panic during 'reboot -f' as the underlying device got already
724 	 * disabled.
725 	 */
726 	if (test_opt(sb, ERRORS_PANIC) && !system_going_down()) {
727 		panic("EXT4-fs (device %s): panic forced after error\n",
728 			sb->s_id);
729 	}
730 
731 	if (ext4_emergency_ro(sb) || continue_fs)
732 		return;
733 
734 	ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
735 	/*
736 	 * We don't set SB_RDONLY because that requires sb->s_umount
737 	 * semaphore and setting it without proper remount procedure is
738 	 * confusing code such as freeze_super() leading to deadlocks
739 	 * and other problems.
740 	 */
741 	set_bit(EXT4_FLAGS_EMERGENCY_RO, &EXT4_SB(sb)->s_ext4_flags);
742 }
743 
update_super_work(struct work_struct * work)744 static void update_super_work(struct work_struct *work)
745 {
746 	struct ext4_sb_info *sbi = container_of(work, struct ext4_sb_info,
747 						s_sb_upd_work);
748 	journal_t *journal = sbi->s_journal;
749 	handle_t *handle;
750 
751 	/*
752 	 * If the journal is still running, we have to write out superblock
753 	 * through the journal to avoid collisions of other journalled sb
754 	 * updates.
755 	 *
756 	 * We use directly jbd2 functions here to avoid recursing back into
757 	 * ext4 error handling code during handling of previous errors.
758 	 */
759 	if (!ext4_emergency_state(sbi->s_sb) &&
760 	    !sb_rdonly(sbi->s_sb) && journal) {
761 		struct buffer_head *sbh = sbi->s_sbh;
762 		bool call_notify_err = false;
763 
764 		handle = jbd2_journal_start(journal, 1);
765 		if (IS_ERR(handle))
766 			goto write_directly;
767 		if (jbd2_journal_get_write_access(handle, sbh)) {
768 			jbd2_journal_stop(handle);
769 			goto write_directly;
770 		}
771 
772 		if (sbi->s_add_error_count > 0)
773 			call_notify_err = true;
774 
775 		ext4_update_super(sbi->s_sb);
776 		if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
777 			ext4_msg(sbi->s_sb, KERN_ERR, "previous I/O error to "
778 				 "superblock detected");
779 			clear_buffer_write_io_error(sbh);
780 			set_buffer_uptodate(sbh);
781 		}
782 
783 		if (jbd2_journal_dirty_metadata(handle, sbh)) {
784 			jbd2_journal_stop(handle);
785 			goto write_directly;
786 		}
787 		jbd2_journal_stop(handle);
788 
789 		if (call_notify_err)
790 			ext4_notify_error_sysfs(sbi);
791 
792 		return;
793 	}
794 write_directly:
795 	/*
796 	 * Write through journal failed. Write sb directly to get error info
797 	 * out and hope for the best.
798 	 */
799 	ext4_commit_super(sbi->s_sb);
800 	ext4_notify_error_sysfs(sbi);
801 }
802 
803 #define ext4_error_ratelimit(sb)					\
804 		___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state),	\
805 			     "EXT4-fs error")
806 
__ext4_error(struct super_block * sb,const char * function,unsigned int line,bool force_ro,int error,__u64 block,const char * fmt,...)807 void __ext4_error(struct super_block *sb, const char *function,
808 		  unsigned int line, bool force_ro, int error, __u64 block,
809 		  const char *fmt, ...)
810 {
811 	struct va_format vaf;
812 	va_list args;
813 
814 	if (unlikely(ext4_emergency_state(sb)))
815 		return;
816 
817 	trace_ext4_error(sb, function, line);
818 	if (ext4_error_ratelimit(sb)) {
819 		va_start(args, fmt);
820 		vaf.fmt = fmt;
821 		vaf.va = &args;
822 		printk(KERN_CRIT
823 		       "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
824 		       sb->s_id, function, line, current->comm, &vaf);
825 		va_end(args);
826 	}
827 	fsnotify_sb_error(sb, NULL, error ? error : EFSCORRUPTED);
828 
829 	ext4_handle_error(sb, force_ro, error, 0, block, function, line);
830 }
831 
__ext4_error_inode(struct inode * inode,const char * function,unsigned int line,ext4_fsblk_t block,int error,const char * fmt,...)832 void __ext4_error_inode(struct inode *inode, const char *function,
833 			unsigned int line, ext4_fsblk_t block, int error,
834 			const char *fmt, ...)
835 {
836 	va_list args;
837 	struct va_format vaf;
838 
839 	if (unlikely(ext4_emergency_state(inode->i_sb)))
840 		return;
841 
842 	trace_ext4_error(inode->i_sb, function, line);
843 	if (ext4_error_ratelimit(inode->i_sb)) {
844 		va_start(args, fmt);
845 		vaf.fmt = fmt;
846 		vaf.va = &args;
847 		if (block)
848 			printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
849 			       "inode #%lu: block %llu: comm %s: %pV\n",
850 			       inode->i_sb->s_id, function, line, inode->i_ino,
851 			       block, current->comm, &vaf);
852 		else
853 			printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
854 			       "inode #%lu: comm %s: %pV\n",
855 			       inode->i_sb->s_id, function, line, inode->i_ino,
856 			       current->comm, &vaf);
857 		va_end(args);
858 	}
859 	fsnotify_sb_error(inode->i_sb, inode, error ? error : EFSCORRUPTED);
860 
861 	ext4_handle_error(inode->i_sb, false, error, inode->i_ino, block,
862 			  function, line);
863 }
864 
__ext4_error_file(struct file * file,const char * function,unsigned int line,ext4_fsblk_t block,const char * fmt,...)865 void __ext4_error_file(struct file *file, const char *function,
866 		       unsigned int line, ext4_fsblk_t block,
867 		       const char *fmt, ...)
868 {
869 	va_list args;
870 	struct va_format vaf;
871 	struct inode *inode = file_inode(file);
872 	char pathname[80], *path;
873 
874 	if (unlikely(ext4_emergency_state(inode->i_sb)))
875 		return;
876 
877 	trace_ext4_error(inode->i_sb, function, line);
878 	if (ext4_error_ratelimit(inode->i_sb)) {
879 		path = file_path(file, pathname, sizeof(pathname));
880 		if (IS_ERR(path))
881 			path = "(unknown)";
882 		va_start(args, fmt);
883 		vaf.fmt = fmt;
884 		vaf.va = &args;
885 		if (block)
886 			printk(KERN_CRIT
887 			       "EXT4-fs error (device %s): %s:%d: inode #%lu: "
888 			       "block %llu: comm %s: path %s: %pV\n",
889 			       inode->i_sb->s_id, function, line, inode->i_ino,
890 			       block, current->comm, path, &vaf);
891 		else
892 			printk(KERN_CRIT
893 			       "EXT4-fs error (device %s): %s:%d: inode #%lu: "
894 			       "comm %s: path %s: %pV\n",
895 			       inode->i_sb->s_id, function, line, inode->i_ino,
896 			       current->comm, path, &vaf);
897 		va_end(args);
898 	}
899 	fsnotify_sb_error(inode->i_sb, inode, EFSCORRUPTED);
900 
901 	ext4_handle_error(inode->i_sb, false, EFSCORRUPTED, inode->i_ino, block,
902 			  function, line);
903 }
904 
ext4_decode_error(struct super_block * sb,int errno,char nbuf[16])905 const char *ext4_decode_error(struct super_block *sb, int errno,
906 			      char nbuf[16])
907 {
908 	char *errstr = NULL;
909 
910 	switch (errno) {
911 	case -EFSCORRUPTED:
912 		errstr = "Corrupt filesystem";
913 		break;
914 	case -EFSBADCRC:
915 		errstr = "Filesystem failed CRC";
916 		break;
917 	case -EIO:
918 		errstr = "IO failure";
919 		break;
920 	case -ENOMEM:
921 		errstr = "Out of memory";
922 		break;
923 	case -EROFS:
924 		if (!sb || (EXT4_SB(sb)->s_journal &&
925 			    EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
926 			errstr = "Journal has aborted";
927 		else
928 			errstr = "Readonly filesystem";
929 		break;
930 	default:
931 		/* If the caller passed in an extra buffer for unknown
932 		 * errors, textualise them now.  Else we just return
933 		 * NULL. */
934 		if (nbuf) {
935 			/* Check for truncated error codes... */
936 			if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
937 				errstr = nbuf;
938 		}
939 		break;
940 	}
941 
942 	return errstr;
943 }
944 
945 /* __ext4_std_error decodes expected errors from journaling functions
946  * automatically and invokes the appropriate error response.  */
947 
__ext4_std_error(struct super_block * sb,const char * function,unsigned int line,int errno)948 void __ext4_std_error(struct super_block *sb, const char *function,
949 		      unsigned int line, int errno)
950 {
951 	char nbuf[16];
952 	const char *errstr;
953 
954 	if (unlikely(ext4_emergency_state(sb)))
955 		return;
956 
957 	/* Special case: if the error is EROFS, and we're not already
958 	 * inside a transaction, then there's really no point in logging
959 	 * an error. */
960 	if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb))
961 		return;
962 
963 	if (ext4_error_ratelimit(sb)) {
964 		errstr = ext4_decode_error(sb, errno, nbuf);
965 		printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
966 		       sb->s_id, function, line, errstr);
967 	}
968 	fsnotify_sb_error(sb, NULL, errno ? errno : EFSCORRUPTED);
969 
970 	ext4_handle_error(sb, false, -errno, 0, 0, function, line);
971 }
972 
__ext4_msg(struct super_block * sb,const char * prefix,const char * fmt,...)973 void __ext4_msg(struct super_block *sb,
974 		const char *prefix, const char *fmt, ...)
975 {
976 	struct va_format vaf;
977 	va_list args;
978 
979 	if (sb) {
980 		atomic_inc(&EXT4_SB(sb)->s_msg_count);
981 		if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state),
982 				  "EXT4-fs"))
983 			return;
984 	}
985 
986 	va_start(args, fmt);
987 	vaf.fmt = fmt;
988 	vaf.va = &args;
989 	if (sb)
990 		printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
991 	else
992 		printk("%sEXT4-fs: %pV\n", prefix, &vaf);
993 	va_end(args);
994 }
995 
ext4_warning_ratelimit(struct super_block * sb)996 static int ext4_warning_ratelimit(struct super_block *sb)
997 {
998 	atomic_inc(&EXT4_SB(sb)->s_warning_count);
999 	return ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state),
1000 			    "EXT4-fs warning");
1001 }
1002 
__ext4_warning(struct super_block * sb,const char * function,unsigned int line,const char * fmt,...)1003 void __ext4_warning(struct super_block *sb, const char *function,
1004 		    unsigned int line, const char *fmt, ...)
1005 {
1006 	struct va_format vaf;
1007 	va_list args;
1008 
1009 	if (!ext4_warning_ratelimit(sb))
1010 		return;
1011 
1012 	va_start(args, fmt);
1013 	vaf.fmt = fmt;
1014 	vaf.va = &args;
1015 	printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
1016 	       sb->s_id, function, line, &vaf);
1017 	va_end(args);
1018 }
1019 
__ext4_warning_inode(const struct inode * inode,const char * function,unsigned int line,const char * fmt,...)1020 void __ext4_warning_inode(const struct inode *inode, const char *function,
1021 			  unsigned int line, const char *fmt, ...)
1022 {
1023 	struct va_format vaf;
1024 	va_list args;
1025 
1026 	if (!ext4_warning_ratelimit(inode->i_sb))
1027 		return;
1028 
1029 	va_start(args, fmt);
1030 	vaf.fmt = fmt;
1031 	vaf.va = &args;
1032 	printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
1033 	       "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
1034 	       function, line, inode->i_ino, current->comm, &vaf);
1035 	va_end(args);
1036 }
1037 
__ext4_grp_locked_error(const char * function,unsigned int line,struct super_block * sb,ext4_group_t grp,unsigned long ino,ext4_fsblk_t block,const char * fmt,...)1038 void __ext4_grp_locked_error(const char *function, unsigned int line,
1039 			     struct super_block *sb, ext4_group_t grp,
1040 			     unsigned long ino, ext4_fsblk_t block,
1041 			     const char *fmt, ...)
1042 __releases(bitlock)
1043 __acquires(bitlock)
1044 {
1045 	struct va_format vaf;
1046 	va_list args;
1047 
1048 	if (unlikely(ext4_emergency_state(sb)))
1049 		return;
1050 
1051 	trace_ext4_error(sb, function, line);
1052 	if (ext4_error_ratelimit(sb)) {
1053 		va_start(args, fmt);
1054 		vaf.fmt = fmt;
1055 		vaf.va = &args;
1056 		printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
1057 		       sb->s_id, function, line, grp);
1058 		if (ino)
1059 			printk(KERN_CONT "inode %lu: ", ino);
1060 		if (block)
1061 			printk(KERN_CONT "block %llu:",
1062 			       (unsigned long long) block);
1063 		printk(KERN_CONT "%pV\n", &vaf);
1064 		va_end(args);
1065 	}
1066 
1067 	if (test_opt(sb, ERRORS_CONT)) {
1068 		if (test_opt(sb, WARN_ON_ERROR))
1069 			WARN_ON_ONCE(1);
1070 		EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
1071 		if (!bdev_read_only(sb->s_bdev)) {
1072 			save_error_info(sb, EFSCORRUPTED, ino, block, function,
1073 					line);
1074 			schedule_work(&EXT4_SB(sb)->s_sb_upd_work);
1075 		}
1076 		return;
1077 	}
1078 	ext4_unlock_group(sb, grp);
1079 	ext4_handle_error(sb, false, EFSCORRUPTED, ino, block, function, line);
1080 	/*
1081 	 * We only get here in the ERRORS_RO case; relocking the group
1082 	 * may be dangerous, but nothing bad will happen since the
1083 	 * filesystem will have already been marked read/only and the
1084 	 * journal has been aborted.  We return 1 as a hint to callers
1085 	 * who might what to use the return value from
1086 	 * ext4_grp_locked_error() to distinguish between the
1087 	 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
1088 	 * aggressively from the ext4 function in question, with a
1089 	 * more appropriate error code.
1090 	 */
1091 	ext4_lock_group(sb, grp);
1092 	return;
1093 }
1094 
ext4_mark_group_bitmap_corrupted(struct super_block * sb,ext4_group_t group,unsigned int flags)1095 void ext4_mark_group_bitmap_corrupted(struct super_block *sb,
1096 				     ext4_group_t group,
1097 				     unsigned int flags)
1098 {
1099 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1100 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1101 	struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL);
1102 	int ret;
1103 
1104 	if (!grp || !gdp)
1105 		return;
1106 	if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) {
1107 		ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT,
1108 					    &grp->bb_state);
1109 		if (!ret)
1110 			percpu_counter_sub(&sbi->s_freeclusters_counter,
1111 					   grp->bb_free);
1112 	}
1113 
1114 	if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) {
1115 		ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT,
1116 					    &grp->bb_state);
1117 		if (!ret && gdp) {
1118 			int count;
1119 
1120 			count = ext4_free_inodes_count(sb, gdp);
1121 			percpu_counter_sub(&sbi->s_freeinodes_counter,
1122 					   count);
1123 		}
1124 	}
1125 }
1126 
ext4_update_dynamic_rev(struct super_block * sb)1127 void ext4_update_dynamic_rev(struct super_block *sb)
1128 {
1129 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
1130 
1131 	if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
1132 		return;
1133 
1134 	ext4_warning(sb,
1135 		     "updating to rev %d because of new feature flag, "
1136 		     "running e2fsck is recommended",
1137 		     EXT4_DYNAMIC_REV);
1138 
1139 	es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
1140 	es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
1141 	es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
1142 	/* leave es->s_feature_*compat flags alone */
1143 	/* es->s_uuid will be set by e2fsck if empty */
1144 
1145 	/*
1146 	 * The rest of the superblock fields should be zero, and if not it
1147 	 * means they are likely already in use, so leave them alone.  We
1148 	 * can leave it up to e2fsck to clean up any inconsistencies there.
1149 	 */
1150 }
1151 
orphan_list_entry(struct list_head * l)1152 static inline struct inode *orphan_list_entry(struct list_head *l)
1153 {
1154 	return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
1155 }
1156 
dump_orphan_list(struct super_block * sb,struct ext4_sb_info * sbi)1157 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
1158 {
1159 	struct list_head *l;
1160 
1161 	ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
1162 		 le32_to_cpu(sbi->s_es->s_last_orphan));
1163 
1164 	printk(KERN_ERR "sb_info orphan list:\n");
1165 	list_for_each(l, &sbi->s_orphan) {
1166 		struct inode *inode = orphan_list_entry(l);
1167 		printk(KERN_ERR "  "
1168 		       "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
1169 		       inode->i_sb->s_id, inode->i_ino, inode,
1170 		       inode->i_mode, inode->i_nlink,
1171 		       NEXT_ORPHAN(inode));
1172 	}
1173 }
1174 
1175 #ifdef CONFIG_QUOTA
1176 static int ext4_quota_off(struct super_block *sb, int type);
1177 
ext4_quotas_off(struct super_block * sb,int type)1178 static inline void ext4_quotas_off(struct super_block *sb, int type)
1179 {
1180 	BUG_ON(type > EXT4_MAXQUOTAS);
1181 
1182 	/* Use our quota_off function to clear inode flags etc. */
1183 	for (type--; type >= 0; type--)
1184 		ext4_quota_off(sb, type);
1185 }
1186 
1187 /*
1188  * This is a helper function which is used in the mount/remount
1189  * codepaths (which holds s_umount) to fetch the quota file name.
1190  */
get_qf_name(struct super_block * sb,struct ext4_sb_info * sbi,int type)1191 static inline char *get_qf_name(struct super_block *sb,
1192 				struct ext4_sb_info *sbi,
1193 				int type)
1194 {
1195 	return rcu_dereference_protected(sbi->s_qf_names[type],
1196 					 lockdep_is_held(&sb->s_umount));
1197 }
1198 #else
ext4_quotas_off(struct super_block * sb,int type)1199 static inline void ext4_quotas_off(struct super_block *sb, int type)
1200 {
1201 }
1202 #endif
1203 
ext4_percpu_param_init(struct ext4_sb_info * sbi)1204 static int ext4_percpu_param_init(struct ext4_sb_info *sbi)
1205 {
1206 	ext4_fsblk_t block;
1207 	int err;
1208 
1209 	block = ext4_count_free_clusters(sbi->s_sb);
1210 	ext4_free_blocks_count_set(sbi->s_es, EXT4_C2B(sbi, block));
1211 	err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
1212 				  GFP_KERNEL);
1213 	if (!err) {
1214 		unsigned long freei = ext4_count_free_inodes(sbi->s_sb);
1215 		sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
1216 		err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
1217 					  GFP_KERNEL);
1218 	}
1219 	if (!err)
1220 		err = percpu_counter_init(&sbi->s_dirs_counter,
1221 					  ext4_count_dirs(sbi->s_sb), GFP_KERNEL);
1222 	if (!err)
1223 		err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
1224 					  GFP_KERNEL);
1225 	if (!err)
1226 		err = percpu_counter_init(&sbi->s_sra_exceeded_retry_limit, 0,
1227 					  GFP_KERNEL);
1228 	if (!err)
1229 		err = percpu_init_rwsem(&sbi->s_writepages_rwsem);
1230 
1231 	if (err)
1232 		ext4_msg(sbi->s_sb, KERN_ERR, "insufficient memory");
1233 
1234 	return err;
1235 }
1236 
ext4_percpu_param_destroy(struct ext4_sb_info * sbi)1237 static void ext4_percpu_param_destroy(struct ext4_sb_info *sbi)
1238 {
1239 	percpu_counter_destroy(&sbi->s_freeclusters_counter);
1240 	percpu_counter_destroy(&sbi->s_freeinodes_counter);
1241 	percpu_counter_destroy(&sbi->s_dirs_counter);
1242 	percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
1243 	percpu_counter_destroy(&sbi->s_sra_exceeded_retry_limit);
1244 	percpu_free_rwsem(&sbi->s_writepages_rwsem);
1245 }
1246 
ext4_group_desc_free(struct ext4_sb_info * sbi)1247 static void ext4_group_desc_free(struct ext4_sb_info *sbi)
1248 {
1249 	struct buffer_head **group_desc;
1250 	int i;
1251 
1252 	rcu_read_lock();
1253 	group_desc = rcu_dereference(sbi->s_group_desc);
1254 	for (i = 0; i < sbi->s_gdb_count; i++)
1255 		brelse(group_desc[i]);
1256 	kvfree(group_desc);
1257 	rcu_read_unlock();
1258 }
1259 
ext4_flex_groups_free(struct ext4_sb_info * sbi)1260 static void ext4_flex_groups_free(struct ext4_sb_info *sbi)
1261 {
1262 	struct flex_groups **flex_groups;
1263 	int i;
1264 
1265 	rcu_read_lock();
1266 	flex_groups = rcu_dereference(sbi->s_flex_groups);
1267 	if (flex_groups) {
1268 		for (i = 0; i < sbi->s_flex_groups_allocated; i++)
1269 			kvfree(flex_groups[i]);
1270 		kvfree(flex_groups);
1271 	}
1272 	rcu_read_unlock();
1273 }
1274 
ext4_put_super(struct super_block * sb)1275 static void ext4_put_super(struct super_block *sb)
1276 {
1277 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1278 	struct ext4_super_block *es = sbi->s_es;
1279 	int aborted = 0;
1280 	int err;
1281 
1282 	/*
1283 	 * Unregister sysfs before destroying jbd2 journal.
1284 	 * Since we could still access attr_journal_task attribute via sysfs
1285 	 * path which could have sbi->s_journal->j_task as NULL
1286 	 * Unregister sysfs before flush sbi->s_sb_upd_work.
1287 	 * Since user may read /proc/fs/ext4/xx/mb_groups during umount, If
1288 	 * read metadata verify failed then will queue error work.
1289 	 * update_super_work will call start_this_handle may trigger
1290 	 * BUG_ON.
1291 	 */
1292 	ext4_unregister_sysfs(sb);
1293 
1294 	if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs unmount"))
1295 		ext4_msg(sb, KERN_INFO, "unmounting filesystem %pU.",
1296 			 &sb->s_uuid);
1297 
1298 	ext4_unregister_li_request(sb);
1299 	ext4_quotas_off(sb, EXT4_MAXQUOTAS);
1300 
1301 	destroy_workqueue(sbi->rsv_conversion_wq);
1302 	ext4_release_orphan_info(sb);
1303 
1304 	if (sbi->s_journal) {
1305 		aborted = is_journal_aborted(sbi->s_journal);
1306 		err = ext4_journal_destroy(sbi, sbi->s_journal);
1307 		if ((err < 0) && !aborted) {
1308 			ext4_abort(sb, -err, "Couldn't clean up the journal");
1309 		}
1310 	} else
1311 		flush_work(&sbi->s_sb_upd_work);
1312 
1313 	ext4_es_unregister_shrinker(sbi);
1314 	timer_shutdown_sync(&sbi->s_err_report);
1315 	ext4_release_system_zone(sb);
1316 	ext4_mb_release(sb);
1317 	ext4_ext_release(sb);
1318 
1319 	if (!ext4_emergency_state(sb) && !sb_rdonly(sb)) {
1320 		if (!aborted) {
1321 			ext4_clear_feature_journal_needs_recovery(sb);
1322 			ext4_clear_feature_orphan_present(sb);
1323 			es->s_state = cpu_to_le16(sbi->s_mount_state);
1324 		}
1325 		ext4_commit_super(sb);
1326 	}
1327 
1328 	ext4_group_desc_free(sbi);
1329 	ext4_flex_groups_free(sbi);
1330 
1331 	WARN_ON_ONCE(!(sbi->s_mount_state & EXT4_ERROR_FS) &&
1332 		     percpu_counter_sum(&sbi->s_dirtyclusters_counter));
1333 	ext4_percpu_param_destroy(sbi);
1334 #ifdef CONFIG_QUOTA
1335 	for (int i = 0; i < EXT4_MAXQUOTAS; i++)
1336 		kfree(get_qf_name(sb, sbi, i));
1337 #endif
1338 
1339 	/* Debugging code just in case the in-memory inode orphan list
1340 	 * isn't empty.  The on-disk one can be non-empty if we've
1341 	 * detected an error and taken the fs readonly, but the
1342 	 * in-memory list had better be clean by this point. */
1343 	if (!list_empty(&sbi->s_orphan))
1344 		dump_orphan_list(sb, sbi);
1345 	ASSERT(list_empty(&sbi->s_orphan));
1346 
1347 	sync_blockdev(sb->s_bdev);
1348 	invalidate_bdev(sb->s_bdev);
1349 	if (sbi->s_journal_bdev_file) {
1350 		/*
1351 		 * Invalidate the journal device's buffers.  We don't want them
1352 		 * floating about in memory - the physical journal device may
1353 		 * hotswapped, and it breaks the `ro-after' testing code.
1354 		 */
1355 		sync_blockdev(file_bdev(sbi->s_journal_bdev_file));
1356 		invalidate_bdev(file_bdev(sbi->s_journal_bdev_file));
1357 	}
1358 
1359 	ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
1360 	sbi->s_ea_inode_cache = NULL;
1361 
1362 	ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
1363 	sbi->s_ea_block_cache = NULL;
1364 
1365 	ext4_stop_mmpd(sbi);
1366 
1367 	brelse(sbi->s_sbh);
1368 	sb->s_fs_info = NULL;
1369 	/*
1370 	 * Now that we are completely done shutting down the
1371 	 * superblock, we need to actually destroy the kobject.
1372 	 */
1373 	kobject_put(&sbi->s_kobj);
1374 	wait_for_completion(&sbi->s_kobj_unregister);
1375 	kfree(sbi->s_blockgroup_lock);
1376 	fs_put_dax(sbi->s_daxdev, NULL);
1377 	fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
1378 #if IS_ENABLED(CONFIG_UNICODE)
1379 	utf8_unload(sb->s_encoding);
1380 #endif
1381 	kfree(sbi);
1382 }
1383 
1384 static struct kmem_cache *ext4_inode_cachep;
1385 
1386 /*
1387  * Called inside transaction, so use GFP_NOFS
1388  */
ext4_alloc_inode(struct super_block * sb)1389 static struct inode *ext4_alloc_inode(struct super_block *sb)
1390 {
1391 	struct ext4_inode_info *ei;
1392 
1393 	ei = alloc_inode_sb(sb, ext4_inode_cachep, GFP_NOFS);
1394 	if (!ei)
1395 		return NULL;
1396 
1397 	inode_set_iversion(&ei->vfs_inode, 1);
1398 	ei->i_flags = 0;
1399 	spin_lock_init(&ei->i_raw_lock);
1400 	ei->i_prealloc_node = RB_ROOT;
1401 	atomic_set(&ei->i_prealloc_active, 0);
1402 	rwlock_init(&ei->i_prealloc_lock);
1403 	ext4_es_init_tree(&ei->i_es_tree);
1404 	rwlock_init(&ei->i_es_lock);
1405 	INIT_LIST_HEAD(&ei->i_es_list);
1406 	ei->i_es_all_nr = 0;
1407 	ei->i_es_shk_nr = 0;
1408 	ei->i_es_shrink_lblk = 0;
1409 	ei->i_reserved_data_blocks = 0;
1410 	spin_lock_init(&(ei->i_block_reservation_lock));
1411 	ext4_init_pending_tree(&ei->i_pending_tree);
1412 #ifdef CONFIG_QUOTA
1413 	ei->i_reserved_quota = 0;
1414 	memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
1415 #endif
1416 	ei->jinode = NULL;
1417 	INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
1418 	spin_lock_init(&ei->i_completed_io_lock);
1419 	ei->i_sync_tid = 0;
1420 	ei->i_datasync_tid = 0;
1421 	INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
1422 	ext4_fc_init_inode(&ei->vfs_inode);
1423 	spin_lock_init(&ei->i_fc_lock);
1424 	return &ei->vfs_inode;
1425 }
1426 
ext4_drop_inode(struct inode * inode)1427 static int ext4_drop_inode(struct inode *inode)
1428 {
1429 	int drop = inode_generic_drop(inode);
1430 
1431 	if (!drop)
1432 		drop = fscrypt_drop_inode(inode);
1433 
1434 	trace_ext4_drop_inode(inode, drop);
1435 	return drop;
1436 }
1437 
ext4_free_in_core_inode(struct inode * inode)1438 static void ext4_free_in_core_inode(struct inode *inode)
1439 {
1440 	fscrypt_free_inode(inode);
1441 	if (!list_empty(&(EXT4_I(inode)->i_fc_list))) {
1442 		pr_warn("%s: inode %ld still in fc list",
1443 			__func__, inode->i_ino);
1444 	}
1445 	kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
1446 }
1447 
ext4_destroy_inode(struct inode * inode)1448 static void ext4_destroy_inode(struct inode *inode)
1449 {
1450 	if (ext4_inode_orphan_tracked(inode)) {
1451 		ext4_msg(inode->i_sb, KERN_ERR,
1452 			 "Inode %lu (%p): inode tracked as orphan!",
1453 			 inode->i_ino, EXT4_I(inode));
1454 		print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
1455 				EXT4_I(inode), sizeof(struct ext4_inode_info),
1456 				true);
1457 		dump_stack();
1458 	}
1459 
1460 	if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ERROR_FS) &&
1461 	    WARN_ON_ONCE(EXT4_I(inode)->i_reserved_data_blocks))
1462 		ext4_msg(inode->i_sb, KERN_ERR,
1463 			 "Inode %lu (%p): i_reserved_data_blocks (%u) not cleared!",
1464 			 inode->i_ino, EXT4_I(inode),
1465 			 EXT4_I(inode)->i_reserved_data_blocks);
1466 }
1467 
ext4_shutdown(struct super_block * sb)1468 static void ext4_shutdown(struct super_block *sb)
1469 {
1470        ext4_force_shutdown(sb, EXT4_GOING_FLAGS_NOLOGFLUSH);
1471 }
1472 
init_once(void * foo)1473 static void init_once(void *foo)
1474 {
1475 	struct ext4_inode_info *ei = foo;
1476 
1477 	INIT_LIST_HEAD(&ei->i_orphan);
1478 	init_rwsem(&ei->xattr_sem);
1479 	init_rwsem(&ei->i_data_sem);
1480 	inode_init_once(&ei->vfs_inode);
1481 	ext4_fc_init_inode(&ei->vfs_inode);
1482 #ifdef CONFIG_FS_ENCRYPTION
1483 	ei->i_crypt_info = NULL;
1484 #endif
1485 #ifdef CONFIG_FS_VERITY
1486 	ei->i_verity_info = NULL;
1487 #endif
1488 }
1489 
init_inodecache(void)1490 static int __init init_inodecache(void)
1491 {
1492 	ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache",
1493 				sizeof(struct ext4_inode_info), 0,
1494 				SLAB_RECLAIM_ACCOUNT | SLAB_ACCOUNT,
1495 				offsetof(struct ext4_inode_info, i_data),
1496 				sizeof_field(struct ext4_inode_info, i_data),
1497 				init_once);
1498 	if (ext4_inode_cachep == NULL)
1499 		return -ENOMEM;
1500 	return 0;
1501 }
1502 
destroy_inodecache(void)1503 static void destroy_inodecache(void)
1504 {
1505 	/*
1506 	 * Make sure all delayed rcu free inodes are flushed before we
1507 	 * destroy cache.
