1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2001-2024, Intel Corporation
5 * Copyright (c) 2016 Nicole Graziano <nicole@nextbsd.org>
6 * Copyright (c) 2024 Kevin Bowling <kbowling@FreeBSD.org>
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29
30 #include "if_em.h"
31 #include <sys/sbuf.h>
32 #include <machine/_inttypes.h>
33
34 #define em_mac_min e1000_82571
35 #define igb_mac_min e1000_82575
36
37 /*********************************************************************
38 * Driver version:
39 *********************************************************************/
40 static const char em_driver_version[] = "7.7.8-fbsd";
41 static const char igb_driver_version[] = "2.5.28-fbsd";
42
43 /*********************************************************************
44 * PCI Device ID Table
45 *
46 * Used by probe to select devices to load on
47 * Last field stores an index into e1000_strings
48 * Last entry must be all 0s
49 *
50 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, String Index }
51 *********************************************************************/
52
53 static const pci_vendor_info_t em_vendor_info_array[] =
54 {
55 /* Intel(R) - lem-class legacy devices */
56 PVID(0x8086, E1000_DEV_ID_82540EM,
57 "Intel(R) Legacy PRO/1000 MT 82540EM"),
58 PVID(0x8086, E1000_DEV_ID_82540EM_LOM,
59 "Intel(R) Legacy PRO/1000 MT 82540EM (LOM)"),
60 PVID(0x8086, E1000_DEV_ID_82540EP,
61 "Intel(R) Legacy PRO/1000 MT 82540EP"),
62 PVID(0x8086, E1000_DEV_ID_82540EP_LOM,
63 "Intel(R) Legacy PRO/1000 MT 82540EP (LOM)"),
64 PVID(0x8086, E1000_DEV_ID_82540EP_LP,
65 "Intel(R) Legacy PRO/1000 MT 82540EP (Mobile)"),
66
67 PVID(0x8086, E1000_DEV_ID_82541EI,
68 "Intel(R) Legacy PRO/1000 MT 82541EI (Copper)"),
69 PVID(0x8086, E1000_DEV_ID_82541ER,
70 "Intel(R) Legacy PRO/1000 82541ER"),
71 PVID(0x8086, E1000_DEV_ID_82541ER_LOM,
72 "Intel(R) Legacy PRO/1000 MT 82541ER"),
73 PVID(0x8086, E1000_DEV_ID_82541EI_MOBILE,
74 "Intel(R) Legacy PRO/1000 MT 82541EI (Mobile)"),
75 PVID(0x8086, E1000_DEV_ID_82541GI,
76 "Intel(R) Legacy PRO/1000 MT 82541GI"),
77 PVID(0x8086, E1000_DEV_ID_82541GI_LF,
78 "Intel(R) Legacy PRO/1000 GT 82541PI"),
79 PVID(0x8086, E1000_DEV_ID_82541GI_MOBILE,
80 "Intel(R) Legacy PRO/1000 MT 82541GI (Mobile)"),
81
82 PVID(0x8086, E1000_DEV_ID_82542,
83 "Intel(R) Legacy PRO/1000 82542 (Fiber)"),
84
85 PVID(0x8086, E1000_DEV_ID_82543GC_FIBER,
86 "Intel(R) Legacy PRO/1000 F 82543GC (Fiber)"),
87 PVID(0x8086, E1000_DEV_ID_82543GC_COPPER,
88 "Intel(R) Legacy PRO/1000 T 82543GC (Copper)"),
89
90 PVID(0x8086, E1000_DEV_ID_82544EI_COPPER,
91 "Intel(R) Legacy PRO/1000 XT 82544EI (Copper)"),
92 PVID(0x8086, E1000_DEV_ID_82544EI_FIBER,
93 "Intel(R) Legacy PRO/1000 XF 82544EI (Fiber)"),
94 PVID(0x8086, E1000_DEV_ID_82544GC_COPPER,
95 "Intel(R) Legacy PRO/1000 T 82544GC (Copper)"),
96 PVID(0x8086, E1000_DEV_ID_82544GC_LOM,
97 "Intel(R) Legacy PRO/1000 XT 82544GC (LOM)"),
98
99 PVID(0x8086, E1000_DEV_ID_82545EM_COPPER,
100 "Intel(R) Legacy PRO/1000 MT 82545EM (Copper)"),
101 PVID(0x8086, E1000_DEV_ID_82545EM_FIBER,
102 "Intel(R) Legacy PRO/1000 MF 82545EM (Fiber)"),
103 PVID(0x8086, E1000_DEV_ID_82545GM_COPPER,
104 "Intel(R) Legacy PRO/1000 MT 82545GM (Copper)"),
105 PVID(0x8086, E1000_DEV_ID_82545GM_FIBER,
106 "Intel(R) Legacy PRO/1000 MF 82545GM (Fiber)"),
107 PVID(0x8086, E1000_DEV_ID_82545GM_SERDES,
108 "Intel(R) Legacy PRO/1000 MB 82545GM (SERDES)"),
109
110 PVID(0x8086, E1000_DEV_ID_82546EB_COPPER,
111 "Intel(R) Legacy PRO/1000 MT 82546EB (Copper)"),
112 PVID(0x8086, E1000_DEV_ID_82546EB_FIBER,
113 "Intel(R) Legacy PRO/1000 MF 82546EB (Fiber)"),
114 PVID(0x8086, E1000_DEV_ID_82546EB_QUAD_COPPER,
115 "Intel(R) Legacy PRO/1000 MT 82546EB (Quad Copper"),
116 PVID(0x8086, E1000_DEV_ID_82546GB_COPPER,
117 "Intel(R) Legacy PRO/1000 MT 82546GB (Copper)"),
118 PVID(0x8086, E1000_DEV_ID_82546GB_FIBER,
119 "Intel(R) Legacy PRO/1000 MF 82546GB (Fiber)"),
120 PVID(0x8086, E1000_DEV_ID_82546GB_SERDES,
121 "Intel(R) Legacy PRO/1000 MB 82546GB (SERDES)"),
122 PVID(0x8086, E1000_DEV_ID_82546GB_PCIE,
123 "Intel(R) Legacy PRO/1000 P 82546GB (PCIe)"),
124 PVID(0x8086, E1000_DEV_ID_82546GB_QUAD_COPPER,
125 "Intel(R) Legacy PRO/1000 GT 82546GB (Quad Copper)"),
126 PVID(0x8086, E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3,
127 "Intel(R) Legacy PRO/1000 GT 82546GB (Quad Copper)"),
128
129 PVID(0x8086, E1000_DEV_ID_82547EI,
130 "Intel(R) Legacy PRO/1000 CT 82547EI"),
131 PVID(0x8086, E1000_DEV_ID_82547EI_MOBILE,
132 "Intel(R) Legacy PRO/1000 CT 82547EI (Mobile)"),
133 PVID(0x8086, E1000_DEV_ID_82547GI,
134 "Intel(R) Legacy PRO/1000 CT 82547GI"),
135
136 /* Intel(R) - em-class devices */
137 PVID(0x8086, E1000_DEV_ID_82571EB_COPPER,
138 "Intel(R) PRO/1000 PT 82571EB/82571GB (Copper)"),
139 PVID(0x8086, E1000_DEV_ID_82571EB_FIBER,
140 "Intel(R) PRO/1000 PF 82571EB/82571GB (Fiber)"),
141 PVID(0x8086, E1000_DEV_ID_82571EB_SERDES,
142 "Intel(R) PRO/1000 PB 82571EB (SERDES)"),
143 PVID(0x8086, E1000_DEV_ID_82571EB_SERDES_DUAL,
144 "Intel(R) PRO/1000 82571EB (Dual Mezzanine)"),
145 PVID(0x8086, E1000_DEV_ID_82571EB_SERDES_QUAD,
146 "Intel(R) PRO/1000 82571EB (Quad Mezzanine)"),
147 PVID(0x8086, E1000_DEV_ID_82571EB_QUAD_COPPER,
148 "Intel(R) PRO/1000 PT 82571EB/82571GB (Quad Copper)"),
149 PVID(0x8086, E1000_DEV_ID_82571EB_QUAD_COPPER_LP,
150 "Intel(R) PRO/1000 PT 82571EB/82571GB (Quad Copper)"),
151 PVID(0x8086, E1000_DEV_ID_82571EB_QUAD_FIBER,
152 "Intel(R) PRO/1000 PF 82571EB (Quad Fiber)"),
153 PVID(0x8086, E1000_DEV_ID_82571PT_QUAD_COPPER,
154 "Intel(R) PRO/1000 PT 82571PT (Quad Copper)"),
155 PVID(0x8086, E1000_DEV_ID_82572EI,
156 "Intel(R) PRO/1000 PT 82572EI (Copper)"),
157 PVID(0x8086, E1000_DEV_ID_82572EI_COPPER,
158 "Intel(R) PRO/1000 PT 82572EI (Copper)"),
159 PVID(0x8086, E1000_DEV_ID_82572EI_FIBER,
160 "Intel(R) PRO/1000 PF 82572EI (Fiber)"),
161 PVID(0x8086, E1000_DEV_ID_82572EI_SERDES,
162 "Intel(R) PRO/1000 82572EI (SERDES)"),
163 PVID(0x8086, E1000_DEV_ID_82573E,
164 "Intel(R) PRO/1000 82573E (Copper)"),
165 PVID(0x8086, E1000_DEV_ID_82573E_IAMT,
166 "Intel(R) PRO/1000 82573E AMT (Copper)"),
167 PVID(0x8086, E1000_DEV_ID_82573L, "Intel(R) PRO/1000 82573L"),
168 PVID(0x8086, E1000_DEV_ID_82583V, "Intel(R) 82583V"),
169 PVID(0x8086, E1000_DEV_ID_80003ES2LAN_COPPER_SPT,
170 "Intel(R) 80003ES2LAN (Copper)"),
171 PVID(0x8086, E1000_DEV_ID_80003ES2LAN_SERDES_SPT,
172 "Intel(R) 80003ES2LAN (SERDES)"),
173 PVID(0x8086, E1000_DEV_ID_80003ES2LAN_COPPER_DPT,
174 "Intel(R) 80003ES2LAN (Dual Copper)"),
175 PVID(0x8086, E1000_DEV_ID_80003ES2LAN_SERDES_DPT,
176 "Intel(R) 80003ES2LAN (Dual SERDES)"),
177 PVID(0x8086, E1000_DEV_ID_ICH8_IGP_M_AMT,
178 "Intel(R) 82566MM ICH8 AMT (Mobile)"),
179 PVID(0x8086, E1000_DEV_ID_ICH8_IGP_AMT, "Intel(R) 82566DM ICH8 AMT"),
180 PVID(0x8086, E1000_DEV_ID_ICH8_IGP_C, "Intel(R) 82566DC ICH8"),
181 PVID(0x8086, E1000_DEV_ID_ICH8_IFE, "Intel(R) 82562V ICH8"),
182 PVID(0x8086, E1000_DEV_ID_ICH8_IFE_GT, "Intel(R) 82562GT ICH8"),
183 PVID(0x8086, E1000_DEV_ID_ICH8_IFE_G, "Intel(R) 82562G ICH8"),
184 PVID(0x8086, E1000_DEV_ID_ICH8_IGP_M, "Intel(R) 82566MC ICH8"),
185 PVID(0x8086, E1000_DEV_ID_ICH8_82567V_3, "Intel(R) 82567V-3 ICH8"),
186 PVID(0x8086, E1000_DEV_ID_ICH9_IGP_M_AMT,
187 "Intel(R) 82567LM ICH9 AMT"),
188 PVID(0x8086, E1000_DEV_ID_ICH9_IGP_AMT,
189 "Intel(R) 82566DM-2 ICH9 AMT"),
190 PVID(0x8086, E1000_DEV_ID_ICH9_IGP_C, "Intel(R) 82566DC-2 ICH9"),
191 PVID(0x8086, E1000_DEV_ID_ICH9_IGP_M, "Intel(R) 82567LF ICH9"),
192 PVID(0x8086, E1000_DEV_ID_ICH9_IGP_M_V, "Intel(R) 82567V ICH9"),
193 PVID(0x8086, E1000_DEV_ID_ICH9_IFE, "Intel(R) 82562V-2 ICH9"),
194 PVID(0x8086, E1000_DEV_ID_ICH9_IFE_GT, "Intel(R) 82562GT-2 ICH9"),
195 PVID(0x8086, E1000_DEV_ID_ICH9_IFE_G, "Intel(R) 82562G-2 ICH9"),
196 PVID(0x8086, E1000_DEV_ID_ICH9_BM, "Intel(R) 82567LM-4 ICH9"),
197 PVID(0x8086, E1000_DEV_ID_82574L, "Intel(R) Gigabit CT 82574L"),
198 PVID(0x8086, E1000_DEV_ID_82574LA, "Intel(R) 82574L-Apple"),
199 PVID(0x8086, E1000_DEV_ID_ICH10_R_BM_LM, "Intel(R) 82567LM-2 ICH10"),
200 PVID(0x8086, E1000_DEV_ID_ICH10_R_BM_LF, "Intel(R) 82567LF-2 ICH10"),
201 PVID(0x8086, E1000_DEV_ID_ICH10_R_BM_V, "Intel(R) 82567V-2 ICH10"),
202 PVID(0x8086, E1000_DEV_ID_ICH10_D_BM_LM, "Intel(R) 82567LM-3 ICH10"),
203 PVID(0x8086, E1000_DEV_ID_ICH10_D_BM_LF, "Intel(R) 82567LF-3 ICH10"),
204 PVID(0x8086, E1000_DEV_ID_ICH10_D_BM_V, "Intel(R) 82567V-4 ICH10"),
205 PVID(0x8086, E1000_DEV_ID_PCH_M_HV_LM, "Intel(R) 82577LM"),
206 PVID(0x8086, E1000_DEV_ID_PCH_M_HV_LC, "Intel(R) 82577LC"),
207 PVID(0x8086, E1000_DEV_ID_PCH_D_HV_DM, "Intel(R) 82578DM"),
208 PVID(0x8086, E1000_DEV_ID_PCH_D_HV_DC, "Intel(R) 82578DC"),
209 PVID(0x8086, E1000_DEV_ID_PCH2_LV_LM, "Intel(R) 82579LM"),
210 PVID(0x8086, E1000_DEV_ID_PCH2_LV_V, "Intel(R) 82579V"),
211 PVID(0x8086, E1000_DEV_ID_PCH_LPT_I217_LM, "Intel(R) I217-LM LPT"),
212 PVID(0x8086, E1000_DEV_ID_PCH_LPT_I217_V, "Intel(R) I217-V LPT"),
213 PVID(0x8086, E1000_DEV_ID_PCH_LPTLP_I218_LM,
214 "Intel(R) I218-LM LPTLP"),
215 PVID(0x8086, E1000_DEV_ID_PCH_LPTLP_I218_V, "Intel(R) I218-V LPTLP"),
216 PVID(0x8086, E1000_DEV_ID_PCH_I218_LM2, "Intel(R) I218-LM (2)"),
217 PVID(0x8086, E1000_DEV_ID_PCH_I218_V2, "Intel(R) I218-V (2)"),
218 PVID(0x8086, E1000_DEV_ID_PCH_I218_LM3, "Intel(R) I218-LM (3)"),
