1 /******************************************************************************
2
3 Copyright (c) 2001-2012, Intel Corporation
4 All rights reserved.
5
6 Redistribution and use in source and binary forms, with or without
7 modification, are permitted provided that the following conditions are met:
8
9 1. Redistributions of source code must retain the above copyright notice,
10 this list of conditions and the following disclaimer.
11
12 2. Redistributions in binary form must reproduce the above copyright
13 notice, this list of conditions and the following disclaimer in the
14 documentation and/or other materials provided with the distribution.
15
16 3. Neither the name of the Intel Corporation nor the names of its
17 contributors may be used to endorse or promote products derived from
18 this software without specific prior written permission.
19
20 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
24 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 POSSIBILITY OF SUCH DAMAGE.
31
32 ******************************************************************************/
33 /*$FreeBSD: src/sys/dev/ixgbe/ixgbe_common.c,v 1.14 2012/07/05 20:51:44 jfv Exp $*/
34
35 #include "ixgbe_common.h"
36 #include "ixgbe_phy.h"
37 #include "ixgbe_api.h"
38
39 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
40 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
41 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
42 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
43 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
44 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
45 u16 count);
46 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
47 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
48 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
49 static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
50
51 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
52 static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
53 u16 *san_mac_offset);
54 static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
55 u16 words, u16 *data);
56 static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
57 u16 words, u16 *data);
58 static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
59 u16 offset);
60
61 /**
62 * ixgbe_init_ops_generic - Inits function ptrs
63 * @hw: pointer to the hardware structure
64 *
65 * Initialize the function pointers.
66 **/
ixgbe_init_ops_generic(struct ixgbe_hw * hw)67 s32 ixgbe_init_ops_generic(struct ixgbe_hw *hw)
68 {
69 struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
70 struct ixgbe_mac_info *mac = &hw->mac;
71 u32 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
72
73 DEBUGFUNC("ixgbe_init_ops_generic");
74
75 /* EEPROM */
76 eeprom->ops.init_params = &ixgbe_init_eeprom_params_generic;
77 /* If EEPROM is valid (bit 8 = 1), use EERD otherwise use bit bang */
78 if (eec & IXGBE_EEC_PRES) {
79 eeprom->ops.read = &ixgbe_read_eerd_generic;
80 eeprom->ops.read_buffer = &ixgbe_read_eerd_buffer_generic;
81 } else {
82 eeprom->ops.read = &ixgbe_read_eeprom_bit_bang_generic;
83 eeprom->ops.read_buffer =
84 &ixgbe_read_eeprom_buffer_bit_bang_generic;
85 }
86 eeprom->ops.write = &ixgbe_write_eeprom_generic;
87 eeprom->ops.write_buffer = &ixgbe_write_eeprom_buffer_bit_bang_generic;
88 eeprom->ops.validate_checksum =
89 &ixgbe_validate_eeprom_checksum_generic;
90 eeprom->ops.update_checksum = &ixgbe_update_eeprom_checksum_generic;
91 eeprom->ops.calc_checksum = &ixgbe_calc_eeprom_checksum_generic;
92
93 /* MAC */
94 mac->ops.init_hw = &ixgbe_init_hw_generic;
95 mac->ops.reset_hw = NULL;
96 mac->ops.start_hw = &ixgbe_start_hw_generic;
97 mac->ops.clear_hw_cntrs = &ixgbe_clear_hw_cntrs_generic;
98 mac->ops.get_media_type = NULL;
99 mac->ops.get_supported_physical_layer = NULL;
100 mac->ops.enable_rx_dma = &ixgbe_enable_rx_dma_generic;
101 mac->ops.get_mac_addr = &ixgbe_get_mac_addr_generic;
102 mac->ops.stop_adapter = &ixgbe_stop_adapter_generic;
103 mac->ops.get_bus_info = &ixgbe_get_bus_info_generic;
104 mac->ops.set_lan_id = &ixgbe_set_lan_id_multi_port_pcie;
105 mac->ops.acquire_swfw_sync = &ixgbe_acquire_swfw_sync;
106 mac->ops.release_swfw_sync = &ixgbe_release_swfw_sync;
107
108 /* LEDs */
109 mac->ops.led_on = &ixgbe_led_on_generic;
110 mac->ops.led_off = &ixgbe_led_off_generic;
111 mac->ops.blink_led_start = &ixgbe_blink_led_start_generic;
112 mac->ops.blink_led_stop = &ixgbe_blink_led_stop_generic;
113
114 /* RAR, Multicast, VLAN */
115 mac->ops.set_rar = &ixgbe_set_rar_generic;
116 mac->ops.clear_rar = &ixgbe_clear_rar_generic;
117 mac->ops.insert_mac_addr = NULL;
118 mac->ops.set_vmdq = NULL;
119 mac->ops.clear_vmdq = NULL;
120 mac->ops.init_rx_addrs = &ixgbe_init_rx_addrs_generic;
121 mac->ops.update_uc_addr_list = &ixgbe_update_uc_addr_list_generic;
122 mac->ops.update_mc_addr_list = &ixgbe_update_mc_addr_list_generic;
123 mac->ops.enable_mc = &ixgbe_enable_mc_generic;
124 mac->ops.disable_mc = &ixgbe_disable_mc_generic;
125 mac->ops.clear_vfta = NULL;
126 mac->ops.set_vfta = NULL;
127 mac->ops.set_vlvf = NULL;
128 mac->ops.init_uta_tables = NULL;
129
130 /* Flow Control */
131 mac->ops.fc_enable = &ixgbe_fc_enable_generic;
132
133 /* Link */
134 mac->ops.get_link_capabilities = NULL;
135 mac->ops.setup_link = NULL;
136 mac->ops.check_link = NULL;
137
138 return IXGBE_SUCCESS;
139 }
140
141 /**
142 * ixgbe_device_supports_autoneg_fc - Check if phy supports autoneg flow
143 * control
144 * @hw: pointer to hardware structure
145 *
146 * There are several phys that do not support autoneg flow control. This
147 * function check the device id to see if the associated phy supports
148 * autoneg flow control.
149 **/
ixgbe_device_supports_autoneg_fc(struct ixgbe_hw * hw)150 static s32 ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
151 {
152
153 DEBUGFUNC("ixgbe_device_supports_autoneg_fc");
154
155 switch (hw->device_id) {
156 case IXGBE_DEV_ID_X540T:
157 case IXGBE_DEV_ID_X540T1:
158 return IXGBE_SUCCESS;
159 case IXGBE_DEV_ID_82599_T3_LOM:
160 return IXGBE_SUCCESS;
161 default:
162 return IXGBE_ERR_FC_NOT_SUPPORTED;
163 }
164 }
165
166 /**
167 * ixgbe_setup_fc - Set up flow control
168 * @hw: pointer to hardware structure
169 *
170 * Called at init time to set up flow control.
171 **/
ixgbe_setup_fc(struct ixgbe_hw * hw)172 static s32 ixgbe_setup_fc(struct ixgbe_hw *hw)
173 {
174 s32 ret_val = IXGBE_SUCCESS;
175 u32 reg = 0, reg_bp = 0;
176 u16 reg_cu = 0;
177
178 DEBUGFUNC("ixgbe_setup_fc");
179
180 /*
181 * Validate the requested mode. Strict IEEE mode does not allow
182 * ixgbe_fc_rx_pause because it will cause us to fail at UNH.
183 */
184 if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
185 DEBUGOUT("ixgbe_fc_rx_pause not valid in strict IEEE mode\n");
186 ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
187 goto out;
188 }
189
190 /*
191 * 10gig parts do not have a word in the EEPROM to determine the
192 * default flow control setting, so we explicitly set it to full.
193 */
194 if (hw->fc.requested_mode == ixgbe_fc_default)
195 hw->fc.requested_mode = ixgbe_fc_full;
196
197 /*
198 * Set up the 1G and 10G flow control advertisement registers so the
199 * HW will be able to do fc autoneg once the cable is plugged in. If
200 * we link at 10G, the 1G advertisement is harmless and vice versa.
201 */
202 switch (hw->phy.media_type) {
203 case ixgbe_media_type_fiber:
204 case ixgbe_media_type_backplane:
205 reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
206 reg_bp = IXGBE_READ_REG(hw, IXGBE_AUTOC);
207 break;
208 case ixgbe_media_type_copper:
209 hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
210 IXGBE_MDIO_AUTO_NEG_DEV_TYPE, ®_cu);
211 break;
212 default:
213 break;
214 }
215
216 /*
217 * The possible values of fc.requested_mode are:
218 * 0: Flow control is completely disabled
219 * 1: Rx flow control is enabled (we can receive pause frames,
220 * but not send pause frames).
221 * 2: Tx flow control is enabled (we can send pause frames but
222 * we do not support receiving pause frames).
223 * 3: Both Rx and Tx flow control (symmetric) are enabled.
224 * other: Invalid.
225 */
226 switch (hw->fc.requested_mode) {
227 case ixgbe_fc_none:
228 /* Flow control completely disabled by software override. */
229 reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
230 if (hw->phy.media_type == ixgbe_media_type_backplane)
231 reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
232 IXGBE_AUTOC_ASM_PAUSE);
233 else if (hw->phy.media_type == ixgbe_media_type_copper)
234 reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
235 break;
236 case ixgbe_fc_tx_pause:
237 /*
238 * Tx Flow control is enabled, and Rx Flow control is
239 * disabled by software override.
240 */
241 reg |= IXGBE_PCS1GANA_ASM_PAUSE;
242 reg &= ~IXGBE_PCS1GANA_SYM_PAUSE;
243 if (hw->phy.media_type == ixgbe_media_type_backplane) {
244 reg_bp |= IXGBE_AUTOC_ASM_PAUSE;
245 reg_bp &= ~IXGBE_AUTOC_SYM_PAUSE;
246 } else if (hw->phy.media_type == ixgbe_media_type_copper) {
247 reg_cu |= IXGBE_TAF_ASM_PAUSE;
248 reg_cu &= ~IXGBE_TAF_SYM_PAUSE;
249 }
250 break;
251 case ixgbe_fc_rx_pause:
252 /*
253 * Rx Flow control is enabled and Tx Flow control is
254 * disabled by software override. Since there really
255 * isn't a way to advertise that we are capable of RX
256 * Pause ONLY, we will advertise that we support both
257 * symmetric and asymmetric Rx PAUSE, as such we fall
258 * through to the fc_full statement. Later, we will
259 * disable the adapter's ability to send PAUSE frames.
260 */
261 case ixgbe_fc_full:
262 /* Flow control (both Rx and Tx) is enabled by SW override. */
263 reg |= IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE;
264 if (hw->phy.media_type == ixgbe_media_type_backplane)
265 reg_bp |= IXGBE_AUTOC_SYM_PAUSE |
266 IXGBE_AUTOC_ASM_PAUSE;
267 else if (hw->phy.media_type == ixgbe_media_type_copper)
268 reg_cu |= IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE;
269 break;
270 default:
271 DEBUGOUT("Flow control param set incorrectly\n");
272 ret_val = IXGBE_ERR_CONFIG;
273 goto out;
274 }
275
276 if (hw->mac.type != ixgbe_mac_X540) {
277 /*
278 * Enable auto-negotiation between the MAC & PHY;
279 * the MAC will advertise clause 37 flow control.
280 */
281 IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
282 reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
283
284 /* Disable AN timeout */
285 if (hw->fc.strict_ieee)
286 reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
287
288 IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
289 DEBUGOUT1("Set up FC; PCS1GLCTL = 0x%08X\n", reg);
290 }
291
292 /*
293 * AUTOC restart handles negotiation of 1G and 10G on backplane
294 * and copper. There is no need to set the PCS1GCTL register.
295 *
296 */
297 if (hw->phy.media_type == ixgbe_media_type_backplane) {
298 reg_bp |= IXGBE_AUTOC_AN_RESTART;
299 IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_bp);
300 } else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
301 (ixgbe_device_supports_autoneg_fc(hw) == IXGBE_SUCCESS)) {
302 hw->phy.ops.write_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
303 IXGBE_MDIO_AUTO_NEG_DEV_TYPE, reg_cu);
304 }
305
306 DEBUGOUT1("Set up FC; IXGBE_AUTOC = 0x%08X\n", reg);
307 out:
308 return ret_val;
309 }
310
311 /**
312 * ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
313 * @hw: pointer to hardware structure
314 *
315 * Starts the hardware by filling the bus info structure and media type, clears
316 * all on chip counters, initializes receive address registers, multicast
317 * table, VLAN filter table, calls routine to set up link and flow control
318 * settings, and leaves transmit and receive units disabled and uninitialized
319 **/
ixgbe_start_hw_generic(struct ixgbe_hw * hw)320 s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
321 {
322 s32 ret_val;
323 u32 ctrl_ext;
324
325 DEBUGFUNC("ixgbe_start_hw_generic");
326
327 /* Set the media type */
328 hw->phy.media_type = hw->mac.ops.get_media_type(hw);
329
330 /* PHY ops initialization must be done in reset_hw() */
331
332 /* Clear the VLAN filter table */
333 hw->mac.ops.clear_vfta(hw);
334
335 /* Clear statistics registers */
336 hw->mac.ops.clear_hw_cntrs(hw);
337
338 /* Set No Snoop Disable */
339 ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
340 ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
341 IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
342 IXGBE_WRITE_FLUSH(hw);
343
344 /* Setup flow control */
345 ret_val = ixgbe_setup_fc(hw);
346 if (ret_val != IXGBE_SUCCESS)
347 goto out;
348
349 /* Clear adapter stopped flag */
350 hw->adapter_stopped = FALSE;
351
352 out:
353 return ret_val;
354 }
355
356 /**
357 * ixgbe_start_hw_gen2 - Init sequence for common device family
358 * @hw: pointer to hw structure
359 *
360 * Performs the init sequence common to the second generation
361 * of 10 GbE devices.
362 * Devices in the second generation:
363 * 82599
364 * X540
365 **/
ixgbe_start_hw_gen2(struct ixgbe_hw * hw)366 s32 ixgbe_start_hw_gen2(struct ixgbe_hw *hw)
367 {
368 u32 i;
369 u32 regval;
370
371 /* Clear the rate limiters */
372 for (i = 0; i < hw->mac.max_tx_queues; i++) {
373 IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i);
374 IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
375 }
376 IXGBE_WRITE_FLUSH(hw);
377
378 /* Disable relaxed ordering */
379 for (i = 0; i < hw->mac.max_tx_queues; i++) {
380 regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
381 regval &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
382 IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
383 }
384
385 for (i = 0; i < hw->mac.max_rx_queues; i++) {
386 regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
387 regval &= ~(IXGBE_DCA_RXCTRL_DATA_WRO_EN |
388 IXGBE_DCA_RXCTRL_HEAD_WRO_EN);
389 IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
390 }
391
392 return IXGBE_SUCCESS;
393 }
394
395 /**
396 * ixgbe_init_hw_generic - Generic hardware initialization
397 * @hw: pointer to hardware structure
398 *
399 * Initialize the hardware by resetting the hardware, filling the bus info
400 * structure and media type, clears all on chip counters, initializes receive
401 * address registers, multicast table, VLAN filter table, calls routine to set
402 * up link and flow control settings, and leaves transmit and receive units
403 * disabled and uninitialized
404 **/
ixgbe_init_hw_generic(struct ixgbe_hw * hw)405 s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
406 {
407 s32 status;
408
409 DEBUGFUNC("ixgbe_init_hw_generic");
410
411 /* Reset the hardware */
412 status = hw->mac.ops.reset_hw(hw);
413
414 if (status == IXGBE_SUCCESS) {
415 /* Start the HW */
416 status = hw->mac.ops.start_hw(hw);
417 }
418
419 return status;
420 }
421
422 /**
423 * ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
424 * @hw: pointer to hardware structure
425 *
426 * Clears all hardware statistics counters by reading them from the hardware
427 * Statistics counters are clear on read.
