xref: /freebsd/sys/contrib/dev/iwlwifi/mvm/rxmq.c (revision a4128aad8503277614f2d214011ef60a19447b83)
1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /*
3  * Copyright (C) 2012-2014, 2018-2024 Intel Corporation
4  * Copyright (C) 2013-2015 Intel Mobile Communications GmbH
5  * Copyright (C) 2015-2017 Intel Deutschland GmbH
6  */
7 #include <linux/etherdevice.h>
8 #include <linux/skbuff.h>
9 #if defined(__FreeBSD__)
10 #include <net/ieee80211_radiotap.h>
11 #endif
12 #include "iwl-trans.h"
13 #include "mvm.h"
14 #include "fw-api.h"
15 #include "time-sync.h"
16 
17 static inline int iwl_mvm_check_pn(struct iwl_mvm *mvm, struct sk_buff *skb,
18 				   int queue, struct ieee80211_sta *sta)
19 {
20 	struct iwl_mvm_sta *mvmsta;
21 	struct ieee80211_hdr *hdr = (void *)skb_mac_header(skb);
22 	struct ieee80211_rx_status *stats = IEEE80211_SKB_RXCB(skb);
23 	struct iwl_mvm_key_pn *ptk_pn;
24 	int res;
25 	u8 tid, keyidx;
26 	u8 pn[IEEE80211_CCMP_PN_LEN];
27 	u8 *extiv;
28 
29 	/* do PN checking */
30 
31 	/* multicast and non-data only arrives on default queue */
32 	if (!ieee80211_is_data(hdr->frame_control) ||
33 	    is_multicast_ether_addr(hdr->addr1))
34 		return 0;
35 
36 	/* do not check PN for open AP */
37 	if (!(stats->flag & RX_FLAG_DECRYPTED))
38 		return 0;
39 
40 	/*
41 	 * avoid checking for default queue - we don't want to replicate
42 	 * all the logic that's necessary for checking the PN on fragmented
43 	 * frames, leave that to mac80211
44 	 */
45 	if (queue == 0)
46 		return 0;
47 
48 	/* if we are here - this for sure is either CCMP or GCMP */
49 	if (IS_ERR_OR_NULL(sta)) {
50 		IWL_DEBUG_DROP(mvm,
51 			       "expected hw-decrypted unicast frame for station\n");
52 		return -1;
53 	}
54 
55 	mvmsta = iwl_mvm_sta_from_mac80211(sta);
56 
57 	extiv = (u8 *)hdr + ieee80211_hdrlen(hdr->frame_control);
58 	keyidx = extiv[3] >> 6;
59 
60 	ptk_pn = rcu_dereference(mvmsta->ptk_pn[keyidx]);
61 	if (!ptk_pn)
62 		return -1;
63 
64 	if (ieee80211_is_data_qos(hdr->frame_control))
65 		tid = ieee80211_get_tid(hdr);
66 	else
67 		tid = 0;
68 
69 	/* we don't use HCCA/802.11 QoS TSPECs, so drop such frames */
70 	if (tid >= IWL_MAX_TID_COUNT)
71 		return -1;
72 
73 	/* load pn */
74 	pn[0] = extiv[7];
75 	pn[1] = extiv[6];
76 	pn[2] = extiv[5];
77 	pn[3] = extiv[4];
78 	pn[4] = extiv[1];
79 	pn[5] = extiv[0];
80 
81 	res = memcmp(pn, ptk_pn->q[queue].pn[tid], IEEE80211_CCMP_PN_LEN);
82 	if (res < 0)
83 		return -1;
84 	if (!res && !(stats->flag & RX_FLAG_ALLOW_SAME_PN))
85 		return -1;
86 
87 	memcpy(ptk_pn->q[queue].pn[tid], pn, IEEE80211_CCMP_PN_LEN);
88 	stats->flag |= RX_FLAG_PN_VALIDATED;
89 
90 	return 0;
91 }
92 
93 /* iwl_mvm_create_skb Adds the rxb to a new skb */
94 static int iwl_mvm_create_skb(struct iwl_mvm *mvm, struct sk_buff *skb,
95 			      struct ieee80211_hdr *hdr, u16 len, u8 crypt_len,
96 			      struct iwl_rx_cmd_buffer *rxb)
97 {
98 	struct iwl_rx_packet *pkt = rxb_addr(rxb);
99 	struct iwl_rx_mpdu_desc *desc = (void *)pkt->data;
100 	unsigned int headlen, fraglen, pad_len = 0;
101 	unsigned int hdrlen = ieee80211_hdrlen(hdr->frame_control);
102 	u8 mic_crc_len = u8_get_bits(desc->mac_flags1,
103 				     IWL_RX_MPDU_MFLG1_MIC_CRC_LEN_MASK) << 1;
104 
105 	if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) {
106 		len -= 2;
107 		pad_len = 2;
108 	}
109 
110 	/*
111 	 * For non monitor interface strip the bytes the RADA might not have
112 	 * removed (it might be disabled, e.g. for mgmt frames). As a monitor
113 	 * interface cannot exist with other interfaces, this removal is safe
114 	 * and sufficient, in monitor mode there's no decryption being done.
115 	 */
116 	if (len > mic_crc_len && !ieee80211_hw_check(mvm->hw, RX_INCLUDES_FCS))
117 		len -= mic_crc_len;
118 
119 	/* If frame is small enough to fit in skb->head, pull it completely.
120 	 * If not, only pull ieee80211_hdr (including crypto if present, and
121 	 * an additional 8 bytes for SNAP/ethertype, see below) so that
122 	 * splice() or TCP coalesce are more efficient.
123 	 *
124 	 * Since, in addition, ieee80211_data_to_8023() always pull in at
125 	 * least 8 bytes (possibly more for mesh) we can do the same here
126 	 * to save the cost of doing it later. That still doesn't pull in
127 	 * the actual IP header since the typical case has a SNAP header.
128 	 * If the latter changes (there are efforts in the standards group
129 	 * to do so) we should revisit this and ieee80211_data_to_8023().
130 	 */
131 	headlen = (len <= skb_tailroom(skb)) ? len :
132 					       hdrlen + crypt_len + 8;
133 
134 	/* The firmware may align the packet to DWORD.
135 	 * The padding is inserted after the IV.
136 	 * After copying the header + IV skip the padding if
137 	 * present before copying packet data.
138 	 */
139 	hdrlen += crypt_len;
140 
141 	if (unlikely(headlen < hdrlen))
142 		return -EINVAL;
143 
144 	/* Since data doesn't move data while putting data on skb and that is
145 	 * the only way we use, data + len is the next place that hdr would be put
146 	 */
147 	skb_set_mac_header(skb, skb->len);
148 	skb_put_data(skb, hdr, hdrlen);
149 	skb_put_data(skb, (u8 *)hdr + hdrlen + pad_len, headlen - hdrlen);
150 
151 	/*
152 	 * If we did CHECKSUM_COMPLETE, the hardware only does it right for
153 	 * certain cases and starts the checksum after the SNAP. Check if
154 	 * this is the case - it's easier to just bail out to CHECKSUM_NONE
155 	 * in the cases the hardware didn't handle, since it's rare to see
156 	 * such packets, even though the hardware did calculate the checksum
157 	 * in this case, just starting after the MAC header instead.
158 	 *
159 	 * Starting from Bz hardware, it calculates starting directly after
160 	 * the MAC header, so that matches mac80211's expectation.
161 	 */
162 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
163 		struct {
164 			u8 hdr[6];
165 			__be16 type;
166 		} __packed *shdr = (void *)((u8 *)hdr + hdrlen + pad_len);
167 
168 		if (unlikely(headlen - hdrlen < sizeof(*shdr) ||
169 			     !ether_addr_equal(shdr->hdr, rfc1042_header) ||
170 			     (shdr->type != htons(ETH_P_IP) &&
171 			      shdr->type != htons(ETH_P_ARP) &&
172 			      shdr->type != htons(ETH_P_IPV6) &&
173 			      shdr->type != htons(ETH_P_8021Q) &&
174 			      shdr->type != htons(ETH_P_PAE) &&
175 			      shdr->type != htons(ETH_P_TDLS))))
176 			skb->ip_summed = CHECKSUM_NONE;
177 		else if (mvm->trans->trans_cfg->device_family < IWL_DEVICE_FAMILY_BZ)
178 			/* mac80211 assumes full CSUM including SNAP header */
179 			skb_postpush_rcsum(skb, shdr, sizeof(*shdr));
180 	}
181 
182 	fraglen = len - headlen;
183 
184 	if (fraglen) {
185 		int offset = (u8 *)hdr + headlen + pad_len -
186 			     (u8 *)rxb_addr(rxb) + rxb_offset(rxb);
187 
188 		skb_add_rx_frag(skb, 0, rxb_steal_page(rxb), offset,
189 				fraglen, rxb->truesize);
190 	}
191 
192 	return 0;
193 }
194 
195 /* put a TLV on the skb and return data pointer
196  *
197  * Also pad to 4 the len and zero out all data part
198  */
199 static void *
200 iwl_mvm_radiotap_put_tlv(struct sk_buff *skb, u16 type, u16 len)
201 {
202 	struct ieee80211_radiotap_tlv *tlv;
203 
204 	tlv = skb_put(skb, sizeof(*tlv));
205 	tlv->type = cpu_to_le16(type);
206 	tlv->len = cpu_to_le16(len);
207 	return skb_put_zero(skb, ALIGN(len, 4));
208 }
209 
210 static void iwl_mvm_add_rtap_sniffer_config(struct iwl_mvm *mvm,
211 					    struct sk_buff *skb)
212 {
213 	struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
214 	struct ieee80211_radiotap_vendor_content *radiotap;
215 	const u16 vendor_data_len = sizeof(mvm->cur_aid);
216 
217 	if (!mvm->cur_aid)
218 		return;
219 
220 	radiotap = iwl_mvm_radiotap_put_tlv(skb,
221 					    IEEE80211_RADIOTAP_VENDOR_NAMESPACE,
222 					    sizeof(*radiotap) + vendor_data_len);
223 
224 	/* Intel OUI */
225 	radiotap->oui[0] = 0xf6;
226 	radiotap->oui[1] = 0x54;
227 	radiotap->oui[2] = 0x25;
228 	/* radiotap sniffer config sub-namespace */
229 	radiotap->oui_subtype = 1;
230 	radiotap->vendor_type = 0;
231 
232 	/* fill the data now */
233 	memcpy(radiotap->data, &mvm->cur_aid, sizeof(mvm->cur_aid));
234 
235 	rx_status->flag |= RX_FLAG_RADIOTAP_TLV_AT_END;
236 }
237 
238 /* iwl_mvm_pass_packet_to_mac80211 - passes the packet for mac80211 */
239 static void iwl_mvm_pass_packet_to_mac80211(struct iwl_mvm *mvm,
240 					    struct napi_struct *napi,
241 					    struct sk_buff *skb, int queue,
242 					    struct ieee80211_sta *sta)
243 {
244 	if (unlikely(iwl_mvm_check_pn(mvm, skb, queue, sta))) {
245 		kfree_skb(skb);
246 		return;
247 	}
248 
249 	ieee80211_rx_napi(mvm->hw, sta, skb, napi);
250 }
251 
252 static void iwl_mvm_get_signal_strength(struct iwl_mvm *mvm,
253 					struct ieee80211_rx_status *rx_status,
254 					u32 rate_n_flags, int energy_a,
255 					int energy_b)
256 {
257 	int max_energy;
258 	u32 rate_flags = rate_n_flags;
259 
260 	energy_a = energy_a ? -energy_a : S8_MIN;
261 	energy_b = energy_b ? -energy_b : S8_MIN;
262 	max_energy = max(energy_a, energy_b);
263 
264 	IWL_DEBUG_STATS(mvm, "energy In A %d B %d, and max %d\n",
265 			energy_a, energy_b, max_energy);
266 
267 	rx_status->signal = max_energy;
268 	rx_status->chains =
269 		(rate_flags & RATE_MCS_ANT_AB_MSK) >> RATE_MCS_ANT_POS;
270 	rx_status->chain_signal[0] = energy_a;
271 	rx_status->chain_signal[1] = energy_b;
272 }
273 
274 static int iwl_mvm_rx_mgmt_prot(struct ieee80211_sta *sta,
275 				struct ieee80211_hdr *hdr,
276 				struct iwl_rx_mpdu_desc *desc,
277 				u32 status,
278 				struct ieee80211_rx_status *stats)
279 {
280 	struct wireless_dev *wdev;
281 	struct iwl_mvm_sta *mvmsta;
282 	struct iwl_mvm_vif *mvmvif;
283 	u8 keyid;
284 	struct ieee80211_key_conf *key;
285 	u32 len = le16_to_cpu(desc->mpdu_len);
286 	const u8 *frame = (void *)hdr;
287 
288 	if ((status & IWL_RX_MPDU_STATUS_SEC_MASK) == IWL_RX_MPDU_STATUS_SEC_NONE)
289 		return 0;
290 
291 	/*
292 	 * For non-beacon, we don't really care. But beacons may
293 	 * be filtered out, and we thus need the firmware's replay
294 	 * detection, otherwise beacons the firmware previously
295 	 * filtered could be replayed, or something like that, and
296 	 * it can filter a lot - though usually only if nothing has
297 	 * changed.
298 	 */
299 	if (!ieee80211_is_beacon(hdr->frame_control))
300 		return 0;
301 
302 	if (!sta)
303 		return -1;
304 
305 	mvmsta = iwl_mvm_sta_from_mac80211(sta);
306 	mvmvif = iwl_mvm_vif_from_mac80211(mvmsta->vif);
307 
308 	/* key mismatch - will also report !MIC_OK but we shouldn't count it */
309 	if (!(status & IWL_RX_MPDU_STATUS_KEY_VALID))
310 		goto report;
311 
312 	/* good cases */
313 	if (likely(status & IWL_RX_MPDU_STATUS_MIC_OK &&
314 		   !(status & IWL_RX_MPDU_STATUS_REPLAY_ERROR))) {
315 		stats->flag |= RX_FLAG_DECRYPTED;
316 		return 0;
317 	}
318 
319 	/*
320 	 * both keys will have the same cipher and MIC length, use
321 	 * whichever one is available
322 	 */
323 	key = rcu_dereference(mvmvif->bcn_prot.keys[0]);
324 	if (!key) {
325 		key = rcu_dereference(mvmvif->bcn_prot.keys[1]);
326 		if (!key)
327 			goto report;
328 	}
329 
330 	if (len < key->icv_len + IEEE80211_GMAC_PN_LEN + 2)
331 		goto report;
332 
333 	/* get the real key ID */
334 	keyid = frame[len - key->icv_len - IEEE80211_GMAC_PN_LEN - 2];
335 	/* and if that's the other key, look it up */
336 	if (keyid != key->keyidx) {
337 		/*
338 		 * shouldn't happen since firmware checked, but be safe
339 		 * in case the MIC length is wrong too, for example
340 		 */
341 		if (keyid != 6 && keyid != 7)
342 			return -1;
343 		key = rcu_dereference(mvmvif->bcn_prot.keys[keyid - 6]);
344 		if (!key)
345 			goto report;
346 	}
347 
348 	/* Report status to mac80211 */
349 	if (!(status & IWL_RX_MPDU_STATUS_MIC_OK))
350 		ieee80211_key_mic_failure(key);
351 	else if (status & IWL_RX_MPDU_STATUS_REPLAY_ERROR)
352 		ieee80211_key_replay(key);
353 report:
354 	wdev = ieee80211_vif_to_wdev(mvmsta->vif);
355 	if (wdev->netdev)
356 		cfg80211_rx_unprot_mlme_mgmt(wdev->netdev, (void *)hdr, len);
357 
358 	return -1;
359 }
360 
361 static int iwl_mvm_rx_crypto(struct iwl_mvm *mvm, struct ieee80211_sta *sta,
362 			     struct ieee80211_hdr *hdr,
363 			     struct ieee80211_rx_status *stats, u16 phy_info,
364 			     struct iwl_rx_mpdu_desc *desc,
365 			     u32 pkt_flags, int queue, u8 *crypt_len)
366 {
367 	u32 status = le32_to_cpu(desc->status);
368 
369 	/*
370 	 * Drop UNKNOWN frames in aggregation, unless in monitor mode
371 	 * (where we don't have the keys).
