1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause 2 /* 3 * Copyright (C) 2003-2014, 2018-2024 Intel Corporation 4 * Copyright (C) 2013-2015 Intel Mobile Communications GmbH 5 * Copyright (C) 2016-2017 Intel Deutschland GmbH 6 */ 7 #include <linux/sched.h> 8 #include <linux/wait.h> 9 #include <linux/gfp.h> 10 11 #include "iwl-prph.h" 12 #include "iwl-io.h" 13 #include "internal.h" 14 #include "iwl-op-mode.h" 15 #include "iwl-context-info-gen3.h" 16 17 /****************************************************************************** 18 * 19 * RX path functions 20 * 21 ******************************************************************************/ 22 23 /* 24 * Rx theory of operation 25 * 26 * Driver allocates a circular buffer of Receive Buffer Descriptors (RBDs), 27 * each of which point to Receive Buffers to be filled by the NIC. These get 28 * used not only for Rx frames, but for any command response or notification 29 * from the NIC. The driver and NIC manage the Rx buffers by means 30 * of indexes into the circular buffer. 31 * 32 * Rx Queue Indexes 33 * The host/firmware share two index registers for managing the Rx buffers. 34 * 35 * The READ index maps to the first position that the firmware may be writing 36 * to -- the driver can read up to (but not including) this position and get 37 * good data. 38 * The READ index is managed by the firmware once the card is enabled. 39 * 40 * The WRITE index maps to the last position the driver has read from -- the 41 * position preceding WRITE is the last slot the firmware can place a packet. 42 * 43 * The queue is empty (no good data) if WRITE = READ - 1, and is full if 44 * WRITE = READ. 45 * 46 * During initialization, the host sets up the READ queue position to the first 47 * INDEX position, and WRITE to the last (READ - 1 wrapped) 48 * 49 * When the firmware places a packet in a buffer, it will advance the READ index 50 * and fire the RX interrupt. The driver can then query the READ index and 51 * process as many packets as possible, moving the WRITE index forward as it 52 * resets the Rx queue buffers with new memory. 53 * 54 * The management in the driver is as follows: 55 * + A list of pre-allocated RBDs is stored in iwl->rxq->rx_free. 56 * When the interrupt handler is called, the request is processed. 57 * The page is either stolen - transferred to the upper layer 58 * or reused - added immediately to the iwl->rxq->rx_free list. 59 * + When the page is stolen - the driver updates the matching queue's used 60 * count, detaches the RBD and transfers it to the queue used list. 61 * When there are two used RBDs - they are transferred to the allocator empty 62 * list. Work is then scheduled for the allocator to start allocating 63 * eight buffers. 64 * When there are another 6 used RBDs - they are transferred to the allocator 65 * empty list and the driver tries to claim the pre-allocated buffers and 66 * add them to iwl->rxq->rx_free. If it fails - it continues to claim them 67 * until ready. 68 * When there are 8+ buffers in the free list - either from allocation or from 69 * 8 reused unstolen pages - restock is called to update the FW and indexes. 70 * + In order to make sure the allocator always has RBDs to use for allocation 71 * the allocator has initial pool in the size of num_queues*(8-2) - the 72 * maximum missing RBDs per allocation request (request posted with 2 73 * empty RBDs, there is no guarantee when the other 6 RBDs are supplied). 74 * The queues supplies the recycle of the rest of the RBDs. 75 * + A received packet is processed and handed to the kernel network stack, 76 * detached from the iwl->rxq. The driver 'processed' index is updated. 77 * + If there are no allocated buffers in iwl->rxq->rx_free, 78 * the READ INDEX is not incremented and iwl->status(RX_STALLED) is set. 79 * If there were enough free buffers and RX_STALLED is set it is cleared. 80 * 81 * 82 * Driver sequence: 83 * 84 * iwl_rxq_alloc() Allocates rx_free 85 * iwl_pcie_rx_replenish() Replenishes rx_free list from rx_used, and calls 86 * iwl_pcie_rxq_restock. 87 * Used only during initialization. 88 * iwl_pcie_rxq_restock() Moves available buffers from rx_free into Rx 89 * queue, updates firmware pointers, and updates 90 * the WRITE index. 91 * iwl_pcie_rx_allocator() Background work for allocating pages. 92 * 93 * -- enable interrupts -- 94 * ISR - iwl_rx() Detach iwl_rx_mem_buffers from pool up to the 95 * READ INDEX, detaching the SKB from the pool. 96 * Moves the packet buffer from queue to rx_used. 97 * Posts and claims requests to the allocator. 98 * Calls iwl_pcie_rxq_restock to refill any empty 99 * slots. 100 * 101 * RBD life-cycle: 102 * 103 * Init: 104 * rxq.pool -> rxq.rx_used -> rxq.rx_free -> rxq.queue 105 * 106 * Regular Receive interrupt: 107 * Page Stolen: 108 * rxq.queue -> rxq.rx_used -> allocator.rbd_empty -> 109 * allocator.rbd_allocated -> rxq.rx_free -> rxq.queue 110 * Page not Stolen: 111 * rxq.queue -> rxq.rx_free -> rxq.queue 112 * ... 113 * 114 */ 115 116 /* 117 * iwl_rxq_space - Return number of free slots available in queue. 118 */ 119 static int iwl_rxq_space(const struct iwl_rxq *rxq) 120 { 121 /* Make sure rx queue size is a power of 2 */ 122 WARN_ON(rxq->queue_size & (rxq->queue_size - 1)); 123 124 /* 125 * There can be up to (RX_QUEUE_SIZE - 1) free slots, to avoid ambiguity 126 * between empty and completely full queues. 127 * The following is equivalent to modulo by RX_QUEUE_SIZE and is well 128 * defined for negative dividends. 129 */ 130 return (rxq->read - rxq->write - 1) & (rxq->queue_size - 1); 131 } 132 133 /* 134 * iwl_dma_addr2rbd_ptr - convert a DMA address to a uCode read buffer ptr 135 */ 136 static inline __le32 iwl_pcie_dma_addr2rbd_ptr(dma_addr_t dma_addr) 137 { 138 return cpu_to_le32((u32)(dma_addr >> 8)); 139 } 140 141 /* 142 * iwl_pcie_rx_stop - stops the Rx DMA 143 */ 144 int iwl_pcie_rx_stop(struct iwl_trans *trans) 145 { 146 if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) { 147 /* TODO: remove this once fw does it */ 148 iwl_write_umac_prph(trans, RFH_RXF_DMA_CFG_GEN3, 0); 149 return iwl_poll_umac_prph_bit(trans, RFH_GEN_STATUS_GEN3, 150 RXF_DMA_IDLE, RXF_DMA_IDLE, 1000); 151 } else if (trans->trans_cfg->mq_rx_supported) { 152 iwl_write_prph(trans, RFH_RXF_DMA_CFG, 0); 153 return iwl_poll_prph_bit(trans, RFH_GEN_STATUS, 154 RXF_DMA_IDLE, RXF_DMA_IDLE, 1000); 155 } else { 156 iwl_write_direct32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0); 157 return iwl_poll_direct_bit(trans, FH_MEM_RSSR_RX_STATUS_REG, 158 FH_RSSR_CHNL0_RX_STATUS_CHNL_IDLE, 159 1000); 160 } 161 } 162 163 /* 164 * iwl_pcie_rxq_inc_wr_ptr - Update the write pointer for the RX queue 165 */ 166 static void iwl_pcie_rxq_inc_wr_ptr(struct iwl_trans *trans, 167 struct iwl_rxq *rxq) 168 { 169 u32 reg; 170 171 lockdep_assert_held(&rxq->lock); 172 173 /* 174 * explicitly wake up the NIC if: 175 * 1. shadow registers aren't enabled 176 * 2. there is a chance that the NIC is asleep 177 */ 178 if (!trans->trans_cfg->base_params->shadow_reg_enable && 179 test_bit(STATUS_TPOWER_PMI, &trans->status)) { 180 reg = iwl_read32(trans, CSR_UCODE_DRV_GP1); 181 182 if (reg & CSR_UCODE_DRV_GP1_BIT_MAC_SLEEP) { 183 IWL_DEBUG_INFO(trans, "Rx queue requesting wakeup, GP1 = 0x%x\n", 184 reg); 185 iwl_set_bit(trans, CSR_GP_CNTRL, 186 CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ); 187 rxq->need_update = true; 188 return; 189 } 190 } 191 192 rxq->write_actual = round_down(rxq->write, 8); 193 if (!trans->trans_cfg->mq_rx_supported) 194 iwl_write32(trans, FH_RSCSR_CHNL0_WPTR, rxq->write_actual); 195 else if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_BZ) 196 iwl_write32(trans, HBUS_TARG_WRPTR, rxq->write_actual | 197 HBUS_TARG_WRPTR_RX_Q(rxq->id)); 198 else 199 iwl_write32(trans, RFH_Q_FRBDCB_WIDX_TRG(rxq->id), 200 rxq->write_actual); 201 } 202 203 static void iwl_pcie_rxq_check_wrptr(struct iwl_trans *trans) 204 { 205 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 206 int i; 207 208 for (i = 0; i < trans->num_rx_queues; i++) { 209 struct iwl_rxq *rxq = &trans_pcie->rxq[i]; 210 211 if (!rxq->need_update) 212 continue; 213 spin_lock_bh(&rxq->lock); 214 iwl_pcie_rxq_inc_wr_ptr(trans, rxq); 215 rxq->need_update = false; 216 spin_unlock_bh(&rxq->lock); 217 } 218 } 219 220 static void iwl_pcie_restock_bd(struct iwl_trans *trans, 221 struct iwl_rxq *rxq, 222 struct iwl_rx_mem_buffer *rxb) 223 { 224 if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) { 225 struct iwl_rx_transfer_desc *bd = rxq->bd; 226 227 BUILD_BUG_ON(sizeof(*bd) != 2 * sizeof(u64)); 228 229 bd[rxq->write].addr = cpu_to_le64(rxb->page_dma); 230 bd[rxq->write].rbid = cpu_to_le16(rxb->vid); 231 } else { 232 __le64 *bd = rxq->bd; 233 234 bd[rxq->write] = cpu_to_le64(rxb->page_dma | rxb->vid); 235 } 236 237 #if defined(__linux__) 238 IWL_DEBUG_RX(trans, "Assigned virtual RB ID %u to queue %d index %d\n", 239 #elif defined(__FreeBSD__) 240 IWL_DEBUG_PCI_RW(trans, "Assigned virtual RB ID %u to queue %d index %d\n", 241 (u32)rxb->vid, rxq->id, rxq->write); 242 #endif 243 } 244 245 /* 246 * iwl_pcie_rxmq_restock - restock implementation for multi-queue rx 247 */ 248 static void iwl_pcie_rxmq_restock(struct iwl_trans *trans, 249 struct iwl_rxq *rxq) 250 { 251 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 252 struct iwl_rx_mem_buffer *rxb; 253 254 /* 255 * If the device isn't enabled - no need to try to add buffers... 256 * This can happen when we stop the device and still have an interrupt 257 * pending. We stop the APM before we sync the interrupts because we 258 * have to (see comment there). On the other hand, since the APM is 259 * stopped, we cannot access the HW (in particular not prph). 