219 PVID(0x8086, E1000_DEV_ID_PCH_I218_V3, "Intel(R) I218-V (3)"),
220 PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM, "Intel(R) I219-LM SPT"),
221 PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V, "Intel(R) I219-V SPT"),
222 PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM2,
223 "Intel(R) I219-LM SPT-H(2)"),
224 PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V2,
225 "Intel(R) I219-V SPT-H(2)"),
226 PVID(0x8086, E1000_DEV_ID_PCH_LBG_I219_LM3,
227 "Intel(R) I219-LM LBG(3)"),
228 PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM4,
229 "Intel(R) I219-LM SPT(4)"),
230 PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V4, "Intel(R) I219-V SPT(4)"),
231 PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM5,
232 "Intel(R) I219-LM SPT(5)"),
233 PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V5, "Intel(R) I219-V SPT(5)"),
234 PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_LM6,
235 "Intel(R) I219-LM CNP(6)"),
236 PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_V6, "Intel(R) I219-V CNP(6)"),
237 PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_LM7,
238 "Intel(R) I219-LM CNP(7)"),
239 PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_V7, "Intel(R) I219-V CNP(7)"),
240 PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_LM8,
241 "Intel(R) I219-LM ICP(8)"),
242 PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_V8, "Intel(R) I219-V ICP(8)"),
243 PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_LM9,
244 "Intel(R) I219-LM ICP(9)"),
245 PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_V9, "Intel(R) I219-V ICP(9)"),
246 PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_LM10,
247 "Intel(R) I219-LM CMP(10)"),
248 PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_V10,
249 "Intel(R) I219-V CMP(10)"),
250 PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_LM11,
251 "Intel(R) I219-LM CMP(11)"),
252 PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_V11,
253 "Intel(R) I219-V CMP(11)"),
254 PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_LM12,
255 "Intel(R) I219-LM CMP(12)"),
256 PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_V12,
257 "Intel(R) I219-V CMP(12)"),
258 PVID(0x8086, E1000_DEV_ID_PCH_TGP_I219_LM13,
259 "Intel(R) I219-LM TGP(13)"),
260 PVID(0x8086, E1000_DEV_ID_PCH_TGP_I219_V13,
261 "Intel(R) I219-V TGP(13)"),
262 PVID(0x8086, E1000_DEV_ID_PCH_TGP_I219_LM14,
263 "Intel(R) I219-LM TGP(14)"),
264 PVID(0x8086, E1000_DEV_ID_PCH_TGP_I219_V14,
265 "Intel(R) I219-V GTP(14)"),
266 PVID(0x8086, E1000_DEV_ID_PCH_TGP_I219_LM15,
267 "Intel(R) I219-LM TGP(15)"),
268 PVID(0x8086, E1000_DEV_ID_PCH_TGP_I219_V15,
269 "Intel(R) I219-V TGP(15)"),
270 PVID(0x8086, E1000_DEV_ID_PCH_ADL_I219_LM16,
271 "Intel(R) I219-LM ADL(16)"),
272 PVID(0x8086, E1000_DEV_ID_PCH_ADL_I219_V16,
273 "Intel(R) I219-V ADL(16)"),
274 PVID(0x8086, E1000_DEV_ID_PCH_ADL_I219_LM17,
275 "Intel(R) I219-LM ADL(17)"),
276 PVID(0x8086, E1000_DEV_ID_PCH_ADL_I219_V17,
277 "Intel(R) I219-V ADL(17)"),
278 PVID(0x8086, E1000_DEV_ID_PCH_MTP_I219_LM18,
279 "Intel(R) I219-LM MTP(18)"),
280 PVID(0x8086, E1000_DEV_ID_PCH_MTP_I219_V18,
281 "Intel(R) I219-V MTP(18)"),
282 PVID(0x8086, E1000_DEV_ID_PCH_ADL_I219_LM19,
283 "Intel(R) I219-LM ADL(19)"),
284 PVID(0x8086, E1000_DEV_ID_PCH_ADL_I219_V19,
285 "Intel(R) I219-V ADL(19)"),
286 PVID(0x8086, E1000_DEV_ID_PCH_LNL_I219_LM20,
287 "Intel(R) I219-LM LNL(20)"),
288 PVID(0x8086, E1000_DEV_ID_PCH_LNL_I219_V20,
289 "Intel(R) I219-V LNL(20)"),
290 PVID(0x8086, E1000_DEV_ID_PCH_LNL_I219_LM21,
291 "Intel(R) I219-LM LNL(21)"),
292 PVID(0x8086, E1000_DEV_ID_PCH_LNL_I219_V21,
293 "Intel(R) I219-V LNL(21)"),
294 PVID(0x8086, E1000_DEV_ID_PCH_RPL_I219_LM22,
295 "Intel(R) I219-LM RPL(22)"),
296 PVID(0x8086, E1000_DEV_ID_PCH_RPL_I219_V22,
297 "Intel(R) I219-V RPL(22)"),
298 PVID(0x8086, E1000_DEV_ID_PCH_RPL_I219_LM23,
299 "Intel(R) I219-LM RPL(23)"),
300 PVID(0x8086, E1000_DEV_ID_PCH_RPL_I219_V23,
301 "Intel(R) I219-V RPL(23)"),
302 PVID(0x8086, E1000_DEV_ID_PCH_ARL_I219_LM24,
303 "Intel(R) I219-LM ARL(24)"),
304 PVID(0x8086, E1000_DEV_ID_PCH_ARL_I219_V24,
305 "Intel(R) I219-V ARL(24)"),
306 PVID(0x8086, E1000_DEV_ID_PCH_PTP_I219_LM25,
307 "Intel(R) I219-LM PTP(25)"),
308 PVID(0x8086, E1000_DEV_ID_PCH_PTP_I219_V25,
309 "Intel(R) I219-V PTP(25)"),
310 PVID(0x8086, E1000_DEV_ID_PCH_PTP_I219_LM26,
311 "Intel(R) I219-LM PTP(26)"),
312 PVID(0x8086, E1000_DEV_ID_PCH_PTP_I219_V26,
313 "Intel(R) I219-V PTP(26)"),
314 PVID(0x8086, E1000_DEV_ID_PCH_PTP_I219_LM27,
315 "Intel(R) I219-LM PTP(27)"),
316 PVID(0x8086, E1000_DEV_ID_PCH_PTP_I219_V27,
317 "Intel(R) I219-V PTP(27)"),
318 /* required last entry */
319 PVID_END
320 };
321
322 static const pci_vendor_info_t igb_vendor_info_array[] =
323 {
324 /* Intel(R) - igb-class devices */
325 PVID(0x8086, E1000_DEV_ID_82575EB_COPPER,
326 "Intel(R) PRO/1000 82575EB (Copper)"),
327 PVID(0x8086, E1000_DEV_ID_82575EB_FIBER_SERDES,
328 "Intel(R) PRO/1000 82575EB (SERDES)"),
329 PVID(0x8086, E1000_DEV_ID_82575GB_QUAD_COPPER,
330 "Intel(R) PRO/1000 VT 82575GB (Quad Copper)"),
331 PVID(0x8086, E1000_DEV_ID_82576, "Intel(R) PRO/1000 82576"),
332 PVID(0x8086, E1000_DEV_ID_82576_NS, "Intel(R) PRO/1000 82576NS"),
333 PVID(0x8086, E1000_DEV_ID_82576_NS_SERDES,
334 "Intel(R) PRO/1000 82576NS (SERDES)"),
335 PVID(0x8086, E1000_DEV_ID_82576_FIBER,
336 "Intel(R) PRO/1000 EF 82576 (Dual Fiber)"),
337 PVID(0x8086, E1000_DEV_ID_82576_SERDES,
338 "Intel(R) PRO/1000 82576 (Dual SERDES)"),
339 PVID(0x8086, E1000_DEV_ID_82576_SERDES_QUAD,
340 "Intel(R) PRO/1000 ET 82576 (Quad SERDES)"),
341 PVID(0x8086, E1000_DEV_ID_82576_QUAD_COPPER,
342 "Intel(R) PRO/1000 ET 82576 (Quad Copper)"),
343 PVID(0x8086, E1000_DEV_ID_82576_QUAD_COPPER_ET2,
344 "Intel(R) PRO/1000 ET(2) 82576 (Quad Copper)"),
345 PVID(0x8086, E1000_DEV_ID_82576_VF,
346 "Intel(R) PRO/1000 82576 Virtual Function"),
347 PVID(0x8086, E1000_DEV_ID_82580_COPPER,
348 "Intel(R) I340 82580 (Copper)"),
349 PVID(0x8086, E1000_DEV_ID_82580_FIBER, "Intel(R) I340 82580 (Fiber)"),
350 PVID(0x8086, E1000_DEV_ID_82580_SERDES,
351 "Intel(R) I340 82580 (SERDES)"),
352 PVID(0x8086, E1000_DEV_ID_82580_SGMII, "Intel(R) I340 82580 (SGMII)"),
353 PVID(0x8086, E1000_DEV_ID_82580_COPPER_DUAL,
354 "Intel(R) I340-T2 82580 (Dual Copper)"),
355 PVID(0x8086, E1000_DEV_ID_82580_QUAD_FIBER,
356 "Intel(R) I340-F4 82580 (Quad Fiber)"),
357 PVID(0x8086, E1000_DEV_ID_DH89XXCC_SERDES,
358 "Intel(R) DH89XXCC (SERDES)"),
359 PVID(0x8086, E1000_DEV_ID_DH89XXCC_SGMII,
360 "Intel(R) I347-AT4 DH89XXCC"),
361 PVID(0x8086, E1000_DEV_ID_DH89XXCC_SFP, "Intel(R) DH89XXCC (SFP)"),
362 PVID(0x8086, E1000_DEV_ID_DH89XXCC_BACKPLANE,
363 "Intel(R) DH89XXCC (Backplane)"),
364 PVID(0x8086, E1000_DEV_ID_I350_COPPER, "Intel(R) I350 (Copper)"),
365 PVID(0x8086, E1000_DEV_ID_I350_FIBER, "Intel(R) I350 (Fiber)"),
366 PVID(0x8086, E1000_DEV_ID_I350_SERDES, "Intel(R) I350 (SERDES)"),
367 PVID(0x8086, E1000_DEV_ID_I350_SGMII, "Intel(R) I350 (SGMII)"),
368 PVID(0x8086, E1000_DEV_ID_I350_VF, "Intel(R) I350 Virtual Function"),
369 PVID(0x8086, E1000_DEV_ID_I210_COPPER, "Intel(R) I210 (Copper)"),
370 PVID(0x8086, E1000_DEV_ID_I210_COPPER_IT,
371 "Intel(R) I210 IT (Copper)"),
372 PVID(0x8086, E1000_DEV_ID_I210_COPPER_OEM1, "Intel(R) I210 (OEM)"),
373 PVID(0x8086, E1000_DEV_ID_I210_COPPER_FLASHLESS,
374 "Intel(R) I210 Flashless (Copper)"),
375 PVID(0x8086, E1000_DEV_ID_I210_SERDES_FLASHLESS,
376 "Intel(R) I210 Flashless (SERDES)"),
377 PVID(0x8086, E1000_DEV_ID_I210_SGMII_FLASHLESS,
378 "Intel(R) I210 Flashless (SGMII)"),
379 PVID(0x8086, E1000_DEV_ID_I210_FIBER, "Intel(R) I210 (Fiber)"),
380 PVID(0x8086, E1000_DEV_ID_I210_SERDES, "Intel(R) I210 (SERDES)"),
381 PVID(0x8086, E1000_DEV_ID_I210_SGMII, "Intel(R) I210 (SGMII)"),
382 PVID(0x8086, E1000_DEV_ID_I211_COPPER, "Intel(R) I211 (Copper)"),
383 PVID(0x8086, E1000_DEV_ID_I354_BACKPLANE_1GBPS,
384 "Intel(R) I354 (1.0 GbE Backplane)"),
385 PVID(0x8086, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS,
386 "Intel(R) I354 (2.5 GbE Backplane)"),
387 PVID(0x8086, E1000_DEV_ID_I354_SGMII, "Intel(R) I354 (SGMII)"),
388 /* required last entry */
389 PVID_END
390 };
391
392 /*********************************************************************
393 * Function prototypes
394 *********************************************************************/
395 static void *em_register(device_t);
396 static void *igb_register(device_t);
397 static int em_if_attach_pre(if_ctx_t);
398 static int em_if_attach_post(if_ctx_t);
399 static int em_if_detach(if_ctx_t);
400 static int em_if_shutdown(if_ctx_t);
401 static int em_if_suspend(if_ctx_t);
402 static int em_if_resume(if_ctx_t);
403
404 static int em_if_tx_queues_alloc(if_ctx_t, caddr_t *, uint64_t *, int,
405 int);
406 static int em_if_rx_queues_alloc(if_ctx_t, caddr_t *, uint64_t *, int,
407 int);
408 static void em_if_queues_free(if_ctx_t);
409
410 static uint64_t em_if_get_counter(if_ctx_t, ift_counter);
411 static void em_if_init(if_ctx_t);
412 static void em_if_stop(if_ctx_t);
413 static void em_if_media_status(if_ctx_t, struct ifmediareq *);
414 static int em_if_media_change(if_ctx_t);
415 static int em_if_mtu_set(if_ctx_t, uint32_t);
416 static void em_if_timer(if_ctx_t, uint16_t);