1508 	 */
1509 	rcu_barrier();
1510 	kmem_cache_destroy(ext4_inode_cachep);
1511 }
1512 
ext4_clear_inode(struct inode * inode)1513 void ext4_clear_inode(struct inode *inode)
1514 {
1515 	ext4_fc_del(inode);
1516 	invalidate_inode_buffers(inode);
1517 	clear_inode(inode);
1518 	ext4_discard_preallocations(inode);
1519 	ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
1520 	dquot_drop(inode);
1521 	if (EXT4_I(inode)->jinode) {
1522 		jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1523 					       EXT4_I(inode)->jinode);
1524 		jbd2_free_inode(EXT4_I(inode)->jinode);
1525 		EXT4_I(inode)->jinode = NULL;
1526 	}
1527 	fscrypt_put_encryption_info(inode);
1528 	fsverity_cleanup_inode(inode);
1529 }
1530 
ext4_nfs_get_inode(struct super_block * sb,u64 ino,u32 generation)1531 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1532 					u64 ino, u32 generation)
1533 {
1534 	struct inode *inode;
1535 
1536 	/*
1537 	 * Currently we don't know the generation for parent directory, so
1538 	 * a generation of 0 means "accept any"
1539 	 */
1540 	inode = ext4_iget(sb, ino, EXT4_IGET_HANDLE);
1541 	if (IS_ERR(inode))
1542 		return ERR_CAST(inode);
1543 	if (generation && inode->i_generation != generation) {
1544 		iput(inode);
1545 		return ERR_PTR(-ESTALE);
1546 	}
1547 
1548 	return inode;
1549 }
1550 
ext4_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)1551 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1552 					int fh_len, int fh_type)
1553 {
1554 	return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1555 				    ext4_nfs_get_inode);
1556 }
1557 
ext4_fh_to_parent(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)1558 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1559 					int fh_len, int fh_type)
1560 {
1561 	return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1562 				    ext4_nfs_get_inode);
1563 }
1564 
ext4_nfs_commit_metadata(struct inode * inode)1565 static int ext4_nfs_commit_metadata(struct inode *inode)
1566 {
1567 	struct writeback_control wbc = {
1568 		.sync_mode = WB_SYNC_ALL
1569 	};
1570 
1571 	trace_ext4_nfs_commit_metadata(inode);
1572 	return ext4_write_inode(inode, &wbc);
1573 }
1574 
1575 #ifdef CONFIG_QUOTA
1576 static const char * const quotatypes[] = INITQFNAMES;
1577 #define QTYPE2NAME(t) (quotatypes[t])
1578 
1579 static int ext4_write_dquot(struct dquot *dquot);
1580 static int ext4_acquire_dquot(struct dquot *dquot);
1581 static int ext4_release_dquot(struct dquot *dquot);
1582 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1583 static int ext4_write_info(struct super_block *sb, int type);
1584 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1585 			 const struct path *path);
1586 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1587 			       size_t len, loff_t off);
1588 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1589 				const char *data, size_t len, loff_t off);
1590 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1591 			     unsigned int flags);
1592 
ext4_get_dquots(struct inode * inode)1593 static struct dquot __rcu **ext4_get_dquots(struct inode *inode)
1594 {
1595 	return EXT4_I(inode)->i_dquot;
1596 }
1597 
1598 static const struct dquot_operations ext4_quota_operations = {
1599 	.get_reserved_space	= ext4_get_reserved_space,
1600 	.write_dquot		= ext4_write_dquot,
1601 	.acquire_dquot		= ext4_acquire_dquot,
1602 	.release_dquot		= ext4_release_dquot,
1603 	.mark_dirty		= ext4_mark_dquot_dirty,
1604 	.write_info		= ext4_write_info,
1605 	.alloc_dquot		= dquot_alloc,
1606 	.destroy_dquot		= dquot_destroy,
1607 	.get_projid		= ext4_get_projid,
1608 	.get_inode_usage	= ext4_get_inode_usage,
1609 	.get_next_id		= dquot_get_next_id,
1610 };
1611 
1612 static const struct quotactl_ops ext4_qctl_operations = {
1613 	.quota_on	= ext4_quota_on,
1614 	.quota_off	= ext4_quota_off,
1615 	.quota_sync	= dquot_quota_sync,
1616 	.get_state	= dquot_get_state,
1617 	.set_info	= dquot_set_dqinfo,
1618 	.get_dqblk	= dquot_get_dqblk,
1619 	.set_dqblk	= dquot_set_dqblk,
1620 	.get_nextdqblk	= dquot_get_next_dqblk,
1621 };
1622 #endif
1623 
1624 static const struct super_operations ext4_sops = {
1625 	.alloc_inode	= ext4_alloc_inode,
1626 	.free_inode	= ext4_free_in_core_inode,
1627 	.destroy_inode	= ext4_destroy_inode,
1628 	.write_inode	= ext4_write_inode,
1629 	.dirty_inode	= ext4_dirty_inode,
1630 	.drop_inode	= ext4_drop_inode,
1631 	.evict_inode	= ext4_evict_inode,
1632 	.put_super	= ext4_put_super,
1633 	.sync_fs	= ext4_sync_fs,
1634 	.freeze_fs	= ext4_freeze,
1635 	.unfreeze_fs	= ext4_unfreeze,
1636 	.statfs		= ext4_statfs,
1637 	.show_options	= ext4_show_options,
1638 	.shutdown	= ext4_shutdown,
1639 #ifdef CONFIG_QUOTA
1640 	.quota_read	= ext4_quota_read,
1641 	.quota_write	= ext4_quota_write,
1642 	.get_dquots	= ext4_get_dquots,
1643 #endif
1644 };
1645 
1646 static const struct export_operations ext4_export_ops = {
1647 	.encode_fh = generic_encode_ino32_fh,
1648 	.fh_to_dentry = ext4_fh_to_dentry,
1649 	.fh_to_parent = ext4_fh_to_parent,
1650 	.get_parent = ext4_get_parent,
1651 	.commit_metadata = ext4_nfs_commit_metadata,
1652 };
1653 
1654 enum {
1655 	Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1656 	Opt_resgid, Opt_resuid, Opt_sb,
1657 	Opt_nouid32, Opt_debug, Opt_removed,
1658 	Opt_user_xattr, Opt_acl,
1659 	Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1660 	Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1661 	Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1662 	Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1663 	Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1664 	Opt_inlinecrypt,
1665 	Opt_usrjquota, Opt_grpjquota, Opt_quota,
1666 	Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1667 	Opt_usrquota, Opt_grpquota, Opt_prjquota,
1668 	Opt_dax, Opt_dax_always, Opt_dax_inode, Opt_dax_never,
1669 	Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error,
1670 	Opt_nowarn_on_error, Opt_mblk_io_submit, Opt_debug_want_extra_isize,
1671 	Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1672 	Opt_inode_readahead_blks, Opt_journal_ioprio,
1673 	Opt_dioread_nolock, Opt_dioread_lock,
1674 	Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1675 	Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache,
1676 	Opt_no_prefetch_block_bitmaps, Opt_mb_optimize_scan,
1677 	Opt_errors, Opt_data, Opt_data_err, Opt_jqfmt, Opt_dax_type,
1678 #ifdef CONFIG_EXT4_DEBUG
1679 	Opt_fc_debug_max_replay, Opt_fc_debug_force
1680 #endif
1681 };
1682 
1683 static const struct constant_table ext4_param_errors[] = {
1684 	{"continue",	EXT4_MOUNT_ERRORS_CONT},
1685 	{"panic",	EXT4_MOUNT_ERRORS_PANIC},
1686 	{"remount-ro",	EXT4_MOUNT_ERRORS_RO},
1687 	{}
1688 };
1689 
1690 static const struct constant_table ext4_param_data[] = {
1691 	{"journal",	EXT4_MOUNT_JOURNAL_DATA},
1692 	{"ordered",	EXT4_MOUNT_ORDERED_DATA},
1693 	{"writeback",	EXT4_MOUNT_WRITEBACK_DATA},
1694 	{}
1695 };
1696 
1697 static const struct constant_table ext4_param_data_err[] = {
1698 	{"abort",	Opt_data_err_abort},
1699 	{"ignore",	Opt_data_err_ignore},
1700 	{}
1701 };
1702 
1703 static const struct constant_table ext4_param_jqfmt[] = {
1704 	{"vfsold",	QFMT_VFS_OLD},
1705 	{"vfsv0",	QFMT_VFS_V0},
1706 	{"vfsv1",	QFMT_VFS_V1},
1707 	{}
1708 };
1709 
1710 static const struct constant_table ext4_param_dax[] = {
1711 	{"always",	Opt_dax_always},
1712 	{"inode",	Opt_dax_inode},
1713 	{"never",	Opt_dax_never},
1714 	{}
1715 };
1716 
1717 /*
1718  * Mount option specification
1719  * We don't use fsparam_flag_no because of the way we set the
1720  * options and the way we show them in _ext4_show_options(). To
1721  * keep the changes to a minimum, let's keep the negative options
1722  * separate for now.
1723  */
1724 static const struct fs_parameter_spec ext4_param_specs[] = {
1725 	fsparam_flag	("bsddf",		Opt_bsd_df),
1726 	fsparam_flag	("minixdf",		Opt_minix_df),
1727 	fsparam_flag	("grpid",		Opt_grpid),
1728 	fsparam_flag	("bsdgroups",		Opt_grpid),
1729 	fsparam_flag	("nogrpid",		Opt_nogrpid),
1730 	fsparam_flag	("sysvgroups",		Opt_nogrpid),
1731 	fsparam_gid	("resgid",		Opt_resgid),
1732 	fsparam_uid	("resuid",		Opt_resuid),
1733 	fsparam_u32	("sb",			Opt_sb),
1734 	fsparam_enum	("errors",		Opt_errors, ext4_param_errors),
1735 	fsparam_flag	("nouid32",		Opt_nouid32),
1736 	fsparam_flag	("debug",		Opt_debug),
1737 	fsparam_flag	("oldalloc",		Opt_removed),
1738 	fsparam_flag	("orlov",		Opt_removed),
1739 	fsparam_flag	("user_xattr",		Opt_user_xattr),
1740 	fsparam_flag	("acl",			Opt_acl),
1741 	fsparam_flag	("norecovery",		Opt_noload),
1742 	fsparam_flag	("noload",		Opt_noload),
1743 	fsparam_flag	("bh",			Opt_removed),
1744 	fsparam_flag	("nobh",		Opt_removed),
1745 	fsparam_u32	("commit",		Opt_commit),
1746 	fsparam_u32	("min_batch_time",	Opt_min_batch_time),
1747 	fsparam_u32	("max_batch_time",	Opt_max_batch_time),
1748 	fsparam_u32	("journal_dev",		Opt_journal_dev),
1749 	fsparam_bdev	("journal_path",	Opt_journal_path),
1750 	fsparam_flag	("journal_checksum",	Opt_journal_checksum),
1751 	fsparam_flag	("nojournal_checksum",	Opt_nojournal_checksum),
1752 	fsparam_flag	("journal_async_commit",Opt_journal_async_commit),
1753 	fsparam_flag	("abort",		Opt_abort),
1754 	fsparam_enum	("data",		Opt_data, ext4_param_data),
1755 	fsparam_enum	("data_err",		Opt_data_err,
1756 						ext4_param_data_err),
1757 	fsparam_string_empty
1758 			("usrjquota",		Opt_usrjquota),
1759 	fsparam_string_empty
1760 			("grpjquota",		Opt_grpjquota),
1761 	fsparam_enum	("jqfmt",		Opt_jqfmt, ext4_param_jqfmt),
1762 	fsparam_flag	("grpquota",		Opt_grpquota),
1763 	fsparam_flag	("quota",		Opt_quota),
1764 	fsparam_flag	("noquota",		Opt_noquota),
1765 	fsparam_flag	("usrquota",		Opt_usrquota),
1766 	fsparam_flag	("prjquota",		Opt_prjquota),
1767 	fsparam_flag	("barrier",		Opt_barrier),
1768 	fsparam_u32	("barrier",		Opt_barrier),
1769 	fsparam_flag	("nobarrier",		Opt_nobarrier),
1770 	fsparam_flag	("i_version",		Opt_removed),
1771 	fsparam_flag	("dax",			Opt_dax),
1772 	fsparam_enum	("dax",			Opt_dax_type, ext4_param_dax),
1773 	fsparam_u32	("stripe",		Opt_stripe),
1774 	fsparam_flag	("delalloc",		Opt_delalloc),
1775 	fsparam_flag	("nodelalloc",		Opt_nodelalloc),
1776 	fsparam_flag	("warn_on_error",	Opt_warn_on_error),
1777 	fsparam_flag	("nowarn_on_error",	Opt_nowarn_on_error),
1778 	fsparam_u32	("debug_want_extra_isize",
1779 						Opt_debug_want_extra_isize),
1780 	fsparam_flag	("mblk_io_submit",	Opt_removed),
1781 	fsparam_flag	("nomblk_io_submit",	Opt_removed),
1782 	fsparam_flag	("block_validity",	Opt_block_validity),
1783 	fsparam_flag	("noblock_validity",	Opt_noblock_validity),
1784 	fsparam_u32	("inode_readahead_blks",
1785 						Opt_inode_readahead_blks),
1786 	fsparam_u32	("journal_ioprio",	Opt_journal_ioprio),
1787 	fsparam_u32	("auto_da_alloc",	Opt_auto_da_alloc),
1788 	fsparam_flag	("auto_da_alloc",	Opt_auto_da_alloc),
1789 	fsparam_flag	("noauto_da_alloc",	Opt_noauto_da_alloc),
1790 	fsparam_flag	("dioread_nolock",	Opt_dioread_nolock),
1791 	fsparam_flag	("nodioread_nolock",	Opt_dioread_lock),
1792 	fsparam_flag	("dioread_lock",	Opt_dioread_lock),
1793 	fsparam_flag	("discard",		Opt_discard),
1794 	fsparam_flag	("nodiscard",		Opt_nodiscard),
1795 	fsparam_u32	("init_itable",		Opt_init_itable),
1796 	fsparam_flag	("init_itable",		Opt_init_itable),
1797 	fsparam_flag	("noinit_itable",	Opt_noinit_itable),
1798 #ifdef CONFIG_EXT4_DEBUG
1799 	fsparam_flag	("fc_debug_force",	Opt_fc_debug_force),
1800 	fsparam_u32	("fc_debug_max_replay",	Opt_fc_debug_max_replay),
1801 #endif
1802 	fsparam_u32	("max_dir_size_kb",	Opt_max_dir_size_kb),
1803 	fsparam_flag	("test_dummy_encryption",
1804 						Opt_test_dummy_encryption),
1805 	fsparam_string	("test_dummy_encryption",
1806 						Opt_test_dummy_encryption),
1807 	fsparam_flag	("inlinecrypt",		Opt_inlinecrypt),
1808 	fsparam_flag	("nombcache",		Opt_nombcache),
1809 	fsparam_flag	("no_mbcache",		Opt_nombcache),	/* for backward compatibility */
1810 	fsparam_flag	("prefetch_block_bitmaps",
1811 						Opt_removed),
1812 	fsparam_flag	("no_prefetch_block_bitmaps",
1813 						Opt_no_prefetch_block_bitmaps),
1814 	fsparam_s32	("mb_optimize_scan",	Opt_mb_optimize_scan),
1815 	fsparam_string	("check",		Opt_removed),	/* mount option from ext2/3 */
1816 	fsparam_flag	("nocheck",		Opt_removed),	/* mount option from ext2/3 */
1817 	fsparam_flag	("reservation",		Opt_removed),	/* mount option from ext2/3 */
1818 	fsparam_flag	("noreservation",	Opt_removed),	/* mount option from ext2/3 */
1819 	fsparam_u32	("journal",		Opt_removed),	/* mount option from ext2/3 */
1820 	{}
1821 };
1822 
1823 
1824 #define MOPT_SET	0x0001
1825 #define MOPT_CLEAR	0x0002
1826 #define MOPT_NOSUPPORT	0x0004
1827 #define MOPT_EXPLICIT	0x0008
1828 #ifdef CONFIG_QUOTA
1829 #define MOPT_Q		0
1830 #define MOPT_QFMT	0x0010
1831 #else
1832 #define MOPT_Q		MOPT_NOSUPPORT
1833 #define MOPT_QFMT	MOPT_NOSUPPORT
1834 #endif
1835 #define MOPT_NO_EXT2	0x0020
1836 #define MOPT_NO_EXT3	0x0040
1837 #define MOPT_EXT4_ONLY	(MOPT_NO_EXT2 | MOPT_NO_EXT3)
1838 #define MOPT_SKIP	0x0080
1839 #define	MOPT_2		0x0100
1840 
1841 static const struct mount_opts {
1842 	int	token;
1843 	int	mount_opt;
1844 	int	flags;
1845 } ext4_mount_opts[] = {
1846 	{Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1847 	{Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1848 	{Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1849 	{Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1850 	{Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1851 	{Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1852 	{Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1853 	 MOPT_EXT4_ONLY | MOPT_SET},
1854 	{Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1855 	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1856 	{Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1857 	{Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1858 	{Opt_delalloc, EXT4_MOUNT_DELALLOC,
1859 	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1860 	{Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1861 	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1862 	{Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET},
1863 	{Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR},
1864 	{Opt_commit, 0, MOPT_NO_EXT2},
1865 	{Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1866 	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1867 	{Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1868 	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1869 	{Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1870 				    EXT4_MOUNT_JOURNAL_CHECKSUM),
1871 	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1872 	{Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1873 	{Opt_data_err, EXT4_MOUNT_DATA_ERR_ABORT, MOPT_NO_EXT2},
1874 	{Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1875 	{Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1876 	{Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1877 	{Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1878 	{Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1879 	{Opt_dax_type, 0, MOPT_EXT4_ONLY},
1880 	{Opt_journal_dev, 0, MOPT_NO_EXT2},
1881 	{Opt_journal_path, 0, MOPT_NO_EXT2},
1882 	{Opt_journal_ioprio, 0, MOPT_NO_EXT2},
1883 	{Opt_data, 0, MOPT_NO_EXT2},
1884 	{Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1885 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1886 	{Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1887 #else
1888 	{Opt_acl, 0, MOPT_NOSUPPORT},
1889 #endif
1890 	{Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1891 	{Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1892 	{Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1893 	{Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1894 							MOPT_SET | MOPT_Q},
1895 	{Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1896 							MOPT_SET | MOPT_Q},
1897 	{Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA,
1898 							MOPT_SET | MOPT_Q},
1899 	{Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1900 		       EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA),
1901 							MOPT_CLEAR | MOPT_Q},
1902 	{Opt_usrjquota, 0, MOPT_Q},
1903 	{Opt_grpjquota, 0, MOPT_Q},
1904 	{Opt_jqfmt, 0, MOPT_QFMT},
1905 	{Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET},
1906 	{Opt_no_prefetch_block_bitmaps, EXT4_MOUNT_NO_PREFETCH_BLOCK_BITMAPS,
1907 	 MOPT_SET},
1908 #ifdef CONFIG_EXT4_DEBUG
1909 	{Opt_fc_debug_force, EXT4_MOUNT2_JOURNAL_FAST_COMMIT,
1910 	 MOPT_SET | MOPT_2 | MOPT_EXT4_ONLY},
1911 #endif
1912 	{Opt_abort, EXT4_MOUNT2_ABORT, MOPT_SET | MOPT_2},
1913 	{Opt_err, 0, 0}
1914 };
1915 
1916 #if IS_ENABLED(CONFIG_UNICODE)
1917 static const struct ext4_sb_encodings {
1918 	__u16 magic;
1919 	char *name;
1920 	unsigned int version;
1921 } ext4_sb_encoding_map[] = {
1922 	{EXT4_ENC_UTF8_12_1, "utf8", UNICODE_AGE(12, 1, 0)},
1923 };
1924 
1925 static const struct ext4_sb_encodings *
ext4_sb_read_encoding(const struct ext4_super_block * es)1926 ext4_sb_read_encoding(const struct ext4_super_block *es)
1927 {
1928 	__u16 magic = le16_to_cpu(es->s_encoding);
1929 	int i;
1930 
1931 	for (i = 0; i < ARRAY_SIZE(ext4_sb_encoding_map); i++)
1932 		if (magic == ext4_sb_encoding_map[i].magic)
1933 			return &ext4_sb_encoding_map[i];
1934 
1935 	return NULL;
1936 }
1937 #endif
1938 
1939 #define EXT4_SPEC_JQUOTA			(1 <<  0)
1940 #define EXT4_SPEC_JQFMT				(1 <<  1)
1941 #define EXT4_SPEC_DATAJ				(1 <<  2)
1942 #define EXT4_SPEC_SB_BLOCK			(1 <<  3)
1943 #define EXT4_SPEC_JOURNAL_DEV			(1 <<  4)
1944 #define EXT4_SPEC_JOURNAL_IOPRIO		(1 <<  5)
1945 #define EXT4_SPEC_s_want_extra_isize		(1 <<  7)
1946 #define EXT4_SPEC_s_max_batch_time		(1 <<  8)
1947 #define EXT4_SPEC_s_min_batch_time		(1 <<  9)
1948 #define EXT4_SPEC_s_inode_readahead_blks	(1 << 10)
1949 #define EXT4_SPEC_s_li_wait_mult		(1 << 11)
1950 #define EXT4_SPEC_s_max_dir_size_kb		(1 << 12)
1951 #define EXT4_SPEC_s_stripe			(1 << 13)
1952 #define EXT4_SPEC_s_resuid			(1 << 14)
1953 #define EXT4_SPEC_s_resgid			(1 << 15)
1954 #define EXT4_SPEC_s_commit_interval		(1 << 16)
1955 #define EXT4_SPEC_s_fc_debug_max_replay		(1 << 17)
1956 #define EXT4_SPEC_s_sb_block			(1 << 18)
1957 #define EXT4_SPEC_mb_optimize_scan		(1 << 19)
1958 
1959 struct ext4_fs_context {
1960 	char		*s_qf_names[EXT4_MAXQUOTAS];
1961 	struct fscrypt_dummy_policy dummy_enc_policy;
1962 	int		s_jquota_fmt;	/* Format of quota to use */
1963 #ifdef CONFIG_EXT4_DEBUG
1964 	int s_fc_debug_max_replay;
1965 #endif
1966 	unsigned short	qname_spec;
1967 	unsigned long	vals_s_flags;	/* Bits to set in s_flags */
1968 	unsigned long	mask_s_flags;	/* Bits changed in s_flags */
1969 	unsigned long	journal_devnum;
1970 	unsigned long	s_commit_interval;
1971 	unsigned long	s_stripe;
1972 	unsigned int	s_inode_readahead_blks;
1973 	unsigned int	s_want_extra_isize;
1974 	unsigned int	s_li_wait_mult;
1975 	unsigned int	s_max_dir_size_kb;
1976 	unsigned int	journal_ioprio;
1977 	unsigned int	vals_s_mount_opt;
1978 	unsigned int	mask_s_mount_opt;
1979 	unsigned int	vals_s_mount_opt2;
1980 	unsigned int	mask_s_mount_opt2;
1981 	unsigned int	opt_flags;	/* MOPT flags */
1982 	unsigned int	spec;
1983 	u32		s_max_batch_time;
1984 	u32		s_min_batch_time;
1985 	kuid_t		s_resuid;
1986 	kgid_t		s_resgid;
1987 	ext4_fsblk_t	s_sb_block;
1988 };
1989 
ext4_fc_free(struct fs_context * fc)1990 static void ext4_fc_free(struct fs_context *fc)
1991 {
1992 	struct ext4_fs_context *ctx = fc->fs_private;
1993 	int i;
1994 
1995 	if (!ctx)
1996 		return;
1997 
1998 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
1999 		kfree(ctx->s_qf_names[i]);
2000 
2001 	fscrypt_free_dummy_policy(&ctx->dummy_enc_policy);
2002 	kfree(ctx);
2003 }
2004 
ext4_init_fs_context(struct fs_context * fc)2005 int ext4_init_fs_context(struct fs_context *fc)
2006 {
2007 	struct ext4_fs_context *ctx;
2008 
2009 	ctx = kzalloc(sizeof(struct ext4_fs_context), GFP_KERNEL);
2010 	if (!ctx)
2011 		return -ENOMEM;
2012 
2013 	fc->fs_private = ctx;
2014 	fc->ops = &ext4_context_ops;
2015 
2016 	/* i_version is always enabled now */
2017 	fc->sb_flags |= SB_I_VERSION;
2018 
2019 	return 0;
2020 }
2021 
2022 #ifdef CONFIG_QUOTA
2023 /*
2024  * Note the name of the specified quota file.
2025  */
note_qf_name(struct fs_context * fc,int qtype,struct fs_parameter * param)2026 static int note_qf_name(struct fs_context *fc, int qtype,
2027 		       struct fs_parameter *param)
2028 {
2029 	struct ext4_fs_context *ctx = fc->fs_private;
2030 	char *qname;
2031 
2032 	if (param->size < 1) {
2033 		ext4_msg(NULL, KERN_ERR, "Missing quota name");
2034 		return -EINVAL;
2035 	}
2036 	if (strchr(param->string, '/')) {
2037 		ext4_msg(NULL, KERN_ERR,
2038 			 "quotafile must be on filesystem root");
2039 		return -EINVAL;
2040 	}
2041 	if (ctx->s_qf_names[qtype]) {
2042 		if (strcmp(ctx->s_qf_names[qtype], param->string) != 0) {
2043 			ext4_msg(NULL, KERN_ERR,
2044 				 "%s quota file already specified",
2045 				 QTYPE2NAME(qtype));
2046 			return -EINVAL;
2047 		}
2048 		return 0;
2049 	}
2050 
2051 	qname = kmemdup_nul(param->string, param->size, GFP_KERNEL);
2052 	if (!qname) {
2053 		ext4_msg(NULL, KERN_ERR,
2054 			 "Not enough memory for storing quotafile name");
2055 		return -ENOMEM;
2056 	}
2057 	ctx->s_qf_names[qtype] = qname;
2058 	ctx->qname_spec |= 1 << qtype;
2059 	ctx->spec |= EXT4_SPEC_JQUOTA;
2060 	return 0;
2061 }
2062 
2063 /*
2064  * Clear the name of the specified quota file.
2065  */
unnote_qf_name(struct fs_context * fc,int qtype)2066 static int unnote_qf_name(struct fs_context *fc, int qtype)
2067 {
2068 	struct ext4_fs_context *ctx = fc->fs_private;
2069 
2070 	kfree(ctx->s_qf_names[qtype]);
2071 
2072 	ctx->s_qf_names[qtype] = NULL;
2073 	ctx->qname_spec |= 1 << qtype;
2074 	ctx->spec |= EXT4_SPEC_JQUOTA;
2075 	return 0;
2076 }
2077 #endif
2078 
ext4_parse_test_dummy_encryption(const struct fs_parameter * param,struct ext4_fs_context * ctx)2079 static int ext4_parse_test_dummy_encryption(const struct fs_parameter *param,
2080 					    struct ext4_fs_context *ctx)
2081 {
2082 	int err;
2083 
2084 	if (!IS_ENABLED(CONFIG_FS_ENCRYPTION)) {
2085 		ext4_msg(NULL, KERN_WARNING,
2086 			 "test_dummy_encryption option not supported");
2087 		return -EINVAL;
2088 	}
2089 	err = fscrypt_parse_test_dummy_encryption(param,
2090 						  &ctx->dummy_enc_policy);
2091 	if (err == -EINVAL) {
2092 		ext4_msg(NULL, KERN_WARNING,
2093 			 "Value of option \"%s\" is unrecognized", param->key);
2094 	} else if (err == -EEXIST) {
2095 		ext4_msg(NULL, KERN_WARNING,
2096 			 "Conflicting test_dummy_encryption options");
2097 		return -EINVAL;
2098 	}
2099 	return err;
2100 }
2101 
2102 #define EXT4_SET_CTX(name)						\
2103 static inline __maybe_unused						\
2104 void ctx_set_##name(struct ext4_fs_context *ctx, unsigned long flag)	\
2105 {									\
2106 	ctx->mask_s_##name |= flag;					\
2107 	ctx->vals_s_##name |= flag;					\
2108 }
2109 
2110 #define EXT4_CLEAR_CTX(name)						\
2111 static inline __maybe_unused						\
2112 void ctx_clear_##name(struct ext4_fs_context *ctx, unsigned long flag)	\
2113 {									\
2114 	ctx->mask_s_##name |= flag;					\
2115 	ctx->vals_s_##name &= ~flag;					\
2116 }
2117 
2118 #define EXT4_TEST_CTX(name)						\
2119 static inline unsigned long						\
2120 ctx_test_##name(struct ext4_fs_context *ctx, unsigned long flag)	\
2121 {									\
2122 	return (ctx->vals_s_##name & flag);				\
2123 }
2124 
2125 EXT4_SET_CTX(flags); /* set only */
2126 EXT4_SET_CTX(mount_opt);
2127 EXT4_CLEAR_CTX(mount_opt);
2128 EXT4_TEST_CTX(mount_opt);
2129 EXT4_SET_CTX(mount_opt2);
2130 EXT4_CLEAR_CTX(mount_opt2);
2131 EXT4_TEST_CTX(mount_opt2);
2132 
ext4_parse_param(struct fs_context * fc,struct fs_parameter * param)2133 static int ext4_parse_param(struct fs_context *fc, struct fs_parameter *param)
2134 {
2135 	struct ext4_fs_context *ctx = fc->fs_private;
2136 	struct fs_parse_result result;
2137 	const struct mount_opts *m;
2138 	int is_remount;
2139 	int token;
2140 
2141 	token = fs_parse(fc, ext4_param_specs, param, &result);
2142 	if (token < 0)
2143 		return token;
2144 	is_remount = fc->purpose == FS_CONTEXT_FOR_RECONFIGURE;
2145 
2146 	for (m = ext4_mount_opts; m->token != Opt_err; m++)
2147 		if (token == m->token)
2148 			break;
2149 
2150 	ctx->opt_flags |= m->flags;
2151 
2152 	if (m->flags & MOPT_EXPLICIT) {
2153 		if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
2154 			ctx_set_mount_opt2(ctx, EXT4_MOUNT2_EXPLICIT_DELALLOC);
2155 		} else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
2156 			ctx_set_mount_opt2(ctx,
2157 				       EXT4_MOUNT2_EXPLICIT_JOURNAL_CHECKSUM);
2158 		} else
2159 			return -EINVAL;
2160 	}
2161 
2162 	if (m->flags & MOPT_NOSUPPORT) {
2163 		ext4_msg(NULL, KERN_ERR, "%s option not supported",
2164 			 param->key);
2165 		return 0;
2166 	}
2167 
2168 	switch (token) {
2169 #ifdef CONFIG_QUOTA
2170 	case Opt_usrjquota:
2171 		if (!*param->string)
2172 			return unnote_qf_name(fc, USRQUOTA);
2173 		else
2174 			return note_qf_name(fc, USRQUOTA, param);
2175 	case Opt_grpjquota:
2176 		if (!*param->string)
2177 			return unnote_qf_name(fc, GRPQUOTA);
2178 		else
2179 			return note_qf_name(fc, GRPQUOTA, param);
2180 #endif
2181 	case Opt_sb:
2182 		if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) {
2183 			ext4_msg(NULL, KERN_WARNING,
2184 				 "Ignoring %s option on remount", param->key);
2185 		} else {
2186 			ctx->s_sb_block = result.uint_32;
2187 			ctx->spec |= EXT4_SPEC_s_sb_block;
2188 		}
2189 		return 0;
2190 	case Opt_removed:
2191 		ext4_msg(NULL, KERN_WARNING, "Ignoring removed %s option",
2192 			 param->key);
2193 		return 0;
2194 	case Opt_inlinecrypt:
2195 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
2196 		ctx_set_flags(ctx, SB_INLINECRYPT);
2197 #else
2198 		ext4_msg(NULL, KERN_ERR, "inline encryption not supported");
2199 #endif
2200 		return 0;
2201 	case Opt_errors:
2202 		ctx_clear_mount_opt(ctx, EXT4_MOUNT_ERRORS_MASK);
2203 		ctx_set_mount_opt(ctx, result.uint_32);
2204 		return 0;
2205 #ifdef CONFIG_QUOTA
2206 	case Opt_jqfmt:
2207 		ctx->s_jquota_fmt = result.uint_32;
2208 		ctx->spec |= EXT4_SPEC_JQFMT;
2209 		return 0;
2210 #endif
2211 	case Opt_data:
2212 		ctx_clear_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS);
2213 		ctx_set_mount_opt(ctx, result.uint_32);
2214 		ctx->spec |= EXT4_SPEC_DATAJ;
2215 		return 0;
2216 	case Opt_commit:
2217 		if (result.uint_32 == 0)
2218 			result.uint_32 = JBD2_DEFAULT_MAX_COMMIT_AGE;
2219 		else if (result.uint_32 > INT_MAX / HZ) {
2220 			ext4_msg(NULL, KERN_ERR,
2221 				 "Invalid commit interval %d, "
2222 				 "must be smaller than %d",
2223 				 result.uint_32, INT_MAX / HZ);
2224 			return -EINVAL;
2225 		}
2226 		ctx->s_commit_interval = HZ * result.uint_32;
2227 		ctx->spec |= EXT4_SPEC_s_commit_interval;
2228 		return 0;
2229 	case Opt_debug_want_extra_isize:
2230 		if ((result.uint_32 & 1) || (result.uint_32 < 4)) {
2231 			ext4_msg(NULL, KERN_ERR,
2232 				 "Invalid want_extra_isize %d", result.uint_32);
2233 			return -EINVAL;
2234 		}
2235 		ctx->s_want_extra_isize = result.uint_32;
2236 		ctx->spec |= EXT4_SPEC_s_want_extra_isize;
2237 		return 0;
2238 	case Opt_max_batch_time:
2239 		ctx->s_max_batch_time = result.uint_32;
2240 		ctx->spec |= EXT4_SPEC_s_max_batch_time;
2241 		return 0;
2242 	case Opt_min_batch_time:
2243 		ctx->s_min_batch_time = result.uint_32;
2244 		ctx->spec |= EXT4_SPEC_s_min_batch_time;
2245 		return 0;
2246 	case Opt_inode_readahead_blks:
2247 		if (result.uint_32 &&
2248 		    (result.uint_32 > (1 << 30) ||
2249 		     !is_power_of_2(result.uint_32))) {
2250 			ext4_msg(NULL, KERN_ERR,
2251 				 "EXT4-fs: inode_readahead_blks must be "
2252 				 "0 or a power of 2 smaller than 2^31");
2253 			return -EINVAL;
2254 		}
2255 		ctx->s_inode_readahead_blks = result.uint_32;
2256 		ctx->spec |= EXT4_SPEC_s_inode_readahead_blks;
2257 		return 0;
2258 	case Opt_init_itable:
2259 		ctx_set_mount_opt(ctx, EXT4_MOUNT_INIT_INODE_TABLE);
2260 		ctx->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
2261 		if (param->type == fs_value_is_string)
2262 			ctx->s_li_wait_mult = result.uint_32;
2263 		ctx->spec |= EXT4_SPEC_s_li_wait_mult;
2264 		return 0;
2265 	case Opt_max_dir_size_kb:
2266 		ctx->s_max_dir_size_kb = result.uint_32;
2267 		ctx->spec |= EXT4_SPEC_s_max_dir_size_kb;
2268 		return 0;
2269 #ifdef CONFIG_EXT4_DEBUG
2270 	case Opt_fc_debug_max_replay:
2271 		ctx->s_fc_debug_max_replay = result.uint_32;
2272 		ctx->spec |= EXT4_SPEC_s_fc_debug_max_replay;
2273 		return 0;
2274 #endif
2275 	case Opt_stripe:
2276 		ctx->s_stripe = result.uint_32;
2277 		ctx->spec |= EXT4_SPEC_s_stripe;
2278 		return 0;
2279 	case Opt_resuid:
2280 		ctx->s_resuid = result.uid;
2281 		ctx->spec |= EXT4_SPEC_s_resuid;
2282 		return 0;
2283 	case Opt_resgid:
2284 		ctx->s_resgid = result.gid;
2285 		ctx->spec |= EXT4_SPEC_s_resgid;
2286 		return 0;
2287 	case Opt_journal_dev:
2288 		if (is_remount) {
2289 			ext4_msg(NULL, KERN_ERR,
2290 				 "Cannot specify journal on remount");
2291 			return -EINVAL;
2292 		}
2293 		ctx->journal_devnum = result.uint_32;
2294 		ctx->spec |= EXT4_SPEC_JOURNAL_DEV;
2295 		return 0;
2296 	case Opt_journal_path:
2297 	{
2298 		struct inode *journal_inode;
2299 		struct path path;
2300 		int error;
2301 
2302 		if (is_remount) {
2303 			ext4_msg(NULL, KERN_ERR,
2304 				 "Cannot specify journal on remount");
2305 			return -EINVAL;
2306 		}
2307 
2308 		error = fs_lookup_param(fc, param, 1, LOOKUP_FOLLOW, &path);
2309 		if (error) {
2310 			ext4_msg(NULL, KERN_ERR, "error: could not find "
2311 				 "journal device path");
2312 			return -EINVAL;
2313 		}
2314 
2315 		journal_inode = d_inode(path.dentry);
2316 		ctx->journal_devnum = new_encode_dev(journal_inode->i_rdev);
2317 		ctx->spec |= EXT4_SPEC_JOURNAL_DEV;
2318 		path_put(&path);
2319 		return 0;
2320 	}
2321 	case Opt_journal_ioprio:
2322 		if (result.uint_32 > 7) {
2323 			ext4_msg(NULL, KERN_ERR, "Invalid journal IO priority"
2324 				 " (must be 0-7)");
2325 			return -EINVAL;
2326 		}
2327 		ctx->journal_ioprio =
2328 			IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, result.uint_32);
2329 		ctx->spec |= EXT4_SPEC_JOURNAL_IOPRIO;
2330 		return 0;
2331 	case Opt_test_dummy_encryption:
2332 		return ext4_parse_test_dummy_encryption(param, ctx);
2333 	case Opt_dax:
2334 	case Opt_dax_type:
2335 #ifdef CONFIG_FS_DAX
2336 	{
2337 		int type = (token == Opt_dax) ?