428 **/
ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw * hw)429 s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
430 {
431 u16 i = 0;
432
433 DEBUGFUNC("ixgbe_clear_hw_cntrs_generic");
434
435 (void) IXGBE_READ_REG(hw, IXGBE_CRCERRS);
436 (void) IXGBE_READ_REG(hw, IXGBE_ILLERRC);
437 (void) IXGBE_READ_REG(hw, IXGBE_ERRBC);
438 (void) IXGBE_READ_REG(hw, IXGBE_MSPDC);
439 for (i = 0; i < 8; i++)
440 (void) IXGBE_READ_REG(hw, IXGBE_MPC(i));
441
442 (void) IXGBE_READ_REG(hw, IXGBE_MLFC);
443 (void) IXGBE_READ_REG(hw, IXGBE_MRFC);
444 (void) IXGBE_READ_REG(hw, IXGBE_RLEC);
445 (void) IXGBE_READ_REG(hw, IXGBE_LXONTXC);
446 (void) IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
447 if (hw->mac.type >= ixgbe_mac_82599EB) {
448 (void) IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
449 (void) IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
450 } else {
451 (void) IXGBE_READ_REG(hw, IXGBE_LXONRXC);
452 (void) IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
453 }
454
455 for (i = 0; i < 8; i++) {
456 (void) IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
457 (void) IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
458 if (hw->mac.type >= ixgbe_mac_82599EB) {
459 (void) IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
460 (void) IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
461 } else {
462 (void) IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
463 (void) IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
464 }
465 }
466 if (hw->mac.type >= ixgbe_mac_82599EB)
467 for (i = 0; i < 8; i++)
468 (void) IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
469 (void) IXGBE_READ_REG(hw, IXGBE_PRC64);
470 (void) IXGBE_READ_REG(hw, IXGBE_PRC127);
471 (void) IXGBE_READ_REG(hw, IXGBE_PRC255);
472 (void) IXGBE_READ_REG(hw, IXGBE_PRC511);
473 (void) IXGBE_READ_REG(hw, IXGBE_PRC1023);
474 (void) IXGBE_READ_REG(hw, IXGBE_PRC1522);
475 (void) IXGBE_READ_REG(hw, IXGBE_GPRC);
476 (void) IXGBE_READ_REG(hw, IXGBE_BPRC);
477 (void) IXGBE_READ_REG(hw, IXGBE_MPRC);
478 (void) IXGBE_READ_REG(hw, IXGBE_GPTC);
479 (void) IXGBE_READ_REG(hw, IXGBE_GORCL);
480 (void) IXGBE_READ_REG(hw, IXGBE_GORCH);
481 (void) IXGBE_READ_REG(hw, IXGBE_GOTCL);
482 (void) IXGBE_READ_REG(hw, IXGBE_GOTCH);
483 if (hw->mac.type == ixgbe_mac_82598EB)
484 for (i = 0; i < 8; i++)
485 (void) IXGBE_READ_REG(hw, IXGBE_RNBC(i));
486 (void) IXGBE_READ_REG(hw, IXGBE_RUC);
487 (void) IXGBE_READ_REG(hw, IXGBE_RFC);
488 (void) IXGBE_READ_REG(hw, IXGBE_ROC);
489 (void) IXGBE_READ_REG(hw, IXGBE_RJC);
490 (void) IXGBE_READ_REG(hw, IXGBE_MNGPRC);
491 (void) IXGBE_READ_REG(hw, IXGBE_MNGPDC);
492 (void) IXGBE_READ_REG(hw, IXGBE_MNGPTC);
493 (void) IXGBE_READ_REG(hw, IXGBE_TORL);
494 (void) IXGBE_READ_REG(hw, IXGBE_TORH);
495 (void) IXGBE_READ_REG(hw, IXGBE_TPR);
496 (void) IXGBE_READ_REG(hw, IXGBE_TPT);
497 (void) IXGBE_READ_REG(hw, IXGBE_PTC64);
498 (void) IXGBE_READ_REG(hw, IXGBE_PTC127);
499 (void) IXGBE_READ_REG(hw, IXGBE_PTC255);
500 (void) IXGBE_READ_REG(hw, IXGBE_PTC511);
501 (void) IXGBE_READ_REG(hw, IXGBE_PTC1023);
502 (void) IXGBE_READ_REG(hw, IXGBE_PTC1522);
503 (void) IXGBE_READ_REG(hw, IXGBE_MPTC);
504 (void) IXGBE_READ_REG(hw, IXGBE_BPTC);
505 for (i = 0; i < 16; i++) {
506 (void) IXGBE_READ_REG(hw, IXGBE_QPRC(i));
507 (void) IXGBE_READ_REG(hw, IXGBE_QPTC(i));
508 if (hw->mac.type >= ixgbe_mac_82599EB) {
509 (void) IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
510 (void) IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
511 (void) IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
512 (void) IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
513 (void) IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
514 } else {
515 (void) IXGBE_READ_REG(hw, IXGBE_QBRC(i));
516 (void) IXGBE_READ_REG(hw, IXGBE_QBTC(i));
517 }
518 }
519
520 if (hw->mac.type == ixgbe_mac_X540) {
521 if (hw->phy.id == 0)
522 (void) ixgbe_identify_phy(hw);
523 hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL,
524 IXGBE_MDIO_PCS_DEV_TYPE, &i);
525 hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH,
526 IXGBE_MDIO_PCS_DEV_TYPE, &i);
527 hw->phy.ops.read_reg(hw, IXGBE_LDPCECL,
528 IXGBE_MDIO_PCS_DEV_TYPE, &i);
529 hw->phy.ops.read_reg(hw, IXGBE_LDPCECH,
530 IXGBE_MDIO_PCS_DEV_TYPE, &i);
531 }
532
533 return IXGBE_SUCCESS;
534 }
535
536 /**
537 * ixgbe_read_pba_string_generic - Reads part number string from EEPROM
538 * @hw: pointer to hardware structure
539 * @pba_num: stores the part number string from the EEPROM
540 * @pba_num_size: part number string buffer length
541 *
542 * Reads the part number string from the EEPROM.
543 **/
ixgbe_read_pba_string_generic(struct ixgbe_hw * hw,u8 * pba_num,u32 pba_num_size)544 s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
545 u32 pba_num_size)
546 {
547 s32 ret_val;
548 u16 data;
549 u16 pba_ptr;
550 u16 offset;
551 u16 length;
552
553 DEBUGFUNC("ixgbe_read_pba_string_generic");
554
555 if (pba_num == NULL) {
556 DEBUGOUT("PBA string buffer was null\n");
557 return IXGBE_ERR_INVALID_ARGUMENT;
558 }
559
560 ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
561 if (ret_val) {
562 DEBUGOUT("NVM Read Error\n");
563 return ret_val;
564 }
565
566 ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
567 if (ret_val) {
568 DEBUGOUT("NVM Read Error\n");
569 return ret_val;
570 }
571
572 /*
573 * if data is not ptr guard the PBA must be in legacy format which
574 * means pba_ptr is actually our second data word for the PBA number
575 * and we can decode it into an ascii string
576 */
577 if (data != IXGBE_PBANUM_PTR_GUARD) {
578 DEBUGOUT("NVM PBA number is not stored as string\n");
579
580 /* we will need 11 characters to store the PBA */
581 if (pba_num_size < 11) {
582 DEBUGOUT("PBA string buffer too small\n");
583 return IXGBE_ERR_NO_SPACE;
584 }
585
586 /* extract hex string from data and pba_ptr */
587 pba_num[0] = (data >> 12) & 0xF;
588 pba_num[1] = (data >> 8) & 0xF;
589 pba_num[2] = (data >> 4) & 0xF;
590 pba_num[3] = data & 0xF;
591 pba_num[4] = (pba_ptr >> 12) & 0xF;
592 pba_num[5] = (pba_ptr >> 8) & 0xF;
593 pba_num[6] = '-';
594 pba_num[7] = 0;
595 pba_num[8] = (pba_ptr >> 4) & 0xF;
596 pba_num[9] = pba_ptr & 0xF;
597
598 /* put a null character on the end of our string */
599 pba_num[10] = '\0';
600
601 /* switch all the data but the '-' to hex char */
602 for (offset = 0; offset < 10; offset++) {
603 if (pba_num[offset] < 0xA)
604 pba_num[offset] += '0';
605 else if (pba_num[offset] < 0x10)
606 pba_num[offset] += 'A' - 0xA;
607 }
608
609 return IXGBE_SUCCESS;
610 }
611
612 ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
613 if (ret_val) {
614 DEBUGOUT("NVM Read Error\n");
615 return ret_val;
616 }
617
618 if (length == 0xFFFF || length == 0) {
619 DEBUGOUT("NVM PBA number section invalid length\n");
620 return IXGBE_ERR_PBA_SECTION;
621 }
622
623 /* check if pba_num buffer is big enough */
624 if (pba_num_size < (((u32)length * 2) - 1)) {
625 DEBUGOUT("PBA string buffer too small\n");
626 return IXGBE_ERR_NO_SPACE;
627 }
628
629 /* trim pba length from start of string */
630 pba_ptr++;
631 length--;
632
633 for (offset = 0; offset < length; offset++) {
634 ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
635 if (ret_val) {
636 DEBUGOUT("NVM Read Error\n");
637 return ret_val;
638 }
639 pba_num[offset * 2] = (u8)(data >> 8);
640 pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
641 }
642 pba_num[offset * 2] = '\0';
643
644 return IXGBE_SUCCESS;
645 }
646
647 /**
648 * ixgbe_read_pba_num_generic - Reads part number from EEPROM
649 * @hw: pointer to hardware structure
650 * @pba_num: stores the part number from the EEPROM
651 *
652 * Reads the part number from the EEPROM.
653 **/
ixgbe_read_pba_num_generic(struct ixgbe_hw * hw,u32 * pba_num)654 s32 ixgbe_read_pba_num_generic(struct ixgbe_hw *hw, u32 *pba_num)
655 {
656 s32 ret_val;
657 u16 data;
658
659 DEBUGFUNC("ixgbe_read_pba_num_generic");
660
661 ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
662 if (ret_val) {
663 DEBUGOUT("NVM Read Error\n");
664 return ret_val;
665 } else if (data == IXGBE_PBANUM_PTR_GUARD) {
666 DEBUGOUT("NVM Not supported\n");
667 return IXGBE_NOT_IMPLEMENTED;
668 }
669 *pba_num = (u32)(data << 16);
670
671 ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &data);
672 if (ret_val) {
673 DEBUGOUT("NVM Read Error\n");
674 return ret_val;
675 }
676 *pba_num |= data;
677
678 return IXGBE_SUCCESS;
679 }
680
681 /**
682 * ixgbe_get_mac_addr_generic - Generic get MAC address
683 * @hw: pointer to hardware structure
684 * @mac_addr: Adapter MAC address
685 *
686 * Reads the adapter's MAC address from first Receive Address Register (RAR0)
687 * A reset of the adapter must be performed prior to calling this function
688 * in order for the MAC address to have been loaded from the EEPROM into RAR0
689 **/
ixgbe_get_mac_addr_generic(struct ixgbe_hw * hw,u8 * mac_addr)690 s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
691 {
692 u32 rar_high;
693 u32 rar_low;
694 u16 i;
695
696 DEBUGFUNC("ixgbe_get_mac_addr_generic");
697
698 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
699 rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
700
701 for (i = 0; i < 4; i++)
702 mac_addr[i] = (u8)(rar_low >> (i*8));
703
704 for (i = 0; i < 2; i++)
705 mac_addr[i+4] = (u8)(rar_high >> (i*8));
706
707 return IXGBE_SUCCESS;
708 }
709
710 /**
711 * ixgbe_get_bus_info_generic - Generic set PCI bus info
712 * @hw: pointer to hardware structure
713 *
714 * Sets the PCI bus info (speed, width, type) within the ixgbe_hw structure
715 **/
ixgbe_get_bus_info_generic(struct ixgbe_hw * hw)716 s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
717 {
718 struct ixgbe_mac_info *mac = &hw->mac;
719 u16 link_status;
720
721 DEBUGFUNC("ixgbe_get_bus_info_generic");
722
723 hw->bus.type = ixgbe_bus_type_pci_express;
724
725 /* Get the negotiated link width and speed from PCI config space */
726 link_status = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_LINK_STATUS);
727
728 switch (link_status & IXGBE_PCI_LINK_WIDTH) {
729 case IXGBE_PCI_LINK_WIDTH_1:
730 hw->bus.width = ixgbe_bus_width_pcie_x1;
731 break;
732 case IXGBE_PCI_LINK_WIDTH_2:
733 hw->bus.width = ixgbe_bus_width_pcie_x2;
734 break;
735 case IXGBE_PCI_LINK_WIDTH_4:
736 hw->bus.width = ixgbe_bus_width_pcie_x4;
737 break;
738 case IXGBE_PCI_LINK_WIDTH_8:
739 hw->bus.width = ixgbe_bus_width_pcie_x8;
740 break;
741 default:
742 hw->bus.width = ixgbe_bus_width_unknown;
743 break;
744 }
745
746 switch (link_status & IXGBE_PCI_LINK_SPEED) {
747 case IXGBE_PCI_LINK_SPEED_2500:
748 hw->bus.speed = ixgbe_bus_speed_2500;
749 break;
750 case IXGBE_PCI_LINK_SPEED_5000:
751 hw->bus.speed = ixgbe_bus_speed_5000;
752 break;
753 case IXGBE_PCI_LINK_SPEED_8000:
754 hw->bus.speed = ixgbe_bus_speed_8000;
755 break;
756 default:
757 hw->bus.speed = ixgbe_bus_speed_unknown;
758 break;
759 }
760
761 mac->ops.set_lan_id(hw);
762
763 return IXGBE_SUCCESS;
764 }
765
766 /**
767 * ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
768 * @hw: pointer to the HW structure
769 *
770 * Determines the LAN function id by reading memory-mapped registers
771 * and swaps the port value if requested.
772 **/
ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw * hw)773 void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
774 {
775 struct ixgbe_bus_info *bus = &hw->bus;
776 u32 reg;
777
778 DEBUGFUNC("ixgbe_set_lan_id_multi_port_pcie");
779
780 reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
781 bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
782 bus->lan_id = bus->func;
783
784 /* check for a port swap */
785 reg = IXGBE_READ_REG(hw, IXGBE_FACTPS);
786 if (reg & IXGBE_FACTPS_LFS)
787 bus->func ^= 0x1;
788 }
789
790 /**
791 * ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
792 * @hw: pointer to hardware structure
793 *
794 * Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
795 * disables transmit and receive units. The adapter_stopped flag is used by
796 * the shared code and drivers to determine if the adapter is in a stopped
797 * state and should not touch the hardware.
798 **/
ixgbe_stop_adapter_generic(struct ixgbe_hw * hw)799 s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
800 {
801 u32 reg_val;
802 u16 i;
803
804 DEBUGFUNC("ixgbe_stop_adapter_generic");
805
806 /*
807 * Set the adapter_stopped flag so other driver functions stop touching
808 * the hardware
809 */
810 hw->adapter_stopped = TRUE;
811
812 /* Disable the receive unit */
813 IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, 0);
814
815 /* Clear interrupt mask to stop interrupts from being generated */
816 IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
817
818 /* Clear any pending interrupts, flush previous writes */
819 (void) IXGBE_READ_REG(hw, IXGBE_EICR);
820
821 /* Disable the transmit unit. Each queue must be disabled. */
822 for (i = 0; i < hw->mac.max_tx_queues; i++)
823 IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH);
824
825 /* Disable the receive unit by stopping each queue */
826 for (i = 0; i < hw->mac.max_rx_queues; i++) {
827 reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
828 reg_val &= ~IXGBE_RXDCTL_ENABLE;
829 reg_val |= IXGBE_RXDCTL_SWFLSH;
830 IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
831 }
832
833 /* flush all queues disables */
834 IXGBE_WRITE_FLUSH(hw);
835 msec_delay(2);
836
837 /*
838 * Prevent the PCI-E bus from from hanging by disabling PCI-E master
839 * access and verify no pending requests
840 */
841 return ixgbe_disable_pcie_master(hw);
842 }
843
844 /**
845 * ixgbe_led_on_generic - Turns on the software controllable LEDs.
846 * @hw: pointer to hardware structure
847 * @index: led number to turn on
848 **/
ixgbe_led_on_generic(struct ixgbe_hw * hw,u32 index)849 s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
850 {
851 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
852
853 DEBUGFUNC("ixgbe_led_on_generic");
854
855 /* To turn on the LED, set mode to ON. */
856 led_reg &= ~IXGBE_LED_MODE_MASK(index);
857 led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
858 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
859 IXGBE_WRITE_FLUSH(hw);
860
861 return IXGBE_SUCCESS;
862 }
863
864 /**
865 * ixgbe_led_off_generic - Turns off the software controllable LEDs.
866 * @hw: pointer to hardware structure
867 * @index: led number to turn off
868 **/
ixgbe_led_off_generic(struct ixgbe_hw * hw,u32 index)869 s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
870 {
871 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
872
873 DEBUGFUNC("ixgbe_led_off_generic");
874
875 /* To turn off the LED, set mode to OFF. */
876 led_reg &= ~IXGBE_LED_MODE_MASK(index);
877 led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
878 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
879 IXGBE_WRITE_FLUSH(hw);
880
881 return IXGBE_SUCCESS;
882 }
883
884 /**
885 * ixgbe_init_eeprom_params_generic - Initialize EEPROM params
886 * @hw: pointer to hardware structure
887 *
888 * Initializes the EEPROM parameters ixgbe_eeprom_info within the
889 * ixgbe_hw struct in order to set up EEPROM access.
890 **/
ixgbe_init_eeprom_params_generic(struct ixgbe_hw * hw)891 s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
892 {
893 struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
894 u32 eec;
895 u16 eeprom_size;
896
897 DEBUGFUNC("ixgbe_init_eeprom_params_generic");
898
899 if (eeprom->type == ixgbe_eeprom_uninitialized) {
900 eeprom->type = ixgbe_eeprom_none;
901 /* Set default semaphore delay to 10ms which is a well
902 * tested value */
903 eeprom->semaphore_delay = 10;
904 /* Clear EEPROM page size, it will be initialized as needed */
905 eeprom->word_page_size = 0;
906
907 /*
908 * Check for EEPROM present first.
909 * If not present leave as none
910 */
911 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
912 if (eec & IXGBE_EEC_PRES) {
913 eeprom->type = ixgbe_eeprom_spi;
914
915 /*
916 * SPI EEPROM is assumed here. This code would need to
917 * change if a future EEPROM is not SPI.
918 */
919 eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
920 IXGBE_EEC_SIZE_SHIFT);
921 eeprom->word_size = 1 << (eeprom_size +
922 IXGBE_EEPROM_WORD_SIZE_SHIFT);
923 }
924
925 if (eec & IXGBE_EEC_ADDR_SIZE)
926 eeprom->address_bits = 16;
927 else
928 eeprom->address_bits = 8;
929 DEBUGOUT3("Eeprom params: type = %d, size = %d, address bits: "
930 "%d\n", eeprom->type, eeprom->word_size,
931 eeprom->address_bits);
932 }
933
934 return IXGBE_SUCCESS;
935 }
936
937 /**
938 * ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
939 * @hw: pointer to hardware structure
940 * @offset: offset within the EEPROM to write
941 * @words: number of word(s)
942 * @data: 16 bit word(s) to write to EEPROM
943 *
944 * Reads 16 bit word(s) from EEPROM through bit-bang method
945 **/
ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw * hw,u16 offset,u16 words,u16 * data)946 s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
947 u16 words, u16 *data)
948 {
949 s32 status = IXGBE_SUCCESS;
950 u16 i, count;
951
952 DEBUGFUNC("ixgbe_write_eeprom_buffer_bit_bang_generic");
953
954 hw->eeprom.ops.init_params(hw);
955
956 if (words == 0) {
957 status = IXGBE_ERR_INVALID_ARGUMENT;
958 goto out;
959 }
960
961 if (offset + words > hw->eeprom.word_size) {
962 status = IXGBE_ERR_EEPROM;
963 goto out;
964 }
965
966 /*
967 * The EEPROM page size cannot be queried from the chip. We do lazy
968 * initialization. It is worth to do that when we write large buffer.
969 */
970 if ((hw->eeprom.word_page_size == 0) &&
971 (words > IXGBE_EEPROM_PAGE_SIZE_MAX))
972 status = ixgbe_detect_eeprom_page_size_generic(hw, offset);
973 if (status != IXGBE_SUCCESS)
974 goto out;
975
976 /*
977 * We cannot hold synchronization semaphores for too long
978 * to avoid other entity starvation. However it is more efficient
979 * to read in bursts than synchronizing access for each word.
980 */
981 for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
982 count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
983 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
984 status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i,
985 count, &data[i]);
986
987 if (status != IXGBE_SUCCESS)
988 break;
989 }
990
991 out:
992 return status;
993 }
994
995 /**
996 * ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
997 * @hw: pointer to hardware structure
998 * @offset: offset within the EEPROM to be written to
999 * @words: number of word(s)
1000 * @data: 16 bit word(s) to be written to the EEPROM
1001 *
1002 * If ixgbe_eeprom_update_checksum is not called after this function, the
1003 * EEPROM will most likely contain an invalid checksum.