260 * So don't try to restock if the APM has been already stopped. 261 */ 262 if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status)) 263 return; 264 265 spin_lock_bh(&rxq->lock); 266 while (rxq->free_count) { 267 /* Get next free Rx buffer, remove from free list */ 268 rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer, 269 list); 270 list_del(&rxb->list); 271 rxb->invalid = false; 272 /* some low bits are expected to be unset (depending on hw) */ 273 WARN_ON(rxb->page_dma & trans_pcie->supported_dma_mask); 274 /* Point to Rx buffer via next RBD in circular buffer */ 275 iwl_pcie_restock_bd(trans, rxq, rxb); 276 rxq->write = (rxq->write + 1) & (rxq->queue_size - 1); 277 rxq->free_count--; 278 } 279 spin_unlock_bh(&rxq->lock); 280 281 /* 282 * If we've added more space for the firmware to place data, tell it. 283 * Increment device's write pointer in multiples of 8. 284 */ 285 if (rxq->write_actual != (rxq->write & ~0x7)) { 286 spin_lock_bh(&rxq->lock); 287 iwl_pcie_rxq_inc_wr_ptr(trans, rxq); 288 spin_unlock_bh(&rxq->lock); 289 } 290 } 291 292 /* 293 * iwl_pcie_rxsq_restock - restock implementation for single queue rx 294 */ 295 static void iwl_pcie_rxsq_restock(struct iwl_trans *trans, 296 struct iwl_rxq *rxq) 297 { 298 struct iwl_rx_mem_buffer *rxb; 299 300 /* 301 * If the device isn't enabled - not need to try to add buffers... 302 * This can happen when we stop the device and still have an interrupt 303 * pending. We stop the APM before we sync the interrupts because we 304 * have to (see comment there). On the other hand, since the APM is 305 * stopped, we cannot access the HW (in particular not prph). 306 * So don't try to restock if the APM has been already stopped. 307 */ 308 if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status)) 309 return; 310 311 spin_lock_bh(&rxq->lock); 312 while ((iwl_rxq_space(rxq) > 0) && (rxq->free_count)) { 313 __le32 *bd = (__le32 *)rxq->bd; 314 /* The overwritten rxb must be a used one */ 315 rxb = rxq->queue[rxq->write]; 316 BUG_ON(rxb && rxb->page); 317 318 /* Get next free Rx buffer, remove from free list */ 319 rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer, 320 list); 321 list_del(&rxb->list); 322 rxb->invalid = false; 323 324 /* Point to Rx buffer via next RBD in circular buffer */ 325 bd[rxq->write] = iwl_pcie_dma_addr2rbd_ptr(rxb->page_dma); 326 rxq->queue[rxq->write] = rxb; 327 rxq->write = (rxq->write + 1) & RX_QUEUE_MASK; 328 rxq->free_count--; 329 } 330 spin_unlock_bh(&rxq->lock); 331 332 /* If we've added more space for the firmware to place data, tell it. 333 * Increment device's write pointer in multiples of 8. */ 334 if (rxq->write_actual != (rxq->write & ~0x7)) { 335 spin_lock_bh(&rxq->lock); 336 iwl_pcie_rxq_inc_wr_ptr(trans, rxq); 337 spin_unlock_bh(&rxq->lock); 338 } 339 } 340 341 /* 342 * iwl_pcie_rxq_restock - refill RX queue from pre-allocated pool 343 * 344 * If there are slots in the RX queue that need to be restocked, 345 * and we have free pre-allocated buffers, fill the ranks as much 346 * as we can, pulling from rx_free. 347 * 348 * This moves the 'write' index forward to catch up with 'processed', and 349 * also updates the memory address in the firmware to reference the new 350 * target buffer. 351 */ 352 static 353 void iwl_pcie_rxq_restock(struct iwl_trans *trans, struct iwl_rxq *rxq) 354 { 355 if (trans->trans_cfg->mq_rx_supported) 356 iwl_pcie_rxmq_restock(trans, rxq); 357 else 358 iwl_pcie_rxsq_restock(trans, rxq); 359 } 360 361 /* 362 * iwl_pcie_rx_alloc_page - allocates and returns a page. 363 * 364 */ 365 static struct page *iwl_pcie_rx_alloc_page(struct iwl_trans *trans, 366 u32 *offset, gfp_t priority) 367 { 368 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 369 unsigned int rbsize = iwl_trans_get_rb_size(trans_pcie->rx_buf_size); 370 unsigned int allocsize = PAGE_SIZE << trans_pcie->rx_page_order; 371 struct page *page; 372 gfp_t gfp_mask = priority; 373 374 if (trans_pcie->rx_page_order > 0) 375 gfp_mask |= __GFP_COMP; 376 377 if (trans_pcie->alloc_page) { 378 spin_lock_bh(&trans_pcie->alloc_page_lock); 379 /* recheck */ 380 if (trans_pcie->alloc_page) { 381 *offset = trans_pcie->alloc_page_used; 382 page = trans_pcie->alloc_page; 383 trans_pcie->alloc_page_used += rbsize; 384 if (trans_pcie->alloc_page_used >= allocsize) 385 trans_pcie->alloc_page = NULL; 386 else 387 get_page(page); 388 spin_unlock_bh(&trans_pcie->alloc_page_lock); 389 return page; 390 } 391 spin_unlock_bh(&trans_pcie->alloc_page_lock); 392 } 393 394 /* Alloc a new receive buffer */ 395 page = alloc_pages(gfp_mask, trans_pcie->rx_page_order); 396 if (!page) { 397 if (net_ratelimit()) 398 IWL_DEBUG_INFO(trans, "alloc_pages failed, order: %d\n", 399 trans_pcie->rx_page_order); 400 /* 401 * Issue an error if we don't have enough pre-allocated 402 * buffers. 403 */ 404 if (!(gfp_mask & __GFP_NOWARN) && net_ratelimit()) 405 IWL_CRIT(trans, 406 "Failed to alloc_pages\n"); 407 return NULL; 408 } 409 410 if (2 * rbsize <= allocsize) { 411 spin_lock_bh(&trans_pcie->alloc_page_lock); 412 if (!trans_pcie->alloc_page) { 413 get_page(page); 414 trans_pcie->alloc_page = page; 415 trans_pcie->alloc_page_used = rbsize; 416 } 417 spin_unlock_bh(&trans_pcie->alloc_page_lock); 418 } 419 420 *offset = 0; 421 return page; 422 } 423 424 /* 425 * iwl_pcie_rxq_alloc_rbs - allocate a page for each used RBD 426 * 427 * A used RBD is an Rx buffer that has been given to the stack. To use it again 428 * a page must be allocated and the RBD must point to the page. This function 429 * doesn't change the HW pointer but handles the list of pages that is used by 430 * iwl_pcie_rxq_restock. The latter function will update the HW to use the newly 431 * allocated buffers. 432 */ 433 void iwl_pcie_rxq_alloc_rbs(struct iwl_trans *trans, gfp_t priority, 434 struct iwl_rxq *rxq) 435 { 436 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 437 struct iwl_rx_mem_buffer *rxb; 438 struct page *page; 439 440 while (1) { 441 unsigned int offset; 442 443 spin_lock_bh(&rxq->lock); 444 if (list_empty(&rxq->rx_used)) { 445 spin_unlock_bh(&rxq->lock); 446 return; 447 } 448 spin_unlock_bh(&rxq->lock); 449 450 page = iwl_pcie_rx_alloc_page(trans, &offset, priority); 451 if (!page) 452 return; 453 454 spin_lock_bh(&rxq->lock); 455 456 if (list_empty(&rxq->rx_used)) { 457 spin_unlock_bh(&rxq->lock); 458 __free_pages(page, trans_pcie->rx_page_order); 459 return; 460 } 461 rxb = list_first_entry(&rxq->rx_used, struct iwl_rx_mem_buffer, 462 list); 463 list_del(&rxb->list); 464 spin_unlock_bh(&rxq->lock); 465 466 BUG_ON(rxb->page); 467 rxb->page = page; 468 rxb->offset = offset; 469 /* Get physical address of the RB */ 470 rxb->page_dma = 471 dma_map_page(trans->dev, page, rxb->offset, 472 trans_pcie->rx_buf_bytes, 473 DMA_FROM_DEVICE); 474 if (dma_mapping_error(trans->dev, rxb->page_dma)) { 475 rxb->page = NULL; 476 spin_lock_bh(&rxq->lock); 477 list_add(&rxb->list, &rxq->rx_used); 478 spin_unlock_bh(&rxq->lock); 479 __free_pages(page, trans_pcie->rx_page_order); 480 return; 481 } 482 483 spin_lock_bh(&rxq->lock); 484 485 list_add_tail(&rxb->list, &rxq->rx_free); 486 rxq->free_count++; 487 488 spin_unlock_bh(&rxq->lock); 489 } 490 } 491 492 void iwl_pcie_free_rbs_pool(struct iwl_trans *trans) 493 { 494 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 495 int i; 496 497 if (!trans_pcie->rx_pool) 498 return; 499 500 for (i = 0; i < RX_POOL_SIZE(trans_pcie->num_rx_bufs); i++) { 501 if (!trans_pcie->rx_pool[i].page) 502 continue; 503 dma_unmap_page(trans->dev, trans_pcie->rx_pool[i].page_dma, 504 trans_pcie->rx_buf_bytes, DMA_FROM_DEVICE); 505 __free_pages(trans_pcie->rx_pool[i].page, 506 trans_pcie->rx_page_order); 507 trans_pcie->rx_pool[i].page = NULL; 508 } 509 } 510 511 /* 512 * iwl_pcie_rx_allocator - Allocates pages in the background for RX queues 513 * 514 * Allocates for each received request 8 pages 515 * Called as a scheduled work item. 516 */ 517 static void iwl_pcie_rx_allocator(struct iwl_trans *trans) 518 { 519 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 520 struct iwl_rb_allocator *rba = &trans_pcie->rba; 521 struct list_head local_empty; 522 int pending = atomic_read(&rba->req_pending); 523 524 IWL_DEBUG_TPT(trans, "Pending allocation requests = %d\n", pending); 525 526 /* If we were scheduled - there is at least one request */ 527 spin_lock_bh(&rba->lock); 528 /* swap out the rba->rbd_empty to a local list */ 529 list_replace_init(&rba->rbd_empty, &local_empty); 530 spin_unlock_bh(&rba->lock); 531 532 while (pending) { 533 int i; 534 LIST_HEAD(local_allocated); 535 gfp_t gfp_mask = GFP_KERNEL; 536 537 /* Do not post a warning if there are only a few requests */ 538 if (pending < RX_PENDING_WATERMARK) 539 gfp_mask |= __GFP_NOWARN; 540 541 for (i = 0; i < RX_CLAIM_REQ_ALLOC;) { 542 struct iwl_rx_mem_buffer *rxb; 543 struct page *page; 544 545 /* List should never be empty - each reused RBD is 546 * returned to the list, and initial pool covers any 547 * possible gap between the time the page is allocated 548 * to the time the RBD is added. 