2338 			   Opt_dax : result.uint_32;
2339 
2340 		switch (type) {
2341 		case Opt_dax:
2342 		case Opt_dax_always:
2343 			ctx_set_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS);
2344 			ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER);
2345 			break;
2346 		case Opt_dax_never:
2347 			ctx_set_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER);
2348 			ctx_clear_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS);
2349 			break;
2350 		case Opt_dax_inode:
2351 			ctx_clear_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS);
2352 			ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER);
2353 			/* Strictly for printing options */
2354 			ctx_set_mount_opt2(ctx, EXT4_MOUNT2_DAX_INODE);
2355 			break;
2356 		}
2357 		return 0;
2358 	}
2359 #else
2360 		ext4_msg(NULL, KERN_INFO, "dax option not supported");
2361 		return -EINVAL;
2362 #endif
2363 	case Opt_data_err:
2364 		if (result.uint_32 == Opt_data_err_abort)
2365 			ctx_set_mount_opt(ctx, m->mount_opt);
2366 		else if (result.uint_32 == Opt_data_err_ignore)
2367 			ctx_clear_mount_opt(ctx, m->mount_opt);
2368 		return 0;
2369 	case Opt_mb_optimize_scan:
2370 		if (result.int_32 == 1) {
2371 			ctx_set_mount_opt2(ctx, EXT4_MOUNT2_MB_OPTIMIZE_SCAN);
2372 			ctx->spec |= EXT4_SPEC_mb_optimize_scan;
2373 		} else if (result.int_32 == 0) {
2374 			ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_MB_OPTIMIZE_SCAN);
2375 			ctx->spec |= EXT4_SPEC_mb_optimize_scan;
2376 		} else {
2377 			ext4_msg(NULL, KERN_WARNING,
2378 				 "mb_optimize_scan should be set to 0 or 1.");
2379 			return -EINVAL;
2380 		}
2381 		return 0;
2382 	}
2383 
2384 	/*
2385 	 * At this point we should only be getting options requiring MOPT_SET,
2386 	 * or MOPT_CLEAR. Anything else is a bug
2387 	 */
2388 	if (m->token == Opt_err) {
2389 		ext4_msg(NULL, KERN_WARNING, "buggy handling of option %s",
2390 			 param->key);
2391 		WARN_ON(1);
2392 		return -EINVAL;
2393 	}
2394 
2395 	else {
2396 		unsigned int set = 0;
2397 
2398 		if ((param->type == fs_value_is_flag) ||
2399 		    result.uint_32 > 0)
2400 			set = 1;
2401 
2402 		if (m->flags & MOPT_CLEAR)
2403 			set = !set;
2404 		else if (unlikely(!(m->flags & MOPT_SET))) {
2405 			ext4_msg(NULL, KERN_WARNING,
2406 				 "buggy handling of option %s",
2407 				 param->key);
2408 			WARN_ON(1);
2409 			return -EINVAL;
2410 		}
2411 		if (m->flags & MOPT_2) {
2412 			if (set != 0)
2413 				ctx_set_mount_opt2(ctx, m->mount_opt);
2414 			else
2415 				ctx_clear_mount_opt2(ctx, m->mount_opt);
2416 		} else {
2417 			if (set != 0)
2418 				ctx_set_mount_opt(ctx, m->mount_opt);
2419 			else
2420 				ctx_clear_mount_opt(ctx, m->mount_opt);
2421 		}
2422 	}
2423 
2424 	return 0;
2425 }
2426 
parse_options(struct fs_context * fc,char * options)2427 static int parse_options(struct fs_context *fc, char *options)
2428 {
2429 	struct fs_parameter param;
2430 	int ret;
2431 	char *key;
2432 
2433 	if (!options)
2434 		return 0;
2435 
2436 	while ((key = strsep(&options, ",")) != NULL) {
2437 		if (*key) {
2438 			size_t v_len = 0;
2439 			char *value = strchr(key, '=');
2440 
2441 			param.type = fs_value_is_flag;
2442 			param.string = NULL;
2443 
2444 			if (value) {
2445 				if (value == key)
2446 					continue;
2447 
2448 				*value++ = 0;
2449 				v_len = strlen(value);
2450 				param.string = kmemdup_nul(value, v_len,
2451 							   GFP_KERNEL);
2452 				if (!param.string)
2453 					return -ENOMEM;
2454 				param.type = fs_value_is_string;
2455 			}
2456 
2457 			param.key = key;
2458 			param.size = v_len;
2459 
2460 			ret = ext4_parse_param(fc, &param);
2461 			kfree(param.string);
2462 			if (ret < 0)
2463 				return ret;
2464 		}
2465 	}
2466 
2467 	ret = ext4_validate_options(fc);
2468 	if (ret < 0)
2469 		return ret;
2470 
2471 	return 0;
2472 }
2473 
parse_apply_sb_mount_options(struct super_block * sb,struct ext4_fs_context * m_ctx)2474 static int parse_apply_sb_mount_options(struct super_block *sb,
2475 					struct ext4_fs_context *m_ctx)
2476 {
2477 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2478 	char s_mount_opts[65];
2479 	struct ext4_fs_context *s_ctx = NULL;
2480 	struct fs_context *fc = NULL;
2481 	int ret = -ENOMEM;
2482 
2483 	if (!sbi->s_es->s_mount_opts[0])
2484 		return 0;
2485 
2486 	strscpy_pad(s_mount_opts, sbi->s_es->s_mount_opts);
2487 
2488 	fc = kzalloc(sizeof(struct fs_context), GFP_KERNEL);
2489 	if (!fc)
2490 		return -ENOMEM;
2491 
2492 	s_ctx = kzalloc(sizeof(struct ext4_fs_context), GFP_KERNEL);
2493 	if (!s_ctx)
2494 		goto out_free;
2495 
2496 	fc->fs_private = s_ctx;
2497 	fc->s_fs_info = sbi;
2498 
2499 	ret = parse_options(fc, s_mount_opts);
2500 	if (ret < 0)
2501 		goto parse_failed;
2502 
2503 	ret = ext4_check_opt_consistency(fc, sb);
2504 	if (ret < 0) {
2505 parse_failed:
2506 		ext4_msg(sb, KERN_WARNING,
2507 			 "failed to parse options in superblock: %s",
2508 			 s_mount_opts);
2509 		ret = 0;
2510 		goto out_free;
2511 	}
2512 
2513 	if (s_ctx->spec & EXT4_SPEC_JOURNAL_DEV)
2514 		m_ctx->journal_devnum = s_ctx->journal_devnum;
2515 	if (s_ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO)
2516 		m_ctx->journal_ioprio = s_ctx->journal_ioprio;
2517 
2518 	ext4_apply_options(fc, sb);
2519 	ret = 0;
2520 
2521 out_free:
2522 	ext4_fc_free(fc);
2523 	kfree(fc);
2524 	return ret;
2525 }
2526 
ext4_apply_quota_options(struct fs_context * fc,struct super_block * sb)2527 static void ext4_apply_quota_options(struct fs_context *fc,
2528 				     struct super_block *sb)
2529 {
2530 #ifdef CONFIG_QUOTA
2531 	bool quota_feature = ext4_has_feature_quota(sb);
2532 	struct ext4_fs_context *ctx = fc->fs_private;
2533 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2534 	char *qname;
2535 	int i;
2536 
2537 	if (quota_feature)
2538 		return;
2539 
2540 	if (ctx->spec & EXT4_SPEC_JQUOTA) {
2541 		for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2542 			if (!(ctx->qname_spec & (1 << i)))
2543 				continue;
2544 
2545 			qname = ctx->s_qf_names[i]; /* May be NULL */
2546 			if (qname)
2547 				set_opt(sb, QUOTA);
2548 			ctx->s_qf_names[i] = NULL;
2549 			qname = rcu_replace_pointer(sbi->s_qf_names[i], qname,
2550 						lockdep_is_held(&sb->s_umount));
2551 			if (qname)
2552 				kfree_rcu_mightsleep(qname);
2553 		}
2554 	}
2555 
2556 	if (ctx->spec & EXT4_SPEC_JQFMT)
2557 		sbi->s_jquota_fmt = ctx->s_jquota_fmt;
2558 #endif
2559 }
2560 
2561 /*
2562  * Check quota settings consistency.
2563  */
ext4_check_quota_consistency(struct fs_context * fc,struct super_block * sb)2564 static int ext4_check_quota_consistency(struct fs_context *fc,
2565 					struct super_block *sb)
2566 {
2567 #ifdef CONFIG_QUOTA
2568 	struct ext4_fs_context *ctx = fc->fs_private;
2569 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2570 	bool quota_feature = ext4_has_feature_quota(sb);
2571 	bool quota_loaded = sb_any_quota_loaded(sb);
2572 	bool usr_qf_name, grp_qf_name, usrquota, grpquota;
2573 	int quota_flags, i;
2574 
2575 	/*
2576 	 * We do the test below only for project quotas. 'usrquota' and
2577 	 * 'grpquota' mount options are allowed even without quota feature
2578 	 * to support legacy quotas in quota files.
2579 	 */
2580 	if (ctx_test_mount_opt(ctx, EXT4_MOUNT_PRJQUOTA) &&
2581 	    !ext4_has_feature_project(sb)) {
2582 		ext4_msg(NULL, KERN_ERR, "Project quota feature not enabled. "
2583 			 "Cannot enable project quota enforcement.");
2584 		return -EINVAL;
2585 	}
2586 
2587 	quota_flags = EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
2588 		      EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA;
2589 	if (quota_loaded &&
2590 	    ctx->mask_s_mount_opt & quota_flags &&
2591 	    !ctx_test_mount_opt(ctx, quota_flags))
2592 		goto err_quota_change;
2593 
2594 	if (ctx->spec & EXT4_SPEC_JQUOTA) {
2595 
2596 		for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2597 			if (!(ctx->qname_spec & (1 << i)))
2598 				continue;
2599 
2600 			if (quota_loaded &&
2601 			    !!sbi->s_qf_names[i] != !!ctx->s_qf_names[i])
2602 				goto err_jquota_change;
2603 
2604 			if (sbi->s_qf_names[i] && ctx->s_qf_names[i] &&
2605 			    strcmp(get_qf_name(sb, sbi, i),
2606 				   ctx->s_qf_names[i]) != 0)
2607 				goto err_jquota_specified;
2608 		}
2609 
2610 		if (quota_feature) {
2611 			ext4_msg(NULL, KERN_INFO,
2612 				 "Journaled quota options ignored when "
2613 				 "QUOTA feature is enabled");
2614 			return 0;
2615 		}
2616 	}
2617 
2618 	if (ctx->spec & EXT4_SPEC_JQFMT) {
2619 		if (sbi->s_jquota_fmt != ctx->s_jquota_fmt && quota_loaded)
2620 			goto err_jquota_change;
2621 		if (quota_feature) {
2622 			ext4_msg(NULL, KERN_INFO, "Quota format mount options "
2623 				 "ignored when QUOTA feature is enabled");
2624 			return 0;
2625 		}
2626 	}
2627 
2628 	/* Make sure we don't mix old and new quota format */
2629 	usr_qf_name = (get_qf_name(sb, sbi, USRQUOTA) ||
2630 		       ctx->s_qf_names[USRQUOTA]);
2631 	grp_qf_name = (get_qf_name(sb, sbi, GRPQUOTA) ||
2632 		       ctx->s_qf_names[GRPQUOTA]);
2633 
2634 	usrquota = (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) ||
2635 		    test_opt(sb, USRQUOTA));
2636 
2637 	grpquota = (ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA) ||
2638 		    test_opt(sb, GRPQUOTA));
2639 
2640 	if (usr_qf_name) {
2641 		ctx_clear_mount_opt(ctx, EXT4_MOUNT_USRQUOTA);
2642 		usrquota = false;
2643 	}
2644 	if (grp_qf_name) {
2645 		ctx_clear_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA);
2646 		grpquota = false;
2647 	}
2648 
2649 	if (usr_qf_name || grp_qf_name) {
2650 		if (usrquota || grpquota) {
2651 			ext4_msg(NULL, KERN_ERR, "old and new quota "
2652 				 "format mixing");
2653 			return -EINVAL;
2654 		}
2655 
2656 		if (!(ctx->spec & EXT4_SPEC_JQFMT || sbi->s_jquota_fmt)) {
2657 			ext4_msg(NULL, KERN_ERR, "journaled quota format "
2658 				 "not specified");
2659 			return -EINVAL;
2660 		}
2661 	}
2662 
2663 	return 0;
2664 
2665 err_quota_change:
2666 	ext4_msg(NULL, KERN_ERR,
2667 		 "Cannot change quota options when quota turned on");
2668 	return -EINVAL;
2669 err_jquota_change:
2670 	ext4_msg(NULL, KERN_ERR, "Cannot change journaled quota "
2671 		 "options when quota turned on");
2672 	return -EINVAL;
2673 err_jquota_specified:
2674 	ext4_msg(NULL, KERN_ERR, "%s quota file already specified",
2675 		 QTYPE2NAME(i));
2676 	return -EINVAL;
2677 #else
2678 	return 0;
2679 #endif
2680 }
2681 
ext4_check_test_dummy_encryption(const struct fs_context * fc,struct super_block * sb)2682 static int ext4_check_test_dummy_encryption(const struct fs_context *fc,
2683 					    struct super_block *sb)
2684 {
2685 	const struct ext4_fs_context *ctx = fc->fs_private;
2686 	const struct ext4_sb_info *sbi = EXT4_SB(sb);
2687 
2688 	if (!fscrypt_is_dummy_policy_set(&ctx->dummy_enc_policy))
2689 		return 0;
2690 
2691 	if (!ext4_has_feature_encrypt(sb)) {
2692 		ext4_msg(NULL, KERN_WARNING,
2693 			 "test_dummy_encryption requires encrypt feature");
2694 		return -EINVAL;
2695 	}
2696 	/*
2697 	 * This mount option is just for testing, and it's not worthwhile to
2698 	 * implement the extra complexity (e.g. RCU protection) that would be
2699 	 * needed to allow it to be set or changed during remount.  We do allow
2700 	 * it to be specified during remount, but only if there is no change.
2701 	 */
2702 	if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) {
2703 		if (fscrypt_dummy_policies_equal(&sbi->s_dummy_enc_policy,
2704 						 &ctx->dummy_enc_policy))
2705 			return 0;
2706 		ext4_msg(NULL, KERN_WARNING,
2707 			 "Can't set or change test_dummy_encryption on remount");
2708 		return -EINVAL;
2709 	}
2710 	/* Also make sure s_mount_opts didn't contain a conflicting value. */
2711 	if (fscrypt_is_dummy_policy_set(&sbi->s_dummy_enc_policy)) {
2712 		if (fscrypt_dummy_policies_equal(&sbi->s_dummy_enc_policy,
2713 						 &ctx->dummy_enc_policy))
2714 			return 0;
2715 		ext4_msg(NULL, KERN_WARNING,
2716 			 "Conflicting test_dummy_encryption options");
2717 		return -EINVAL;
2718 	}
2719 	return 0;
2720 }
2721 
ext4_apply_test_dummy_encryption(struct ext4_fs_context * ctx,struct super_block * sb)2722 static void ext4_apply_test_dummy_encryption(struct ext4_fs_context *ctx,
2723 					     struct super_block *sb)
2724 {
2725 	if (!fscrypt_is_dummy_policy_set(&ctx->dummy_enc_policy) ||
2726 	    /* if already set, it was already verified to be the same */
2727 	    fscrypt_is_dummy_policy_set(&EXT4_SB(sb)->s_dummy_enc_policy))
2728 		return;
2729 	EXT4_SB(sb)->s_dummy_enc_policy = ctx->dummy_enc_policy;
2730 	memset(&ctx->dummy_enc_policy, 0, sizeof(ctx->dummy_enc_policy));
2731 	ext4_msg(sb, KERN_WARNING, "Test dummy encryption mode enabled");
2732 }
2733 
ext4_check_opt_consistency(struct fs_context * fc,struct super_block * sb)2734 static int ext4_check_opt_consistency(struct fs_context *fc,
2735 				      struct super_block *sb)
2736 {
2737 	struct ext4_fs_context *ctx = fc->fs_private;
2738 	struct ext4_sb_info *sbi = fc->s_fs_info;
2739 	int is_remount = fc->purpose == FS_CONTEXT_FOR_RECONFIGURE;
2740 	int err;
2741 
2742 	if ((ctx->opt_flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
2743 		ext4_msg(NULL, KERN_ERR,
2744 			 "Mount option(s) incompatible with ext2");
2745 		return -EINVAL;
2746 	}
2747 	if ((ctx->opt_flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
2748 		ext4_msg(NULL, KERN_ERR,
2749 			 "Mount option(s) incompatible with ext3");
2750 		return -EINVAL;
2751 	}
2752 
2753 	if (ctx->s_want_extra_isize >
2754 	    (sbi->s_inode_size - EXT4_GOOD_OLD_INODE_SIZE)) {
2755 		ext4_msg(NULL, KERN_ERR,
2756 			 "Invalid want_extra_isize %d",
2757 			 ctx->s_want_extra_isize);
2758 		return -EINVAL;
2759 	}
2760 
2761 	err = ext4_check_test_dummy_encryption(fc, sb);
2762 	if (err)
2763 		return err;
2764 
2765 	if ((ctx->spec & EXT4_SPEC_DATAJ) && is_remount) {
2766 		if (!sbi->s_journal) {
2767 			ext4_msg(NULL, KERN_WARNING,
2768 				 "Remounting file system with no journal "
2769 				 "so ignoring journalled data option");
2770 			ctx_clear_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS);
2771 		} else if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS) !=
2772 			   test_opt(sb, DATA_FLAGS)) {
2773 			ext4_msg(NULL, KERN_ERR, "Cannot change data mode "
2774 				 "on remount");
2775 			return -EINVAL;
2776 		}
2777 	}
2778 
2779 	if (is_remount) {
2780 		if (!sbi->s_journal &&
2781 		    ctx_test_mount_opt(ctx, EXT4_MOUNT_DATA_ERR_ABORT)) {
2782 			ext4_msg(NULL, KERN_WARNING,
2783 				 "Remounting fs w/o journal so ignoring data_err option");
2784 			ctx_clear_mount_opt(ctx, EXT4_MOUNT_DATA_ERR_ABORT);
2785 		}
2786 
2787 		if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS) &&
2788 		    (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)) {
2789 			ext4_msg(NULL, KERN_ERR, "can't mount with "
2790 				 "both data=journal and dax");
2791 			return -EINVAL;
2792 		}
2793 
2794 		if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS) &&
2795 		    (!(sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2796 		     (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER))) {
2797 fail_dax_change_remount:
2798 			ext4_msg(NULL, KERN_ERR, "can't change "
2799 				 "dax mount option while remounting");
2800 			return -EINVAL;
2801 		} else if (ctx_test_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER) &&
2802 			 (!(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2803 			  (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS))) {
2804 			goto fail_dax_change_remount;
2805 		} else if (ctx_test_mount_opt2(ctx, EXT4_MOUNT2_DAX_INODE) &&
2806 			   ((sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2807 			    (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2808 			    !(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_INODE))) {
2809 			goto fail_dax_change_remount;
2810 		}
2811 	}
2812 
2813 	return ext4_check_quota_consistency(fc, sb);
2814 }
2815 
ext4_apply_options(struct fs_context * fc,struct super_block * sb)2816 static void ext4_apply_options(struct fs_context *fc, struct super_block *sb)
2817 {
2818 	struct ext4_fs_context *ctx = fc->fs_private;
2819 	struct ext4_sb_info *sbi = fc->s_fs_info;
2820 
2821 	sbi->s_mount_opt &= ~ctx->mask_s_mount_opt;
2822 	sbi->s_mount_opt |= ctx->vals_s_mount_opt;
2823 	sbi->s_mount_opt2 &= ~ctx->mask_s_mount_opt2;
2824 	sbi->s_mount_opt2 |= ctx->vals_s_mount_opt2;
2825 	sb->s_flags &= ~ctx->mask_s_flags;
2826 	sb->s_flags |= ctx->vals_s_flags;
2827 
2828 #define APPLY(X) ({ if (ctx->spec & EXT4_SPEC_##X) sbi->X = ctx->X; })
2829 	APPLY(s_commit_interval);
2830 	APPLY(s_stripe);
2831 	APPLY(s_max_batch_time);
2832 	APPLY(s_min_batch_time);
2833 	APPLY(s_want_extra_isize);
2834 	APPLY(s_inode_readahead_blks);
2835 	APPLY(s_max_dir_size_kb);
2836 	APPLY(s_li_wait_mult);
2837 	APPLY(s_resgid);
2838 	APPLY(s_resuid);
2839 
2840 #ifdef CONFIG_EXT4_DEBUG
2841 	APPLY(s_fc_debug_max_replay);
2842 #endif
2843 
2844 	ext4_apply_quota_options(fc, sb);
2845 	ext4_apply_test_dummy_encryption(ctx, sb);
2846 }
2847 
2848 
ext4_validate_options(struct fs_context * fc)2849 static int ext4_validate_options(struct fs_context *fc)
2850 {
2851 #ifdef CONFIG_QUOTA
2852 	struct ext4_fs_context *ctx = fc->fs_private;
2853 	char *usr_qf_name, *grp_qf_name;
2854 
2855 	usr_qf_name = ctx->s_qf_names[USRQUOTA];
2856 	grp_qf_name = ctx->s_qf_names[GRPQUOTA];
2857 
2858 	if (usr_qf_name || grp_qf_name) {
2859 		if (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) && usr_qf_name)
2860 			ctx_clear_mount_opt(ctx, EXT4_MOUNT_USRQUOTA);
2861 
2862 		if (ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA) && grp_qf_name)
2863 			ctx_clear_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA);
2864 
2865 		if (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) ||
2866 		    ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA)) {
2867 			ext4_msg(NULL, KERN_ERR, "old and new quota "
2868 				 "format mixing");
2869 			return -EINVAL;
2870 		}
2871 	}
2872 #endif
2873 	return 1;
2874 }
2875 
ext4_show_quota_options(struct seq_file * seq,struct super_block * sb)2876 static inline void ext4_show_quota_options(struct seq_file *seq,
2877 					   struct super_block *sb)
2878 {
2879 #if defined(CONFIG_QUOTA)
2880 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2881 	char *usr_qf_name, *grp_qf_name;
2882 
2883 	if (sbi->s_jquota_fmt) {
2884 		char *fmtname = "";
2885 
2886 		switch (sbi->s_jquota_fmt) {
2887 		case QFMT_VFS_OLD:
2888 			fmtname = "vfsold";
2889 			break;
2890 		case QFMT_VFS_V0:
2891 			fmtname = "vfsv0";
2892 			break;
2893 		case QFMT_VFS_V1:
2894 			fmtname = "vfsv1";
2895 			break;
2896 		}
2897 		seq_printf(seq, ",jqfmt=%s", fmtname);
2898 	}
2899 
2900 	rcu_read_lock();
2901 	usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]);
2902 	grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]);
2903 	if (usr_qf_name)
2904 		seq_show_option(seq, "usrjquota", usr_qf_name);
2905 	if (grp_qf_name)
2906 		seq_show_option(seq, "grpjquota", grp_qf_name);
2907 	rcu_read_unlock();
2908 #endif
2909 }
2910 
token2str(int token)2911 static const char *token2str(int token)
2912 {
2913 	const struct fs_parameter_spec *spec;
2914 
2915 	for (spec = ext4_param_specs; spec->name != NULL; spec++)
2916 		if (spec->opt == token && !spec->type)
2917 			break;
2918 	return spec->name;
2919 }
2920 
2921 /*
2922  * Show an option if
2923  *  - it's set to a non-default value OR
2924  *  - if the per-sb default is different from the global default
2925  */
_ext4_show_options(struct seq_file * seq,struct super_block * sb,int nodefs)2926 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
2927 			      int nodefs)
2928 {
2929 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2930 	struct ext4_super_block *es = sbi->s_es;
2931 	int def_errors;
2932 	const struct mount_opts *m;
2933 	char sep = nodefs ? '\n' : ',';
2934 
2935 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
2936 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
2937 
2938 	if (sbi->s_sb_block != 1)
2939 		SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
2940 
2941 	for (m = ext4_mount_opts; m->token != Opt_err; m++) {
2942 		int want_set = m->flags & MOPT_SET;
2943 		int opt_2 = m->flags & MOPT_2;
2944 		unsigned int mount_opt, def_mount_opt;
2945 
2946 		if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
2947 		    m->flags & MOPT_SKIP)
2948 			continue;
2949 
2950 		if (opt_2) {
2951 			mount_opt = sbi->s_mount_opt2;
2952 			def_mount_opt = sbi->s_def_mount_opt2;
2953 		} else {
2954 			mount_opt = sbi->s_mount_opt;
2955 			def_mount_opt = sbi->s_def_mount_opt;
2956 		}
2957 		/* skip if same as the default */
2958 		if (!nodefs && !(m->mount_opt & (mount_opt ^ def_mount_opt)))
2959 			continue;
2960 		/* select Opt_noFoo vs Opt_Foo */
2961 		if ((want_set &&
2962 		     (mount_opt & m->mount_opt) != m->mount_opt) ||
2963 		    (!want_set && (mount_opt & m->mount_opt)))
2964 			continue;
2965 		SEQ_OPTS_PRINT("%s", token2str(m->token));
2966 	}
2967 
2968 	if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
2969 	    ext4_get_resuid(es) != EXT4_DEF_RESUID)
2970 		SEQ_OPTS_PRINT("resuid=%u",
2971 				from_kuid_munged(&init_user_ns, sbi->s_resuid));
2972 	if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
2973 	    ext4_get_resgid(es) != EXT4_DEF_RESGID)
2974 		SEQ_OPTS_PRINT("resgid=%u",
2975 				from_kgid_munged(&init_user_ns, sbi->s_resgid));
2976 	def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
2977 	if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
2978 		SEQ_OPTS_PUTS("errors=remount-ro");
2979 	if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
2980 		SEQ_OPTS_PUTS("errors=continue");
2981 	if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
2982 		SEQ_OPTS_PUTS("errors=panic");
2983 	if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
2984 		SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
2985 	if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
2986 		SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
2987 	if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
2988 		SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
2989 	if (nodefs && sb->s_flags & SB_I_VERSION)
2990 		SEQ_OPTS_PUTS("i_version");
2991 	if (nodefs || sbi->s_stripe)
2992 		SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
2993 	if (nodefs || EXT4_MOUNT_DATA_FLAGS &
2994 			(sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
2995 		if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
2996 			SEQ_OPTS_PUTS("data=journal");
2997 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
2998 			SEQ_OPTS_PUTS("data=ordered");
2999 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
3000 			SEQ_OPTS_PUTS("data=writeback");
3001 	}
3002 	if (nodefs ||
3003 	    sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
3004 		SEQ_OPTS_PRINT("inode_readahead_blks=%u",
3005 			       sbi->s_inode_readahead_blks);
3006 
3007 	if (test_opt(sb, INIT_INODE_TABLE) && (nodefs ||
3008 		       (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
3009 		SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
3010 	if (nodefs || sbi->s_max_dir_size_kb)
3011 		SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
3012 	if (test_opt(sb, DATA_ERR_ABORT))
3013 		SEQ_OPTS_PUTS("data_err=abort");
3014 
3015 	fscrypt_show_test_dummy_encryption(seq, sep, sb);
3016 
3017 	if (sb->s_flags & SB_INLINECRYPT)
3018 		SEQ_OPTS_PUTS("inlinecrypt");
3019 
3020 	if (test_opt(sb, DAX_ALWAYS)) {
3021 		if (IS_EXT2_SB(sb))
3022 			SEQ_OPTS_PUTS("dax");
3023 		else
3024 			SEQ_OPTS_PUTS("dax=always");
3025 	} else if (test_opt2(sb, DAX_NEVER)) {
3026 		SEQ_OPTS_PUTS("dax=never");
3027 	} else if (test_opt2(sb, DAX_INODE)) {
3028 		SEQ_OPTS_PUTS("dax=inode");
3029 	}
3030 
3031 	if (sbi->s_groups_count >= MB_DEFAULT_LINEAR_SCAN_THRESHOLD &&
3032 			!test_opt2(sb, MB_OPTIMIZE_SCAN)) {
3033 		SEQ_OPTS_PUTS("mb_optimize_scan=0");
3034 	} else if (sbi->s_groups_count < MB_DEFAULT_LINEAR_SCAN_THRESHOLD &&
3035 			test_opt2(sb, MB_OPTIMIZE_SCAN)) {
3036 		SEQ_OPTS_PUTS("mb_optimize_scan=1");
3037 	}
3038 
3039 	if (nodefs && !test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS))
3040 		SEQ_OPTS_PUTS("prefetch_block_bitmaps");
3041 
3042 	if (ext4_emergency_ro(sb))
3043 		SEQ_OPTS_PUTS("emergency_ro");
3044 
3045 	if (ext4_forced_shutdown(sb))
3046 		SEQ_OPTS_PUTS("shutdown");
3047 
3048 	ext4_show_quota_options(seq, sb);
3049 	return 0;
3050 }
3051 
ext4_show_options(struct seq_file * seq,struct dentry * root)3052 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
3053 {
3054 	return _ext4_show_options(seq, root->d_sb, 0);
3055 }
3056 
ext4_seq_options_show(struct seq_file * seq,void * offset)3057 int ext4_seq_options_show(struct seq_file *seq, void *offset)
3058 {
3059 	struct super_block *sb = seq->private;
3060 	int rc;
3061 
3062 	seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw");
3063 	rc = _ext4_show_options(seq, sb, 1);
3064 	seq_putc(seq, '\n');
3065 	return rc;
3066 }
3067 
ext4_setup_super(struct super_block * sb,struct ext4_super_block * es,int read_only)3068 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
3069 			    int read_only)
3070 {
3071 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3072 	int err = 0;
3073 
3074 	if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
3075 		ext4_msg(sb, KERN_ERR, "revision level too high, "
3076 			 "forcing read-only mode");
3077 		err = -EROFS;
3078 		goto done;
3079 	}
3080 	if (read_only)
3081 		goto done;
3082 	if (!(sbi->s_mount_state & EXT4_VALID_FS))
3083 		ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
3084 			 "running e2fsck is recommended");
3085 	else if (sbi->s_mount_state & EXT4_ERROR_FS)
3086 		ext4_msg(sb, KERN_WARNING,
3087 			 "warning: mounting fs with errors, "
3088 			 "running e2fsck is recommended");
3089 	else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
3090 		 le16_to_cpu(es->s_mnt_count) >=
3091 		 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
3092 		ext4_msg(sb, KERN_WARNING,
3093 			 "warning: maximal mount count reached, "
3094 			 "running e2fsck is recommended");
3095 	else if (le32_to_cpu(es->s_checkinterval) &&
3096 		 (ext4_get_tstamp(es, s_lastcheck) +
3097 		  le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds()))
3098 		ext4_msg(sb, KERN_WARNING,
3099 			 "warning: checktime reached, "
3100 			 "running e2fsck is recommended");
3101 	if (!sbi->s_journal)
3102 		es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
3103 	if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
3104 		es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
3105 	le16_add_cpu(&es->s_mnt_count, 1);
3106 	ext4_update_tstamp(es, s_mtime);
3107 	if (sbi->s_journal) {
3108 		ext4_set_feature_journal_needs_recovery(sb);
3109 		if (ext4_has_feature_orphan_file(sb))
3110 			ext4_set_feature_orphan_present(sb);
3111 	}
3112 
3113 	err = ext4_commit_super(sb);
3114 done:
3115 	if (test_opt(sb, DEBUG))
3116 		printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
3117 				"bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
3118 			sb->s_blocksize,
3119 			sbi->s_groups_count,
3120 			EXT4_BLOCKS_PER_GROUP(sb),
3121 			EXT4_INODES_PER_GROUP(sb),
3122 			sbi->s_mount_opt, sbi->s_mount_opt2);
3123 	return err;
3124 }
3125 
ext4_alloc_flex_bg_array(struct super_block * sb,ext4_group_t ngroup)3126 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
3127 {
3128 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3129 	struct flex_groups **old_groups, **new_groups;
3130 	int size, i, j;
3131 
3132 	if (!sbi->s_log_groups_per_flex)
3133 		return 0;
3134 
3135 	size = ext4_flex_group(sbi, ngroup - 1) + 1;
3136 	if (size <= sbi->s_flex_groups_allocated)
3137 		return 0;
3138 
3139 	new_groups = kvzalloc(roundup_pow_of_two(size *
3140 			      sizeof(*sbi->s_flex_groups)), GFP_KERNEL);
3141 	if (!new_groups) {
3142 		ext4_msg(sb, KERN_ERR,
3143 			 "not enough memory for %d flex group pointers", size);
3144 		return -ENOMEM;
3145 	}
3146 	for (i = sbi->s_flex_groups_allocated; i < size; i++) {
3147 		new_groups[i] = kvzalloc(roundup_pow_of_two(
3148 					 sizeof(struct flex_groups)),
3149 					 GFP_KERNEL);
3150 		if (!new_groups[i]) {
3151 			for (j = sbi->s_flex_groups_allocated; j < i; j++)
3152 				kvfree(new_groups[j]);
3153 			kvfree(new_groups);
3154 			ext4_msg(sb, KERN_ERR,
3155 				 "not enough memory for %d flex groups", size);
3156 			return -ENOMEM;
3157 		}
3158 	}
3159 	rcu_read_lock();
3160 	old_groups = rcu_dereference(sbi->s_flex_groups);
3161 	if (old_groups)
3162 		memcpy(new_groups, old_groups,
3163 		       (sbi->s_flex_groups_allocated *
3164 			sizeof(struct flex_groups *)));
3165 	rcu_read_unlock();
3166 	rcu_assign_pointer(sbi->s_flex_groups, new_groups);
3167 	sbi->s_flex_groups_allocated = size;
3168 	if (old_groups)
3169 		ext4_kvfree_array_rcu(old_groups);
3170 	return 0;
3171 }
3172 
ext4_fill_flex_info(struct super_block * sb)3173 static int ext4_fill_flex_info(struct super_block *sb)
3174 {
3175 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3176 	struct ext4_group_desc *gdp = NULL;
3177 	struct flex_groups *fg;
3178 	ext4_group_t flex_group;
3179 	int i, err;
3180 
3181 	sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
3182 	if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
3183 		sbi->s_log_groups_per_flex = 0;
3184 		return 1;
3185 	}
3186 
3187 	err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
3188 	if (err)
3189 		goto failed;
3190 
3191 	for (i = 0; i < sbi->s_groups_count; i++) {
3192 		gdp = ext4_get_group_desc(sb, i, NULL);
3193 
3194 		flex_group = ext4_flex_group(sbi, i);
3195 		fg = sbi_array_rcu_deref(sbi, s_flex_groups, flex_group);
3196 		atomic_add(ext4_free_inodes_count(sb, gdp), &fg->free_inodes);
3197 		atomic64_add(ext4_free_group_clusters(sb, gdp),
3198 			     &fg->free_clusters);
3199 		atomic_add(ext4_used_dirs_count(sb, gdp), &fg->used_dirs);
3200 	}
3201 
3202 	return 1;
3203 failed:
3204 	return 0;
3205 }
3206 
ext4_group_desc_csum(struct super_block * sb,__u32 block_group,struct ext4_group_desc * gdp)3207 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
3208 				   struct ext4_group_desc *gdp)
3209 {
3210 	int offset = offsetof(struct ext4_group_desc, bg_checksum);
3211 	__u16 crc = 0;
3212 	__le32 le_group = cpu_to_le32(block_group);
3213 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3214 
3215 	if (ext4_has_feature_metadata_csum(sbi->s_sb)) {
3216 		/* Use new metadata_csum algorithm */
3217 		__u32 csum32;
3218 		__u16 dummy_csum = 0;
3219 
3220 		csum32 = ext4_chksum(sbi->s_csum_seed, (__u8 *)&le_group,
3221 				     sizeof(le_group));
3222 		csum32 = ext4_chksum(csum32, (__u8 *)gdp, offset);
3223 		csum32 = ext4_chksum(csum32, (__u8 *)&dummy_csum,
3224 				     sizeof(dummy_csum));
3225 		offset += sizeof(dummy_csum);
3226 		if (offset < sbi->s_desc_size)
3227 			csum32 = ext4_chksum(csum32, (__u8 *)gdp + offset,
3228 					     sbi->s_desc_size - offset);
3229 
3230 		crc = csum32 & 0xFFFF;
3231 		goto out;
3232 	}
3233 
3234 	/* old crc16 code */
3235 	if (!ext4_has_feature_gdt_csum(sb))
3236 		return 0;
3237 
3238 	crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
3239 	crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
3240 	crc = crc16(crc, (__u8 *)gdp, offset);
3241 	offset += sizeof(gdp->bg_checksum); /* skip checksum */
3242 	/* for checksum of struct ext4_group_desc do the rest...*/
3243 	if (ext4_has_feature_64bit(sb) && offset < sbi->s_desc_size)
3244 		crc = crc16(crc, (__u8 *)gdp + offset,
3245 			    sbi->s_desc_size - offset);
3246 
3247 out:
3248 	return cpu_to_le16(crc);
3249 }
3250 
ext4_group_desc_csum_verify(struct super_block * sb,__u32 block_group,struct ext4_group_desc * gdp)3251 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
3252 				struct ext4_group_desc *gdp)
3253 {
3254 	if (ext4_has_group_desc_csum(sb) &&
3255 	    (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
3256 		return 0;
3257 
3258 	return 1;
3259 }
3260 
ext4_group_desc_csum_set(struct super_block * sb,__u32 block_group,struct ext4_group_desc * gdp)3261 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
3262 			      struct ext4_group_desc *gdp)
3263 {
3264 	if (!ext4_has_group_desc_csum(sb))
3265 		return;
3266 	gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
3267 }
3268 
3269 /* Called at mount-time, super-block is locked */
ext4_check_descriptors(struct super_block * sb,ext4_fsblk_t sb_block,ext4_group_t * first_not_zeroed)3270 static int ext4_check_descriptors(struct super_block *sb,
3271 				  ext4_fsblk_t sb_block,
3272 				  ext4_group_t *first_not_zeroed)
3273 {
3274 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3275 	ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
3276 	ext4_fsblk_t last_block;
3277 	ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0);
3278 	ext4_fsblk_t block_bitmap;
3279 	ext4_fsblk_t inode_bitmap;
3280 	ext4_fsblk_t inode_table;
3281 	int flexbg_flag = 0;
3282 	ext4_group_t i, grp = sbi->s_groups_count;
3283 
3284 	if (ext4_has_feature_flex_bg(sb))
3285 		flexbg_flag = 1;
3286 
3287 	ext4_debug("Checking group descriptors");
3288 
3289 	for (i = 0; i < sbi->s_groups_count; i++) {
3290 		struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
3291 
3292 		if (i == sbi->s_groups_count - 1 || flexbg_flag)
3293 			last_block = ext4_blocks_count(sbi->s_es) - 1;
3294 		else
3295 			last_block = first_block +
3296 				(EXT4_BLOCKS_PER_GROUP(sb) - 1);
3297 
3298 		if ((grp == sbi->s_groups_count) &&
3299 		   !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3300 			grp = i;
3301 
3302 		block_bitmap = ext4_block_bitmap(sb, gdp);
3303 		if (block_bitmap == sb_block) {
3304 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3305 				 "Block bitmap for group %u overlaps "
3306 				 "superblock", i);
3307 			if (!sb_rdonly(sb))
3308 				return 0;
3309 		}
3310 		if (block_bitmap >= sb_block + 1 &&
3311 		    block_bitmap <= last_bg_block) {
3312 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3313 				 "Block bitmap for group %u overlaps "
3314 				 "block group descriptors", i);
3315 			if (!sb_rdonly(sb))
3316 				return 0;
3317 		}
3318 		if (block_bitmap < first_block || block_bitmap > last_block) {
3319 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3320 			       "Block bitmap for group %u not in group "
3321 			       "(block %llu)!", i, block_bitmap);
3322 			return 0;
3323 		}
3324 		inode_bitmap = ext4_inode_bitmap(sb, gdp);
3325 		if (inode_bitmap == sb_block) {
3326 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3327 				 "Inode bitmap for group %u overlaps "
3328 				 "superblock", i);
3329 			if (!sb_rdonly(sb))
3330 				return 0;
3331 		}
3332 		if (inode_bitmap >= sb_block + 1 &&
3333 		    inode_bitmap <= last_bg_block) {
3334 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3335 				 "Inode bitmap for group %u overlaps "
3336 				 "block group descriptors", i);
3337 			if (!sb_rdonly(sb))
3338 				return 0;
3339 		}
3340 		if (inode_bitmap < first_block || inode_bitmap > last_block) {
3341 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3342 			       "Inode bitmap for group %u not in group "
3343 			       "(block %llu)!", i, inode_bitmap);
3344 			return 0;
3345 		}
3346 		inode_table = ext4_inode_table(sb, gdp);
3347 		if (inode_table == sb_block) {
3348 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3349 				 "Inode table for group %u overlaps "
3350 				 "superblock", i);
3351 			if (!sb_rdonly(sb))
3352 				return 0;
3353 		}
3354 		if (inode_table >= sb_block + 1 &&
3355 		    inode_table <= last_bg_block) {
3356 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3357 				 "Inode table for group %u overlaps "
3358 				 "block group descriptors", i);
3359 			if (!sb_rdonly(sb))
3360 				return 0;
3361 		}
3362 		if (inode_table < first_block ||
3363 		    inode_table + sbi->s_itb_per_group - 1 > last_block) {
3364 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3365 			       "Inode table for group %u not in group "
3366 			       "(block %llu)!", i, inode_table);
3367 			return 0;
3368 		}
3369 		ext4_lock_group(sb, i);
3370 		if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
3371 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3372 				 "Checksum for group %u failed (%u!=%u)",
3373 				 i, le16_to_cpu(ext4_group_desc_csum(sb, i,
3374 				     gdp)), le16_to_cpu(gdp->bg_checksum));
3375 			if (!sb_rdonly(sb)) {
3376 				ext4_unlock_group(sb, i);
3377 				return 0;
3378 			}
3379 		}
3380 		ext4_unlock_group(sb, i);
3381 		if (!flexbg_flag)
3382 			first_block += EXT4_BLOCKS_PER_GROUP(sb);
3383 	}
3384 	if (NULL != first_not_zeroed)
3385 		*first_not_zeroed = grp;
3386 	return 1;
3387 }
3388 
3389 /*
3390  * Maximal extent format file size.