1004 **/
ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw * hw,u16 offset,u16 words,u16 * data)1005 static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1006 u16 words, u16 *data)
1007 {
1008 s32 status;
1009 u16 word;
1010 u16 page_size;
1011 u16 i;
1012 u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
1013
1014 DEBUGFUNC("ixgbe_write_eeprom_buffer_bit_bang");
1015
1016 /* Prepare the EEPROM for writing */
1017 status = ixgbe_acquire_eeprom(hw);
1018
1019 if (status == IXGBE_SUCCESS) {
1020 if (ixgbe_ready_eeprom(hw) != IXGBE_SUCCESS) {
1021 ixgbe_release_eeprom(hw);
1022 status = IXGBE_ERR_EEPROM;
1023 }
1024 }
1025
1026 if (status == IXGBE_SUCCESS) {
1027 for (i = 0; i < words; i++) {
1028 ixgbe_standby_eeprom(hw);
1029
1030 /* Send the WRITE ENABLE command (8 bit opcode ) */
1031 ixgbe_shift_out_eeprom_bits(hw,
1032 IXGBE_EEPROM_WREN_OPCODE_SPI,
1033 IXGBE_EEPROM_OPCODE_BITS);
1034
1035 ixgbe_standby_eeprom(hw);
1036
1037 /*
1038 * Some SPI eeproms use the 8th address bit embedded
1039 * in the opcode
1040 */
1041 if ((hw->eeprom.address_bits == 8) &&
1042 ((offset + i) >= 128))
1043 write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1044
1045 /* Send the Write command (8-bit opcode + addr) */
1046 ixgbe_shift_out_eeprom_bits(hw, write_opcode,
1047 IXGBE_EEPROM_OPCODE_BITS);
1048 ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1049 hw->eeprom.address_bits);
1050
1051 page_size = hw->eeprom.word_page_size;
1052
1053 /* Send the data in burst via SPI*/
1054 do {
1055 word = data[i];
1056 word = (word >> 8) | (word << 8);
1057 ixgbe_shift_out_eeprom_bits(hw, word, 16);
1058
1059 if (page_size == 0)
1060 break;
1061
1062 /* do not wrap around page */
1063 if (((offset + i) & (page_size - 1)) ==
1064 (page_size - 1))
1065 break;
1066 } while (++i < words);
1067
1068 ixgbe_standby_eeprom(hw);
1069 msec_delay(10);
1070 }
1071 /* Done with writing - release the EEPROM */
1072 ixgbe_release_eeprom(hw);
1073 }
1074
1075 return status;
1076 }
1077
1078 /**
1079 * ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
1080 * @hw: pointer to hardware structure
1081 * @offset: offset within the EEPROM to be written to
1082 * @data: 16 bit word to be written to the EEPROM
1083 *
1084 * If ixgbe_eeprom_update_checksum is not called after this function, the
1085 * EEPROM will most likely contain an invalid checksum.
1086 **/
ixgbe_write_eeprom_generic(struct ixgbe_hw * hw,u16 offset,u16 data)1087 s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1088 {
1089 s32 status;
1090
1091 DEBUGFUNC("ixgbe_write_eeprom_generic");
1092
1093 hw->eeprom.ops.init_params(hw);
1094
1095 if (offset >= hw->eeprom.word_size) {
1096 status = IXGBE_ERR_EEPROM;
1097 goto out;
1098 }
1099
1100 status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data);
1101
1102 out:
1103 return status;
1104 }
1105
1106 /**
1107 * ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
1108 * @hw: pointer to hardware structure
1109 * @offset: offset within the EEPROM to be read
1110 * @data: read 16 bit words(s) from EEPROM
1111 * @words: number of word(s)
1112 *
1113 * Reads 16 bit word(s) from EEPROM through bit-bang method
1114 **/
ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw * hw,u16 offset,u16 words,u16 * data)1115 s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1116 u16 words, u16 *data)
1117 {
1118 s32 status = IXGBE_SUCCESS;
1119 u16 i, count;
1120
1121 DEBUGFUNC("ixgbe_read_eeprom_buffer_bit_bang_generic");
1122
1123 hw->eeprom.ops.init_params(hw);
1124
1125 if (words == 0) {
1126 status = IXGBE_ERR_INVALID_ARGUMENT;
1127 goto out;
1128 }
1129
1130 if (offset + words > hw->eeprom.word_size) {
1131 status = IXGBE_ERR_EEPROM;
1132 goto out;
1133 }
1134
1135 /*
1136 * We cannot hold synchronization semaphores for too long
1137 * to avoid other entity starvation. However it is more efficient
1138 * to read in bursts than synchronizing access for each word.
1139 */
1140 for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
1141 count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
1142 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
1143
1144 status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i,
1145 count, &data[i]);
1146
1147 if (status != IXGBE_SUCCESS)
1148 break;
1149 }
1150
1151 out:
1152 return status;
1153 }
1154
1155 /**
1156 * ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
1157 * @hw: pointer to hardware structure
1158 * @offset: offset within the EEPROM to be read
1159 * @words: number of word(s)
1160 * @data: read 16 bit word(s) from EEPROM
1161 *
1162 * Reads 16 bit word(s) from EEPROM through bit-bang method
1163 **/
ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw * hw,u16 offset,u16 words,u16 * data)1164 static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1165 u16 words, u16 *data)
1166 {
1167 s32 status;
1168 u16 word_in;
1169 u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
1170 u16 i;
1171
1172 DEBUGFUNC("ixgbe_read_eeprom_buffer_bit_bang");
1173
1174 /* Prepare the EEPROM for reading */
1175 status = ixgbe_acquire_eeprom(hw);
1176
1177 if (status == IXGBE_SUCCESS) {
1178 if (ixgbe_ready_eeprom(hw) != IXGBE_SUCCESS) {
1179 ixgbe_release_eeprom(hw);
1180 status = IXGBE_ERR_EEPROM;
1181 }
1182 }
1183
1184 if (status == IXGBE_SUCCESS) {
1185 for (i = 0; i < words; i++) {
1186 ixgbe_standby_eeprom(hw);
1187 /*
1188 * Some SPI eeproms use the 8th address bit embedded
1189 * in the opcode
1190 */
1191 if ((hw->eeprom.address_bits == 8) &&
1192 ((offset + i) >= 128))
1193 read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1194
1195 /* Send the READ command (opcode + addr) */
1196 ixgbe_shift_out_eeprom_bits(hw, read_opcode,
1197 IXGBE_EEPROM_OPCODE_BITS);
1198 ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1199 hw->eeprom.address_bits);
1200
1201 /* Read the data. */
1202 word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
1203 data[i] = (word_in >> 8) | (word_in << 8);
1204 }
1205
1206 /* End this read operation */
1207 ixgbe_release_eeprom(hw);
1208 }
1209
1210 return status;
1211 }
1212
1213 /**
1214 * ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
1215 * @hw: pointer to hardware structure
1216 * @offset: offset within the EEPROM to be read
1217 * @data: read 16 bit value from EEPROM
1218 *
1219 * Reads 16 bit value from EEPROM through bit-bang method
1220 **/
ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw * hw,u16 offset,u16 * data)1221 s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1222 u16 *data)
1223 {
1224 s32 status;
1225
1226 DEBUGFUNC("ixgbe_read_eeprom_bit_bang_generic");
1227
1228 hw->eeprom.ops.init_params(hw);
1229
1230 if (offset >= hw->eeprom.word_size) {
1231 status = IXGBE_ERR_EEPROM;
1232 goto out;
1233 }
1234
1235 status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1236
1237 out:
1238 return status;
1239 }
1240
1241 /**
1242 * ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
1243 * @hw: pointer to hardware structure
1244 * @offset: offset of word in the EEPROM to read
1245 * @words: number of word(s)
1246 * @data: 16 bit word(s) from the EEPROM
1247 *
1248 * Reads a 16 bit word(s) from the EEPROM using the EERD register.
1249 **/
ixgbe_read_eerd_buffer_generic(struct ixgbe_hw * hw,u16 offset,u16 words,u16 * data)1250 s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1251 u16 words, u16 *data)
1252 {
1253 u32 eerd;
1254 s32 status = IXGBE_SUCCESS;
1255 u32 i;
1256
1257 DEBUGFUNC("ixgbe_read_eerd_buffer_generic");
1258
1259 hw->eeprom.ops.init_params(hw);
1260
1261 if (words == 0) {
1262 status = IXGBE_ERR_INVALID_ARGUMENT;
1263 goto out;
1264 }
1265
1266 if (offset >= hw->eeprom.word_size) {
1267 status = IXGBE_ERR_EEPROM;
1268 goto out;
1269 }
1270
1271 for (i = 0; i < words; i++) {
1272 eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) +
1273 IXGBE_EEPROM_RW_REG_START;
1274
1275 IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
1276 status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
1277
1278 if (status == IXGBE_SUCCESS) {
1279 data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
1280 IXGBE_EEPROM_RW_REG_DATA);
1281 } else {
1282 DEBUGOUT("Eeprom read timed out\n");
1283 goto out;
1284 }
1285 }
1286 out:
1287 return status;
1288 }
1289
1290 /**
1291 * ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
1292 * @hw: pointer to hardware structure
1293 * @offset: offset within the EEPROM to be used as a scratch pad
1294 *
1295 * Discover EEPROM page size by writing marching data at given offset.
1296 * This function is called only when we are writing a new large buffer
1297 * at given offset so the data would be overwritten anyway.
1298 **/
ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw * hw,u16 offset)1299 static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
1300 u16 offset)
1301 {
1302 u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX];
1303 s32 status = IXGBE_SUCCESS;
1304 u16 i;
1305
1306 DEBUGFUNC("ixgbe_detect_eeprom_page_size_generic");
1307
1308 for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++)
1309 data[i] = i;
1310
1311 hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX;
1312 status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset,
1313 IXGBE_EEPROM_PAGE_SIZE_MAX, data);
1314 hw->eeprom.word_page_size = 0;
1315 if (status != IXGBE_SUCCESS)
1316 goto out;
1317
1318 status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1319 if (status != IXGBE_SUCCESS)
1320 goto out;
1321
1322 /*
1323 * When writing in burst more than the actual page size
1324 * EEPROM address wraps around current page.
1325 */
1326 hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0];
1327
1328 DEBUGOUT1("Detected EEPROM page size = %d words.",
1329 hw->eeprom.word_page_size);
1330 out:
1331 return status;
1332 }
1333
1334 /**
1335 * ixgbe_read_eerd_generic - Read EEPROM word using EERD
1336 * @hw: pointer to hardware structure
1337 * @offset: offset of word in the EEPROM to read
1338 * @data: word read from the EEPROM
1339 *
1340 * Reads a 16 bit word from the EEPROM using the EERD register.
1341 **/
ixgbe_read_eerd_generic(struct ixgbe_hw * hw,u16 offset,u16 * data)1342 s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
1343 {
1344 return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data);
1345 }
1346
1347 /**
1348 * ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
1349 * @hw: pointer to hardware structure
1350 * @offset: offset of word in the EEPROM to write
1351 * @words: number of word(s)
1352 * @data: word(s) write to the EEPROM
1353 *
1354 * Write a 16 bit word(s) to the EEPROM using the EEWR register.
1355 **/
ixgbe_write_eewr_buffer_generic(struct ixgbe_hw * hw,u16 offset,u16 words,u16 * data)1356 s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1357 u16 words, u16 *data)
1358 {
1359 u32 eewr;
1360 s32 status = IXGBE_SUCCESS;
1361 u16 i;
1362
1363 DEBUGFUNC("ixgbe_write_eewr_generic");
1364
1365 hw->eeprom.ops.init_params(hw);
1366
1367 if (words == 0) {
1368 status = IXGBE_ERR_INVALID_ARGUMENT;
1369 goto out;
1370 }
1371
1372 if (offset >= hw->eeprom.word_size) {
1373 status = IXGBE_ERR_EEPROM;
1374 goto out;
1375 }
1376
1377 for (i = 0; i < words; i++) {
1378 eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1379 (data[i] << IXGBE_EEPROM_RW_REG_DATA) |
1380 IXGBE_EEPROM_RW_REG_START;
1381
1382 status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1383 if (status != IXGBE_SUCCESS) {
1384 DEBUGOUT("Eeprom write EEWR timed out\n");
1385 goto out;
1386 }
1387
1388 IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
1389
1390 status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1391 if (status != IXGBE_SUCCESS) {
1392 DEBUGOUT("Eeprom write EEWR timed out\n");
1393 goto out;
1394 }
1395 }
1396
1397 out:
1398 return status;
1399 }
1400
1401 /**
1402 * ixgbe_write_eewr_generic - Write EEPROM word using EEWR
1403 * @hw: pointer to hardware structure
1404 * @offset: offset of word in the EEPROM to write
1405 * @data: word write to the EEPROM
1406 *
1407 * Write a 16 bit word to the EEPROM using the EEWR register.
1408 **/
ixgbe_write_eewr_generic(struct ixgbe_hw * hw,u16 offset,u16 data)1409 s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1410 {
1411 return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data);
1412 }
1413
1414 /**
1415 * ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
1416 * @hw: pointer to hardware structure
1417 * @ee_reg: EEPROM flag for polling
1418 *
1419 * Polls the status bit (bit 1) of the EERD or EEWR to determine when the
1420 * read or write is done respectively.
1421 **/
ixgbe_poll_eerd_eewr_done(struct ixgbe_hw * hw,u32 ee_reg)1422 s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
1423 {
1424 u32 i;
1425 u32 reg;
1426 s32 status = IXGBE_ERR_EEPROM;
1427
1428 DEBUGFUNC("ixgbe_poll_eerd_eewr_done");
1429
1430 for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
1431 if (ee_reg == IXGBE_NVM_POLL_READ)
1432 reg = IXGBE_READ_REG(hw, IXGBE_EERD);
1433 else
1434 reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
1435
1436 if (reg & IXGBE_EEPROM_RW_REG_DONE) {
1437 status = IXGBE_SUCCESS;
1438 break;
1439 }
1440 usec_delay(5);
1441 }
1442 return status;
1443 }
1444
1445 /**
1446 * ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
1447 * @hw: pointer to hardware structure
1448 *
1449 * Prepares EEPROM for access using bit-bang method. This function should
1450 * be called before issuing a command to the EEPROM.
1451 **/
ixgbe_acquire_eeprom(struct ixgbe_hw * hw)1452 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
1453 {
1454 s32 status = IXGBE_SUCCESS;
1455 u32 eec;
1456 u32 i;
1457
1458 DEBUGFUNC("ixgbe_acquire_eeprom");
1459
1460 if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM)
1461 != IXGBE_SUCCESS)
1462 status = IXGBE_ERR_SWFW_SYNC;
1463
1464 if (status == IXGBE_SUCCESS) {
1465 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1466
1467 /* Request EEPROM Access */
1468 eec |= IXGBE_EEC_REQ;
1469 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1470
1471 for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
1472 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1473 if (eec & IXGBE_EEC_GNT)
1474 break;
1475 usec_delay(5);
1476 }
1477
1478 /* Release if grant not acquired */
1479 if (!(eec & IXGBE_EEC_GNT)) {
1480 eec &= ~IXGBE_EEC_REQ;
1481 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1482 DEBUGOUT("Could not acquire EEPROM grant\n");
1483
1484 hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1485 status = IXGBE_ERR_EEPROM;
1486 }
1487
1488 /* Setup EEPROM for Read/Write */
1489 if (status == IXGBE_SUCCESS) {
1490 /* Clear CS and SK */
1491 eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
1492 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1493 IXGBE_WRITE_FLUSH(hw);
1494 usec_delay(1);
1495 }
1496 }
1497 return status;
1498 }
1499
1500 /**
1501 * ixgbe_get_eeprom_semaphore - Get hardware semaphore
1502 * @hw: pointer to hardware structure
1503 *
1504 * Sets the hardware semaphores so EEPROM access can occur for bit-bang method
1505 **/
ixgbe_get_eeprom_semaphore(struct ixgbe_hw * hw)1506 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
1507 {
1508 s32 status = IXGBE_ERR_EEPROM;
1509 u32 timeout = 2000;
1510 u32 i;
1511 u32 swsm;
1512
1513 DEBUGFUNC("ixgbe_get_eeprom_semaphore");
1514
1515
1516 /* Get SMBI software semaphore between device drivers first */
1517 for (i = 0; i < timeout; i++) {
1518 /*
1519 * If the SMBI bit is 0 when we read it, then the bit will be
1520 * set and we have the semaphore
1521 */
1522 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1523 if (!(swsm & IXGBE_SWSM_SMBI)) {
1524 status = IXGBE_SUCCESS;
1525 break;
1526 }
1527 usec_delay(50);
1528 }
1529
1530 if (i == timeout) {
1531 DEBUGOUT("Driver can't access the Eeprom - SMBI Semaphore "
1532 "not granted.\n");
1533 /*
1534 * this release is particularly important because our attempts
1535 * above to get the semaphore may have succeeded, and if there
1536 * was a timeout, we should unconditionally clear the semaphore
1537 * bits to free the driver to make progress
1538 */
1539 ixgbe_release_eeprom_semaphore(hw);
1540
1541 usec_delay(50);
1542 /*
1543 * one last try
1544 * If the SMBI bit is 0 when we read it, then the bit will be
1545 * set and we have the semaphore
1546 */
1547 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1548 if (!(swsm & IXGBE_SWSM_SMBI))
1549 status = IXGBE_SUCCESS;
1550 }
1551
1552 /* Now get the semaphore between SW/FW through the SWESMBI bit */
1553 if (status == IXGBE_SUCCESS) {
1554 for (i = 0; i < timeout; i++) {
1555 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1556
1557 /* Set the SW EEPROM semaphore bit to request access */
1558 swsm |= IXGBE_SWSM_SWESMBI;
1559 IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
1560
1561 /*
1562 * If we set the bit successfully then we got the
1563 * semaphore.
1564 */
1565 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1566 if (swsm & IXGBE_SWSM_SWESMBI)
1567 break;
1568
1569 usec_delay(50);
1570 }
1571
1572 /*
1573 * Release semaphores and return error if SW EEPROM semaphore
1574 * was not granted because we don't have access to the EEPROM
1575 */
1576 if (i >= timeout) {
1577 DEBUGOUT("SWESMBI Software EEPROM semaphore "
1578 "not granted.\n");
1579 ixgbe_release_eeprom_semaphore(hw);
1580 status = IXGBE_ERR_EEPROM;
1581 }
1582 } else {
1583 DEBUGOUT("Software semaphore SMBI between device drivers "
1584 "not granted.\n");
1585 }
1586
1587 return status;
1588 }
1589
1590 /**
1591 * ixgbe_release_eeprom_semaphore - Release hardware semaphore
1592 * @hw: pointer to hardware structure
1593 *
1594 * This function clears hardware semaphore bits.