372 	 * We limit this to aggregation because in TKIP this is a valid
373 	 * scenario, since we may not have the (correct) TTAK (phase 1
374 	 * key) in the firmware.
375 	 */
376 	if (phy_info & IWL_RX_MPDU_PHY_AMPDU &&
377 	    (status & IWL_RX_MPDU_STATUS_SEC_MASK) ==
378 	    IWL_RX_MPDU_STATUS_SEC_UNKNOWN && !mvm->monitor_on) {
379 		IWL_DEBUG_DROP(mvm, "Dropping packets, bad enc status\n");
380 		return -1;
381 	}
382 
383 	if (unlikely(ieee80211_is_mgmt(hdr->frame_control) &&
384 		     !ieee80211_has_protected(hdr->frame_control)))
385 		return iwl_mvm_rx_mgmt_prot(sta, hdr, desc, status, stats);
386 
387 	if (!ieee80211_has_protected(hdr->frame_control) ||
388 	    (status & IWL_RX_MPDU_STATUS_SEC_MASK) ==
389 	    IWL_RX_MPDU_STATUS_SEC_NONE)
390 		return 0;
391 
392 	/* TODO: handle packets encrypted with unknown alg */
393 #if defined(__FreeBSD__)
394 	/* XXX-BZ do similar to rx.c for now as these are plenty. */
395 	if ((status & IWL_RX_MPDU_STATUS_SEC_MASK) ==
396 	    IWL_RX_MPDU_STATUS_SEC_ENC_ERR)
397 		return (0);
398 #endif
399 
400 	switch (status & IWL_RX_MPDU_STATUS_SEC_MASK) {
401 	case IWL_RX_MPDU_STATUS_SEC_CCM:
402 	case IWL_RX_MPDU_STATUS_SEC_GCM:
403 		BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN != IEEE80211_GCMP_PN_LEN);
404 		/* alg is CCM: check MIC only */
405 		if (!(status & IWL_RX_MPDU_STATUS_MIC_OK)) {
406 			IWL_DEBUG_DROP(mvm,
407 				       "Dropping packet, bad MIC (CCM/GCM)\n");
408 			return -1;
409 		}
410 
411 		stats->flag |= RX_FLAG_DECRYPTED | RX_FLAG_MIC_STRIPPED;
412 		*crypt_len = IEEE80211_CCMP_HDR_LEN;
413 		return 0;
414 	case IWL_RX_MPDU_STATUS_SEC_TKIP:
415 		/* Don't drop the frame and decrypt it in SW */
416 		if (!fw_has_api(&mvm->fw->ucode_capa,
417 				IWL_UCODE_TLV_API_DEPRECATE_TTAK) &&
418 		    !(status & IWL_RX_MPDU_RES_STATUS_TTAK_OK))
419 			return 0;
420 
421 		if (mvm->trans->trans_cfg->gen2 &&
422 		    !(status & RX_MPDU_RES_STATUS_MIC_OK))
423 			stats->flag |= RX_FLAG_MMIC_ERROR;
424 
425 		*crypt_len = IEEE80211_TKIP_IV_LEN;
426 		fallthrough;
427 	case IWL_RX_MPDU_STATUS_SEC_WEP:
428 		if (!(status & IWL_RX_MPDU_STATUS_ICV_OK))
429 			return -1;
430 
431 		stats->flag |= RX_FLAG_DECRYPTED;
432 		if ((status & IWL_RX_MPDU_STATUS_SEC_MASK) ==
433 				IWL_RX_MPDU_STATUS_SEC_WEP)
434 			*crypt_len = IEEE80211_WEP_IV_LEN;
435 
436 		if (pkt_flags & FH_RSCSR_RADA_EN) {
437 			stats->flag |= RX_FLAG_ICV_STRIPPED;
438 			if (mvm->trans->trans_cfg->gen2)
439 				stats->flag |= RX_FLAG_MMIC_STRIPPED;
440 		}
441 
442 		return 0;
443 	case IWL_RX_MPDU_STATUS_SEC_EXT_ENC:
444 		if (!(status & IWL_RX_MPDU_STATUS_MIC_OK))
445 			return -1;
446 		stats->flag |= RX_FLAG_DECRYPTED;
447 		return 0;
448 	case RX_MPDU_RES_STATUS_SEC_CMAC_GMAC_ENC:
449 		break;
450 	default:
451 		/*
452 		 * Sometimes we can get frames that were not decrypted
453 		 * because the firmware didn't have the keys yet. This can
454 		 * happen after connection where we can get multicast frames
455 		 * before the GTK is installed.
456 		 * Silently drop those frames.
457 		 * Also drop un-decrypted frames in monitor mode.
458 		 */
459 		if (!is_multicast_ether_addr(hdr->addr1) &&
460 		    !mvm->monitor_on && net_ratelimit())
461 #if defined(__linux__)
462 			IWL_WARN(mvm, "Unhandled alg: 0x%x\n", status);
463 #elif defined(__FreeBSD__)
464 			IWL_WARN(mvm, "%s: Unhandled alg: 0x%x\n", __func__, status);
465 #endif
466 	}
467 
468 	return 0;
469 }
470 
471 static void iwl_mvm_rx_csum(struct iwl_mvm *mvm,
472 			    struct ieee80211_sta *sta,
473 			    struct sk_buff *skb,
474 			    struct iwl_rx_packet *pkt)
475 {
476 	struct iwl_rx_mpdu_desc *desc = (void *)pkt->data;
477 
478 	if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
479 		if (pkt->len_n_flags & cpu_to_le32(FH_RSCSR_RPA_EN)) {
480 			u16 hwsum = be16_to_cpu(desc->v3.raw_xsum);
481 
482 			skb->ip_summed = CHECKSUM_COMPLETE;
483 			skb->csum = csum_unfold(~(__force __sum16)hwsum);
484 		}
485 	} else {
486 		struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta);
487 		struct iwl_mvm_vif *mvmvif;
488 		u16 flags = le16_to_cpu(desc->l3l4_flags);
489 		u8 l3_prot = (u8)((flags & IWL_RX_L3L4_L3_PROTO_MASK) >>
490 				  IWL_RX_L3_PROTO_POS);
491 
492 		mvmvif = iwl_mvm_vif_from_mac80211(mvmsta->vif);
493 
494 		if (mvmvif->features & NETIF_F_RXCSUM &&
495 		    flags & IWL_RX_L3L4_TCP_UDP_CSUM_OK &&
496 		    (flags & IWL_RX_L3L4_IP_HDR_CSUM_OK ||
497 		     l3_prot == IWL_RX_L3_TYPE_IPV6 ||
498 		     l3_prot == IWL_RX_L3_TYPE_IPV6_FRAG))
499 			skb->ip_summed = CHECKSUM_UNNECESSARY;
500 	}
501 }
502 
503 /*
504  * returns true if a packet is a duplicate or invalid tid and should be dropped.
505  * Updates AMSDU PN tracking info
506  */
507 static bool iwl_mvm_is_dup(struct ieee80211_sta *sta, int queue,
508 			   struct ieee80211_rx_status *rx_status,
509 			   struct ieee80211_hdr *hdr,
510 			   struct iwl_rx_mpdu_desc *desc)
511 {
512 	struct iwl_mvm_sta *mvm_sta;
513 	struct iwl_mvm_rxq_dup_data *dup_data;
514 	u8 tid, sub_frame_idx;
515 
516 	if (WARN_ON(IS_ERR_OR_NULL(sta)))
517 		return false;
518 
519 	mvm_sta = iwl_mvm_sta_from_mac80211(sta);
520 
521 	if (WARN_ON_ONCE(!mvm_sta->dup_data))
522 		return false;
523 
524 	dup_data = &mvm_sta->dup_data[queue];
525 
526 	/*
527 	 * Drop duplicate 802.11 retransmissions
528 	 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery")
529 	 */
530 	if (ieee80211_is_ctl(hdr->frame_control) ||
531 	    ieee80211_is_any_nullfunc(hdr->frame_control) ||
532 	    is_multicast_ether_addr(hdr->addr1))
533 		return false;
534 
535 	if (ieee80211_is_data_qos(hdr->frame_control)) {
536 		/* frame has qos control */
537 		tid = ieee80211_get_tid(hdr);
538 		if (tid >= IWL_MAX_TID_COUNT)
539 			return true;
540 	} else {
541 		tid = IWL_MAX_TID_COUNT;
542 	}
543 
544 	/* If this wasn't a part of an A-MSDU the sub-frame index will be 0 */
545 	sub_frame_idx = desc->amsdu_info &
546 		IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK;
547 
548 	if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
549 		     dup_data->last_seq[tid] == hdr->seq_ctrl &&
550 		     dup_data->last_sub_frame[tid] >= sub_frame_idx))
551 		return true;
552 
553 	/* Allow same PN as the first subframe for following sub frames */
554 	if (dup_data->last_seq[tid] == hdr->seq_ctrl &&
555 	    sub_frame_idx > dup_data->last_sub_frame[tid] &&
556 	    desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU)
557 		rx_status->flag |= RX_FLAG_ALLOW_SAME_PN;
558 
559 	dup_data->last_seq[tid] = hdr->seq_ctrl;
560 	dup_data->last_sub_frame[tid] = sub_frame_idx;
561 
562 	rx_status->flag |= RX_FLAG_DUP_VALIDATED;
563 
564 	return false;
565 }
566 
567 static void iwl_mvm_release_frames(struct iwl_mvm *mvm,
568 				   struct ieee80211_sta *sta,
569 				   struct napi_struct *napi,
570 				   struct iwl_mvm_baid_data *baid_data,
571 				   struct iwl_mvm_reorder_buffer *reorder_buf,
572 				   u16 nssn)
573 {
574 	struct iwl_mvm_reorder_buf_entry *entries =
575 		&baid_data->entries[reorder_buf->queue *
576 				    baid_data->entries_per_queue];
577 	u16 ssn = reorder_buf->head_sn;
578 
579 	lockdep_assert_held(&reorder_buf->lock);
580 
581 	while (ieee80211_sn_less(ssn, nssn)) {
582 		int index = ssn % baid_data->buf_size;
583 		struct sk_buff_head *skb_list = &entries[index].frames;
584 		struct sk_buff *skb;
585 
586 		ssn = ieee80211_sn_inc(ssn);
587 
588 		/*
589 		 * Empty the list. Will have more than one frame for A-MSDU.
590 		 * Empty list is valid as well since nssn indicates frames were
591 		 * received.
592 		 */
593 		while ((skb = __skb_dequeue(skb_list))) {
594 			iwl_mvm_pass_packet_to_mac80211(mvm, napi, skb,
595 							reorder_buf->queue,
596 							sta);
597 			reorder_buf->num_stored--;
598 		}
599 	}
600 	reorder_buf->head_sn = nssn;
601 }
602 
603 static void iwl_mvm_del_ba(struct iwl_mvm *mvm, int queue,
604 			   struct iwl_mvm_delba_data *data)
605 {
606 	struct iwl_mvm_baid_data *ba_data;
607 	struct ieee80211_sta *sta;
608 	struct iwl_mvm_reorder_buffer *reorder_buf;
609 	u8 baid = data->baid;
610 	u32 sta_id;
611 
612 	if (WARN_ONCE(baid >= IWL_MAX_BAID, "invalid BAID: %x\n", baid))
613 		return;
614 
615 	rcu_read_lock();
616 
617 	ba_data = rcu_dereference(mvm->baid_map[baid]);
618 	if (WARN_ON_ONCE(!ba_data))
619 		goto out;
620 
621 	/* pick any STA ID to find the pointer */
622 	sta_id = ffs(ba_data->sta_mask) - 1;
623 	sta = rcu_dereference(mvm->fw_id_to_mac_id[sta_id]);
624 	if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta)))
625 		goto out;
626 
627 	reorder_buf = &ba_data->reorder_buf[queue];
628 
629 	/* release all frames that are in the reorder buffer to the stack */
630 	spin_lock_bh(&reorder_buf->lock);
631 	iwl_mvm_release_frames(mvm, sta, NULL, ba_data, reorder_buf,
632 			       ieee80211_sn_add(reorder_buf->head_sn,
633 						ba_data->buf_size));
634 	spin_unlock_bh(&reorder_buf->lock);
635 
636 out:
637 	rcu_read_unlock();
638 }
639 
640 static void iwl_mvm_release_frames_from_notif(struct iwl_mvm *mvm,
641 					      struct napi_struct *napi,
642 					      u8 baid, u16 nssn, int queue)
643 {
644 	struct ieee80211_sta *sta;
645 	struct iwl_mvm_reorder_buffer *reorder_buf;
646 	struct iwl_mvm_baid_data *ba_data;
647 	u32 sta_id;
648 
649 	IWL_DEBUG_HT(mvm, "Frame release notification for BAID %u, NSSN %d\n",
650 		     baid, nssn);
651 
652 	if (WARN_ON_ONCE(baid == IWL_RX_REORDER_DATA_INVALID_BAID ||
653 			 baid >= ARRAY_SIZE(mvm->baid_map)))
654 		return;
655 
656 	rcu_read_lock();
657 
658 	ba_data = rcu_dereference(mvm->baid_map[baid]);
659 	if (WARN(!ba_data, "BAID %d not found in map\n", baid))
660 		goto out;
661 
662 	/* pick any STA ID to find the pointer */
663 	sta_id = ffs(ba_data->sta_mask) - 1;
664 	sta = rcu_dereference(mvm->fw_id_to_mac_id[sta_id]);
665 	if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta)))
666 		goto out;
667 
668 	reorder_buf = &ba_data->reorder_buf[queue];
669 
670 	spin_lock_bh(&reorder_buf->lock);
671 	iwl_mvm_release_frames(mvm, sta, napi, ba_data,
672 			       reorder_buf, nssn);
673 	spin_unlock_bh(&reorder_buf->lock);
674 
675 out:
676 	rcu_read_unlock();
677 }
678 
679 void iwl_mvm_rx_queue_notif(struct iwl_mvm *mvm, struct napi_struct *napi,
680 			    struct iwl_rx_cmd_buffer *rxb, int queue)
681 {
682 	struct iwl_rx_packet *pkt = rxb_addr(rxb);
683 	struct iwl_rxq_sync_notification *notif;
684 	struct iwl_mvm_internal_rxq_notif *internal_notif;
685 	u32 len = iwl_rx_packet_payload_len(pkt);
686 
687 	notif = (void *)pkt->data;
688 	internal_notif = (void *)notif->payload;
689 
690 	if (WARN_ONCE(len < sizeof(*notif) + sizeof(*internal_notif),
691 		      "invalid notification size %d (%d)",
692 		      len, (int)(sizeof(*notif) + sizeof(*internal_notif))))
693 		return;
694 	len -= sizeof(*notif) + sizeof(*internal_notif);
695 
696 	if (WARN_ONCE(internal_notif->sync &&
697 		      mvm->queue_sync_cookie != internal_notif->cookie,
698 		      "Received expired RX queue sync message (cookie %d but wanted %d, queue %d)\n",
699 		      internal_notif->cookie, mvm->queue_sync_cookie, queue))
700 		return;
701 
702 	switch (internal_notif->type) {
703 	case IWL_MVM_RXQ_EMPTY:
704 		WARN_ONCE(len, "invalid empty notification size %d", len);
705 		break;
706 	case IWL_MVM_RXQ_NOTIF_DEL_BA:
707 		if (WARN_ONCE(len != sizeof(struct iwl_mvm_delba_data),
708 			      "invalid delba notification size %d (%d)",
709 			      len, (int)sizeof(struct iwl_mvm_delba_data)))
710 			break;
711 		iwl_mvm_del_ba(mvm, queue, (void *)internal_notif->data);
712 		break;
713 	default:
714 		WARN_ONCE(1, "Invalid identifier %d", internal_notif->type);
715 	}
716 
717 	if (internal_notif->sync) {
718 		WARN_ONCE(!test_and_clear_bit(queue, &mvm->queue_sync_state),
719 			  "queue sync: queue %d responded a second time!\n",
720 			  queue);
721 		if (READ_ONCE(mvm->queue_sync_state) == 0)
722 			wake_up(&mvm->rx_sync_waitq);
723 	}
724 }
725 
726 /*
727  * Returns true if the MPDU was buffered\dropped, false if it should be passed
728  * to upper layer.