3391  * Resulting logical blkno at s_maxbytes must fit in our on-disk
3392  * extent format containers, within a sector_t, and within i_blocks
3393  * in the vfs.  ext4 inode has 48 bits of i_block in fsblock units,
3394  * so that won't be a limiting factor.
3395  *
3396  * However there is other limiting factor. We do store extents in the form
3397  * of starting block and length, hence the resulting length of the extent
3398  * covering maximum file size must fit into on-disk format containers as
3399  * well. Given that length is always by 1 unit bigger than max unit (because
3400  * we count 0 as well) we have to lower the s_maxbytes by one fs block.
3401  *
3402  * Note, this does *not* consider any metadata overhead for vfs i_blocks.
3403  */
ext4_max_size(int blkbits,int has_huge_files)3404 static loff_t ext4_max_size(int blkbits, int has_huge_files)
3405 {
3406 	loff_t res;
3407 	loff_t upper_limit = MAX_LFS_FILESIZE;
3408 
3409 	BUILD_BUG_ON(sizeof(blkcnt_t) < sizeof(u64));
3410 
3411 	if (!has_huge_files) {
3412 		upper_limit = (1LL << 32) - 1;
3413 
3414 		/* total blocks in file system block size */
3415 		upper_limit >>= (blkbits - 9);
3416 		upper_limit <<= blkbits;
3417 	}
3418 
3419 	/*
3420 	 * 32-bit extent-start container, ee_block. We lower the maxbytes
3421 	 * by one fs block, so ee_len can cover the extent of maximum file
3422 	 * size
3423 	 */
3424 	res = (1LL << 32) - 1;
3425 	res <<= blkbits;
3426 
3427 	/* Sanity check against vm- & vfs- imposed limits */
3428 	if (res > upper_limit)
3429 		res = upper_limit;
3430 
3431 	return res;
3432 }
3433 
3434 /*
3435  * Maximal bitmap file size.  There is a direct, and {,double-,triple-}indirect
3436  * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
3437  * We need to be 1 filesystem block less than the 2^48 sector limit.
3438  */
ext4_max_bitmap_size(int bits,int has_huge_files)3439 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
3440 {
3441 	loff_t upper_limit, res = EXT4_NDIR_BLOCKS;
3442 	int meta_blocks;
3443 	unsigned int ppb = 1 << (bits - 2);
3444 
3445 	/*
3446 	 * This is calculated to be the largest file size for a dense, block
3447 	 * mapped file such that the file's total number of 512-byte sectors,
3448 	 * including data and all indirect blocks, does not exceed (2^48 - 1).
3449 	 *
3450 	 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
3451 	 * number of 512-byte sectors of the file.
3452 	 */
3453 	if (!has_huge_files) {
3454 		/*
3455 		 * !has_huge_files or implies that the inode i_block field
3456 		 * represents total file blocks in 2^32 512-byte sectors ==
3457 		 * size of vfs inode i_blocks * 8
3458 		 */
3459 		upper_limit = (1LL << 32) - 1;
3460 
3461 		/* total blocks in file system block size */
3462 		upper_limit >>= (bits - 9);
3463 
3464 	} else {
3465 		/*
3466 		 * We use 48 bit ext4_inode i_blocks
3467 		 * With EXT4_HUGE_FILE_FL set the i_blocks
3468 		 * represent total number of blocks in
3469 		 * file system block size
3470 		 */
3471 		upper_limit = (1LL << 48) - 1;
3472 
3473 	}
3474 
3475 	/* Compute how many blocks we can address by block tree */
3476 	res += ppb;
3477 	res += ppb * ppb;
3478 	res += ((loff_t)ppb) * ppb * ppb;
3479 	/* Compute how many metadata blocks are needed */
3480 	meta_blocks = 1;
3481 	meta_blocks += 1 + ppb;
3482 	meta_blocks += 1 + ppb + ppb * ppb;
3483 	/* Does block tree limit file size? */
3484 	if (res + meta_blocks <= upper_limit)
3485 		goto check_lfs;
3486 
3487 	res = upper_limit;
3488 	/* How many metadata blocks are needed for addressing upper_limit? */
3489 	upper_limit -= EXT4_NDIR_BLOCKS;
3490 	/* indirect blocks */
3491 	meta_blocks = 1;
3492 	upper_limit -= ppb;
3493 	/* double indirect blocks */
3494 	if (upper_limit < ppb * ppb) {
3495 		meta_blocks += 1 + DIV_ROUND_UP_ULL(upper_limit, ppb);
3496 		res -= meta_blocks;
3497 		goto check_lfs;
3498 	}
3499 	meta_blocks += 1 + ppb;
3500 	upper_limit -= ppb * ppb;
3501 	/* tripple indirect blocks for the rest */
3502 	meta_blocks += 1 + DIV_ROUND_UP_ULL(upper_limit, ppb) +
3503 		DIV_ROUND_UP_ULL(upper_limit, ppb*ppb);
3504 	res -= meta_blocks;
3505 check_lfs:
3506 	res <<= bits;
3507 	if (res > MAX_LFS_FILESIZE)
3508 		res = MAX_LFS_FILESIZE;
3509 
3510 	return res;
3511 }
3512 
descriptor_loc(struct super_block * sb,ext4_fsblk_t logical_sb_block,int nr)3513 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
3514 				   ext4_fsblk_t logical_sb_block, int nr)
3515 {
3516 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3517 	ext4_group_t bg, first_meta_bg;
3518 	int has_super = 0;
3519 
3520 	first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
3521 
3522 	if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
3523 		return logical_sb_block + nr + 1;
3524 	bg = sbi->s_desc_per_block * nr;
3525 	if (ext4_bg_has_super(sb, bg))
3526 		has_super = 1;
3527 
3528 	/*
3529 	 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
3530 	 * block 2, not 1.  If s_first_data_block == 0 (bigalloc is enabled
3531 	 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
3532 	 * compensate.
3533 	 */
3534 	if (sb->s_blocksize == 1024 && nr == 0 &&
3535 	    le32_to_cpu(sbi->s_es->s_first_data_block) == 0)
3536 		has_super++;
3537 
3538 	return (has_super + ext4_group_first_block_no(sb, bg));
3539 }
3540 
3541 /**
3542  * ext4_get_stripe_size: Get the stripe size.
3543  * @sbi: In memory super block info
3544  *
3545  * If we have specified it via mount option, then
3546  * use the mount option value. If the value specified at mount time is
3547  * greater than the blocks per group use the super block value.
3548  * If the super block value is greater than blocks per group return 0.
3549  * Allocator needs it be less than blocks per group.
3550  *
3551  */
ext4_get_stripe_size(struct ext4_sb_info * sbi)3552 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
3553 {
3554 	unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
3555 	unsigned long stripe_width =
3556 			le32_to_cpu(sbi->s_es->s_raid_stripe_width);
3557 	int ret;
3558 
3559 	if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
3560 		ret = sbi->s_stripe;
3561 	else if (stripe_width && stripe_width <= sbi->s_blocks_per_group)
3562 		ret = stripe_width;
3563 	else if (stride && stride <= sbi->s_blocks_per_group)
3564 		ret = stride;
3565 	else
3566 		ret = 0;
3567 
3568 	/*
3569 	 * If the stripe width is 1, this makes no sense and
3570 	 * we set it to 0 to turn off stripe handling code.
3571 	 */
3572 	if (ret <= 1)
3573 		ret = 0;
3574 
3575 	return ret;
3576 }
3577 
3578 /*
3579  * Check whether this filesystem can be mounted based on
3580  * the features present and the RDONLY/RDWR mount requested.
3581  * Returns 1 if this filesystem can be mounted as requested,
3582  * 0 if it cannot be.
3583  */
ext4_feature_set_ok(struct super_block * sb,int readonly)3584 int ext4_feature_set_ok(struct super_block *sb, int readonly)
3585 {
3586 	if (ext4_has_unknown_ext4_incompat_features(sb)) {
3587 		ext4_msg(sb, KERN_ERR,
3588 			"Couldn't mount because of "
3589 			"unsupported optional features (%x)",
3590 			(le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
3591 			~EXT4_FEATURE_INCOMPAT_SUPP));
3592 		return 0;
3593 	}
3594 
3595 	if (!IS_ENABLED(CONFIG_UNICODE) && ext4_has_feature_casefold(sb)) {
3596 		ext4_msg(sb, KERN_ERR,
3597 			 "Filesystem with casefold feature cannot be "
3598 			 "mounted without CONFIG_UNICODE");
3599 		return 0;
3600 	}
3601 
3602 	if (readonly)
3603 		return 1;
3604 
3605 	if (ext4_has_feature_readonly(sb)) {
3606 		ext4_msg(sb, KERN_INFO, "filesystem is read-only");
3607 		sb->s_flags |= SB_RDONLY;
3608 		return 1;
3609 	}
3610 
3611 	/* Check that feature set is OK for a read-write mount */
3612 	if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
3613 		ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
3614 			 "unsupported optional features (%x)",
3615 			 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
3616 				~EXT4_FEATURE_RO_COMPAT_SUPP));
3617 		return 0;
3618 	}
3619 	if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
3620 		ext4_msg(sb, KERN_ERR,
3621 			 "Can't support bigalloc feature without "
3622 			 "extents feature\n");
3623 		return 0;
3624 	}
3625 
3626 #if !IS_ENABLED(CONFIG_QUOTA) || !IS_ENABLED(CONFIG_QFMT_V2)
3627 	if (!readonly && (ext4_has_feature_quota(sb) ||
3628 			  ext4_has_feature_project(sb))) {
3629 		ext4_msg(sb, KERN_ERR,
3630 			 "The kernel was not built with CONFIG_QUOTA and CONFIG_QFMT_V2");
3631 		return 0;
3632 	}
3633 #endif  /* CONFIG_QUOTA */
3634 	return 1;
3635 }
3636 
3637 /*
3638  * This function is called once a day if we have errors logged
3639  * on the file system
3640  */
print_daily_error_info(struct timer_list * t)3641 static void print_daily_error_info(struct timer_list *t)
3642 {
3643 	struct ext4_sb_info *sbi = timer_container_of(sbi, t, s_err_report);
3644 	struct super_block *sb = sbi->s_sb;
3645 	struct ext4_super_block *es = sbi->s_es;
3646 
3647 	if (es->s_error_count)
3648 		/* fsck newer than v1.41.13 is needed to clean this condition. */
3649 		ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
3650 			 le32_to_cpu(es->s_error_count));
3651 	if (es->s_first_error_time) {
3652 		printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d",
3653 		       sb->s_id,
3654 		       ext4_get_tstamp(es, s_first_error_time),
3655 		       (int) sizeof(es->s_first_error_func),
3656 		       es->s_first_error_func,
3657 		       le32_to_cpu(es->s_first_error_line));
3658 		if (es->s_first_error_ino)
3659 			printk(KERN_CONT ": inode %u",
3660 			       le32_to_cpu(es->s_first_error_ino));
3661 		if (es->s_first_error_block)
3662 			printk(KERN_CONT ": block %llu", (unsigned long long)
3663 			       le64_to_cpu(es->s_first_error_block));
3664 		printk(KERN_CONT "\n");
3665 	}
3666 	if (es->s_last_error_time) {
3667 		printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d",
3668 		       sb->s_id,
3669 		       ext4_get_tstamp(es, s_last_error_time),
3670 		       (int) sizeof(es->s_last_error_func),
3671 		       es->s_last_error_func,
3672 		       le32_to_cpu(es->s_last_error_line));
3673 		if (es->s_last_error_ino)
3674 			printk(KERN_CONT ": inode %u",
3675 			       le32_to_cpu(es->s_last_error_ino));
3676 		if (es->s_last_error_block)
3677 			printk(KERN_CONT ": block %llu", (unsigned long long)
3678 			       le64_to_cpu(es->s_last_error_block));
3679 		printk(KERN_CONT "\n");
3680 	}
3681 	mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);  /* Once a day */
3682 }
3683 
3684 /* Find next suitable group and run ext4_init_inode_table */
ext4_run_li_request(struct ext4_li_request * elr)3685 static int ext4_run_li_request(struct ext4_li_request *elr)
3686 {
3687 	struct ext4_group_desc *gdp = NULL;
3688 	struct super_block *sb = elr->lr_super;
3689 	ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
3690 	ext4_group_t group = elr->lr_next_group;
3691 	unsigned int prefetch_ios = 0;
3692 	int ret = 0;
3693 	int nr = EXT4_SB(sb)->s_mb_prefetch;
3694 	u64 start_time;
3695 
3696 	if (elr->lr_mode == EXT4_LI_MODE_PREFETCH_BBITMAP) {
3697 		elr->lr_next_group = ext4_mb_prefetch(sb, group, nr, &prefetch_ios);
3698 		ext4_mb_prefetch_fini(sb, elr->lr_next_group, nr);
3699 		trace_ext4_prefetch_bitmaps(sb, group, elr->lr_next_group, nr);
3700 		if (group >= elr->lr_next_group) {
3701 			ret = 1;
3702 			if (elr->lr_first_not_zeroed != ngroups &&
3703 			    !ext4_emergency_state(sb) && !sb_rdonly(sb) &&
3704 			    test_opt(sb, INIT_INODE_TABLE)) {
3705 				elr->lr_next_group = elr->lr_first_not_zeroed;
3706 				elr->lr_mode = EXT4_LI_MODE_ITABLE;
3707 				ret = 0;
3708 			}
3709 		}
3710 		return ret;
3711 	}
3712 
3713 	for (; group < ngroups; group++) {
3714 		gdp = ext4_get_group_desc(sb, group, NULL);
3715 		if (!gdp) {
3716 			ret = 1;
3717 			break;
3718 		}
3719 
3720 		if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3721 			break;
3722 	}
3723 
3724 	if (group >= ngroups)
3725 		ret = 1;
3726 
3727 	if (!ret) {
3728 		start_time = ktime_get_ns();
3729 		ret = ext4_init_inode_table(sb, group,
3730 					    elr->lr_timeout ? 0 : 1);
3731 		trace_ext4_lazy_itable_init(sb, group);
3732 		if (elr->lr_timeout == 0) {
3733 			elr->lr_timeout = nsecs_to_jiffies((ktime_get_ns() - start_time) *
3734 				EXT4_SB(elr->lr_super)->s_li_wait_mult);
3735 		}
3736 		elr->lr_next_sched = jiffies + elr->lr_timeout;
3737 		elr->lr_next_group = group + 1;
3738 	}
3739 	return ret;
3740 }
3741 
3742 /*
3743  * Remove lr_request from the list_request and free the
3744  * request structure. Should be called with li_list_mtx held
3745  */
ext4_remove_li_request(struct ext4_li_request * elr)3746 static void ext4_remove_li_request(struct ext4_li_request *elr)
3747 {
3748 	if (!elr)
3749 		return;
3750 
3751 	list_del(&elr->lr_request);
3752 	EXT4_SB(elr->lr_super)->s_li_request = NULL;
3753 	kfree(elr);
3754 }
3755 
ext4_unregister_li_request(struct super_block * sb)3756 static void ext4_unregister_li_request(struct super_block *sb)
3757 {
3758 	mutex_lock(&ext4_li_mtx);
3759 	if (!ext4_li_info) {
3760 		mutex_unlock(&ext4_li_mtx);
3761 		return;
3762 	}
3763 
3764 	mutex_lock(&ext4_li_info->li_list_mtx);
3765 	ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
3766 	mutex_unlock(&ext4_li_info->li_list_mtx);
3767 	mutex_unlock(&ext4_li_mtx);
3768 }
3769 
3770 static struct task_struct *ext4_lazyinit_task;
3771 
3772 /*
3773  * This is the function where ext4lazyinit thread lives. It walks
3774  * through the request list searching for next scheduled filesystem.
3775  * When such a fs is found, run the lazy initialization request
3776  * (ext4_rn_li_request) and keep track of the time spend in this
3777  * function. Based on that time we compute next schedule time of
3778  * the request. When walking through the list is complete, compute
3779  * next waking time and put itself into sleep.
3780  */
ext4_lazyinit_thread(void * arg)3781 static int ext4_lazyinit_thread(void *arg)
3782 {
3783 	struct ext4_lazy_init *eli = arg;
3784 	struct list_head *pos, *n;
3785 	struct ext4_li_request *elr;
3786 	unsigned long next_wakeup, cur;
3787 
3788 	BUG_ON(NULL == eli);
3789 	set_freezable();
3790 
3791 cont_thread:
3792 	while (true) {
3793 		bool next_wakeup_initialized = false;
3794 
3795 		next_wakeup = 0;
3796 		mutex_lock(&eli->li_list_mtx);
3797 		if (list_empty(&eli->li_request_list)) {
3798 			mutex_unlock(&eli->li_list_mtx);
3799 			goto exit_thread;
3800 		}
3801 		list_for_each_safe(pos, n, &eli->li_request_list) {
3802 			int err = 0;
3803 			int progress = 0;
3804 			elr = list_entry(pos, struct ext4_li_request,
3805 					 lr_request);
3806 
3807 			if (time_before(jiffies, elr->lr_next_sched)) {
3808 				if (!next_wakeup_initialized ||
3809 				    time_before(elr->lr_next_sched, next_wakeup)) {
3810 					next_wakeup = elr->lr_next_sched;
3811 					next_wakeup_initialized = true;
3812 				}
3813 				continue;
3814 			}
3815 			if (down_read_trylock(&elr->lr_super->s_umount)) {
3816 				if (sb_start_write_trylock(elr->lr_super)) {
3817 					progress = 1;
3818 					/*
3819 					 * We hold sb->s_umount, sb can not
3820 					 * be removed from the list, it is
3821 					 * now safe to drop li_list_mtx
3822 					 */
3823 					mutex_unlock(&eli->li_list_mtx);
3824 					err = ext4_run_li_request(elr);
3825 					sb_end_write(elr->lr_super);
3826 					mutex_lock(&eli->li_list_mtx);
3827 					n = pos->next;
3828 				}
3829 				up_read((&elr->lr_super->s_umount));
3830 			}
3831 			/* error, remove the lazy_init job */
3832 			if (err) {
3833 				ext4_remove_li_request(elr);
3834 				continue;
3835 			}
3836 			if (!progress) {
3837 				elr->lr_next_sched = jiffies +
3838 					get_random_u32_below(EXT4_DEF_LI_MAX_START_DELAY * HZ);
3839 			}
3840 			if (!next_wakeup_initialized ||
3841 			    time_before(elr->lr_next_sched, next_wakeup)) {
3842 				next_wakeup = elr->lr_next_sched;
3843 				next_wakeup_initialized = true;
3844 			}
3845 		}
3846 		mutex_unlock(&eli->li_list_mtx);
3847 
3848 		try_to_freeze();
3849 
3850 		cur = jiffies;
3851 		if (!next_wakeup_initialized || time_after_eq(cur, next_wakeup)) {
3852 			cond_resched();
3853 			continue;
3854 		}
3855 
3856 		schedule_timeout_interruptible(next_wakeup - cur);
3857 
3858 		if (kthread_should_stop()) {
3859 			ext4_clear_request_list();
3860 			goto exit_thread;
3861 		}
3862 	}
3863 
3864 exit_thread:
3865 	/*
3866 	 * It looks like the request list is empty, but we need
3867 	 * to check it under the li_list_mtx lock, to prevent any
3868 	 * additions into it, and of course we should lock ext4_li_mtx
3869 	 * to atomically free the list and ext4_li_info, because at
3870 	 * this point another ext4 filesystem could be registering
3871 	 * new one.
3872 	 */
3873 	mutex_lock(&ext4_li_mtx);
3874 	mutex_lock(&eli->li_list_mtx);
3875 	if (!list_empty(&eli->li_request_list)) {
3876 		mutex_unlock(&eli->li_list_mtx);
3877 		mutex_unlock(&ext4_li_mtx);
3878 		goto cont_thread;
3879 	}
3880 	mutex_unlock(&eli->li_list_mtx);
3881 	kfree(ext4_li_info);
3882 	ext4_li_info = NULL;
3883 	mutex_unlock(&ext4_li_mtx);
3884 
3885 	return 0;
3886 }
3887 
ext4_clear_request_list(void)3888 static void ext4_clear_request_list(void)
3889 {
3890 	struct list_head *pos, *n;
3891 	struct ext4_li_request *elr;
3892 
3893 	mutex_lock(&ext4_li_info->li_list_mtx);
3894 	list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
3895 		elr = list_entry(pos, struct ext4_li_request,
3896 				 lr_request);
3897 		ext4_remove_li_request(elr);
3898 	}
3899 	mutex_unlock(&ext4_li_info->li_list_mtx);
3900 }
3901 
ext4_run_lazyinit_thread(void)3902 static int ext4_run_lazyinit_thread(void)
3903 {
3904 	ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
3905 					 ext4_li_info, "ext4lazyinit");
3906 	if (IS_ERR(ext4_lazyinit_task)) {
3907 		int err = PTR_ERR(ext4_lazyinit_task);
3908 		ext4_clear_request_list();
3909 		kfree(ext4_li_info);
3910 		ext4_li_info = NULL;
3911 		printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
3912 				 "initialization thread\n",
3913 				 err);
3914 		return err;
3915 	}
3916 	ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
3917 	return 0;
3918 }
3919 
3920 /*
3921  * Check whether it make sense to run itable init. thread or not.
3922  * If there is at least one uninitialized inode table, return
3923  * corresponding group number, else the loop goes through all
3924  * groups and return total number of groups.
3925  */
ext4_has_uninit_itable(struct super_block * sb)3926 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
3927 {
3928 	ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
3929 	struct ext4_group_desc *gdp = NULL;
3930 
3931 	if (!ext4_has_group_desc_csum(sb))
3932 		return ngroups;
3933 
3934 	for (group = 0; group < ngroups; group++) {
3935 		gdp = ext4_get_group_desc(sb, group, NULL);
3936 		if (!gdp)
3937 			continue;
3938 
3939 		if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3940 			break;
3941 	}
3942 
3943 	return group;
3944 }
3945 
ext4_li_info_new(void)3946 static int ext4_li_info_new(void)
3947 {
3948 	struct ext4_lazy_init *eli = NULL;
3949 
3950 	eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3951 	if (!eli)
3952 		return -ENOMEM;
3953 
3954 	INIT_LIST_HEAD(&eli->li_request_list);
3955 	mutex_init(&eli->li_list_mtx);
3956 
3957 	eli->li_state |= EXT4_LAZYINIT_QUIT;
3958 
3959 	ext4_li_info = eli;
3960 
3961 	return 0;
3962 }
3963 
ext4_li_request_new(struct super_block * sb,ext4_group_t start)3964 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3965 					    ext4_group_t start)
3966 {
3967 	struct ext4_li_request *elr;
3968 
3969 	elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3970 	if (!elr)
3971 		return NULL;
3972 
3973 	elr->lr_super = sb;
3974 	elr->lr_first_not_zeroed = start;
3975 	if (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS)) {
3976 		elr->lr_mode = EXT4_LI_MODE_ITABLE;
3977 		elr->lr_next_group = start;
3978 	} else {
3979 		elr->lr_mode = EXT4_LI_MODE_PREFETCH_BBITMAP;
3980 	}
3981 
3982 	/*
3983 	 * Randomize first schedule time of the request to
3984 	 * spread the inode table initialization requests
3985 	 * better.
3986 	 */
3987 	elr->lr_next_sched = jiffies + get_random_u32_below(EXT4_DEF_LI_MAX_START_DELAY * HZ);
3988 	return elr;
3989 }
3990 
ext4_register_li_request(struct super_block * sb,ext4_group_t first_not_zeroed)3991 int ext4_register_li_request(struct super_block *sb,
3992 			     ext4_group_t first_not_zeroed)
3993 {
3994 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3995 	struct ext4_li_request *elr = NULL;
3996 	ext4_group_t ngroups = sbi->s_groups_count;
3997 	int ret = 0;
3998 
3999 	mutex_lock(&ext4_li_mtx);
4000 	if (sbi->s_li_request != NULL) {
4001 		/*
4002 		 * Reset timeout so it can be computed again, because
4003 		 * s_li_wait_mult might have changed.
4004 		 */
4005 		sbi->s_li_request->lr_timeout = 0;
4006 		goto out;
4007 	}
4008 
4009 	if (ext4_emergency_state(sb) || sb_rdonly(sb) ||
4010 	    (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS) &&
4011 	     (first_not_zeroed == ngroups || !test_opt(sb, INIT_INODE_TABLE))))
4012 		goto out;
4013 
4014 	elr = ext4_li_request_new(sb, first_not_zeroed);
4015 	if (!elr) {
4016 		ret = -ENOMEM;
4017 		goto out;
4018 	}
4019 
4020 	if (NULL == ext4_li_info) {
4021 		ret = ext4_li_info_new();
4022 		if (ret)
4023 			goto out;
4024 	}
4025 
4026 	mutex_lock(&ext4_li_info->li_list_mtx);
4027 	list_add(&elr->lr_request, &ext4_li_info->li_request_list);
4028 	mutex_unlock(&ext4_li_info->li_list_mtx);
4029 
4030 	sbi->s_li_request = elr;
4031 	/*
4032 	 * set elr to NULL here since it has been inserted to
4033 	 * the request_list and the removal and free of it is
4034 	 * handled by ext4_clear_request_list from now on.