417 static void em_if_vlan_register(if_ctx_t, u16);
418 static void em_if_vlan_unregister(if_ctx_t, u16);
419 static void em_if_watchdog_reset(if_ctx_t);
420 static bool em_if_needs_restart(if_ctx_t, enum iflib_restart_event);
421
422 static void em_identify_hardware(if_ctx_t);
423 static int em_allocate_pci_resources(if_ctx_t);
424 static void em_free_pci_resources(if_ctx_t);
425 static void em_reset(if_ctx_t);
426 static int em_setup_interface(if_ctx_t);
427 static int em_setup_msix(if_ctx_t);
428
429 static void em_initialize_transmit_unit(if_ctx_t);
430 static void em_initialize_receive_unit(if_ctx_t);
431
432 static void em_if_intr_enable(if_ctx_t);
433 static void em_if_intr_disable(if_ctx_t);
434 static void igb_if_intr_enable(if_ctx_t);
435 static void igb_if_intr_disable(if_ctx_t);
436 static int em_if_rx_queue_intr_enable(if_ctx_t, uint16_t);
437 static int em_if_tx_queue_intr_enable(if_ctx_t, uint16_t);
438 static int igb_if_rx_queue_intr_enable(if_ctx_t, uint16_t);
439 static int igb_if_tx_queue_intr_enable(if_ctx_t, uint16_t);
440 static void em_if_multi_set(if_ctx_t);
441 static void em_if_update_admin_status(if_ctx_t);
442 static void em_if_debug(if_ctx_t);
443 static void em_update_stats_counters(struct e1000_softc *);
444 static void em_add_hw_stats(struct e1000_softc *);
445 static int em_if_set_promisc(if_ctx_t, int);
446 static bool em_if_vlan_filter_capable(if_ctx_t);
447 static bool em_if_vlan_filter_used(if_ctx_t);
448 static void em_if_vlan_filter_enable(struct e1000_softc *);
449 static void em_if_vlan_filter_disable(struct e1000_softc *);
450 static void em_if_vlan_filter_write(struct e1000_softc *);
451 static void em_setup_vlan_hw_support(if_ctx_t ctx);
452 static int em_sysctl_nvm_info(SYSCTL_HANDLER_ARGS);
453 static void em_print_nvm_info(struct e1000_softc *);
454 static void em_fw_version_locked(if_ctx_t);
455 static void em_sbuf_fw_version(struct e1000_fw_version *, struct sbuf *);
456 static void em_print_fw_version(struct e1000_softc *);
457 static int em_sysctl_print_fw_version(SYSCTL_HANDLER_ARGS);
458 static int em_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
459 static int em_get_rs(SYSCTL_HANDLER_ARGS);
460 static void em_print_debug_info(struct e1000_softc *);
461 static int em_is_valid_ether_addr(u8 *);
462 static void em_newitr(struct e1000_softc *, struct em_rx_queue *,
463 struct tx_ring *, struct rx_ring *);
464 static bool em_automask_tso(if_ctx_t);
465 static int em_sysctl_tso_tcp_flags_mask(SYSCTL_HANDLER_ARGS);
466 static int em_sysctl_int_delay(SYSCTL_HANDLER_ARGS);
467 static void em_add_int_delay_sysctl(struct e1000_softc *, const char *,
468 const char *, struct em_int_delay_info *, int, int);
469 /* Management and WOL Support */
470 static void em_init_manageability(struct e1000_softc *);
471 static void em_release_manageability(struct e1000_softc *);
472 static void em_get_hw_control(struct e1000_softc *);
473 static void em_release_hw_control(struct e1000_softc *);
474 static void em_get_wakeup(if_ctx_t);
475 static void em_enable_wakeup(if_ctx_t);
476 static int em_enable_phy_wakeup(struct e1000_softc *);
477 static void em_disable_aspm(struct e1000_softc *);
478
479 int em_intr(void *);
480
481 /* MSI-X handlers */
482 static int em_if_msix_intr_assign(if_ctx_t, int);
483 static int em_msix_link(void *);
484 static void em_handle_link(void *);
485
486 static void em_enable_vectors_82574(if_ctx_t);
487
488 static int em_set_flowcntl(SYSCTL_HANDLER_ARGS);
489 static int em_sysctl_eee(SYSCTL_HANDLER_ARGS);
490 static int igb_sysctl_dmac(SYSCTL_HANDLER_ARGS);
491 static void em_if_led_func(if_ctx_t, int);
492
493 static int em_get_regs(SYSCTL_HANDLER_ARGS);
494
495 static void lem_smartspeed(struct e1000_softc *);
496 static void igb_configure_queues(struct e1000_softc *);
497 static void em_flush_desc_rings(struct e1000_softc *);
498
499
500 /*********************************************************************
501 * FreeBSD Device Interface Entry Points
502 *********************************************************************/
503 static device_method_t em_methods[] = {
504 /* Device interface */
505 DEVMETHOD(device_register, em_register),
506 DEVMETHOD(device_probe, iflib_device_probe),
507 DEVMETHOD(device_attach, iflib_device_attach),
508 DEVMETHOD(device_detach, iflib_device_detach),
509 DEVMETHOD(device_shutdown, iflib_device_shutdown),
510 DEVMETHOD(device_suspend, iflib_device_suspend),
511 DEVMETHOD(device_resume, iflib_device_resume),
512 DEVMETHOD_END
513 };
514
515 static device_method_t igb_methods[] = {
516 /* Device interface */
517 DEVMETHOD(device_register, igb_register),
518 DEVMETHOD(device_probe, iflib_device_probe),
519 DEVMETHOD(device_attach, iflib_device_attach),
520 DEVMETHOD(device_detach, iflib_device_detach),
521 DEVMETHOD(device_shutdown, iflib_device_shutdown),
522 DEVMETHOD(device_suspend, iflib_device_suspend),
523 DEVMETHOD(device_resume, iflib_device_resume),
524 DEVMETHOD_END
525 };
526
527
528 static driver_t em_driver = {
529 "em", em_methods, sizeof(struct e1000_softc),
530 };
531
532 DRIVER_MODULE(em, pci, em_driver, 0, 0);
533
534 MODULE_DEPEND(em, pci, 1, 1, 1);
535 MODULE_DEPEND(em, ether, 1, 1, 1);
536 MODULE_DEPEND(em, iflib, 1, 1, 1);
537
538 IFLIB_PNP_INFO(pci, em, em_vendor_info_array);
539
540 static driver_t igb_driver = {
541 "igb", igb_methods, sizeof(struct e1000_softc),
542 };
543
544 DRIVER_MODULE(igb, pci, igb_driver, 0, 0);
545
546 MODULE_DEPEND(igb, pci, 1, 1, 1);
547 MODULE_DEPEND(igb, ether, 1, 1, 1);
548 MODULE_DEPEND(igb, iflib, 1, 1, 1);
549
550 IFLIB_PNP_INFO(pci, igb, igb_vendor_info_array);
551
552 static device_method_t em_if_methods[] = {
553 DEVMETHOD(ifdi_attach_pre, em_if_attach_pre),
554 DEVMETHOD(ifdi_attach_post, em_if_attach_post),
555 DEVMETHOD(ifdi_detach, em_if_detach),
556 DEVMETHOD(ifdi_shutdown, em_if_shutdown),
557 DEVMETHOD(ifdi_suspend, em_if_suspend),
558 DEVMETHOD(ifdi_resume, em_if_resume),
559 DEVMETHOD(ifdi_init, em_if_init),
560 DEVMETHOD(ifdi_stop, em_if_stop),
561 DEVMETHOD(ifdi_msix_intr_assign, em_if_msix_intr_assign),
562 DEVMETHOD(ifdi_intr_enable, em_if_intr_enable),
563 DEVMETHOD(ifdi_intr_disable, em_if_intr_disable),
564 DEVMETHOD(ifdi_tx_queues_alloc, em_if_tx_queues_alloc),
565 DEVMETHOD(ifdi_rx_queues_alloc, em_if_rx_queues_alloc),
566 DEVMETHOD(ifdi_queues_free, em_if_queues_free),
567 DEVMETHOD(ifdi_update_admin_status, em_if_update_admin_status),
568 DEVMETHOD(ifdi_multi_set, em_if_multi_set),
569 DEVMETHOD(ifdi_media_status, em_if_media_status),
570 DEVMETHOD(ifdi_media_change, em_if_media_change),
571 DEVMETHOD(ifdi_mtu_set, em_if_mtu_set),
572 DEVMETHOD(ifdi_promisc_set, em_if_set_promisc),
573 DEVMETHOD(ifdi_timer, em_if_timer),
574 DEVMETHOD(ifdi_watchdog_reset, em_if_watchdog_reset),
575 DEVMETHOD(ifdi_vlan_register, em_if_vlan_register),
576 DEVMETHOD(ifdi_vlan_unregister, em_if_vlan_unregister),
577 DEVMETHOD(ifdi_get_counter, em_if_get_counter),
578 DEVMETHOD(ifdi_led_func, em_if_led_func),
579 DEVMETHOD(ifdi_rx_queue_intr_enable, em_if_rx_queue_intr_enable),
580 DEVMETHOD(ifdi_tx_queue_intr_enable, em_if_tx_queue_intr_enable),
581 DEVMETHOD(ifdi_debug, em_if_debug),
582 DEVMETHOD(ifdi_needs_restart, em_if_needs_restart),
583 DEVMETHOD_END
584 };
585
586 static driver_t em_if_driver = {
587 "em_if", em_if_methods, sizeof(struct e1000_softc)
588 };
589
590 static device_method_t igb_if_methods[] = {
591 DEVMETHOD(ifdi_attach_pre, em_if_attach_pre),
592 DEVMETHOD(ifdi_attach_post, em_if_attach_post),
593 DEVMETHOD(ifdi_detach, em_if_detach),
594 DEVMETHOD(ifdi_shutdown, em_if_shutdown),
595 DEVMETHOD(ifdi_suspend, em_if_suspend),
596 DEVMETHOD(ifdi_resume, em_if_resume),
597 DEVMETHOD(ifdi_init, em_if_init),
598 DEVMETHOD(ifdi_stop, em_if_stop),
599 DEVMETHOD(ifdi_msix_intr_assign, em_if_msix_intr_assign),
600 DEVMETHOD(ifdi_intr_enable, igb_if_intr_enable),
601 DEVMETHOD(ifdi_intr_disable, igb_if_intr_disable),
602 DEVMETHOD(ifdi_tx_queues_alloc, em_if_tx_queues_alloc),
603 DEVMETHOD(ifdi_rx_queues_alloc, em_if_rx_queues_alloc),
604 DEVMETHOD(ifdi_queues_free, em_if_queues_free),
605 DEVMETHOD(ifdi_update_admin_status, em_if_update_admin_status),
606 DEVMETHOD(ifdi_multi_set, em_if_multi_set),
607 DEVMETHOD(ifdi_media_status, em_if_media_status),
608 DEVMETHOD(ifdi_media_change, em_if_media_change),
609 DEVMETHOD(ifdi_mtu_set, em_if_mtu_set),
610 DEVMETHOD(ifdi_promisc_set, em_if_set_promisc),
611 DEVMETHOD(ifdi_timer, em_if_timer),
612 DEVMETHOD(ifdi_watchdog_reset, em_if_watchdog_reset),
613 DEVMETHOD(ifdi_vlan_register, em_if_vlan_register),
614 DEVMETHOD(ifdi_vlan_unregister, em_if_vlan_unregister),
615 DEVMETHOD(ifdi_get_counter, em_if_get_counter),
616 DEVMETHOD(ifdi_led_func, em_if_led_func),
617 DEVMETHOD(ifdi_rx_queue_intr_enable, igb_if_rx_queue_intr_enable),
618 DEVMETHOD(ifdi_tx_queue_intr_enable, igb_if_tx_queue_intr_enable),
619 DEVMETHOD(ifdi_debug, em_if_debug),
620 DEVMETHOD(ifdi_needs_restart, em_if_needs_restart),
621 DEVMETHOD_END
622 };
623
624 static driver_t igb_if_driver = {
625 "igb_if", igb_if_methods, sizeof(struct e1000_softc)
626 };
627
628 /*********************************************************************
629 * Tunable default values.