549 */ 550 BUG_ON(list_empty(&local_empty)); 551 /* Get the first rxb from the rbd list */ 552 rxb = list_first_entry(&local_empty, 553 struct iwl_rx_mem_buffer, list); 554 BUG_ON(rxb->page); 555 556 /* Alloc a new receive buffer */ 557 page = iwl_pcie_rx_alloc_page(trans, &rxb->offset, 558 gfp_mask); 559 if (!page) 560 continue; 561 rxb->page = page; 562 563 /* Get physical address of the RB */ 564 rxb->page_dma = dma_map_page(trans->dev, page, 565 rxb->offset, 566 trans_pcie->rx_buf_bytes, 567 DMA_FROM_DEVICE); 568 if (dma_mapping_error(trans->dev, rxb->page_dma)) { 569 rxb->page = NULL; 570 __free_pages(page, trans_pcie->rx_page_order); 571 continue; 572 } 573 574 /* move the allocated entry to the out list */ 575 list_move(&rxb->list, &local_allocated); 576 i++; 577 } 578 579 atomic_dec(&rba->req_pending); 580 pending--; 581 582 if (!pending) { 583 pending = atomic_read(&rba->req_pending); 584 if (pending) 585 IWL_DEBUG_TPT(trans, 586 "Got more pending allocation requests = %d\n", 587 pending); 588 } 589 590 spin_lock_bh(&rba->lock); 591 /* add the allocated rbds to the allocator allocated list */ 592 list_splice_tail(&local_allocated, &rba->rbd_allocated); 593 /* get more empty RBDs for current pending requests */ 594 list_splice_tail_init(&rba->rbd_empty, &local_empty); 595 spin_unlock_bh(&rba->lock); 596 597 atomic_inc(&rba->req_ready); 598 599 } 600 601 spin_lock_bh(&rba->lock); 602 /* return unused rbds to the allocator empty list */ 603 list_splice_tail(&local_empty, &rba->rbd_empty); 604 spin_unlock_bh(&rba->lock); 605 606 IWL_DEBUG_TPT(trans, "%s, exit.\n", __func__); 607 } 608 609 /* 610 * iwl_pcie_rx_allocator_get - returns the pre-allocated pages 611 .* 612 .* Called by queue when the queue posted allocation request and 613 * has freed 8 RBDs in order to restock itself. 614 * This function directly moves the allocated RBs to the queue's ownership 615 * and updates the relevant counters. 616 */ 617 static void iwl_pcie_rx_allocator_get(struct iwl_trans *trans, 618 struct iwl_rxq *rxq) 619 { 620 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 621 struct iwl_rb_allocator *rba = &trans_pcie->rba; 622 int i; 623 624 lockdep_assert_held(&rxq->lock); 625 626 /* 627 * atomic_dec_if_positive returns req_ready - 1 for any scenario. 628 * If req_ready is 0 atomic_dec_if_positive will return -1 and this 629 * function will return early, as there are no ready requests. 630 * atomic_dec_if_positive will perofrm the *actual* decrement only if 631 * req_ready > 0, i.e. - there are ready requests and the function 632 * hands one request to the caller. 633 */ 634 if (atomic_dec_if_positive(&rba->req_ready) < 0) 635 return; 636 637 spin_lock(&rba->lock); 638 for (i = 0; i < RX_CLAIM_REQ_ALLOC; i++) { 639 /* Get next free Rx buffer, remove it from free list */ 640 struct iwl_rx_mem_buffer *rxb = 641 list_first_entry(&rba->rbd_allocated, 642 struct iwl_rx_mem_buffer, list); 643 644 list_move(&rxb->list, &rxq->rx_free); 645 } 646 spin_unlock(&rba->lock); 647 648 rxq->used_count -= RX_CLAIM_REQ_ALLOC; 649 rxq->free_count += RX_CLAIM_REQ_ALLOC; 650 } 651 652 void iwl_pcie_rx_allocator_work(struct work_struct *data) 653 { 654 struct iwl_rb_allocator *rba_p = 655 container_of(data, struct iwl_rb_allocator, rx_alloc); 656 struct iwl_trans_pcie *trans_pcie = 657 container_of(rba_p, struct iwl_trans_pcie, rba); 658 659 iwl_pcie_rx_allocator(trans_pcie->trans); 660 } 661 662 static int iwl_pcie_free_bd_size(struct iwl_trans *trans) 663 { 664 if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) 665 return sizeof(struct iwl_rx_transfer_desc); 666 667 return trans->trans_cfg->mq_rx_supported ? 668 sizeof(__le64) : sizeof(__le32); 669 } 670 671 static int iwl_pcie_used_bd_size(struct iwl_trans *trans) 672 { 673 if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_BZ) 674 return sizeof(struct iwl_rx_completion_desc_bz); 675 676 if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) 677 return sizeof(struct iwl_rx_completion_desc); 678 679 return sizeof(__le32); 680 } 681 682 static void iwl_pcie_free_rxq_dma(struct iwl_trans *trans, 683 struct iwl_rxq *rxq) 684 { 685 int free_size = iwl_pcie_free_bd_size(trans); 686 687 if (rxq->bd) 688 dma_free_coherent(trans->dev, 689 free_size * rxq->queue_size, 690 rxq->bd, rxq->bd_dma); 691 rxq->bd_dma = 0; 692 rxq->bd = NULL; 693 694 rxq->rb_stts_dma = 0; 695 rxq->rb_stts = NULL; 696 697 if (rxq->used_bd) 698 dma_free_coherent(trans->dev, 699 iwl_pcie_used_bd_size(trans) * 700 rxq->queue_size, 701 rxq->used_bd, rxq->used_bd_dma); 702 rxq->used_bd_dma = 0; 703 rxq->used_bd = NULL; 704 } 705 706 static size_t iwl_pcie_rb_stts_size(struct iwl_trans *trans) 707 { 708 bool use_rx_td = (trans->trans_cfg->device_family >= 709 IWL_DEVICE_FAMILY_AX210); 710 711 if (use_rx_td) 712 return sizeof(__le16); 713 714 return sizeof(struct iwl_rb_status); 715 } 716 717 static int iwl_pcie_alloc_rxq_dma(struct iwl_trans *trans, 718 struct iwl_rxq *rxq) 719 { 720 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 721 size_t rb_stts_size = iwl_pcie_rb_stts_size(trans); 722 struct device *dev = trans->dev; 723 int i; 724 int free_size; 725 726 spin_lock_init(&rxq->lock); 727 if (trans->trans_cfg->mq_rx_supported) 728 rxq->queue_size = trans->cfg->num_rbds; 729 else 730 rxq->queue_size = RX_QUEUE_SIZE; 731 732 free_size = iwl_pcie_free_bd_size(trans); 733 734 /* 735 * Allocate the circular buffer of Read Buffer Descriptors 736 * (RBDs) 737 */ 738 rxq->bd = dma_alloc_coherent(dev, free_size * rxq->queue_size, 739 &rxq->bd_dma, GFP_KERNEL); 740 if (!rxq->bd) 741 goto err; 742 743 if (trans->trans_cfg->mq_rx_supported) { 744 rxq->used_bd = dma_alloc_coherent(dev, 745 iwl_pcie_used_bd_size(trans) * 746 rxq->queue_size, 747 &rxq->used_bd_dma, 748 GFP_KERNEL); 749 if (!rxq->used_bd) 750 goto err; 751 } 752 753 rxq->rb_stts = (u8 *)trans_pcie->base_rb_stts + rxq->id * rb_stts_size; 754 rxq->rb_stts_dma = 755 trans_pcie->base_rb_stts_dma + rxq->id * rb_stts_size; 756 757 return 0; 758 759 err: 760 for (i = 0; i < trans->num_rx_queues; i++) { 761 struct iwl_rxq *rxq = &trans_pcie->rxq[i]; 762 763 iwl_pcie_free_rxq_dma(trans, rxq); 764 } 765 766 return -ENOMEM; 767 } 768 769 static int iwl_pcie_rx_alloc(struct iwl_trans *trans) 770 { 771 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 772 size_t rb_stts_size = iwl_pcie_rb_stts_size(trans); 773 struct iwl_rb_allocator *rba = &trans_pcie->rba; 774 int i, ret; 775 776 if (WARN_ON(trans_pcie->rxq)) 777 return -EINVAL; 778 779 trans_pcie->rxq = kcalloc(trans->num_rx_queues, sizeof(struct iwl_rxq), 780 GFP_KERNEL); 781 trans_pcie->rx_pool = kcalloc(RX_POOL_SIZE(trans_pcie->num_rx_bufs), 782 sizeof(trans_pcie->rx_pool[0]), 783 GFP_KERNEL); 784 trans_pcie->global_table = 785 kcalloc(RX_POOL_SIZE(trans_pcie->num_rx_bufs), 786 sizeof(trans_pcie->global_table[0]), 787 GFP_KERNEL); 788 if (!trans_pcie->rxq || !trans_pcie->rx_pool || 789 !trans_pcie->global_table) { 790 ret = -ENOMEM; 791 goto err; 792 } 793 794 spin_lock_init(&rba->lock); 795 796 /* 797 * Allocate the driver's pointer to receive buffer status. 798 * Allocate for all queues continuously (HW requirement). 799 */ 800 trans_pcie->base_rb_stts = 801 dma_alloc_coherent(trans->dev, 802 rb_stts_size * trans->num_rx_queues, 803 &trans_pcie->base_rb_stts_dma, 804 GFP_KERNEL); 805 if (!trans_pcie->base_rb_stts) { 806 ret = -ENOMEM; 807 goto err; 808 } 809 810 for (i = 0; i < trans->num_rx_queues; i++) { 811 struct iwl_rxq *rxq = &trans_pcie->rxq[i]; 812 813 rxq->id = i; 814 ret = iwl_pcie_alloc_rxq_dma(trans, rxq); 815 if (ret) 816 goto err; 817 } 818 return 0; 819 820 err: 821 if (trans_pcie->base_rb_stts) { 822 dma_free_coherent(trans->dev, 823 rb_stts_size * trans->num_rx_queues, 824 trans_pcie->base_rb_stts, 825 trans_pcie->base_rb_stts_dma); 826 trans_pcie->base_rb_stts = NULL; 827 trans_pcie->base_rb_stts_dma = 0; 828 } 829 kfree(trans_pcie->rx_pool); 830 trans_pcie->rx_pool = NULL; 831 kfree(trans_pcie->global_table); 832 trans_pcie->global_table = NULL; 833 kfree(trans_pcie->rxq); 834 trans_pcie->rxq = NULL; 835 836 return ret; 837 } 838 839 static void iwl_pcie_rx_hw_init(struct iwl_trans *trans, struct iwl_rxq *rxq) 840 { 841 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 842 u32 rb_size; 843 const u32 rfdnlog = RX_QUEUE_SIZE_LOG; /* 256 RBDs */ 844 845 switch (trans_pcie->rx_buf_size) { 846 case IWL_AMSDU_4K: 847 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K; 848 break; 849 case IWL_AMSDU_8K: 850 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_8K; 851 break; 852 case IWL_AMSDU_12K: 853 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_12K; 854 break; 855 default: 856 WARN_ON(1); 857 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K; 858 } 859 860 if (!iwl_trans_grab_nic_access(trans)) 861 return; 862 863 /* Stop Rx DMA */ 864 iwl_write32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0); 865 /* reset and flush pointers */ 866 iwl_write32(trans, FH_MEM_RCSR_CHNL0_RBDCB_WPTR, 0); 867 iwl_write32(trans, FH_MEM_RCSR_CHNL0_FLUSH_RB_REQ, 0); 868 iwl_write32(trans, FH_RSCSR_CHNL0_RDPTR, 0); 869 870 /* Reset driver's Rx queue write index */ 871 iwl_write32(trans, FH_RSCSR_CHNL0_RBDCB_WPTR_REG, 0); 872 873 /* Tell device where to find RBD circular buffer in DRAM */ 874 iwl_write32(trans, FH_RSCSR_CHNL0_RBDCB_BASE_REG, 875 (u32)(rxq->bd_dma >> 8)); 876 877 /* Tell device where in DRAM to update its Rx status */ 878 iwl_write32(trans, FH_RSCSR_CHNL0_STTS_WPTR_REG, 879 rxq->rb_stts_dma >> 4); 880 881 /* Enable Rx DMA 882 * FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY is set because of HW bug in 883 * the credit mechanism in 5000 HW RX FIFO 884 * Direct rx interrupts to hosts 885 * Rx buffer size 4 or 8k or 12k 886 * RB timeout 0x10 887 * 256 RBDs 888 */ 889 iwl_write32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 890 FH_RCSR_RX_CONFIG_CHNL_EN_ENABLE_VAL | 891 FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY | 892 FH_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_INT_HOST_VAL | 893 rb_size | 894 (RX_RB_TIMEOUT << FH_RCSR_RX_CONFIG_REG_IRQ_RBTH_POS) | 895 (rfdnlog << FH_RCSR_RX_CONFIG_RBDCB_SIZE_POS)); 896 897 iwl_trans_release_nic_access(trans); 898 899 /* Set interrupt coalescing timer to default (2048 usecs) */ 900 iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF); 901 902 /* W/A for