4035 	 */
4036 	elr = NULL;
4037 
4038 	if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
4039 		ret = ext4_run_lazyinit_thread();
4040 		if (ret)
4041 			goto out;
4042 	}
4043 out:
4044 	mutex_unlock(&ext4_li_mtx);
4045 	if (ret)
4046 		kfree(elr);
4047 	return ret;
4048 }
4049 
4050 /*
4051  * We do not need to lock anything since this is called on
4052  * module unload.
4053  */
ext4_destroy_lazyinit_thread(void)4054 static void ext4_destroy_lazyinit_thread(void)
4055 {
4056 	/*
4057 	 * If thread exited earlier
4058 	 * there's nothing to be done.
4059 	 */
4060 	if (!ext4_li_info || !ext4_lazyinit_task)
4061 		return;
4062 
4063 	kthread_stop(ext4_lazyinit_task);
4064 }
4065 
set_journal_csum_feature_set(struct super_block * sb)4066 static int set_journal_csum_feature_set(struct super_block *sb)
4067 {
4068 	int ret = 1;
4069 	int compat, incompat;
4070 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4071 
4072 	if (ext4_has_feature_metadata_csum(sb)) {
4073 		/* journal checksum v3 */
4074 		compat = 0;
4075 		incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
4076 	} else {
4077 		/* journal checksum v1 */
4078 		compat = JBD2_FEATURE_COMPAT_CHECKSUM;
4079 		incompat = 0;
4080 	}
4081 
4082 	jbd2_journal_clear_features(sbi->s_journal,
4083 			JBD2_FEATURE_COMPAT_CHECKSUM, 0,
4084 			JBD2_FEATURE_INCOMPAT_CSUM_V3 |
4085 			JBD2_FEATURE_INCOMPAT_CSUM_V2);
4086 	if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4087 		ret = jbd2_journal_set_features(sbi->s_journal,
4088 				compat, 0,
4089 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
4090 				incompat);
4091 	} else if (test_opt(sb, JOURNAL_CHECKSUM)) {
4092 		ret = jbd2_journal_set_features(sbi->s_journal,
4093 				compat, 0,
4094 				incompat);
4095 		jbd2_journal_clear_features(sbi->s_journal, 0, 0,
4096 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
4097 	} else {
4098 		jbd2_journal_clear_features(sbi->s_journal, 0, 0,
4099 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
4100 	}
4101 
4102 	return ret;
4103 }
4104 
4105 /*
4106  * Note: calculating the overhead so we can be compatible with
4107  * historical BSD practice is quite difficult in the face of
4108  * clusters/bigalloc.  This is because multiple metadata blocks from
4109  * different block group can end up in the same allocation cluster.
4110  * Calculating the exact overhead in the face of clustered allocation
4111  * requires either O(all block bitmaps) in memory or O(number of block
4112  * groups**2) in time.  We will still calculate the superblock for
4113  * older file systems --- and if we come across with a bigalloc file
4114  * system with zero in s_overhead_clusters the estimate will be close to
4115  * correct especially for very large cluster sizes --- but for newer
4116  * file systems, it's better to calculate this figure once at mkfs
4117  * time, and store it in the superblock.  If the superblock value is
4118  * present (even for non-bigalloc file systems), we will use it.
4119  */
count_overhead(struct super_block * sb,ext4_group_t grp,char * buf)4120 static int count_overhead(struct super_block *sb, ext4_group_t grp,
4121 			  char *buf)
4122 {
4123 	struct ext4_sb_info	*sbi = EXT4_SB(sb);
4124 	struct ext4_group_desc	*gdp;
4125 	ext4_fsblk_t		first_block, last_block, b;
4126 	ext4_group_t		i, ngroups = ext4_get_groups_count(sb);
4127 	int			s, j, count = 0;
4128 	int			has_super = ext4_bg_has_super(sb, grp);
4129 
4130 	if (!ext4_has_feature_bigalloc(sb))
4131 		return (has_super + ext4_bg_num_gdb(sb, grp) +
4132 			(has_super ? le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) : 0) +
4133 			sbi->s_itb_per_group + 2);
4134 
4135 	first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
4136 		(grp * EXT4_BLOCKS_PER_GROUP(sb));
4137 	last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
4138 	for (i = 0; i < ngroups; i++) {
4139 		gdp = ext4_get_group_desc(sb, i, NULL);
4140 		b = ext4_block_bitmap(sb, gdp);
4141 		if (b >= first_block && b <= last_block) {
4142 			ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
4143 			count++;
4144 		}
4145 		b = ext4_inode_bitmap(sb, gdp);
4146 		if (b >= first_block && b <= last_block) {
4147 			ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
4148 			count++;
4149 		}
4150 		b = ext4_inode_table(sb, gdp);
4151 		if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
4152 			for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
4153 				int c = EXT4_B2C(sbi, b - first_block);
4154 				ext4_set_bit(c, buf);
4155 				count++;
4156 			}
4157 		if (i != grp)
4158 			continue;
4159 		s = 0;
4160 		if (ext4_bg_has_super(sb, grp)) {
4161 			ext4_set_bit(s++, buf);
4162 			count++;
4163 		}
4164 		j = ext4_bg_num_gdb(sb, grp);
4165 		if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) {
4166 			ext4_error(sb, "Invalid number of block group "
4167 				   "descriptor blocks: %d", j);
4168 			j = EXT4_BLOCKS_PER_GROUP(sb) - s;
4169 		}
4170 		count += j;
4171 		for (; j > 0; j--)
4172 			ext4_set_bit(EXT4_B2C(sbi, s++), buf);
4173 	}
4174 	if (!count)
4175 		return 0;
4176 	return EXT4_CLUSTERS_PER_GROUP(sb) -
4177 		ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
4178 }
4179 
4180 /*
4181  * Compute the overhead and stash it in sbi->s_overhead
4182  */
ext4_calculate_overhead(struct super_block * sb)4183 int ext4_calculate_overhead(struct super_block *sb)
4184 {
4185 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4186 	struct ext4_super_block *es = sbi->s_es;
4187 	struct inode *j_inode;
4188 	unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum);
4189 	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4190 	ext4_fsblk_t overhead = 0;
4191 	char *buf = (char *) get_zeroed_page(GFP_NOFS);
4192 
4193 	if (!buf)
4194 		return -ENOMEM;
4195 
4196 	/*
4197 	 * Compute the overhead (FS structures).  This is constant
4198 	 * for a given filesystem unless the number of block groups
4199 	 * changes so we cache the previous value until it does.
4200 	 */
4201 
4202 	/*
4203 	 * All of the blocks before first_data_block are overhead
4204 	 */
4205 	overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
4206 
4207 	/*
4208 	 * Add the overhead found in each block group
4209 	 */
4210 	for (i = 0; i < ngroups; i++) {
4211 		int blks;
4212 
4213 		blks = count_overhead(sb, i, buf);
4214 		overhead += blks;
4215 		if (blks)
4216 			memset(buf, 0, PAGE_SIZE);
4217 		cond_resched();
4218 	}
4219 
4220 	/*
4221 	 * Add the internal journal blocks whether the journal has been
4222 	 * loaded or not
4223 	 */
4224 	if (sbi->s_journal && !sbi->s_journal_bdev_file)
4225 		overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_total_len);
4226 	else if (ext4_has_feature_journal(sb) && !sbi->s_journal && j_inum) {
4227 		/* j_inum for internal journal is non-zero */
4228 		j_inode = ext4_get_journal_inode(sb, j_inum);
4229 		if (!IS_ERR(j_inode)) {
4230 			j_blocks = j_inode->i_size >> sb->s_blocksize_bits;
4231 			overhead += EXT4_NUM_B2C(sbi, j_blocks);
4232 			iput(j_inode);
4233 		} else {
4234 			ext4_msg(sb, KERN_ERR, "can't get journal size");
4235 		}
4236 	}
4237 	sbi->s_overhead = overhead;
4238 	smp_wmb();
4239 	free_page((unsigned long) buf);
4240 	return 0;
4241 }
4242 
ext4_set_resv_clusters(struct super_block * sb)4243 static void ext4_set_resv_clusters(struct super_block *sb)
4244 {
4245 	ext4_fsblk_t resv_clusters;
4246 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4247 
4248 	/*
4249 	 * There's no need to reserve anything when we aren't using extents.
4250 	 * The space estimates are exact, there are no unwritten extents,
4251 	 * hole punching doesn't need new metadata... This is needed especially
4252 	 * to keep ext2/3 backward compatibility.
4253 	 */
4254 	if (!ext4_has_feature_extents(sb))
4255 		return;
4256 	/*
4257 	 * By default we reserve 2% or 4096 clusters, whichever is smaller.
4258 	 * This should cover the situations where we can not afford to run
4259 	 * out of space like for example punch hole, or converting
4260 	 * unwritten extents in delalloc path. In most cases such
4261 	 * allocation would require 1, or 2 blocks, higher numbers are
4262 	 * very rare.
4263 	 */
4264 	resv_clusters = (ext4_blocks_count(sbi->s_es) >>
4265 			 sbi->s_cluster_bits);
4266 
4267 	do_div(resv_clusters, 50);
4268 	resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
4269 
4270 	atomic64_set(&sbi->s_resv_clusters, resv_clusters);
4271 }
4272 
ext4_quota_mode(struct super_block * sb)4273 static const char *ext4_quota_mode(struct super_block *sb)
4274 {
4275 #ifdef CONFIG_QUOTA
4276 	if (!ext4_quota_capable(sb))
4277 		return "none";
4278 
4279 	if (EXT4_SB(sb)->s_journal && ext4_is_quota_journalled(sb))
4280 		return "journalled";
4281 	else
4282 		return "writeback";
4283 #else
4284 	return "disabled";
4285 #endif
4286 }
4287 
ext4_setup_csum_trigger(struct super_block * sb,enum ext4_journal_trigger_type type,void (* trigger)(struct jbd2_buffer_trigger_type * type,struct buffer_head * bh,void * mapped_data,size_t size))4288 static void ext4_setup_csum_trigger(struct super_block *sb,
4289 				    enum ext4_journal_trigger_type type,
4290 				    void (*trigger)(
4291 					struct jbd2_buffer_trigger_type *type,
4292 					struct buffer_head *bh,
4293 					void *mapped_data,
4294 					size_t size))
4295 {
4296 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4297 
4298 	sbi->s_journal_triggers[type].sb = sb;
4299 	sbi->s_journal_triggers[type].tr_triggers.t_frozen = trigger;
4300 }
4301 
ext4_free_sbi(struct ext4_sb_info * sbi)4302 static void ext4_free_sbi(struct ext4_sb_info *sbi)
4303 {
4304 	if (!sbi)
4305 		return;
4306 
4307 	kfree(sbi->s_blockgroup_lock);
4308 	fs_put_dax(sbi->s_daxdev, NULL);
4309 	kfree(sbi);
4310 }
4311 
ext4_alloc_sbi(struct super_block * sb)4312 static struct ext4_sb_info *ext4_alloc_sbi(struct super_block *sb)
4313 {
4314 	struct ext4_sb_info *sbi;
4315 
4316 	sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
4317 	if (!sbi)
4318 		return NULL;
4319 
4320 	sbi->s_daxdev = fs_dax_get_by_bdev(sb->s_bdev, &sbi->s_dax_part_off,
4321 					   NULL, NULL);
4322 
4323 	sbi->s_blockgroup_lock =
4324 		kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
4325 
4326 	if (!sbi->s_blockgroup_lock)
4327 		goto err_out;
4328 
4329 	sb->s_fs_info = sbi;
4330 	sbi->s_sb = sb;
4331 	return sbi;
4332 err_out:
4333 	fs_put_dax(sbi->s_daxdev, NULL);
4334 	kfree(sbi);
4335 	return NULL;
4336 }
4337 
ext4_set_def_opts(struct super_block * sb,struct ext4_super_block * es)4338 static void ext4_set_def_opts(struct super_block *sb,
4339 			      struct ext4_super_block *es)
4340 {
4341 	unsigned long def_mount_opts;
4342 
4343 	/* Set defaults before we parse the mount options */
4344 	def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
4345 	set_opt(sb, INIT_INODE_TABLE);
4346 	if (def_mount_opts & EXT4_DEFM_DEBUG)
4347 		set_opt(sb, DEBUG);
4348 	if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
4349 		set_opt(sb, GRPID);
4350 	if (def_mount_opts & EXT4_DEFM_UID16)
4351 		set_opt(sb, NO_UID32);
4352 	/* xattr user namespace & acls are now defaulted on */
4353 	set_opt(sb, XATTR_USER);
4354 #ifdef CONFIG_EXT4_FS_POSIX_ACL
4355 	set_opt(sb, POSIX_ACL);
4356 #endif
4357 	if (ext4_has_feature_fast_commit(sb))
4358 		set_opt2(sb, JOURNAL_FAST_COMMIT);
4359 	/* don't forget to enable journal_csum when metadata_csum is enabled. */
4360 	if (ext4_has_feature_metadata_csum(sb))
4361 		set_opt(sb, JOURNAL_CHECKSUM);
4362 
4363 	if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
4364 		set_opt(sb, JOURNAL_DATA);
4365 	else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
4366 		set_opt(sb, ORDERED_DATA);
4367 	else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
4368 		set_opt(sb, WRITEBACK_DATA);
4369 
4370 	if (le16_to_cpu(es->s_errors) == EXT4_ERRORS_PANIC)
4371 		set_opt(sb, ERRORS_PANIC);
4372 	else if (le16_to_cpu(es->s_errors) == EXT4_ERRORS_CONTINUE)
4373 		set_opt(sb, ERRORS_CONT);
4374 	else
4375 		set_opt(sb, ERRORS_RO);
4376 	/* block_validity enabled by default; disable with noblock_validity */
4377 	set_opt(sb, BLOCK_VALIDITY);
4378 	if (def_mount_opts & EXT4_DEFM_DISCARD)
4379 		set_opt(sb, DISCARD);
4380 
4381 	if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
4382 		set_opt(sb, BARRIER);
4383 
4384 	/*
4385 	 * enable delayed allocation by default
4386 	 * Use -o nodelalloc to turn it off
4387 	 */
4388 	if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
4389 	    ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
4390 		set_opt(sb, DELALLOC);
4391 
4392 	if (sb->s_blocksize <= PAGE_SIZE)
4393 		set_opt(sb, DIOREAD_NOLOCK);
4394 }
4395 
ext4_handle_clustersize(struct super_block * sb)4396 static int ext4_handle_clustersize(struct super_block *sb)
4397 {
4398 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4399 	struct ext4_super_block *es = sbi->s_es;
4400 	int clustersize;
4401 
4402 	/* Handle clustersize */
4403 	clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
4404 	if (ext4_has_feature_bigalloc(sb)) {
4405 		if (clustersize < sb->s_blocksize) {
4406 			ext4_msg(sb, KERN_ERR,
4407 				 "cluster size (%d) smaller than "
4408 				 "block size (%lu)", clustersize, sb->s_blocksize);
4409 			return -EINVAL;
4410 		}
4411 		sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
4412 			le32_to_cpu(es->s_log_block_size);
4413 	} else {
4414 		if (clustersize != sb->s_blocksize) {
4415 			ext4_msg(sb, KERN_ERR,
4416 				 "fragment/cluster size (%d) != "
4417 				 "block size (%lu)", clustersize, sb->s_blocksize);
4418 			return -EINVAL;
4419 		}
4420 		if (sbi->s_blocks_per_group > sb->s_blocksize * 8) {
4421 			ext4_msg(sb, KERN_ERR,
4422 				 "#blocks per group too big: %lu",
4423 				 sbi->s_blocks_per_group);
4424 			return -EINVAL;
4425 		}
4426 		sbi->s_cluster_bits = 0;
4427 	}
4428 	sbi->s_clusters_per_group = le32_to_cpu(es->s_clusters_per_group);
4429 	if (sbi->s_clusters_per_group > sb->s_blocksize * 8) {
4430 		ext4_msg(sb, KERN_ERR, "#clusters per group too big: %lu",
4431 			 sbi->s_clusters_per_group);
4432 		return -EINVAL;
4433 	}
4434 	if (sbi->s_blocks_per_group !=
4435 	    (sbi->s_clusters_per_group * (clustersize / sb->s_blocksize))) {
4436 		ext4_msg(sb, KERN_ERR,
4437 			 "blocks per group (%lu) and clusters per group (%lu) inconsistent",
4438 			 sbi->s_blocks_per_group, sbi->s_clusters_per_group);
4439 		return -EINVAL;
4440 	}
4441 	sbi->s_cluster_ratio = clustersize / sb->s_blocksize;
4442 
4443 	/* Do we have standard group size of clustersize * 8 blocks ? */
4444 	if (sbi->s_blocks_per_group == clustersize << 3)
4445 		set_opt2(sb, STD_GROUP_SIZE);
4446 
4447 	return 0;
4448 }
4449 
4450 /*
4451  * ext4_atomic_write_init: Initializes filesystem min & max atomic write units.
4452  * With non-bigalloc filesystem awu will be based upon filesystem blocksize
4453  * & bdev awu units.
4454  * With bigalloc it will be based upon bigalloc cluster size & bdev awu units.
4455  * @sb: super block
4456  */
ext4_atomic_write_init(struct super_block * sb)4457 static void ext4_atomic_write_init(struct super_block *sb)
4458 {
4459 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4460 	struct block_device *bdev = sb->s_bdev;
4461 	unsigned int clustersize = EXT4_CLUSTER_SIZE(sb);
4462 
4463 	if (!bdev_can_atomic_write(bdev))
4464 		return;
4465 
4466 	if (!ext4_has_feature_extents(sb))
4467 		return;
4468 
4469 	sbi->s_awu_min = max(sb->s_blocksize,
4470 			      bdev_atomic_write_unit_min_bytes(bdev));
4471 	sbi->s_awu_max = min(clustersize,
4472 			      bdev_atomic_write_unit_max_bytes(bdev));
4473 	if (sbi->s_awu_min && sbi->s_awu_max &&
4474 	    sbi->s_awu_min <= sbi->s_awu_max) {
4475 		ext4_msg(sb, KERN_NOTICE, "Supports (experimental) DIO atomic writes awu_min: %u, awu_max: %u",
4476 			 sbi->s_awu_min, sbi->s_awu_max);
4477 	} else {
4478 		sbi->s_awu_min = 0;
4479 		sbi->s_awu_max = 0;
4480 	}
4481 }
4482 
ext4_fast_commit_init(struct super_block * sb)4483 static void ext4_fast_commit_init(struct super_block *sb)
4484 {
4485 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4486 
4487 	/* Initialize fast commit stuff */
4488 	atomic_set(&sbi->s_fc_subtid, 0);
4489 	INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_MAIN]);
4490 	INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_STAGING]);
4491 	INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_MAIN]);
4492 	INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_STAGING]);
4493 	sbi->s_fc_bytes = 0;
4494 	ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
4495 	sbi->s_fc_ineligible_tid = 0;
4496 	mutex_init(&sbi->s_fc_lock);
4497 	memset(&sbi->s_fc_stats, 0, sizeof(sbi->s_fc_stats));
4498 	sbi->s_fc_replay_state.fc_regions = NULL;
4499 	sbi->s_fc_replay_state.fc_regions_size = 0;
4500 	sbi->s_fc_replay_state.fc_regions_used = 0;
4501 	sbi->s_fc_replay_state.fc_regions_valid = 0;
4502 	sbi->s_fc_replay_state.fc_modified_inodes = NULL;
4503 	sbi->s_fc_replay_state.fc_modified_inodes_size = 0;
4504 	sbi->s_fc_replay_state.fc_modified_inodes_used = 0;
4505 }
4506 
ext4_inode_info_init(struct super_block * sb,struct ext4_super_block * es)4507 static int ext4_inode_info_init(struct super_block *sb,
4508 				struct ext4_super_block *es)
4509 {
4510 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4511 
4512 	if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
4513 		sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
4514 		sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
4515 	} else {
4516 		sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
4517 		sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
4518 		if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) {
4519 			ext4_msg(sb, KERN_ERR, "invalid first ino: %u",
4520 				 sbi->s_first_ino);
4521 			return -EINVAL;
4522 		}
4523 		if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
4524 		    (!is_power_of_2(sbi->s_inode_size)) ||
4525 		    (sbi->s_inode_size > sb->s_blocksize)) {
4526 			ext4_msg(sb, KERN_ERR,
4527 			       "unsupported inode size: %d",
4528 			       sbi->s_inode_size);
4529 			ext4_msg(sb, KERN_ERR, "blocksize: %lu", sb->s_blocksize);
4530 			return -EINVAL;
4531 		}
4532 		/*
4533 		 * i_atime_extra is the last extra field available for
4534 		 * [acm]times in struct ext4_inode. Checking for that
4535 		 * field should suffice to ensure we have extra space
4536 		 * for all three.
4537 		 */
4538 		if (sbi->s_inode_size >= offsetof(struct ext4_inode, i_atime_extra) +
4539 			sizeof(((struct ext4_inode *)0)->i_atime_extra)) {
4540 			sb->s_time_gran = 1;
4541 			sb->s_time_max = EXT4_EXTRA_TIMESTAMP_MAX;
4542 		} else {
4543 			sb->s_time_gran = NSEC_PER_SEC;
4544 			sb->s_time_max = EXT4_NON_EXTRA_TIMESTAMP_MAX;
4545 		}
4546 		sb->s_time_min = EXT4_TIMESTAMP_MIN;
4547 	}
4548 
4549 	if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
4550 		sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4551 			EXT4_GOOD_OLD_INODE_SIZE;
4552 		if (ext4_has_feature_extra_isize(sb)) {
4553 			unsigned v, max = (sbi->s_inode_size -
4554 					   EXT4_GOOD_OLD_INODE_SIZE);
4555 
4556 			v = le16_to_cpu(es->s_want_extra_isize);
4557 			if (v > max) {
4558 				ext4_msg(sb, KERN_ERR,
4559 					 "bad s_want_extra_isize: %d", v);
4560 				return -EINVAL;
4561 			}
4562 			if (sbi->s_want_extra_isize < v)
4563 				sbi->s_want_extra_isize = v;
4564 
4565 			v = le16_to_cpu(es->s_min_extra_isize);
4566 			if (v > max) {
4567 				ext4_msg(sb, KERN_ERR,
4568 					 "bad s_min_extra_isize: %d", v);
4569 				return -EINVAL;
4570 			}
4571 			if (sbi->s_want_extra_isize < v)
4572 				sbi->s_want_extra_isize = v;
4573 		}
4574 	}
4575 
4576 	return 0;
4577 }
4578 
4579 #if IS_ENABLED(CONFIG_UNICODE)
ext4_encoding_init(struct super_block * sb,struct ext4_super_block * es)4580 static int ext4_encoding_init(struct super_block *sb, struct ext4_super_block *es)
4581 {
4582 	const struct ext4_sb_encodings *encoding_info;
4583 	struct unicode_map *encoding;
4584 	__u16 encoding_flags = le16_to_cpu(es->s_encoding_flags);
4585 
4586 	if (!ext4_has_feature_casefold(sb) || sb->s_encoding)
4587 		return 0;
4588 
4589 	encoding_info = ext4_sb_read_encoding(es);
4590 	if (!encoding_info) {
4591 		ext4_msg(sb, KERN_ERR,
4592 			"Encoding requested by superblock is unknown");
4593 		return -EINVAL;
4594 	}
4595 
4596 	encoding = utf8_load(encoding_info->version);
4597 	if (IS_ERR(encoding)) {
4598 		ext4_msg(sb, KERN_ERR,
4599 			"can't mount with superblock charset: %s-%u.%u.%u "
4600 			"not supported by the kernel. flags: 0x%x.",
4601 			encoding_info->name,
4602 			unicode_major(encoding_info->version),
4603 			unicode_minor(encoding_info->version),
4604 			unicode_rev(encoding_info->version),
4605 			encoding_flags);
4606 		return -EINVAL;
4607 	}
4608 	ext4_msg(sb, KERN_INFO,"Using encoding defined by superblock: "
4609 		"%s-%u.%u.%u with flags 0x%hx", encoding_info->name,
4610 		unicode_major(encoding_info->version),
4611 		unicode_minor(encoding_info->version),
4612 		unicode_rev(encoding_info->version),
4613 		encoding_flags);
4614 
4615 	sb->s_encoding = encoding;
4616 	sb->s_encoding_flags = encoding_flags;
4617 
4618 	return 0;
4619 }
4620 #else
ext4_encoding_init(struct super_block * sb,struct ext4_super_block * es)4621 static inline int ext4_encoding_init(struct super_block *sb, struct ext4_super_block *es)
4622 {
4623 	return 0;
4624 }
4625 #endif
4626 
ext4_init_metadata_csum(struct super_block * sb,struct ext4_super_block * es)4627 static int ext4_init_metadata_csum(struct super_block *sb, struct ext4_super_block *es)
4628 {
4629 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4630 
4631 	/* Warn if metadata_csum and gdt_csum are both set. */
4632 	if (ext4_has_feature_metadata_csum(sb) &&
4633 	    ext4_has_feature_gdt_csum(sb))
4634 		ext4_warning(sb, "metadata_csum and uninit_bg are "
4635 			     "redundant flags; please run fsck.");
4636 
4637 	/* Check for a known checksum algorithm */
4638 	if (!ext4_verify_csum_type(sb, es)) {
4639 		ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
4640 			 "unknown checksum algorithm.");
4641 		return -EINVAL;
4642 	}
4643 	ext4_setup_csum_trigger(sb, EXT4_JTR_ORPHAN_FILE,
4644 				ext4_orphan_file_block_trigger);
4645 
4646 	/* Check superblock checksum */
4647 	if (!ext4_superblock_csum_verify(sb, es)) {
4648 		ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
4649 			 "invalid superblock checksum.  Run e2fsck?");
4650 		return -EFSBADCRC;
4651 	}
4652 
4653 	/* Precompute checksum seed for all metadata */
4654 	if (ext4_has_feature_csum_seed(sb))
4655 		sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
4656 	else if (ext4_has_feature_metadata_csum(sb) ||
4657 		 ext4_has_feature_ea_inode(sb))
4658 		sbi->s_csum_seed = ext4_chksum(~0, es->s_uuid,
4659 					       sizeof(es->s_uuid));
4660 	return 0;
4661 }
4662 
ext4_check_feature_compatibility(struct super_block * sb,struct ext4_super_block * es,int silent)4663 static int ext4_check_feature_compatibility(struct super_block *sb,
4664 					    struct ext4_super_block *es,
4665 					    int silent)
4666 {
4667 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4668 
4669 	if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
4670 	    (ext4_has_compat_features(sb) ||
4671 	     ext4_has_ro_compat_features(sb) ||
4672 	     ext4_has_incompat_features(sb)))
4673 		ext4_msg(sb, KERN_WARNING,
4674 		       "feature flags set on rev 0 fs, "
4675 		       "running e2fsck is recommended");
4676 
4677 	if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
4678 		set_opt2(sb, HURD_COMPAT);
4679 		if (ext4_has_feature_64bit(sb)) {
4680 			ext4_msg(sb, KERN_ERR,
4681 				 "The Hurd can't support 64-bit file systems");
4682 			return -EINVAL;
4683 		}
4684 
4685 		/*
4686 		 * ea_inode feature uses l_i_version field which is not
4687 		 * available in HURD_COMPAT mode.
4688 		 */
4689 		if (ext4_has_feature_ea_inode(sb)) {
4690 			ext4_msg(sb, KERN_ERR,
4691 				 "ea_inode feature is not supported for Hurd");
4692 			return -EINVAL;
4693 		}
4694 	}
4695 
4696 	if (IS_EXT2_SB(sb)) {
4697 		if (ext2_feature_set_ok(sb))
4698 			ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
4699 				 "using the ext4 subsystem");
4700 		else {
4701 			/*
4702 			 * If we're probing be silent, if this looks like
4703 			 * it's actually an ext[34] filesystem.
4704 			 */
4705 			if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4706 				return -EINVAL;
4707 			ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
4708 				 "to feature incompatibilities");
4709 			return -EINVAL;
4710 		}
4711 	}
4712 
4713 	if (IS_EXT3_SB(sb)) {
4714 		if (ext3_feature_set_ok(sb))
4715 			ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
4716 				 "using the ext4 subsystem");
4717 		else {
4718 			/*
4719 			 * If we're probing be silent, if this looks like
4720 			 * it's actually an ext4 filesystem.
4721 			 */
4722 			if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4723 				return -EINVAL;
4724 			ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
4725 				 "to feature incompatibilities");
4726 			return -EINVAL;
4727 		}
4728 	}
4729 
4730 	/*
4731 	 * Check feature flags regardless of the revision level, since we
4732 	 * previously didn't change the revision level when setting the flags,
4733 	 * so there is a chance incompat flags are set on a rev 0 filesystem.
4734 	 */
4735 	if (!ext4_feature_set_ok(sb, (sb_rdonly(sb))))
4736 		return -EINVAL;
4737 
4738 	if (sbi->s_daxdev) {
4739 		if (sb->s_blocksize == PAGE_SIZE)
4740 			set_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags);
4741 		else
4742 			ext4_msg(sb, KERN_ERR, "unsupported blocksize for DAX\n");
4743 	}
4744 
4745 	if (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) {
4746 		if (ext4_has_feature_inline_data(sb)) {
4747 			ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem"
4748 					" that may contain inline data");
4749 			return -EINVAL;
4750 		}
4751 		if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) {
4752 			ext4_msg(sb, KERN_ERR,
4753 				"DAX unsupported by block device.");
4754 			return -EINVAL;
4755 		}
4756 	}
4757 
4758 	if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
4759 		ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
4760 			 es->s_encryption_level);
4761 		return -EINVAL;
4762 	}
4763 
4764 	return 0;
4765 }
4766 
ext4_check_geometry(struct super_block * sb,struct ext4_super_block * es)4767 static int ext4_check_geometry(struct super_block *sb,
4768 			       struct ext4_super_block *es)
4769 {
4770 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4771 	__u64 blocks_count;
4772 	int err;
4773 
4774 	if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (sb->s_blocksize / 4)) {
4775 		ext4_msg(sb, KERN_ERR,
4776 			 "Number of reserved GDT blocks insanely large: %d",
4777 			 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks));
4778 		return -EINVAL;
4779 	}
4780 	/*
4781 	 * Test whether we have more sectors than will fit in sector_t,
4782 	 * and whether the max offset is addressable by the page cache.
4783 	 */
4784 	err = generic_check_addressable(sb->s_blocksize_bits,
4785 					ext4_blocks_count(es));
4786 	if (err) {
4787 		ext4_msg(sb, KERN_ERR, "filesystem"
4788 			 " too large to mount safely on this system");
4789 		return err;
4790 	}
4791 
4792 	/* check blocks count against device size */
4793 	blocks_count = sb_bdev_nr_blocks(sb);
4794 	if (blocks_count && ext4_blocks_count(es) > blocks_count) {
4795 		ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
4796 		       "exceeds size of device (%llu blocks)",
4797 		       ext4_blocks_count(es), blocks_count);
4798 		return -EINVAL;
4799 	}
4800 
4801 	/*
4802 	 * It makes no sense for the first data block to be beyond the end
4803 	 * of the filesystem.