630 *********************************************************************/
631
632 #define EM_TICKS_TO_USECS(ticks) ((1024 * (ticks) + 500) / 1000)
633 #define EM_USECS_TO_TICKS(usecs) ((1000 * (usecs) + 512) / 1024)
634
635 /* Allow common code without TSO */
636 #ifndef CSUM_TSO
637 #define CSUM_TSO 0
638 #endif
639
640 static SYSCTL_NODE(_hw, OID_AUTO, em, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
641 "EM driver parameters");
642
643 static int em_disable_crc_stripping = 0;
644 SYSCTL_INT(_hw_em, OID_AUTO, disable_crc_stripping, CTLFLAG_RDTUN,
645 &em_disable_crc_stripping, 0, "Disable CRC Stripping");
646
647 static int em_tx_int_delay_dflt = EM_TICKS_TO_USECS(EM_TIDV);
648 static int em_rx_int_delay_dflt = EM_TICKS_TO_USECS(EM_RDTR);
649 SYSCTL_INT(_hw_em, OID_AUTO, tx_int_delay, CTLFLAG_RDTUN,
650 &em_tx_int_delay_dflt, 0, "Default transmit interrupt delay in usecs");
651 SYSCTL_INT(_hw_em, OID_AUTO, rx_int_delay, CTLFLAG_RDTUN,
652 &em_rx_int_delay_dflt, 0, "Default receive interrupt delay in usecs");
653
654 static int em_tx_abs_int_delay_dflt = EM_TICKS_TO_USECS(EM_TADV);
655 static int em_rx_abs_int_delay_dflt = EM_TICKS_TO_USECS(EM_RADV);
656 SYSCTL_INT(_hw_em, OID_AUTO, tx_abs_int_delay, CTLFLAG_RDTUN,
657 &em_tx_abs_int_delay_dflt, 0,
658 "Default transmit interrupt delay limit in usecs");
659 SYSCTL_INT(_hw_em, OID_AUTO, rx_abs_int_delay, CTLFLAG_RDTUN,
660 &em_rx_abs_int_delay_dflt, 0,
661 "Default receive interrupt delay limit in usecs");
662
663 static int em_smart_pwr_down = false;
664 SYSCTL_INT(_hw_em, OID_AUTO, smart_pwr_down, CTLFLAG_RDTUN,
665 &em_smart_pwr_down,
666 0, "Set to true to leave smart power down enabled on newer adapters");
667
668 static bool em_unsupported_tso = false;
669 SYSCTL_BOOL(_hw_em, OID_AUTO, unsupported_tso, CTLFLAG_RDTUN,
670 &em_unsupported_tso, 0, "Allow unsupported em(4) TSO configurations");
671
672 /* Controls whether promiscuous also shows bad packets */
673 static int em_debug_sbp = false;
674 SYSCTL_INT(_hw_em, OID_AUTO, sbp, CTLFLAG_RDTUN, &em_debug_sbp, 0,
675 "Show bad packets in promiscuous mode");
676
677 /* Energy efficient ethernet - default to OFF */
678 static int eee_setting = 1;
679 SYSCTL_INT(_hw_em, OID_AUTO, eee_setting, CTLFLAG_RDTUN, &eee_setting, 0,
680 "Enable Energy Efficient Ethernet");
681
682 /*
683 * AIM: Adaptive Interrupt Moderation
684 * which means that the interrupt rate is varied over time based on the
685 * traffic for that interrupt vector
686 */
687 static int em_enable_aim = 1;
688 SYSCTL_INT(_hw_em, OID_AUTO, enable_aim, CTLFLAG_RWTUN, &em_enable_aim,
689 0, "Enable adaptive interrupt moderation (1=normal, 2=lowlatency)");
690
691 /*
692 ** Tuneable Interrupt rate
693 */
694 static int em_max_interrupt_rate = EM_INTS_DEFAULT;
695 SYSCTL_INT(_hw_em, OID_AUTO, max_interrupt_rate, CTLFLAG_RDTUN,
696 &em_max_interrupt_rate, 0, "Maximum interrupts per second");
697
698 /* Global used in WOL setup with multiport cards */
699 static int global_quad_port_a = 0;
700
701 extern struct if_txrx igb_txrx;
702 extern struct if_txrx em_txrx;
703 extern struct if_txrx lem_txrx;
704
705 static struct if_shared_ctx em_sctx_init = {
706 .isc_magic = IFLIB_MAGIC,
707 .isc_q_align = PAGE_SIZE,
708 .isc_tx_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header),
709 .isc_tx_maxsegsize = PAGE_SIZE,
710 .isc_tso_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header),
711 .isc_tso_maxsegsize = EM_TSO_SEG_SIZE,
712 .isc_rx_maxsize = MJUM9BYTES,
713 .isc_rx_nsegments = 1,
714 .isc_rx_maxsegsize = MJUM9BYTES,
715 .isc_nfl = 1,
716 .isc_nrxqs = 1,
717 .isc_ntxqs = 1,
718 .isc_admin_intrcnt = 1,
719 .isc_vendor_info = em_vendor_info_array,
720 .isc_driver_version = em_driver_version,
721 .isc_driver = &em_if_driver,
722 .isc_flags =
723 IFLIB_NEED_SCRATCH | IFLIB_TSO_INIT_IP | IFLIB_NEED_ZERO_CSUM,
724
725 .isc_nrxd_min = {EM_MIN_RXD},
726 .isc_ntxd_min = {EM_MIN_TXD},
727 .isc_nrxd_max = {EM_MAX_RXD},
728 .isc_ntxd_max = {EM_MAX_TXD},
729 .isc_nrxd_default = {EM_DEFAULT_RXD},
730 .isc_ntxd_default = {EM_DEFAULT_TXD},
731 };
732
733 static struct if_shared_ctx igb_sctx_init = {
734 .isc_magic = IFLIB_MAGIC,
735 .isc_q_align = PAGE_SIZE,
736 .isc_tx_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header),
737 .isc_tx_maxsegsize = PAGE_SIZE,
738 .isc_tso_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header),
739 .isc_tso_maxsegsize = EM_TSO_SEG_SIZE,
740 .isc_rx_maxsize = MJUM9BYTES,
741 .isc_rx_nsegments = 1,
742 .isc_rx_maxsegsize = MJUM9BYTES,
743 .isc_nfl = 1,
744 .isc_nrxqs = 1,
745 .isc_ntxqs = 1,
746 .isc_admin_intrcnt = 1,
747 .isc_vendor_info = igb_vendor_info_array,
748 .isc_driver_version = igb_driver_version,
749 .isc_driver = &igb_if_driver,
750 .isc_flags =
751 IFLIB_NEED_SCRATCH | IFLIB_TSO_INIT_IP | IFLIB_NEED_ZERO_CSUM,
752
753 .isc_nrxd_min = {EM_MIN_RXD},
754 .isc_ntxd_min = {EM_MIN_TXD},
755 .isc_nrxd_max = {IGB_MAX_RXD},
756 .isc_ntxd_max = {IGB_MAX_TXD},
757 .isc_nrxd_default = {EM_DEFAULT_RXD},
758 .isc_ntxd_default = {EM_DEFAULT_TXD},
759 };
760
761 /*****************************************************************
762 *
763 * Dump Registers
764 *
765 ****************************************************************/
766 #define IGB_REGS_LEN 739
767
em_get_regs(SYSCTL_HANDLER_ARGS)768 static int em_get_regs(SYSCTL_HANDLER_ARGS)
769 {
770 struct e1000_softc *sc = (struct e1000_softc *)arg1;
771 struct e1000_hw *hw = &sc->hw;
772 struct sbuf *sb;
773 u32 *regs_buff;
774 int rc;
775
776 regs_buff = malloc(sizeof(u32) * IGB_REGS_LEN, M_DEVBUF, M_WAITOK);
777 memset(regs_buff, 0, IGB_REGS_LEN * sizeof(u32));
778
779 rc = sysctl_wire_old_buffer(req, 0);
780 MPASS(rc == 0);
781 if (rc != 0) {
782 free(regs_buff, M_DEVBUF);
783 return (rc);
784 }
785
786 sb = sbuf_new_for_sysctl(NULL, NULL, 32*400, req);
787 MPASS(sb != NULL);
788 if (sb == NULL) {
789 free(regs_buff, M_DEVBUF);
790 return (ENOMEM);
791 }
792
793 /* General Registers */
794 regs_buff[0] = E1000_READ_REG(hw, E1000_CTRL);
795 regs_buff[1] = E1000_READ_REG(hw, E1000_STATUS);
796 regs_buff[2] = E1000_READ_REG(hw, E1000_CTRL_EXT);
797 regs_buff[3] = E1000_READ_REG(hw, E1000_ICR);
798 regs_buff[4] = E1000_READ_REG(hw, E1000_RCTL);
799 regs_buff[5] = E1000_READ_REG(hw, E1000_RDLEN(0));
800 regs_buff[6] = E1000_READ_REG(hw, E1000_RDH(0));
801 regs_buff[7] = E1000_READ_REG(hw, E1000_RDT(0));
802 regs_buff[8] = E1000_READ_REG(hw, E1000_RXDCTL(0));
803 regs_buff[9] = E1000_READ_REG(hw, E1000_RDBAL(0));
804 regs_buff[10] = E1000_READ_REG(hw, E1000_RDBAH(0));
805 regs_buff[11] = E1000_READ_REG(hw, E1000_TCTL);
806 regs_buff[12] = E1000_READ_REG(hw, E1000_TDBAL(0));
807 regs_buff[13] = E1000_READ_REG(hw, E1000_TDBAH(0));
808 regs_buff[14] = E1000_READ_REG(hw, E1000_TDLEN(0));
809 regs_buff[15] = E1000_READ_REG(hw, E1000_TDH(0));
810 regs_buff[16] = E1000_READ_REG(hw, E1000_TDT(0));
811 regs_buff[17] = E1000_READ_REG(hw, E1000_TXDCTL(0));
812 regs_buff[18] = E1000_READ_REG(hw, E1000_TDFH);
813 regs_buff[19] = E1000_READ_REG(hw, E1000_TDFT);
814 regs_buff[20] = E1000_READ_REG(hw, E1000_TDFHS);
815 regs_buff[21] = E1000_READ_REG(hw, E1000_TDFPC);
816
817 sbuf_printf(sb, "General Registers\n");
818 sbuf_printf(sb, "\tCTRL\t %08x\n", regs_buff[0]);
819 sbuf_printf(sb, "\tSTATUS\t %08x\n", regs_buff[1]);
820 sbuf_printf(sb, "\tCTRL_EXT\t %08x\n\n", regs_buff[2]);
821
822 sbuf_printf(sb, "Interrupt Registers\n");
823 sbuf_printf(sb, "\tICR\t %08x\n\n", regs_buff[3]);
824
825 sbuf_printf(sb, "RX Registers\n");
826 sbuf_printf(sb, "\tRCTL\t %08x\n", regs_buff[4]);
827 sbuf_printf(sb, "\tRDLEN\t %08x\n", regs_buff[5]);
828 sbuf_printf(sb, "\tRDH\t %08x\n", regs_buff[6]);
829 sbuf_printf(sb, "\tRDT\t %08x\n", regs_buff[7]);
830 sbuf_printf(sb, "\tRXDCTL\t %08x\n", regs_buff[8]);
831 sbuf_printf(sb, "\tRDBAL\t %08x\n", regs_buff[9]);
832 sbuf_printf(sb, "\tRDBAH\t %08x\n\n", regs_buff[10]);
833
834 sbuf_printf(sb, "TX Registers\n");
835 sbuf_printf(sb, "\tTCTL\t %08x\n", regs_buff[11]);
836 sbuf_printf(sb, "\tTDBAL\t %08x\n", regs_buff[12]);
837 sbuf_printf(sb, "\tTDBAH\t %08x\n", regs_buff[13]);
838 sbuf_printf(sb, "\tTDLEN\t %08x\n", regs_buff[14]);
839 sbuf_printf(sb, "\tTDH\t %08x\n", regs_buff[15]);
840 sbuf_printf(sb, "\tTDT\t %08x\n", regs_buff[16]);
841 sbuf_printf(sb, "\tTXDCTL\t %08x\n", regs_buff[17]);
842 sbuf_printf(sb, "\tTDFH\t %08x\n", regs_buff[18]);
843 sbuf_printf(sb, "\tTDFT\t %08x\n", regs_buff[19]);
844 sbuf_printf(sb, "\tTDFHS\t %08x\n", regs_buff[20]);
845 sbuf_printf(sb, "\tTDFPC\t %08x\n\n", regs_buff[21]);
846
847 free(regs_buff, M_DEVBUF);
848
849 #ifdef DUMP_DESCS
850 {
851 if_softc_ctx_t scctx = sc->shared;
852 struct rx_ring *rxr = &rx_que->rxr;
853 struct tx_ring *txr = &tx_que->txr;
854 int ntxd = scctx->isc_ntxd[0];
855 int nrxd = scctx->isc_nrxd[0];
856 int j;
857
858 for (j = 0; j < nrxd; j++) {
859 u32 staterr = le32toh(rxr->rx_base[j].wb.upper.status_error);
860 u32 length = le32toh(rxr->rx_base[j].wb.upper.length);
861 sbuf_printf(sb, "\tReceive Descriptor Address %d: %08"
862 PRIx64 " Error:%d Length:%d\n",
863 j, rxr->rx_base[j].read.buffer_addr, staterr, length);
864 }
865
866 for (j = 0; j < min(ntxd, 256); j++) {
867 unsigned int *ptr = (unsigned int *)&txr->tx_base[j];
868
869 sbuf_printf(sb,
870 "\tTXD[%03d] [0]: %08x [1]: %08x [2]: %08x [3]: %08x"
871 " eop: %d DD=%d\n",
872 j, ptr[0], ptr[1], ptr[2], ptr[3], buf->eop,
873 buf->eop != -1 ?
874 txr->tx_base[buf->eop].upper.fields.status &
875 E1000_TXD_STAT_DD : 0);
876
877 }
878 }
879 #endif
880
881 rc = sbuf_finish(sb);
882 sbuf_delete(sb);
883 return(rc);
884 }
885
886 static void *
em_register(device_t dev)887 em_register(device_t dev)
888 {
889 return (&em_sctx_init);
890 }
891
892 static void *
igb_register(device_t dev)893 igb_register(device_t dev)
894 {
895 return (&igb_sctx_init);
896 }
897
898 static int
em_set_num_queues(if_ctx_t ctx)899 em_set_num_queues(if_ctx_t ctx)
900 {
901 struct e1000_softc *sc = iflib_get_softc(ctx);
902 int maxqueues;
903
904 /* Sanity check based on HW */
905 switch (sc->hw.mac.type) {
906 case e1000_82576:
907 case e1000_82580:
908 case e1000_i350:
909 case e1000_i354:
910 maxqueues = 8;
911 break;
912 case e1000_i210:
913 case e1000_82575:
914 maxqueues = 4;
915 break;
916 case e1000_i211:
917 case e1000_82574:
918 maxqueues = 2;
919 break;
920 default:
921 maxqueues = 1;
922 break;
923 }
924
925 return (maxqueues);
926 }
927
928 #define LEM_CAPS \
929 IFCAP_HWCSUM | IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING | \
930 IFCAP_VLAN_HWCSUM | IFCAP_WOL | IFCAP_VLAN_HWFILTER | IFCAP_TSO4 | \
931 IFCAP_LRO | IFCAP_VLAN_HWTSO | IFCAP_JUMBO_MTU | IFCAP_HWCSUM_IPV6
932
933 #define EM_CAPS \
934 IFCAP_HWCSUM | IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING | \
935 IFCAP_VLAN_HWCSUM | IFCAP_WOL | IFCAP_VLAN_HWFILTER | IFCAP_TSO4 | \
936 IFCAP_LRO | IFCAP_VLAN_HWTSO | IFCAP_JUMBO_MTU | IFCAP_HWCSUM_IPV6 | \
937 IFCAP_TSO6
938
939 #define IGB_CAPS \
940 IFCAP_HWCSUM | IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING | \
941 IFCAP_VLAN_HWCSUM | IFCAP_WOL | IFCAP_VLAN_HWFILTER | IFCAP_TSO4 | \
942 IFCAP_LRO | IFCAP_VLAN_HWTSO | IFCAP_JUMBO_MTU | IFCAP_HWCSUM_IPV6 | \
943 IFCAP_TSO6
944
945 /*********************************************************************
946 * Device initialization routine
947 *
948 * The attach entry point is called when the driver is being loaded.
949 * This routine identifies the type of hardware, allocates all resources
950 * and initializes the hardware.
951 *
952 * return 0 on success, positive on failure
953 *********************************************************************/
954 static int
em_if_attach_pre(if_ctx_t ctx)955 em_if_attach_pre(if_ctx_t ctx)
956 {
957 struct e1000_softc *sc;
958 if_softc_ctx_t scctx;
959 device_t dev;
960 struct e1000_hw *hw;
961 struct sysctl_oid_list *child;
962 struct sysctl_ctx_list *ctx_list;
963 int error = 0;
964
965 INIT_DEBUGOUT("em_if_attach_pre: begin");
966 dev = iflib_get_dev(ctx);
967 sc = iflib_get_softc(ctx);
968
969 sc->ctx = sc->osdep.ctx = ctx;
970 sc->dev = sc->osdep.dev = dev;
971 scctx = sc->shared = iflib_get_softc_ctx(ctx);
972 sc->media = iflib_get_media(ctx);
973 hw = &sc->hw;
974
975 /* Determine hardware and mac info */
976 em_identify_hardware(ctx);
977
978 /* SYSCTL stuff */
979 ctx_list = device_get_sysctl_ctx(dev);
980 child = SYSCTL_CHILDREN(device_get_sysctl_tree(dev));
981
982 SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO, "nvm",
983 CTLTYPE_INT | CTLFLAG_RW, sc, 0,
984 em_sysctl_nvm_info, "I", "NVM Information");
985
986 sc->enable_aim = em_enable_aim;
987 SYSCTL_ADD_INT(ctx_list, child, OID_AUTO, "enable_aim",
988 CTLFLAG_RW, &sc->enable_aim, 0,
989 "Interrupt Moderation (1=normal, 2=lowlatency)");
990
991 SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO, "fw_version",
992 CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
993 em_sysctl_print_fw_version, "A",
994 "Prints FW/NVM Versions");
995
996 SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO, "debug",
997 CTLTYPE_INT | CTLFLAG_RW, sc, 0,
998 em_sysctl_debug_info, "I", "Debug Information");
999
1000 SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO, "fc",
1001 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, sc, 0,
1002 em_set_flowcntl, "I", "Flow Control");
1003
1004 SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO, "reg_dump",
1005 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, sc, 0,
1006 em_get_regs, "A", "Dump Registers");
1007
1008 SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO, "rs_dump",
1009 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, sc, 0,
1010 em_get_rs, "I", "Dump RS indexes");
1011
1012 if (hw->mac.type >= e1000_i350) {
1013 SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO, "dmac",
1014 CTLTYPE_INT | CTLFLAG_RW, sc, 0,
1015 igb_sysctl_dmac, "I", "DMA Coalesce");
1016 }
1017
1018 SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO,
1019 "tso_tcp_flags_mask_first_segment",
1020 CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
1021 sc, 0, em_sysctl_tso_tcp_flags_mask, "IU",
1022 "TSO TCP flags mask for first segment");
1023
1024 SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO,
1025 "tso_tcp_flags_mask_middle_segment",
1026 CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
1027 sc, 1, em_sysctl_tso_tcp_flags_mask, "IU",
1028 "TSO TCP flags mask for middle segment");
1029
1030 SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO,
1031 "tso_tcp_flags_mask_last_segment",
1032 CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
1033 sc, 2, em_sysctl_tso_tcp_flags_mask, "IU",
1034 "TSO TCP flags mask for last segment");
1035
1036 scctx->isc_tx_nsegments = EM_MAX_SCATTER;
1037 scctx->isc_nrxqsets_max =
1038 scctx->isc_ntxqsets_max = em_set_num_queues(ctx);
1039 if (bootverbose)
1040 device_printf(dev, "attach_pre capping queues at %d\n",
1041 scctx->isc_ntxqsets_max);
1042
1043 if (hw->mac.type >= igb_mac_min) {
1044 scctx->isc_txqsizes[0] = roundup2(scctx->isc_ntxd[0] *
1045 sizeof(union e1000_adv_tx_desc), EM_DBA_ALIGN);
1046 scctx->isc_rxqsizes[0] = roundup2(scctx->isc_nrxd[0] *
1047 sizeof(union e1000_adv_rx_desc), EM_DBA_ALIGN);
1048 scctx->isc_txd_size[0] = sizeof(union e1000_adv_tx_desc);
1049 scctx->isc_rxd_size[0] = sizeof(union e1000_adv_rx_desc);
1050 scctx->isc_txrx = &igb_txrx;
1051 scctx->isc_tx_tso_segments_max = EM_MAX_SCATTER;
1052 scctx->isc_tx_tso_size_max = EM_TSO_SIZE;
1053 scctx->isc_tx_tso_segsize_max = EM_TSO_SEG_SIZE;
1054 scctx->isc_capabilities = scctx->isc_capenable = IGB_CAPS;
1055 scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP | CSUM_TSO |
1056 CSUM_IP6_TCP | CSUM_IP6_UDP;
1057 if (hw->mac.type != e1000_82575)
1058 scctx->isc_tx_csum_flags |= CSUM_SCTP | CSUM_IP6_SCTP;
1059 /*
1060 ** Some new devices, as with ixgbe, now may
1061 ** use a different BAR, so we need to keep
1062 ** track of which is used.