interrupt coalescing bug in 7260 and 3160 */ 903 if (trans->cfg->host_interrupt_operation_mode) 904 iwl_set_bit(trans, CSR_INT_COALESCING, IWL_HOST_INT_OPER_MODE); 905 } 906 907 static void iwl_pcie_rx_mq_hw_init(struct iwl_trans *trans) 908 { 909 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 910 u32 rb_size, enabled = 0; 911 int i; 912 913 switch (trans_pcie->rx_buf_size) { 914 case IWL_AMSDU_2K: 915 rb_size = RFH_RXF_DMA_RB_SIZE_2K; 916 break; 917 case IWL_AMSDU_4K: 918 rb_size = RFH_RXF_DMA_RB_SIZE_4K; 919 break; 920 case IWL_AMSDU_8K: 921 rb_size = RFH_RXF_DMA_RB_SIZE_8K; 922 break; 923 case IWL_AMSDU_12K: 924 rb_size = RFH_RXF_DMA_RB_SIZE_12K; 925 break; 926 default: 927 WARN_ON(1); 928 rb_size = RFH_RXF_DMA_RB_SIZE_4K; 929 } 930 931 if (!iwl_trans_grab_nic_access(trans)) 932 return; 933 934 /* Stop Rx DMA */ 935 iwl_write_prph_no_grab(trans, RFH_RXF_DMA_CFG, 0); 936 /* disable free amd used rx queue operation */ 937 iwl_write_prph_no_grab(trans, RFH_RXF_RXQ_ACTIVE, 0); 938 939 for (i = 0; i < trans->num_rx_queues; i++) { 940 /* Tell device where to find RBD free table in DRAM */ 941 iwl_write_prph64_no_grab(trans, 942 RFH_Q_FRBDCB_BA_LSB(i), 943 trans_pcie->rxq[i].bd_dma); 944 /* Tell device where to find RBD used table in DRAM */ 945 iwl_write_prph64_no_grab(trans, 946 RFH_Q_URBDCB_BA_LSB(i), 947 trans_pcie->rxq[i].used_bd_dma); 948 /* Tell device where in DRAM to update its Rx status */ 949 iwl_write_prph64_no_grab(trans, 950 RFH_Q_URBD_STTS_WPTR_LSB(i), 951 trans_pcie->rxq[i].rb_stts_dma); 952 /* Reset device indice tables */ 953 iwl_write_prph_no_grab(trans, RFH_Q_FRBDCB_WIDX(i), 0); 954 iwl_write_prph_no_grab(trans, RFH_Q_FRBDCB_RIDX(i), 0); 955 iwl_write_prph_no_grab(trans, RFH_Q_URBDCB_WIDX(i), 0); 956 957 enabled |= BIT(i) | BIT(i + 16); 958 } 959 960 /* 961 * Enable Rx DMA 962 * Rx buffer size 4 or 8k or 12k 963 * Min RB size 4 or 8 964 * Drop frames that exceed RB size 965 * 512 RBDs 966 */ 967 iwl_write_prph_no_grab(trans, RFH_RXF_DMA_CFG, 968 RFH_DMA_EN_ENABLE_VAL | rb_size | 969 RFH_RXF_DMA_MIN_RB_4_8 | 970 RFH_RXF_DMA_DROP_TOO_LARGE_MASK | 971 RFH_RXF_DMA_RBDCB_SIZE_512); 972 973 /* 974 * Activate DMA snooping. 975 * Set RX DMA chunk size to 64B for IOSF and 128B for PCIe 976 * Default queue is 0 977 */ 978 iwl_write_prph_no_grab(trans, RFH_GEN_CFG, 979 RFH_GEN_CFG_RFH_DMA_SNOOP | 980 RFH_GEN_CFG_VAL(DEFAULT_RXQ_NUM, 0) | 981 RFH_GEN_CFG_SERVICE_DMA_SNOOP | 982 RFH_GEN_CFG_VAL(RB_CHUNK_SIZE, 983 trans->trans_cfg->integrated ? 984 RFH_GEN_CFG_RB_CHUNK_SIZE_64 : 985 RFH_GEN_CFG_RB_CHUNK_SIZE_128)); 986 /* Enable the relevant rx queues */ 987 iwl_write_prph_no_grab(trans, RFH_RXF_RXQ_ACTIVE, enabled); 988 989 iwl_trans_release_nic_access(trans); 990 991 /* Set interrupt coalescing timer to default (2048 usecs) */ 992 iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF); 993 } 994 995 void iwl_pcie_rx_init_rxb_lists(struct iwl_rxq *rxq) 996 { 997 lockdep_assert_held(&rxq->lock); 998 999 INIT_LIST_HEAD(&rxq->rx_free); 1000 INIT_LIST_HEAD(&rxq->rx_used); 1001 rxq->free_count = 0; 1002 rxq->used_count = 0; 1003 } 1004 1005 static int iwl_pcie_rx_handle(struct iwl_trans *trans, int queue, int budget); 1006 1007 static inline struct iwl_trans_pcie *iwl_netdev_to_trans_pcie(struct net_device *dev) 1008 { 1009 return *(struct iwl_trans_pcie **)netdev_priv(dev); 1010 } 1011 1012 static int iwl_pcie_napi_poll(struct napi_struct *napi, int budget) 1013 { 1014 struct iwl_rxq *rxq = container_of(napi, struct iwl_rxq, napi); 1015 struct iwl_trans_pcie *trans_pcie; 1016 struct iwl_trans *trans; 1017 int ret; 1018 1019 trans_pcie = iwl_netdev_to_trans_pcie(napi->dev); 1020 trans = trans_pcie->trans; 1021 1022 ret = iwl_pcie_rx_handle(trans, rxq->id, budget); 1023 1024 IWL_DEBUG_ISR(trans, "[%d] handled %d, budget %d\n", 1025 rxq->id, ret, budget); 1026 1027 if (ret < budget) { 1028 spin_lock(&trans_pcie->irq_lock); 1029 if (test_bit(STATUS_INT_ENABLED, &trans->status)) 1030 _iwl_enable_interrupts(trans); 1031 spin_unlock(&trans_pcie->irq_lock); 1032 1033 napi_complete_done(&rxq->napi, ret); 1034 } 1035 1036 return ret; 1037 } 1038 1039 static int iwl_pcie_napi_poll_msix(struct napi_struct *napi, int budget) 1040 { 1041 struct iwl_rxq *rxq = container_of(napi, struct iwl_rxq, napi); 1042 struct iwl_trans_pcie *trans_pcie; 1043 struct iwl_trans *trans; 1044 int ret; 1045 1046 trans_pcie = iwl_netdev_to_trans_pcie(napi->dev); 1047 trans = trans_pcie->trans; 1048 1049 ret = iwl_pcie_rx_handle(trans, rxq->id, budget); 1050 IWL_DEBUG_ISR(trans, "[%d] handled %d, budget %d\n", rxq->id, ret, 1051 budget); 1052 1053 if (ret < budget) { 1054 int irq_line = rxq->id; 1055 1056 /* FIRST_RSS is shared with line 0 */ 1057 if (trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_FIRST_RSS && 1058 rxq->id == 1) 1059 irq_line = 0; 1060 1061 spin_lock(&trans_pcie->irq_lock); 1062 iwl_pcie_clear_irq(trans, irq_line); 1063 spin_unlock(&trans_pcie->irq_lock); 1064 1065 napi_complete_done(&rxq->napi, ret); 1066 } 1067 1068 return ret; 1069 } 1070 1071 void iwl_pcie_rx_napi_sync(struct iwl_trans *trans) 1072 { 1073 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1074 int i; 1075 1076 if (unlikely(!trans_pcie->rxq)) 1077 return; 1078 1079 for (i = 0; i < trans->num_rx_queues; i++) { 1080 struct iwl_rxq *rxq = &trans_pcie->rxq[i]; 1081 1082 if (rxq && rxq->napi.poll) 1083 napi_synchronize(&rxq->napi); 1084 } 1085 } 1086 1087 static int _iwl_pcie_rx_init(struct iwl_trans *trans) 1088 { 1089 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1090 struct iwl_rxq *def_rxq; 1091 struct iwl_rb_allocator *rba = &trans_pcie->rba; 1092 int i, err, queue_size, allocator_pool_size, num_alloc; 1093 1094 if (!trans_pcie->rxq) { 1095 err = iwl_pcie_rx_alloc(trans); 1096 if (err) 1097 return err; 1098 } 1099 def_rxq = trans_pcie->rxq; 1100 1101 cancel_work_sync(&rba->rx_alloc); 1102 1103 spin_lock_bh(&rba->lock); 1104 atomic_set(&rba->req_pending, 0); 1105 atomic_set(&rba->req_ready, 0); 1106 INIT_LIST_HEAD(&rba->rbd_allocated); 1107 INIT_LIST_HEAD(&rba->rbd_empty); 1108 spin_unlock_bh(&rba->lock); 1109 1110 /* free all first - we overwrite everything here */ 1111 iwl_pcie_free_rbs_pool(trans); 1112 1113 for (i = 0; i < RX_QUEUE_SIZE; i++) 1114 def_rxq->queue[i] = NULL; 1115 1116 for (i = 0; i < trans->num_rx_queues; i++) { 1117 struct iwl_rxq *rxq = &trans_pcie->rxq[i]; 1118 1119 spin_lock_bh(&rxq->lock); 1120 /* 1121 * Set read write pointer to reflect that we have processed 1122 * and used all buffers, but have not restocked the Rx queue 1123 * with fresh buffers 1124 */ 1125 rxq->read = 0; 1126 rxq->write = 0; 1127 rxq->write_actual = 0; 1128 memset(rxq->rb_stts, 0, 1129 (trans->trans_cfg->device_family >= 1130 IWL_DEVICE_FAMILY_AX210) ? 1131 sizeof(__le16) : sizeof(struct iwl_rb_status)); 1132 1133 iwl_pcie_rx_init_rxb_lists(rxq); 1134 1135 spin_unlock_bh(&rxq->lock); 1136 1137 if (!rxq->napi.poll) { 1138 int (*poll)(struct napi_struct *, int) = iwl_pcie_napi_poll; 1139 1140 if (trans_pcie->msix_enabled) 1141 poll = iwl_pcie_napi_poll_msix; 1142 1143 netif_napi_add(trans_pcie->napi_dev, &rxq->napi, 1144 poll); 1145 napi_enable(&rxq->napi); 1146 } 1147 1148 } 1149 1150 /* move the pool to the default queue and allocator ownerships */ 1151 queue_size = trans->trans_cfg->mq_rx_supported ? 1152 trans_pcie->num_rx_bufs - 1 : RX_QUEUE_SIZE; 1153 allocator_pool_size = trans->num_rx_queues * 1154 (RX_CLAIM_REQ_ALLOC - RX_POST_REQ_ALLOC); 1155 num_alloc = queue_size + allocator_pool_size; 1156 1157 for (i = 0; i < num_alloc; i++) { 1158 struct iwl_rx_mem_buffer *rxb = &trans_pcie->rx_pool[i]; 1159 1160 if (i < allocator_pool_size) 1161 list_add(&rxb->list, &rba->rbd_empty); 1162 else 1163 list_add(&rxb->list, &def_rxq->rx_used); 1164 trans_pcie->global_table[i] = rxb; 1165 rxb->vid = (u16)(i + 1); 1166 rxb->invalid = true; 1167 } 1168 1169 iwl_pcie_rxq_alloc_rbs(trans, GFP_KERNEL, def_rxq); 1170 1171 return 0; 1172 } 1173 1174 int iwl_pcie_rx_init(struct iwl_trans *trans) 1175 { 1176 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1177 int ret = _iwl_pcie_rx_init(trans); 1178 1179 if (ret) 1180 return ret; 1181 1182 if (trans->trans_cfg->mq_rx_supported) 1183 iwl_pcie_rx_mq_hw_init(trans); 1184 else 1185 iwl_pcie_rx_hw_init(trans, trans_pcie->rxq); 1186 1187 iwl_pcie_rxq_restock(trans, trans_pcie->rxq); 1188 1189 spin_lock_bh(&trans_pcie->rxq->lock); 1190 iwl_pcie_rxq_inc_wr_ptr(trans, trans_pcie->rxq); 1191 spin_unlock_bh(&trans_pcie->rxq->lock); 1192 1193 return 0; 1194 } 1195 1196 int iwl_pcie_gen2_rx_init(struct iwl_trans *trans) 1197 { 1198 /* Set interrupt coalescing timer to default (2048 usecs) */ 1199 iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF); 1200 1201 /* 1202 * We don't configure the RFH. 1203 * Restock will be done at alive, after firmware configured the RFH. 1204 */ 1205 return _iwl_pcie_rx_init(trans); 1206 } 1207 1208 void iwl_pcie_rx_free(struct iwl_trans *trans) 1209 { 1210 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1211 size_t rb_stts_size = iwl_pcie_rb_stts_size(trans); 1212 struct iwl_rb_allocator *rba = &trans_pcie->rba; 1213 int i; 1214 1215 /* 1216 * if rxq is NULL, it means that nothing has been allocated, 1217 * exit now 1218 */ 1219 if (!trans_pcie->rxq) { 1220 IWL_DEBUG_INFO(trans, "Free NULL rx context\n"); 1221 return; 1222 } 1223 1224 cancel_work_sync(&rba->rx_alloc); 1225 1226 iwl_pcie_free_rbs_pool(trans); 1227 1228 if (trans_pcie->base_rb_stts) { 1229 dma_free_coherent(trans->dev, 1230 rb_stts_size * trans->num_rx_queues, 1231 trans_pcie->base_rb_stts, 1232 trans_pcie->base_rb_stts_dma); 1233 trans_pcie->base_rb_stts = NULL; 1234 trans_pcie->base_rb_stts_dma = 0; 1235 } 1236 1237 for (i = 0; i < trans->num_rx_queues; i++) { 1238 struct iwl_rxq *rxq = &trans_pcie->rxq[i]; 1239 1240 iwl_pcie_free_rxq_dma(trans, rxq); 1241 1242 if (rxq->napi.poll) { 1243 napi_disable(&rxq->napi); 1244 netif_napi_del(&rxq->napi); 1245 } 1246 } 1247 kfree(trans_pcie->rx_pool); 1248 kfree(trans_pcie->global_table); 1249 kfree(trans_pcie->rxq); 1250 1251 if (trans_pcie->alloc_page) 1252 __free_pages(trans_pcie->alloc_page, trans_pcie->rx_page_order); 1253 } 1254 1255 static void iwl_pcie_rx_move_to_allocator(struct iwl_rxq *rxq, 1256 struct iwl_rb_allocator *rba) 1257 { 1258 spin_lock(&rba->lock); 1259 list_splice_tail_init(&rxq->rx_used, &rba->rbd_empty); 1260 spin_unlock(&rba->lock); 1261 } 1262 1263 /* 1264 * iwl_pcie_rx_reuse_rbd - Recycle used RBDs 1265 * 1266 * Called when a RBD can be reused. The RBD is transferred to the allocator. 