729  */
730 static bool iwl_mvm_reorder(struct iwl_mvm *mvm,
731 			    struct napi_struct *napi,
732 			    int queue,
733 			    struct ieee80211_sta *sta,
734 			    struct sk_buff *skb,
735 			    struct iwl_rx_mpdu_desc *desc)
736 {
737 	struct ieee80211_hdr *hdr = (void *)skb_mac_header(skb);
738 	struct iwl_mvm_baid_data *baid_data;
739 	struct iwl_mvm_reorder_buffer *buffer;
740 	u32 reorder = le32_to_cpu(desc->reorder_data);
741 	bool amsdu = desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU;
742 	bool last_subframe =
743 		desc->amsdu_info & IWL_RX_MPDU_AMSDU_LAST_SUBFRAME;
744 #if defined(__linux__)
745 	u8 tid = ieee80211_get_tid(hdr);
746 #elif defined(__FreeBSD__)
747 	u8 tid;
748 #endif
749 	u8 sub_frame_idx = desc->amsdu_info &
750 			   IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK;
751 	struct iwl_mvm_reorder_buf_entry *entries;
752 	u32 sta_mask;
753 	int index;
754 	u16 nssn, sn;
755 	u8 baid;
756 
757 	baid = (reorder & IWL_RX_MPDU_REORDER_BAID_MASK) >>
758 		IWL_RX_MPDU_REORDER_BAID_SHIFT;
759 
760 	if (mvm->trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_9000)
761 		return false;
762 
763 	/*
764 	 * This also covers the case of receiving a Block Ack Request
765 	 * outside a BA session; we'll pass it to mac80211 and that
766 	 * then sends a delBA action frame.
767 	 * This also covers pure monitor mode, in which case we won't
768 	 * have any BA sessions.
769 	 */
770 	if (baid == IWL_RX_REORDER_DATA_INVALID_BAID)
771 		return false;
772 
773 	/* no sta yet */
774 	if (WARN_ONCE(IS_ERR_OR_NULL(sta),
775 		      "Got valid BAID without a valid station assigned\n"))
776 		return false;
777 
778 	/* not a data packet or a bar */
779 	if (!ieee80211_is_back_req(hdr->frame_control) &&
780 	    (!ieee80211_is_data_qos(hdr->frame_control) ||
781 	     is_multicast_ether_addr(hdr->addr1)))
782 		return false;
783 
784 	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
785 		return false;
786 
787 	baid_data = rcu_dereference(mvm->baid_map[baid]);
788 	if (!baid_data) {
789 		IWL_DEBUG_RX(mvm,
790 			     "Got valid BAID but no baid allocated, bypass the re-ordering buffer. Baid %d reorder 0x%x\n",
791 			      baid, reorder);
792 		return false;
793 	}
794 
795 #if defined(__FreeBSD__)
796 	tid = ieee80211_get_tid(hdr);
797 #endif
798 	rcu_read_lock();
799 	sta_mask = iwl_mvm_sta_fw_id_mask(mvm, sta, -1);
800 	rcu_read_unlock();
801 
802 	if (IWL_FW_CHECK(mvm,
803 			 tid != baid_data->tid ||
804 			 !(sta_mask & baid_data->sta_mask),
805 			 "baid 0x%x is mapped to sta_mask:0x%x tid:%d, but was received for sta_mask:0x%x tid:%d\n",
806 			 baid, baid_data->sta_mask, baid_data->tid,
807 			 sta_mask, tid))
808 		return false;
809 
810 	nssn = reorder & IWL_RX_MPDU_REORDER_NSSN_MASK;
811 	sn = (reorder & IWL_RX_MPDU_REORDER_SN_MASK) >>
812 		IWL_RX_MPDU_REORDER_SN_SHIFT;
813 
814 	buffer = &baid_data->reorder_buf[queue];
815 	entries = &baid_data->entries[queue * baid_data->entries_per_queue];
816 
817 	spin_lock_bh(&buffer->lock);
818 
819 	if (!buffer->valid) {
820 		if (reorder & IWL_RX_MPDU_REORDER_BA_OLD_SN) {
821 			spin_unlock_bh(&buffer->lock);
822 			return false;
823 		}
824 		buffer->valid = true;
825 	}
826 
827 	/* drop any duplicated packets */
828 	if (desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_DUPLICATE))
829 		goto drop;
830 
831 	/* drop any oudated packets */
832 	if (reorder & IWL_RX_MPDU_REORDER_BA_OLD_SN)
833 		goto drop;
834 
835 	/* release immediately if allowed by nssn and no stored frames */
836 	if (!buffer->num_stored && ieee80211_sn_less(sn, nssn)) {
837 		if (!amsdu || last_subframe)
838 			buffer->head_sn = nssn;
839 		/* No need to update AMSDU last SN - we are moving the head */
840 		spin_unlock_bh(&buffer->lock);
841 		return false;
842 	}
843 
844 	/*
845 	 * release immediately if there are no stored frames, and the sn is
846 	 * equal to the head.
847 	 * This can happen due to reorder timer, where NSSN is behind head_sn.
848 	 * When we released everything, and we got the next frame in the
849 	 * sequence, according to the NSSN we can't release immediately,
850 	 * while technically there is no hole and we can move forward.
851 	 */
852 	if (!buffer->num_stored && sn == buffer->head_sn) {
853 		if (!amsdu || last_subframe)
854 			buffer->head_sn = ieee80211_sn_inc(buffer->head_sn);
855 
856 		/* No need to update AMSDU last SN - we are moving the head */
857 		spin_unlock_bh(&buffer->lock);
858 		return false;
859 	}
860 
861 	/* put in reorder buffer */
862 	index = sn % baid_data->buf_size;
863 	__skb_queue_tail(&entries[index].frames, skb);
864 	buffer->num_stored++;
865 
866 	if (amsdu) {
867 		buffer->last_amsdu = sn;
868 		buffer->last_sub_index = sub_frame_idx;
869 	}
870 
871 	/*
872 	 * We cannot trust NSSN for AMSDU sub-frames that are not the last.
873 	 * The reason is that NSSN advances on the first sub-frame, and may
874 	 * cause the reorder buffer to advance before all the sub-frames arrive.
875 	 * Example: reorder buffer contains SN 0 & 2, and we receive AMSDU with
876 	 * SN 1. NSSN for first sub frame will be 3 with the result of driver
877 	 * releasing SN 0,1, 2. When sub-frame 1 arrives - reorder buffer is
878 	 * already ahead and it will be dropped.
879 	 * If the last sub-frame is not on this queue - we will get frame
880 	 * release notification with up to date NSSN.
881 	 */
882 	if (!amsdu || last_subframe)
883 		iwl_mvm_release_frames(mvm, sta, napi, baid_data,
884 				       buffer, nssn);
885 
886 	spin_unlock_bh(&buffer->lock);
887 	return true;
888 
889 drop:
890 	kfree_skb(skb);
891 	spin_unlock_bh(&buffer->lock);
892 	return true;
893 }
894 
895 static void iwl_mvm_agg_rx_received(struct iwl_mvm *mvm,
896 				    u32 reorder_data, u8 baid)
897 {
898 	unsigned long now = jiffies;
899 	unsigned long timeout;
900 	struct iwl_mvm_baid_data *data;
901 
902 	rcu_read_lock();
903 
904 	data = rcu_dereference(mvm->baid_map[baid]);
905 	if (!data) {
906 		IWL_DEBUG_RX(mvm,
907 			     "Got valid BAID but no baid allocated, bypass the re-ordering buffer. Baid %d reorder 0x%x\n",
908 			      baid, reorder_data);
909 		goto out;
910 	}
911 
912 	if (!data->timeout)
913 		goto out;
914 
915 	timeout = data->timeout;
916 	/*
917 	 * Do not update last rx all the time to avoid cache bouncing
918 	 * between the rx queues.
919 	 * Update it every timeout. Worst case is the session will
920 	 * expire after ~ 2 * timeout, which doesn't matter that much.
921 	 */
922 	if (time_before(data->last_rx + TU_TO_JIFFIES(timeout), now))
923 		/* Update is atomic */
924 		data->last_rx = now;
925 
926 out:
927 	rcu_read_unlock();
928 }
929 
930 static void iwl_mvm_flip_address(u8 *addr)
931 {
932 	int i;
933 	u8 mac_addr[ETH_ALEN];
934 
935 	for (i = 0; i < ETH_ALEN; i++)
936 		mac_addr[i] = addr[ETH_ALEN - i - 1];
937 	ether_addr_copy(addr, mac_addr);
938 }
939 
940 struct iwl_mvm_rx_phy_data {
941 	enum iwl_rx_phy_info_type info_type;
942 	__le32 d0, d1, d2, d3, eht_d4, d5;
943 	__le16 d4;
944 	bool with_data;
945 	bool first_subframe;
946 	__le32 rx_vec[4];
947 
948 	u32 rate_n_flags;
949 	u32 gp2_on_air_rise;
950 	u16 phy_info;
951 	u8 energy_a, energy_b;
952 	u8 channel;
953 };
954 
955 static void iwl_mvm_decode_he_mu_ext(struct iwl_mvm *mvm,
956 				     struct iwl_mvm_rx_phy_data *phy_data,
957 				     struct ieee80211_radiotap_he_mu *he_mu)
958 {
959 	u32 phy_data2 = le32_to_cpu(phy_data->d2);
960 	u32 phy_data3 = le32_to_cpu(phy_data->d3);
961 	u16 phy_data4 = le16_to_cpu(phy_data->d4);
962 	u32 rate_n_flags = phy_data->rate_n_flags;
963 
964 	if (FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CRC_OK, phy_data4)) {
965 		he_mu->flags1 |=
966 			cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_RU_KNOWN |
967 				    IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU_KNOWN);
968 
969 		he_mu->flags1 |=
970 			le16_encode_bits(FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CTR_RU,
971 						   phy_data4),
972 					 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU);
973 
974 		he_mu->ru_ch1[0] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU0,
975 					     phy_data2);
976 		he_mu->ru_ch1[1] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU1,
977 					     phy_data3);
978 		he_mu->ru_ch1[2] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU2,
979 					     phy_data2);
980 		he_mu->ru_ch1[3] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU3,
981 					     phy_data3);
982 	}
983 
984 	if (FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CRC_OK, phy_data4) &&
985 	    (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK_V1) != RATE_MCS_CHAN_WIDTH_20) {
986 		he_mu->flags1 |=
987 			cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_RU_KNOWN |
988 				    IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_CTR_26T_RU_KNOWN);
989 
990 		he_mu->flags2 |=
991 			le16_encode_bits(FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CTR_RU,
992 						   phy_data4),
993 					 IEEE80211_RADIOTAP_HE_MU_FLAGS2_CH2_CTR_26T_RU);
994 
995 		he_mu->ru_ch2[0] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU0,
996 					     phy_data2);
997 		he_mu->ru_ch2[1] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU1,
998 					     phy_data3);
999 		he_mu->ru_ch2[2] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU2,
1000 					     phy_data2);
1001 		he_mu->ru_ch2[3] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU3,
1002 					     phy_data3);
1003 	}
1004 }
1005 
1006 static void
1007 iwl_mvm_decode_he_phy_ru_alloc(struct iwl_mvm_rx_phy_data *phy_data,
1008 			       struct ieee80211_radiotap_he *he,
1009 			       struct ieee80211_radiotap_he_mu *he_mu,
1010 			       struct ieee80211_rx_status *rx_status)
1011 {
1012 	/*
1013 	 * Unfortunately, we have to leave the mac80211 data
1014 	 * incorrect for the case that we receive an HE-MU
1015 	 * transmission and *don't* have the HE phy data (due
1016 	 * to the bits being used for TSF). This shouldn't
1017 	 * happen though as management frames where we need
1018 	 * the TSF/timers are not be transmitted in HE-MU.