1595 **/
ixgbe_release_eeprom_semaphore(struct ixgbe_hw * hw)1596 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
1597 {
1598 u32 swsm;
1599
1600 DEBUGFUNC("ixgbe_release_eeprom_semaphore");
1601
1602 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1603
1604 /* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
1605 swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
1606 IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
1607 IXGBE_WRITE_FLUSH(hw);
1608 }
1609
1610 /**
1611 * ixgbe_ready_eeprom - Polls for EEPROM ready
1612 * @hw: pointer to hardware structure
1613 **/
ixgbe_ready_eeprom(struct ixgbe_hw * hw)1614 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
1615 {
1616 s32 status = IXGBE_SUCCESS;
1617 u16 i;
1618 u8 spi_stat_reg;
1619
1620 DEBUGFUNC("ixgbe_ready_eeprom");
1621
1622 /*
1623 * Read "Status Register" repeatedly until the LSB is cleared. The
1624 * EEPROM will signal that the command has been completed by clearing
1625 * bit 0 of the internal status register. If it's not cleared within
1626 * 5 milliseconds, then error out.
1627 */
1628 for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
1629 ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
1630 IXGBE_EEPROM_OPCODE_BITS);
1631 spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
1632 if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
1633 break;
1634
1635 usec_delay(5);
1636 ixgbe_standby_eeprom(hw);
1637 };
1638
1639 /*
1640 * On some parts, SPI write time could vary from 0-20mSec on 3.3V
1641 * devices (and only 0-5mSec on 5V devices)
1642 */
1643 if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
1644 DEBUGOUT("SPI EEPROM Status error\n");
1645 status = IXGBE_ERR_EEPROM;
1646 }
1647
1648 return status;
1649 }
1650
1651 /**
1652 * ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
1653 * @hw: pointer to hardware structure
1654 **/
ixgbe_standby_eeprom(struct ixgbe_hw * hw)1655 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
1656 {
1657 u32 eec;
1658
1659 DEBUGFUNC("ixgbe_standby_eeprom");
1660
1661 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1662
1663 /* Toggle CS to flush commands */
1664 eec |= IXGBE_EEC_CS;
1665 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1666 IXGBE_WRITE_FLUSH(hw);
1667 usec_delay(1);
1668 eec &= ~IXGBE_EEC_CS;
1669 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1670 IXGBE_WRITE_FLUSH(hw);
1671 usec_delay(1);
1672 }
1673
1674 /**
1675 * ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
1676 * @hw: pointer to hardware structure
1677 * @data: data to send to the EEPROM
1678 * @count: number of bits to shift out
1679 **/
ixgbe_shift_out_eeprom_bits(struct ixgbe_hw * hw,u16 data,u16 count)1680 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
1681 u16 count)
1682 {
1683 u32 eec;
1684 u32 mask;
1685 u32 i;
1686
1687 DEBUGFUNC("ixgbe_shift_out_eeprom_bits");
1688
1689 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1690
1691 /*
1692 * Mask is used to shift "count" bits of "data" out to the EEPROM
1693 * one bit at a time. Determine the starting bit based on count
1694 */
1695 mask = 0x01 << (count - 1);
1696
1697 for (i = 0; i < count; i++) {
1698 /*
1699 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
1700 * "1", and then raising and then lowering the clock (the SK
1701 * bit controls the clock input to the EEPROM). A "0" is
1702 * shifted out to the EEPROM by setting "DI" to "0" and then
1703 * raising and then lowering the clock.
1704 */
1705 if (data & mask)
1706 eec |= IXGBE_EEC_DI;
1707 else
1708 eec &= ~IXGBE_EEC_DI;
1709
1710 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1711 IXGBE_WRITE_FLUSH(hw);
1712
1713 usec_delay(1);
1714
1715 ixgbe_raise_eeprom_clk(hw, &eec);
1716 ixgbe_lower_eeprom_clk(hw, &eec);
1717
1718 /*
1719 * Shift mask to signify next bit of data to shift in to the
1720 * EEPROM
1721 */
1722 mask = mask >> 1;
1723 };
1724
1725 /* We leave the "DI" bit set to "0" when we leave this routine. */
1726 eec &= ~IXGBE_EEC_DI;
1727 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1728 IXGBE_WRITE_FLUSH(hw);
1729 }
1730
1731 /**
1732 * ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
1733 * @hw: pointer to hardware structure
1734 **/
ixgbe_shift_in_eeprom_bits(struct ixgbe_hw * hw,u16 count)1735 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
1736 {
1737 u32 eec;
1738 u32 i;
1739 u16 data = 0;
1740
1741 DEBUGFUNC("ixgbe_shift_in_eeprom_bits");
1742
1743 /*
1744 * In order to read a register from the EEPROM, we need to shift
1745 * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
1746 * the clock input to the EEPROM (setting the SK bit), and then reading
1747 * the value of the "DO" bit. During this "shifting in" process the
1748 * "DI" bit should always be clear.
1749 */
1750 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1751
1752 eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
1753
1754 for (i = 0; i < count; i++) {
1755 data = data << 1;
1756 ixgbe_raise_eeprom_clk(hw, &eec);
1757
1758 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1759
1760 eec &= ~(IXGBE_EEC_DI);
1761 if (eec & IXGBE_EEC_DO)
1762 data |= 1;
1763
1764 ixgbe_lower_eeprom_clk(hw, &eec);
1765 }
1766
1767 return data;
1768 }
1769
1770 /**
1771 * ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
1772 * @hw: pointer to hardware structure
1773 * @eec: EEC register's current value
1774 **/
ixgbe_raise_eeprom_clk(struct ixgbe_hw * hw,u32 * eec)1775 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1776 {
1777 DEBUGFUNC("ixgbe_raise_eeprom_clk");
1778
1779 /*
1780 * Raise the clock input to the EEPROM
1781 * (setting the SK bit), then delay
1782 */
1783 *eec = *eec | IXGBE_EEC_SK;
1784 IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
1785 IXGBE_WRITE_FLUSH(hw);
1786 usec_delay(1);
1787 }
1788
1789 /**
1790 * ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
1791 * @hw: pointer to hardware structure
1792 * @eecd: EECD's current value
1793 **/
ixgbe_lower_eeprom_clk(struct ixgbe_hw * hw,u32 * eec)1794 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1795 {
1796 DEBUGFUNC("ixgbe_lower_eeprom_clk");
1797
1798 /*
1799 * Lower the clock input to the EEPROM (clearing the SK bit), then
1800 * delay
1801 */
1802 *eec = *eec & ~IXGBE_EEC_SK;
1803 IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
1804 IXGBE_WRITE_FLUSH(hw);
1805 usec_delay(1);
1806 }
1807
1808 /**
1809 * ixgbe_release_eeprom - Release EEPROM, release semaphores
1810 * @hw: pointer to hardware structure
1811 **/
ixgbe_release_eeprom(struct ixgbe_hw * hw)1812 static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
1813 {
1814 u32 eec;
1815
1816 DEBUGFUNC("ixgbe_release_eeprom");
1817
1818 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1819
1820 eec |= IXGBE_EEC_CS; /* Pull CS high */
1821 eec &= ~IXGBE_EEC_SK; /* Lower SCK */
1822
1823 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1824 IXGBE_WRITE_FLUSH(hw);
1825
1826 usec_delay(1);
1827
1828 /* Stop requesting EEPROM access */
1829 eec &= ~IXGBE_EEC_REQ;
1830 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1831
1832 hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1833
1834 /* Delay before attempt to obtain semaphore again to allow FW access */
1835 msec_delay(hw->eeprom.semaphore_delay);
1836 }
1837
1838 /**
1839 * ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
1840 * @hw: pointer to hardware structure
1841 **/
ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw * hw)1842 u16 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
1843 {
1844 u16 i;
1845 u16 j;
1846 u16 checksum = 0;
1847 u16 length = 0;
1848 u16 pointer = 0;
1849 u16 word = 0;
1850
1851 DEBUGFUNC("ixgbe_calc_eeprom_checksum_generic");
1852
1853 /* Include 0x0-0x3F in the checksum */
1854 for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
1855 if (hw->eeprom.ops.read(hw, i, &word) != IXGBE_SUCCESS) {
1856 DEBUGOUT("EEPROM read failed\n");
1857 break;
1858 }
1859 checksum += word;
1860 }
1861
1862 /* Include all data from pointers except for the fw pointer */
1863 for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
1864 hw->eeprom.ops.read(hw, i, &pointer);
1865
1866 /* Make sure the pointer seems valid */
1867 if (pointer != 0xFFFF && pointer != 0) {
1868 hw->eeprom.ops.read(hw, pointer, &length);
1869
1870 if (length != 0xFFFF && length != 0) {
1871 for (j = pointer+1; j <= pointer+length; j++) {
1872 hw->eeprom.ops.read(hw, j, &word);
1873 checksum += word;
1874 }
1875 }
1876 }
1877 }
1878
1879 checksum = (u16)IXGBE_EEPROM_SUM - checksum;
1880
1881 return checksum;
1882 }
1883
1884 /**
1885 * ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
1886 * @hw: pointer to hardware structure
1887 * @checksum_val: calculated checksum
1888 *
1889 * Performs checksum calculation and validates the EEPROM checksum. If the
1890 * caller does not need checksum_val, the value can be NULL.
1891 **/
ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw * hw,u16 * checksum_val)1892 s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
1893 u16 *checksum_val)
1894 {
1895 s32 status;
1896 u16 checksum;
1897 u16 read_checksum = 0;
1898
1899 DEBUGFUNC("ixgbe_validate_eeprom_checksum_generic");
1900
1901 /*
1902 * Read the first word from the EEPROM. If this times out or fails, do
1903 * not continue or we could be in for a very long wait while every
1904 * EEPROM read fails
1905 */
1906 status = hw->eeprom.ops.read(hw, 0, &checksum);
1907
1908 if (status == IXGBE_SUCCESS) {
1909 checksum = hw->eeprom.ops.calc_checksum(hw);
1910
1911 hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
1912
1913 /*
1914 * Verify read checksum from EEPROM is the same as
1915 * calculated checksum
1916 */
1917 if (read_checksum != checksum)
1918 status = IXGBE_ERR_EEPROM_CHECKSUM;
1919
1920 /* If the user cares, return the calculated checksum */
1921 if (checksum_val)
1922 *checksum_val = checksum;
1923 } else {
1924 DEBUGOUT("EEPROM read failed\n");
1925 }
1926
1927 return status;
1928 }
1929
1930 /**
1931 * ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
1932 * @hw: pointer to hardware structure
1933 **/
ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw * hw)1934 s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
1935 {
1936 s32 status;
1937 u16 checksum;
1938
1939 DEBUGFUNC("ixgbe_update_eeprom_checksum_generic");
1940
1941 /*
1942 * Read the first word from the EEPROM. If this times out or fails, do
1943 * not continue or we could be in for a very long wait while every
1944 * EEPROM read fails
1945 */
1946 status = hw->eeprom.ops.read(hw, 0, &checksum);
1947
1948 if (status == IXGBE_SUCCESS) {
1949 checksum = hw->eeprom.ops.calc_checksum(hw);
1950 status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM,
1951 checksum);
1952 } else {
1953 DEBUGOUT("EEPROM read failed\n");
1954 }
1955
1956 return status;
1957 }
1958
1959 /**
1960 * ixgbe_validate_mac_addr - Validate MAC address
1961 * @mac_addr: pointer to MAC address.
1962 *
1963 * Tests a MAC address to ensure it is a valid Individual Address
1964 **/
ixgbe_validate_mac_addr(u8 * mac_addr)1965 s32 ixgbe_validate_mac_addr(u8 *mac_addr)
1966 {
1967 s32 status = IXGBE_SUCCESS;
1968
1969 DEBUGFUNC("ixgbe_validate_mac_addr");
1970
1971 /* Make sure it is not a multicast address */
1972 if (IXGBE_IS_MULTICAST(mac_addr)) {
1973 DEBUGOUT("MAC address is multicast\n");
1974 status = IXGBE_ERR_INVALID_MAC_ADDR;
1975 /* Not a broadcast address */
1976 } else if (IXGBE_IS_BROADCAST(mac_addr)) {
1977 DEBUGOUT("MAC address is broadcast\n");
1978 status = IXGBE_ERR_INVALID_MAC_ADDR;
1979 /* Reject the zero address */
1980 } else if (mac_addr[0] == 0 && mac_addr[1] == 0 && mac_addr[2] == 0 &&
1981 mac_addr[3] == 0 && mac_addr[4] == 0 && mac_addr[5] == 0) {
1982 DEBUGOUT("MAC address is all zeros\n");
1983 status = IXGBE_ERR_INVALID_MAC_ADDR;
1984 }
1985 return status;
1986 }
1987
1988 /**
1989 * ixgbe_set_rar_generic - Set Rx address register
1990 * @hw: pointer to hardware structure
1991 * @index: Receive address register to write
1992 * @addr: Address to put into receive address register
1993 * @vmdq: VMDq "set" or "pool" index
1994 * @enable_addr: set flag that address is active
1995 *
1996 * Puts an ethernet address into a receive address register.
1997 **/
ixgbe_set_rar_generic(struct ixgbe_hw * hw,u32 index,u8 * addr,u32 vmdq,u32 enable_addr)1998 s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
1999 u32 enable_addr)
2000 {
2001 u32 rar_low, rar_high;
2002 u32 rar_entries = hw->mac.num_rar_entries;
2003
2004 DEBUGFUNC("ixgbe_set_rar_generic");
2005
2006 /* Make sure we are using a valid rar index range */
2007 if (index >= rar_entries) {
2008 DEBUGOUT1("RAR index %d is out of range.\n", index);
2009 return IXGBE_ERR_INVALID_ARGUMENT;
2010 }
2011
2012 /* setup VMDq pool selection before this RAR gets enabled */
2013 hw->mac.ops.set_vmdq(hw, index, vmdq);
2014
2015 /*
2016 * HW expects these in little endian so we reverse the byte
2017 * order from network order (big endian) to little endian
2018 */
2019 rar_low = ((u32)addr[0] |
2020 ((u32)addr[1] << 8) |
2021 ((u32)addr[2] << 16) |
2022 ((u32)addr[3] << 24));
2023 /*
2024 * Some parts put the VMDq setting in the extra RAH bits,
2025 * so save everything except the lower 16 bits that hold part
2026 * of the address and the address valid bit.
2027 */
2028 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
2029 rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
2030 rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
2031
2032 if (enable_addr != 0)
2033 rar_high |= IXGBE_RAH_AV;
2034
2035 IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
2036 IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
2037
2038 return IXGBE_SUCCESS;
2039 }
2040
2041 /**
2042 * ixgbe_clear_rar_generic - Remove Rx address register
2043 * @hw: pointer to hardware structure
2044 * @index: Receive address register to write
2045 *
2046 * Clears an ethernet address from a receive address register.
2047 **/
ixgbe_clear_rar_generic(struct ixgbe_hw * hw,u32 index)2048 s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
2049 {
2050 u32 rar_high;
2051 u32 rar_entries = hw->mac.num_rar_entries;
2052
2053 DEBUGFUNC("ixgbe_clear_rar_generic");
2054
2055 /* Make sure we are using a valid rar index range */
2056 if (index >= rar_entries) {
2057 DEBUGOUT1("RAR index %d is out of range.\n", index);
2058 return IXGBE_ERR_INVALID_ARGUMENT;
2059 }
2060
2061 /*
2062 * Some parts put the VMDq setting in the extra RAH bits,
2063 * so save everything except the lower 16 bits that hold part
2064 * of the address and the address valid bit.
2065 */
2066 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
2067 rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
2068
2069 IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
2070 IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
2071
2072 /* clear VMDq pool/queue selection for this RAR */
2073 hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
2074
2075 return IXGBE_SUCCESS;
2076 }
2077
2078 /**
2079 * ixgbe_init_rx_addrs_generic - Initializes receive address filters.
2080 * @hw: pointer to hardware structure
2081 *
2082 * Places the MAC address in receive address register 0 and clears the rest
2083 * of the receive address registers. Clears the multicast table. Assumes
2084 * the receiver is in reset when the routine is called.
2085 **/
ixgbe_init_rx_addrs_generic(struct ixgbe_hw * hw)2086 s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
2087 {
2088 u32 i;
2089 u32 rar_entries = hw->mac.num_rar_entries;
2090
2091 DEBUGFUNC("ixgbe_init_rx_addrs_generic");
2092
2093 /*
2094 * If the current mac address is valid, assume it is a software override
2095 * to the permanent address.
2096 * Otherwise, use the permanent address from the eeprom.
2097 */
2098 if (ixgbe_validate_mac_addr(hw->mac.addr) ==
2099 IXGBE_ERR_INVALID_MAC_ADDR) {
2100 /* Get the MAC address from the RAR0 for later reference */
2101 hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
2102
2103 DEBUGOUT3(" Keeping Current RAR0 Addr =%.2X %.2X %.2X ",
2104 hw->mac.addr[0], hw->mac.addr[1],
2105 hw->mac.addr[2]);
2106 DEBUGOUT3("%.2X %.2X %.2X\n", hw->mac.addr[3],
2107 hw->mac.addr[4], hw->mac.addr[5]);
2108 } else {
2109 /* Setup the receive address. */
2110 DEBUGOUT("Overriding MAC Address in RAR[0]\n");
2111 DEBUGOUT3(" New MAC Addr =%.2X %.2X %.2X ",
2112 hw->mac.addr[0], hw->mac.addr[1],
2113 hw->mac.addr[2]);
2114 DEBUGOUT3("%.2X %.2X %.2X\n", hw->mac.addr[3],
2115 hw->mac.addr[4], hw->mac.addr[5]);
2116
2117 hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
2118
2119 /* clear VMDq pool/queue selection for RAR 0 */
2120 hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);
2121 }
2122 hw->addr_ctrl.overflow_promisc = 0;
2123
2124 hw->addr_ctrl.rar_used_count = 1;
2125
2126 /* Zero out the other receive addresses. */
2127 DEBUGOUT1("Clearing RAR[1-%d]\n", rar_entries - 1);
2128 for (i = 1; i < rar_entries; i++) {
2129 IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
2130 IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
2131 }
2132
2133 /* Clear the MTA */
2134 hw->addr_ctrl.mta_in_use = 0;
2135 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2136
2137 DEBUGOUT(" Clearing MTA\n");
2138 for (i = 0; i < hw->mac.mcft_size; i++)
2139 IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
2140
2141 /* Should always be IXGBE_SUCCESS. */
2142 return ixgbe_init_uta_tables(hw);
2143 }
2144
2145 /**
2146 * ixgbe_add_uc_addr - Adds a secondary unicast address.