1267 * When there are 2 empty RBDs - a request for allocation is posted 1268 */ 1269 static void iwl_pcie_rx_reuse_rbd(struct iwl_trans *trans, 1270 struct iwl_rx_mem_buffer *rxb, 1271 struct iwl_rxq *rxq, bool emergency) 1272 { 1273 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1274 struct iwl_rb_allocator *rba = &trans_pcie->rba; 1275 1276 /* Move the RBD to the used list, will be moved to allocator in batches 1277 * before claiming or posting a request*/ 1278 list_add_tail(&rxb->list, &rxq->rx_used); 1279 1280 if (unlikely(emergency)) 1281 return; 1282 1283 /* Count the allocator owned RBDs */ 1284 rxq->used_count++; 1285 1286 /* If we have RX_POST_REQ_ALLOC new released rx buffers - 1287 * issue a request for allocator. Modulo RX_CLAIM_REQ_ALLOC is 1288 * used for the case we failed to claim RX_CLAIM_REQ_ALLOC, 1289 * after but we still need to post another request. 1290 */ 1291 if ((rxq->used_count % RX_CLAIM_REQ_ALLOC) == RX_POST_REQ_ALLOC) { 1292 /* Move the 2 RBDs to the allocator ownership. 1293 Allocator has another 6 from pool for the request completion*/ 1294 iwl_pcie_rx_move_to_allocator(rxq, rba); 1295 1296 atomic_inc(&rba->req_pending); 1297 queue_work(rba->alloc_wq, &rba->rx_alloc); 1298 } 1299 } 1300 1301 static void iwl_pcie_rx_handle_rb(struct iwl_trans *trans, 1302 struct iwl_rxq *rxq, 1303 struct iwl_rx_mem_buffer *rxb, 1304 bool emergency, 1305 int i) 1306 { 1307 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1308 struct iwl_txq *txq = trans_pcie->txqs.txq[trans_pcie->txqs.cmd.q_id]; 1309 bool page_stolen = false; 1310 int max_len = trans_pcie->rx_buf_bytes; 1311 u32 offset = 0; 1312 1313 if (WARN_ON(!rxb)) 1314 return; 1315 1316 dma_unmap_page(trans->dev, rxb->page_dma, max_len, DMA_FROM_DEVICE); 1317 1318 while (offset + sizeof(u32) + sizeof(struct iwl_cmd_header) < max_len) { 1319 struct iwl_rx_packet *pkt; 1320 bool reclaim; 1321 int len; 1322 struct iwl_rx_cmd_buffer rxcb = { 1323 ._offset = rxb->offset + offset, 1324 ._rx_page_order = trans_pcie->rx_page_order, 1325 ._page = rxb->page, 1326 ._page_stolen = false, 1327 .truesize = max_len, 1328 }; 1329 1330 pkt = rxb_addr(&rxcb); 1331 1332 if (pkt->len_n_flags == cpu_to_le32(FH_RSCSR_FRAME_INVALID)) { 1333 IWL_DEBUG_RX(trans, 1334 "Q %d: RB end marker at offset %d\n", 1335 rxq->id, offset); 1336 break; 1337 } 1338 1339 WARN((le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_RXQ_MASK) >> 1340 FH_RSCSR_RXQ_POS != rxq->id, 1341 "frame on invalid queue - is on %d and indicates %d\n", 1342 rxq->id, 1343 (le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_RXQ_MASK) >> 1344 FH_RSCSR_RXQ_POS); 1345 1346 IWL_DEBUG_RX(trans, 1347 "Q %d: cmd at offset %d: %s (%.2x.%2x, seq 0x%x)\n", 1348 rxq->id, offset, 1349 iwl_get_cmd_string(trans, 1350 WIDE_ID(pkt->hdr.group_id, pkt->hdr.cmd)), 1351 pkt->hdr.group_id, pkt->hdr.cmd, 1352 le16_to_cpu(pkt->hdr.sequence)); 1353 1354 len = iwl_rx_packet_len(pkt); 1355 len += sizeof(u32); /* account for status word */ 1356 1357 offset += ALIGN(len, FH_RSCSR_FRAME_ALIGN); 1358 1359 /* check that what the device tells us made sense */ 1360 if (len < sizeof(*pkt) || offset > max_len) 1361 break; 1362 1363 maybe_trace_iwlwifi_dev_rx(trans, pkt, len); 1364 1365 /* Reclaim a command buffer only if this packet is a response 1366 * to a (driver-originated) command. 1367 * If the packet (e.g. Rx frame) originated from uCode, 1368 * there is no command buffer to reclaim. 1369 * Ucode should set SEQ_RX_FRAME bit if ucode-originated, 1370 * but apparently a few don't get set; catch them here. */ 1371 reclaim = !(pkt->hdr.sequence & SEQ_RX_FRAME); 1372 if (reclaim && !pkt->hdr.group_id) { 1373 int i; 1374 1375 for (i = 0; i < trans_pcie->n_no_reclaim_cmds; i++) { 1376 if (trans_pcie->no_reclaim_cmds[i] == 1377 pkt->hdr.cmd) { 1378 reclaim = false; 1379 break; 1380 } 1381 } 1382 } 1383 1384 if (rxq->id == IWL_DEFAULT_RX_QUEUE) 1385 iwl_op_mode_rx(trans->op_mode, &rxq->napi, 1386 &rxcb); 1387 else 1388 iwl_op_mode_rx_rss(trans->op_mode, &rxq->napi, 1389 &rxcb, rxq->id); 1390 1391 /* 1392 * After here, we should always check rxcb._page_stolen, 1393 * if it is true then one of the handlers took the page. 1394 */ 1395 1396 if (reclaim && txq) { 1397 u16 sequence = le16_to_cpu(pkt->hdr.sequence); 1398 int index = SEQ_TO_INDEX(sequence); 1399 int cmd_index = iwl_txq_get_cmd_index(txq, index); 1400 1401 kfree_sensitive(txq->entries[cmd_index].free_buf); 1402 txq->entries[cmd_index].free_buf = NULL; 1403 1404 /* Invoke any callbacks, transfer the buffer to caller, 1405 * and fire off the (possibly) blocking 1406 * iwl_trans_send_cmd() 1407 * as we reclaim the driver command queue */ 1408 if (!rxcb._page_stolen) 1409 iwl_pcie_hcmd_complete(trans, &rxcb); 1410 else 1411 IWL_WARN(trans, "Claim null rxb?\n"); 1412 } 1413 1414 page_stolen |= rxcb._page_stolen; 1415 if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) 1416 break; 1417 } 1418 1419 /* page was stolen from us -- free our reference */ 1420 if (page_stolen) { 1421 __free_pages(rxb->page, trans_pcie->rx_page_order); 1422 rxb->page = NULL; 1423 } 1424 1425 /* Reuse the page if possible. For notification packets and 1426 * SKBs that fail to Rx correctly, add them back into the 1427 * rx_free list for reuse later. */ 1428 if (rxb->page != NULL) { 1429 rxb->page_dma = 1430 dma_map_page(trans->dev, rxb->page, rxb->offset, 1431 trans_pcie->rx_buf_bytes, 1432 DMA_FROM_DEVICE); 1433 if (dma_mapping_error(trans->dev, rxb->page_dma)) { 1434 /* 1435 * free the page(s) as well to not break 1436 * the invariant that the items on the used 1437 * list have no page(s) 1438 */ 1439 __free_pages(rxb->page, trans_pcie->rx_page_order); 1440 rxb->page = NULL; 1441 iwl_pcie_rx_reuse_rbd(trans, rxb, rxq, emergency); 1442 } else { 1443 list_add_tail(&rxb->list, &rxq->rx_free); 1444 rxq->free_count++; 1445 } 1446 } else 1447 iwl_pcie_rx_reuse_rbd(trans, rxb, rxq, emergency); 1448 } 1449 1450 static struct iwl_rx_mem_buffer *iwl_pcie_get_rxb(struct iwl_trans *trans, 1451 struct iwl_rxq *rxq, int i, 1452 bool *join) 1453 { 1454 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1455 struct iwl_rx_mem_buffer *rxb; 1456 u16 vid; 1457 1458 BUILD_BUG_ON(sizeof(struct iwl_rx_completion_desc) != 32); 1459 BUILD_BUG_ON(sizeof(struct iwl_rx_completion_desc_bz) != 4); 1460 1461 if (!trans->trans_cfg->mq_rx_supported) { 1462 rxb = rxq->queue[i]; 1463 rxq->queue[i] = NULL; 1464 return rxb; 1465 } 1466 1467 if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_BZ) { 1468 struct iwl_rx_completion_desc_bz *cd = rxq->used_bd; 1469 1470 vid = le16_to_cpu(cd[i].rbid); 1471 *join = cd[i].flags & IWL_RX_CD_FLAGS_FRAGMENTED; 1472 } else if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) { 1473 struct iwl_rx_completion_desc *cd = rxq->used_bd; 1474 1475 vid = le16_to_cpu(cd[i].rbid); 1476 *join = cd[i].flags & IWL_RX_CD_FLAGS_FRAGMENTED; 1477 } else { 1478 __le32 *cd = rxq->used_bd; 1479 1480 vid = le32_to_cpu(cd[i]) & 0x0FFF; /* 12-bit VID */ 1481 } 1482 1483 if (!vid || vid > RX_POOL_SIZE(trans_pcie->num_rx_bufs)) 1484 goto out_err; 1485 1486 rxb = trans_pcie->global_table[vid - 1]; 1487 if (rxb->invalid) 1488 goto out_err; 1489 1490 IWL_DEBUG_RX(trans, "Got virtual RB ID %u\n", (u32)rxb->vid); 1491 1492 rxb->invalid = true; 1493 1494 return rxb; 1495 1496 out_err: 1497 WARN(1, "Invalid rxb from HW %u\n", (u32)vid); 1498 iwl_force_nmi(trans); 1499 return NULL; 1500 } 1501 1502 /* 1503 * iwl_pcie_rx_handle - Main entry function for receiving responses from fw 1504 */ 1505 static int iwl_pcie_rx_handle(struct iwl_trans *trans, int queue, int budget) 1506 { 1507 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1508 struct iwl_rxq *rxq; 1509 u32 r, i, count = 0, handled = 0; 1510 bool emergency = false; 1511 1512 if (WARN_ON_ONCE(!trans_pcie->rxq || !trans_pcie->rxq[queue].bd)) 1513 return budget; 1514 1515 rxq = &trans_pcie->rxq[queue]; 1516 1517 restart: 1518 spin_lock(&rxq->lock); 1519 /* uCode's read index (stored in shared DRAM) indicates the last Rx 1520 * buffer that the driver may process (last buffer filled by ucode). */ 1521 r = iwl_get_closed_rb_stts(trans, rxq); 1522 i = rxq->read; 1523 1524 /* W/A 9000 device step A0 wrap-around bug */ 1525 r &= (rxq->queue_size - 1); 1526 1527 /* Rx interrupt, but nothing sent from uCode */ 1528 if (i == r) 1529 IWL_DEBUG_RX(trans, "Q %d: HW = SW = %d\n", rxq->id, r); 1530 1531 while (i != r && ++handled < budget) { 1532 struct iwl_rb_allocator *rba = &trans_pcie->rba; 1533 struct iwl_rx_mem_buffer *rxb; 1534 /* number of RBDs still waiting for page allocation */ 1535 u32 rb_pending_alloc = 1536 atomic_read(&trans_pcie->rba.req_pending) * 1537 RX_CLAIM_REQ_ALLOC; 1538 bool join = false; 1539 1540 if (unlikely(rb_pending_alloc >= rxq->queue_size / 2 && 1541 !emergency)) { 1542 iwl_pcie_rx_move_to_allocator(rxq, rba); 1543 emergency = true; 1544 IWL_DEBUG_TPT(trans, 1545 "RX path is in emergency. Pending allocations %d\n", 1546 rb_pending_alloc); 1547 } 1548 1549 IWL_DEBUG_RX(trans, "Q %d: HW = %d, SW = %d\n", rxq->id, r, i); 1550 1551 rxb = iwl_pcie_get_rxb(trans, rxq, i, &join); 1552 if (!rxb) 1553 goto out; 1554 1555 if (unlikely(join || rxq->next_rb_is_fragment)) { 1556 rxq->next_rb_is_fragment = join; 1557 /* 1558 * We can only get a multi-RB in the following cases: 1559 * - firmware issue, sending a too big notification 1560 * - sniffer mode with a large A-MSDU 1561 * - large MTU frames (>2k) 1562 * since the multi-RB functionality is limited to newer 1563 * hardware that cannot put multiple entries into a 1564 * single RB. 1565 * 1566 * Right now, the higher layers aren't set up to deal 1567 * with that, so discard all of these. 