1063 */
1064 scctx->isc_msix_bar = pci_msix_table_bar(dev);
1065 } else if (hw->mac.type >= em_mac_min) {
1066 scctx->isc_txqsizes[0] = roundup2(scctx->isc_ntxd[0] *
1067 sizeof(struct e1000_tx_desc), EM_DBA_ALIGN);
1068 scctx->isc_rxqsizes[0] = roundup2(scctx->isc_nrxd[0] *
1069 sizeof(union e1000_rx_desc_extended), EM_DBA_ALIGN);
1070 scctx->isc_txd_size[0] = sizeof(struct e1000_tx_desc);
1071 scctx->isc_rxd_size[0] = sizeof(union e1000_rx_desc_extended);
1072 scctx->isc_txrx = &em_txrx;
1073 scctx->isc_tx_tso_segments_max = EM_MAX_SCATTER;
1074 scctx->isc_tx_tso_size_max = EM_TSO_SIZE;
1075 scctx->isc_tx_tso_segsize_max = EM_TSO_SEG_SIZE;
1076 scctx->isc_capabilities = scctx->isc_capenable = EM_CAPS;
1077 scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP | CSUM_IP_TSO |
1078 CSUM_IP6_TCP | CSUM_IP6_UDP;
1079
1080 /* Disable TSO on all em(4) until ring stalls are debugged */
1081 scctx->isc_capenable &= ~IFCAP_TSO;
1082
1083 /*
1084 * Disable TSO on SPT due to errata that downclocks DMA
1085 * performance
1086 * i218-i219 Specification Update 1.5.4.5
1087 */
1088 if (hw->mac.type == e1000_pch_spt)
1089 scctx->isc_capenable &= ~IFCAP_TSO;
1090
1091 /*
1092 * We support MSI-X with 82574 only, but indicate to iflib(4)
1093 * that it shall give MSI at least a try with other devices.
1094 */
1095 if (hw->mac.type == e1000_82574) {
1096 scctx->isc_msix_bar = pci_msix_table_bar(dev);
1097 } else {
1098 scctx->isc_msix_bar = -1;
1099 scctx->isc_disable_msix = 1;
1100 }
1101 } else {
1102 scctx->isc_txqsizes[0] = roundup2((scctx->isc_ntxd[0] + 1) *
1103 sizeof(struct e1000_tx_desc), EM_DBA_ALIGN);
1104 scctx->isc_rxqsizes[0] = roundup2((scctx->isc_nrxd[0] + 1) *
1105 sizeof(struct e1000_rx_desc), EM_DBA_ALIGN);
1106 scctx->isc_txd_size[0] = sizeof(struct e1000_tx_desc);
1107 scctx->isc_rxd_size[0] = sizeof(struct e1000_rx_desc);
1108 scctx->isc_txrx = &lem_txrx;
1109 scctx->isc_tx_tso_segments_max = EM_MAX_SCATTER;
1110 scctx->isc_tx_tso_size_max = EM_TSO_SIZE;
1111 scctx->isc_tx_tso_segsize_max = EM_TSO_SEG_SIZE;
1112 scctx->isc_capabilities = scctx->isc_capenable = LEM_CAPS;
1113 if (em_unsupported_tso)
1114 scctx->isc_capabilities |= IFCAP_TSO6;
1115 scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP | CSUM_IP_TSO |
1116 CSUM_IP6_TCP | CSUM_IP6_UDP;
1117
1118 /* Disable TSO on all lem(4) until ring stalls debugged */
1119 scctx->isc_capenable &= ~IFCAP_TSO;
1120
1121 /* 82541ER doesn't do HW tagging */
1122 if (hw->device_id == E1000_DEV_ID_82541ER ||
1123 hw->device_id == E1000_DEV_ID_82541ER_LOM) {
1124 scctx->isc_capabilities &= ~IFCAP_VLAN_HWTAGGING;
1125 scctx->isc_capenable = scctx->isc_capabilities;
1126 }
1127 /* This is the first e1000 chip and it does not do offloads */
1128 if (hw->mac.type == e1000_82542) {
1129 scctx->isc_capabilities &= ~(IFCAP_HWCSUM |
1130 IFCAP_VLAN_HWCSUM | IFCAP_HWCSUM_IPV6 |
1131 IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_HWFILTER |
1132 IFCAP_TSO | IFCAP_VLAN_HWTSO);
1133 scctx->isc_capenable = scctx->isc_capabilities;
1134 }
1135 /* These can't do TSO for various reasons */
1136 if (hw->mac.type < e1000_82544 ||
1137 hw->mac.type == e1000_82547 ||
1138 hw->mac.type == e1000_82547_rev_2) {
1139 scctx->isc_capabilities &=
1140 ~(IFCAP_TSO |IFCAP_VLAN_HWTSO);
1141 scctx->isc_capenable = scctx->isc_capabilities;
1142 }
1143 /* XXXKB: No IPv6 before this? */
1144 if (hw->mac.type < e1000_82545){
1145 scctx->isc_capabilities &= ~IFCAP_HWCSUM_IPV6;
1146 scctx->isc_capenable = scctx->isc_capabilities;
1147 }
1148 /*
1149 * "PCI/PCI-X SDM 4.0" page 33 (b):
1150 * FDX requirement on these chips
1151 */
1152 if (hw->mac.type == e1000_82547 ||
1153 hw->mac.type == e1000_82547_rev_2)
1154 scctx->isc_capenable &= ~(IFCAP_HWCSUM |
1155 IFCAP_VLAN_HWCSUM | IFCAP_HWCSUM_IPV6);
1156
1157 /* INTx only */
1158 scctx->isc_msix_bar = 0;
1159 }
1160
1161 /* Setup PCI resources */
1162 if (em_allocate_pci_resources(ctx)) {
1163 device_printf(dev, "Allocation of PCI resources failed\n");
1164 error = ENXIO;
1165 goto err_pci;
1166 }
1167
1168 /*
1169 ** For ICH8 and family we need to
1170 ** map the flash memory, and this
1171 ** must happen after the MAC is
1172 ** identified
1173 */
1174 if ((hw->mac.type == e1000_ich8lan) ||
1175 (hw->mac.type == e1000_ich9lan) ||
1176 (hw->mac.type == e1000_ich10lan) ||
1177 (hw->mac.type == e1000_pchlan) ||
1178 (hw->mac.type == e1000_pch2lan) ||
1179 (hw->mac.type == e1000_pch_lpt)) {
1180 int rid = EM_BAR_TYPE_FLASH;
1181 sc->flash = bus_alloc_resource_any(dev,
1182 SYS_RES_MEMORY, &rid, RF_ACTIVE);
1183 if (sc->flash == NULL) {
1184 device_printf(dev, "Mapping of Flash failed\n");
1185 error = ENXIO;
1186 goto err_pci;
1187 }
1188 /* This is used in the shared code */
1189 hw->flash_address = (u8 *)sc->flash;
1190 sc->osdep.flash_bus_space_tag =
1191 rman_get_bustag(sc->flash);
1192 sc->osdep.flash_bus_space_handle =
1193 rman_get_bushandle(sc->flash);
1194 }
1195 /*
1196 ** In the new SPT device flash is not a
1197 ** separate BAR, rather it is also in BAR0,
1198 ** so use the same tag and an offset handle for the
1199 ** FLASH read/write macros in the shared code.
1200 */
1201 else if (hw->mac.type >= e1000_pch_spt) {
1202 sc->osdep.flash_bus_space_tag = sc->osdep.mem_bus_space_tag;
1203 sc->osdep.flash_bus_space_handle =
1204 sc->osdep.mem_bus_space_handle + E1000_FLASH_BASE_ADDR;
1205 }
1206
1207 /* Do Shared Code initialization */
1208 error = e1000_setup_init_funcs(hw, true);
1209 if (error) {
1210 device_printf(dev, "Setup of Shared code failed, error %d\n",
1211 error);
1212 error = ENXIO;
1213 goto err_pci;
1214 }
1215
1216 em_setup_msix(ctx);
1217 e1000_get_bus_info(hw);
1218
1219 /* Set up some sysctls for the tunable interrupt delays */
1220 if (hw->mac.type < igb_mac_min) {
1221 em_add_int_delay_sysctl(sc, "rx_int_delay",
1222 "receive interrupt delay in usecs", &sc->rx_int_delay,
1223 E1000_REGISTER(hw, E1000_RDTR), em_rx_int_delay_dflt);
1224 em_add_int_delay_sysctl(sc, "tx_int_delay",
1225 "transmit interrupt delay in usecs", &sc->tx_int_delay,
1226 E1000_REGISTER(hw, E1000_TIDV), em_tx_int_delay_dflt);
1227 }
1228 if (hw->mac.type >= e1000_82540 && hw->mac.type < igb_mac_min) {
1229 em_add_int_delay_sysctl(sc, "rx_abs_int_delay",
1230 "receive interrupt delay limit in usecs",
1231 &sc->rx_abs_int_delay,
1232 E1000_REGISTER(hw, E1000_RADV), em_rx_abs_int_delay_dflt);
1233 em_add_int_delay_sysctl(sc, "tx_abs_int_delay",
1234 "transmit interrupt delay limit in usecs",
1235 &sc->tx_abs_int_delay,
1236 E1000_REGISTER(hw, E1000_TADV), em_tx_abs_int_delay_dflt);
1237 em_add_int_delay_sysctl(sc, "itr",
1238 "interrupt delay limit in usecs/4", &sc->tx_itr,
1239 E1000_REGISTER(hw, E1000_ITR),
1240 EM_INTS_TO_ITR(em_max_interrupt_rate));
1241 }
1242
1243 hw->mac.autoneg = DO_AUTO_NEG;
1244 hw->phy.autoneg_wait_to_complete = false;
1245 hw->phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
1246
1247 if (hw->mac.type < em_mac_min) {
1248 e1000_init_script_state_82541(hw, true);
1249 e1000_set_tbi_compatibility_82543(hw, true);
1250 }
1251 /* Copper options */
1252 if (hw->phy.media_type == e1000_media_type_copper) {
1253 hw->phy.mdix = AUTO_ALL_MODES;
1254 hw->phy.disable_polarity_correction = false;
1255 hw->phy.ms_type = EM_MASTER_SLAVE;
1256 }
1257
1258 /*
1259 * Set the frame limits assuming
1260 * standard ethernet sized frames.
1261 */
1262 scctx->isc_max_frame_size = hw->mac.max_frame_size =
1263 ETHERMTU + ETHER_HDR_LEN + ETHERNET_FCS_SIZE;
1264
1265 /*
1266 * This controls when hardware reports transmit completion
1267 * status.
1268 */
1269 hw->mac.report_tx_early = 1;
1270
1271 /* Allocate multicast array memory. */
1272 sc->mta = malloc(sizeof(u8) * ETHER_ADDR_LEN *
1273 MAX_NUM_MULTICAST_ADDRESSES, M_DEVBUF, M_NOWAIT);
1274 if (sc->mta == NULL) {
1275 device_printf(dev,
1276 "Can not allocate multicast setup array\n");
1277 error = ENOMEM;
1278 goto err_late;
1279 }
1280
1281 /* Clear the IFCAP_TSO auto mask */
1282 sc->tso_automasked = 0;
1283
1284 /* Check SOL/IDER usage */
1285 if (e1000_check_reset_block(hw))
1286 device_printf(dev,
1287 "PHY reset is blocked due to SOL/IDER session.\n");
1288
1289 /* Sysctl for setting Energy Efficient Ethernet */
1290 if (hw->mac.type < igb_mac_min)
1291 hw->dev_spec.ich8lan.eee_disable = eee_setting;
1292 else
1293 hw->dev_spec._82575.eee_disable = eee_setting;
1294 SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO, "eee_control",
1295 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, sc, 0,
1296 em_sysctl_eee, "I", "Disable Energy Efficient Ethernet");
1297
1298 /*
1299 ** Start from a known state, this is
1300 ** important in reading the nvm and
1301 ** mac from that.
1302 */
1303 e1000_reset_hw(hw);
1304
1305 /* Make sure we have a good EEPROM before we read from it */
1306 if (e1000_validate_nvm_checksum(hw) < 0) {
1307 /*
1308 ** Some PCI-E parts fail the first check due to
1309 ** the link being in sleep state, call it again,
1310 ** if it fails a second time its a real issue.