1019 	 */
1020 	u8 ru = le32_get_bits(phy_data->d1, IWL_RX_PHY_DATA1_HE_RU_ALLOC_MASK);
1021 	u32 rate_n_flags = phy_data->rate_n_flags;
1022 	u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK_V1;
1023 	u8 offs = 0;
1024 
1025 	rx_status->bw = RATE_INFO_BW_HE_RU;
1026 
1027 	he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN);
1028 
1029 	switch (ru) {
1030 	case 0 ... 36:
1031 		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_26;
1032 		offs = ru;
1033 		break;
1034 	case 37 ... 52:
1035 		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_52;
1036 		offs = ru - 37;
1037 		break;
1038 	case 53 ... 60:
1039 		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106;
1040 		offs = ru - 53;
1041 		break;
1042 	case 61 ... 64:
1043 		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_242;
1044 		offs = ru - 61;
1045 		break;
1046 	case 65 ... 66:
1047 		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_484;
1048 		offs = ru - 65;
1049 		break;
1050 	case 67:
1051 		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_996;
1052 		break;
1053 	case 68:
1054 		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_2x996;
1055 		break;
1056 	}
1057 	he->data2 |= le16_encode_bits(offs,
1058 				      IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET);
1059 	he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_KNOWN |
1060 				 IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET_KNOWN);
1061 	if (phy_data->d1 & cpu_to_le32(IWL_RX_PHY_DATA1_HE_RU_ALLOC_SEC80))
1062 		he->data2 |=
1063 			cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_SEC);
1064 
1065 #define CHECK_BW(bw) \
1066 	BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_ ## bw ## MHZ != \
1067 		     RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS); \
1068 	BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_ ## bw ## MHZ != \
1069 		     RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS)
1070 	CHECK_BW(20);
1071 	CHECK_BW(40);
1072 	CHECK_BW(80);
1073 	CHECK_BW(160);
1074 
1075 	if (he_mu)
1076 		he_mu->flags2 |=
1077 			le16_encode_bits(FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK_V1,
1078 						   rate_n_flags),
1079 					 IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW);
1080 	else if (he_type == RATE_MCS_HE_TYPE_TRIG_V1)
1081 		he->data6 |=
1082 			cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_KNOWN) |
1083 			le16_encode_bits(FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK_V1,
1084 						   rate_n_flags),
1085 					 IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW);
1086 }
1087 
1088 static void iwl_mvm_decode_he_phy_data(struct iwl_mvm *mvm,
1089 				       struct iwl_mvm_rx_phy_data *phy_data,
1090 				       struct ieee80211_radiotap_he *he,
1091 				       struct ieee80211_radiotap_he_mu *he_mu,
1092 				       struct ieee80211_rx_status *rx_status,
1093 				       int queue)
1094 {
1095 	switch (phy_data->info_type) {
1096 	case IWL_RX_PHY_INFO_TYPE_NONE:
1097 	case IWL_RX_PHY_INFO_TYPE_CCK:
1098 	case IWL_RX_PHY_INFO_TYPE_OFDM_LGCY:
1099 	case IWL_RX_PHY_INFO_TYPE_HT:
1100 	case IWL_RX_PHY_INFO_TYPE_VHT_SU:
1101 	case IWL_RX_PHY_INFO_TYPE_VHT_MU:
1102 	case IWL_RX_PHY_INFO_TYPE_EHT_MU:
1103 	case IWL_RX_PHY_INFO_TYPE_EHT_TB:
1104 	case IWL_RX_PHY_INFO_TYPE_EHT_MU_EXT:
1105 	case IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT:
1106 		return;
1107 	case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
1108 		he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN |
1109 					 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE2_KNOWN |
1110 					 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE3_KNOWN |
1111 					 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE4_KNOWN);
1112 		he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1113 							    IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE1),
1114 					      IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE1);
1115 		he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1116 							    IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE2),
1117 					      IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE2);
1118 		he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1119 							    IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE3),
1120 					      IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE3);
1121 		he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1122 							    IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE4),
1123 					      IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE4);
1124 		fallthrough;
1125 	case IWL_RX_PHY_INFO_TYPE_HE_SU:
1126 	case IWL_RX_PHY_INFO_TYPE_HE_MU:
1127 	case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1128 	case IWL_RX_PHY_INFO_TYPE_HE_TB:
1129 		/* HE common */
1130 		he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_LDPC_XSYMSEG_KNOWN |
1131 					 IEEE80211_RADIOTAP_HE_DATA1_DOPPLER_KNOWN |
1132 					 IEEE80211_RADIOTAP_HE_DATA1_BSS_COLOR_KNOWN);
1133 		he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRE_FEC_PAD_KNOWN |
1134 					 IEEE80211_RADIOTAP_HE_DATA2_PE_DISAMBIG_KNOWN |
1135 					 IEEE80211_RADIOTAP_HE_DATA2_TXOP_KNOWN |
1136 					 IEEE80211_RADIOTAP_HE_DATA2_NUM_LTF_SYMS_KNOWN);
1137 		he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1138 							    IWL_RX_PHY_DATA0_HE_BSS_COLOR_MASK),
1139 					      IEEE80211_RADIOTAP_HE_DATA3_BSS_COLOR);
1140 		if (phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB &&
1141 		    phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB_EXT) {
1142 			he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_UL_DL_KNOWN);
1143 			he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1144 							    IWL_RX_PHY_DATA0_HE_UPLINK),
1145 						      IEEE80211_RADIOTAP_HE_DATA3_UL_DL);
1146 		}
1147 		he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1148 							    IWL_RX_PHY_DATA0_HE_LDPC_EXT_SYM),
1149 					      IEEE80211_RADIOTAP_HE_DATA3_LDPC_XSYMSEG);
1150 		he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1151 							    IWL_RX_PHY_DATA0_HE_PRE_FEC_PAD_MASK),
1152 					      IEEE80211_RADIOTAP_HE_DATA5_PRE_FEC_PAD);
1153 		he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1154 							    IWL_RX_PHY_DATA0_HE_PE_DISAMBIG),
1155 					      IEEE80211_RADIOTAP_HE_DATA5_PE_DISAMBIG);
1156 		he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d1,
1157 							    IWL_RX_PHY_DATA1_HE_LTF_NUM_MASK),
1158 					      IEEE80211_RADIOTAP_HE_DATA5_NUM_LTF_SYMS);
1159 		he->data6 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1160 							    IWL_RX_PHY_DATA0_HE_TXOP_DUR_MASK),
1161 					      IEEE80211_RADIOTAP_HE_DATA6_TXOP);
1162 		he->data6 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1163 							    IWL_RX_PHY_DATA0_HE_DOPPLER),
1164 					      IEEE80211_RADIOTAP_HE_DATA6_DOPPLER);
1165 		break;
1166 	}
1167 
1168 	switch (phy_data->info_type) {
1169 	case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1170 	case IWL_RX_PHY_INFO_TYPE_HE_MU:
1171 	case IWL_RX_PHY_INFO_TYPE_HE_SU:
1172 		he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN);
1173 		he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1174 							    IWL_RX_PHY_DATA0_HE_SPATIAL_REUSE_MASK),
1175 					      IEEE80211_RADIOTAP_HE_DATA4_SU_MU_SPTL_REUSE);
1176 		break;
1177 	default:
1178 		/* nothing here */
1179 		break;
1180 	}
1181 
1182 	switch (phy_data->info_type) {
1183 	case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1184 		he_mu->flags1 |=
1185 			le16_encode_bits(le16_get_bits(phy_data->d4,
1186 						       IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_DCM),
1187 					 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM);
1188 		he_mu->flags1 |=
1189 			le16_encode_bits(le16_get_bits(phy_data->d4,
1190 						       IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_MCS_MASK),
1191 					 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS);
1192 		he_mu->flags2 |=
1193 			le16_encode_bits(le16_get_bits(phy_data->d4,
1194 						       IWL_RX_PHY_DATA4_HE_MU_EXT_PREAMBLE_PUNC_TYPE_MASK),
1195 					 IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW);
1196 		iwl_mvm_decode_he_mu_ext(mvm, phy_data, he_mu);
1197 		fallthrough;
1198 	case IWL_RX_PHY_INFO_TYPE_HE_MU:
1199 		he_mu->flags2 |=
1200 			le16_encode_bits(le32_get_bits(phy_data->d1,
1201 						       IWL_RX_PHY_DATA1_HE_MU_SIBG_SYM_OR_USER_NUM_MASK),
1202 					 IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_SYMS_USERS);
1203 		he_mu->flags2 |=
1204 			le16_encode_bits(le32_get_bits(phy_data->d1,
1205 						       IWL_RX_PHY_DATA1_HE_MU_SIGB_COMPRESSION),
1206 					 IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_COMP);
1207 		fallthrough;
1208 	case IWL_RX_PHY_INFO_TYPE_HE_TB:
1209 	case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
1210 		iwl_mvm_decode_he_phy_ru_alloc(phy_data, he, he_mu, rx_status);
1211 		break;
1212 	case IWL_RX_PHY_INFO_TYPE_HE_SU:
1213 		he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BEAM_CHANGE_KNOWN);
1214 		he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1215 							    IWL_RX_PHY_DATA0_HE_BEAM_CHNG),
1216 					      IEEE80211_RADIOTAP_HE_DATA3_BEAM_CHANGE);
1217 		break;
1218 	default:
1219 		/* nothing */
1220 		break;
1221 	}
1222 }
1223 
1224 #define LE32_DEC_ENC(value, dec_bits, enc_bits) \
1225 	le32_encode_bits(le32_get_bits(value, dec_bits), enc_bits)
1226 
1227 #define IWL_MVM_ENC_USIG_VALUE_MASK(usig, in_value, dec_bits, enc_bits) do { \
1228 	typeof(enc_bits) _enc_bits = enc_bits; \
1229 	typeof(usig) _usig = usig; \
1230 	(_usig)->mask |= cpu_to_le32(_enc_bits); \
1231 	(_usig)->value |= LE32_DEC_ENC(in_value, dec_bits, _enc_bits); \
1232 } while (0)
1233 
1234 #define __IWL_MVM_ENC_EHT_RU(rt_data, rt_ru, fw_data, fw_ru) \
1235 	eht->data[(rt_data)] |= \
1236 		(cpu_to_le32 \
1237 		 (IEEE80211_RADIOTAP_EHT_DATA ## rt_data ## _RU_ALLOC_CC_ ## rt_ru ## _KNOWN) | \
1238 		 LE32_DEC_ENC(data ## fw_data, \
1239 			      IWL_RX_PHY_DATA ## fw_data ## _EHT_MU_EXT_RU_ALLOC_ ## fw_ru, \
1240 			      IEEE80211_RADIOTAP_EHT_DATA ## rt_data ## _RU_ALLOC_CC_ ## rt_ru))
1241 
1242 #define _IWL_MVM_ENC_EHT_RU(rt_data, rt_ru, fw_data, fw_ru)	\
1243 	__IWL_MVM_ENC_EHT_RU(rt_data, rt_ru, fw_data, fw_ru)
1244 
1245 #define IEEE80211_RADIOTAP_RU_DATA_1_1_1	1
1246 #define IEEE80211_RADIOTAP_RU_DATA_2_1_1	2
1247 #define IEEE80211_RADIOTAP_RU_DATA_1_1_2	2
1248 #define IEEE80211_RADIOTAP_RU_DATA_2_1_2	2
1249 #define IEEE80211_RADIOTAP_RU_DATA_1_2_1	3
1250 #define IEEE80211_RADIOTAP_RU_DATA_2_2_1	3
1251 #define IEEE80211_RADIOTAP_RU_DATA_1_2_2	3
1252 #define IEEE80211_RADIOTAP_RU_DATA_2_2_2	4
1253 
1254 #define IWL_RX_RU_DATA_A1			2
1255 #define IWL_RX_RU_DATA_A2			2
1256 #define IWL_RX_RU_DATA_B1			2
1257 #define IWL_RX_RU_DATA_B2			4
1258 #define IWL_RX_RU_DATA_C1			3
1259 #define IWL_RX_RU_DATA_C2			3
1260 #define IWL_RX_RU_DATA_D1			4
1261 #define IWL_RX_RU_DATA_D2			4
1262 
1263 #define IWL_MVM_ENC_EHT_RU(rt_ru, fw_ru)				\
1264 	_IWL_MVM_ENC_EHT_RU(IEEE80211_RADIOTAP_RU_DATA_ ## rt_ru,	\
1265 			    rt_ru,					\
1266 			    IWL_RX_RU_DATA_ ## fw_ru,			\
1267 			    fw_ru)
1268 
1269 static void iwl_mvm_decode_eht_ext_mu(struct iwl_mvm *mvm,
1270 				      struct iwl_mvm_rx_phy_data *phy_data,
1271 				      struct ieee80211_rx_status *rx_status,
1272 				      struct ieee80211_radiotap_eht *eht,
1273 				      struct ieee80211_radiotap_eht_usig *usig)
1274 {
1275 	if (phy_data->with_data) {
1276 		__le32 data1 = phy_data->d1;
1277 		__le32 data2 = phy_data->d2;
1278 		__le32 data3 = phy_data->d3;
1279 		__le32 data4 = phy_data->eht_d4;
1280 		__le32 data5 = phy_data->d5;
1281 		u32 phy_bw = phy_data->rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK;
1282 
1283 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5,
1284 					    IWL_RX_PHY_DATA5_EHT_TYPE_AND_COMP,
1285 					    IEEE80211_RADIOTAP_EHT_USIG2_MU_B0_B1_PPDU_TYPE);
1286 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5,
1287 					    IWL_RX_PHY_DATA5_EHT_MU_PUNC_CH_CODE,
1288 					    IEEE80211_RADIOTAP_EHT_USIG2_MU_B3_B7_PUNCTURED_INFO);
1289 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, data4,
1290 					    IWL_RX_PHY_DATA4_EHT_MU_EXT_SIGB_MCS,
1291 					    IEEE80211_RADIOTAP_EHT_USIG2_MU_B9_B10_SIG_MCS);
1292 		IWL_MVM_ENC_USIG_VALUE_MASK
1293 			(usig, data1, IWL_RX_PHY_DATA1_EHT_MU_NUM_SIG_SYM_USIGA2,
1294 			 IEEE80211_RADIOTAP_EHT_USIG2_MU_B11_B15_EHT_SIG_SYMBOLS);
1295 
1296 		eht->user_info[0] |=
1297 			cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_STA_ID_KNOWN) |
1298 			LE32_DEC_ENC(data5, IWL_RX_PHY_DATA5_EHT_MU_STA_ID_USR,
1299 				     IEEE80211_RADIOTAP_EHT_USER_INFO_STA_ID);
1300 
1301 		eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_NR_NON_OFDMA_USERS_M);
1302 		eht->data[7] |= LE32_DEC_ENC
1303 			(data5, IWL_RX_PHY_DATA5_EHT_MU_NUM_USR_NON_OFDMA,
1304 			 IEEE80211_RADIOTAP_EHT_DATA7_NUM_OF_NON_OFDMA_USERS);
1305 
1306 		/*
1307 		 * Hardware labels the content channels/RU allocation values
1308 		 * as follows:
1309 		 *           Content Channel 1		Content Channel 2
1310 		 *   20 MHz: A1
1311 		 *   40 MHz: A1				B1
1312 		 *   80 MHz: A1 C1			B1 D1
1313 		 *  160 MHz: A1 C1 A2 C2		B1 D1 B2 D2
1314 		 *  320 MHz: A1 C1 A2 C2 A3 C3 A4 C4	B1 D1 B2 D2 B3 D3 B4 D4
1315 		 *
1316 		 * However firmware can only give us A1-D2, so the higher
1317 		 * frequencies are missing.