1568 */ 1569 list_add_tail(&rxb->list, &rxq->rx_free); 1570 rxq->free_count++; 1571 } else { 1572 iwl_pcie_rx_handle_rb(trans, rxq, rxb, emergency, i); 1573 } 1574 1575 i = (i + 1) & (rxq->queue_size - 1); 1576 1577 /* 1578 * If we have RX_CLAIM_REQ_ALLOC released rx buffers - 1579 * try to claim the pre-allocated buffers from the allocator. 1580 * If not ready - will try to reclaim next time. 1581 * There is no need to reschedule work - allocator exits only 1582 * on success 1583 */ 1584 if (rxq->used_count >= RX_CLAIM_REQ_ALLOC) 1585 iwl_pcie_rx_allocator_get(trans, rxq); 1586 1587 if (rxq->used_count % RX_CLAIM_REQ_ALLOC == 0 && !emergency) { 1588 /* Add the remaining empty RBDs for allocator use */ 1589 iwl_pcie_rx_move_to_allocator(rxq, rba); 1590 } else if (emergency) { 1591 count++; 1592 if (count == 8) { 1593 count = 0; 1594 if (rb_pending_alloc < rxq->queue_size / 3) { 1595 IWL_DEBUG_TPT(trans, 1596 "RX path exited emergency. Pending allocations %d\n", 1597 rb_pending_alloc); 1598 emergency = false; 1599 } 1600 1601 rxq->read = i; 1602 spin_unlock(&rxq->lock); 1603 iwl_pcie_rxq_alloc_rbs(trans, GFP_ATOMIC, rxq); 1604 iwl_pcie_rxq_restock(trans, rxq); 1605 goto restart; 1606 } 1607 } 1608 } 1609 out: 1610 /* Backtrack one entry */ 1611 rxq->read = i; 1612 spin_unlock(&rxq->lock); 1613 1614 /* 1615 * handle a case where in emergency there are some unallocated RBDs. 1616 * those RBDs are in the used list, but are not tracked by the queue's 1617 * used_count which counts allocator owned RBDs. 1618 * unallocated emergency RBDs must be allocated on exit, otherwise 1619 * when called again the function may not be in emergency mode and 1620 * they will be handed to the allocator with no tracking in the RBD 1621 * allocator counters, which will lead to them never being claimed back 1622 * by the queue. 1623 * by allocating them here, they are now in the queue free list, and 1624 * will be restocked by the next call of iwl_pcie_rxq_restock. 1625 */ 1626 if (unlikely(emergency && count)) 1627 iwl_pcie_rxq_alloc_rbs(trans, GFP_ATOMIC, rxq); 1628 1629 iwl_pcie_rxq_restock(trans, rxq); 1630 1631 return handled; 1632 } 1633 1634 static struct iwl_trans_pcie *iwl_pcie_get_trans_pcie(struct msix_entry *entry) 1635 { 1636 u8 queue = entry->entry; 1637 struct msix_entry *entries = entry - queue; 1638 1639 return container_of(entries, struct iwl_trans_pcie, msix_entries[0]); 1640 } 1641 1642 /* 1643 * iwl_pcie_rx_msix_handle - Main entry function for receiving responses from fw 1644 * This interrupt handler should be used with RSS queue only. 1645 */ 1646 irqreturn_t iwl_pcie_irq_rx_msix_handler(int irq, void *dev_id) 1647 { 1648 struct msix_entry *entry = dev_id; 1649 struct iwl_trans_pcie *trans_pcie = iwl_pcie_get_trans_pcie(entry); 1650 struct iwl_trans *trans = trans_pcie->trans; 1651 struct iwl_rxq *rxq; 1652 1653 trace_iwlwifi_dev_irq_msix(trans->dev, entry, false, 0, 0); 1654 1655 if (WARN_ON(entry->entry >= trans->num_rx_queues)) 1656 return IRQ_NONE; 1657 1658 if (!trans_pcie->rxq) { 1659 if (net_ratelimit()) 1660 IWL_ERR(trans, 1661 "[%d] Got MSI-X interrupt before we have Rx queues\n", 1662 entry->entry); 1663 return IRQ_NONE; 1664 } 1665 1666 rxq = &trans_pcie->rxq[entry->entry]; 1667 lock_map_acquire(&trans->sync_cmd_lockdep_map); 1668 IWL_DEBUG_ISR(trans, "[%d] Got interrupt\n", entry->entry); 1669 1670 local_bh_disable(); 1671 if (!napi_schedule(&rxq->napi)) 1672 iwl_pcie_clear_irq(trans, entry->entry); 1673 local_bh_enable(); 1674 1675 lock_map_release(&trans->sync_cmd_lockdep_map); 1676 1677 return IRQ_HANDLED; 1678 } 1679 1680 /* 1681 * iwl_pcie_irq_handle_error - called for HW or SW error interrupt from card 1682 */ 1683 static void iwl_pcie_irq_handle_error(struct iwl_trans *trans) 1684 { 1685 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1686 int i; 1687 1688 /* W/A for WiFi/WiMAX coex and WiMAX own the RF */ 1689 if (trans->cfg->internal_wimax_coex && 1690 !trans->cfg->apmg_not_supported && 1691 (!(iwl_read_prph(trans, APMG_CLK_CTRL_REG) & 1692 APMS_CLK_VAL_MRB_FUNC_MODE) || 1693 (iwl_read_prph(trans, APMG_PS_CTRL_REG) & 1694 APMG_PS_CTRL_VAL_RESET_REQ))) { 1695 clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status); 1696 iwl_op_mode_wimax_active(trans->op_mode); 1697 wake_up(&trans->wait_command_queue); 1698 return; 1699 } 1700 1701 for (i = 0; i < trans->trans_cfg->base_params->num_of_queues; i++) { 1702 if (!trans_pcie->txqs.txq[i]) 1703 continue; 1704 del_timer(&trans_pcie->txqs.txq[i]->stuck_timer); 1705 } 1706 1707 /* The STATUS_FW_ERROR bit is set in this function. This must happen 1708 * before we wake up the command caller, to ensure a proper cleanup. */ 1709 iwl_trans_fw_error(trans, false); 1710 1711 clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status); 1712 wake_up(&trans->wait_command_queue); 1713 } 1714 1715 static u32 iwl_pcie_int_cause_non_ict(struct iwl_trans *trans) 1716 { 1717 u32 inta; 1718 1719 lockdep_assert_held(&IWL_TRANS_GET_PCIE_TRANS(trans)->irq_lock); 1720 1721 trace_iwlwifi_dev_irq(trans->dev); 1722 1723 /* Discover which interrupts are active/pending */ 1724 inta = iwl_read32(trans, CSR_INT); 1725 1726 /* the thread will service interrupts and re-enable them */ 1727 return inta; 1728 } 1729 1730 /* a device (PCI-E) page is 4096 bytes long */ 1731 #define ICT_SHIFT 12 1732 #define ICT_SIZE (1 << ICT_SHIFT) 1733 #define ICT_COUNT (ICT_SIZE / sizeof(u32)) 1734 1735 /* interrupt handler using ict table, with this interrupt driver will 1736 * stop using INTA register to get device's interrupt, reading this register 1737 * is expensive, device will write interrupts in ICT dram table, increment 1738 * index then will fire interrupt to driver, driver will OR all ICT table 1739 * entries from current index up to table entry with 0 value. the result is 1740 * the interrupt we need to service, driver will set the entries back to 0 and 1741 * set index. 1742 */ 1743 static u32 iwl_pcie_int_cause_ict(struct iwl_trans *trans) 1744 { 1745 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1746 u32 inta; 1747 u32 val = 0; 1748 u32 read; 1749 1750 trace_iwlwifi_dev_irq(trans->dev); 1751 1752 /* Ignore interrupt if there's nothing in NIC to service. 1753 * This may be due to IRQ shared with another device, 1754 * or due to sporadic interrupts thrown from our NIC. */ 1755 read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]); 1756 trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index, read); 1757 if (!read) 1758 return 0; 1759 1760 /* 1761 * Collect all entries up to the first 0, starting from ict_index; 1762 * note we already read at ict_index. 1763 */ 1764 do { 1765 val |= read; 1766 IWL_DEBUG_ISR(trans, "ICT index %d value 0x%08X\n", 1767 trans_pcie->ict_index, read); 1768 trans_pcie->ict_tbl[trans_pcie->ict_index] = 0; 1769 trans_pcie->ict_index = 1770 ((trans_pcie->ict_index + 1) & (ICT_COUNT - 1)); 1771 1772 read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]); 1773 trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index, 1774 read); 1775 } while (read); 1776 1777 /* We should not get this value, just ignore it. */ 1778 if (val == 0xffffffff) 1779 val = 0; 1780 1781 /* 1782 * this is a w/a for a h/w bug. the h/w bug may cause the Rx bit 1783 * (bit 15 before shifting it to 31) to clear when using interrupt 1784 * coalescing. fortunately, bits 18 and 19 stay set when this happens 1785 * so we use them to decide on the real state of the Rx bit. 1786 * In order words, bit 15 is set if bit 18 or bit 19 are set. 1787 */ 1788 if (val & 0xC0000) 1789 val |= 0x8000; 1790 1791 inta = (0xff & val) | ((0xff00 & val) << 16); 1792 return inta; 1793 } 1794 1795 void iwl_pcie_handle_rfkill_irq(struct iwl_trans *trans, bool from_irq) 1796 { 1797 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1798 struct isr_statistics *isr_stats = &trans_pcie->isr_stats; 1799 bool hw_rfkill, prev, report; 1800 1801 mutex_lock(&trans_pcie->mutex); 1802 prev = test_bit(STATUS_RFKILL_OPMODE, &trans->status); 1803 hw_rfkill = iwl_is_rfkill_set(trans); 1804 if (hw_rfkill) { 1805 set_bit(STATUS_RFKILL_OPMODE, &trans->status); 1806 set_bit(STATUS_RFKILL_HW, &trans->status); 1807 } 1808 if (trans_pcie->opmode_down) 1809 report = hw_rfkill; 1810 else 1811 report = test_bit(STATUS_RFKILL_OPMODE, &trans->status); 1812 1813 IWL_WARN(trans, "RF_KILL bit toggled to %s.\n", 1814 hw_rfkill ? "disable radio" : "enable radio"); 1815 1816 isr_stats->rfkill++; 1817 1818 if (prev != report) 1819 iwl_trans_pcie_rf_kill(trans, report, from_irq); 1820 mutex_unlock(&trans_pcie->mutex); 1821 1822 if (hw_rfkill) { 1823 if (test_and_clear_bit(STATUS_SYNC_HCMD_ACTIVE, 1824 &trans->status)) 1825 IWL_DEBUG_RF_KILL(trans, 1826 "Rfkill while SYNC HCMD in flight\n"); 1827 wake_up(&trans->wait_command_queue); 1828 } else { 1829 clear_bit(STATUS_RFKILL_HW, &trans->status); 1830 if (trans_pcie->opmode_down) 1831 clear_bit(STATUS_RFKILL_OPMODE, &trans->status); 1832 } 1833 } 1834 1835 irqreturn_t iwl_pcie_irq_handler(int irq, void *dev_id) 1836 { 1837 struct iwl_trans *trans = dev_id; 1838 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1839 struct isr_statistics *isr_stats = &trans_pcie->isr_stats; 1840 u32 inta = 0; 1841 u32 handled = 0; 1842 bool polling = false; 1843 1844 lock_map_acquire(&trans->sync_cmd_lockdep_map); 1845 1846 spin_lock_bh(&trans_pcie->irq_lock); 1847 1848 /* dram interrupt table not set yet, 1849 * use legacy interrupt. 