1311 */
1312 if (e1000_validate_nvm_checksum(hw) < 0) {
1313 device_printf(dev,
1314 "The EEPROM Checksum Is Not Valid\n");
1315 error = EIO;
1316 goto err_late;
1317 }
1318 }
1319
1320 /* Copy the permanent MAC address out of the EEPROM */
1321 if (e1000_read_mac_addr(hw) < 0) {
1322 device_printf(dev,
1323 "EEPROM read error while reading MAC address\n");
1324 error = EIO;
1325 goto err_late;
1326 }
1327
1328 if (!em_is_valid_ether_addr(hw->mac.addr)) {
1329 if (sc->vf_ifp) {
1330 ether_gen_addr(iflib_get_ifp(ctx),
1331 (struct ether_addr *)hw->mac.addr);
1332 } else {
1333 device_printf(dev, "Invalid MAC address\n");
1334 error = EIO;
1335 goto err_late;
1336 }
1337 }
1338
1339 /* Save the EEPROM/NVM versions, must be done under IFLIB_CTX_LOCK */
1340 em_fw_version_locked(ctx);
1341
1342 em_print_fw_version(sc);
1343
1344 /*
1345 * Get Wake-on-Lan and Management info for later use
1346 */
1347 em_get_wakeup(ctx);
1348
1349 /* Enable only WOL MAGIC by default */
1350 scctx->isc_capenable &= ~IFCAP_WOL;
1351 if (sc->wol != 0)
1352 scctx->isc_capenable |= IFCAP_WOL_MAGIC;
1353
1354 iflib_set_mac(ctx, hw->mac.addr);
1355
1356 return (0);
1357
1358 err_late:
1359 em_release_hw_control(sc);
1360 err_pci:
1361 em_free_pci_resources(ctx);
1362 free(sc->mta, M_DEVBUF);
1363
1364 return (error);
1365 }
1366
1367 static int
em_if_attach_post(if_ctx_t ctx)1368 em_if_attach_post(if_ctx_t ctx)
1369 {
1370 struct e1000_softc *sc = iflib_get_softc(ctx);
1371 struct e1000_hw *hw = &sc->hw;
1372 int error = 0;
1373
1374 /* Setup OS specific network interface */
1375 error = em_setup_interface(ctx);
1376 if (error != 0) {
1377 device_printf(sc->dev, "Interface setup failed: %d\n", error);
1378 goto err_late;
1379 }
1380
1381 em_reset(ctx);
1382
1383 /* Initialize statistics */
1384 em_update_stats_counters(sc);
1385 hw->mac.get_link_status = 1;
1386 em_if_update_admin_status(ctx);
1387 em_add_hw_stats(sc);
1388
1389 /* Non-AMT based hardware can now take control from firmware */
1390 if (sc->has_manage && !sc->has_amt)
1391 em_get_hw_control(sc);
1392
1393 INIT_DEBUGOUT("em_if_attach_post: end");
1394
1395 return (0);
1396
1397 err_late:
1398 /*
1399 * Upon em_if_attach_post() error, iflib calls em_if_detach() to
1400 * free resources
1401 */
1402 return (error);
1403 }
1404
1405 /*********************************************************************
1406 * Device removal routine
1407 *
1408 * The detach entry point is called when the driver is being removed.
1409 * This routine stops the adapter and deallocates all the resources
1410 * that were allocated for driver operation.
1411 *
1412 * return 0 on success, positive on failure
1413 *********************************************************************/
1414 static int
em_if_detach(if_ctx_t ctx)1415 em_if_detach(if_ctx_t ctx)
1416 {
1417 struct e1000_softc *sc = iflib_get_softc(ctx);
1418
1419 INIT_DEBUGOUT("em_if_detach: begin");
1420
1421 e1000_phy_hw_reset(&sc->hw);
1422
1423 em_release_manageability(sc);
1424 em_release_hw_control(sc);
1425 em_free_pci_resources(ctx);
1426 free(sc->mta, M_DEVBUF);
1427 sc->mta = NULL;
1428
1429 return (0);
1430 }
1431
1432 /*********************************************************************
1433 *
1434 * Shutdown entry point
1435 *
1436 **********************************************************************/
1437
1438 static int
em_if_shutdown(if_ctx_t ctx)1439 em_if_shutdown(if_ctx_t ctx)
1440 {
1441 return em_if_suspend(ctx);
1442 }
1443
1444 /*
1445 * Suspend/resume device methods.
1446 */
1447 static int
em_if_suspend(if_ctx_t ctx)1448 em_if_suspend(if_ctx_t ctx)
1449 {
1450 struct e1000_softc *sc = iflib_get_softc(ctx);
1451
1452 em_release_manageability(sc);
1453 em_release_hw_control(sc);
1454 em_enable_wakeup(ctx);
1455 return (0);
1456 }
1457
1458 static int
em_if_resume(if_ctx_t ctx)1459 em_if_resume(if_ctx_t ctx)
1460 {
1461 struct e1000_softc *sc = iflib_get_softc(ctx);
1462
1463 if (sc->hw.mac.type == e1000_pch2lan)
1464 e1000_resume_workarounds_pchlan(&sc->hw);
1465 em_if_init(ctx);
1466 em_init_manageability(sc);
1467
1468 return(0);
1469 }
1470
1471 static int
em_if_mtu_set(if_ctx_t ctx,uint32_t mtu)1472 em_if_mtu_set(if_ctx_t ctx, uint32_t mtu)
1473 {
1474 int max_frame_size;
1475 struct e1000_softc *sc = iflib_get_softc(ctx);
1476 if_softc_ctx_t scctx = iflib_get_softc_ctx(ctx);
1477
1478 IOCTL_DEBUGOUT("ioctl rcv'd: SIOCSIFMTU (Set Interface MTU)");
1479
1480 switch (sc->hw.mac.type) {
1481 case e1000_82571:
1482 case e1000_82572:
1483 case e1000_ich9lan:
1484 case e1000_ich10lan:
1485 case e1000_pch2lan:
1486 case e1000_pch_lpt:
1487 case e1000_pch_spt:
1488 case e1000_pch_cnp:
1489 case e1000_pch_tgp:
1490 case e1000_pch_adp:
1491 case e1000_pch_mtp:
1492 case e1000_pch_ptp:
1493 case e1000_82574:
1494 case e1000_82583:
1495 case e1000_80003es2lan:
1496 /* 9K Jumbo Frame size */
1497 max_frame_size = 9234;
1498 break;
1499 case e1000_pchlan:
1500 max_frame_size = 4096;
1501 break;
1502 case e1000_82542:
1503 case e1000_ich8lan:
1504 /* Adapters that do not support jumbo frames */
1505 max_frame_size = ETHER_MAX_LEN;
1506 break;
1507 default:
1508 if (sc->hw.mac.type >= igb_mac_min)
1509 max_frame_size = 9234;
1510 else /* lem */
1511 max_frame_size = MAX_JUMBO_FRAME_SIZE;
1512 }
1513 if (mtu > max_frame_size - ETHER_HDR_LEN - ETHER_CRC_LEN) {
1514 return (EINVAL);
1515 }
1516
1517 scctx->isc_max_frame_size = sc->hw.mac.max_frame_size =
1518 mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
1519 return (0);
1520 }
1521
1522 /*********************************************************************
1523 * Init entry point
1524 *
1525 * This routine is used in two ways. It is used by the stack as
1526 * init entry point in network interface structure. It is also used
1527 * by the driver as a hw/sw initialization routine to get to a
1528 * consistent state.
1529 *
1530 **********************************************************************/
1531 static void
em_if_init(if_ctx_t ctx)1532 em_if_init(if_ctx_t ctx)
1533 {
1534 struct e1000_softc *sc = iflib_get_softc(ctx);
1535 if_softc_ctx_t scctx = sc->shared;
1536 if_t ifp = iflib_get_ifp(ctx);
1537 struct em_tx_queue *tx_que;
1538 int i;
1539
1540 INIT_DEBUGOUT("em_if_init: begin");
1541
1542 /* Get the latest mac address, User can use a LAA */
1543 bcopy(if_getlladdr(ifp), sc->hw.mac.addr, ETHER_ADDR_LEN);
1544
1545 /* Put the address into the Receive Address Array */
1546 e1000_rar_set(&sc->hw, sc->hw.mac.addr, 0);
1547
1548 /*
1549 * With the 82571 adapter, RAR[0] may be overwritten
1550 * when the other port is reset, we make a duplicate
1551 * in RAR[14] for that eventuality, this assures
1552 * the interface continues to function.
1553 */
1554 if (sc->hw.mac.type == e1000_82571) {
1555 e1000_set_laa_state_82571(&sc->hw, true);
1556 e1000_rar_set(&sc->hw, sc->hw.mac.addr,
1557 E1000_RAR_ENTRIES - 1);
1558 }
1559
1560 /* Initialize the hardware */
1561 em_reset(ctx);
1562 em_if_update_admin_status(ctx);
1563
1564 for (i = 0, tx_que = sc->tx_queues; i < sc->tx_num_queues;
1565 i++, tx_que++) {
1566 struct tx_ring *txr = &tx_que->txr;
1567
1568 txr->tx_rs_cidx = txr->tx_rs_pidx;
1569
1570 /* Initialize the last processed descriptor to be the end of
1571 * the ring, rather than the start, so that we avoid an
1572 * off-by-one error when calculating how many descriptors are
1573 * done in the credits_update function.
1574 */
1575 txr->tx_cidx_processed = scctx->isc_ntxd[0] - 1;
1576 }
1577
1578 /* Setup VLAN support, basic and offload if available */
1579 E1000_WRITE_REG(&sc->hw, E1000_VET, ETHERTYPE_VLAN);
1580
1581 /* Clear bad data from Rx FIFOs */
1582 if (sc->hw.mac.type >= igb_mac_min)
1583 e1000_rx_fifo_flush_base(&sc->hw);
1584
1585 /* Configure for OS presence */
1586 em_init_manageability(sc);
1587
1588 /* Prepare transmit descriptors and buffers */
1589 em_initialize_transmit_unit(ctx);
1590
1591 /* Setup Multicast table */
1592 em_if_multi_set(ctx);
1593
1594 sc->rx_mbuf_sz = iflib_get_rx_mbuf_sz(ctx);
1595 em_initialize_receive_unit(ctx);
1596
1597 /* Set up VLAN support and filter */
1598 em_setup_vlan_hw_support(ctx);
1599
1600 /* Don't lose promiscuous settings */
1601 em_if_set_promisc(ctx, if_getflags(ifp));
1602 e1000_clear_hw_cntrs_base_generic(&sc->hw);
1603
1604 /* MSI-X configuration for 82574 */
1605 if (sc->hw.mac.type == e1000_82574) {
1606 int tmp = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
1607
1608 tmp |= E1000_CTRL_EXT_PBA_CLR;
1609 E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT, tmp);
1610 /* Set the IVAR - interrupt vector routing. */
1611 E1000_WRITE_REG(&sc->hw, E1000_IVAR, sc->ivars);
1612 } else if (sc->intr_type == IFLIB_INTR_MSIX) {
1613 /* Set up queue routing */
1614 igb_configure_queues(sc);
1615 }
1616
1617 /* this clears any pending interrupts */
1618 E1000_READ_REG(&sc->hw, E1000_ICR);
1619 E1000_WRITE_REG(&sc->hw, E1000_ICS, E1000_ICS_LSC);
1620
1621 /* AMT based hardware can now take control from firmware */
1622 if (sc->has_manage && sc->has_amt)
1623 em_get_hw_control(sc);
1624
1625 /* Set Energy Efficient Ethernet */
1626 if (sc->hw.mac.type >= igb_mac_min &&
1627 sc->hw.phy.media_type == e1000_media_type_copper) {
1628 if (sc->hw.mac.type == e1000_i354)
1629 e1000_set_eee_i354(&sc->hw, true, true);
1630 else
1631 e1000_set_eee_i350(&sc->hw, true, true);
1632 }
1633 }
1634
1635 enum itr_latency_target {
1636 itr_latency_disabled = 0,
1637 itr_latency_lowest = 1,
1638 itr_latency_low = 2,
1639 itr_latency_bulk = 3
1640 };
1641 /*********************************************************************
1642 *
1643 * Helper to calculate next (E)ITR value for AIM
1644 *
1645 *********************************************************************/
1646 static void
em_newitr(struct e1000_softc * sc,struct em_rx_queue * que,struct tx_ring * txr,struct rx_ring * rxr)1647 em_newitr(struct e1000_softc *sc, struct em_rx_queue *que,
1648 struct tx_ring *txr, struct rx_ring *rxr)
1649 {
1650 struct e1000_hw *hw = &sc->hw;
1651 u32 newitr;
1652 u32 bytes;
1653 u32 bytes_packets;
1654 u32 packets;
1655 u8 nextlatency;
1656
1657 /* Idle, do nothing */
1658 if ((txr->tx_bytes == 0) && (rxr->rx_bytes == 0))
1659 return;
1660
1661 newitr = 0;
1662
1663 if (sc->enable_aim) {
1664 nextlatency = rxr->rx_nextlatency;
1665
1666 /* Use half default (4K) ITR if sub-gig */
1667 if (sc->link_speed != 1000) {
1668 newitr = EM_INTS_4K;
1669 goto em_set_next_itr;
1670 }
1671 /* Want at least enough packet buffer for two frames to AIM */
1672 if (sc->shared->isc_max_frame_size * 2 > (sc->pba << 10)) {
1673 newitr = em_max_interrupt_rate;
1674 sc->enable_aim = 0;
1675 goto em_set_next_itr;
1676 }
1677
1678 /* Get largest values from the associated tx and rx ring */
1679 if (txr->tx_bytes && txr->tx_packets) {
1680 bytes = txr->tx_bytes;
1681 bytes_packets = txr->tx_bytes/txr->tx_packets;
1682 packets = txr->tx_packets;
1683 }
1684 if (rxr->rx_bytes && rxr->rx_packets) {
1685 bytes = max(bytes, rxr->rx_bytes);
1686 bytes_packets =
1687 max(bytes_packets, rxr->rx_bytes/rxr->rx_packets);
1688 packets = max(packets, rxr->rx_packets);
1689 }
1690
1691 /* Latency state machine */
1692 switch (nextlatency) {
1693 case itr_latency_disabled: /* Bootstrapping */
1694 nextlatency = itr_latency_low;
1695 break;
1696 case itr_latency_lowest: /* 70k ints/s */
1697 /* TSO and jumbo frames */
1698 if (bytes_packets > 8000)
1699 nextlatency = itr_latency_bulk;
1700 else if ((packets < 5) && (bytes > 512))
1701 nextlatency = itr_latency_low;
1702 break;
1703 case itr_latency_low: /* 20k ints/s */
1704 if (bytes > 10000) {
1705 /* Handle TSO */
1706 if (bytes_packets > 8000)
1707 nextlatency = itr_latency_bulk;
1708 else if ((packets < 10) ||
1709 (bytes_packets > 1200))
1710 nextlatency = itr_latency_bulk;
1711 else if (packets > 35)
1712 nextlatency = itr_latency_lowest;
1713 } else if (bytes_packets > 2000) {
1714 nextlatency = itr_latency_bulk;
1715 } else if (packets < 3 && bytes < 512) {
1716 nextlatency = itr_latency_lowest;
1717 }
1718 break;
1719 case itr_latency_bulk: /* 4k ints/s */
1720 if (bytes > 25000) {
1721 if (packets > 35)
1722 nextlatency = itr_latency_low;
1723 } else if (bytes < 1500)
1724 nextlatency = itr_latency_low;
1725 break;
1726 default:
1727 nextlatency = itr_latency_low;
1728 device_printf(sc->dev,
1729 "Unexpected newitr transition %d\n", nextlatency);
1730 break;
1731 }
1732
1733 /* Trim itr_latency_lowest for default AIM setting */
1734 if (sc->enable_aim == 1 && nextlatency == itr_latency_lowest)
1735 nextlatency = itr_latency_low;
1736
1737 /* Request new latency */
1738 rxr->rx_nextlatency = nextlatency;
1739 } else {
1740 /* We may have toggled to AIM disabled */
1741 nextlatency = itr_latency_disabled;
1742 rxr->rx_nextlatency = nextlatency;
1743 }
1744
1745 /* ITR state machine */
1746 switch(nextlatency) {
1747 case itr_latency_lowest:
1748 newitr = EM_INTS_70K;
1749 break;
1750 case itr_latency_low:
1751 newitr = EM_INTS_20K;
1752 break;
1753 case itr_latency_bulk:
1754 newitr = EM_INTS_4K;
1755 break;
1756 case itr_latency_disabled:
1757 default:
1758 newitr = em_max_interrupt_rate;
1759 break;
1760 }
1761
1762 em_set_next_itr:
1763 if (hw->mac.type >= igb_mac_min) {
1764 newitr = IGB_INTS_TO_EITR(newitr);
1765
1766 if (hw->mac.type == e1000_82575)
1767 newitr |= newitr << 16;
1768 else
1769 newitr |= E1000_EITR_CNT_IGNR;
1770
1771 if (newitr != que->itr_setting) {
1772 que->itr_setting = newitr;
1773 E1000_WRITE_REG(hw, E1000_EITR(que->msix),
1774 que->itr_setting);
1775 }
1776 } else {
1777 newitr = EM_INTS_TO_ITR(newitr);
1778
1779 if (newitr != que->itr_setting) {
1780 que->itr_setting = newitr;
1781 if (hw->mac.type == e1000_82574 && que->msix) {
1782 E1000_WRITE_REG(hw,
1783 E1000_EITR_82574(que->msix),
1784 que->itr_setting);
1785 } else {
1786 E1000_WRITE_REG(hw, E1000_ITR,
1787 que->itr_setting);
1788 }
1789 }
1790 }
1791 }
1792
1793 /*********************************************************************
1794 *
1795 * Fast Legacy/MSI Combined Interrupt Service routine
1796 *
1797 *********************************************************************/
1798 int
em_intr(void * arg)1799 em_intr(void *arg)
1800 {
1801 struct e1000_softc *sc = arg;
1802 struct e1000_hw *hw = &sc->hw;
1803 struct em_rx_queue *que = &sc->rx_queues[0];
1804 struct tx_ring *txr = &sc->tx_queues[0].txr;
1805 struct rx_ring *rxr = &que->rxr;
1806 if_ctx_t ctx = sc->ctx;
1807 u32 reg_icr;
1808
1809 reg_icr = E1000_READ_REG(hw, E1000_ICR);
1810
1811 /* Hot eject? */
1812 if (reg_icr == 0xffffffff)
1813 return FILTER_STRAY;
1814
1815 /* Definitely not our interrupt. */
1816 if (reg_icr == 0x0)
1817 return FILTER_STRAY;
1818
1819 /*
1820 * Starting with the 82571 chip, bit 31 should be used to
1821 * determine whether the interrupt belongs to us.