2147 * @hw: pointer to hardware structure
2148 * @addr: new address
2149 *
2150 * Adds it to unused receive address register or goes into promiscuous mode.
2151 **/
ixgbe_add_uc_addr(struct ixgbe_hw * hw,u8 * addr,u32 vmdq)2152 void ixgbe_add_uc_addr(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
2153 {
2154 u32 rar_entries = hw->mac.num_rar_entries;
2155 u32 rar;
2156
2157 DEBUGFUNC("ixgbe_add_uc_addr");
2158
2159 DEBUGOUT6(" UC Addr = %.2X %.2X %.2X %.2X %.2X %.2X\n",
2160 addr[0], addr[1], addr[2], addr[3], addr[4], addr[5]);
2161
2162 /*
2163 * Place this address in the RAR if there is room,
2164 * else put the controller into promiscuous mode
2165 */
2166 if (hw->addr_ctrl.rar_used_count < rar_entries) {
2167 rar = hw->addr_ctrl.rar_used_count;
2168 hw->mac.ops.set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
2169 DEBUGOUT1("Added a secondary address to RAR[%d]\n", rar);
2170 hw->addr_ctrl.rar_used_count++;
2171 } else {
2172 hw->addr_ctrl.overflow_promisc++;
2173 }
2174
2175 DEBUGOUT("ixgbe_add_uc_addr Complete\n");
2176 }
2177
2178 /**
2179 * ixgbe_update_uc_addr_list_generic - Updates MAC list of secondary addresses
2180 * @hw: pointer to hardware structure
2181 * @addr_list: the list of new addresses
2182 * @addr_count: number of addresses
2183 * @next: iterator function to walk the address list
2184 *
2185 * The given list replaces any existing list. Clears the secondary addrs from
2186 * receive address registers. Uses unused receive address registers for the
2187 * first secondary addresses, and falls back to promiscuous mode as needed.
2188 *
2189 * Drivers using secondary unicast addresses must set user_set_promisc when
2190 * manually putting the device into promiscuous mode.
2191 **/
ixgbe_update_uc_addr_list_generic(struct ixgbe_hw * hw,u8 * addr_list,u32 addr_count,ixgbe_mc_addr_itr next)2192 s32 ixgbe_update_uc_addr_list_generic(struct ixgbe_hw *hw, u8 *addr_list,
2193 u32 addr_count, ixgbe_mc_addr_itr next)
2194 {
2195 u8 *addr;
2196 u32 i;
2197 u32 old_promisc_setting = hw->addr_ctrl.overflow_promisc;
2198 u32 uc_addr_in_use;
2199 u32 fctrl;
2200 u32 vmdq;
2201
2202 DEBUGFUNC("ixgbe_update_uc_addr_list_generic");
2203
2204 /*
2205 * Clear accounting of old secondary address list,
2206 * don't count RAR[0]
2207 */
2208 uc_addr_in_use = hw->addr_ctrl.rar_used_count - 1;
2209 hw->addr_ctrl.rar_used_count -= uc_addr_in_use;
2210 hw->addr_ctrl.overflow_promisc = 0;
2211
2212 /* Zero out the other receive addresses */
2213 DEBUGOUT1("Clearing RAR[1-%d]\n", uc_addr_in_use+1);
2214 for (i = 0; i < uc_addr_in_use; i++) {
2215 IXGBE_WRITE_REG(hw, IXGBE_RAL(1+i), 0);
2216 IXGBE_WRITE_REG(hw, IXGBE_RAH(1+i), 0);
2217 }
2218
2219 /* Add the new addresses */
2220 for (i = 0; i < addr_count; i++) {
2221 DEBUGOUT(" Adding the secondary addresses:\n");
2222 addr = next(hw, &addr_list, &vmdq);
2223 ixgbe_add_uc_addr(hw, addr, vmdq);
2224 }
2225
2226 if (hw->addr_ctrl.overflow_promisc) {
2227 /* enable promisc if not already in overflow or set by user */
2228 if (!old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
2229 DEBUGOUT(" Entering address overflow promisc mode\n");
2230 fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
2231 fctrl |= IXGBE_FCTRL_UPE;
2232 IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
2233 }
2234 } else {
2235 /* only disable if set by overflow, not by user */
2236 if (old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
2237 DEBUGOUT(" Leaving address overflow promisc mode\n");
2238 fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
2239 fctrl &= ~IXGBE_FCTRL_UPE;
2240 IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
2241 }
2242 }
2243
2244 DEBUGOUT("ixgbe_update_uc_addr_list_generic Complete\n");
2245 return IXGBE_SUCCESS;
2246 }
2247
2248 /**
2249 * ixgbe_mta_vector - Determines bit-vector in multicast table to set
2250 * @hw: pointer to hardware structure
2251 * @mc_addr: the multicast address
2252 *
2253 * Extracts the 12 bits, from a multicast address, to determine which
2254 * bit-vector to set in the multicast table. The hardware uses 12 bits, from
2255 * incoming rx multicast addresses, to determine the bit-vector to check in
2256 * the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
2257 * by the MO field of the MCSTCTRL. The MO field is set during initialization
2258 * to mc_filter_type.
2259 **/
ixgbe_mta_vector(struct ixgbe_hw * hw,u8 * mc_addr)2260 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
2261 {
2262 u32 vector = 0;
2263
2264 DEBUGFUNC("ixgbe_mta_vector");
2265
2266 switch (hw->mac.mc_filter_type) {
2267 case 0: /* use bits [47:36] of the address */
2268 vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
2269 break;
2270 case 1: /* use bits [46:35] of the address */
2271 vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
2272 break;
2273 case 2: /* use bits [45:34] of the address */
2274 vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
2275 break;
2276 case 3: /* use bits [43:32] of the address */
2277 vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
2278 break;
2279 default: /* Invalid mc_filter_type */
2280 DEBUGOUT("MC filter type param set incorrectly\n");
2281 ASSERT(0);
2282 break;
2283 }
2284
2285 /* vector can only be 12-bits or boundary will be exceeded */
2286 vector &= 0xFFF;
2287 return vector;
2288 }
2289
2290 /**
2291 * ixgbe_set_mta - Set bit-vector in multicast table
2292 * @hw: pointer to hardware structure
2293 * @hash_value: Multicast address hash value
2294 *
2295 * Sets the bit-vector in the multicast table.
2296 **/
ixgbe_set_mta(struct ixgbe_hw * hw,u8 * mc_addr)2297 void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
2298 {
2299 u32 vector;
2300 u32 vector_bit;
2301 u32 vector_reg;
2302
2303 DEBUGFUNC("ixgbe_set_mta");
2304
2305 hw->addr_ctrl.mta_in_use++;
2306
2307 vector = ixgbe_mta_vector(hw, mc_addr);
2308 DEBUGOUT1(" bit-vector = 0x%03X\n", vector);
2309
2310 /*
2311 * The MTA is a register array of 128 32-bit registers. It is treated
2312 * like an array of 4096 bits. We want to set bit
2313 * BitArray[vector_value]. So we figure out what register the bit is
2314 * in, read it, OR in the new bit, then write back the new value. The
2315 * register is determined by the upper 7 bits of the vector value and
2316 * the bit within that register are determined by the lower 5 bits of
2317 * the value.
2318 */
2319 vector_reg = (vector >> 5) & 0x7F;
2320 vector_bit = vector & 0x1F;
2321 hw->mac.mta_shadow[vector_reg] |= (1 << vector_bit);
2322 }
2323
2324 /**
2325 * ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
2326 * @hw: pointer to hardware structure
2327 * @mc_addr_list: the list of new multicast addresses
2328 * @mc_addr_count: number of addresses
2329 * @next: iterator function to walk the multicast address list
2330 * @clear: flag, when set clears the table beforehand
2331 *
2332 * When the clear flag is set, the given list replaces any existing list.
2333 * Hashes the given addresses into the multicast table.
2334 **/
ixgbe_update_mc_addr_list_generic(struct ixgbe_hw * hw,u8 * mc_addr_list,u32 mc_addr_count,ixgbe_mc_addr_itr next,bool clear)2335 s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw, u8 *mc_addr_list,
2336 u32 mc_addr_count, ixgbe_mc_addr_itr next,
2337 bool clear)
2338 {
2339 u32 i;
2340 u32 vmdq;
2341
2342 DEBUGFUNC("ixgbe_update_mc_addr_list_generic");
2343
2344 /*
2345 * Set the new number of MC addresses that we are being requested to
2346 * use.
2347 */
2348 hw->addr_ctrl.num_mc_addrs = mc_addr_count;
2349 hw->addr_ctrl.mta_in_use = 0;
2350
2351 /* Clear mta_shadow */
2352 if (clear) {
2353 DEBUGOUT(" Clearing MTA\n");
2354 (void) memset(&hw->mac.mta_shadow, 0,
2355 sizeof(hw->mac.mta_shadow));
2356 }
2357
2358 /* Update mta_shadow */
2359 for (i = 0; i < mc_addr_count; i++) {
2360 DEBUGOUT(" Adding the multicast addresses:\n");
2361 ixgbe_set_mta(hw, next(hw, &mc_addr_list, &vmdq));
2362 }
2363
2364 /* Enable mta */
2365 for (i = 0; i < hw->mac.mcft_size; i++)
2366 IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
2367 hw->mac.mta_shadow[i]);
2368
2369 if (hw->addr_ctrl.mta_in_use > 0)
2370 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
2371 IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
2372
2373 DEBUGOUT("ixgbe_update_mc_addr_list_generic Complete\n");
2374 return IXGBE_SUCCESS;
2375 }
2376
2377 /**
2378 * ixgbe_enable_mc_generic - Enable multicast address in RAR
2379 * @hw: pointer to hardware structure
2380 *
2381 * Enables multicast address in RAR and the use of the multicast hash table.
2382 **/
ixgbe_enable_mc_generic(struct ixgbe_hw * hw)2383 s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
2384 {
2385 struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2386
2387 DEBUGFUNC("ixgbe_enable_mc_generic");
2388
2389 if (a->mta_in_use > 0)
2390 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
2391 hw->mac.mc_filter_type);
2392
2393 return IXGBE_SUCCESS;
2394 }
2395
2396 /**
2397 * ixgbe_disable_mc_generic - Disable multicast address in RAR
2398 * @hw: pointer to hardware structure
2399 *
2400 * Disables multicast address in RAR and the use of the multicast hash table.
2401 **/
ixgbe_disable_mc_generic(struct ixgbe_hw * hw)2402 s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
2403 {
2404 struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2405
2406 DEBUGFUNC("ixgbe_disable_mc_generic");
2407
2408 if (a->mta_in_use > 0)
2409 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2410
2411 return IXGBE_SUCCESS;
2412 }
2413
2414 /**
2415 * ixgbe_fc_enable_generic - Enable flow control
2416 * @hw: pointer to hardware structure
2417 *
2418 * Enable flow control according to the current settings.
2419 **/
ixgbe_fc_enable_generic(struct ixgbe_hw * hw)2420 s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw)
2421 {
2422 s32 ret_val = IXGBE_SUCCESS;
2423 u32 mflcn_reg, fccfg_reg;
2424 u32 reg;
2425 u32 fcrtl, fcrth;
2426 int i;
2427
2428 DEBUGFUNC("ixgbe_fc_enable_generic");
2429
2430 /* Validate the water mark configuration */
2431 if (!hw->fc.pause_time) {
2432 ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
2433 goto out;
2434 }
2435
2436 /* Low water mark of zero causes XOFF floods */
2437 for (i = 0; i < IXGBE_DCB_MAX_TRAFFIC_CLASS; i++) {
2438 if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2439 hw->fc.high_water[i]) {
2440 if (!hw->fc.low_water[i] ||
2441 hw->fc.low_water[i] >= hw->fc.high_water[i]) {
2442 DEBUGOUT("Invalid water mark configuration\n");
2443 ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
2444 goto out;
2445 }
2446 }
2447 }
2448
2449 /* Negotiate the fc mode to use */
2450 ixgbe_fc_autoneg(hw);
2451
2452 /* Disable any previous flow control settings */
2453 mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
2454 mflcn_reg &= ~(IXGBE_MFLCN_RPFCE_MASK | IXGBE_MFLCN_RFCE);
2455
2456 fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
2457 fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
2458
2459 /*
2460 * The possible values of fc.current_mode are:
2461 * 0: Flow control is completely disabled
2462 * 1: Rx flow control is enabled (we can receive pause frames,
2463 * but not send pause frames).
2464 * 2: Tx flow control is enabled (we can send pause frames but
2465 * we do not support receiving pause frames).
2466 * 3: Both Rx and Tx flow control (symmetric) are enabled.
2467 * other: Invalid.
2468 */
2469 switch (hw->fc.current_mode) {
2470 case ixgbe_fc_none:
2471 /*
2472 * Flow control is disabled by software override or autoneg.
2473 * The code below will actually disable it in the HW.
2474 */
2475 break;
2476 case ixgbe_fc_rx_pause:
2477 /*
2478 * Rx Flow control is enabled and Tx Flow control is
2479 * disabled by software override. Since there really
2480 * isn't a way to advertise that we are capable of RX
2481 * Pause ONLY, we will advertise that we support both
2482 * symmetric and asymmetric Rx PAUSE. Later, we will
2483 * disable the adapter's ability to send PAUSE frames.
2484 */
2485 mflcn_reg |= IXGBE_MFLCN_RFCE;
2486 break;
2487 case ixgbe_fc_tx_pause:
2488 /*
2489 * Tx Flow control is enabled, and Rx Flow control is
2490 * disabled by software override.
2491 */
2492 fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2493 break;
2494 case ixgbe_fc_full:
2495 /* Flow control (both Rx and Tx) is enabled by SW override. */
2496 mflcn_reg |= IXGBE_MFLCN_RFCE;
2497 fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2498 break;
2499 default:
2500 DEBUGOUT("Flow control param set incorrectly\n");
2501 ret_val = IXGBE_ERR_CONFIG;
2502 goto out;
2503 }
2504
2505 /* Set 802.3x based flow control settings. */
2506 mflcn_reg |= IXGBE_MFLCN_DPF;
2507 IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
2508 IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
2509
2510
2511 /* Set up and enable Rx high/low water mark thresholds, enable XON. */
2512 for (i = 0; i < IXGBE_DCB_MAX_TRAFFIC_CLASS; i++) {
2513 if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2514 hw->fc.high_water[i]) {
2515 fcrtl = (hw->fc.low_water[i] << 10) | IXGBE_FCRTL_XONE;
2516 IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), fcrtl);
2517 fcrth = (hw->fc.high_water[i] << 10) | IXGBE_FCRTH_FCEN;
2518 } else {
2519 IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), 0);
2520 /*
2521 * In order to prevent Tx hangs when the internal Tx
2522 * switch is enabled we must set the high water mark
2523 * to the maximum FCRTH value. This allows the Tx
2524 * switch to function even under heavy Rx workloads.
2525 */
2526 fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i)) - 32;
2527 }
2528
2529 IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(i), fcrth);
2530 }
2531
2532 /* Configure pause time (2 TCs per register) */
2533 reg = hw->fc.pause_time * 0x00010001;
2534 for (i = 0; i < (IXGBE_DCB_MAX_TRAFFIC_CLASS / 2); i++)
2535 IXGBE_WRITE_REG(hw, IXGBE_FCTTV(i), reg);
2536
2537 /* Configure flow control refresh threshold value */
2538 IXGBE_WRITE_REG(hw, IXGBE_FCRTV, hw->fc.pause_time / 2);
2539
2540 out:
2541 return ret_val;
2542 }
2543
2544 /**
2545 * ixgbe_negotiate_fc - Negotiate flow control
2546 * @hw: pointer to hardware structure
2547 * @adv_reg: flow control advertised settings
2548 * @lp_reg: link partner's flow control settings
2549 * @adv_sym: symmetric pause bit in advertisement
2550 * @adv_asm: asymmetric pause bit in advertisement
2551 * @lp_sym: symmetric pause bit in link partner advertisement
2552 * @lp_asm: asymmetric pause bit in link partner advertisement
2553 *
2554 * Find the intersection between advertised settings and link partner's
2555 * advertised settings
2556 **/
ixgbe_negotiate_fc(struct ixgbe_hw * hw,u32 adv_reg,u32 lp_reg,u32 adv_sym,u32 adv_asm,u32 lp_sym,u32 lp_asm)2557 static s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
2558 u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
2559 {
2560 if ((!(adv_reg)) || (!(lp_reg)))
2561 return IXGBE_ERR_FC_NOT_NEGOTIATED;
2562
2563 if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
2564 /*
2565 * Now we need to check if the user selected Rx ONLY
2566 * of pause frames. In this case, we had to advertise
2567 * FULL flow control because we could not advertise RX
2568 * ONLY. Hence, we must now check to see if we need to
2569 * turn OFF the TRANSMISSION of PAUSE frames.
2570 */
2571 if (hw->fc.requested_mode == ixgbe_fc_full) {
2572 hw->fc.current_mode = ixgbe_fc_full;
2573 DEBUGOUT("Flow Control = FULL.\n");
2574 } else {
2575 hw->fc.current_mode = ixgbe_fc_rx_pause;
2576 DEBUGOUT("Flow Control=RX PAUSE frames only\n");
2577 }
2578 } else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2579 (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2580 hw->fc.current_mode = ixgbe_fc_tx_pause;
2581 DEBUGOUT("Flow Control = TX PAUSE frames only.\n");
2582 } else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2583 !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2584 hw->fc.current_mode = ixgbe_fc_rx_pause;
2585 DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
2586 } else {
2587 hw->fc.current_mode = ixgbe_fc_none;
2588 DEBUGOUT("Flow Control = NONE.\n");
2589 }
2590 return IXGBE_SUCCESS;
2591 }
2592
2593 /**
2594 * ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
2595 * @hw: pointer to hardware structure
2596 *
2597 * Enable flow control according on 1 gig fiber.