1318 		 */
1319 
1320 		switch (phy_bw) {
1321 		case RATE_MCS_CHAN_WIDTH_320:
1322 			/* additional values are missing in RX metadata */
1323 		case RATE_MCS_CHAN_WIDTH_160:
1324 			/* content channel 1 */
1325 			IWL_MVM_ENC_EHT_RU(1_2_1, A2);
1326 			IWL_MVM_ENC_EHT_RU(1_2_2, C2);
1327 			/* content channel 2 */
1328 			IWL_MVM_ENC_EHT_RU(2_2_1, B2);
1329 			IWL_MVM_ENC_EHT_RU(2_2_2, D2);
1330 			fallthrough;
1331 		case RATE_MCS_CHAN_WIDTH_80:
1332 			/* content channel 1 */
1333 			IWL_MVM_ENC_EHT_RU(1_1_2, C1);
1334 			/* content channel 2 */
1335 			IWL_MVM_ENC_EHT_RU(2_1_2, D1);
1336 			fallthrough;
1337 		case RATE_MCS_CHAN_WIDTH_40:
1338 			/* content channel 2 */
1339 			IWL_MVM_ENC_EHT_RU(2_1_1, B1);
1340 			fallthrough;
1341 		case RATE_MCS_CHAN_WIDTH_20:
1342 			IWL_MVM_ENC_EHT_RU(1_1_1, A1);
1343 			break;
1344 		}
1345 	} else {
1346 		__le32 usig_a1 = phy_data->rx_vec[0];
1347 		__le32 usig_a2 = phy_data->rx_vec[1];
1348 
1349 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a1,
1350 					    IWL_RX_USIG_A1_DISREGARD,
1351 					    IEEE80211_RADIOTAP_EHT_USIG1_MU_B20_B24_DISREGARD);
1352 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a1,
1353 					    IWL_RX_USIG_A1_VALIDATE,
1354 					    IEEE80211_RADIOTAP_EHT_USIG1_MU_B25_VALIDATE);
1355 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1356 					    IWL_RX_USIG_A2_EHT_PPDU_TYPE,
1357 					    IEEE80211_RADIOTAP_EHT_USIG2_MU_B0_B1_PPDU_TYPE);
1358 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1359 					    IWL_RX_USIG_A2_EHT_USIG2_VALIDATE_B2,
1360 					    IEEE80211_RADIOTAP_EHT_USIG2_MU_B2_VALIDATE);
1361 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1362 					    IWL_RX_USIG_A2_EHT_PUNC_CHANNEL,
1363 					    IEEE80211_RADIOTAP_EHT_USIG2_MU_B3_B7_PUNCTURED_INFO);
1364 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1365 					    IWL_RX_USIG_A2_EHT_USIG2_VALIDATE_B8,
1366 					    IEEE80211_RADIOTAP_EHT_USIG2_MU_B8_VALIDATE);
1367 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1368 					    IWL_RX_USIG_A2_EHT_SIG_MCS,
1369 					    IEEE80211_RADIOTAP_EHT_USIG2_MU_B9_B10_SIG_MCS);
1370 		IWL_MVM_ENC_USIG_VALUE_MASK
1371 			(usig, usig_a2, IWL_RX_USIG_A2_EHT_SIG_SYM_NUM,
1372 			 IEEE80211_RADIOTAP_EHT_USIG2_MU_B11_B15_EHT_SIG_SYMBOLS);
1373 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1374 					    IWL_RX_USIG_A2_EHT_CRC_OK,
1375 					    IEEE80211_RADIOTAP_EHT_USIG2_MU_B16_B19_CRC);
1376 	}
1377 }
1378 
1379 static void iwl_mvm_decode_eht_ext_tb(struct iwl_mvm *mvm,
1380 				      struct iwl_mvm_rx_phy_data *phy_data,
1381 				      struct ieee80211_rx_status *rx_status,
1382 				      struct ieee80211_radiotap_eht *eht,
1383 				      struct ieee80211_radiotap_eht_usig *usig)
1384 {
1385 	if (phy_data->with_data) {
1386 		__le32 data5 = phy_data->d5;
1387 
1388 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5,
1389 					    IWL_RX_PHY_DATA5_EHT_TYPE_AND_COMP,
1390 					    IEEE80211_RADIOTAP_EHT_USIG2_TB_B0_B1_PPDU_TYPE);
1391 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5,
1392 					    IWL_RX_PHY_DATA5_EHT_TB_SPATIAL_REUSE1,
1393 					    IEEE80211_RADIOTAP_EHT_USIG2_TB_B3_B6_SPATIAL_REUSE_1);
1394 
1395 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5,
1396 					    IWL_RX_PHY_DATA5_EHT_TB_SPATIAL_REUSE2,
1397 					    IEEE80211_RADIOTAP_EHT_USIG2_TB_B7_B10_SPATIAL_REUSE_2);
1398 	} else {
1399 		__le32 usig_a1 = phy_data->rx_vec[0];
1400 		__le32 usig_a2 = phy_data->rx_vec[1];
1401 
1402 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a1,
1403 					    IWL_RX_USIG_A1_DISREGARD,
1404 					    IEEE80211_RADIOTAP_EHT_USIG1_TB_B20_B25_DISREGARD);
1405 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1406 					    IWL_RX_USIG_A2_EHT_PPDU_TYPE,
1407 					    IEEE80211_RADIOTAP_EHT_USIG2_TB_B0_B1_PPDU_TYPE);
1408 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1409 					    IWL_RX_USIG_A2_EHT_USIG2_VALIDATE_B2,
1410 					    IEEE80211_RADIOTAP_EHT_USIG2_TB_B2_VALIDATE);
1411 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1412 					    IWL_RX_USIG_A2_EHT_TRIG_SPATIAL_REUSE_1,
1413 					    IEEE80211_RADIOTAP_EHT_USIG2_TB_B3_B6_SPATIAL_REUSE_1);
1414 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1415 					    IWL_RX_USIG_A2_EHT_TRIG_SPATIAL_REUSE_2,
1416 					    IEEE80211_RADIOTAP_EHT_USIG2_TB_B7_B10_SPATIAL_REUSE_2);
1417 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1418 					    IWL_RX_USIG_A2_EHT_TRIG_USIG2_DISREGARD,
1419 					    IEEE80211_RADIOTAP_EHT_USIG2_TB_B11_B15_DISREGARD);
1420 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1421 					    IWL_RX_USIG_A2_EHT_CRC_OK,
1422 					    IEEE80211_RADIOTAP_EHT_USIG2_TB_B16_B19_CRC);
1423 	}
1424 }
1425 
1426 static void iwl_mvm_decode_eht_ru(struct iwl_mvm *mvm,
1427 				  struct ieee80211_rx_status *rx_status,
1428 				  struct ieee80211_radiotap_eht *eht)
1429 {
1430 	u32 ru = le32_get_bits(eht->data[8],
1431 			       IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_B7_B1);
1432 	enum nl80211_eht_ru_alloc nl_ru;
1433 
1434 	/* Using D1.5 Table 9-53a - Encoding of PS160 and RU Allocation subfields
1435 	 * in an EHT variant User Info field
1436 	 */
1437 
1438 	switch (ru) {
1439 	case 0 ... 36:
1440 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_26;
1441 		break;
1442 	case 37 ... 52:
1443 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_52;
1444 		break;
1445 	case 53 ... 60:
1446 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_106;
1447 		break;
1448 	case 61 ... 64:
1449 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_242;
1450 		break;
1451 	case 65 ... 66:
1452 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_484;
1453 		break;
1454 	case 67:
1455 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_996;
1456 		break;
1457 	case 68:
1458 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_2x996;
1459 		break;
1460 	case 69:
1461 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_4x996;
1462 		break;
1463 	case 70 ... 81:
1464 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_52P26;
1465 		break;
1466 	case 82 ... 89:
1467 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_106P26;
1468 		break;
1469 	case 90 ... 93:
1470 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_484P242;
1471 		break;
1472 	case 94 ... 95:
1473 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_996P484;
1474 		break;
1475 	case 96 ... 99:
1476 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_996P484P242;
1477 		break;
1478 	case 100 ... 103:
1479 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_2x996P484;
1480 		break;
1481 	case 104:
1482 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_3x996;
1483 		break;
1484 	case 105 ... 106:
1485 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_3x996P484;
1486 		break;
1487 	default:
1488 		return;
1489 	}
1490 
1491 	rx_status->bw = RATE_INFO_BW_EHT_RU;
1492 	rx_status->eht.ru = nl_ru;
1493 }
1494 
1495 static void iwl_mvm_decode_eht_phy_data(struct iwl_mvm *mvm,
1496 					struct iwl_mvm_rx_phy_data *phy_data,
1497 					struct ieee80211_rx_status *rx_status,
1498 					struct ieee80211_radiotap_eht *eht,
1499 					struct ieee80211_radiotap_eht_usig *usig)
1500 
1501 {
1502 	__le32 data0 = phy_data->d0;
1503 	__le32 data1 = phy_data->d1;
1504 	__le32 usig_a1 = phy_data->rx_vec[0];
1505 	u8 info_type = phy_data->info_type;
1506 
1507 	/* Not in EHT range */
1508 	if (info_type < IWL_RX_PHY_INFO_TYPE_EHT_MU ||
1509 	    info_type > IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT)
1510 		return;
1511 
1512 	usig->common |= cpu_to_le32
1513 		(IEEE80211_RADIOTAP_EHT_USIG_COMMON_UL_DL_KNOWN |
1514 		 IEEE80211_RADIOTAP_EHT_USIG_COMMON_BSS_COLOR_KNOWN);
1515 	if (phy_data->with_data) {
1516 		usig->common |= LE32_DEC_ENC(data0,
1517 					     IWL_RX_PHY_DATA0_EHT_UPLINK,
1518 					     IEEE80211_RADIOTAP_EHT_USIG_COMMON_UL_DL);
1519 		usig->common |= LE32_DEC_ENC(data0,
1520 					     IWL_RX_PHY_DATA0_EHT_BSS_COLOR_MASK,
1521 					     IEEE80211_RADIOTAP_EHT_USIG_COMMON_BSS_COLOR);
1522 	} else {
1523 		usig->common |= LE32_DEC_ENC(usig_a1,
1524 					     IWL_RX_USIG_A1_UL_FLAG,
1525 					     IEEE80211_RADIOTAP_EHT_USIG_COMMON_UL_DL);
1526 		usig->common |= LE32_DEC_ENC(usig_a1,
1527 					     IWL_RX_USIG_A1_BSS_COLOR,
1528 					     IEEE80211_RADIOTAP_EHT_USIG_COMMON_BSS_COLOR);
1529 	}
1530 
1531 	if (fw_has_capa(&mvm->fw->ucode_capa,
1532 			IWL_UCODE_TLV_CAPA_SNIFF_VALIDATE_SUPPORT)) {
1533 		usig->common |=
1534 			cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_VALIDATE_BITS_CHECKED);
1535 		usig->common |=
1536 			LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_VALIDATE,
1537 				     IEEE80211_RADIOTAP_EHT_USIG_COMMON_VALIDATE_BITS_OK);
1538 	}
1539 
1540 	eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_SPATIAL_REUSE);
1541 	eht->data[0] |= LE32_DEC_ENC(data0,
1542 				     IWL_RX_PHY_DATA0_ETH_SPATIAL_REUSE_MASK,
1543 				     IEEE80211_RADIOTAP_EHT_DATA0_SPATIAL_REUSE);
1544 
1545 	/* All RU allocating size/index is in TB format */
1546 	eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_RU_ALLOC_TB_FMT);
1547 	eht->data[8] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PS160,
1548 				     IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_PS_160);
1549 	eht->data[8] |= LE32_DEC_ENC(data1, IWL_RX_PHY_DATA1_EHT_RU_ALLOC_B0,
1550 				     IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_B0);
1551 	eht->data[8] |= LE32_DEC_ENC(data1, IWL_RX_PHY_DATA1_EHT_RU_ALLOC_B1_B7,
1552 				     IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_B7_B1);
1553 
1554 	iwl_mvm_decode_eht_ru(mvm, rx_status, eht);
1555 
1556 	/* We only get here in case of IWL_RX_MPDU_PHY_TSF_OVERLOAD is set
1557 	 * which is on only in case of monitor mode so no need to check monitor
1558 	 * mode
1559 	 */
1560 	eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_PRIMARY_80);
1561 	eht->data[1] |=
1562 		le32_encode_bits(mvm->monitor_p80,
1563 				 IEEE80211_RADIOTAP_EHT_DATA1_PRIMARY_80);
1564 
1565 	usig->common |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_TXOP_KNOWN);
1566 	if (phy_data->with_data)
1567 		usig->common |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_TXOP_DUR_MASK,
1568 					     IEEE80211_RADIOTAP_EHT_USIG_COMMON_TXOP);
1569 	else
1570 		usig->common |= LE32_DEC_ENC(usig_a1, IWL_RX_USIG_A1_TXOP_DURATION,
1571 					     IEEE80211_RADIOTAP_EHT_USIG_COMMON_TXOP);
1572 
1573 	eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_LDPC_EXTRA_SYM_OM);
1574 	eht->data[0] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_LDPC_EXT_SYM,
1575 				     IEEE80211_RADIOTAP_EHT_DATA0_LDPC_EXTRA_SYM_OM);
1576 
1577 	eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_PRE_PADD_FACOR_OM);
1578 	eht->data[0] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PRE_FEC_PAD_MASK,
1579 				    IEEE80211_RADIOTAP_EHT_DATA0_PRE_PADD_FACOR_OM);
1580 
1581 	eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_PE_DISAMBIGUITY_OM);
1582 	eht->data[0] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PE_DISAMBIG,
1583 				     IEEE80211_RADIOTAP_EHT_DATA0_PE_DISAMBIGUITY_OM);
1584 
1585 	/* TODO: what about IWL_RX_PHY_DATA0_EHT_BW320_SLOT */
1586 
1587 	if (!le32_get_bits(data0, IWL_RX_PHY_DATA0_EHT_SIGA_CRC_OK))
1588 		usig->common |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_BAD_USIG_CRC);
1589 
1590 	usig->common |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_PHY_VER_KNOWN);
1591 	usig->common |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PHY_VER,
1592 				     IEEE80211_RADIOTAP_EHT_USIG_COMMON_PHY_VER);
1593 
1594 	/*
1595 	 * TODO: what about TB - IWL_RX_PHY_DATA1_EHT_TB_PILOT_TYPE,
1596 	 *			 IWL_RX_PHY_DATA1_EHT_TB_LOW_SS
1597 	 */
1598 
1599 	eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_EHT_LTF);
1600 	eht->data[0] |= LE32_DEC_ENC(data1, IWL_RX_PHY_DATA1_EHT_SIG_LTF_NUM,
1601 				     IEEE80211_RADIOTAP_EHT_DATA0_EHT_LTF);
1602 
1603 	if (info_type == IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT ||
1604 	    info_type == IWL_RX_PHY_INFO_TYPE_EHT_TB)
1605 		iwl_mvm_decode_eht_ext_tb(mvm, phy_data, rx_status, eht, usig);
1606 
1607 	if (info_type == IWL_RX_PHY_INFO_TYPE_EHT_MU_EXT ||
1608 	    info_type == IWL_RX_PHY_INFO_TYPE_EHT_MU)
1609 		iwl_mvm_decode_eht_ext_mu(mvm, phy_data, rx_status, eht, usig);
1610 }
1611 
1612 static void iwl_mvm_rx_eht(struct iwl_mvm *mvm, struct sk_buff *skb,
1613 			   struct iwl_mvm_rx_phy_data *phy_data,
1614 			   int queue)
1615 {
1616 	struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
1617 
1618 	struct ieee80211_radiotap_eht *eht;
1619 	struct ieee80211_radiotap_eht_usig *usig;
1620 	size_t eht_len = sizeof(*eht);
1621 
1622 	u32 rate_n_flags = phy_data->rate_n_flags;
1623 	u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK;
1624 	/* EHT and HE have the same valus for LTF */
1625 	u8 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_UNKNOWN;
1626 	u16 phy_info = phy_data->phy_info;
1627 	u32 bw;
1628 
1629 	/* u32 for 1 user_info */
1630 	if (phy_data->with_data)
1631 		eht_len += sizeof(u32);
1632 
1633 	eht = iwl_mvm_radiotap_put_tlv(skb, IEEE80211_RADIOTAP_EHT, eht_len);
1634 
1635 	usig = iwl_mvm_radiotap_put_tlv(skb, IEEE80211_RADIOTAP_EHT_USIG,
1636 					sizeof(*usig));
1637 	rx_status->flag |= RX_FLAG_RADIOTAP_TLV_AT_END;
1638 	usig->common |=
1639 		cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_BW_KNOWN);
1640 
1641 	/* specific handling for 320MHz */
1642 	bw = FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK, rate_n_flags);
1643 	if (bw == RATE_MCS_CHAN_WIDTH_320_VAL)
1644 		bw += FIELD_GET(IWL_RX_PHY_DATA0_EHT_BW320_SLOT,
1645 				le32_to_cpu(phy_data->d0));
1646 
1647 	usig->common |= cpu_to_le32
1648 		(FIELD_PREP(IEEE80211_RADIOTAP_EHT_USIG_COMMON_BW, bw));
1649 