1822 */
1823 if (hw->mac.type >= e1000_82571 &&
1824 (reg_icr & E1000_ICR_INT_ASSERTED) == 0)
1825 return FILTER_STRAY;
1826
1827 /*
1828 * Only MSI-X interrupts have one-shot behavior by taking advantage
1829 * of the EIAC register. Thus, explicitly disable interrupts. This
1830 * also works around the MSI message reordering errata on certain
1831 * systems.
1832 */
1833 IFDI_INTR_DISABLE(ctx);
1834
1835 /* Link status change */
1836 if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))
1837 em_handle_link(ctx);
1838
1839 if (reg_icr & E1000_ICR_RXO)
1840 sc->rx_overruns++;
1841
1842 if (hw->mac.type >= e1000_82540)
1843 em_newitr(sc, que, txr, rxr);
1844
1845 /* Reset state */
1846 txr->tx_bytes = 0;
1847 txr->tx_packets = 0;
1848 rxr->rx_bytes = 0;
1849 rxr->rx_packets = 0;
1850
1851 return (FILTER_SCHEDULE_THREAD);
1852 }
1853
1854 static int
em_if_rx_queue_intr_enable(if_ctx_t ctx,uint16_t rxqid)1855 em_if_rx_queue_intr_enable(if_ctx_t ctx, uint16_t rxqid)
1856 {
1857 struct e1000_softc *sc = iflib_get_softc(ctx);
1858 struct em_rx_queue *rxq = &sc->rx_queues[rxqid];
1859
1860 E1000_WRITE_REG(&sc->hw, E1000_IMS, rxq->eims);
1861 return (0);
1862 }
1863
1864 static int
em_if_tx_queue_intr_enable(if_ctx_t ctx,uint16_t txqid)1865 em_if_tx_queue_intr_enable(if_ctx_t ctx, uint16_t txqid)
1866 {
1867 struct e1000_softc *sc = iflib_get_softc(ctx);
1868 struct em_tx_queue *txq = &sc->tx_queues[txqid];
1869
1870 E1000_WRITE_REG(&sc->hw, E1000_IMS, txq->eims);
1871 return (0);
1872 }
1873
1874 static int
igb_if_rx_queue_intr_enable(if_ctx_t ctx,uint16_t rxqid)1875 igb_if_rx_queue_intr_enable(if_ctx_t ctx, uint16_t rxqid)
1876 {
1877 struct e1000_softc *sc = iflib_get_softc(ctx);
1878 struct em_rx_queue *rxq = &sc->rx_queues[rxqid];
1879
1880 E1000_WRITE_REG(&sc->hw, E1000_EIMS, rxq->eims);
1881 return (0);
1882 }
1883
1884 static int
igb_if_tx_queue_intr_enable(if_ctx_t ctx,uint16_t txqid)1885 igb_if_tx_queue_intr_enable(if_ctx_t ctx, uint16_t txqid)
1886 {
1887 struct e1000_softc *sc = iflib_get_softc(ctx);
1888 struct em_tx_queue *txq = &sc->tx_queues[txqid];
1889
1890 E1000_WRITE_REG(&sc->hw, E1000_EIMS, txq->eims);
1891 return (0);
1892 }
1893
1894 /*********************************************************************
1895 *
1896 * MSI-X RX Interrupt Service routine
1897 *
1898 **********************************************************************/
1899 static int
em_msix_que(void * arg)1900 em_msix_que(void *arg)
1901 {
1902 struct em_rx_queue *que = arg;
1903 struct e1000_softc *sc = que->sc;
1904 struct tx_ring *txr = &sc->tx_queues[que->msix].txr;
1905 struct rx_ring *rxr = &que->rxr;
1906
1907 ++que->irqs;
1908
1909 em_newitr(sc, que, txr, rxr);
1910
1911 /* Reset state */
1912 txr->tx_bytes = 0;
1913 txr->tx_packets = 0;
1914 rxr->rx_bytes = 0;
1915 rxr->rx_packets = 0;
1916
1917 return (FILTER_SCHEDULE_THREAD);
1918 }
1919
1920 /*********************************************************************
1921 *
1922 * MSI-X Link Fast Interrupt Service routine
1923 *
1924 **********************************************************************/
1925 static int
em_msix_link(void * arg)1926 em_msix_link(void *arg)
1927 {
1928 struct e1000_softc *sc = arg;
1929 u32 reg_icr;
1930
1931 ++sc->link_irq;
1932 MPASS(sc->hw.back != NULL);
1933 reg_icr = E1000_READ_REG(&sc->hw, E1000_ICR);
1934
1935 if (reg_icr & E1000_ICR_RXO)
1936 sc->rx_overruns++;
1937
1938 if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))
1939 em_handle_link(sc->ctx);
1940
1941 /* Re-arm unconditionally */
1942 if (sc->hw.mac.type >= igb_mac_min) {
1943 E1000_WRITE_REG(&sc->hw, E1000_IMS, E1000_IMS_LSC);
1944 E1000_WRITE_REG(&sc->hw, E1000_EIMS, sc->link_mask);
1945 } else if (sc->hw.mac.type == e1000_82574) {
1946 E1000_WRITE_REG(&sc->hw, E1000_IMS,
1947 E1000_IMS_LSC | E1000_IMS_OTHER);
1948 /*
1949 * Because we must read the ICR for this interrupt it may
1950 * clear other causes using autoclear, for this reason we
1951 * simply create a soft interrupt for all these vectors.
1952 */
1953 if (reg_icr)
1954 E1000_WRITE_REG(&sc->hw, E1000_ICS, sc->ims);
1955 } else
1956 E1000_WRITE_REG(&sc->hw, E1000_IMS, E1000_IMS_LSC);
1957
1958 return (FILTER_HANDLED);
1959 }
1960
1961 static void
em_handle_link(void * context)1962 em_handle_link(void *context)
1963 {
1964 if_ctx_t ctx = context;
1965 struct e1000_softc *sc = iflib_get_softc(ctx);
1966
1967 sc->hw.mac.get_link_status = 1;
1968 iflib_admin_intr_deferred(ctx);
1969 }
1970
1971 /*********************************************************************
1972 *
1973 * Media Ioctl callback
1974 *
1975 * This routine is called whenever the user queries the status of
1976 * the interface using ifconfig.
1977 *
1978 **********************************************************************/
1979 static void
em_if_media_status(if_ctx_t ctx,struct ifmediareq * ifmr)1980 em_if_media_status(if_ctx_t ctx, struct ifmediareq *ifmr)
1981 {
1982 struct e1000_softc *sc = iflib_get_softc(ctx);
1983 u_char fiber_type = IFM_1000_SX;
1984
1985 INIT_DEBUGOUT("em_if_media_status: begin");
1986
1987 iflib_admin_intr_deferred(ctx);
1988
1989 ifmr->ifm_status = IFM_AVALID;
1990 ifmr->ifm_active = IFM_ETHER;
1991
1992 if (!sc->link_active) {
1993 return;
1994 }
1995
1996 ifmr->ifm_status |= IFM_ACTIVE;
1997
1998 if ((sc->hw.phy.media_type == e1000_media_type_fiber) ||
1999 (sc->hw.phy.media_type == e1000_media_type_internal_serdes)) {
2000 if (sc->hw.mac.type == e1000_82545)
2001 fiber_type = IFM_1000_LX;
2002 switch (sc->link_speed) {
2003 case 10:
2004 ifmr->ifm_active |= IFM_10_FL;
2005 break;
2006 case 100:
2007 ifmr->ifm_active |= IFM_100_FX;
2008 break;
2009 case 1000:
2010 default:
2011 ifmr->ifm_active |= fiber_type | IFM_FDX;
2012 break;
2013 }
2014 } else {
2015 switch (sc->link_speed) {
2016 case 10:
2017 ifmr->ifm_active |= IFM_10_T;
2018 break;
2019 case 100:
2020 ifmr->ifm_active |= IFM_100_TX;
2021 break;
2022 case 1000:
2023 ifmr->ifm_active |= IFM_1000_T;
2024 break;
2025 }
2026 }
2027
2028 if (sc->link_duplex == FULL_DUPLEX)
2029 ifmr->ifm_active |= IFM_FDX;
2030 else
2031 ifmr->ifm_active |= IFM_HDX;
2032 }
2033
2034 /*********************************************************************
2035 *
2036 * Media Ioctl callback
2037 *
2038 * This routine is called when the user changes speed/duplex using
2039 * media/mediopt option with ifconfig.
2040 *
2041 **********************************************************************/
2042 static int
em_if_media_change(if_ctx_t ctx)2043 em_if_media_change(if_ctx_t ctx)
2044 {
2045 struct e1000_softc *sc = iflib_get_softc(ctx);
2046 struct ifmedia *ifm = iflib_get_media(ctx);
2047
2048 INIT_DEBUGOUT("em_if_media_change: begin");
2049
2050 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
2051 return (EINVAL);
2052
2053 switch (IFM_SUBTYPE(ifm->ifm_media)) {
2054 case IFM_AUTO:
2055 sc->hw.mac.autoneg = DO_AUTO_NEG;
2056 sc->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
2057 break;
2058 case IFM_1000_LX:
2059 case IFM_1000_SX:
2060 case IFM_1000_T:
2061 sc->hw.mac.autoneg = DO_AUTO_NEG;
2062 sc->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
2063 break;
2064 case IFM_100_TX:
2065 sc->hw.mac.autoneg = DO_AUTO_NEG;
2066 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2067 sc->hw.phy.autoneg_advertised = ADVERTISE_100_FULL;
2068 sc->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
2069 } else {
2070 sc->hw.phy.autoneg_advertised = ADVERTISE_100_HALF;
2071 sc->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
2072 }
2073 break;
2074 case IFM_10_T:
2075 sc->hw.mac.autoneg = DO_AUTO_NEG;
2076 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2077 sc->hw.phy.autoneg_advertised = ADVERTISE_10_FULL;
2078 sc->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
2079 } else {
2080 sc->hw.phy.autoneg_advertised = ADVERTISE_10_HALF;
2081 sc->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
2082 }
2083 break;
2084 case IFM_100_FX:
2085 sc->hw.mac.autoneg = false;
2086 sc->hw.phy.autoneg_advertised = 0;
2087 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
2088 sc->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
2089 else
2090 sc->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
2091 break;
2092 case IFM_10_FL:
2093 sc->hw.mac.autoneg = false;
2094 sc->hw.phy.autoneg_advertised = 0;
2095 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
2096 sc->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
2097 else
2098 sc->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
2099 break;
2100 default:
2101 device_printf(sc->dev, "Unsupported media type\n");
2102 }
2103
2104 em_if_init(ctx);
2105
2106 return (0);
2107 }
2108
2109 static int
em_if_set_promisc(if_ctx_t ctx,int flags)2110 em_if_set_promisc(if_ctx_t ctx, int flags)
2111 {
2112 struct e1000_softc *sc = iflib_get_softc(ctx);
2113 if_t ifp = iflib_get_ifp(ctx);
2114 u32 reg_rctl;
2115 int mcnt = 0;
2116
2117 reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
2118 reg_rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_UPE);
2119 if (flags & IFF_ALLMULTI)
2120 mcnt = MAX_NUM_MULTICAST_ADDRESSES;
2121 else
2122 mcnt = min(if_llmaddr_count(ifp),
2123 MAX_NUM_MULTICAST_ADDRESSES);
2124
2125 if (mcnt < MAX_NUM_MULTICAST_ADDRESSES)
2126 reg_rctl &= (~E1000_RCTL_MPE);
2127 E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
2128
2129 if (flags & IFF_PROMISC) {
2130 reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2131 em_if_vlan_filter_disable(sc);
2132 /* Turn this on if you want to see bad packets */
2133 if (em_debug_sbp)
2134 reg_rctl |= E1000_RCTL_SBP;
2135 E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
2136 } else {
2137 if (flags & IFF_ALLMULTI) {
2138 reg_rctl |= E1000_RCTL_MPE;
2139 reg_rctl &= ~E1000_RCTL_UPE;
2140 E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
2141 }
2142 if (em_if_vlan_filter_used(ctx))
2143 em_if_vlan_filter_enable(sc);
2144 }
2145 return (0);
2146 }
2147
2148 static u_int
em_copy_maddr(void * arg,struct sockaddr_dl * sdl,u_int idx)2149 em_copy_maddr(void *arg, struct sockaddr_dl *sdl, u_int idx)
2150 {
2151 u8 *mta = arg;
2152
2153 if (idx == MAX_NUM_MULTICAST_ADDRESSES)
2154 return (0);
2155
2156 bcopy(LLADDR(sdl), &mta[idx * ETHER_ADDR_LEN], ETHER_ADDR_LEN);
2157
2158 return (1);
2159 }
2160
2161 /*********************************************************************
2162 * Multicast Update
2163 *
2164 * This routine is called whenever multicast address list is updated.