2598 **/
ixgbe_fc_autoneg_fiber(struct ixgbe_hw * hw)2599 static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
2600 {
2601 u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
2602 s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2603
2604 /*
2605 * On multispeed fiber at 1g, bail out if
2606 * - link is up but AN did not complete, or if
2607 * - link is up and AN completed but timed out
2608 */
2609
2610 linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
2611 if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
2612 (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1))
2613 goto out;
2614
2615 pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
2616 pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
2617
2618 ret_val = ixgbe_negotiate_fc(hw, pcs_anadv_reg,
2619 pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
2620 IXGBE_PCS1GANA_ASM_PAUSE,
2621 IXGBE_PCS1GANA_SYM_PAUSE,
2622 IXGBE_PCS1GANA_ASM_PAUSE);
2623
2624 out:
2625 return ret_val;
2626 }
2627
2628 /**
2629 * ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
2630 * @hw: pointer to hardware structure
2631 *
2632 * Enable flow control according to IEEE clause 37.
2633 **/
ixgbe_fc_autoneg_backplane(struct ixgbe_hw * hw)2634 static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
2635 {
2636 u32 links2, anlp1_reg, autoc_reg, links;
2637 s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2638
2639 /*
2640 * On backplane, bail out if
2641 * - backplane autoneg was not completed, or if
2642 * - we are 82599 and link partner is not AN enabled
2643 */
2644 links = IXGBE_READ_REG(hw, IXGBE_LINKS);
2645 if ((links & IXGBE_LINKS_KX_AN_COMP) == 0)
2646 goto out;
2647
2648 if (hw->mac.type == ixgbe_mac_82599EB) {
2649 links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
2650 if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0)
2651 goto out;
2652 }
2653 /*
2654 * Read the 10g AN autoc and LP ability registers and resolve
2655 * local flow control settings accordingly
2656 */
2657 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2658 anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
2659
2660 ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
2661 anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
2662 IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);
2663
2664 out:
2665 return ret_val;
2666 }
2667
2668 /**
2669 * ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
2670 * @hw: pointer to hardware structure
2671 *
2672 * Enable flow control according to IEEE clause 37.
2673 **/
ixgbe_fc_autoneg_copper(struct ixgbe_hw * hw)2674 static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
2675 {
2676 u16 technology_ability_reg = 0;
2677 u16 lp_technology_ability_reg = 0;
2678
2679 hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
2680 IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
2681 &technology_ability_reg);
2682 hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_LP,
2683 IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
2684 &lp_technology_ability_reg);
2685
2686 return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
2687 (u32)lp_technology_ability_reg,
2688 IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
2689 IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
2690 }
2691
2692 /**
2693 * ixgbe_fc_autoneg - Configure flow control
2694 * @hw: pointer to hardware structure
2695 *
2696 * Compares our advertised flow control capabilities to those advertised by
2697 * our link partner, and determines the proper flow control mode to use.
2698 **/
ixgbe_fc_autoneg(struct ixgbe_hw * hw)2699 void ixgbe_fc_autoneg(struct ixgbe_hw *hw)
2700 {
2701 s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2702 ixgbe_link_speed speed;
2703 bool link_up;
2704
2705 DEBUGFUNC("ixgbe_fc_autoneg");
2706
2707 /*
2708 * AN should have completed when the cable was plugged in.
2709 * Look for reasons to bail out. Bail out if:
2710 * - FC autoneg is disabled, or if
2711 * - link is not up.
2712 */
2713 if (hw->fc.disable_fc_autoneg)
2714 goto out;
2715
2716 hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
2717 if (!link_up)
2718 goto out;
2719
2720 switch (hw->phy.media_type) {
2721 /* Autoneg flow control on fiber adapters */
2722 case ixgbe_media_type_fiber:
2723 if (speed == IXGBE_LINK_SPEED_1GB_FULL)
2724 ret_val = ixgbe_fc_autoneg_fiber(hw);
2725 break;
2726
2727 /* Autoneg flow control on backplane adapters */
2728 case ixgbe_media_type_backplane:
2729 ret_val = ixgbe_fc_autoneg_backplane(hw);
2730 break;
2731
2732 /* Autoneg flow control on copper adapters */
2733 case ixgbe_media_type_copper:
2734 if (ixgbe_device_supports_autoneg_fc(hw) == IXGBE_SUCCESS)
2735 ret_val = ixgbe_fc_autoneg_copper(hw);
2736 break;
2737
2738 default:
2739 break;
2740 }
2741
2742 out:
2743 if (ret_val == IXGBE_SUCCESS) {
2744 hw->fc.fc_was_autonegged = TRUE;
2745 } else {
2746 hw->fc.fc_was_autonegged = FALSE;
2747 hw->fc.current_mode = hw->fc.requested_mode;
2748 }
2749 }
2750
2751 /**
2752 * ixgbe_disable_pcie_master - Disable PCI-express master access
2753 * @hw: pointer to hardware structure
2754 *
2755 * Disables PCI-Express master access and verifies there are no pending
2756 * requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
2757 * bit hasn't caused the master requests to be disabled, else IXGBE_SUCCESS
2758 * is returned signifying master requests disabled.
2759 **/
ixgbe_disable_pcie_master(struct ixgbe_hw * hw)2760 s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
2761 {
2762 s32 status = IXGBE_SUCCESS;
2763 u32 i;
2764
2765 DEBUGFUNC("ixgbe_disable_pcie_master");
2766
2767 /* Always set this bit to ensure any future transactions are blocked */
2768 IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS);
2769
2770 /* Exit if master requets are blocked */
2771 if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
2772 goto out;
2773
2774 /* Poll for master request bit to clear */
2775 for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
2776 usec_delay(100);
2777 if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
2778 goto out;
2779 }
2780
2781 /*
2782 * Two consecutive resets are required via CTRL.RST per datasheet
2783 * 5.2.5.3.2 Master Disable. We set a flag to inform the reset routine
2784 * of this need. The first reset prevents new master requests from
2785 * being issued by our device. We then must wait 1usec or more for any
2786 * remaining completions from the PCIe bus to trickle in, and then reset
2787 * again to clear out any effects they may have had on our device.
2788 */
2789 DEBUGOUT("GIO Master Disable bit didn't clear - requesting resets\n");
2790 hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
2791
2792 /*
2793 * Before proceeding, make sure that the PCIe block does not have
2794 * transactions pending.
2795 */
2796 for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
2797 usec_delay(100);
2798 if (!(IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_STATUS) &
2799 IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
2800 goto out;
2801 }
2802
2803 DEBUGOUT("PCIe transaction pending bit also did not clear.\n");
2804 status = IXGBE_ERR_MASTER_REQUESTS_PENDING;
2805
2806 out:
2807 return status;
2808 }
2809
2810 /**
2811 * ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
2812 * @hw: pointer to hardware structure
2813 * @mask: Mask to specify which semaphore to acquire
2814 *
2815 * Acquires the SWFW semaphore through the GSSR register for the specified
2816 * function (CSR, PHY0, PHY1, EEPROM, Flash)
2817 **/
ixgbe_acquire_swfw_sync(struct ixgbe_hw * hw,u16 mask)2818 s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u16 mask)
2819 {
2820 u32 gssr;
2821 u32 swmask = mask;
2822 u32 fwmask = mask << 5;
2823 s32 timeout = 200;
2824
2825 DEBUGFUNC("ixgbe_acquire_swfw_sync");
2826
2827 while (timeout) {
2828 /*
2829 * SW EEPROM semaphore bit is used for access to all
2830 * SW_FW_SYNC/GSSR bits (not just EEPROM)
2831 */
2832 if (ixgbe_get_eeprom_semaphore(hw))
2833 return IXGBE_ERR_SWFW_SYNC;
2834
2835 gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2836 if (!(gssr & (fwmask | swmask)))
2837 break;
2838
2839 /*
2840 * Firmware currently using resource (fwmask) or other software
2841 * thread currently using resource (swmask)
2842 */
2843 ixgbe_release_eeprom_semaphore(hw);
2844 msec_delay(5);
2845 timeout--;
2846 }
2847
2848 if (!timeout) {
2849 DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
2850 return IXGBE_ERR_SWFW_SYNC;
2851 }
2852
2853 gssr |= swmask;
2854 IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2855
2856 ixgbe_release_eeprom_semaphore(hw);
2857 return IXGBE_SUCCESS;
2858 }
2859
2860 /**
2861 * ixgbe_release_swfw_sync - Release SWFW semaphore
2862 * @hw: pointer to hardware structure
2863 * @mask: Mask to specify which semaphore to release
2864 *
2865 * Releases the SWFW semaphore through the GSSR register for the specified
2866 * function (CSR, PHY0, PHY1, EEPROM, Flash)
2867 **/
ixgbe_release_swfw_sync(struct ixgbe_hw * hw,u16 mask)2868 void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u16 mask)
2869 {
2870 u32 gssr;
2871 u32 swmask = mask;
2872
2873 DEBUGFUNC("ixgbe_release_swfw_sync");
2874
2875 (void) ixgbe_get_eeprom_semaphore(hw);
2876
2877 gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2878 gssr &= ~swmask;
2879 IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2880
2881 ixgbe_release_eeprom_semaphore(hw);
2882 }
2883
2884 /**
2885 * ixgbe_disable_sec_rx_path_generic - Stops the receive data path
2886 * @hw: pointer to hardware structure
2887 *
2888 * Stops the receive data path and waits for the HW to internally empty
2889 * the Rx security block
2890 **/
ixgbe_disable_sec_rx_path_generic(struct ixgbe_hw * hw)2891 s32 ixgbe_disable_sec_rx_path_generic(struct ixgbe_hw *hw)
2892 {
2893 #define IXGBE_MAX_SECRX_POLL 40
2894
2895 int i;
2896 int secrxreg;
2897
2898 DEBUGFUNC("ixgbe_disable_sec_rx_path_generic");
2899
2900
2901 secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2902 secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
2903 IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2904 for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
2905 secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
2906 if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
2907 break;
2908 else
2909 /* Use interrupt-safe sleep just in case */
2910 usec_delay(1000);
2911 }
2912
2913 /* For informational purposes only */
2914 if (i >= IXGBE_MAX_SECRX_POLL)
2915 DEBUGOUT("Rx unit being enabled before security "
2916 "path fully disabled. Continuing with init.\n");
2917
2918 return IXGBE_SUCCESS;
2919 }
2920
2921 /**
2922 * ixgbe_enable_sec_rx_path_generic - Enables the receive data path
2923 * @hw: pointer to hardware structure
2924 *
2925 * Enables the receive data path.
2926 **/
ixgbe_enable_sec_rx_path_generic(struct ixgbe_hw * hw)2927 s32 ixgbe_enable_sec_rx_path_generic(struct ixgbe_hw *hw)
2928 {
2929 int secrxreg;
2930
2931 DEBUGFUNC("ixgbe_enable_sec_rx_path_generic");
2932
2933 secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2934 secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
2935 IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2936 IXGBE_WRITE_FLUSH(hw);
2937
2938 return IXGBE_SUCCESS;
2939 }
2940
2941 /**
2942 * ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
2943 * @hw: pointer to hardware structure
2944 * @regval: register value to write to RXCTRL
2945 *
2946 * Enables the Rx DMA unit
2947 **/
ixgbe_enable_rx_dma_generic(struct ixgbe_hw * hw,u32 regval)2948 s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
2949 {
2950 DEBUGFUNC("ixgbe_enable_rx_dma_generic");
2951
2952 IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, regval);
2953
2954 return IXGBE_SUCCESS;
2955 }
2956
2957 /**
2958 * ixgbe_blink_led_start_generic - Blink LED based on index.
2959 * @hw: pointer to hardware structure
2960 * @index: led number to blink
2961 **/
ixgbe_blink_led_start_generic(struct ixgbe_hw * hw,u32 index)2962 s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
2963 {
2964 ixgbe_link_speed speed = 0;
2965 bool link_up = 0;
2966 u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2967 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2968
2969 DEBUGFUNC("ixgbe_blink_led_start_generic");
2970
2971 /*
2972 * Link must be up to auto-blink the LEDs;
2973 * Force it if link is down.
2974 */
2975 hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
2976
2977 if (!link_up) {
2978 autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2979 autoc_reg |= IXGBE_AUTOC_FLU;
2980 IXGBE_WRITE_REG(hw, IXGBE_AUTOC, autoc_reg);
2981 IXGBE_WRITE_FLUSH(hw);
2982 msec_delay(10);
2983 }
2984
2985 led_reg &= ~IXGBE_LED_MODE_MASK(index);
2986 led_reg |= IXGBE_LED_BLINK(index);
2987 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2988 IXGBE_WRITE_FLUSH(hw);
2989
2990 return IXGBE_SUCCESS;
2991 }
2992
2993 /**
2994 * ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
2995 * @hw: pointer to hardware structure
2996 * @index: led number to stop blinking
2997 **/
ixgbe_blink_led_stop_generic(struct ixgbe_hw * hw,u32 index)2998 s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
2999 {
3000 u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
3001 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
3002
3003 DEBUGFUNC("ixgbe_blink_led_stop_generic");
3004
3005
3006 autoc_reg &= ~IXGBE_AUTOC_FLU;
3007 autoc_reg |= IXGBE_AUTOC_AN_RESTART;
3008 IXGBE_WRITE_REG(hw, IXGBE_AUTOC, autoc_reg);
3009
3010 led_reg &= ~IXGBE_LED_MODE_MASK(index);
3011 led_reg &= ~IXGBE_LED_BLINK(index);
3012 led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
3013 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
3014 IXGBE_WRITE_FLUSH(hw);
3015
3016 return IXGBE_SUCCESS;
3017 }
3018
3019 /**
3020 * ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
3021 * @hw: pointer to hardware structure
3022 * @san_mac_offset: SAN MAC address offset
3023 *
3024 * This function will read the EEPROM location for the SAN MAC address
3025 * pointer, and returns the value at that location. This is used in both
3026 * get and set mac_addr routines.
3027 **/
ixgbe_get_san_mac_addr_offset(struct ixgbe_hw * hw,u16 * san_mac_offset)3028 static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
3029 u16 *san_mac_offset)
3030 {
3031 DEBUGFUNC("ixgbe_get_san_mac_addr_offset");
3032
3033 /*
3034 * First read the EEPROM pointer to see if the MAC addresses are
3035 * available.
3036 */
3037 hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR, san_mac_offset);
3038
3039 return IXGBE_SUCCESS;
3040 }
3041
3042 /**
3043 * ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
3044 * @hw: pointer to hardware structure
3045 * @san_mac_addr: SAN MAC address
3046 *
3047 * Reads the SAN MAC address from the EEPROM, if it's available. This is
3048 * per-port, so set_lan_id() must be called before reading the addresses.
3049 * set_lan_id() is called by identify_sfp(), but this cannot be relied
3050 * upon for non-SFP connections, so we must call it here.
3051 **/
ixgbe_get_san_mac_addr_generic(struct ixgbe_hw * hw,u8 * san_mac_addr)3052 s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
3053 {
3054 u16 san_mac_data, san_mac_offset;
3055 u8 i;
3056
3057 DEBUGFUNC("ixgbe_get_san_mac_addr_generic");
3058
3059 /*
3060 * First read the EEPROM pointer to see if the MAC addresses are
3061 * available. If they're not, no point in calling set_lan_id() here.
3062 */
3063 (void) ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
3064
3065 if ((san_mac_offset == 0) || (san_mac_offset == 0xFFFF)) {
3066 /*
3067 * No addresses available in this EEPROM. It's not an
3068 * error though, so just wipe the local address and return.
3069 */
3070 for (i = 0; i < 6; i++)
3071 san_mac_addr[i] = 0xFF;
3072
3073 goto san_mac_addr_out;
3074 }
3075
3076 /* make sure we know which port we need to program */
3077 hw->mac.ops.set_lan_id(hw);
3078 /* apply the port offset to the address offset */
3079 (hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
3080 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
3081 for (i = 0; i < 3; i++) {
3082 hw->eeprom.ops.read(hw, san_mac_offset, &san_mac_data);
3083 san_mac_addr[i * 2] = (u8)(san_mac_data);
3084 san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
3085 san_mac_offset++;
3086 }
3087
3088 san_mac_addr_out:
3089 return IXGBE_SUCCESS;
3090 }
3091
3092 /**
3093 * ixgbe_set_san_mac_addr_generic - Write the SAN MAC address to the EEPROM
3094 * @hw: pointer to hardware structure
3095 * @san_mac_addr: SAN MAC address
3096 *
3097 * Write a SAN MAC address to the EEPROM.
3098 **/
ixgbe_set_san_mac_addr_generic(struct ixgbe_hw * hw,u8 * san_mac_addr)3099 s32 ixgbe_set_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
3100 {
3101 s32 status = IXGBE_SUCCESS;
3102 u16 san_mac_data, san_mac_offset;
3103 u8 i;
3104
3105 DEBUGFUNC("ixgbe_set_san_mac_addr_generic");
3106
3107 /* Look for SAN mac address pointer. If not defined, return */
3108 (void) ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
3109
3110 if ((san_mac_offset == 0) || (san_mac_offset == 0xFFFF)) {
3111 status = IXGBE_ERR_NO_SAN_ADDR_PTR;
3112 goto san_mac_addr_out;
3113 }
3114
3115 /* Make sure we know which port we need to write */
3116 hw->mac.ops.set_lan_id(hw);
3117 /* Apply the port offset to the address offset */
3118 (hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
3119 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
3120
3121 for (i = 0; i < 3; i++) {
3122 san_mac_data = (u16)((u16)(san_mac_addr[i * 2 + 1]) << 8);
3123 san_mac_data |= (u16)(san_mac_addr[i * 2]);
3124 hw->eeprom.ops.write(hw, san_mac_offset, san_mac_data);
3125 san_mac_offset++;
3126 }
3127
3128 san_mac_addr_out:
3129 return status;
3130 }
3131
3132 /**
3133 * ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
3134 * @hw: pointer to hardware structure
3135 *
3136 * Read PCIe configuration space, and get the MSI-X vector count from
3137 * the capabilities table.