1650 	/* report the AMPDU-EOF bit on single frames */
1651 	if (!queue && !(phy_info & IWL_RX_MPDU_PHY_AMPDU)) {
1652 		rx_status->flag |= RX_FLAG_AMPDU_DETAILS;
1653 		rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN;
1654 		if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_EHT_DELIM_EOF))
1655 			rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT;
1656 	}
1657 
1658 	/* update aggregation data for monitor sake on default queue */
1659 	if (!queue && (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) &&
1660 	    (phy_info & IWL_RX_MPDU_PHY_AMPDU) && phy_data->first_subframe) {
1661 		rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN;
1662 		if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_EHT_DELIM_EOF))
1663 			rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT;
1664 	}
1665 
1666 	if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD)
1667 		iwl_mvm_decode_eht_phy_data(mvm, phy_data, rx_status, eht, usig);
1668 
1669 #define CHECK_TYPE(F)							\
1670 	BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA1_FORMAT_ ## F !=	\
1671 		     (RATE_MCS_HE_TYPE_ ## F >> RATE_MCS_HE_TYPE_POS))
1672 
1673 	CHECK_TYPE(SU);
1674 	CHECK_TYPE(EXT_SU);
1675 	CHECK_TYPE(MU);
1676 	CHECK_TYPE(TRIG);
1677 
1678 	switch (FIELD_GET(RATE_MCS_HE_GI_LTF_MSK, rate_n_flags)) {
1679 	case 0:
1680 		if (he_type == RATE_MCS_HE_TYPE_TRIG) {
1681 			rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_1_6;
1682 			ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_1X;
1683 		} else {
1684 			rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_0_8;
1685 			ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
1686 		}
1687 		break;
1688 	case 1:
1689 		rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_1_6;
1690 		ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
1691 		break;
1692 	case 2:
1693 		ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1694 		if (he_type == RATE_MCS_HE_TYPE_TRIG)
1695 			rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_3_2;
1696 		else
1697 			rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_0_8;
1698 		break;
1699 	case 3:
1700 		if (he_type != RATE_MCS_HE_TYPE_TRIG) {
1701 			ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1702 			rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_3_2;
1703 		}
1704 		break;
1705 	default:
1706 		/* nothing here */
1707 		break;
1708 	}
1709 
1710 	if (ltf != IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_UNKNOWN) {
1711 		eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_GI);
1712 		eht->data[0] |= cpu_to_le32
1713 			(FIELD_PREP(IEEE80211_RADIOTAP_EHT_DATA0_LTF,
1714 				    ltf) |
1715 			 FIELD_PREP(IEEE80211_RADIOTAP_EHT_DATA0_GI,
1716 				    rx_status->eht.gi));
1717 	}
1718 
1719 
1720 	if (!phy_data->with_data) {
1721 		eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_NSS_S |
1722 					  IEEE80211_RADIOTAP_EHT_KNOWN_BEAMFORMED_S);
1723 		eht->data[7] |=
1724 			le32_encode_bits(le32_get_bits(phy_data->rx_vec[2],
1725 						       RX_NO_DATA_RX_VEC2_EHT_NSTS_MSK),
1726 					 IEEE80211_RADIOTAP_EHT_DATA7_NSS_S);
1727 		if (rate_n_flags & RATE_MCS_BF_MSK)
1728 			eht->data[7] |=
1729 				cpu_to_le32(IEEE80211_RADIOTAP_EHT_DATA7_BEAMFORMED_S);
1730 	} else {
1731 		eht->user_info[0] |=
1732 			cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_MCS_KNOWN |
1733 				    IEEE80211_RADIOTAP_EHT_USER_INFO_CODING_KNOWN |
1734 				    IEEE80211_RADIOTAP_EHT_USER_INFO_NSS_KNOWN_O |
1735 				    IEEE80211_RADIOTAP_EHT_USER_INFO_BEAMFORMING_KNOWN_O |
1736 				    IEEE80211_RADIOTAP_EHT_USER_INFO_DATA_FOR_USER);
1737 
1738 		if (rate_n_flags & RATE_MCS_BF_MSK)
1739 			eht->user_info[0] |=
1740 				cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_BEAMFORMING_O);
1741 
1742 		if (rate_n_flags & RATE_MCS_LDPC_MSK)
1743 			eht->user_info[0] |=
1744 				cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_CODING);
1745 
1746 		eht->user_info[0] |= cpu_to_le32
1747 			(FIELD_PREP(IEEE80211_RADIOTAP_EHT_USER_INFO_MCS,
1748 				    FIELD_GET(RATE_VHT_MCS_RATE_CODE_MSK,
1749 					      rate_n_flags)) |
1750 			 FIELD_PREP(IEEE80211_RADIOTAP_EHT_USER_INFO_NSS_O,
1751 				    FIELD_GET(RATE_MCS_NSS_MSK, rate_n_flags)));
1752 	}
1753 }
1754 
1755 static void iwl_mvm_rx_he(struct iwl_mvm *mvm, struct sk_buff *skb,
1756 			  struct iwl_mvm_rx_phy_data *phy_data,
1757 			  int queue)
1758 {
1759 	struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
1760 	struct ieee80211_radiotap_he *he = NULL;
1761 	struct ieee80211_radiotap_he_mu *he_mu = NULL;
1762 	u32 rate_n_flags = phy_data->rate_n_flags;
1763 	u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK;
1764 	u8 ltf;
1765 	static const struct ieee80211_radiotap_he known = {
1766 		.data1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_DATA_MCS_KNOWN |
1767 				     IEEE80211_RADIOTAP_HE_DATA1_DATA_DCM_KNOWN |
1768 				     IEEE80211_RADIOTAP_HE_DATA1_STBC_KNOWN |
1769 				     IEEE80211_RADIOTAP_HE_DATA1_CODING_KNOWN),
1770 		.data2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_GI_KNOWN |
1771 				     IEEE80211_RADIOTAP_HE_DATA2_TXBF_KNOWN),
1772 	};
1773 	static const struct ieee80211_radiotap_he_mu mu_known = {
1774 		.flags1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS_KNOWN |
1775 				      IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM_KNOWN |
1776 				      IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_SYMS_USERS_KNOWN |
1777 				      IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_COMP_KNOWN),
1778 		.flags2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW_KNOWN |
1779 				      IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_KNOWN),
1780 	};
1781 	u16 phy_info = phy_data->phy_info;
1782 
1783 	he = skb_put_data(skb, &known, sizeof(known));
1784 	rx_status->flag |= RX_FLAG_RADIOTAP_HE;
1785 
1786 	if (phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU ||
1787 	    phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU_EXT) {
1788 		he_mu = skb_put_data(skb, &mu_known, sizeof(mu_known));
1789 		rx_status->flag |= RX_FLAG_RADIOTAP_HE_MU;
1790 	}
1791 
1792 	/* report the AMPDU-EOF bit on single frames */
1793 	if (!queue && !(phy_info & IWL_RX_MPDU_PHY_AMPDU)) {
1794 		rx_status->flag |= RX_FLAG_AMPDU_DETAILS;
1795 		rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN;
1796 		if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_HE_DELIM_EOF))
1797 			rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT;
1798 	}
1799 
1800 	if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD)
1801 		iwl_mvm_decode_he_phy_data(mvm, phy_data, he, he_mu, rx_status,
1802 					   queue);
1803 
1804 	/* update aggregation data for monitor sake on default queue */
1805 	if (!queue && (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) &&
1806 	    (phy_info & IWL_RX_MPDU_PHY_AMPDU) && phy_data->first_subframe) {
1807 		rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN;
1808 		if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_EHT_DELIM_EOF))
1809 			rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT;
1810 	}
1811 
1812 	if (he_type == RATE_MCS_HE_TYPE_EXT_SU &&
1813 	    rate_n_flags & RATE_MCS_HE_106T_MSK) {
1814 		rx_status->bw = RATE_INFO_BW_HE_RU;
1815 		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106;
1816 	}
1817 
1818 	/* actually data is filled in mac80211 */
1819 	if (he_type == RATE_MCS_HE_TYPE_SU ||
1820 	    he_type == RATE_MCS_HE_TYPE_EXT_SU)
1821 		he->data1 |=
1822 			cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN);
1823 
1824 #define CHECK_TYPE(F)							\
1825 	BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA1_FORMAT_ ## F !=	\
1826 		     (RATE_MCS_HE_TYPE_ ## F >> RATE_MCS_HE_TYPE_POS))
1827 
1828 	CHECK_TYPE(SU);
1829 	CHECK_TYPE(EXT_SU);
1830 	CHECK_TYPE(MU);
1831 	CHECK_TYPE(TRIG);
1832 
1833 	he->data1 |= cpu_to_le16(he_type >> RATE_MCS_HE_TYPE_POS);
1834 
1835 	if (rate_n_flags & RATE_MCS_BF_MSK)
1836 		he->data5 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA5_TXBF);
1837 
1838 	switch ((rate_n_flags & RATE_MCS_HE_GI_LTF_MSK) >>
1839 		RATE_MCS_HE_GI_LTF_POS) {
1840 	case 0:
1841 		if (he_type == RATE_MCS_HE_TYPE_TRIG)
1842 			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
1843 		else
1844 			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
1845 		if (he_type == RATE_MCS_HE_TYPE_MU)
1846 			ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1847 		else
1848 			ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_1X;
1849 		break;
1850 	case 1:
1851 		if (he_type == RATE_MCS_HE_TYPE_TRIG)
1852 			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
1853 		else
1854 			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
1855 		ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
1856 		break;
1857 	case 2:
1858 		if (he_type == RATE_MCS_HE_TYPE_TRIG) {
1859 			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2;
1860 			ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1861 		} else {
1862 			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
1863 			ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
1864 		}
1865 		break;
1866 	case 3:
1867 		rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2;
1868 		ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1869 		break;
1870 	case 4:
1871 		rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
1872 		ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1873 		break;
1874 	default:
1875 		ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_UNKNOWN;
1876 	}
1877 
1878 	he->data5 |= le16_encode_bits(ltf,
1879 				      IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE);
1880 }
1881 
1882 static void iwl_mvm_decode_lsig(struct sk_buff *skb,
1883 				struct iwl_mvm_rx_phy_data *phy_data)
1884 {
1885 	struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
1886 	struct ieee80211_radiotap_lsig *lsig;
1887 
1888 	switch (phy_data->info_type) {
1889 	case IWL_RX_PHY_INFO_TYPE_HT:
1890 	case IWL_RX_PHY_INFO_TYPE_VHT_SU:
1891 	case IWL_RX_PHY_INFO_TYPE_VHT_MU:
1892 	case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
1893 	case IWL_RX_PHY_INFO_TYPE_HE_SU:
1894 	case IWL_RX_PHY_INFO_TYPE_HE_MU:
1895 	case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1896 	case IWL_RX_PHY_INFO_TYPE_HE_TB:
1897 	case IWL_RX_PHY_INFO_TYPE_EHT_MU:
1898 	case IWL_RX_PHY_INFO_TYPE_EHT_TB:
1899 	case IWL_RX_PHY_INFO_TYPE_EHT_MU_EXT:
1900 	case IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT:
1901 		lsig = skb_put(skb, sizeof(*lsig));
1902 		lsig->data1 = cpu_to_le16(IEEE80211_RADIOTAP_LSIG_DATA1_LENGTH_KNOWN);
1903 		lsig->data2 = le16_encode_bits(le32_get_bits(phy_data->d1,
1904 							     IWL_RX_PHY_DATA1_LSIG_LEN_MASK),
1905 					       IEEE80211_RADIOTAP_LSIG_DATA2_LENGTH);
1906 		rx_status->flag |= RX_FLAG_RADIOTAP_LSIG;
1907 		break;
1908 	default:
1909 		break;
1910 	}
1911 }
1912 
1913 struct iwl_rx_sta_csa {
1914 	bool all_sta_unblocked;
1915 	struct ieee80211_vif *vif;
1916 };
1917 
1918 static void iwl_mvm_rx_get_sta_block_tx(void *data, struct ieee80211_sta *sta)
1919 {
1920 	struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta);
1921 	struct iwl_rx_sta_csa *rx_sta_csa = data;
1922 
1923 	if (mvmsta->vif != rx_sta_csa->vif)
1924 		return;
1925 
1926 	if (mvmsta->disable_tx)
1927 		rx_sta_csa->all_sta_unblocked = false;
1928 }
1929 
1930 /*
1931  * Note: requires also rx_status->band to be prefilled, as well
1932  * as phy_data (apart from phy_data->info_type)
1933  */
1934 static void iwl_mvm_rx_fill_status(struct iwl_mvm *mvm,
1935 				   struct sk_buff *skb,
1936 				   struct iwl_mvm_rx_phy_data *phy_data,
1937 				   int queue)
1938 {
1939 	struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
1940 	u32 rate_n_flags = phy_data->rate_n_flags;
1941 	u8 stbc = u32_get_bits(rate_n_flags, RATE_MCS_STBC_MSK);
1942 	u32 format = rate_n_flags & RATE_MCS_MOD_TYPE_MSK;
1943 	bool is_sgi;
1944 
1945 	phy_data->info_type = IWL_RX_PHY_INFO_TYPE_NONE;
1946 
1947 	if (phy_data->phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD)
1948 		phy_data->info_type =
1949 			le32_get_bits(phy_data->d1,
1950 				      IWL_RX_PHY_DATA1_INFO_TYPE_MASK);
1951 
1952 	/* This may be overridden by iwl_mvm_rx_he() to HE_RU */
1953 	switch (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) {
1954 	case RATE_MCS_CHAN_WIDTH_20:
1955 		break;
1956 	case RATE_MCS_CHAN_WIDTH_40:
1957 		rx_status->bw = RATE_INFO_BW_40;
1958 		break;
1959 	case RATE_MCS_CHAN_WIDTH_80:
1960 		rx_status->bw = RATE_INFO_BW_80;
1961 		break;
1962 	case RATE_MCS_CHAN_WIDTH_160:
1963 		rx_status->bw = RATE_INFO_BW_160;
1964 		break;
1965 	case RATE_MCS_CHAN_WIDTH_320:
1966 		rx_status->bw = RATE_INFO_BW_320;
1967 		break;
1968 	}
1969 
1970 	/* must be before L-SIG data */
1971 	if (format == RATE_MCS_HE_MSK)
1972 		iwl_mvm_rx_he(mvm, skb, phy_data, queue);
1973 
1974 	iwl_mvm_decode_lsig(skb, phy_data);
1975 
1976 	rx_status->device_timestamp = phy_data->gp2_on_air_rise;
1977 
1978 	if (mvm->rx_ts_ptp && mvm->monitor_on) {
1979 		u64 adj_time =
1980 			iwl_mvm_ptp_get_adj_time(mvm, phy_data->gp2_on_air_rise * NSEC_PER_USEC);
1981 
1982 		rx_status->mactime = div64_u64(adj_time, NSEC_PER_USEC);
1983 		rx_status->flag |= RX_FLAG_MACTIME_IS_RTAP_TS64;
1984 		rx_status->flag &= ~RX_FLAG_MACTIME;
1985 	}
1986 
1987 	rx_status->freq = ieee80211_channel_to_frequency(phy_data->channel,
1988 							 rx_status->band);
1989 	iwl_mvm_get_signal_strength(mvm, rx_status, rate_n_flags,
1990 				    phy_data->energy_a, phy_data->energy_b);
1991 
1992 	/* using TLV format and must be after all fixed len fields */
1993 	if (format == RATE_MCS_EHT_MSK)
1994 		iwl_mvm_rx_eht(mvm, skb, phy_data, queue);
1995 
1996 	if (unlikely(mvm->monitor_on))
1997 		iwl_mvm_add_rtap_sniffer_config(mvm, skb);
1998 
1999 	is_sgi = format == RATE_MCS_HE_MSK ?