1850 */ 1851 if (likely(trans_pcie->use_ict)) 1852 inta = iwl_pcie_int_cause_ict(trans); 1853 else 1854 inta = iwl_pcie_int_cause_non_ict(trans); 1855 1856 #ifdef CONFIG_IWLWIFI_DEBUG 1857 if (iwl_have_debug_level(IWL_DL_ISR)) { 1858 IWL_DEBUG_ISR(trans, 1859 "ISR inta 0x%08x, enabled 0x%08x(sw), enabled(hw) 0x%08x, fh 0x%08x\n", 1860 inta, trans_pcie->inta_mask, 1861 iwl_read32(trans, CSR_INT_MASK), 1862 iwl_read32(trans, CSR_FH_INT_STATUS)); 1863 if (inta & (~trans_pcie->inta_mask)) 1864 IWL_DEBUG_ISR(trans, 1865 "We got a masked interrupt (0x%08x)\n", 1866 inta & (~trans_pcie->inta_mask)); 1867 } 1868 #endif 1869 1870 inta &= trans_pcie->inta_mask; 1871 1872 /* 1873 * Ignore interrupt if there's nothing in NIC to service. 1874 * This may be due to IRQ shared with another device, 1875 * or due to sporadic interrupts thrown from our NIC. 1876 */ 1877 if (unlikely(!inta)) { 1878 IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n"); 1879 /* 1880 * Re-enable interrupts here since we don't 1881 * have anything to service 1882 */ 1883 if (test_bit(STATUS_INT_ENABLED, &trans->status)) 1884 _iwl_enable_interrupts(trans); 1885 spin_unlock_bh(&trans_pcie->irq_lock); 1886 lock_map_release(&trans->sync_cmd_lockdep_map); 1887 return IRQ_NONE; 1888 } 1889 1890 if (unlikely(inta == 0xFFFFFFFF || iwl_trans_is_hw_error_value(inta))) { 1891 /* 1892 * Hardware disappeared. It might have 1893 * already raised an interrupt. 1894 */ 1895 IWL_WARN(trans, "HARDWARE GONE?? INTA == 0x%08x\n", inta); 1896 spin_unlock_bh(&trans_pcie->irq_lock); 1897 goto out; 1898 } 1899 1900 /* Ack/clear/reset pending uCode interrupts. 1901 * Note: Some bits in CSR_INT are "OR" of bits in CSR_FH_INT_STATUS, 1902 */ 1903 /* There is a hardware bug in the interrupt mask function that some 1904 * interrupts (i.e. CSR_INT_BIT_SCD) can still be generated even if 1905 * they are disabled in the CSR_INT_MASK register. Furthermore the 1906 * ICT interrupt handling mechanism has another bug that might cause 1907 * these unmasked interrupts fail to be detected. We workaround the 1908 * hardware bugs here by ACKing all the possible interrupts so that 1909 * interrupt coalescing can still be achieved. 1910 */ 1911 iwl_write32(trans, CSR_INT, inta | ~trans_pcie->inta_mask); 1912 1913 #ifdef CONFIG_IWLWIFI_DEBUG 1914 if (iwl_have_debug_level(IWL_DL_ISR)) 1915 IWL_DEBUG_ISR(trans, "inta 0x%08x, enabled 0x%08x\n", 1916 inta, iwl_read32(trans, CSR_INT_MASK)); 1917 #endif 1918 1919 spin_unlock_bh(&trans_pcie->irq_lock); 1920 1921 /* Now service all interrupt bits discovered above. */ 1922 if (inta & CSR_INT_BIT_HW_ERR) { 1923 IWL_ERR(trans, "Hardware error detected. Restarting.\n"); 1924 1925 /* Tell the device to stop sending interrupts */ 1926 iwl_disable_interrupts(trans); 1927 1928 isr_stats->hw++; 1929 iwl_pcie_irq_handle_error(trans); 1930 1931 handled |= CSR_INT_BIT_HW_ERR; 1932 1933 goto out; 1934 } 1935 1936 /* NIC fires this, but we don't use it, redundant with WAKEUP */ 1937 if (inta & CSR_INT_BIT_SCD) { 1938 IWL_DEBUG_ISR(trans, 1939 "Scheduler finished to transmit the frame/frames.\n"); 1940 isr_stats->sch++; 1941 } 1942 1943 /* Alive notification via Rx interrupt will do the real work */ 1944 if (inta & CSR_INT_BIT_ALIVE) { 1945 IWL_DEBUG_ISR(trans, "Alive interrupt\n"); 1946 isr_stats->alive++; 1947 if (trans->trans_cfg->gen2) { 1948 /* 1949 * We can restock, since firmware configured 1950 * the RFH 1951 */ 1952 iwl_pcie_rxmq_restock(trans, trans_pcie->rxq); 1953 } 1954 1955 handled |= CSR_INT_BIT_ALIVE; 1956 } 1957 1958 /* Safely ignore these bits for debug checks below */ 1959 inta &= ~(CSR_INT_BIT_SCD | CSR_INT_BIT_ALIVE); 1960 1961 /* HW RF KILL switch toggled */ 1962 if (inta & CSR_INT_BIT_RF_KILL) { 1963 iwl_pcie_handle_rfkill_irq(trans, true); 1964 handled |= CSR_INT_BIT_RF_KILL; 1965 } 1966 1967 /* Chip got too hot and stopped itself */ 1968 if (inta & CSR_INT_BIT_CT_KILL) { 1969 IWL_ERR(trans, "Microcode CT kill error detected.\n"); 1970 isr_stats->ctkill++; 1971 handled |= CSR_INT_BIT_CT_KILL; 1972 } 1973 1974 /* Error detected by uCode */ 1975 if (inta & CSR_INT_BIT_SW_ERR) { 1976 IWL_ERR(trans, "Microcode SW error detected. " 1977 " Restarting 0x%X.\n", inta); 1978 isr_stats->sw++; 1979 iwl_pcie_irq_handle_error(trans); 1980 handled |= CSR_INT_BIT_SW_ERR; 1981 } 1982 1983 /* uCode wakes up after power-down sleep */ 1984 if (inta & CSR_INT_BIT_WAKEUP) { 1985 IWL_DEBUG_ISR(trans, "Wakeup interrupt\n"); 1986 iwl_pcie_rxq_check_wrptr(trans); 1987 iwl_pcie_txq_check_wrptrs(trans); 1988 1989 isr_stats->wakeup++; 1990 1991 handled |= CSR_INT_BIT_WAKEUP; 1992 } 1993 1994 /* All uCode command responses, including Tx command responses, 1995 * Rx "responses" (frame-received notification), and other 1996 * notifications from uCode come through here*/ 1997 if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX | 1998 CSR_INT_BIT_RX_PERIODIC)) { 1999 IWL_DEBUG_ISR(trans, "Rx interrupt\n"); 2000 if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX)) { 2001 handled |= (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX); 2002 iwl_write32(trans, CSR_FH_INT_STATUS, 2003 CSR_FH_INT_RX_MASK); 2004 } 2005 if (inta & CSR_INT_BIT_RX_PERIODIC) { 2006 handled |= CSR_INT_BIT_RX_PERIODIC; 2007 iwl_write32(trans, 2008 CSR_INT, CSR_INT_BIT_RX_PERIODIC); 2009 } 2010 /* Sending RX interrupt require many steps to be done in the 2011 * device: 2012 * 1- write interrupt to current index in ICT table. 2013 * 2- dma RX frame. 2014 * 3- update RX shared data to indicate last write index. 2015 * 4- send interrupt. 2016 * This could lead to RX race, driver could receive RX interrupt 2017 * but the shared data changes does not reflect this; 2018 * periodic interrupt will detect any dangling Rx activity. 2019 */ 2020 2021 /* Disable periodic interrupt; we use it as just a one-shot. */ 2022 iwl_write8(trans, CSR_INT_PERIODIC_REG, 2023 CSR_INT_PERIODIC_DIS); 2024 2025 /* 2026 * Enable periodic interrupt in 8 msec only if we received 2027 * real RX interrupt (instead of just periodic int), to catch 2028 * any dangling Rx interrupt. If it was just the periodic 2029 * interrupt, there was no dangling Rx activity, and no need 2030 * to extend the periodic interrupt; one-shot is enough. 2031 */ 2032 if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX)) 2033 iwl_write8(trans, CSR_INT_PERIODIC_REG, 2034 CSR_INT_PERIODIC_ENA); 2035 2036 isr_stats->rx++; 2037 2038 local_bh_disable(); 2039 if (napi_schedule_prep(&trans_pcie->rxq[0].napi)) { 2040 polling = true; 2041 __napi_schedule(&trans_pcie->rxq[0].napi); 2042 } 2043 local_bh_enable(); 2044 } 2045 2046 /* This "Tx" DMA channel is used only for loading uCode */ 2047 if (inta & CSR_INT_BIT_FH_TX) { 2048 iwl_write32(trans, CSR_FH_INT_STATUS, CSR_FH_INT_TX_MASK); 2049 IWL_DEBUG_ISR(trans, "uCode load interrupt\n"); 2050 isr_stats->tx++; 2051 handled |= CSR_INT_BIT_FH_TX; 2052 /* Wake up uCode load routine, now that load is complete */ 2053 trans_pcie->ucode_write_complete = true; 2054 wake_up(&trans_pcie->ucode_write_waitq); 2055 /* Wake up IMR write routine, now that write to SRAM is complete */ 2056 if (trans_pcie->imr_status == IMR_D2S_REQUESTED) { 2057 trans_pcie->imr_status = IMR_D2S_COMPLETED; 2058 wake_up(&trans_pcie->ucode_write_waitq); 2059 } 2060 } 2061 2062 if (inta & ~handled) { 2063 IWL_ERR(trans, "Unhandled INTA bits 0x%08x\n", inta & ~handled); 2064 isr_stats->unhandled++; 2065 } 2066 2067 if (inta & ~(trans_pcie->inta_mask)) { 2068 IWL_WARN(trans, "Disabled INTA bits 0x%08x were pending\n", 2069 inta & ~trans_pcie->inta_mask); 2070 } 2071 2072 if (!polling) { 2073 spin_lock_bh(&trans_pcie->irq_lock); 2074 /* only Re-enable all interrupt if disabled by irq */ 2075 if (test_bit(STATUS_INT_ENABLED, &trans->status)) 2076 _iwl_enable_interrupts(trans); 2077 /* we are loading the firmware, enable FH_TX interrupt only */ 2078 else if (handled & CSR_INT_BIT_FH_TX) 2079 iwl_enable_fw_load_int(trans); 2080 /* Re-enable RF_KILL if it occurred */ 2081 else if (handled & CSR_INT_BIT_RF_KILL) 2082 iwl_enable_rfkill_int(trans); 2083 /* Re-enable the ALIVE / Rx interrupt if it occurred */ 2084 else if (handled & (CSR_INT_BIT_ALIVE | CSR_INT_BIT_FH_RX)) 2085 iwl_enable_fw_load_int_ctx_info(trans); 2086 spin_unlock_bh(&trans_pcie->irq_lock); 2087 } 2088 2089 out: 2090 lock_map_release(&trans->sync_cmd_lockdep_map); 2091 return IRQ_HANDLED; 2092 } 2093 2094 /****************************************************************************** 2095 * 2096 * ICT functions 2097 * 2098 ******************************************************************************/ 2099 2100 /* Free dram table */ 2101 void iwl_pcie_free_ict(struct iwl_trans *trans) 2102 { 2103 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 2104 2105 if (trans_pcie->ict_tbl) { 2106 dma_free_coherent(trans->dev, ICT_SIZE, 2107 trans_pcie->ict_tbl, 2108 trans_pcie->ict_tbl_dma); 2109 trans_pcie->ict_tbl = NULL; 2110 trans_pcie->ict_tbl_dma = 0; 2111 } 2112 } 2113 2114 /* 2115 * allocate dram shared table, it is an aligned memory 2116 * block of ICT_SIZE. 2117 * also reset all data related to ICT table interrupt. 