4804 	 */
4805 	if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
4806 		ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4807 			 "block %u is beyond end of filesystem (%llu)",
4808 			 le32_to_cpu(es->s_first_data_block),
4809 			 ext4_blocks_count(es));
4810 		return -EINVAL;
4811 	}
4812 	if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) &&
4813 	    (sbi->s_cluster_ratio == 1)) {
4814 		ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4815 			 "block is 0 with a 1k block and cluster size");
4816 		return -EINVAL;
4817 	}
4818 
4819 	blocks_count = (ext4_blocks_count(es) -
4820 			le32_to_cpu(es->s_first_data_block) +
4821 			EXT4_BLOCKS_PER_GROUP(sb) - 1);
4822 	do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
4823 	if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
4824 		ext4_msg(sb, KERN_WARNING, "groups count too large: %llu "
4825 		       "(block count %llu, first data block %u, "
4826 		       "blocks per group %lu)", blocks_count,
4827 		       ext4_blocks_count(es),
4828 		       le32_to_cpu(es->s_first_data_block),
4829 		       EXT4_BLOCKS_PER_GROUP(sb));
4830 		return -EINVAL;
4831 	}
4832 	sbi->s_groups_count = blocks_count;
4833 	sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
4834 			(EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
4835 	if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) !=
4836 	    le32_to_cpu(es->s_inodes_count)) {
4837 		ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu",
4838 			 le32_to_cpu(es->s_inodes_count),
4839 			 ((u64)sbi->s_groups_count * sbi->s_inodes_per_group));
4840 		return -EINVAL;
4841 	}
4842 
4843 	return 0;
4844 }
4845 
ext4_group_desc_init(struct super_block * sb,struct ext4_super_block * es,ext4_fsblk_t logical_sb_block,ext4_group_t * first_not_zeroed)4846 static int ext4_group_desc_init(struct super_block *sb,
4847 				struct ext4_super_block *es,
4848 				ext4_fsblk_t logical_sb_block,
4849 				ext4_group_t *first_not_zeroed)
4850 {
4851 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4852 	unsigned int db_count;
4853 	ext4_fsblk_t block;
4854 	int i;
4855 
4856 	db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
4857 		   EXT4_DESC_PER_BLOCK(sb);
4858 	if (ext4_has_feature_meta_bg(sb)) {
4859 		if (le32_to_cpu(es->s_first_meta_bg) > db_count) {
4860 			ext4_msg(sb, KERN_WARNING,
4861 				 "first meta block group too large: %u "
4862 				 "(group descriptor block count %u)",
4863 				 le32_to_cpu(es->s_first_meta_bg), db_count);
4864 			return -EINVAL;
4865 		}
4866 	}
4867 	rcu_assign_pointer(sbi->s_group_desc,
4868 			   kvmalloc_array(db_count,
4869 					  sizeof(struct buffer_head *),
4870 					  GFP_KERNEL));
4871 	if (sbi->s_group_desc == NULL) {
4872 		ext4_msg(sb, KERN_ERR, "not enough memory");
4873 		return -ENOMEM;
4874 	}
4875 
4876 	bgl_lock_init(sbi->s_blockgroup_lock);
4877 
4878 	/* Pre-read the descriptors into the buffer cache */
4879 	for (i = 0; i < db_count; i++) {
4880 		block = descriptor_loc(sb, logical_sb_block, i);
4881 		ext4_sb_breadahead_unmovable(sb, block);
4882 	}
4883 
4884 	for (i = 0; i < db_count; i++) {
4885 		struct buffer_head *bh;
4886 
4887 		block = descriptor_loc(sb, logical_sb_block, i);
4888 		bh = ext4_sb_bread_unmovable(sb, block);
4889 		if (IS_ERR(bh)) {
4890 			ext4_msg(sb, KERN_ERR,
4891 			       "can't read group descriptor %d", i);
4892 			sbi->s_gdb_count = i;
4893 			return PTR_ERR(bh);
4894 		}
4895 		rcu_read_lock();
4896 		rcu_dereference(sbi->s_group_desc)[i] = bh;
4897 		rcu_read_unlock();
4898 	}
4899 	sbi->s_gdb_count = db_count;
4900 	if (!ext4_check_descriptors(sb, logical_sb_block, first_not_zeroed)) {
4901 		ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
4902 		return -EFSCORRUPTED;
4903 	}
4904 
4905 	return 0;
4906 }
4907 
ext4_load_and_init_journal(struct super_block * sb,struct ext4_super_block * es,struct ext4_fs_context * ctx)4908 static int ext4_load_and_init_journal(struct super_block *sb,
4909 				      struct ext4_super_block *es,
4910 				      struct ext4_fs_context *ctx)
4911 {
4912 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4913 	int err;
4914 
4915 	err = ext4_load_journal(sb, es, ctx->journal_devnum);
4916 	if (err)
4917 		return err;
4918 
4919 	if (ext4_has_feature_64bit(sb) &&
4920 	    !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4921 				       JBD2_FEATURE_INCOMPAT_64BIT)) {
4922 		ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
4923 		goto out;
4924 	}
4925 
4926 	if (!set_journal_csum_feature_set(sb)) {
4927 		ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
4928 			 "feature set");
4929 		goto out;
4930 	}
4931 
4932 	if (test_opt2(sb, JOURNAL_FAST_COMMIT) &&
4933 		!jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4934 					  JBD2_FEATURE_INCOMPAT_FAST_COMMIT)) {
4935 		ext4_msg(sb, KERN_ERR,
4936 			"Failed to set fast commit journal feature");
4937 		goto out;
4938 	}
4939 
4940 	/* We have now updated the journal if required, so we can
4941 	 * validate the data journaling mode. */
4942 	switch (test_opt(sb, DATA_FLAGS)) {
4943 	case 0:
4944 		/* No mode set, assume a default based on the journal
4945 		 * capabilities: ORDERED_DATA if the journal can
4946 		 * cope, else JOURNAL_DATA
4947 		 */
4948 		if (jbd2_journal_check_available_features
4949 		    (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4950 			set_opt(sb, ORDERED_DATA);
4951 			sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA;
4952 		} else {
4953 			set_opt(sb, JOURNAL_DATA);
4954 			sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA;
4955 		}
4956 		break;
4957 
4958 	case EXT4_MOUNT_ORDERED_DATA:
4959 	case EXT4_MOUNT_WRITEBACK_DATA:
4960 		if (!jbd2_journal_check_available_features
4961 		    (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4962 			ext4_msg(sb, KERN_ERR, "Journal does not support "
4963 			       "requested data journaling mode");
4964 			goto out;
4965 		}
4966 		break;
4967 	default:
4968 		break;
4969 	}
4970 
4971 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
4972 	    test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4973 		ext4_msg(sb, KERN_ERR, "can't mount with "
4974 			"journal_async_commit in data=ordered mode");
4975 		goto out;
4976 	}
4977 
4978 	set_task_ioprio(sbi->s_journal->j_task, ctx->journal_ioprio);
4979 
4980 	sbi->s_journal->j_submit_inode_data_buffers =
4981 		ext4_journal_submit_inode_data_buffers;
4982 	sbi->s_journal->j_finish_inode_data_buffers =
4983 		ext4_journal_finish_inode_data_buffers;
4984 
4985 	return 0;
4986 
4987 out:
4988 	ext4_journal_destroy(sbi, sbi->s_journal);
4989 	return -EINVAL;
4990 }
4991 
ext4_check_journal_data_mode(struct super_block * sb)4992 static int ext4_check_journal_data_mode(struct super_block *sb)
4993 {
4994 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
4995 		printk_once(KERN_WARNING "EXT4-fs: Warning: mounting with "
4996 			    "data=journal disables delayed allocation, "
4997 			    "dioread_nolock, O_DIRECT and fast_commit support!\n");
4998 		/* can't mount with both data=journal and dioread_nolock. */
4999 		clear_opt(sb, DIOREAD_NOLOCK);
5000 		clear_opt2(sb, JOURNAL_FAST_COMMIT);
5001 		if (test_opt2(sb, EXPLICIT_DELALLOC)) {
5002 			ext4_msg(sb, KERN_ERR, "can't mount with "
5003 				 "both data=journal and delalloc");
5004 			return -EINVAL;
5005 		}
5006 		if (test_opt(sb, DAX_ALWAYS)) {
5007 			ext4_msg(sb, KERN_ERR, "can't mount with "
5008 				 "both data=journal and dax");
5009 			return -EINVAL;
5010 		}
5011 		if (ext4_has_feature_encrypt(sb)) {
5012 			ext4_msg(sb, KERN_WARNING,
5013 				 "encrypted files will use data=ordered "
5014 				 "instead of data journaling mode");
5015 		}
5016 		if (test_opt(sb, DELALLOC))
5017 			clear_opt(sb, DELALLOC);
5018 	} else {
5019 		sb->s_iflags |= SB_I_CGROUPWB;
5020 	}
5021 
5022 	return 0;
5023 }
5024 
ext4_has_journal_option(struct super_block * sb)5025 static const char *ext4_has_journal_option(struct super_block *sb)
5026 {
5027 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5028 
5029 	if (test_opt(sb, JOURNAL_ASYNC_COMMIT))
5030 		return "journal_async_commit";
5031 	if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM))
5032 		return "journal_checksum";
5033 	if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
5034 		return "commit=";
5035 	if (EXT4_MOUNT_DATA_FLAGS &
5036 	    (sbi->s_mount_opt ^ sbi->s_def_mount_opt))
5037 		return "data=";
5038 	if (test_opt(sb, DATA_ERR_ABORT))
5039 		return "data_err=abort";
5040 	return NULL;
5041 }
5042 
ext4_load_super(struct super_block * sb,ext4_fsblk_t * lsb,int silent)5043 static int ext4_load_super(struct super_block *sb, ext4_fsblk_t *lsb,
5044 			   int silent)
5045 {
5046 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5047 	struct ext4_super_block *es;
5048 	ext4_fsblk_t logical_sb_block;
5049 	unsigned long offset = 0;
5050 	struct buffer_head *bh;
5051 	int ret = -EINVAL;
5052 	int blocksize;
5053 
5054 	blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
5055 	if (!blocksize) {
5056 		ext4_msg(sb, KERN_ERR, "unable to set blocksize");
5057 		return -EINVAL;
5058 	}
5059 
5060 	/*
5061 	 * The ext4 superblock will not be buffer aligned for other than 1kB
5062 	 * block sizes.  We need to calculate the offset from buffer start.
5063 	 */
5064 	if (blocksize != EXT4_MIN_BLOCK_SIZE) {
5065 		logical_sb_block = sbi->s_sb_block * EXT4_MIN_BLOCK_SIZE;
5066 		offset = do_div(logical_sb_block, blocksize);
5067 	} else {
5068 		logical_sb_block = sbi->s_sb_block;
5069 	}
5070 
5071 	bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
5072 	if (IS_ERR(bh)) {
5073 		ext4_msg(sb, KERN_ERR, "unable to read superblock");
5074 		return PTR_ERR(bh);
5075 	}
5076 	/*
5077 	 * Note: s_es must be initialized as soon as possible because
5078 	 *       some ext4 macro-instructions depend on its value
5079 	 */
5080 	es = (struct ext4_super_block *) (bh->b_data + offset);
5081 	sbi->s_es = es;
5082 	sb->s_magic = le16_to_cpu(es->s_magic);
5083 	if (sb->s_magic != EXT4_SUPER_MAGIC) {
5084 		if (!silent)
5085 			ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
5086 		goto out;
5087 	}
5088 
5089 	if (le32_to_cpu(es->s_log_block_size) >
5090 	    (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
5091 		ext4_msg(sb, KERN_ERR,
5092 			 "Invalid log block size: %u",
5093 			 le32_to_cpu(es->s_log_block_size));
5094 		goto out;
5095 	}
5096 	if (le32_to_cpu(es->s_log_cluster_size) >
5097 	    (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
5098 		ext4_msg(sb, KERN_ERR,
5099 			 "Invalid log cluster size: %u",
5100 			 le32_to_cpu(es->s_log_cluster_size));
5101 		goto out;
5102 	}
5103 
5104 	blocksize = EXT4_MIN_BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
5105 
5106 	/*
5107 	 * If the default block size is not the same as the real block size,
5108 	 * we need to reload it.
5109 	 */
5110 	if (sb->s_blocksize == blocksize) {
5111 		*lsb = logical_sb_block;
5112 		sbi->s_sbh = bh;
5113 		return 0;
5114 	}
5115 
5116 	/*
5117 	 * bh must be released before kill_bdev(), otherwise
5118 	 * it won't be freed and its page also. kill_bdev()
5119 	 * is called by sb_set_blocksize().
5120 	 */
5121 	brelse(bh);
5122 	/* Validate the filesystem blocksize */
5123 	if (!sb_set_blocksize(sb, blocksize)) {
5124 		ext4_msg(sb, KERN_ERR, "bad block size %d",
5125 				blocksize);
5126 		bh = NULL;
5127 		goto out;
5128 	}
5129 
5130 	logical_sb_block = sbi->s_sb_block * EXT4_MIN_BLOCK_SIZE;
5131 	offset = do_div(logical_sb_block, blocksize);
5132 	bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
5133 	if (IS_ERR(bh)) {
5134 		ext4_msg(sb, KERN_ERR, "Can't read superblock on 2nd try");
5135 		ret = PTR_ERR(bh);
5136 		bh = NULL;
5137 		goto out;
5138 	}
5139 	es = (struct ext4_super_block *)(bh->b_data + offset);
5140 	sbi->s_es = es;
5141 	if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
5142 		ext4_msg(sb, KERN_ERR, "Magic mismatch, very weird!");
5143 		goto out;
5144 	}
5145 	*lsb = logical_sb_block;
5146 	sbi->s_sbh = bh;
5147 	return 0;
5148 out:
5149 	brelse(bh);
5150 	return ret;
5151 }
5152 
ext4_hash_info_init(struct super_block * sb)5153 static int ext4_hash_info_init(struct super_block *sb)
5154 {
5155 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5156 	struct ext4_super_block *es = sbi->s_es;
5157 	unsigned int i;
5158 
5159 	sbi->s_def_hash_version = es->s_def_hash_version;
5160 
5161 	if (sbi->s_def_hash_version > DX_HASH_LAST) {
5162 		ext4_msg(sb, KERN_ERR,
5163 			 "Invalid default hash set in the superblock");
5164 		return -EINVAL;
5165 	} else if (sbi->s_def_hash_version == DX_HASH_SIPHASH) {
5166 		ext4_msg(sb, KERN_ERR,
5167 			 "SIPHASH is not a valid default hash value");
5168 		return -EINVAL;
5169 	}
5170 
5171 	for (i = 0; i < 4; i++)
5172 		sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
5173 
5174 	if (ext4_has_feature_dir_index(sb)) {
5175 		i = le32_to_cpu(es->s_flags);
5176 		if (i & EXT2_FLAGS_UNSIGNED_HASH)
5177 			sbi->s_hash_unsigned = 3;
5178 		else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
5179 #ifdef __CHAR_UNSIGNED__
5180 			if (!sb_rdonly(sb))
5181 				es->s_flags |=
5182 					cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
5183 			sbi->s_hash_unsigned = 3;
5184 #else
5185 			if (!sb_rdonly(sb))
5186 				es->s_flags |=
5187 					cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
5188 #endif
5189 		}
5190 	}
5191 	return 0;
5192 }
5193 
ext4_block_group_meta_init(struct super_block * sb,int silent)5194 static int ext4_block_group_meta_init(struct super_block *sb, int silent)
5195 {
5196 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5197 	struct ext4_super_block *es = sbi->s_es;
5198 	int has_huge_files;
5199 
5200 	has_huge_files = ext4_has_feature_huge_file(sb);
5201 	sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
5202 						      has_huge_files);
5203 	sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
5204 
5205 	sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
5206 	if (ext4_has_feature_64bit(sb)) {
5207 		if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
5208 		    sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
5209 		    !is_power_of_2(sbi->s_desc_size)) {
5210 			ext4_msg(sb, KERN_ERR,
5211 			       "unsupported descriptor size %lu",
5212 			       sbi->s_desc_size);
5213 			return -EINVAL;
5214 		}
5215 	} else
5216 		sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
5217 
5218 	sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
5219 	sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
5220 
5221 	sbi->s_inodes_per_block = sb->s_blocksize / EXT4_INODE_SIZE(sb);
5222 	if (sbi->s_inodes_per_block == 0 || sbi->s_blocks_per_group == 0) {
5223 		if (!silent)
5224 			ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
5225 		return -EINVAL;
5226 	}
5227 	if (sbi->s_inodes_per_group < sbi->s_inodes_per_block ||
5228 	    sbi->s_inodes_per_group > sb->s_blocksize * 8) {
5229 		ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n",
5230 			 sbi->s_inodes_per_group);
5231 		return -EINVAL;
5232 	}
5233 	sbi->s_itb_per_group = sbi->s_inodes_per_group /
5234 					sbi->s_inodes_per_block;
5235 	sbi->s_desc_per_block = sb->s_blocksize / EXT4_DESC_SIZE(sb);
5236 	sbi->s_mount_state = le16_to_cpu(es->s_state) & ~EXT4_FC_REPLAY;
5237 	sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
5238 	sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
5239 
5240 	return 0;
5241 }
5242 
5243 /*
5244  * It's hard to get stripe aligned blocks if stripe is not aligned with
5245  * cluster, just disable stripe and alert user to simplify code and avoid
5246  * stripe aligned allocation which will rarely succeed.
5247  */
ext4_is_stripe_incompatible(struct super_block * sb,unsigned long stripe)5248 static bool ext4_is_stripe_incompatible(struct super_block *sb, unsigned long stripe)
5249 {
5250 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5251 	return (stripe > 0 && sbi->s_cluster_ratio > 1 &&
5252 		stripe % sbi->s_cluster_ratio != 0);
5253 }
5254 
__ext4_fill_super(struct fs_context * fc,struct super_block * sb)5255 static int __ext4_fill_super(struct fs_context *fc, struct super_block *sb)
5256 {
5257 	struct ext4_super_block *es = NULL;
5258 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5259 	ext4_fsblk_t logical_sb_block;
5260 	struct inode *root;
5261 	int needs_recovery;
5262 	int err;
5263 	ext4_group_t first_not_zeroed;
5264 	struct ext4_fs_context *ctx = fc->fs_private;
5265 	int silent = fc->sb_flags & SB_SILENT;
5266 
5267 	/* Set defaults for the variables that will be set during parsing */
5268 	if (!(ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO))
5269 		ctx->journal_ioprio = EXT4_DEF_JOURNAL_IOPRIO;
5270 
5271 	sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
5272 	sbi->s_sectors_written_start =
5273 		part_stat_read(sb->s_bdev, sectors[STAT_WRITE]);
5274 
5275 	err = ext4_load_super(sb, &logical_sb_block, silent);
5276 	if (err)
5277 		goto out_fail;
5278 
5279 	es = sbi->s_es;
5280 	sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
5281 
5282 	err = ext4_init_metadata_csum(sb, es);
5283 	if (err)
5284 		goto failed_mount;
5285 
5286 	ext4_set_def_opts(sb, es);
5287 
5288 	sbi->s_resuid = make_kuid(&init_user_ns, ext4_get_resuid(es));
5289 	sbi->s_resgid = make_kgid(&init_user_ns, ext4_get_resuid(es));
5290 	sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
5291 	sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
5292 	sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
5293 	sbi->s_sb_update_kb = EXT4_DEF_SB_UPDATE_INTERVAL_KB;
5294 	sbi->s_sb_update_sec = EXT4_DEF_SB_UPDATE_INTERVAL_SEC;
5295 
5296 	/*
5297 	 * set default s_li_wait_mult for lazyinit, for the case there is
5298 	 * no mount option specified.
5299 	 */
5300 	sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
5301 
5302 	err = ext4_inode_info_init(sb, es);
5303 	if (err)
5304 		goto failed_mount;
5305 
5306 	err = parse_apply_sb_mount_options(sb, ctx);
5307 	if (err < 0)
5308 		goto failed_mount;
5309 
5310 	sbi->s_def_mount_opt = sbi->s_mount_opt;
5311 	sbi->s_def_mount_opt2 = sbi->s_mount_opt2;
5312 
5313 	err = ext4_check_opt_consistency(fc, sb);
5314 	if (err < 0)
5315 		goto failed_mount;
5316 
5317 	ext4_apply_options(fc, sb);
5318 
5319 	err = ext4_encoding_init(sb, es);
5320 	if (err)
5321 		goto failed_mount;
5322 
5323 	err = ext4_check_journal_data_mode(sb);
5324 	if (err)
5325 		goto failed_mount;
5326 
5327 	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
5328 		(test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
5329 
5330 	/* HSM events are allowed by default. */
5331 	sb->s_iflags |= SB_I_ALLOW_HSM;
5332 
5333 	err = ext4_check_feature_compatibility(sb, es, silent);
5334 	if (err)
5335 		goto failed_mount;
5336 
5337 	err = ext4_block_group_meta_init(sb, silent);
5338 	if (err)
5339 		goto failed_mount;
5340 
5341 	err = ext4_hash_info_init(sb);
5342 	if (err)
5343 		goto failed_mount;
5344 
5345 	err = ext4_handle_clustersize(sb);
5346 	if (err)
5347 		goto failed_mount;
5348 
5349 	err = ext4_check_geometry(sb, es);
5350 	if (err)
5351 		goto failed_mount;
5352 
5353 	timer_setup(&sbi->s_err_report, print_daily_error_info, 0);
5354 	spin_lock_init(&sbi->s_error_lock);
5355 	INIT_WORK(&sbi->s_sb_upd_work, update_super_work);
5356 
5357 	err = ext4_group_desc_init(sb, es, logical_sb_block, &first_not_zeroed);
5358 	if (err)
5359 		goto failed_mount3;
5360 
5361 	err = ext4_es_register_shrinker(sbi);
5362 	if (err)
5363 		goto failed_mount3;
5364 
5365 	sbi->s_stripe = ext4_get_stripe_size(sbi);
5366 	if (ext4_is_stripe_incompatible(sb, sbi->s_stripe)) {
5367 		ext4_msg(sb, KERN_WARNING,
5368 			 "stripe (%lu) is not aligned with cluster size (%u), "
5369 			 "stripe is disabled",
5370 			 sbi->s_stripe, sbi->s_cluster_ratio);
5371 		sbi->s_stripe = 0;
5372 	}
5373 	sbi->s_extent_max_zeroout_kb = 32;
5374 
5375 	/*
5376 	 * set up enough so that it can read an inode
5377 	 */
5378 	sb->s_op = &ext4_sops;
5379 	sb->s_export_op = &ext4_export_ops;
5380 	sb->s_xattr = ext4_xattr_handlers;
5381 #ifdef CONFIG_FS_ENCRYPTION
5382 	sb->s_cop = &ext4_cryptops;
5383 #endif
5384 #ifdef CONFIG_FS_VERITY
5385 	sb->s_vop = &ext4_verityops;
5386 #endif
5387 #ifdef CONFIG_QUOTA
5388 	sb->dq_op = &ext4_quota_operations;
5389 	if (ext4_has_feature_quota(sb))
5390 		sb->s_qcop = &dquot_quotactl_sysfile_ops;
5391 	else
5392 		sb->s_qcop = &ext4_qctl_operations;
5393 	sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
5394 #endif
5395 	super_set_uuid(sb, es->s_uuid, sizeof(es->s_uuid));
5396 	super_set_sysfs_name_bdev(sb);
5397 
5398 	INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
5399 	mutex_init(&sbi->s_orphan_lock);
5400 
5401 	spin_lock_init(&sbi->s_bdev_wb_lock);
5402 
5403 	ext4_atomic_write_init(sb);
5404 	ext4_fast_commit_init(sb);
5405 
5406 	sb->s_root = NULL;
5407 
5408 	needs_recovery = (es->s_last_orphan != 0 ||
5409 			  ext4_has_feature_orphan_present(sb) ||
5410 			  ext4_has_feature_journal_needs_recovery(sb));
5411 
5412 	if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb)) {
5413 		err = ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block));
5414 		if (err)
5415 			goto failed_mount3a;
5416 	}
5417 
5418 	err = -EINVAL;
5419 	/*
5420 	 * The first inode we look at is the journal inode.  Don't try
5421 	 * root first: it may be modified in the journal!
5422 	 */
5423 	if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
5424 		err = ext4_load_and_init_journal(sb, es, ctx);
5425 		if (err)
5426 			goto failed_mount3a;
5427 		if (bdev_read_only(sb->s_bdev))
5428 		    needs_recovery = 0;
5429 	} else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) &&
5430 		   ext4_has_feature_journal_needs_recovery(sb)) {
5431 		ext4_msg(sb, KERN_ERR, "required journal recovery "
5432 		       "suppressed and not mounted read-only");
5433 		goto failed_mount3a;
5434 	} else {
5435 		const char *journal_option;
5436 
5437 		/* Nojournal mode, all journal mount options are illegal */
5438 		journal_option = ext4_has_journal_option(sb);
5439 		if (journal_option != NULL) {
5440 			ext4_msg(sb, KERN_ERR,
5441 				 "can't mount with %s, fs mounted w/o journal",
5442 				 journal_option);
5443 			goto failed_mount3a;
5444 		}
5445 
5446 		sbi->s_def_mount_opt &= ~EXT4_MOUNT_JOURNAL_CHECKSUM;
5447 		clear_opt(sb, JOURNAL_CHECKSUM);
5448 		clear_opt(sb, DATA_FLAGS);
5449 		clear_opt2(sb, JOURNAL_FAST_COMMIT);
5450 		sbi->s_journal = NULL;
5451 		needs_recovery = 0;
5452 	}
5453 
5454 	if (!test_opt(sb, NO_MBCACHE)) {
5455 		sbi->s_ea_block_cache = ext4_xattr_create_cache();
5456 		if (!sbi->s_ea_block_cache) {
5457 			ext4_msg(sb, KERN_ERR,
5458 				 "Failed to create ea_block_cache");
5459 			err = -EINVAL;
5460 			goto failed_mount_wq;
5461 		}
5462 
5463 		if (ext4_has_feature_ea_inode(sb)) {
5464 			sbi->s_ea_inode_cache = ext4_xattr_create_cache();
5465 			if (!sbi->s_ea_inode_cache) {
5466 				ext4_msg(sb, KERN_ERR,
5467 					 "Failed to create ea_inode_cache");
5468 				err = -EINVAL;
5469 				goto failed_mount_wq;
5470 			}
5471 		}
5472 	}
5473 
5474 	/*
5475 	 * Get the # of file system overhead blocks from the
5476 	 * superblock if present.
5477 	 */
5478 	sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
5479 	/* ignore the precalculated value if it is ridiculous */
5480 	if (sbi->s_overhead > ext4_blocks_count(es))
5481 		sbi->s_overhead = 0;
5482 	/*
5483 	 * If the bigalloc feature is not enabled recalculating the
5484 	 * overhead doesn't take long, so we might as well just redo
5485 	 * it to make sure we are using the correct value.
5486 	 */
5487 	if (!ext4_has_feature_bigalloc(sb))
5488 		sbi->s_overhead = 0;
5489 	if (sbi->s_overhead == 0) {
5490 		err = ext4_calculate_overhead(sb);
5491 		if (err)
5492 			goto failed_mount_wq;
5493 	}
5494 
5495 	/*
5496 	 * The maximum number of concurrent works can be high and
5497 	 * concurrency isn't really necessary.  Limit it to 1.
5498 	 */
5499 	EXT4_SB(sb)->rsv_conversion_wq =
5500 		alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
5501 	if (!EXT4_SB(sb)->rsv_conversion_wq) {
5502 		printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
5503 		err = -ENOMEM;
5504 		goto failed_mount4;
5505 	}
5506 
5507 	/*
5508 	 * The jbd2_journal_load will have done any necessary log recovery,
5509 	 * so we can safely mount the rest of the filesystem now.
5510 	 */
5511 
5512 	root = ext4_iget(sb, EXT4_ROOT_INO, EXT4_IGET_SPECIAL);
5513 	if (IS_ERR(root)) {
5514 		ext4_msg(sb, KERN_ERR, "get root inode failed");
5515 		err = PTR_ERR(root);
5516 		root = NULL;
5517 		goto failed_mount4;
5518 	}
5519 	if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
5520 		ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
5521 		iput(root);
5522 		err = -EFSCORRUPTED;
5523 		goto failed_mount4;
5524 	}
5525 
5526 	generic_set_sb_d_ops(sb);
5527 	sb->s_root = d_make_root(root);
5528 	if (!sb->s_root) {
5529 		ext4_msg(sb, KERN_ERR, "get root dentry failed");
5530 		err = -ENOMEM;
5531 		goto failed_mount4;
5532 	}
5533 
5534 	err = ext4_setup_super(sb, es, sb_rdonly(sb));
5535 	if (err == -EROFS) {
5536 		sb->s_flags |= SB_RDONLY;
5537 	} else if (err)
5538 		goto failed_mount4a;
5539 
5540 	ext4_set_resv_clusters(sb);
5541 
5542 	if (test_opt(sb, BLOCK_VALIDITY)) {
5543 		err = ext4_setup_system_zone(sb);
5544 		if (err) {
5545 			ext4_msg(sb, KERN_ERR, "failed to initialize system "
5546 				 "zone (%d)", err);
5547 			goto failed_mount4a;
5548 		}
5549 	}
5550 	ext4_fc_replay_cleanup(sb);
5551 
5552 	ext4_ext_init(sb);
5553 
5554 	/*
5555 	 * Enable optimize_scan if number of groups is > threshold. This can be
5556 	 * turned off by passing "mb_optimize_scan=0". This can also be
5557 	 * turned on forcefully by passing "mb_optimize_scan=1".
5558 	 */
5559 	if (!(ctx->spec & EXT4_SPEC_mb_optimize_scan)) {
5560 		if (sbi->s_groups_count >= MB_DEFAULT_LINEAR_SCAN_THRESHOLD)
5561 			set_opt2(sb, MB_OPTIMIZE_SCAN);
5562 		else
5563 			clear_opt2(sb, MB_OPTIMIZE_SCAN);
5564 	}
5565 
5566 	err = ext4_mb_init(sb);
5567 	if (err) {
5568 		ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
5569 			 err);
5570 		goto failed_mount5;
5571 	}
5572 
5573 	/*
5574 	 * We can only set up the journal commit callback once
5575 	 * mballoc is initialized
5576 	 */
5577 	if (sbi->s_journal)
5578 		sbi->s_journal->j_commit_callback =
5579 			ext4_journal_commit_callback;
5580 
5581 	err = ext4_percpu_param_init(sbi);
5582 	if (err)
5583 		goto failed_mount6;
5584 
5585 	if (ext4_has_feature_flex_bg(sb))
5586 		if (!ext4_fill_flex_info(sb)) {
5587 			ext4_msg(sb, KERN_ERR,
5588 			       "unable to initialize "
5589 			       "flex_bg meta info!");
5590 			err = -ENOMEM;
5591 			goto failed_mount6;
5592 		}
5593 
5594 	err = ext4_register_li_request(sb, first_not_zeroed);
5595 	if (err)
5596 		goto failed_mount6;
5597 
5598 	err = ext4_init_orphan_info(sb);
5599 	if (err)
5600 		goto failed_mount7;
5601 #ifdef CONFIG_QUOTA
5602 	/* Enable quota usage during mount. */
5603 	if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) {
5604 		err = ext4_enable_quotas(sb);
5605 		if (err)
5606 			goto failed_mount8;
5607 	}
5608 #endif  /* CONFIG_QUOTA */
5609 
5610 	/*
5611 	 * Save the original bdev mapping's wb_err value which could be
5612 	 * used to detect the metadata async write error.
5613 	 */
5614 	errseq_check_and_advance(&sb->s_bdev->bd_mapping->wb_err,
5615 				 &sbi->s_bdev_wb_err);
5616 	EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
5617 	ext4_orphan_cleanup(sb, es);
5618 	EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
5619 	/*
5620 	 * Update the checksum after updating free space/inode counters and
5621 	 * ext4_orphan_cleanup. Otherwise the superblock can have an incorrect
5622 	 * checksum in the buffer cache until it is written out and
5623 	 * e2fsprogs programs trying to open a file system immediately
5624 	 * after it is mounted can fail.
5625 	 */
5626 	ext4_superblock_csum_set(sb);
5627 	if (needs_recovery) {
5628 		ext4_msg(sb, KERN_INFO, "recovery complete");
5629 		err = ext4_mark_recovery_complete(sb, es);
5630 		if (err)
5631 			goto failed_mount9;
5632 	}
5633 
5634 	if (test_opt(sb, DISCARD) && !bdev_max_discard_sectors(sb->s_bdev)) {
5635 		ext4_msg(sb, KERN_WARNING,
5636 			 "mounting with \"discard\" option, but the device does not support discard");
5637 		clear_opt(sb, DISCARD);
5638 	}
5639 
5640 	if (es->s_error_count)
5641 		mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
5642 
5643 	/* Enable message ratelimiting. Default is 10 messages per 5 secs. */
5644 	ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
5645 	ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
5646 	ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
5647 	atomic_set(&sbi->s_warning_count, 0);
5648 	atomic_set(&sbi->s_msg_count, 0);
5649 
5650 	/* Register sysfs after all initializations are complete. */
5651 	err = ext4_register_sysfs(sb);
5652 	if (err)
5653 		goto failed_mount9;
5654 
5655 	return 0;
5656 
5657 failed_mount9:
5658 	ext4_quotas_off(sb, EXT4_MAXQUOTAS);
5659 failed_mount8: __maybe_unused
5660 	ext4_release_orphan_info(sb);
5661 failed_mount7:
5662 	ext4_unregister_li_request(sb);
5663 failed_mount6:
5664 	ext4_mb_release(sb);
5665 	ext4_flex_groups_free(sbi);
5666 	ext4_percpu_param_destroy(sbi);
5667 failed_mount5:
5668 	ext4_ext_release(sb);
5669 	ext4_release_system_zone(sb);
5670 failed_mount4a:
5671 	dput(sb->s_root);
5672 	sb->s_root = NULL;
5673 failed_mount4:
5674 	ext4_msg(sb, KERN_ERR, "mount failed");
5675 	if (EXT4_SB(sb)->rsv_conversion_wq)
5676 		destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
5677 failed_mount_wq:
5678 	ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
5679 	sbi->s_ea_inode_cache = NULL;
5680 
5681 	ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
5682 	sbi->s_ea_block_cache = NULL;
5683 
5684 	if (sbi->s_journal) {
5685 		ext4_journal_destroy(sbi, sbi->s_journal);
5686 	}
5687 failed_mount3a:
5688 	ext4_es_unregister_shrinker(sbi);
5689 failed_mount3:
5690 	/* flush s_sb_upd_work before sbi destroy */
5691 	flush_work(&sbi->s_sb_upd_work);
5692 	ext4_stop_mmpd(sbi);
5693 	timer_delete_sync(&sbi->s_err_report);
5694 	ext4_group_desc_free(sbi);
5695 failed_mount:
5696 #if IS_ENABLED(CONFIG_UNICODE)
5697 	utf8_unload(sb->s_encoding);
5698 #endif
5699 
5700 #ifdef CONFIG_QUOTA
5701 	for (unsigned int i = 0; i < EXT4_MAXQUOTAS; i++)
5702 		kfree(get_qf_name(sb, sbi, i));
5703 #endif
5704 	fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
5705 	brelse(sbi->s_sbh);
5706 	if (sbi->s_journal_bdev_file) {
5707 		invalidate_bdev(file_bdev(sbi->s_journal_bdev_file));
5708 		bdev_fput(sbi->s_journal_bdev_file);
5709 	}
5710 out_fail:
5711 	invalidate_bdev(sb->s_bdev);
5712 	sb->s_fs_info = NULL;
5713 	return err;
5714 }
5715 
ext4_fill_super(struct super_block * sb,struct fs_context * fc)5716 static int ext4_fill_super(struct super_block *sb, struct fs_context *fc)
5717 {
5718 	struct ext4_fs_context *ctx = fc->fs_private;
5719 	struct ext4_sb_info *sbi;
5720 	const char *descr;
5721 	int ret;
5722 
5723 	sbi = ext4_alloc_sbi(sb);
5724 	if (!sbi)
5725 		return -ENOMEM;
5726 
5727 	fc->s_fs_info = sbi;
5728 
5729 	/* Cleanup superblock name */
5730 	strreplace(sb->s_id, '/', '!');
5731 
5732 	sbi->s_sb_block = 1;	/* Default super block location */
5733 	if (ctx->spec & EXT4_SPEC_s_sb_block)
5734 		sbi->s_sb_block = ctx->s_sb_block;
5735 
5736 	ret = __ext4_fill_super(fc, sb);
5737 	if (ret < 0)
5738 		goto free_sbi;
5739 
5740 	if (sbi->s_journal) {
5741 		if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
5742 			descr = " journalled data mode";
5743 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
5744 			descr = " ordered data mode";
5745 		else
5746 			descr = " writeback data mode";
5747 	} else
5748 		descr = "out journal";
5749 
5750 	if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
5751 		ext4_msg(sb, KERN_INFO, "mounted filesystem %pU %s with%s. "
5752 			 "Quota mode: %s.", &sb->s_uuid,
5753 			 sb_rdonly(sb) ? "ro" : "r/w", descr,
5754 			 ext4_quota_mode(sb));
5755 
5756 	/* Update the s_overhead_clusters if necessary */
5757 	ext4_update_overhead(sb, false);
5758 	return 0;
5759 
5760 free_sbi:
5761 	ext4_free_sbi(sbi);
5762 	fc->s_fs_info = NULL;
5763 	return ret;
5764 }
5765 
ext4_get_tree(struct fs_context * fc)5766 static int ext4_get_tree(struct fs_context *fc)
5767 {
5768 	return get_tree_bdev(fc, ext4_fill_super);
5769 }
5770 
5771 /*
5772  * Setup any per-fs journal parameters now.  We'll do this both on
5773  * initial mount, once the journal has been initialised but before we've
5774  * done any recovery; and again on any subsequent remount.