3138 **/
ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw * hw)3139 u16 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
3140 {
3141 u16 msix_count = 1;
3142 u16 max_msix_count;
3143 u16 pcie_offset;
3144
3145 switch (hw->mac.type) {
3146 case ixgbe_mac_82598EB:
3147 pcie_offset = IXGBE_PCIE_MSIX_82598_CAPS;
3148 max_msix_count = IXGBE_MAX_MSIX_VECTORS_82598;
3149 break;
3150 case ixgbe_mac_82599EB:
3151 case ixgbe_mac_X540:
3152 pcie_offset = IXGBE_PCIE_MSIX_82599_CAPS;
3153 max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599;
3154 break;
3155 default:
3156 return msix_count;
3157 }
3158
3159 DEBUGFUNC("ixgbe_get_pcie_msix_count_generic");
3160 msix_count = IXGBE_READ_PCIE_WORD(hw, pcie_offset);
3161 msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
3162
3163 /* MSI-X count is zero-based in HW */
3164 msix_count++;
3165
3166 if (msix_count > max_msix_count)
3167 msix_count = max_msix_count;
3168
3169 return msix_count;
3170 }
3171
3172 /**
3173 * ixgbe_insert_mac_addr_generic - Find a RAR for this mac address
3174 * @hw: pointer to hardware structure
3175 * @addr: Address to put into receive address register
3176 * @vmdq: VMDq pool to assign
3177 *
3178 * Puts an ethernet address into a receive address register, or
3179 * finds the rar that it is aleady in; adds to the pool list
3180 **/
ixgbe_insert_mac_addr_generic(struct ixgbe_hw * hw,u8 * addr,u32 vmdq)3181 s32 ixgbe_insert_mac_addr_generic(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
3182 {
3183 static const u32 NO_EMPTY_RAR_FOUND = 0xFFFFFFFF;
3184 u32 first_empty_rar = NO_EMPTY_RAR_FOUND;
3185 u32 rar;
3186 u32 rar_low, rar_high;
3187 u32 addr_low, addr_high;
3188
3189 DEBUGFUNC("ixgbe_insert_mac_addr_generic");
3190
3191 /* swap bytes for HW little endian */
3192 addr_low = addr[0] | (addr[1] << 8)
3193 | (addr[2] << 16)
3194 | (addr[3] << 24);
3195 addr_high = addr[4] | (addr[5] << 8);
3196
3197 /*
3198 * Either find the mac_id in rar or find the first empty space.
3199 * rar_highwater points to just after the highest currently used
3200 * rar in order to shorten the search. It grows when we add a new
3201 * rar to the top.
3202 */
3203 for (rar = 0; rar < hw->mac.rar_highwater; rar++) {
3204 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(rar));
3205
3206 if (((IXGBE_RAH_AV & rar_high) == 0)
3207 && first_empty_rar == NO_EMPTY_RAR_FOUND) {
3208 first_empty_rar = rar;
3209 } else if ((rar_high & 0xFFFF) == addr_high) {
3210 rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(rar));
3211 if (rar_low == addr_low)
3212 break; /* found it already in the rars */
3213 }
3214 }
3215
3216 if (rar < hw->mac.rar_highwater) {
3217 /* already there so just add to the pool bits */
3218 (void) ixgbe_set_vmdq(hw, rar, vmdq);
3219 } else if (first_empty_rar != NO_EMPTY_RAR_FOUND) {
3220 /* stick it into first empty RAR slot we found */
3221 rar = first_empty_rar;
3222 (void) ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
3223 } else if (rar == hw->mac.rar_highwater) {
3224 /* add it to the top of the list and inc the highwater mark */
3225 (void) ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
3226 hw->mac.rar_highwater++;
3227 } else if (rar >= hw->mac.num_rar_entries) {
3228 return IXGBE_ERR_INVALID_MAC_ADDR;
3229 }
3230
3231 /*
3232 * If we found rar[0], make sure the default pool bit (we use pool 0)
3233 * remains cleared to be sure default pool packets will get delivered
3234 */
3235 if (rar == 0)
3236 (void) ixgbe_clear_vmdq(hw, rar, 0);
3237
3238 return rar;
3239 }
3240
3241 /**
3242 * ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
3243 * @hw: pointer to hardware struct
3244 * @rar: receive address register index to disassociate
3245 * @vmdq: VMDq pool index to remove from the rar
3246 **/
ixgbe_clear_vmdq_generic(struct ixgbe_hw * hw,u32 rar,u32 vmdq)3247 s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
3248 {
3249 u32 mpsar_lo, mpsar_hi;
3250 u32 rar_entries = hw->mac.num_rar_entries;
3251
3252 DEBUGFUNC("ixgbe_clear_vmdq_generic");
3253
3254 /* Make sure we are using a valid rar index range */
3255 if (rar >= rar_entries) {
3256 DEBUGOUT1("RAR index %d is out of range.\n", rar);
3257 return IXGBE_ERR_INVALID_ARGUMENT;
3258 }
3259
3260 mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
3261 mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
3262
3263 if (!mpsar_lo && !mpsar_hi)
3264 goto done;
3265
3266 if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
3267 if (mpsar_lo) {
3268 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
3269 mpsar_lo = 0;
3270 }
3271 if (mpsar_hi) {
3272 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
3273 mpsar_hi = 0;
3274 }
3275 } else if (vmdq < 32) {
3276 mpsar_lo &= ~(1 << vmdq);
3277 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
3278 } else {
3279 mpsar_hi &= ~(1 << (vmdq - 32));
3280 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
3281 }
3282
3283 /* was that the last pool using this rar? */
3284 if (mpsar_lo == 0 && mpsar_hi == 0 && rar != 0)
3285 hw->mac.ops.clear_rar(hw, rar);
3286 done:
3287 return IXGBE_SUCCESS;
3288 }
3289
3290 /**
3291 * ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
3292 * @hw: pointer to hardware struct
3293 * @rar: receive address register index to associate with a VMDq index
3294 * @vmdq: VMDq pool index
3295 **/
ixgbe_set_vmdq_generic(struct ixgbe_hw * hw,u32 rar,u32 vmdq)3296 s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
3297 {
3298 u32 mpsar;
3299 u32 rar_entries = hw->mac.num_rar_entries;
3300
3301 DEBUGFUNC("ixgbe_set_vmdq_generic");
3302
3303 /* Make sure we are using a valid rar index range */
3304 if (rar >= rar_entries) {
3305 DEBUGOUT1("RAR index %d is out of range.\n", rar);
3306 return IXGBE_ERR_INVALID_ARGUMENT;
3307 }
3308
3309 if (vmdq < 32) {
3310 mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
3311 mpsar |= 1 << vmdq;
3312 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
3313 } else {
3314 mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
3315 mpsar |= 1 << (vmdq - 32);
3316 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
3317 }
3318 return IXGBE_SUCCESS;
3319 }
3320
3321 /**
3322 * This function should only be involved in the IOV mode.
3323 * In IOV mode, Default pool is next pool after the number of
3324 * VFs advertized and not 0.
3325 * MPSAR table needs to be updated for SAN_MAC RAR [hw->mac.san_mac_rar_index]
3326 *
3327 * ixgbe_set_vmdq_san_mac - Associate default VMDq pool index with a rx address
3328 * @hw: pointer to hardware struct
3329 * @vmdq: VMDq pool index
3330 **/
ixgbe_set_vmdq_san_mac_generic(struct ixgbe_hw * hw,u32 vmdq)3331 s32 ixgbe_set_vmdq_san_mac_generic(struct ixgbe_hw *hw, u32 vmdq)
3332 {
3333 u32 rar = hw->mac.san_mac_rar_index;
3334
3335 DEBUGFUNC("ixgbe_set_vmdq_san_mac");
3336
3337 if (vmdq < 32) {
3338 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 1 << vmdq);
3339 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
3340 } else {
3341 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
3342 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 1 << (vmdq - 32));
3343 }
3344
3345 return IXGBE_SUCCESS;
3346 }
3347
3348 /**
3349 * ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
3350 * @hw: pointer to hardware structure
3351 **/
ixgbe_init_uta_tables_generic(struct ixgbe_hw * hw)3352 s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
3353 {
3354 int i;
3355
3356 DEBUGFUNC("ixgbe_init_uta_tables_generic");
3357 DEBUGOUT(" Clearing UTA\n");
3358
3359 for (i = 0; i < 128; i++)
3360 IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
3361
3362 return IXGBE_SUCCESS;
3363 }
3364
3365 /**
3366 * ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
3367 * @hw: pointer to hardware structure
3368 * @vlan: VLAN id to write to VLAN filter
3369 *
3370 * return the VLVF index where this VLAN id should be placed
3371 *
3372 **/
ixgbe_find_vlvf_slot(struct ixgbe_hw * hw,u32 vlan)3373 s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan)
3374 {
3375 u32 bits = 0;
3376 u32 first_empty_slot = 0;
3377 s32 regindex;
3378
3379 /* short cut the special case */
3380 if (vlan == 0)
3381 return 0;
3382
3383 /*
3384 * Search for the vlan id in the VLVF entries. Save off the first empty
3385 * slot found along the way
3386 */
3387 for (regindex = 1; regindex < IXGBE_VLVF_ENTRIES; regindex++) {
3388 bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
3389 if (!bits && !(first_empty_slot))
3390 first_empty_slot = regindex;
3391 else if ((bits & 0x0FFF) == vlan)
3392 break;
3393 }
3394
3395 /*
3396 * If regindex is less than IXGBE_VLVF_ENTRIES, then we found the vlan
3397 * in the VLVF. Else use the first empty VLVF register for this
3398 * vlan id.
3399 */
3400 if (regindex >= IXGBE_VLVF_ENTRIES) {
3401 if (first_empty_slot)
3402 regindex = first_empty_slot;
3403 else {
3404 DEBUGOUT("No space in VLVF.\n");
3405 regindex = IXGBE_ERR_NO_SPACE;
3406 }
3407 }
3408
3409 return regindex;
3410 }
3411
3412 /**
3413 * ixgbe_set_vfta_generic - Set VLAN filter table
3414 * @hw: pointer to hardware structure
3415 * @vlan: VLAN id to write to VLAN filter
3416 * @vind: VMDq output index that maps queue to VLAN id in VFVFB
3417 * @vlan_on: boolean flag to turn on/off VLAN in VFVF
3418 *
3419 * Turn on/off specified VLAN in the VLAN filter table.
3420 **/
ixgbe_set_vfta_generic(struct ixgbe_hw * hw,u32 vlan,u32 vind,bool vlan_on)3421 s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
3422 bool vlan_on)
3423 {
3424 s32 regindex;
3425 u32 bitindex;
3426 u32 vfta;
3427 u32 targetbit;
3428 s32 ret_val = IXGBE_SUCCESS;
3429 bool vfta_changed = FALSE;
3430
3431 DEBUGFUNC("ixgbe_set_vfta_generic");
3432
3433 if (vlan > 4095)
3434 return IXGBE_ERR_PARAM;
3435
3436 /*
3437 * this is a 2 part operation - first the VFTA, then the
3438 * VLVF and VLVFB if VT Mode is set
3439 * We don't write the VFTA until we know the VLVF part succeeded.
3440 */
3441
3442 /* Part 1
3443 * The VFTA is a bitstring made up of 128 32-bit registers
3444 * that enable the particular VLAN id, much like the MTA:
3445 * bits[11-5]: which register
3446 * bits[4-0]: which bit in the register
3447 */
3448 regindex = (vlan >> 5) & 0x7F;
3449 bitindex = vlan & 0x1F;
3450 targetbit = (1 << bitindex);
3451 vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regindex));
3452
3453 if (vlan_on) {
3454 if (!(vfta & targetbit)) {
3455 vfta |= targetbit;
3456 vfta_changed = TRUE;
3457 }
3458 } else {
3459 if ((vfta & targetbit)) {
3460 vfta &= ~targetbit;
3461 vfta_changed = TRUE;
3462 }
3463 }
3464
3465 /* Part 2
3466 * Call ixgbe_set_vlvf_generic to set VLVFB and VLVF
3467 */
3468 ret_val = ixgbe_set_vlvf_generic(hw, vlan, vind, vlan_on,
3469 &vfta_changed);
3470 if (ret_val != IXGBE_SUCCESS)
3471 return ret_val;
3472
3473 if (vfta_changed)
3474 IXGBE_WRITE_REG(hw, IXGBE_VFTA(regindex), vfta);
3475
3476 return IXGBE_SUCCESS;
3477 }
3478
3479 /**
3480 * ixgbe_set_vlvf_generic - Set VLAN Pool Filter
3481 * @hw: pointer to hardware structure
3482 * @vlan: VLAN id to write to VLAN filter
3483 * @vind: VMDq output index that maps queue to VLAN id in VFVFB
3484 * @vlan_on: boolean flag to turn on/off VLAN in VFVF
3485 * @vfta_changed: pointer to boolean flag which indicates whether VFTA
3486 * should be changed
3487 *
3488 * Turn on/off specified bit in VLVF table.
3489 **/
ixgbe_set_vlvf_generic(struct ixgbe_hw * hw,u32 vlan,u32 vind,bool vlan_on,bool * vfta_changed)3490 s32 ixgbe_set_vlvf_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
3491 bool vlan_on, bool *vfta_changed)
3492 {
3493 u32 vt;
3494
3495 DEBUGFUNC("ixgbe_set_vlvf_generic");
3496
3497 if (vlan > 4095)
3498 return IXGBE_ERR_PARAM;
3499
3500 /* If VT Mode is set
3501 * Either vlan_on
3502 * make sure the vlan is in VLVF
3503 * set the vind bit in the matching VLVFB
3504 * Or !vlan_on
3505 * clear the pool bit and possibly the vind
3506 */
3507 vt = IXGBE_READ_REG(hw, IXGBE_VT_CTL);
3508 if (vt & IXGBE_VT_CTL_VT_ENABLE) {
3509 s32 vlvf_index;
3510 u32 bits;
3511
3512 vlvf_index = ixgbe_find_vlvf_slot(hw, vlan);
3513 if (vlvf_index < 0)
3514 return vlvf_index;
3515
3516 if (vlan_on) {
3517 /* set the pool bit */
3518 if (vind < 32) {
3519 bits = IXGBE_READ_REG(hw,
3520 IXGBE_VLVFB(vlvf_index * 2));
3521 bits |= (1 << vind);
3522 IXGBE_WRITE_REG(hw,
3523 IXGBE_VLVFB(vlvf_index * 2),
3524 bits);
3525 } else {
3526 bits = IXGBE_READ_REG(hw,
3527 IXGBE_VLVFB((vlvf_index * 2) + 1));
3528 bits |= (1 << (vind - 32));
3529 IXGBE_WRITE_REG(hw,
3530 IXGBE_VLVFB((vlvf_index * 2) + 1),
3531 bits);
3532 }
3533 } else {
3534 /* clear the pool bit */
3535 if (vind < 32) {
3536 bits = IXGBE_READ_REG(hw,
3537 IXGBE_VLVFB(vlvf_index * 2));
3538 bits &= ~(1 << vind);
3539 IXGBE_WRITE_REG(hw,
3540 IXGBE_VLVFB(vlvf_index * 2),
3541 bits);
3542 bits |= IXGBE_READ_REG(hw,
3543 IXGBE_VLVFB((vlvf_index * 2) + 1));
3544 } else {
3545 bits = IXGBE_READ_REG(hw,
3546 IXGBE_VLVFB((vlvf_index * 2) + 1));
3547 bits &= ~(1 << (vind - 32));
3548 IXGBE_WRITE_REG(hw,
3549 IXGBE_VLVFB((vlvf_index * 2) + 1),
3550 bits);
3551 bits |= IXGBE_READ_REG(hw,
3552 IXGBE_VLVFB(vlvf_index * 2));
3553 }
3554 }
3555
3556 /*
3557 * If there are still bits set in the VLVFB registers
3558 * for the VLAN ID indicated we need to see if the
3559 * caller is requesting that we clear the VFTA entry bit.
3560 * If the caller has requested that we clear the VFTA
3561 * entry bit but there are still pools/VFs using this VLAN
3562 * ID entry then ignore the request. We're not worried
3563 * about the case where we're turning the VFTA VLAN ID
3564 * entry bit on, only when requested to turn it off as
3565 * there may be multiple pools and/or VFs using the
3566 * VLAN ID entry. In that case we cannot clear the
3567 * VFTA bit until all pools/VFs using that VLAN ID have also
3568 * been cleared. This will be indicated by "bits" being
3569 * zero.
3570 */
3571 if (bits) {
3572 IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index),
3573 (IXGBE_VLVF_VIEN | vlan));
3574 if ((!vlan_on) && (vfta_changed != NULL)) {
3575 /* someone wants to clear the vfta entry
3576 * but some pools/VFs are still using it.
3577 * Ignore it. */
3578 *vfta_changed = FALSE;
3579 }
3580 } else
3581 IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
3582 }
3583
3584 return IXGBE_SUCCESS;
3585 }
3586
3587 /**
3588 * ixgbe_clear_vfta_generic - Clear VLAN filter table
3589 * @hw: pointer to hardware structure
3590 *
3591 * Clears the VLAN filer table, and the VMDq index associated with the filter
3592 **/
ixgbe_clear_vfta_generic(struct ixgbe_hw * hw)3593 s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
3594 {
3595 u32 offset;
3596
3597 DEBUGFUNC("ixgbe_clear_vfta_generic");
3598
3599 for (offset = 0; offset < hw->mac.vft_size; offset++)
3600 IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
3601
3602 for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
3603 IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
3604 IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2), 0);
3605 IXGBE_WRITE_REG(hw, IXGBE_VLVFB((offset * 2) + 1), 0);
3606 }
3607
3608 return IXGBE_SUCCESS;
3609 }
3610
3611 /**
3612 * ixgbe_check_mac_link_generic - Determine link and speed status
3613 * @hw: pointer to hardware structure
3614 * @speed: pointer to link speed
3615 * @link_up: TRUE when link is up
3616 * @link_up_wait_to_complete: bool used to wait for link up or not
3617 *
3618 * Reads the links register to determine if link is up and the current speed
3619 **/
ixgbe_check_mac_link_generic(struct ixgbe_hw * hw,ixgbe_link_speed * speed,bool * link_up,bool link_up_wait_to_complete)3620 s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
3621 bool *link_up, bool link_up_wait_to_complete)
3622 {
3623 u32 links_reg, links_orig;
3624 u32 i;
3625
3626 DEBUGFUNC("ixgbe_check_mac_link_generic");
3627
3628 /* clear the old state */
3629 links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);
3630
3631 links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3632
3633 if (links_orig != links_reg) {
3634 DEBUGOUT2("LINKS changed from %08X to %08X\n",
3635 links_orig, links_reg);
3636 }
3637
3638 if (link_up_wait_to_complete) {
3639 for (i = 0; i < IXGBE_LINK_UP_TIME; i++) {
3640 if (links_reg & IXGBE_LINKS_UP) {
3641 *link_up = TRUE;
3642 break;
3643 } else {
3644 *link_up = FALSE;
3645 }
3646 msec_delay(100);
3647 links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3648 }
3649 } else {
3650 if (links_reg & IXGBE_LINKS_UP)
3651 *link_up = TRUE;
3652 else
3653 *link_up = FALSE;
3654 }
3655
3656 if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
3657 IXGBE_LINKS_SPEED_10G_82599)
3658 *speed = IXGBE_LINK_SPEED_10GB_FULL;
3659 else if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
3660 IXGBE_LINKS_SPEED_1G_82599)
3661 *speed = IXGBE_LINK_SPEED_1GB_FULL;
3662 else if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
3663 IXGBE_LINKS_SPEED_100_82599)
3664 *speed = IXGBE_LINK_SPEED_100_FULL;
3665 else
3666 *speed = IXGBE_LINK_SPEED_UNKNOWN;
3667
3668 return IXGBE_SUCCESS;
3669 }
3670
3671 /**
3672 * ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from
3673 * the EEPROM
3674 * @hw: pointer to hardware structure
3675 * @wwnn_prefix: the alternative WWNN prefix
3676 * @wwpn_prefix: the alternative WWPN prefix
3677 *
3678 * This function will read the EEPROM from the alternative SAN MAC address
3679 * block to check the support for the alternative WWNN/WWPN prefix support.