2000 		iwl_he_is_sgi(rate_n_flags) :
2001 		rate_n_flags & RATE_MCS_SGI_MSK;
2002 
2003 	if (!(format == RATE_MCS_CCK_MSK) && is_sgi)
2004 		rx_status->enc_flags |= RX_ENC_FLAG_SHORT_GI;
2005 
2006 	if (rate_n_flags & RATE_MCS_LDPC_MSK)
2007 		rx_status->enc_flags |= RX_ENC_FLAG_LDPC;
2008 
2009 	switch (format) {
2010 	case RATE_MCS_VHT_MSK:
2011 		rx_status->encoding = RX_ENC_VHT;
2012 		break;
2013 	case RATE_MCS_HE_MSK:
2014 		rx_status->encoding = RX_ENC_HE;
2015 		rx_status->he_dcm =
2016 			!!(rate_n_flags & RATE_HE_DUAL_CARRIER_MODE_MSK);
2017 		break;
2018 	case RATE_MCS_EHT_MSK:
2019 		rx_status->encoding = RX_ENC_EHT;
2020 		break;
2021 	}
2022 
2023 	switch (format) {
2024 	case RATE_MCS_HT_MSK:
2025 		rx_status->encoding = RX_ENC_HT;
2026 		rx_status->rate_idx = RATE_HT_MCS_INDEX(rate_n_flags);
2027 		rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
2028 		break;
2029 	case RATE_MCS_VHT_MSK:
2030 	case RATE_MCS_HE_MSK:
2031 	case RATE_MCS_EHT_MSK:
2032 		rx_status->nss =
2033 			u32_get_bits(rate_n_flags, RATE_MCS_NSS_MSK) + 1;
2034 		rx_status->rate_idx = rate_n_flags & RATE_MCS_CODE_MSK;
2035 		rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
2036 		break;
2037 	default: {
2038 		int rate = iwl_mvm_legacy_hw_idx_to_mac80211_idx(rate_n_flags,
2039 								 rx_status->band);
2040 
2041 		rx_status->rate_idx = rate;
2042 
2043 		if ((rate < 0 || rate > 0xFF)) {
2044 			rx_status->rate_idx = 0;
2045 			if (net_ratelimit())
2046 				IWL_ERR(mvm, "Invalid rate flags 0x%x, band %d,\n",
2047 					rate_n_flags, rx_status->band);
2048 		}
2049 
2050 		break;
2051 		}
2052 	}
2053 }
2054 
2055 void iwl_mvm_rx_mpdu_mq(struct iwl_mvm *mvm, struct napi_struct *napi,
2056 			struct iwl_rx_cmd_buffer *rxb, int queue)
2057 {
2058 	struct ieee80211_rx_status *rx_status;
2059 	struct iwl_rx_packet *pkt = rxb_addr(rxb);
2060 	struct iwl_rx_mpdu_desc *desc = (void *)pkt->data;
2061 	struct ieee80211_hdr *hdr;
2062 	u32 len;
2063 	u32 pkt_len = iwl_rx_packet_payload_len(pkt);
2064 	struct ieee80211_sta *sta = NULL;
2065 	struct sk_buff *skb;
2066 	u8 crypt_len = 0;
2067 	u8 sta_id = le32_get_bits(desc->status, IWL_RX_MPDU_STATUS_STA_ID);
2068 	size_t desc_size;
2069 	struct iwl_mvm_rx_phy_data phy_data = {};
2070 	u32 format;
2071 
2072 	if (unlikely(test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status)))
2073 		return;
2074 
2075 	if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210)
2076 		desc_size = sizeof(*desc);
2077 	else
2078 		desc_size = IWL_RX_DESC_SIZE_V1;
2079 
2080 	if (unlikely(pkt_len < desc_size)) {
2081 		IWL_DEBUG_DROP(mvm, "Bad REPLY_RX_MPDU_CMD size\n");
2082 		return;
2083 	}
2084 
2085 	if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
2086 		phy_data.rate_n_flags = le32_to_cpu(desc->v3.rate_n_flags);
2087 		phy_data.channel = desc->v3.channel;
2088 		phy_data.gp2_on_air_rise = le32_to_cpu(desc->v3.gp2_on_air_rise);
2089 		phy_data.energy_a = desc->v3.energy_a;
2090 		phy_data.energy_b = desc->v3.energy_b;
2091 
2092 		phy_data.d0 = desc->v3.phy_data0;
2093 		phy_data.d1 = desc->v3.phy_data1;
2094 		phy_data.d2 = desc->v3.phy_data2;
2095 		phy_data.d3 = desc->v3.phy_data3;
2096 		phy_data.eht_d4 = desc->phy_eht_data4;
2097 		phy_data.d5 = desc->v3.phy_data5;
2098 	} else {
2099 		phy_data.rate_n_flags = le32_to_cpu(desc->v1.rate_n_flags);
2100 		phy_data.channel = desc->v1.channel;
2101 		phy_data.gp2_on_air_rise = le32_to_cpu(desc->v1.gp2_on_air_rise);
2102 		phy_data.energy_a = desc->v1.energy_a;
2103 		phy_data.energy_b = desc->v1.energy_b;
2104 
2105 		phy_data.d0 = desc->v1.phy_data0;
2106 		phy_data.d1 = desc->v1.phy_data1;
2107 		phy_data.d2 = desc->v1.phy_data2;
2108 		phy_data.d3 = desc->v1.phy_data3;
2109 	}
2110 
2111 	if (iwl_fw_lookup_notif_ver(mvm->fw, LEGACY_GROUP,
2112 				    REPLY_RX_MPDU_CMD, 0) < 4) {
2113 		phy_data.rate_n_flags = iwl_new_rate_from_v1(phy_data.rate_n_flags);
2114 		IWL_DEBUG_DROP(mvm, "Got old format rate, converting. New rate: 0x%x\n",
2115 			       phy_data.rate_n_flags);
2116 	}
2117 
2118 	format = phy_data.rate_n_flags & RATE_MCS_MOD_TYPE_MSK;
2119 
2120 	len = le16_to_cpu(desc->mpdu_len);
2121 
2122 	if (unlikely(len + desc_size > pkt_len)) {
2123 		IWL_DEBUG_DROP(mvm, "FW lied about packet len\n");
2124 		return;
2125 	}
2126 
2127 	phy_data.with_data = true;
2128 	phy_data.phy_info = le16_to_cpu(desc->phy_info);
2129 	phy_data.d4 = desc->phy_data4;
2130 
2131 	hdr = (void *)(pkt->data + desc_size);
2132 	/* Dont use dev_alloc_skb(), we'll have enough headroom once
2133 	 * ieee80211_hdr pulled.
2134 	 */
2135 	skb = alloc_skb(128, GFP_ATOMIC);
2136 	if (!skb) {
2137 		IWL_ERR(mvm, "alloc_skb failed\n");
2138 		return;
2139 	}
2140 
2141 	if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) {
2142 		/*
2143 		 * If the device inserted padding it means that (it thought)
2144 		 * the 802.11 header wasn't a multiple of 4 bytes long. In
2145 		 * this case, reserve two bytes at the start of the SKB to
2146 		 * align the payload properly in case we end up copying it.
2147 		 */
2148 		skb_reserve(skb, 2);
2149 	}
2150 
2151 	rx_status = IEEE80211_SKB_RXCB(skb);
2152 
2153 	/*
2154 	 * Keep packets with CRC errors (and with overrun) for monitor mode
2155 	 * (otherwise the firmware discards them) but mark them as bad.
2156 	 */
2157 	if (!(desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_CRC_OK)) ||
2158 	    !(desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_OVERRUN_OK))) {
2159 		IWL_DEBUG_RX(mvm, "Bad CRC or FIFO: 0x%08X.\n",
2160 			     le32_to_cpu(desc->status));
2161 		rx_status->flag |= RX_FLAG_FAILED_FCS_CRC;
2162 	}
2163 
2164 	/* set the preamble flag if appropriate */
2165 	if (format == RATE_MCS_CCK_MSK &&
2166 	    phy_data.phy_info & IWL_RX_MPDU_PHY_SHORT_PREAMBLE)
2167 		rx_status->enc_flags |= RX_ENC_FLAG_SHORTPRE;
2168 
2169 	if (likely(!(phy_data.phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD))) {
2170 		u64 tsf_on_air_rise;
2171 
2172 		if (mvm->trans->trans_cfg->device_family >=
2173 		    IWL_DEVICE_FAMILY_AX210)
2174 			tsf_on_air_rise = le64_to_cpu(desc->v3.tsf_on_air_rise);
2175 		else
2176 			tsf_on_air_rise = le64_to_cpu(desc->v1.tsf_on_air_rise);
2177 
2178 		rx_status->mactime = tsf_on_air_rise;
2179 		/* TSF as indicated by the firmware is at INA time */
2180 		rx_status->flag |= RX_FLAG_MACTIME_PLCP_START;
2181 	}
2182 
2183 	if (iwl_mvm_is_band_in_rx_supported(mvm)) {
2184 		u8 band = BAND_IN_RX_STATUS(desc->mac_phy_idx);
2185 
2186 		rx_status->band = iwl_mvm_nl80211_band_from_phy(band);
2187 	} else {
2188 		rx_status->band = phy_data.channel > 14 ? NL80211_BAND_5GHZ :
2189 			NL80211_BAND_2GHZ;
2190 	}
2191 
2192 	/* update aggregation data for monitor sake on default queue */
2193 	if (!queue && (phy_data.phy_info & IWL_RX_MPDU_PHY_AMPDU)) {
2194 		bool toggle_bit;
2195 
2196 		toggle_bit = phy_data.phy_info & IWL_RX_MPDU_PHY_AMPDU_TOGGLE;
2197 		rx_status->flag |= RX_FLAG_AMPDU_DETAILS;
2198 		/*
2199 		 * Toggle is switched whenever new aggregation starts. Make
2200 		 * sure ampdu_reference is never 0 so we can later use it to
2201 		 * see if the frame was really part of an A-MPDU or not.
2202 		 */
2203 		if (toggle_bit != mvm->ampdu_toggle) {
2204 			mvm->ampdu_ref++;
2205 			if (mvm->ampdu_ref == 0)
2206 				mvm->ampdu_ref++;
2207 			mvm->ampdu_toggle = toggle_bit;
2208 			phy_data.first_subframe = true;
2209 		}
2210 		rx_status->ampdu_reference = mvm->ampdu_ref;
2211 	}
2212 
2213 	rcu_read_lock();
2214 
2215 	if (desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_SRC_STA_FOUND)) {
2216 		if (!WARN_ON_ONCE(sta_id >= mvm->fw->ucode_capa.num_stations)) {
2217 			struct ieee80211_link_sta *link_sta;
2218 
2219 			sta = rcu_dereference(mvm->fw_id_to_mac_id[sta_id]);
2220 			if (IS_ERR(sta))
2221 				sta = NULL;
2222 			link_sta = rcu_dereference(mvm->fw_id_to_link_sta[sta_id]);
2223 
2224 			if (sta && sta->valid_links && link_sta) {
2225 				rx_status->link_valid = 1;
2226 				rx_status->link_id = link_sta->link_id;
2227 			}
2228 		}
2229 	} else if (!is_multicast_ether_addr(hdr->addr2)) {
2230 		/*
2231 		 * This is fine since we prevent two stations with the same
2232 		 * address from being added.
2233 		 */
2234 		sta = ieee80211_find_sta_by_ifaddr(mvm->hw, hdr->addr2, NULL);
2235 	}
2236 
2237 	if (iwl_mvm_rx_crypto(mvm, sta, hdr, rx_status, phy_data.phy_info, desc,
2238 			      le32_to_cpu(pkt->len_n_flags), queue,
2239 			      &crypt_len)) {
2240 		kfree_skb(skb);
2241 		goto out;
2242 	}
2243 
2244 	iwl_mvm_rx_fill_status(mvm, skb, &phy_data, queue);
2245 
2246 	if (sta) {
2247 		struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta);
2248 		struct ieee80211_vif *tx_blocked_vif =
2249 			rcu_dereference(mvm->csa_tx_blocked_vif);
2250 		u8 baid = (u8)((le32_to_cpu(desc->reorder_data) &
2251 			       IWL_RX_MPDU_REORDER_BAID_MASK) >>
2252 			       IWL_RX_MPDU_REORDER_BAID_SHIFT);
2253 		struct iwl_fw_dbg_trigger_tlv *trig;
2254 		struct ieee80211_vif *vif = mvmsta->vif;
2255 
2256 		if (!mvm->tcm.paused && len >= sizeof(*hdr) &&
2257 		    !is_multicast_ether_addr(hdr->addr1) &&
2258 		    ieee80211_is_data(hdr->frame_control) &&
2259 		    time_after(jiffies, mvm->tcm.ts + MVM_TCM_PERIOD))
2260 			schedule_delayed_work(&mvm->tcm.work, 0);
2261 
2262 		/*
2263 		 * We have tx blocked stations (with CS bit). If we heard
2264 		 * frames from a blocked station on a new channel we can
2265 		 * TX to it again.