5775  */
ext4_init_journal_params(struct super_block * sb,journal_t * journal)5776 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
5777 {
5778 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5779 
5780 	journal->j_commit_interval = sbi->s_commit_interval;
5781 	journal->j_min_batch_time = sbi->s_min_batch_time;
5782 	journal->j_max_batch_time = sbi->s_max_batch_time;
5783 	ext4_fc_init(sb, journal);
5784 
5785 	write_lock(&journal->j_state_lock);
5786 	if (test_opt(sb, BARRIER))
5787 		journal->j_flags |= JBD2_BARRIER;
5788 	else
5789 		journal->j_flags &= ~JBD2_BARRIER;
5790 	/*
5791 	 * Always enable journal cycle record option, letting the journal
5792 	 * records log transactions continuously between each mount.
5793 	 */
5794 	journal->j_flags |= JBD2_CYCLE_RECORD;
5795 	write_unlock(&journal->j_state_lock);
5796 }
5797 
ext4_get_journal_inode(struct super_block * sb,unsigned int journal_inum)5798 static struct inode *ext4_get_journal_inode(struct super_block *sb,
5799 					     unsigned int journal_inum)
5800 {
5801 	struct inode *journal_inode;
5802 
5803 	/*
5804 	 * Test for the existence of a valid inode on disk.  Bad things
5805 	 * happen if we iget() an unused inode, as the subsequent iput()
5806 	 * will try to delete it.
5807 	 */
5808 	journal_inode = ext4_iget(sb, journal_inum, EXT4_IGET_SPECIAL);
5809 	if (IS_ERR(journal_inode)) {
5810 		ext4_msg(sb, KERN_ERR, "no journal found");
5811 		return ERR_CAST(journal_inode);
5812 	}
5813 	if (!journal_inode->i_nlink) {
5814 		make_bad_inode(journal_inode);
5815 		iput(journal_inode);
5816 		ext4_msg(sb, KERN_ERR, "journal inode is deleted");
5817 		return ERR_PTR(-EFSCORRUPTED);
5818 	}
5819 	if (!S_ISREG(journal_inode->i_mode) || IS_ENCRYPTED(journal_inode)) {
5820 		ext4_msg(sb, KERN_ERR, "invalid journal inode");
5821 		iput(journal_inode);
5822 		return ERR_PTR(-EFSCORRUPTED);
5823 	}
5824 
5825 	ext4_debug("Journal inode found at %p: %lld bytes\n",
5826 		  journal_inode, journal_inode->i_size);
5827 	return journal_inode;
5828 }
5829 
ext4_journal_bmap(journal_t * journal,sector_t * block)5830 static int ext4_journal_bmap(journal_t *journal, sector_t *block)
5831 {
5832 	struct ext4_map_blocks map;
5833 	int ret;
5834 
5835 	if (journal->j_inode == NULL)
5836 		return 0;
5837 
5838 	map.m_lblk = *block;
5839 	map.m_len = 1;
5840 	ret = ext4_map_blocks(NULL, journal->j_inode, &map, 0);
5841 	if (ret <= 0) {
5842 		ext4_msg(journal->j_inode->i_sb, KERN_CRIT,
5843 			 "journal bmap failed: block %llu ret %d\n",
5844 			 *block, ret);
5845 		jbd2_journal_abort(journal, ret ? ret : -EIO);
5846 		return ret;
5847 	}
5848 	*block = map.m_pblk;
5849 	return 0;
5850 }
5851 
ext4_open_inode_journal(struct super_block * sb,unsigned int journal_inum)5852 static journal_t *ext4_open_inode_journal(struct super_block *sb,
5853 					  unsigned int journal_inum)
5854 {
5855 	struct inode *journal_inode;
5856 	journal_t *journal;
5857 
5858 	journal_inode = ext4_get_journal_inode(sb, journal_inum);
5859 	if (IS_ERR(journal_inode))
5860 		return ERR_CAST(journal_inode);
5861 
5862 	journal = jbd2_journal_init_inode(journal_inode);
5863 	if (IS_ERR(journal)) {
5864 		ext4_msg(sb, KERN_ERR, "Could not load journal inode");
5865 		iput(journal_inode);
5866 		return ERR_CAST(journal);
5867 	}
5868 	journal->j_private = sb;
5869 	journal->j_bmap = ext4_journal_bmap;
5870 	ext4_init_journal_params(sb, journal);
5871 	return journal;
5872 }
5873 
ext4_get_journal_blkdev(struct super_block * sb,dev_t j_dev,ext4_fsblk_t * j_start,ext4_fsblk_t * j_len)5874 static struct file *ext4_get_journal_blkdev(struct super_block *sb,
5875 					dev_t j_dev, ext4_fsblk_t *j_start,
5876 					ext4_fsblk_t *j_len)
5877 {
5878 	struct buffer_head *bh;
5879 	struct block_device *bdev;
5880 	struct file *bdev_file;
5881 	int hblock, blocksize;
5882 	ext4_fsblk_t sb_block;
5883 	unsigned long offset;
5884 	struct ext4_super_block *es;
5885 	int errno;
5886 
5887 	bdev_file = bdev_file_open_by_dev(j_dev,
5888 		BLK_OPEN_READ | BLK_OPEN_WRITE | BLK_OPEN_RESTRICT_WRITES,
5889 		sb, &fs_holder_ops);
5890 	if (IS_ERR(bdev_file)) {
5891 		ext4_msg(sb, KERN_ERR,
5892 			 "failed to open journal device unknown-block(%u,%u) %ld",
5893 			 MAJOR(j_dev), MINOR(j_dev), PTR_ERR(bdev_file));
5894 		return bdev_file;
5895 	}
5896 
5897 	bdev = file_bdev(bdev_file);
5898 	blocksize = sb->s_blocksize;
5899 	hblock = bdev_logical_block_size(bdev);
5900 	if (blocksize < hblock) {
5901 		ext4_msg(sb, KERN_ERR,
5902 			"blocksize too small for journal device");
5903 		errno = -EINVAL;
5904 		goto out_bdev;
5905 	}
5906 
5907 	sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
5908 	offset = EXT4_MIN_BLOCK_SIZE % blocksize;
5909 	set_blocksize(bdev_file, blocksize);
5910 	bh = __bread(bdev, sb_block, blocksize);
5911 	if (!bh) {
5912 		ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
5913 		       "external journal");
5914 		errno = -EINVAL;
5915 		goto out_bdev;
5916 	}
5917 
5918 	es = (struct ext4_super_block *) (bh->b_data + offset);
5919 	if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
5920 	    !(le32_to_cpu(es->s_feature_incompat) &
5921 	      EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
5922 		ext4_msg(sb, KERN_ERR, "external journal has bad superblock");
5923 		errno = -EFSCORRUPTED;
5924 		goto out_bh;
5925 	}
5926 
5927 	if ((le32_to_cpu(es->s_feature_ro_compat) &
5928 	     EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
5929 	    es->s_checksum != ext4_superblock_csum(es)) {
5930 		ext4_msg(sb, KERN_ERR, "external journal has corrupt superblock");
5931 		errno = -EFSCORRUPTED;
5932 		goto out_bh;
5933 	}
5934 
5935 	if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
5936 		ext4_msg(sb, KERN_ERR, "journal UUID does not match");
5937 		errno = -EFSCORRUPTED;
5938 		goto out_bh;
5939 	}
5940 
5941 	*j_start = sb_block + 1;
5942 	*j_len = ext4_blocks_count(es);
5943 	brelse(bh);
5944 	return bdev_file;
5945 
5946 out_bh:
5947 	brelse(bh);
5948 out_bdev:
5949 	bdev_fput(bdev_file);
5950 	return ERR_PTR(errno);
5951 }
5952 
ext4_open_dev_journal(struct super_block * sb,dev_t j_dev)5953 static journal_t *ext4_open_dev_journal(struct super_block *sb,
5954 					dev_t j_dev)
5955 {
5956 	journal_t *journal;
5957 	ext4_fsblk_t j_start;
5958 	ext4_fsblk_t j_len;
5959 	struct file *bdev_file;
5960 	int errno = 0;
5961 
5962 	bdev_file = ext4_get_journal_blkdev(sb, j_dev, &j_start, &j_len);
5963 	if (IS_ERR(bdev_file))
5964 		return ERR_CAST(bdev_file);
5965 
5966 	journal = jbd2_journal_init_dev(file_bdev(bdev_file), sb->s_bdev, j_start,
5967 					j_len, sb->s_blocksize);
5968 	if (IS_ERR(journal)) {
5969 		ext4_msg(sb, KERN_ERR, "failed to create device journal");
5970 		errno = PTR_ERR(journal);
5971 		goto out_bdev;
5972 	}
5973 	if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
5974 		ext4_msg(sb, KERN_ERR, "External journal has more than one "
5975 					"user (unsupported) - %d",
5976 			be32_to_cpu(journal->j_superblock->s_nr_users));
5977 		errno = -EINVAL;
5978 		goto out_journal;
5979 	}
5980 	journal->j_private = sb;
5981 	EXT4_SB(sb)->s_journal_bdev_file = bdev_file;
5982 	ext4_init_journal_params(sb, journal);
5983 	return journal;
5984 
5985 out_journal:
5986 	ext4_journal_destroy(EXT4_SB(sb), journal);
5987 out_bdev:
5988 	bdev_fput(bdev_file);
5989 	return ERR_PTR(errno);
5990 }
5991 
ext4_load_journal(struct super_block * sb,struct ext4_super_block * es,unsigned long journal_devnum)5992 static int ext4_load_journal(struct super_block *sb,
5993 			     struct ext4_super_block *es,
5994 			     unsigned long journal_devnum)
5995 {
5996 	journal_t *journal;
5997 	unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
5998 	dev_t journal_dev;
5999 	int err = 0;
6000 	int really_read_only;
6001 	int journal_dev_ro;
6002 
6003 	if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
6004 		return -EFSCORRUPTED;
6005 
6006 	if (journal_devnum &&
6007 	    journal_devnum != le32_to_cpu(es->s_journal_dev)) {
6008 		ext4_msg(sb, KERN_INFO, "external journal device major/minor "
6009 			"numbers have changed");
6010 		journal_dev = new_decode_dev(journal_devnum);
6011 	} else
6012 		journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
6013 
6014 	if (journal_inum && journal_dev) {
6015 		ext4_msg(sb, KERN_ERR,
6016 			 "filesystem has both journal inode and journal device!");
6017 		return -EINVAL;
6018 	}
6019 
6020 	if (journal_inum) {
6021 		journal = ext4_open_inode_journal(sb, journal_inum);
6022 		if (IS_ERR(journal))
6023 			return PTR_ERR(journal);
6024 	} else {
6025 		journal = ext4_open_dev_journal(sb, journal_dev);
6026 		if (IS_ERR(journal))
6027 			return PTR_ERR(journal);
6028 	}
6029 
6030 	journal_dev_ro = bdev_read_only(journal->j_dev);
6031 	really_read_only = bdev_read_only(sb->s_bdev) | journal_dev_ro;
6032 
6033 	if (journal_dev_ro && !sb_rdonly(sb)) {
6034 		ext4_msg(sb, KERN_ERR,
6035 			 "journal device read-only, try mounting with '-o ro'");
6036 		err = -EROFS;
6037 		goto err_out;
6038 	}
6039 
6040 	/*
6041 	 * Are we loading a blank journal or performing recovery after a
6042 	 * crash?  For recovery, we need to check in advance whether we
6043 	 * can get read-write access to the device.
6044 	 */
6045 	if (ext4_has_feature_journal_needs_recovery(sb)) {
6046 		if (sb_rdonly(sb)) {
6047 			ext4_msg(sb, KERN_INFO, "INFO: recovery "
6048 					"required on readonly filesystem");
6049 			if (really_read_only) {
6050 				ext4_msg(sb, KERN_ERR, "write access "
6051 					"unavailable, cannot proceed "
6052 					"(try mounting with noload)");
6053 				err = -EROFS;
6054 				goto err_out;
6055 			}
6056 			ext4_msg(sb, KERN_INFO, "write access will "
6057 			       "be enabled during recovery");
6058 		}
6059 	}
6060 
6061 	if (!(journal->j_flags & JBD2_BARRIER))
6062 		ext4_msg(sb, KERN_INFO, "barriers disabled");
6063 
6064 	if (!ext4_has_feature_journal_needs_recovery(sb))
6065 		err = jbd2_journal_wipe(journal, !really_read_only);
6066 	if (!err) {
6067 		char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
6068 		__le16 orig_state;
6069 		bool changed = false;
6070 
6071 		if (save)
6072 			memcpy(save, ((char *) es) +
6073 			       EXT4_S_ERR_START, EXT4_S_ERR_LEN);
6074 		err = jbd2_journal_load(journal);
6075 		if (save && memcmp(((char *) es) + EXT4_S_ERR_START,
6076 				   save, EXT4_S_ERR_LEN)) {
6077 			memcpy(((char *) es) + EXT4_S_ERR_START,
6078 			       save, EXT4_S_ERR_LEN);
6079 			changed = true;
6080 		}
6081 		kfree(save);
6082 		orig_state = es->s_state;
6083 		es->s_state |= cpu_to_le16(EXT4_SB(sb)->s_mount_state &
6084 					   EXT4_ERROR_FS);
6085 		if (orig_state != es->s_state)
6086 			changed = true;
6087 		/* Write out restored error information to the superblock */
6088 		if (changed && !really_read_only) {
6089 			int err2;
6090 			err2 = ext4_commit_super(sb);
6091 			err = err ? : err2;
6092 		}
6093 	}
6094 
6095 	if (err) {
6096 		ext4_msg(sb, KERN_ERR, "error loading journal");
6097 		goto err_out;
6098 	}
6099 
6100 	EXT4_SB(sb)->s_journal = journal;
6101 	err = ext4_clear_journal_err(sb, es);
6102 	if (err) {
6103 		ext4_journal_destroy(EXT4_SB(sb), journal);
6104 		return err;
6105 	}
6106 
6107 	if (!really_read_only && journal_devnum &&
6108 	    journal_devnum != le32_to_cpu(es->s_journal_dev)) {
6109 		es->s_journal_dev = cpu_to_le32(journal_devnum);
6110 		ext4_commit_super(sb);
6111 	}
6112 	if (!really_read_only && journal_inum &&
6113 	    journal_inum != le32_to_cpu(es->s_journal_inum)) {
6114 		es->s_journal_inum = cpu_to_le32(journal_inum);
6115 		ext4_commit_super(sb);
6116 	}
6117 
6118 	return 0;
6119 
6120 err_out:
6121 	ext4_journal_destroy(EXT4_SB(sb), journal);
6122 	return err;
6123 }
6124 
6125 /* Copy state of EXT4_SB(sb) into buffer for on-disk superblock */
ext4_update_super(struct super_block * sb)6126 static void ext4_update_super(struct super_block *sb)
6127 {
6128 	struct ext4_sb_info *sbi = EXT4_SB(sb);
6129 	struct ext4_super_block *es = sbi->s_es;
6130 	struct buffer_head *sbh = sbi->s_sbh;
6131 
6132 	lock_buffer(sbh);
6133 	/*
6134 	 * If the file system is mounted read-only, don't update the
6135 	 * superblock write time.  This avoids updating the superblock
6136 	 * write time when we are mounting the root file system
6137 	 * read/only but we need to replay the journal; at that point,
6138 	 * for people who are east of GMT and who make their clock
6139 	 * tick in localtime for Windows bug-for-bug compatibility,
6140 	 * the clock is set in the future, and this will cause e2fsck
6141 	 * to complain and force a full file system check.
6142 	 */
6143 	if (!sb_rdonly(sb))
6144 		ext4_update_tstamp(es, s_wtime);
6145 	es->s_kbytes_written =
6146 		cpu_to_le64(sbi->s_kbytes_written +
6147 		    ((part_stat_read(sb->s_bdev, sectors[STAT_WRITE]) -
6148 		      sbi->s_sectors_written_start) >> 1));
6149 	if (percpu_counter_initialized(&sbi->s_freeclusters_counter))
6150 		ext4_free_blocks_count_set(es,
6151 			EXT4_C2B(sbi, percpu_counter_sum_positive(
6152 				&sbi->s_freeclusters_counter)));
6153 	if (percpu_counter_initialized(&sbi->s_freeinodes_counter))
6154 		es->s_free_inodes_count =
6155 			cpu_to_le32(percpu_counter_sum_positive(
6156 				&sbi->s_freeinodes_counter));
6157 	/* Copy error information to the on-disk superblock */
6158 	spin_lock(&sbi->s_error_lock);
6159 	if (sbi->s_add_error_count > 0) {
6160 		es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
6161 		if (!es->s_first_error_time && !es->s_first_error_time_hi) {
6162 			__ext4_update_tstamp(&es->s_first_error_time,
6163 					     &es->s_first_error_time_hi,
6164 					     sbi->s_first_error_time);
6165 			strtomem_pad(es->s_first_error_func,
6166 				     sbi->s_first_error_func, 0);
6167 			es->s_first_error_line =
6168 				cpu_to_le32(sbi->s_first_error_line);
6169 			es->s_first_error_ino =
6170 				cpu_to_le32(sbi->s_first_error_ino);
6171 			es->s_first_error_block =
6172 				cpu_to_le64(sbi->s_first_error_block);
6173 			es->s_first_error_errcode =
6174 				ext4_errno_to_code(sbi->s_first_error_code);
6175 		}
6176 		__ext4_update_tstamp(&es->s_last_error_time,
6177 				     &es->s_last_error_time_hi,
6178 				     sbi->s_last_error_time);
6179 		strtomem_pad(es->s_last_error_func, sbi->s_last_error_func, 0);
6180 		es->s_last_error_line = cpu_to_le32(sbi->s_last_error_line);
6181 		es->s_last_error_ino = cpu_to_le32(sbi->s_last_error_ino);
6182 		es->s_last_error_block = cpu_to_le64(sbi->s_last_error_block);
6183 		es->s_last_error_errcode =
6184 				ext4_errno_to_code(sbi->s_last_error_code);
6185 		/*
6186 		 * Start the daily error reporting function if it hasn't been
6187 		 * started already
6188 		 */
6189 		if (!es->s_error_count)
6190 			mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);
6191 		le32_add_cpu(&es->s_error_count, sbi->s_add_error_count);
6192 		sbi->s_add_error_count = 0;
6193 	}
6194 	spin_unlock(&sbi->s_error_lock);
6195 
6196 	ext4_superblock_csum_set(sb);
6197 	unlock_buffer(sbh);
6198 }
6199 
ext4_commit_super(struct super_block * sb)6200 static int ext4_commit_super(struct super_block *sb)
6201 {
6202 	struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
6203 
6204 	if (!sbh)
6205 		return -EINVAL;
6206 
6207 	ext4_update_super(sb);
6208 
6209 	lock_buffer(sbh);
6210 	/* Buffer got discarded which means block device got invalidated */
6211 	if (!buffer_mapped(sbh)) {
6212 		unlock_buffer(sbh);
6213 		return -EIO;
6214 	}
6215 
6216 	if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
6217 		/*
6218 		 * Oh, dear.  A previous attempt to write the
6219 		 * superblock failed.  This could happen because the
6220 		 * USB device was yanked out.  Or it could happen to
6221 		 * be a transient write error and maybe the block will
6222 		 * be remapped.  Nothing we can do but to retry the
6223 		 * write and hope for the best.
6224 		 */
6225 		ext4_msg(sb, KERN_ERR, "previous I/O error to "
6226 		       "superblock detected");
6227 		clear_buffer_write_io_error(sbh);
6228 		set_buffer_uptodate(sbh);
6229 	}
6230 	get_bh(sbh);
6231 	/* Clear potential dirty bit if it was journalled update */
6232 	clear_buffer_dirty(sbh);
6233 	sbh->b_end_io = end_buffer_write_sync;
6234 	submit_bh(REQ_OP_WRITE | REQ_SYNC |
6235 		  (test_opt(sb, BARRIER) ? REQ_FUA : 0), sbh);
6236 	wait_on_buffer(sbh);
6237 	if (buffer_write_io_error(sbh)) {
6238 		ext4_msg(sb, KERN_ERR, "I/O error while writing "
6239 		       "superblock");
6240 		clear_buffer_write_io_error(sbh);
6241 		set_buffer_uptodate(sbh);
6242 		return -EIO;
6243 	}
6244 	return 0;
6245 }
6246 
6247 /*
6248  * Have we just finished recovery?  If so, and if we are mounting (or
6249  * remounting) the filesystem readonly, then we will end up with a
6250  * consistent fs on disk.  Record that fact.
6251  */
ext4_mark_recovery_complete(struct super_block * sb,struct ext4_super_block * es)6252 static int ext4_mark_recovery_complete(struct super_block *sb,
6253 				       struct ext4_super_block *es)
6254 {
6255 	int err;
6256 	journal_t *journal = EXT4_SB(sb)->s_journal;
6257 
6258 	if (!ext4_has_feature_journal(sb)) {
6259 		if (journal != NULL) {
6260 			ext4_error(sb, "Journal got removed while the fs was "
6261 				   "mounted!");
6262 			return -EFSCORRUPTED;
6263 		}
6264 		return 0;
6265 	}
6266 	jbd2_journal_lock_updates(journal);
6267 	err = jbd2_journal_flush(journal, 0);
6268 	if (err < 0)
6269 		goto out;
6270 
6271 	if (sb_rdonly(sb) && (ext4_has_feature_journal_needs_recovery(sb) ||
6272 	    ext4_has_feature_orphan_present(sb))) {
6273 		if (!ext4_orphan_file_empty(sb)) {
6274 			ext4_error(sb, "Orphan file not empty on read-only fs.");
6275 			err = -EFSCORRUPTED;
6276 			goto out;
6277 		}
6278 		ext4_clear_feature_journal_needs_recovery(sb);
6279 		ext4_clear_feature_orphan_present(sb);
6280 		ext4_commit_super(sb);
6281 	}
6282 out:
6283 	jbd2_journal_unlock_updates(journal);
6284 	return err;
6285 }
6286 
6287 /*
6288  * If we are mounting (or read-write remounting) a filesystem whose journal
6289  * has recorded an error from a previous lifetime, move that error to the
6290  * main filesystem now.
6291  */
ext4_clear_journal_err(struct super_block * sb,struct ext4_super_block * es)6292 static int ext4_clear_journal_err(struct super_block *sb,
6293 				   struct ext4_super_block *es)
6294 {
6295 	journal_t *journal;
6296 	int j_errno;
6297 	const char *errstr;
6298 
6299 	if (!ext4_has_feature_journal(sb)) {
6300 		ext4_error(sb, "Journal got removed while the fs was mounted!");
6301 		return -EFSCORRUPTED;
6302 	}
6303 
6304 	journal = EXT4_SB(sb)->s_journal;
6305 
6306 	/*
6307 	 * Now check for any error status which may have been recorded in the
6308 	 * journal by a prior ext4_error() or ext4_abort()
6309 	 */
6310 
6311 	j_errno = jbd2_journal_errno(journal);
6312 	if (j_errno) {
6313 		char nbuf[16];
6314 
6315 		errstr = ext4_decode_error(sb, j_errno, nbuf);
6316 		ext4_warning(sb, "Filesystem error recorded "
6317 			     "from previous mount: %s", errstr);
6318 
6319 		EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
6320 		es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
6321 		j_errno = ext4_commit_super(sb);
6322 		if (j_errno)
6323 			return j_errno;
6324 		ext4_warning(sb, "Marked fs in need of filesystem check.");
6325 
6326 		jbd2_journal_clear_err(journal);
6327 		jbd2_journal_update_sb_errno(journal);
6328 	}
6329 	return 0;
6330 }
6331 
6332 /*
6333  * Force the running and committing transactions to commit,
6334  * and wait on the commit.
6335  */
ext4_force_commit(struct super_block * sb)6336 int ext4_force_commit(struct super_block *sb)
6337 {
6338 	return ext4_journal_force_commit(EXT4_SB(sb)->s_journal);
6339 }
6340 
ext4_sync_fs(struct super_block * sb,int wait)6341 static int ext4_sync_fs(struct super_block *sb, int wait)
6342 {
6343 	int ret = 0;
6344 	tid_t target;
6345 	bool needs_barrier = false;
6346 	struct ext4_sb_info *sbi = EXT4_SB(sb);
6347 
6348 	ret = ext4_emergency_state(sb);
6349 	if (unlikely(ret))
6350 		return ret;
6351 
6352 	trace_ext4_sync_fs(sb, wait);
6353 	flush_workqueue(sbi->rsv_conversion_wq);
6354 	/*
6355 	 * Writeback quota in non-journalled quota case - journalled quota has
6356 	 * no dirty dquots
6357 	 */
6358 	dquot_writeback_dquots(sb, -1);
6359 	/*
6360 	 * Data writeback is possible w/o journal transaction, so barrier must
6361 	 * being sent at the end of the function. But we can skip it if
6362 	 * transaction_commit will do it for us.
6363 	 */
6364 	if (sbi->s_journal) {
6365 		target = jbd2_get_latest_transaction(sbi->s_journal);
6366 		if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
6367 		    !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
6368 			needs_barrier = true;
6369 
6370 		if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
6371 			if (wait)
6372 				ret = jbd2_log_wait_commit(sbi->s_journal,
6373 							   target);
6374 		}
6375 	} else if (wait && test_opt(sb, BARRIER))
6376 		needs_barrier = true;
6377 	if (needs_barrier) {
6378 		int err;
6379 		err = blkdev_issue_flush(sb->s_bdev);
6380 		if (!ret)
6381 			ret = err;
6382 	}
6383 
6384 	return ret;
6385 }
6386 
6387 /*
6388  * LVM calls this function before a (read-only) snapshot is created.  This
6389  * gives us a chance to flush the journal completely and mark the fs clean.
6390  *
6391  * Note that only this function cannot bring a filesystem to be in a clean
6392  * state independently. It relies on upper layer to stop all data & metadata
6393  * modifications.
6394  */
ext4_freeze(struct super_block * sb)6395 static int ext4_freeze(struct super_block *sb)
6396 {
6397 	int error = 0;
6398 	journal_t *journal = EXT4_SB(sb)->s_journal;
6399 
6400 	if (journal) {
6401 		/* Now we set up the journal barrier. */
6402 		jbd2_journal_lock_updates(journal);
6403 
6404 		/*
6405 		 * Don't clear the needs_recovery flag if we failed to
6406 		 * flush the journal.
6407 		 */
6408 		error = jbd2_journal_flush(journal, 0);
6409 		if (error < 0)
6410 			goto out;
6411 
6412 		/* Journal blocked and flushed, clear needs_recovery flag. */
6413 		ext4_clear_feature_journal_needs_recovery(sb);
6414 		if (ext4_orphan_file_empty(sb))
6415 			ext4_clear_feature_orphan_present(sb);
6416 	}
6417 
6418 	error = ext4_commit_super(sb);
6419 out:
6420 	if (journal)
6421 		/* we rely on upper layer to stop further updates */
6422 		jbd2_journal_unlock_updates(journal);
6423 	return error;
6424 }
6425 
6426 /*
6427  * Called by LVM after the snapshot is done.  We need to reset the RECOVER
6428  * flag here, even though the filesystem is not technically dirty yet.
6429  */
ext4_unfreeze(struct super_block * sb)6430 static int ext4_unfreeze(struct super_block *sb)
6431 {
6432 	if (ext4_emergency_state(sb))
6433 		return 0;
6434 
6435 	if (EXT4_SB(sb)->s_journal) {
6436 		/* Reset the needs_recovery flag before the fs is unlocked. */
6437 		ext4_set_feature_journal_needs_recovery(sb);
6438 		if (ext4_has_feature_orphan_file(sb))
6439 			ext4_set_feature_orphan_present(sb);
6440 	}
6441 
6442 	ext4_commit_super(sb);
6443 	return 0;
6444 }
6445 
6446 /*
6447  * Structure to save mount options for ext4_remount's benefit
6448  */
6449 struct ext4_mount_options {
6450 	unsigned long s_mount_opt;
6451 	unsigned long s_mount_opt2;
6452 	kuid_t s_resuid;
6453 	kgid_t s_resgid;
6454 	unsigned long s_commit_interval;
6455 	u32 s_min_batch_time, s_max_batch_time;
6456 #ifdef CONFIG_QUOTA
6457 	int s_jquota_fmt;
6458 	char *s_qf_names[EXT4_MAXQUOTAS];
6459 #endif
6460 };
6461 
__ext4_remount(struct fs_context * fc,struct super_block * sb)6462 static int __ext4_remount(struct fs_context *fc, struct super_block *sb)
6463 {
6464 	struct ext4_fs_context *ctx = fc->fs_private;
6465 	struct ext4_super_block *es;
6466 	struct ext4_sb_info *sbi = EXT4_SB(sb);
6467 	unsigned long old_sb_flags;
6468 	struct ext4_mount_options old_opts;
6469 	ext4_group_t g;
6470 	int err = 0;
6471 	int alloc_ctx;
6472 #ifdef CONFIG_QUOTA
6473 	int enable_quota = 0;
6474 	int i, j;
6475 	char *to_free[EXT4_MAXQUOTAS];
6476 #endif
6477 
6478 
6479 	/* Store the original options */
6480 	old_sb_flags = sb->s_flags;
6481 	old_opts.s_mount_opt = sbi->s_mount_opt;
6482 	old_opts.s_mount_opt2 = sbi->s_mount_opt2;
6483 	old_opts.s_resuid = sbi->s_resuid;
6484 	old_opts.s_resgid = sbi->s_resgid;
6485 	old_opts.s_commit_interval = sbi->s_commit_interval;
6486 	old_opts.s_min_batch_time = sbi->s_min_batch_time;
6487 	old_opts.s_max_batch_time = sbi->s_max_batch_time;
6488 #ifdef CONFIG_QUOTA
6489 	old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
6490 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
6491 		if (sbi->s_qf_names[i]) {
6492 			char *qf_name = get_qf_name(sb, sbi, i);
6493 
6494 			old_opts.s_qf_names[i] = kstrdup(qf_name, GFP_KERNEL);
6495 			if (!old_opts.s_qf_names[i]) {
6496 				for (j = 0; j < i; j++)
6497 					kfree(old_opts.s_qf_names[j]);
6498 				return -ENOMEM;
6499 			}
6500 		} else
6501 			old_opts.s_qf_names[i] = NULL;
6502 #endif
6503 	if (!(ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO)) {
6504 		if (sbi->s_journal && sbi->s_journal->j_task->io_context)
6505 			ctx->journal_ioprio =
6506 				sbi->s_journal->j_task->io_context->ioprio;
6507 		else
6508 			ctx->journal_ioprio = EXT4_DEF_JOURNAL_IOPRIO;
6509 
6510 	}
6511 
6512 	if ((ctx->spec & EXT4_SPEC_s_stripe) &&
6513 	    ext4_is_stripe_incompatible(sb, ctx->s_stripe)) {
6514 		ext4_msg(sb, KERN_WARNING,
6515 			 "stripe (%lu) is not aligned with cluster size (%u), "
6516 			 "stripe is disabled",
6517 			 ctx->s_stripe, sbi->s_cluster_ratio);
6518 		ctx->s_stripe = 0;
6519 	}
6520 
6521 	/*
6522 	 * Changing the DIOREAD_NOLOCK or DELALLOC mount options may cause
6523 	 * two calls to ext4_should_dioread_nolock() to return inconsistent
6524 	 * values, triggering WARN_ON in ext4_add_complete_io(). we grab
6525 	 * here s_writepages_rwsem to avoid race between writepages ops and
6526 	 * remount.
6527 	 */
6528 	alloc_ctx = ext4_writepages_down_write(sb);
6529 	ext4_apply_options(fc, sb);
6530 	ext4_writepages_up_write(sb, alloc_ctx);
6531 
6532 	if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
6533 	    test_opt(sb, JOURNAL_CHECKSUM)) {
6534 		ext4_msg(sb, KERN_ERR, "changing journal_checksum "
6535 			 "during remount not supported; ignoring");
6536 		sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
6537 	}
6538 
6539 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
6540 		if (test_opt2(sb, EXPLICIT_DELALLOC)) {
6541 			ext4_msg(sb, KERN_ERR, "can't mount with "
6542 				 "both data=journal and delalloc");
6543 			err = -EINVAL;
6544 			goto restore_opts;
6545 		}
6546 		if (test_opt(sb, DIOREAD_NOLOCK)) {
6547 			ext4_msg(sb, KERN_ERR, "can't mount with "
6548 				 "both data=journal and dioread_nolock");
6549 			err = -EINVAL;
6550 			goto restore_opts;
6551 		}
6552 	} else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) {
6553 		if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
6554 			ext4_msg(sb, KERN_ERR, "can't mount with "
6555 				"journal_async_commit in data=ordered mode");
6556 			err = -EINVAL;
6557 			goto restore_opts;
6558 		}
6559 	}
6560 
6561 	if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) {
6562 		ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount");
6563 		err = -EINVAL;
6564 		goto restore_opts;
6565 	}
6566 
6567 	if ((old_opts.s_mount_opt & EXT4_MOUNT_DELALLOC) &&
6568 	    !test_opt(sb, DELALLOC)) {
6569 		ext4_msg(sb, KERN_ERR, "can't disable delalloc during remount");
6570 		err = -EINVAL;
6571 		goto restore_opts;
6572 	}
6573 
6574 	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
6575 		(test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
6576 
6577 	es = sbi->s_es;
6578 
6579 	if (sbi->s_journal) {
6580 		ext4_init_journal_params(sb, sbi->s_journal);
6581 		set_task_ioprio(sbi->s_journal->j_task, ctx->journal_ioprio);
6582 	}
6583 
6584 	/* Flush outstanding errors before changing fs state */
6585 	flush_work(&sbi->s_sb_upd_work);
6586 
6587 	if ((bool)(fc->sb_flags & SB_RDONLY) != sb_rdonly(sb)) {
6588 		if (ext4_emergency_state(sb)) {
6589 			err = -EROFS;
6590 			goto restore_opts;
6591 		}
6592 
6593 		if (fc->sb_flags & SB_RDONLY) {
6594 			err = sync_filesystem(sb);
6595 			if (err < 0)
6596 				goto restore_opts;
6597 			err = dquot_suspend(sb, -1);
6598 			if (err < 0)
6599 				goto restore_opts;
6600 
6601 			/*
6602 			 * First of all, the unconditional stuff we have to do
6603 			 * to disable replay of the journal when we next remount
6604 			 */
6605 			sb->s_flags |= SB_RDONLY;
6606 
6607 			/*
6608 			 * OK, test if we are remounting a valid rw partition
6609 			 * readonly, and if so set the rdonly flag and then
6610 			 * mark the partition as valid again.