3680 **/
ixgbe_get_wwn_prefix_generic(struct ixgbe_hw * hw,u16 * wwnn_prefix,u16 * wwpn_prefix)3681 s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
3682 u16 *wwpn_prefix)
3683 {
3684 u16 offset, caps;
3685 u16 alt_san_mac_blk_offset;
3686
3687 DEBUGFUNC("ixgbe_get_wwn_prefix_generic");
3688
3689 /* clear output first */
3690 *wwnn_prefix = 0xFFFF;
3691 *wwpn_prefix = 0xFFFF;
3692
3693 /* check if alternative SAN MAC is supported */
3694 hw->eeprom.ops.read(hw, IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR,
3695 &alt_san_mac_blk_offset);
3696
3697 if ((alt_san_mac_blk_offset == 0) ||
3698 (alt_san_mac_blk_offset == 0xFFFF))
3699 goto wwn_prefix_out;
3700
3701 /* check capability in alternative san mac address block */
3702 offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
3703 hw->eeprom.ops.read(hw, offset, &caps);
3704 if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
3705 goto wwn_prefix_out;
3706
3707 /* get the corresponding prefix for WWNN/WWPN */
3708 offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
3709 hw->eeprom.ops.read(hw, offset, wwnn_prefix);
3710
3711 offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
3712 hw->eeprom.ops.read(hw, offset, wwpn_prefix);
3713
3714 wwn_prefix_out:
3715 return IXGBE_SUCCESS;
3716 }
3717
3718 /**
3719 * ixgbe_get_fcoe_boot_status_generic - Get FCOE boot status from EEPROM
3720 * @hw: pointer to hardware structure
3721 * @bs: the fcoe boot status
3722 *
3723 * This function will read the FCOE boot status from the iSCSI FCOE block
3724 **/
ixgbe_get_fcoe_boot_status_generic(struct ixgbe_hw * hw,u16 * bs)3725 s32 ixgbe_get_fcoe_boot_status_generic(struct ixgbe_hw *hw, u16 *bs)
3726 {
3727 u16 offset, caps, flags;
3728 s32 status;
3729
3730 DEBUGFUNC("ixgbe_get_fcoe_boot_status_generic");
3731
3732 /* clear output first */
3733 *bs = ixgbe_fcoe_bootstatus_unavailable;
3734
3735 /* check if FCOE IBA block is present */
3736 offset = IXGBE_FCOE_IBA_CAPS_BLK_PTR;
3737 status = hw->eeprom.ops.read(hw, offset, &caps);
3738 if (status != IXGBE_SUCCESS)
3739 goto out;
3740
3741 if (!(caps & IXGBE_FCOE_IBA_CAPS_FCOE))
3742 goto out;
3743
3744 /* check if iSCSI FCOE block is populated */
3745 status = hw->eeprom.ops.read(hw, IXGBE_ISCSI_FCOE_BLK_PTR, &offset);
3746 if (status != IXGBE_SUCCESS)
3747 goto out;
3748
3749 if ((offset == 0) || (offset == 0xFFFF))
3750 goto out;
3751
3752 /* read fcoe flags in iSCSI FCOE block */
3753 offset = offset + IXGBE_ISCSI_FCOE_FLAGS_OFFSET;
3754 status = hw->eeprom.ops.read(hw, offset, &flags);
3755 if (status != IXGBE_SUCCESS)
3756 goto out;
3757
3758 if (flags & IXGBE_ISCSI_FCOE_FLAGS_ENABLE)
3759 *bs = ixgbe_fcoe_bootstatus_enabled;
3760 else
3761 *bs = ixgbe_fcoe_bootstatus_disabled;
3762
3763 out:
3764 return status;
3765 }
3766
3767 /**
3768 * ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
3769 * @hw: pointer to hardware structure
3770 * @enable: enable or disable switch for anti-spoofing
3771 * @pf: Physical Function pool - do not enable anti-spoofing for the PF
3772 *
3773 **/
ixgbe_set_mac_anti_spoofing(struct ixgbe_hw * hw,bool enable,int pf)3774 void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int pf)
3775 {
3776 int j;
3777 int pf_target_reg = pf >> 3;
3778 int pf_target_shift = pf % 8;
3779 u32 pfvfspoof = 0;
3780
3781 if (hw->mac.type == ixgbe_mac_82598EB)
3782 return;
3783
3784 if (enable)
3785 pfvfspoof = IXGBE_SPOOF_MACAS_MASK;
3786
3787 /*
3788 * PFVFSPOOF register array is size 8 with 8 bits assigned to
3789 * MAC anti-spoof enables in each register array element.
3790 */
3791 for (j = 0; j < pf_target_reg; j++)
3792 IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), pfvfspoof);
3793
3794 /*
3795 * The PF should be allowed to spoof so that it can support
3796 * emulation mode NICs. Do not set the bits assigned to the PF
3797 */
3798 pfvfspoof &= (1 << pf_target_shift) - 1;
3799 IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), pfvfspoof);
3800
3801 /*
3802 * Remaining pools belong to the PF so they do not need to have
3803 * anti-spoofing enabled.
3804 */
3805 for (j++; j < IXGBE_PFVFSPOOF_REG_COUNT; j++)
3806 IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), 0);
3807 }
3808
3809 /**
3810 * ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
3811 * @hw: pointer to hardware structure
3812 * @enable: enable or disable switch for VLAN anti-spoofing
3813 * @pf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
3814 *
3815 **/
ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw * hw,bool enable,int vf)3816 void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
3817 {
3818 int vf_target_reg = vf >> 3;
3819 int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
3820 u32 pfvfspoof;
3821
3822 if (hw->mac.type == ixgbe_mac_82598EB)
3823 return;
3824
3825 pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
3826 if (enable)
3827 pfvfspoof |= (1 << vf_target_shift);
3828 else
3829 pfvfspoof &= ~(1 << vf_target_shift);
3830 IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
3831 }
3832
3833 /**
3834 * ixgbe_get_device_caps_generic - Get additional device capabilities
3835 * @hw: pointer to hardware structure
3836 * @device_caps: the EEPROM word with the extra device capabilities
3837 *
3838 * This function will read the EEPROM location for the device capabilities,
3839 * and return the word through device_caps.
3840 **/
ixgbe_get_device_caps_generic(struct ixgbe_hw * hw,u16 * device_caps)3841 s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps)
3842 {
3843 DEBUGFUNC("ixgbe_get_device_caps_generic");
3844
3845 hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);
3846
3847 return IXGBE_SUCCESS;
3848 }
3849
3850 /**
3851 * ixgbe_enable_relaxed_ordering_gen2 - Enable relaxed ordering
3852 * @hw: pointer to hardware structure
3853 *
3854 **/
ixgbe_enable_relaxed_ordering_gen2(struct ixgbe_hw * hw)3855 void ixgbe_enable_relaxed_ordering_gen2(struct ixgbe_hw *hw)
3856 {
3857 u32 regval;
3858 u32 i;
3859
3860 DEBUGFUNC("ixgbe_enable_relaxed_ordering_gen2");
3861
3862 /* Enable relaxed ordering */
3863 for (i = 0; i < hw->mac.max_tx_queues; i++) {
3864 regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
3865 regval |= IXGBE_DCA_TXCTRL_DESC_WRO_EN;
3866 IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
3867 }
3868
3869 for (i = 0; i < hw->mac.max_rx_queues; i++) {
3870 regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
3871 regval |= IXGBE_DCA_RXCTRL_DATA_WRO_EN |
3872 IXGBE_DCA_RXCTRL_HEAD_WRO_EN;
3873 IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
3874 }
3875
3876 }
3877
3878 /**
3879 * ixgbe_calculate_checksum - Calculate checksum for buffer
3880 * @buffer: pointer to EEPROM
3881 * @length: size of EEPROM to calculate a checksum for
3882 * Calculates the checksum for some buffer on a specified length. The
3883 * checksum calculated is returned.
3884 **/
ixgbe_calculate_checksum(u8 * buffer,u32 length)3885 static u8 ixgbe_calculate_checksum(u8 *buffer, u32 length)
3886 {
3887 u32 i;
3888 u8 sum = 0;
3889
3890 DEBUGFUNC("ixgbe_calculate_checksum");
3891
3892 if (!buffer)
3893 return 0;
3894
3895 for (i = 0; i < length; i++)
3896 sum += buffer[i];
3897
3898 return (u8) (0 - sum);
3899 }
3900
3901 /**
3902 * ixgbe_host_interface_command - Issue command to manageability block
3903 * @hw: pointer to the HW structure
3904 * @buffer: contains the command to write and where the return status will
3905 * be placed
3906 * @length: length of buffer, must be multiple of 4 bytes
3907 *
3908 * Communicates with the manageability block. On success return IXGBE_SUCCESS
3909 * else return IXGBE_ERR_HOST_INTERFACE_COMMAND.
3910 **/
ixgbe_host_interface_command(struct ixgbe_hw * hw,u32 * buffer,u32 length)3911 static s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, u32 *buffer,
3912 u32 length)
3913 {
3914 u32 hicr, i, bi;
3915 u32 hdr_size = sizeof(struct ixgbe_hic_hdr);
3916 u8 buf_len, dword_len;
3917
3918 s32 ret_val = IXGBE_SUCCESS;
3919
3920 DEBUGFUNC("ixgbe_host_interface_command");
3921
3922 if (length == 0 || length & 0x3 ||
3923 length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
3924 DEBUGOUT("Buffer length failure.\n");
3925 ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3926 goto out;
3927 }
3928
3929 /* Check that the host interface is enabled. */
3930 hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3931 if ((hicr & IXGBE_HICR_EN) == 0) {
3932 DEBUGOUT("IXGBE_HOST_EN bit disabled.\n");
3933 ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3934 goto out;
3935 }
3936
3937 /* Calculate length in DWORDs */
3938 dword_len = length >> 2;
3939
3940 /*
3941 * The device driver writes the relevant command block
3942 * into the ram area.
3943 */
3944 for (i = 0; i < dword_len; i++)
3945 IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG,
3946 i, IXGBE_CPU_TO_LE32(buffer[i]));
3947
3948 /* Setting this bit tells the ARC that a new command is pending. */
3949 IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C);
3950
3951 for (i = 0; i < IXGBE_HI_COMMAND_TIMEOUT; i++) {
3952 hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3953 if (!(hicr & IXGBE_HICR_C))
3954 break;
3955 msec_delay(1);
3956 }
3957
3958 /* Check command successful completion. */
3959 if (i == IXGBE_HI_COMMAND_TIMEOUT ||
3960 (!(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV))) {
3961 DEBUGOUT("Command has failed with no status valid.\n");
3962 ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3963 goto out;
3964 }
3965
3966 /* Calculate length in DWORDs */
3967 dword_len = hdr_size >> 2;
3968
3969 /* first pull in the header so we know the buffer length */
3970 for (bi = 0; bi < dword_len; bi++) {
3971 buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3972 buffer[bi] = IXGBE_LE32_TO_CPUS(buffer[bi]);
3973 }
3974
3975 /* If there is any thing in data position pull it in */
3976 buf_len = ((struct ixgbe_hic_hdr *)buffer)->buf_len;
3977 if (buf_len == 0)
3978 goto out;
3979
3980 if (length < (buf_len + hdr_size)) {
3981 DEBUGOUT("Buffer not large enough for reply message.\n");
3982 ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3983 goto out;
3984 }
3985
3986 /* Calculate length in DWORDs, add 3 for odd lengths */
3987 dword_len = (buf_len + 3) >> 2;
3988
3989 /* Pull in the rest of the buffer (bi is where we left off)*/
3990 for (; bi <= dword_len; bi++) {
3991 buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3992 buffer[bi] = IXGBE_LE32_TO_CPUS(buffer[bi]);
3993 }
3994
3995 out:
3996 return ret_val;
3997 }
3998
3999 /**
4000 * ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
4001 * @hw: pointer to the HW structure
4002 * @maj: driver version major number
4003 * @min: driver version minor number
4004 * @build: driver version build number
4005 * @sub: driver version sub build number
4006 *
4007 * Sends driver version number to firmware through the manageability
4008 * block. On success return IXGBE_SUCCESS
4009 * else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring
4010 * semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
4011 **/
ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw * hw,u8 maj,u8 min,u8 build,u8 sub)4012 s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 min,
4013 u8 build, u8 sub)
4014 {
4015 struct ixgbe_hic_drv_info fw_cmd;
4016 int i;
4017 s32 ret_val = IXGBE_SUCCESS;
4018
4019 DEBUGFUNC("ixgbe_set_fw_drv_ver_generic");
4020
4021 if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM)
4022 != IXGBE_SUCCESS) {
4023 ret_val = IXGBE_ERR_SWFW_SYNC;
4024 goto out;
4025 }
4026
4027 fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO;
4028 fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN;
4029 fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
4030 fw_cmd.port_num = (u8)hw->bus.func;
4031 fw_cmd.ver_maj = maj;
4032 fw_cmd.ver_min = min;
4033 fw_cmd.ver_build = build;
4034 fw_cmd.ver_sub = sub;
4035 fw_cmd.hdr.checksum = 0;
4036 fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd,
4037 (FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len));
4038 fw_cmd.pad = 0;
4039 fw_cmd.pad2 = 0;
4040
4041 for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
4042 /* LINTED */
4043 ret_val = ixgbe_host_interface_command(hw, (u32 *)&fw_cmd,
4044 sizeof(fw_cmd));
4045 if (ret_val != IXGBE_SUCCESS)
4046 continue;
4047
4048 if (fw_cmd.hdr.cmd_or_resp.ret_status ==
4049 FW_CEM_RESP_STATUS_SUCCESS)
4050 ret_val = IXGBE_SUCCESS;
4051 else
4052 ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
4053
4054 break;
4055 }
4056
4057 hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
4058 out:
4059 return ret_val;
4060 }
4061
4062 /**
4063 * ixgbe_set_rxpba_generic - Initialize Rx packet buffer
4064 * @hw: pointer to hardware structure
4065 * @num_pb: number of packet buffers to allocate
4066 * @headroom: reserve n KB of headroom
4067 * @strategy: packet buffer allocation strategy
4068 **/
ixgbe_set_rxpba_generic(struct ixgbe_hw * hw,int num_pb,u32 headroom,int strategy)4069 void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw, int num_pb, u32 headroom,
4070 int strategy)
4071 {
4072 u32 pbsize = hw->mac.rx_pb_size;
4073 int i = 0;
4074 u32 rxpktsize, txpktsize, txpbthresh;
4075
4076 /* Reserve headroom */
4077 pbsize -= headroom;
4078
4079 if (!num_pb)
4080 num_pb = 1;
4081
4082 /* Divide remaining packet buffer space amongst the number of packet
4083 * buffers requested using supplied strategy.
4084 */
4085 switch (strategy) {
4086 case PBA_STRATEGY_WEIGHTED:
4087 /* ixgbe_dcb_pba_80_48 strategy weight first half of packet
4088 * buffer with 5/8 of the packet buffer space.
4089 */
4090 rxpktsize = (pbsize * 5) / (num_pb * 4);
4091 pbsize -= rxpktsize * (num_pb / 2);
4092 rxpktsize <<= IXGBE_RXPBSIZE_SHIFT;
4093 for (; i < (num_pb / 2); i++)
4094 IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
4095 /* Fall through to configure remaining packet buffers */
4096 /* FALLTHRU */
4097 case PBA_STRATEGY_EQUAL:
4098 rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT;
4099 for (; i < num_pb; i++)
4100 IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
4101 break;
4102 default:
4103 break;
4104 }
4105
4106 /* Only support an equally distributed Tx packet buffer strategy. */
4107 txpktsize = IXGBE_TXPBSIZE_MAX / num_pb;
4108 txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX;
4109 for (i = 0; i < num_pb; i++) {
4110 IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
4111 IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
4112 }
4113
4114 /* Clear unused TCs, if any, to zero buffer size*/
4115 for (; i < IXGBE_MAX_PB; i++) {
4116 IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
4117 IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
4118 IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
4119 }
4120 }
4121
4122 /**
4123 * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
4124 * @hw: pointer to the hardware structure
4125 *
4126 * The 82599 and x540 MACs can experience issues if TX work is still pending
4127 * when a reset occurs. This function prevents this by flushing the PCIe
4128 * buffers on the system.
4129 **/
ixgbe_clear_tx_pending(struct ixgbe_hw * hw)4130 void ixgbe_clear_tx_pending(struct ixgbe_hw *hw)
4131 {
4132 u32 gcr_ext, hlreg0;
4133
4134 /*
4135 * If double reset is not requested then all transactions should
4136 * already be clear and as such there is no work to do
4137 */
4138 if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED))
4139 return;
4140
4141 /*
4142 * Set loopback enable to prevent any transmits from being sent
4143 * should the link come up. This assumes that the RXCTRL.RXEN bit
4144 * has already been cleared.
4145 */
4146 hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
4147 IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK);
4148
4149 /* initiate cleaning flow for buffers in the PCIe transaction layer */
4150 gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
4151 IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT,
4152 gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR);
4153
4154 /* Flush all writes and allow 20usec for all transactions to clear */
4155 IXGBE_WRITE_FLUSH(hw);
4156 usec_delay(20);
4157
4158 /* restore previous register values */
4159 IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext);
4160 IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
4161 }
4162
4163