2266 		 */
2267 		if (unlikely(tx_blocked_vif) && tx_blocked_vif == vif) {
2268 			struct iwl_mvm_vif *mvmvif =
2269 				iwl_mvm_vif_from_mac80211(tx_blocked_vif);
2270 			struct iwl_rx_sta_csa rx_sta_csa = {
2271 				.all_sta_unblocked = true,
2272 				.vif = tx_blocked_vif,
2273 			};
2274 
2275 			if (mvmvif->csa_target_freq == rx_status->freq)
2276 				iwl_mvm_sta_modify_disable_tx_ap(mvm, sta,
2277 								 false);
2278 			ieee80211_iterate_stations_atomic(mvm->hw,
2279 							  iwl_mvm_rx_get_sta_block_tx,
2280 							  &rx_sta_csa);
2281 
2282 			if (rx_sta_csa.all_sta_unblocked) {
2283 				RCU_INIT_POINTER(mvm->csa_tx_blocked_vif, NULL);
2284 				/* Unblock BCAST / MCAST station */
2285 				iwl_mvm_modify_all_sta_disable_tx(mvm, mvmvif, false);
2286 				cancel_delayed_work(&mvm->cs_tx_unblock_dwork);
2287 			}
2288 		}
2289 
2290 		rs_update_last_rssi(mvm, mvmsta, rx_status);
2291 
2292 		trig = iwl_fw_dbg_trigger_on(&mvm->fwrt,
2293 					     ieee80211_vif_to_wdev(vif),
2294 					     FW_DBG_TRIGGER_RSSI);
2295 
2296 		if (trig && ieee80211_is_beacon(hdr->frame_control)) {
2297 			struct iwl_fw_dbg_trigger_low_rssi *rssi_trig;
2298 			s32 rssi;
2299 
2300 			rssi_trig = (void *)trig->data;
2301 			rssi = le32_to_cpu(rssi_trig->rssi);
2302 
2303 			if (rx_status->signal < rssi)
2304 				iwl_fw_dbg_collect_trig(&mvm->fwrt, trig,
2305 #if defined(__linux__)
2306 							NULL);
2307 #elif defined(__FreeBSD__)
2308 							"");
2309 #endif
2310 		}
2311 
2312 		if (ieee80211_is_data(hdr->frame_control))
2313 			iwl_mvm_rx_csum(mvm, sta, skb, pkt);
2314 
2315 		if (iwl_mvm_is_dup(sta, queue, rx_status, hdr, desc)) {
2316 			IWL_DEBUG_DROP(mvm, "Dropping duplicate packet 0x%x\n",
2317 				       le16_to_cpu(hdr->seq_ctrl));
2318 			kfree_skb(skb);
2319 			goto out;
2320 		}
2321 
2322 		/*
2323 		 * Our hardware de-aggregates AMSDUs but copies the mac header
2324 		 * as it to the de-aggregated MPDUs. We need to turn off the
2325 		 * AMSDU bit in the QoS control ourselves.
2326 		 * In addition, HW reverses addr3 and addr4 - reverse it back.
2327 		 */
2328 		if ((desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU) &&
2329 		    !WARN_ON(!ieee80211_is_data_qos(hdr->frame_control))) {
2330 			u8 *qc = ieee80211_get_qos_ctl(hdr);
2331 
2332 			*qc &= ~IEEE80211_QOS_CTL_A_MSDU_PRESENT;
2333 
2334 			if (mvm->trans->trans_cfg->device_family ==
2335 			    IWL_DEVICE_FAMILY_9000) {
2336 				iwl_mvm_flip_address(hdr->addr3);
2337 
2338 				if (ieee80211_has_a4(hdr->frame_control))
2339 					iwl_mvm_flip_address(hdr->addr4);
2340 			}
2341 		}
2342 		if (baid != IWL_RX_REORDER_DATA_INVALID_BAID) {
2343 			u32 reorder_data = le32_to_cpu(desc->reorder_data);
2344 
2345 			iwl_mvm_agg_rx_received(mvm, reorder_data, baid);
2346 		}
2347 
2348 		if (ieee80211_is_data(hdr->frame_control)) {
2349 			u8 sub_frame_idx = desc->amsdu_info &
2350 				IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK;
2351 
2352 			/* 0 means not an A-MSDU, and 1 means a new A-MSDU */
2353 			if (!sub_frame_idx || sub_frame_idx == 1)
2354 				iwl_mvm_count_mpdu(mvmsta, sta_id, 1, false,
2355 						   queue);
2356 		}
2357 	}
2358 
2359 	/* management stuff on default queue */
2360 	if (!queue) {
2361 		if (unlikely((ieee80211_is_beacon(hdr->frame_control) ||
2362 			      ieee80211_is_probe_resp(hdr->frame_control)) &&
2363 			     mvm->sched_scan_pass_all ==
2364 			     SCHED_SCAN_PASS_ALL_ENABLED))
2365 			mvm->sched_scan_pass_all = SCHED_SCAN_PASS_ALL_FOUND;
2366 
2367 		if (unlikely(ieee80211_is_beacon(hdr->frame_control) ||
2368 			     ieee80211_is_probe_resp(hdr->frame_control)))
2369 			rx_status->boottime_ns = ktime_get_boottime_ns();
2370 	}
2371 
2372 	if (iwl_mvm_create_skb(mvm, skb, hdr, len, crypt_len, rxb)) {
2373 		kfree_skb(skb);
2374 		goto out;
2375 	}
2376 
2377 	if (!iwl_mvm_reorder(mvm, napi, queue, sta, skb, desc) &&
2378 	    likely(!iwl_mvm_time_sync_frame(mvm, skb, hdr->addr2)) &&
2379 	    likely(!iwl_mvm_mei_filter_scan(mvm, skb))) {
2380 		if (mvm->trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_9000 &&
2381 		    (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU) &&
2382 		    !(desc->amsdu_info & IWL_RX_MPDU_AMSDU_LAST_SUBFRAME))
2383 			rx_status->flag |= RX_FLAG_AMSDU_MORE;
2384 
2385 		iwl_mvm_pass_packet_to_mac80211(mvm, napi, skb, queue, sta);
2386 	}
2387 out:
2388 	rcu_read_unlock();
2389 }
2390 
2391 void iwl_mvm_rx_monitor_no_data(struct iwl_mvm *mvm, struct napi_struct *napi,
2392 				struct iwl_rx_cmd_buffer *rxb, int queue)
2393 {
2394 	struct ieee80211_rx_status *rx_status;
2395 	struct iwl_rx_packet *pkt = rxb_addr(rxb);
2396 	struct iwl_rx_no_data_ver_3 *desc = (void *)pkt->data;
2397 	u32 rssi;
2398 	struct ieee80211_sta *sta = NULL;
2399 	struct sk_buff *skb;
2400 	struct iwl_mvm_rx_phy_data phy_data;
2401 	u32 format;
2402 
2403 	if (unlikely(test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status)))
2404 		return;
2405 
2406 	if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(struct iwl_rx_no_data)))
2407 		return;
2408 
2409 	rssi = le32_to_cpu(desc->rssi);
2410 	phy_data.d0 = desc->phy_info[0];
2411 	phy_data.d1 = desc->phy_info[1];
2412 	phy_data.phy_info = IWL_RX_MPDU_PHY_TSF_OVERLOAD;
2413 	phy_data.gp2_on_air_rise = le32_to_cpu(desc->on_air_rise_time);
2414 	phy_data.rate_n_flags = le32_to_cpu(desc->rate);
2415 	phy_data.energy_a = u32_get_bits(rssi, RX_NO_DATA_CHAIN_A_MSK);
2416 	phy_data.energy_b = u32_get_bits(rssi, RX_NO_DATA_CHAIN_B_MSK);
2417 	phy_data.channel = u32_get_bits(rssi, RX_NO_DATA_CHANNEL_MSK);
2418 	phy_data.with_data = false;
2419 	phy_data.rx_vec[0] = desc->rx_vec[0];
2420 	phy_data.rx_vec[1] = desc->rx_vec[1];
2421 
2422 	if (iwl_fw_lookup_notif_ver(mvm->fw, DATA_PATH_GROUP,
2423 				    RX_NO_DATA_NOTIF, 0) < 2) {
2424 		IWL_DEBUG_DROP(mvm, "Got an old rate format. Old rate: 0x%x\n",
2425 			       phy_data.rate_n_flags);
2426 		phy_data.rate_n_flags = iwl_new_rate_from_v1(phy_data.rate_n_flags);
2427 		IWL_DEBUG_DROP(mvm, " Rate after conversion to the new format: 0x%x\n",
2428 			       phy_data.rate_n_flags);
2429 	}
2430 
2431 	format = phy_data.rate_n_flags & RATE_MCS_MOD_TYPE_MSK;
2432 
2433 	if (iwl_fw_lookup_notif_ver(mvm->fw, DATA_PATH_GROUP,
2434 				    RX_NO_DATA_NOTIF, 0) >= 3) {
2435 		if (unlikely(iwl_rx_packet_payload_len(pkt) <
2436 		    sizeof(struct iwl_rx_no_data_ver_3)))
2437 		/* invalid len for ver 3 */
2438 			return;
2439 		phy_data.rx_vec[2] = desc->rx_vec[2];
2440 		phy_data.rx_vec[3] = desc->rx_vec[3];
2441 	} else {
2442 		if (format == RATE_MCS_EHT_MSK)
2443 			/* no support for EHT before version 3 API */
2444 			return;
2445 	}
2446 
2447 	/* Dont use dev_alloc_skb(), we'll have enough headroom once
2448 	 * ieee80211_hdr pulled.
2449 	 */
2450 	skb = alloc_skb(128, GFP_ATOMIC);
2451 	if (!skb) {
2452 		IWL_ERR(mvm, "alloc_skb failed\n");
2453 		return;
2454 	}
2455 
2456 	rx_status = IEEE80211_SKB_RXCB(skb);
2457 
2458 	/* 0-length PSDU */
2459 	rx_status->flag |= RX_FLAG_NO_PSDU;
2460 
2461 	/* mark as failed PLCP on any errors to skip checks in mac80211 */
2462 	if (le32_get_bits(desc->info, RX_NO_DATA_INFO_ERR_MSK) !=
2463 	    RX_NO_DATA_INFO_ERR_NONE)
2464 		rx_status->flag |= RX_FLAG_FAILED_PLCP_CRC;
2465 
2466 	switch (le32_get_bits(desc->info, RX_NO_DATA_INFO_TYPE_MSK)) {
2467 	case RX_NO_DATA_INFO_TYPE_NDP:
2468 		rx_status->zero_length_psdu_type =
2469 			IEEE80211_RADIOTAP_ZERO_LEN_PSDU_SOUNDING;
2470 		break;
2471 	case RX_NO_DATA_INFO_TYPE_MU_UNMATCHED:
2472 	case RX_NO_DATA_INFO_TYPE_TB_UNMATCHED:
2473 		rx_status->zero_length_psdu_type =
2474 			IEEE80211_RADIOTAP_ZERO_LEN_PSDU_NOT_CAPTURED;
2475 		break;
2476 	default:
2477 		rx_status->zero_length_psdu_type =
2478 			IEEE80211_RADIOTAP_ZERO_LEN_PSDU_VENDOR;
2479 		break;
2480 	}
2481 
2482 	rx_status->band = phy_data.channel > 14 ? NL80211_BAND_5GHZ :
2483 		NL80211_BAND_2GHZ;
2484 
2485 	iwl_mvm_rx_fill_status(mvm, skb, &phy_data, queue);
2486 
2487 	/* no more radio tap info should be put after this point.
2488 	 *
2489 	 * We mark it as mac header, for upper layers to know where
2490 	 * all radio tap header ends.
2491 	 *
2492 	 * Since data doesn't move data while putting data on skb and that is
2493 	 * the only way we use, data + len is the next place that hdr would be put
2494 	 */
2495 	skb_set_mac_header(skb, skb->len);
2496 
2497 	/*
2498 	 * Override the nss from the rx_vec since the rate_n_flags has
2499 	 * only 2 bits for the nss which gives a max of 4 ss but there
2500 	 * may be up to 8 spatial streams.
2501 	 */
2502 	switch (format) {
2503 	case RATE_MCS_VHT_MSK:
2504 		rx_status->nss =
2505 			le32_get_bits(desc->rx_vec[0],
2506 				      RX_NO_DATA_RX_VEC0_VHT_NSTS_MSK) + 1;
2507 		break;
2508 	case RATE_MCS_HE_MSK:
2509 		rx_status->nss =
2510 			le32_get_bits(desc->rx_vec[0],
2511 				      RX_NO_DATA_RX_VEC0_HE_NSTS_MSK) + 1;
2512 		break;
2513 	case RATE_MCS_EHT_MSK:
2514 		rx_status->nss =
2515 			le32_get_bits(desc->rx_vec[2],
2516 				      RX_NO_DATA_RX_VEC2_EHT_NSTS_MSK) + 1;
2517 	}
2518 
2519 	rcu_read_lock();
2520 	ieee80211_rx_napi(mvm->hw, sta, skb, napi);
2521 	rcu_read_unlock();
2522 }
2523 
2524 void iwl_mvm_rx_frame_release(struct iwl_mvm *mvm, struct napi_struct *napi,
2525 			      struct iwl_rx_cmd_buffer *rxb, int queue)
2526 {
2527 	struct iwl_rx_packet *pkt = rxb_addr(rxb);
2528 	struct iwl_frame_release *release = (void *)pkt->data;
2529 
2530 	if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(*release)))
2531 		return;
2532 
2533 	iwl_mvm_release_frames_from_notif(mvm, napi, release->baid,
2534 					  le16_to_cpu(release->nssn),
2535 					  queue);
2536 }
2537 
2538 void iwl_mvm_rx_bar_frame_release(struct iwl_mvm *mvm, struct napi_struct *napi,
2539 				  struct iwl_rx_cmd_buffer *rxb, int queue)
2540 {
2541 	struct iwl_rx_packet *pkt = rxb_addr(rxb);
2542 	struct iwl_bar_frame_release *release = (void *)pkt->data;
2543 	unsigned int baid = le32_get_bits(release->ba_info,
2544 					  IWL_BAR_FRAME_RELEASE_BAID_MASK);
2545 	unsigned int nssn = le32_get_bits(release->ba_info,
2546 					  IWL_BAR_FRAME_RELEASE_NSSN_MASK);
2547 	unsigned int sta_id = le32_get_bits(release->sta_tid,
2548 					    IWL_BAR_FRAME_RELEASE_STA_MASK);
2549 	unsigned int tid = le32_get_bits(release->sta_tid,
2550 					 IWL_BAR_FRAME_RELEASE_TID_MASK);
2551 	struct iwl_mvm_baid_data *baid_data;
2552 
2553 	if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(*release)))
2554 		return;
2555 
2556 	if (WARN_ON_ONCE(baid == IWL_RX_REORDER_DATA_INVALID_BAID ||
2557 			 baid >= ARRAY_SIZE(mvm->baid_map)))
2558 		return;
2559 
2560 	rcu_read_lock();
2561 	baid_data = rcu_dereference(mvm->baid_map[baid]);
2562 	if (!baid_data) {
2563 		IWL_DEBUG_RX(mvm,
2564 			     "Got valid BAID %d but not allocated, invalid BAR release!\n",
2565 			      baid);
2566 		goto out;
2567 	}
2568 
2569 	if (WARN(tid != baid_data->tid || sta_id > IWL_MVM_STATION_COUNT_MAX ||
2570 		 !(baid_data->sta_mask & BIT(sta_id)),
2571 		 "baid 0x%x is mapped to sta_mask:0x%x tid:%d, but BAR release received for sta:%d tid:%d\n",
2572 		 baid, baid_data->sta_mask, baid_data->tid, sta_id,
2573 		 tid))
2574 		goto out;
2575 
2576 	IWL_DEBUG_DROP(mvm, "Received a BAR, expect packet loss: nssn %d\n",
2577 		       nssn);
2578 
2579 	iwl_mvm_release_frames_from_notif(mvm, napi, baid, nssn, queue);
2580 out:
2581 	rcu_read_unlock();
2582 }
2583