2118 */ 2119 int iwl_pcie_alloc_ict(struct iwl_trans *trans) 2120 { 2121 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 2122 2123 trans_pcie->ict_tbl = 2124 dma_alloc_coherent(trans->dev, ICT_SIZE, 2125 &trans_pcie->ict_tbl_dma, GFP_KERNEL); 2126 if (!trans_pcie->ict_tbl) 2127 return -ENOMEM; 2128 2129 /* just an API sanity check ... it is guaranteed to be aligned */ 2130 if (WARN_ON(trans_pcie->ict_tbl_dma & (ICT_SIZE - 1))) { 2131 iwl_pcie_free_ict(trans); 2132 return -EINVAL; 2133 } 2134 2135 return 0; 2136 } 2137 2138 /* Device is going up inform it about using ICT interrupt table, 2139 * also we need to tell the driver to start using ICT interrupt. 2140 */ 2141 void iwl_pcie_reset_ict(struct iwl_trans *trans) 2142 { 2143 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 2144 u32 val; 2145 2146 if (!trans_pcie->ict_tbl) 2147 return; 2148 2149 spin_lock_bh(&trans_pcie->irq_lock); 2150 _iwl_disable_interrupts(trans); 2151 2152 memset(trans_pcie->ict_tbl, 0, ICT_SIZE); 2153 2154 val = trans_pcie->ict_tbl_dma >> ICT_SHIFT; 2155 2156 val |= CSR_DRAM_INT_TBL_ENABLE | 2157 CSR_DRAM_INIT_TBL_WRAP_CHECK | 2158 CSR_DRAM_INIT_TBL_WRITE_POINTER; 2159 2160 IWL_DEBUG_ISR(trans, "CSR_DRAM_INT_TBL_REG =0x%x\n", val); 2161 2162 iwl_write32(trans, CSR_DRAM_INT_TBL_REG, val); 2163 trans_pcie->use_ict = true; 2164 trans_pcie->ict_index = 0; 2165 iwl_write32(trans, CSR_INT, trans_pcie->inta_mask); 2166 _iwl_enable_interrupts(trans); 2167 spin_unlock_bh(&trans_pcie->irq_lock); 2168 } 2169 2170 /* Device is going down disable ict interrupt usage */ 2171 void iwl_pcie_disable_ict(struct iwl_trans *trans) 2172 { 2173 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 2174 2175 spin_lock_bh(&trans_pcie->irq_lock); 2176 trans_pcie->use_ict = false; 2177 spin_unlock_bh(&trans_pcie->irq_lock); 2178 } 2179 2180 irqreturn_t iwl_pcie_isr(int irq, void *data) 2181 { 2182 struct iwl_trans *trans = data; 2183 2184 if (!trans) 2185 return IRQ_NONE; 2186 2187 /* Disable (but don't clear!) interrupts here to avoid 2188 * back-to-back ISRs and sporadic interrupts from our NIC. 2189 * If we have something to service, the tasklet will re-enable ints. 2190 * If we *don't* have something, we'll re-enable before leaving here. 2191 */ 2192 iwl_write32(trans, CSR_INT_MASK, 0x00000000); 2193 2194 return IRQ_WAKE_THREAD; 2195 } 2196 2197 irqreturn_t iwl_pcie_msix_isr(int irq, void *data) 2198 { 2199 return IRQ_WAKE_THREAD; 2200 } 2201 2202 irqreturn_t iwl_pcie_irq_msix_handler(int irq, void *dev_id) 2203 { 2204 struct msix_entry *entry = dev_id; 2205 struct iwl_trans_pcie *trans_pcie = iwl_pcie_get_trans_pcie(entry); 2206 struct iwl_trans *trans = trans_pcie->trans; 2207 struct isr_statistics *isr_stats = &trans_pcie->isr_stats; 2208 u32 inta_fh_msk = ~MSIX_FH_INT_CAUSES_DATA_QUEUE; 2209 u32 inta_fh, inta_hw; 2210 bool polling = false; 2211 bool sw_err; 2212 2213 if (trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_NON_RX) 2214 inta_fh_msk |= MSIX_FH_INT_CAUSES_Q0; 2215 2216 if (trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_FIRST_RSS) 2217 inta_fh_msk |= MSIX_FH_INT_CAUSES_Q1; 2218 2219 lock_map_acquire(&trans->sync_cmd_lockdep_map); 2220 2221 spin_lock_bh(&trans_pcie->irq_lock); 2222 inta_fh = iwl_read32(trans, CSR_MSIX_FH_INT_CAUSES_AD); 2223 inta_hw = iwl_read32(trans, CSR_MSIX_HW_INT_CAUSES_AD); 2224 /* 2225 * Clear causes registers to avoid being handling the same cause. 2226 */ 2227 iwl_write32(trans, CSR_MSIX_FH_INT_CAUSES_AD, inta_fh & inta_fh_msk); 2228 iwl_write32(trans, CSR_MSIX_HW_INT_CAUSES_AD, inta_hw); 2229 spin_unlock_bh(&trans_pcie->irq_lock); 2230 2231 trace_iwlwifi_dev_irq_msix(trans->dev, entry, true, inta_fh, inta_hw); 2232 2233 if (unlikely(!(inta_fh | inta_hw))) { 2234 IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n"); 2235 lock_map_release(&trans->sync_cmd_lockdep_map); 2236 return IRQ_NONE; 2237 } 2238 2239 #ifdef CONFIG_IWLWIFI_DEBUG 2240 if (iwl_have_debug_level(IWL_DL_ISR)) { 2241 IWL_DEBUG_ISR(trans, 2242 "ISR[%d] inta_fh 0x%08x, enabled (sw) 0x%08x (hw) 0x%08x\n", 2243 entry->entry, inta_fh, trans_pcie->fh_mask, 2244 iwl_read32(trans, CSR_MSIX_FH_INT_MASK_AD)); 2245 if (inta_fh & ~trans_pcie->fh_mask) 2246 IWL_DEBUG_ISR(trans, 2247 "We got a masked interrupt (0x%08x)\n", 2248 inta_fh & ~trans_pcie->fh_mask); 2249 } 2250 #endif 2251 2252 inta_fh &= trans_pcie->fh_mask; 2253 2254 if ((trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_NON_RX) && 2255 inta_fh & MSIX_FH_INT_CAUSES_Q0) { 2256 local_bh_disable(); 2257 if (napi_schedule_prep(&trans_pcie->rxq[0].napi)) { 2258 polling = true; 2259 __napi_schedule(&trans_pcie->rxq[0].napi); 2260 } 2261 local_bh_enable(); 2262 } 2263 2264 if ((trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_FIRST_RSS) && 2265 inta_fh & MSIX_FH_INT_CAUSES_Q1) { 2266 local_bh_disable(); 2267 if (napi_schedule_prep(&trans_pcie->rxq[1].napi)) { 2268 polling = true; 2269 __napi_schedule(&trans_pcie->rxq[1].napi); 2270 } 2271 local_bh_enable(); 2272 } 2273 2274 /* This "Tx" DMA channel is used only for loading uCode */ 2275 if (inta_fh & MSIX_FH_INT_CAUSES_D2S_CH0_NUM && 2276 trans_pcie->imr_status == IMR_D2S_REQUESTED) { 2277 IWL_DEBUG_ISR(trans, "IMR Complete interrupt\n"); 2278 isr_stats->tx++; 2279 2280 /* Wake up IMR routine once write to SRAM is complete */ 2281 if (trans_pcie->imr_status == IMR_D2S_REQUESTED) { 2282 trans_pcie->imr_status = IMR_D2S_COMPLETED; 2283 wake_up(&trans_pcie->ucode_write_waitq); 2284 } 2285 } else if (inta_fh & MSIX_FH_INT_CAUSES_D2S_CH0_NUM) { 2286 IWL_DEBUG_ISR(trans, "uCode load interrupt\n"); 2287 isr_stats->tx++; 2288 /* 2289 * Wake up uCode load routine, 2290 * now that load is complete 2291 */ 2292 trans_pcie->ucode_write_complete = true; 2293 wake_up(&trans_pcie->ucode_write_waitq); 2294 2295 /* Wake up IMR routine once write to SRAM is complete */ 2296 if (trans_pcie->imr_status == IMR_D2S_REQUESTED) { 2297 trans_pcie->imr_status = IMR_D2S_COMPLETED; 2298 wake_up(&trans_pcie->ucode_write_waitq); 2299 } 2300 } 2301 2302 if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_BZ) 2303 sw_err = inta_hw & MSIX_HW_INT_CAUSES_REG_SW_ERR_BZ; 2304 else 2305 sw_err = inta_hw & MSIX_HW_INT_CAUSES_REG_SW_ERR; 2306 2307 if (inta_hw & MSIX_HW_INT_CAUSES_REG_TOP_FATAL_ERR) { 2308 IWL_ERR(trans, "TOP Fatal error detected, inta_hw=0x%x.\n", 2309 inta_hw); 2310 /* TODO: PLDR flow required here for >= Bz */ 2311 } 2312 2313 /* Error detected by uCode */ 2314 if ((inta_fh & MSIX_FH_INT_CAUSES_FH_ERR) || sw_err) { 2315 IWL_ERR(trans, 2316 "Microcode SW error detected. Restarting 0x%X.\n", 2317 inta_fh); 2318 isr_stats->sw++; 2319 /* during FW reset flow report errors from there */ 2320 if (trans_pcie->imr_status == IMR_D2S_REQUESTED) { 2321 trans_pcie->imr_status = IMR_D2S_ERROR; 2322 wake_up(&trans_pcie->imr_waitq); 2323 } else if (trans_pcie->fw_reset_state == FW_RESET_REQUESTED) { 2324 trans_pcie->fw_reset_state = FW_RESET_ERROR; 2325 wake_up(&trans_pcie->fw_reset_waitq); 2326 } else { 2327 iwl_pcie_irq_handle_error(trans); 2328 } 2329 } 2330 2331 /* After checking FH register check HW register */ 2332 #ifdef CONFIG_IWLWIFI_DEBUG 2333 if (iwl_have_debug_level(IWL_DL_ISR)) { 2334 IWL_DEBUG_ISR(trans, 2335 "ISR[%d] inta_hw 0x%08x, enabled (sw) 0x%08x (hw) 0x%08x\n", 2336 entry->entry, inta_hw, trans_pcie->hw_mask, 2337 iwl_read32(trans, CSR_MSIX_HW_INT_MASK_AD)); 2338 if (inta_hw & ~trans_pcie->hw_mask) 2339 IWL_DEBUG_ISR(trans, 2340 "We got a masked interrupt 0x%08x\n", 2341 inta_hw & ~trans_pcie->hw_mask); 2342 } 2343 #endif 2344 2345 inta_hw &= trans_pcie->hw_mask; 2346 2347 /* Alive notification via Rx interrupt will do the real work */ 2348 if (inta_hw & MSIX_HW_INT_CAUSES_REG_ALIVE) { 2349 IWL_DEBUG_ISR(trans, "Alive interrupt\n"); 2350 isr_stats->alive++; 2351 if (trans->trans_cfg->gen2) { 2352 /* We can restock, since firmware configured the RFH */ 2353 iwl_pcie_rxmq_restock(trans, trans_pcie->rxq); 2354 } 2355 } 2356 2357 /* 2358 * In some rare cases when the HW is in a bad state, we may 2359 * get this interrupt too early, when prph_info is still NULL. 2360 * So make sure that it's not NULL to prevent crashing. 2361 */ 2362 if (inta_hw & MSIX_HW_INT_CAUSES_REG_WAKEUP && trans_pcie->prph_info) { 2363 u32 sleep_notif = 2364 le32_to_cpu(trans_pcie->prph_info->sleep_notif); 2365 if (sleep_notif == IWL_D3_SLEEP_STATUS_SUSPEND || 2366 sleep_notif == IWL_D3_SLEEP_STATUS_RESUME) { 2367 IWL_DEBUG_ISR(trans, 2368 "Sx interrupt: sleep notification = 0x%x\n", 2369 sleep_notif); 2370 trans_pcie->sx_complete = true; 2371 wake_up(&trans_pcie->sx_waitq); 2372 } else { 2373 /* uCode wakes up after power-down sleep */ 2374 IWL_DEBUG_ISR(trans, "Wakeup interrupt\n"); 2375 iwl_pcie_rxq_check_wrptr(trans); 2376 iwl_pcie_txq_check_wrptrs(trans); 2377 2378 isr_stats->wakeup++; 2379 } 2380 } 2381 2382 /* Chip got too hot and stopped itself */ 2383 if (inta_hw & MSIX_HW_INT_CAUSES_REG_CT_KILL) { 2384 IWL_ERR(trans, "Microcode CT kill error detected.\n"); 2385 isr_stats->ctkill++; 2386 } 2387 2388 /* HW RF KILL switch toggled */ 2389 if (inta_hw & MSIX_HW_INT_CAUSES_REG_RF_KILL) 2390 iwl_pcie_handle_rfkill_irq(trans, true); 2391 2392 if (inta_hw & MSIX_HW_INT_CAUSES_REG_HW_ERR) { 2393 IWL_ERR(trans, 2394 "Hardware error detected. Restarting.\n"); 2395 2396 isr_stats->hw++; 2397 trans->dbg.hw_error = true; 2398 iwl_pcie_irq_handle_error(trans); 2399 } 2400 2401 if (inta_hw & MSIX_HW_INT_CAUSES_REG_RESET_DONE) { 2402 IWL_DEBUG_ISR(trans, "Reset flow completed\n"); 2403 trans_pcie->fw_reset_state = FW_RESET_OK; 2404 wake_up(&trans_pcie->fw_reset_waitq); 2405 } 2406 2407 if (!polling) 2408 iwl_pcie_clear_irq(trans, entry->entry); 2409 2410 lock_map_release(&trans->sync_cmd_lockdep_map); 2411 2412 return IRQ_HANDLED; 2413 } 2414