6611 			 */
6612 			if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
6613 			    (sbi->s_mount_state & EXT4_VALID_FS))
6614 				es->s_state = cpu_to_le16(sbi->s_mount_state);
6615 
6616 			if (sbi->s_journal) {
6617 				/*
6618 				 * We let remount-ro finish even if marking fs
6619 				 * as clean failed...
6620 				 */
6621 				ext4_mark_recovery_complete(sb, es);
6622 			}
6623 		} else {
6624 			/* Make sure we can mount this feature set readwrite */
6625 			if (ext4_has_feature_readonly(sb) ||
6626 			    !ext4_feature_set_ok(sb, 0)) {
6627 				err = -EROFS;
6628 				goto restore_opts;
6629 			}
6630 			/*
6631 			 * Make sure the group descriptor checksums
6632 			 * are sane.  If they aren't, refuse to remount r/w.
6633 			 */
6634 			for (g = 0; g < sbi->s_groups_count; g++) {
6635 				struct ext4_group_desc *gdp =
6636 					ext4_get_group_desc(sb, g, NULL);
6637 
6638 				if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
6639 					ext4_msg(sb, KERN_ERR,
6640 	       "ext4_remount: Checksum for group %u failed (%u!=%u)",
6641 		g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
6642 					       le16_to_cpu(gdp->bg_checksum));
6643 					err = -EFSBADCRC;
6644 					goto restore_opts;
6645 				}
6646 			}
6647 
6648 			/*
6649 			 * If we have an unprocessed orphan list hanging
6650 			 * around from a previously readonly bdev mount,
6651 			 * require a full umount/remount for now.
6652 			 */
6653 			if (es->s_last_orphan || !ext4_orphan_file_empty(sb)) {
6654 				ext4_msg(sb, KERN_WARNING, "Couldn't "
6655 				       "remount RDWR because of unprocessed "
6656 				       "orphan inode list.  Please "
6657 				       "umount/remount instead");
6658 				err = -EINVAL;
6659 				goto restore_opts;
6660 			}
6661 
6662 			/*
6663 			 * Mounting a RDONLY partition read-write, so reread
6664 			 * and store the current valid flag.  (It may have
6665 			 * been changed by e2fsck since we originally mounted
6666 			 * the partition.)
6667 			 */
6668 			if (sbi->s_journal) {
6669 				err = ext4_clear_journal_err(sb, es);
6670 				if (err)
6671 					goto restore_opts;
6672 			}
6673 			sbi->s_mount_state = (le16_to_cpu(es->s_state) &
6674 					      ~EXT4_FC_REPLAY);
6675 
6676 			err = ext4_setup_super(sb, es, 0);
6677 			if (err)
6678 				goto restore_opts;
6679 
6680 			sb->s_flags &= ~SB_RDONLY;
6681 			if (ext4_has_feature_mmp(sb)) {
6682 				err = ext4_multi_mount_protect(sb,
6683 						le64_to_cpu(es->s_mmp_block));
6684 				if (err)
6685 					goto restore_opts;
6686 			}
6687 #ifdef CONFIG_QUOTA
6688 			enable_quota = 1;
6689 #endif
6690 		}
6691 	}
6692 
6693 	/*
6694 	 * Handle creation of system zone data early because it can fail.
6695 	 * Releasing of existing data is done when we are sure remount will
6696 	 * succeed.
6697 	 */
6698 	if (test_opt(sb, BLOCK_VALIDITY) && !sbi->s_system_blks) {
6699 		err = ext4_setup_system_zone(sb);
6700 		if (err)
6701 			goto restore_opts;
6702 	}
6703 
6704 	if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) {
6705 		err = ext4_commit_super(sb);
6706 		if (err)
6707 			goto restore_opts;
6708 	}
6709 
6710 #ifdef CONFIG_QUOTA
6711 	if (enable_quota) {
6712 		if (sb_any_quota_suspended(sb))
6713 			dquot_resume(sb, -1);
6714 		else if (ext4_has_feature_quota(sb)) {
6715 			err = ext4_enable_quotas(sb);
6716 			if (err)
6717 				goto restore_opts;
6718 		}
6719 	}
6720 	/* Release old quota file names */
6721 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
6722 		kfree(old_opts.s_qf_names[i]);
6723 #endif
6724 	if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
6725 		ext4_release_system_zone(sb);
6726 
6727 	/*
6728 	 * Reinitialize lazy itable initialization thread based on
6729 	 * current settings
6730 	 */
6731 	if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE))
6732 		ext4_unregister_li_request(sb);
6733 	else {
6734 		ext4_group_t first_not_zeroed;
6735 		first_not_zeroed = ext4_has_uninit_itable(sb);
6736 		ext4_register_li_request(sb, first_not_zeroed);
6737 	}
6738 
6739 	if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb))
6740 		ext4_stop_mmpd(sbi);
6741 
6742 	/*
6743 	 * Handle aborting the filesystem as the last thing during remount to
6744 	 * avoid obsure errors during remount when some option changes fail to
6745 	 * apply due to shutdown filesystem.
6746 	 */
6747 	if (test_opt2(sb, ABORT))
6748 		ext4_abort(sb, ESHUTDOWN, "Abort forced by user");
6749 
6750 	return 0;
6751 
6752 restore_opts:
6753 	/*
6754 	 * If there was a failing r/w to ro transition, we may need to
6755 	 * re-enable quota
6756 	 */
6757 	if (sb_rdonly(sb) && !(old_sb_flags & SB_RDONLY) &&
6758 	    sb_any_quota_suspended(sb))
6759 		dquot_resume(sb, -1);
6760 
6761 	alloc_ctx = ext4_writepages_down_write(sb);
6762 	sb->s_flags = old_sb_flags;
6763 	sbi->s_mount_opt = old_opts.s_mount_opt;
6764 	sbi->s_mount_opt2 = old_opts.s_mount_opt2;
6765 	sbi->s_resuid = old_opts.s_resuid;
6766 	sbi->s_resgid = old_opts.s_resgid;
6767 	sbi->s_commit_interval = old_opts.s_commit_interval;
6768 	sbi->s_min_batch_time = old_opts.s_min_batch_time;
6769 	sbi->s_max_batch_time = old_opts.s_max_batch_time;
6770 	ext4_writepages_up_write(sb, alloc_ctx);
6771 
6772 	if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
6773 		ext4_release_system_zone(sb);
6774 #ifdef CONFIG_QUOTA
6775 	sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
6776 	for (i = 0; i < EXT4_MAXQUOTAS; i++) {
6777 		to_free[i] = get_qf_name(sb, sbi, i);
6778 		rcu_assign_pointer(sbi->s_qf_names[i], old_opts.s_qf_names[i]);
6779 	}
6780 	synchronize_rcu();
6781 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
6782 		kfree(to_free[i]);
6783 #endif
6784 	if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb))
6785 		ext4_stop_mmpd(sbi);
6786 	return err;
6787 }
6788 
ext4_reconfigure(struct fs_context * fc)6789 static int ext4_reconfigure(struct fs_context *fc)
6790 {
6791 	struct super_block *sb = fc->root->d_sb;
6792 	int ret;
6793 	bool old_ro = sb_rdonly(sb);
6794 
6795 	fc->s_fs_info = EXT4_SB(sb);
6796 
6797 	ret = ext4_check_opt_consistency(fc, sb);
6798 	if (ret < 0)
6799 		return ret;
6800 
6801 	ret = __ext4_remount(fc, sb);
6802 	if (ret < 0)
6803 		return ret;
6804 
6805 	ext4_msg(sb, KERN_INFO, "re-mounted %pU%s.",
6806 		 &sb->s_uuid,
6807 		 (old_ro != sb_rdonly(sb)) ? (sb_rdonly(sb) ? " ro" : " r/w") : "");
6808 
6809 	return 0;
6810 }
6811 
6812 #ifdef CONFIG_QUOTA
ext4_statfs_project(struct super_block * sb,kprojid_t projid,struct kstatfs * buf)6813 static int ext4_statfs_project(struct super_block *sb,
6814 			       kprojid_t projid, struct kstatfs *buf)
6815 {
6816 	struct kqid qid;
6817 	struct dquot *dquot;
6818 	u64 limit;
6819 	u64 curblock;
6820 
6821 	qid = make_kqid_projid(projid);
6822 	dquot = dqget(sb, qid);
6823 	if (IS_ERR(dquot))
6824 		return PTR_ERR(dquot);
6825 	spin_lock(&dquot->dq_dqb_lock);
6826 
6827 	limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit,
6828 			     dquot->dq_dqb.dqb_bhardlimit);
6829 	limit >>= sb->s_blocksize_bits;
6830 
6831 	if (limit) {
6832 		uint64_t	remaining = 0;
6833 
6834 		curblock = (dquot->dq_dqb.dqb_curspace +
6835 			    dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits;
6836 		if (limit > curblock)
6837 			remaining = limit - curblock;
6838 
6839 		buf->f_blocks = min(buf->f_blocks, limit);
6840 		buf->f_bfree = min(buf->f_bfree, remaining);
6841 		buf->f_bavail = min(buf->f_bavail, remaining);
6842 	}
6843 
6844 	limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit,
6845 			     dquot->dq_dqb.dqb_ihardlimit);
6846 	if (limit) {
6847 		uint64_t	remaining = 0;
6848 
6849 		if (limit > dquot->dq_dqb.dqb_curinodes)
6850 			remaining = limit - dquot->dq_dqb.dqb_curinodes;
6851 
6852 		buf->f_files = min(buf->f_files, limit);
6853 		buf->f_ffree = min(buf->f_ffree, remaining);
6854 	}
6855 
6856 	spin_unlock(&dquot->dq_dqb_lock);
6857 	dqput(dquot);
6858 	return 0;
6859 }
6860 #endif
6861 
ext4_statfs(struct dentry * dentry,struct kstatfs * buf)6862 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
6863 {
6864 	struct super_block *sb = dentry->d_sb;
6865 	struct ext4_sb_info *sbi = EXT4_SB(sb);
6866 	struct ext4_super_block *es = sbi->s_es;
6867 	ext4_fsblk_t overhead = 0, resv_blocks;
6868 	s64 bfree;
6869 	resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
6870 
6871 	if (!test_opt(sb, MINIX_DF))
6872 		overhead = sbi->s_overhead;
6873 
6874 	buf->f_type = EXT4_SUPER_MAGIC;
6875 	buf->f_bsize = sb->s_blocksize;
6876 	buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
6877 	bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
6878 		percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
6879 	/* prevent underflow in case that few free space is available */
6880 	buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
6881 	buf->f_bavail = buf->f_bfree -
6882 			(ext4_r_blocks_count(es) + resv_blocks);
6883 	if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
6884 		buf->f_bavail = 0;
6885 	buf->f_files = le32_to_cpu(es->s_inodes_count);
6886 	buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
6887 	buf->f_namelen = EXT4_NAME_LEN;
6888 	buf->f_fsid = uuid_to_fsid(es->s_uuid);
6889 
6890 #ifdef CONFIG_QUOTA
6891 	if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) &&
6892 	    sb_has_quota_limits_enabled(sb, PRJQUOTA))
6893 		ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf);
6894 #endif
6895 	return 0;
6896 }
6897 
6898 
6899 #ifdef CONFIG_QUOTA
6900 
6901 /*
6902  * Helper functions so that transaction is started before we acquire dqio_sem
6903  * to keep correct lock ordering of transaction > dqio_sem
6904  */
dquot_to_inode(struct dquot * dquot)6905 static inline struct inode *dquot_to_inode(struct dquot *dquot)
6906 {
6907 	return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
6908 }
6909 
ext4_write_dquot(struct dquot * dquot)6910 static int ext4_write_dquot(struct dquot *dquot)
6911 {
6912 	int ret, err;
6913 	handle_t *handle;
6914 	struct inode *inode;
6915 
6916 	inode = dquot_to_inode(dquot);
6917 	handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
6918 				    EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
6919 	if (IS_ERR(handle))
6920 		return PTR_ERR(handle);
6921 	ret = dquot_commit(dquot);
6922 	if (ret < 0)
6923 		ext4_error_err(dquot->dq_sb, -ret,
6924 			       "Failed to commit dquot type %d",
6925 			       dquot->dq_id.type);
6926 	err = ext4_journal_stop(handle);
6927 	if (!ret)
6928 		ret = err;
6929 	return ret;
6930 }
6931 
ext4_acquire_dquot(struct dquot * dquot)6932 static int ext4_acquire_dquot(struct dquot *dquot)
6933 {
6934 	int ret, err;
6935 	handle_t *handle;
6936 
6937 	handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
6938 				    EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
6939 	if (IS_ERR(handle))
6940 		return PTR_ERR(handle);
6941 	ret = dquot_acquire(dquot);
6942 	if (ret < 0)
6943 		ext4_error_err(dquot->dq_sb, -ret,
6944 			      "Failed to acquire dquot type %d",
6945 			      dquot->dq_id.type);
6946 	err = ext4_journal_stop(handle);
6947 	if (!ret)
6948 		ret = err;
6949 	return ret;
6950 }
6951 
ext4_release_dquot(struct dquot * dquot)6952 static int ext4_release_dquot(struct dquot *dquot)
6953 {
6954 	int ret, err;
6955 	handle_t *handle;
6956 	bool freeze_protected = false;
6957 
6958 	/*
6959 	 * Trying to sb_start_intwrite() in a running transaction
6960 	 * can result in a deadlock. Further, running transactions
6961 	 * are already protected from freezing.
6962 	 */
6963 	if (!ext4_journal_current_handle()) {
6964 		sb_start_intwrite(dquot->dq_sb);
6965 		freeze_protected = true;
6966 	}
6967 
6968 	handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
6969 				    EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
6970 	if (IS_ERR(handle)) {
6971 		/* Release dquot anyway to avoid endless cycle in dqput() */
6972 		dquot_release(dquot);
6973 		if (freeze_protected)
6974 			sb_end_intwrite(dquot->dq_sb);
6975 		return PTR_ERR(handle);
6976 	}
6977 	ret = dquot_release(dquot);
6978 	if (ret < 0)
6979 		ext4_error_err(dquot->dq_sb, -ret,
6980 			       "Failed to release dquot type %d",
6981 			       dquot->dq_id.type);
6982 	err = ext4_journal_stop(handle);
6983 	if (!ret)
6984 		ret = err;
6985 
6986 	if (freeze_protected)
6987 		sb_end_intwrite(dquot->dq_sb);
6988 
6989 	return ret;
6990 }
6991 
ext4_mark_dquot_dirty(struct dquot * dquot)6992 static int ext4_mark_dquot_dirty(struct dquot *dquot)
6993 {
6994 	struct super_block *sb = dquot->dq_sb;
6995 
6996 	if (ext4_is_quota_journalled(sb)) {
6997 		dquot_mark_dquot_dirty(dquot);
6998 		return ext4_write_dquot(dquot);
6999 	} else {
7000 		return dquot_mark_dquot_dirty(dquot);
7001 	}
7002 }
7003 
ext4_write_info(struct super_block * sb,int type)7004 static int ext4_write_info(struct super_block *sb, int type)
7005 {
7006 	int ret, err;
7007 	handle_t *handle;
7008 
7009 	/* Data block + inode block */
7010 	handle = ext4_journal_start_sb(sb, EXT4_HT_QUOTA, 2);
7011 	if (IS_ERR(handle))
7012 		return PTR_ERR(handle);
7013 	ret = dquot_commit_info(sb, type);
7014 	err = ext4_journal_stop(handle);
7015 	if (!ret)
7016 		ret = err;
7017 	return ret;
7018 }
7019 
lockdep_set_quota_inode(struct inode * inode,int subclass)7020 static void lockdep_set_quota_inode(struct inode *inode, int subclass)
7021 {
7022 	struct ext4_inode_info *ei = EXT4_I(inode);
7023 
7024 	/* The first argument of lockdep_set_subclass has to be
7025 	 * *exactly* the same as the argument to init_rwsem() --- in
7026 	 * this case, in init_once() --- or lockdep gets unhappy
7027 	 * because the name of the lock is set using the
7028 	 * stringification of the argument to init_rwsem().
7029 	 */
7030 	(void) ei;	/* shut up clang warning if !CONFIG_LOCKDEP */
7031 	lockdep_set_subclass(&ei->i_data_sem, subclass);
7032 }
7033 
7034 /*
7035  * Standard function to be called on quota_on
7036  */
ext4_quota_on(struct super_block * sb,int type,int format_id,const struct path * path)7037 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
7038 			 const struct path *path)
7039 {
7040 	int err;
7041 
7042 	if (!test_opt(sb, QUOTA))
7043 		return -EINVAL;
7044 
7045 	/* Quotafile not on the same filesystem? */
7046 	if (path->dentry->d_sb != sb)
7047 		return -EXDEV;
7048 
7049 	/* Quota already enabled for this file? */
7050 	if (IS_NOQUOTA(d_inode(path->dentry)))
7051 		return -EBUSY;
7052 
7053 	/* Journaling quota? */
7054 	if (EXT4_SB(sb)->s_qf_names[type]) {
7055 		/* Quotafile not in fs root? */
7056 		if (path->dentry->d_parent != sb->s_root)
7057 			ext4_msg(sb, KERN_WARNING,
7058 				"Quota file not on filesystem root. "
7059 				"Journaled quota will not work");
7060 		sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY;
7061 	} else {
7062 		/*
7063 		 * Clear the flag just in case mount options changed since
7064 		 * last time.
7065 		 */
7066 		sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY;
7067 	}
7068 
7069 	lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
7070 	err = dquot_quota_on(sb, type, format_id, path);
7071 	if (!err) {
7072 		struct inode *inode = d_inode(path->dentry);
7073 		handle_t *handle;
7074 
7075 		/*
7076 		 * Set inode flags to prevent userspace from messing with quota
7077 		 * files. If this fails, we return success anyway since quotas
7078 		 * are already enabled and this is not a hard failure.
7079 		 */
7080 		inode_lock(inode);
7081 		handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
7082 		if (IS_ERR(handle))
7083 			goto unlock_inode;
7084 		EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL;
7085 		inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
7086 				S_NOATIME | S_IMMUTABLE);
7087 		err = ext4_mark_inode_dirty(handle, inode);
7088 		ext4_journal_stop(handle);
7089 	unlock_inode:
7090 		inode_unlock(inode);
7091 		if (err)
7092 			dquot_quota_off(sb, type);
7093 	}
7094 	if (err)
7095 		lockdep_set_quota_inode(path->dentry->d_inode,
7096 					     I_DATA_SEM_NORMAL);
7097 	return err;
7098 }
7099 
ext4_check_quota_inum(int type,unsigned long qf_inum)7100 static inline bool ext4_check_quota_inum(int type, unsigned long qf_inum)
7101 {
7102 	switch (type) {
7103 	case USRQUOTA:
7104 		return qf_inum == EXT4_USR_QUOTA_INO;
7105 	case GRPQUOTA:
7106 		return qf_inum == EXT4_GRP_QUOTA_INO;
7107 	case PRJQUOTA:
7108 		return qf_inum >= EXT4_GOOD_OLD_FIRST_INO;
7109 	default:
7110 		BUG();
7111 	}
7112 }
7113 
ext4_quota_enable(struct super_block * sb,int type,int format_id,unsigned int flags)7114 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
7115 			     unsigned int flags)
7116 {
7117 	int err;
7118 	struct inode *qf_inode;
7119 	unsigned long qf_inums[EXT4_MAXQUOTAS] = {
7120 		le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
7121 		le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
7122 		le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
7123 	};
7124 
7125 	BUG_ON(!ext4_has_feature_quota(sb));
7126 
7127 	if (!qf_inums[type])
7128 		return -EPERM;
7129 
7130 	if (!ext4_check_quota_inum(type, qf_inums[type])) {
7131 		ext4_error(sb, "Bad quota inum: %lu, type: %d",
7132 				qf_inums[type], type);
7133 		return -EUCLEAN;
7134 	}
7135 
7136 	qf_inode = ext4_iget(sb, qf_inums[type], EXT4_IGET_SPECIAL);
7137 	if (IS_ERR(qf_inode)) {
7138 		ext4_error(sb, "Bad quota inode: %lu, type: %d",
7139 				qf_inums[type], type);
7140 		return PTR_ERR(qf_inode);
7141 	}
7142 
7143 	/* Don't account quota for quota files to avoid recursion */
7144 	qf_inode->i_flags |= S_NOQUOTA;
7145 	lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
7146 	err = dquot_load_quota_inode(qf_inode, type, format_id, flags);
7147 	if (err)
7148 		lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
7149 	iput(qf_inode);
7150 
7151 	return err;
7152 }
7153 
7154 /* Enable usage tracking for all quota types. */
ext4_enable_quotas(struct super_block * sb)7155 int ext4_enable_quotas(struct super_block *sb)
7156 {
7157 	int type, err = 0;
7158 	unsigned long qf_inums[EXT4_MAXQUOTAS] = {
7159 		le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
7160 		le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
7161 		le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
7162 	};
7163 	bool quota_mopt[EXT4_MAXQUOTAS] = {
7164 		test_opt(sb, USRQUOTA),
7165 		test_opt(sb, GRPQUOTA),
7166 		test_opt(sb, PRJQUOTA),
7167 	};
7168 
7169 	sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
7170 	for (type = 0; type < EXT4_MAXQUOTAS; type++) {
7171 		if (qf_inums[type]) {
7172 			err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
7173 				DQUOT_USAGE_ENABLED |
7174 				(quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
7175 			if (err) {
7176 				ext4_warning(sb,
7177 					"Failed to enable quota tracking "
7178 					"(type=%d, err=%d, ino=%lu). "
7179 					"Please run e2fsck to fix.", type,
7180 					err, qf_inums[type]);
7181 
7182 				ext4_quotas_off(sb, type);
7183 				return err;
7184 			}
7185 		}
7186 	}
7187 	return 0;
7188 }
7189 
ext4_quota_off(struct super_block * sb,int type)7190 static int ext4_quota_off(struct super_block *sb, int type)
7191 {
7192 	struct inode *inode = sb_dqopt(sb)->files[type];
7193 	handle_t *handle;
7194 	int err;
7195 
7196 	/* Force all delayed allocation blocks to be allocated.
7197 	 * Caller already holds s_umount sem */
7198 	if (test_opt(sb, DELALLOC))
7199 		sync_filesystem(sb);
7200 
7201 	if (!inode || !igrab(inode))
7202 		goto out;
7203 
7204 	err = dquot_quota_off(sb, type);
7205 	if (err || ext4_has_feature_quota(sb))
7206 		goto out_put;
7207 	/*
7208 	 * When the filesystem was remounted read-only first, we cannot cleanup
7209 	 * inode flags here. Bad luck but people should be using QUOTA feature
7210 	 * these days anyway.
7211 	 */
7212 	if (sb_rdonly(sb))
7213 		goto out_put;
7214 
7215 	inode_lock(inode);
7216 	/*
7217 	 * Update modification times of quota files when userspace can
7218 	 * start looking at them. If we fail, we return success anyway since
7219 	 * this is not a hard failure and quotas are already disabled.
7220 	 */
7221 	handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
7222 	if (IS_ERR(handle)) {
7223 		err = PTR_ERR(handle);
7224 		goto out_unlock;
7225 	}
7226 	EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL);
7227 	inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
7228 	inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
7229 	err = ext4_mark_inode_dirty(handle, inode);
7230 	ext4_journal_stop(handle);
7231 out_unlock:
7232 	inode_unlock(inode);
7233 out_put:
7234 	lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL);
7235 	iput(inode);
7236 	return err;
7237 out:
7238 	return dquot_quota_off(sb, type);
7239 }
7240 
7241 /* Read data from quotafile - avoid pagecache and such because we cannot afford
7242  * acquiring the locks... As quota files are never truncated and quota code
7243  * itself serializes the operations (and no one else should touch the files)
7244  * we don't have to be afraid of races */
ext4_quota_read(struct super_block * sb,int type,char * data,size_t len,loff_t off)7245 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
7246 			       size_t len, loff_t off)
7247 {
7248 	struct inode *inode = sb_dqopt(sb)->files[type];
7249 	ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
7250 	int offset = off & (sb->s_blocksize - 1);
7251 	int tocopy;
7252 	size_t toread;
7253 	struct buffer_head *bh;
7254 	loff_t i_size = i_size_read(inode);
7255 
7256 	if (off > i_size)
7257 		return 0;
7258 	if (off+len > i_size)
7259 		len = i_size-off;
7260 	toread = len;
7261 	while (toread > 0) {
7262 		tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread);
7263 		bh = ext4_bread(NULL, inode, blk, 0);
7264 		if (IS_ERR(bh))
7265 			return PTR_ERR(bh);
7266 		if (!bh)	/* A hole? */
7267 			memset(data, 0, tocopy);
7268 		else
7269 			memcpy(data, bh->b_data+offset, tocopy);
7270 		brelse(bh);
7271 		offset = 0;
7272 		toread -= tocopy;
7273 		data += tocopy;
7274 		blk++;
7275 	}
7276 	return len;
7277 }
7278 
7279 /* Write to quotafile (we know the transaction is already started and has
7280  * enough credits) */
ext4_quota_write(struct super_block * sb,int type,const char * data,size_t len,loff_t off)7281 static ssize_t ext4_quota_write(struct super_block *sb, int type,
7282 				const char *data, size_t len, loff_t off)
7283 {
7284 	struct inode *inode = sb_dqopt(sb)->files[type];
7285 	ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
7286 	int err = 0, err2 = 0, offset = off & (sb->s_blocksize - 1);
7287 	int retries = 0;
7288 	struct buffer_head *bh;
7289 	handle_t *handle = journal_current_handle();
7290 
7291 	if (!handle) {
7292 		ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
7293 			" cancelled because transaction is not started",
7294 			(unsigned long long)off, (unsigned long long)len);
7295 		return -EIO;
7296 	}
7297 	/*
7298 	 * Since we account only one data block in transaction credits,
7299 	 * then it is impossible to cross a block boundary.
7300 	 */
7301 	if (sb->s_blocksize - offset < len) {
7302 		ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
7303 			" cancelled because not block aligned",
7304 			(unsigned long long)off, (unsigned long long)len);
7305 		return -EIO;
7306 	}
7307 
7308 	do {
7309 		bh = ext4_bread(handle, inode, blk,
7310 				EXT4_GET_BLOCKS_CREATE |
7311 				EXT4_GET_BLOCKS_METADATA_NOFAIL);
7312 	} while (PTR_ERR(bh) == -ENOSPC &&
7313 		 ext4_should_retry_alloc(inode->i_sb, &retries));
7314 	if (IS_ERR(bh))
7315 		return PTR_ERR(bh);
7316 	if (!bh)
7317 		goto out;
7318 	BUFFER_TRACE(bh, "get write access");
7319 	err = ext4_journal_get_write_access(handle, sb, bh, EXT4_JTR_NONE);
7320 	if (err) {
7321 		brelse(bh);
7322 		return err;
7323 	}
7324 	lock_buffer(bh);
7325 	memcpy(bh->b_data+offset, data, len);
7326 	flush_dcache_folio(bh->b_folio);
7327 	unlock_buffer(bh);
7328 	err = ext4_handle_dirty_metadata(handle, NULL, bh);
7329 	brelse(bh);
7330 out:
7331 	if (inode->i_size < off + len) {
7332 		i_size_write(inode, off + len);
7333 		EXT4_I(inode)->i_disksize = inode->i_size;
7334 		err2 = ext4_mark_inode_dirty(handle, inode);
7335 		if (unlikely(err2 && !err))
7336 			err = err2;
7337 	}
7338 	return err ? err : len;
7339 }
7340 #endif
7341 
7342 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
register_as_ext2(void)7343 static inline void register_as_ext2(void)
7344 {
7345 	int err = register_filesystem(&ext2_fs_type);
7346 	if (err)
7347 		printk(KERN_WARNING
7348 		       "EXT4-fs: Unable to register as ext2 (%d)\n", err);
7349 }
7350 
unregister_as_ext2(void)7351 static inline void unregister_as_ext2(void)
7352 {
7353 	unregister_filesystem(&ext2_fs_type);
7354 }
7355 
ext2_feature_set_ok(struct super_block * sb)7356 static inline int ext2_feature_set_ok(struct super_block *sb)
7357 {
7358 	if (ext4_has_unknown_ext2_incompat_features(sb))
7359 		return 0;
7360 	if (sb_rdonly(sb))
7361 		return 1;
7362 	if (ext4_has_unknown_ext2_ro_compat_features(sb))
7363 		return 0;
7364 	return 1;
7365 }
7366 #else
register_as_ext2(void)7367 static inline void register_as_ext2(void) { }
unregister_as_ext2(void)7368 static inline void unregister_as_ext2(void) { }
ext2_feature_set_ok(struct super_block * sb)7369 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
7370 #endif
7371 
register_as_ext3(void)7372 static inline void register_as_ext3(void)
7373 {
7374 	int err = register_filesystem(&ext3_fs_type);
7375 	if (err)
7376 		printk(KERN_WARNING
7377 		       "EXT4-fs: Unable to register as ext3 (%d)\n", err);
7378 }
7379 
unregister_as_ext3(void)7380 static inline void unregister_as_ext3(void)
7381 {
7382 	unregister_filesystem(&ext3_fs_type);
7383 }
7384 
ext3_feature_set_ok(struct super_block * sb)7385 static inline int ext3_feature_set_ok(struct super_block *sb)
7386 {
7387 	if (ext4_has_unknown_ext3_incompat_features(sb))
7388 		return 0;
7389 	if (!ext4_has_feature_journal(sb))
7390 		return 0;
7391 	if (sb_rdonly(sb))
7392 		return 1;
7393 	if (ext4_has_unknown_ext3_ro_compat_features(sb))
7394 		return 0;
7395 	return 1;
7396 }
7397 
ext4_kill_sb(struct super_block * sb)7398 static void ext4_kill_sb(struct super_block *sb)
7399 {
7400 	struct ext4_sb_info *sbi = EXT4_SB(sb);
7401 	struct file *bdev_file = sbi ? sbi->s_journal_bdev_file : NULL;
7402 
7403 	kill_block_super(sb);
7404 
7405 	if (bdev_file)
7406 		bdev_fput(bdev_file);
7407 }
7408 
7409 static struct file_system_type ext4_fs_type = {
7410 	.owner			= THIS_MODULE,
7411 	.name			= "ext4",
7412 	.init_fs_context	= ext4_init_fs_context,
7413 	.parameters		= ext4_param_specs,
7414 	.kill_sb		= ext4_kill_sb,
7415 	.fs_flags		= FS_REQUIRES_DEV | FS_ALLOW_IDMAP | FS_MGTIME,
7416 };
7417 MODULE_ALIAS_FS("ext4");
7418 
ext4_init_fs(void)7419 static int __init ext4_init_fs(void)
7420 {
7421 	int err;
7422 
7423 	ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
7424 	ext4_li_info = NULL;
7425 
7426 	/* Build-time check for flags consistency */
7427 	ext4_check_flag_values();
7428 
7429 	err = ext4_init_es();
7430 	if (err)
7431 		return err;
7432 
7433 	err = ext4_init_pending();
7434 	if (err)
7435 		goto out7;
7436 
7437 	err = ext4_init_post_read_processing();
7438 	if (err)
7439 		goto out6;
7440 
7441 	err = ext4_init_pageio();
7442 	if (err)
7443 		goto out5;
7444 
7445 	err = ext4_init_system_zone();
7446 	if (err)
7447 		goto out4;
7448 
7449 	err = ext4_init_sysfs();
7450 	if (err)
7451 		goto out3;
7452 
7453 	err = ext4_init_mballoc();
7454 	if (err)
7455 		goto out2;
7456 	err = init_inodecache();
7457 	if (err)
7458 		goto out1;
7459 
7460 	err = ext4_fc_init_dentry_cache();
7461 	if (err)
7462 		goto out05;
7463 
7464 	register_as_ext3();
7465 	register_as_ext2();
7466 	err = register_filesystem(&ext4_fs_type);
7467 	if (err)
7468 		goto out;
7469 
7470 	return 0;
7471 out:
7472 	unregister_as_ext2();
7473 	unregister_as_ext3();
7474 	ext4_fc_destroy_dentry_cache();
7475 out05:
7476 	destroy_inodecache();
7477 out1:
7478 	ext4_exit_mballoc();
7479 out2:
7480 	ext4_exit_sysfs();
7481 out3:
7482 	ext4_exit_system_zone();
7483 out4:
7484 	ext4_exit_pageio();
7485 out5:
7486 	ext4_exit_post_read_processing();
7487 out6:
7488 	ext4_exit_pending();
7489 out7:
7490 	ext4_exit_es();
7491 
7492 	return err;
7493 }
7494 
ext4_exit_fs(void)7495 static void __exit ext4_exit_fs(void)
7496 {
7497 	ext4_destroy_lazyinit_thread();
7498 	unregister_as_ext2();
7499 	unregister_as_ext3();
7500 	unregister_filesystem(&ext4_fs_type);
7501 	ext4_fc_destroy_dentry_cache();
7502 	destroy_inodecache();
7503 	ext4_exit_mballoc();
7504 	ext4_exit_sysfs();
7505 	ext4_exit_system_zone();
7506 	ext4_exit_pageio();
7507 	ext4_exit_post_read_processing();
7508 	ext4_exit_es();
7509 	ext4_exit_pending();
7510 }
7511 
7512 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
7513 MODULE_DESCRIPTION("Fourth Extended Filesystem");
7514 MODULE_LICENSE("GPL");
7515 module_init(ext4_init_fs)
7516 module_exit(ext4_exit_fs)
7517