2165 *
2166 **********************************************************************/
2167 static void
em_if_multi_set(if_ctx_t ctx)2168 em_if_multi_set(if_ctx_t ctx)
2169 {
2170 struct e1000_softc *sc = iflib_get_softc(ctx);
2171 if_t ifp = iflib_get_ifp(ctx);
2172 u8 *mta; /* Multicast array memory */
2173 u32 reg_rctl = 0;
2174 int mcnt = 0;
2175
2176 IOCTL_DEBUGOUT("em_set_multi: begin");
2177
2178 mta = sc->mta;
2179 bzero(mta, sizeof(u8) * ETHER_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES);
2180
2181 if (sc->hw.mac.type == e1000_82542 &&
2182 sc->hw.revision_id == E1000_REVISION_2) {
2183 reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
2184 if (sc->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
2185 e1000_pci_clear_mwi(&sc->hw);
2186 reg_rctl |= E1000_RCTL_RST;
2187 E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
2188 msec_delay(5);
2189 }
2190
2191 mcnt = if_foreach_llmaddr(ifp, em_copy_maddr, mta);
2192
2193 if (mcnt < MAX_NUM_MULTICAST_ADDRESSES)
2194 e1000_update_mc_addr_list(&sc->hw, mta, mcnt);
2195
2196 reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
2197
2198 if (if_getflags(ifp) & IFF_PROMISC)
2199 reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2200 else if (mcnt >= MAX_NUM_MULTICAST_ADDRESSES ||
2201 if_getflags(ifp) & IFF_ALLMULTI) {
2202 reg_rctl |= E1000_RCTL_MPE;
2203 reg_rctl &= ~E1000_RCTL_UPE;
2204 } else
2205 reg_rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2206
2207 E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
2208
2209 if (sc->hw.mac.type == e1000_82542 &&
2210 sc->hw.revision_id == E1000_REVISION_2) {
2211 reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
2212 reg_rctl &= ~E1000_RCTL_RST;
2213 E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
2214 msec_delay(5);
2215 if (sc->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
2216 e1000_pci_set_mwi(&sc->hw);
2217 }
2218 }
2219
2220 /*********************************************************************
2221 * Timer routine
2222 *
2223 * This routine schedules em_if_update_admin_status() to check for
2224 * link status and to gather statistics as well as to perform some
2225 * controller-specific hardware patting.
2226 *
2227 **********************************************************************/
2228 static void
em_if_timer(if_ctx_t ctx,uint16_t qid)2229 em_if_timer(if_ctx_t ctx, uint16_t qid)
2230 {
2231 if (qid != 0)
2232 return;
2233
2234 iflib_admin_intr_deferred(ctx);
2235 }
2236
2237 static void
em_if_update_admin_status(if_ctx_t ctx)2238 em_if_update_admin_status(if_ctx_t ctx)
2239 {
2240 struct e1000_softc *sc = iflib_get_softc(ctx);
2241 struct e1000_hw *hw = &sc->hw;
2242 device_t dev = iflib_get_dev(ctx);
2243 u32 link_check, thstat, ctrl;
2244 bool automasked = false;
2245
2246 link_check = thstat = ctrl = 0;
2247 /* Get the cached link value or read phy for real */
2248 switch (hw->phy.media_type) {
2249 case e1000_media_type_copper:
2250 if (hw->mac.get_link_status) {
2251 if (hw->mac.type == e1000_pch_spt)
2252 msec_delay(50);
2253 /* Do the work to read phy */
2254 e1000_check_for_link(hw);
2255 link_check = !hw->mac.get_link_status;
2256 if (link_check) /* ESB2 fix */
2257 e1000_cfg_on_link_up(hw);
2258 } else {
2259 link_check = true;
2260 }
2261 break;
2262 case e1000_media_type_fiber:
2263 e1000_check_for_link(hw);
2264 link_check =
2265 (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU);
2266 break;
2267 case e1000_media_type_internal_serdes:
2268 e1000_check_for_link(hw);
2269 link_check = hw->mac.serdes_has_link;
2270 break;
2271 /* VF device is type_unknown */
2272 case e1000_media_type_unknown:
2273 e1000_check_for_link(hw);
2274 link_check = !hw->mac.get_link_status;
2275 /* FALLTHROUGH */
2276 default:
2277 break;
2278 }
2279
2280 /* Check for thermal downshift or shutdown */
2281 if (hw->mac.type == e1000_i350) {
2282 thstat = E1000_READ_REG(hw, E1000_THSTAT);
2283 ctrl = E1000_READ_REG(hw, E1000_CTRL_EXT);
2284 }
2285
2286 /* Now check for a transition */
2287 if (link_check && (sc->link_active == 0)) {
2288 e1000_get_speed_and_duplex(hw, &sc->link_speed,
2289 &sc->link_duplex);
2290 /* Check if we must disable SPEED_MODE bit on PCI-E */
2291 if ((sc->link_speed != SPEED_1000) &&
2292 ((hw->mac.type == e1000_82571) ||
2293 (hw->mac.type == e1000_82572))) {
2294 int tarc0;
2295 tarc0 = E1000_READ_REG(hw, E1000_TARC(0));
2296 tarc0 &= ~TARC_SPEED_MODE_BIT;
2297 E1000_WRITE_REG(hw, E1000_TARC(0), tarc0);
2298 }
2299 if (bootverbose)
2300 device_printf(dev, "Link is up %d Mbps %s\n",
2301 sc->link_speed,
2302 ((sc->link_duplex == FULL_DUPLEX) ?
2303 "Full Duplex" : "Half Duplex"));
2304 sc->link_active = 1;
2305 sc->smartspeed = 0;
2306 if ((ctrl & E1000_CTRL_EXT_LINK_MODE_MASK) ==
2307 E1000_CTRL_EXT_LINK_MODE_GMII &&
2308 (thstat & E1000_THSTAT_LINK_THROTTLE))
2309 device_printf(dev, "Link: thermal downshift\n");
2310 /* Delay Link Up for Phy update */
2311 if (((hw->mac.type == e1000_i210) ||
2312 (hw->mac.type == e1000_i211)) &&
2313 (hw->phy.id == I210_I_PHY_ID))
2314 msec_delay(I210_LINK_DELAY);
2315 /* Reset if the media type changed. */
2316 if (hw->dev_spec._82575.media_changed &&
2317 hw->mac.type >= igb_mac_min) {
2318 hw->dev_spec._82575.media_changed = false;
2319 sc->flags |= IGB_MEDIA_RESET;
2320 em_reset(ctx);
2321 }
2322 /* Only do TSO on gigabit for older chips due to errata */
2323 if (hw->mac.type < igb_mac_min)
2324 automasked = em_automask_tso(ctx);
2325
2326 /* Automasking resets the interface so don't mark it up yet */
2327 if (!automasked)
2328 iflib_link_state_change(ctx, LINK_STATE_UP,
2329 IF_Mbps(sc->link_speed));
2330 } else if (!link_check && (sc->link_active == 1)) {
2331 sc->link_speed = 0;
2332 sc->link_duplex = 0;
2333 sc->link_active = 0;
2334 iflib_link_state_change(ctx, LINK_STATE_DOWN, 0);
2335 }
2336 em_update_stats_counters(sc);
2337
2338 /* Reset LAA into RAR[0] on 82571 */
2339 if (hw->mac.type == e1000_82571 && e1000_get_laa_state_82571(hw))
2340 e1000_rar_set(hw, hw->mac.addr, 0);
2341
2342 if (hw->mac.type < em_mac_min)
2343 lem_smartspeed(sc);
2344 }
2345
2346 static void
em_if_watchdog_reset(if_ctx_t ctx)2347 em_if_watchdog_reset(if_ctx_t ctx)
2348 {
2349 struct e1000_softc *sc = iflib_get_softc(ctx);
2350
2351 /*
2352 * Just count the event; iflib(4) will already trigger a
2353 * sufficient reset of the controller.
2354 */
2355 sc->watchdog_events++;
2356 }
2357
2358 /*********************************************************************
2359 *
2360 * This routine disables all traffic on the adapter by issuing a
2361 * global reset on the MAC.
2362 *
2363 **********************************************************************/
2364 static void
em_if_stop(if_ctx_t ctx)2365 em_if_stop(if_ctx_t ctx)
2366 {
2367 struct e1000_softc *sc = iflib_get_softc(ctx);
2368
2369 INIT_DEBUGOUT("em_if_stop: begin");
2370
2371 /* I219 needs special flushing to avoid hangs */
2372 if (sc->hw.mac.type >= e1000_pch_spt && sc->hw.mac.type < igb_mac_min)
2373 em_flush_desc_rings(sc);
2374
2375 e1000_reset_hw(&sc->hw);
2376 if (sc->hw.mac.type >= e1000_82544)
2377 E1000_WRITE_REG(&sc->hw, E1000_WUFC, 0);
2378
2379 e1000_led_off(&sc->hw);
2380 e1000_cleanup_led(&sc->hw);
2381 }
2382
2383 /*********************************************************************
2384 *
2385 * Determine hardware revision.
2386 *
2387 **********************************************************************/
2388 static void
em_identify_hardware(if_ctx_t ctx)2389 em_identify_hardware(if_ctx_t ctx)
2390 {
2391 device_t dev = iflib_get_dev(ctx);
2392 struct e1000_softc *sc = iflib_get_softc(ctx);
2393
2394 /* Make sure our PCI config space has the necessary stuff set */
2395 sc->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
2396
2397 /* Save off the information about this board */
2398 sc->hw.vendor_id = pci_get_vendor(dev);
2399 sc->hw.device_id = pci_get_device(dev);
2400 sc->hw.revision_id = pci_read_config(dev, PCIR_REVID, 1);
2401 sc->hw.subsystem_vendor_id = pci_read_config(dev, PCIR_SUBVEND_0, 2);
2402 sc->hw.subsystem_device_id = pci_read_config(dev, PCIR_SUBDEV_0, 2);
2403
2404 /* Do Shared Code Init and Setup */
2405 if (e1000_set_mac_type(&sc->hw)) {
2406 device_printf(dev, "Setup init failure\n");
2407 return;
2408 }
2409
2410 /* Are we a VF device? */
2411 if ((sc->hw.mac.type == e1000_vfadapt) ||
2412 (sc->hw.mac.type == e1000_vfadapt_i350))
2413 sc->vf_ifp = 1;
2414 else
2415 sc->vf_ifp = 0;
2416 }
2417
2418 static int
em_allocate_pci_resources(if_ctx_t ctx)2419 em_allocate_pci_resources(if_ctx_t ctx)
2420 {
2421 struct e1000_softc *sc = iflib_get_softc(ctx);
2422 device_t dev = iflib_get_dev(ctx);
2423 int rid, val;
2424
2425 rid = PCIR_BAR(0);
2426 sc->memory = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
2427 RF_ACTIVE);
2428 if (sc->memory == NULL) {
2429 device_printf(dev,
2430 "Unable to allocate bus resource: memory\n");
2431 return (ENXIO);
2432 }
2433 sc->osdep.mem_bus_space_tag = rman_get_bustag(sc->memory);
2434 sc->osdep.mem_bus_space_handle = rman_get_bushandle(sc->memory);
2435 sc->hw.hw_addr = (u8 *)&sc->osdep.mem_bus_space_handle;
2436
2437 /* Only older adapters use IO mapping */
2438 if (sc->hw.mac.type < em_mac_min && sc->hw.mac.type > e1000_82543) {
2439 /* Figure our where our IO BAR is ? */
2440 for (rid = PCIR_BAR(0); rid < PCIR_CIS;) {
2441 val = pci_read_config(dev, rid, 4);
2442 if (EM_BAR_TYPE(val) == EM_BAR_TYPE_IO) {
2443 break;
2444 }
2445 rid += 4;
2446 /* check for 64bit BAR */
2447 if (EM_BAR_MEM_TYPE(val) == EM_BAR_MEM_TYPE_64BIT)
2448 rid += 4;
2449 }
2450 if (rid >= PCIR_CIS) {
2451 device_printf(dev, "Unable to locate IO BAR\n");
2452 return (ENXIO);
2453 }
2454 sc->ioport = bus_alloc_resource_any(dev, SYS_RES_IOPORT,
2455 &rid, RF_ACTIVE);
2456 if (sc->ioport == NULL) {
2457 device_printf(dev,
2458 "Unable to allocate bus resource: ioport\n");
2459 return (ENXIO);
2460 }
2461 sc->hw.io_base = 0;
2462 sc->osdep.io_bus_space_tag =
2463 rman_get_bustag(sc->ioport);
2464 sc->osdep.io_bus_space_handle =
2465 rman_get_bushandle(sc->ioport);
2466 }
2467
2468 sc->hw.back = &sc->osdep;
2469
2470 return (0);
2471 }
2472
2473 /*********************************************************************
2474 *
2475 * Set up the MSI-X Interrupt handlers
2476 *
2477 **********************************************************************/
2478 static int
em_if_msix_intr_assign(if_ctx_t ctx,int msix)2479 em_if_msix_intr_assign(if_ctx_t ctx, int msix)
2480 {
2481 struct e1000_softc *sc = iflib_get_softc(ctx);
2482 struct em_rx_queue *rx_que = sc->rx_queues;
2483 struct em_tx_queue *tx_que = sc->tx_queues;
2484 int error, rid, i, vector = 0, rx_vectors;
2485 char buf[16];
2486
2487 /* First set up ring resources */
2488 for (i = 0; i < sc->rx_num_queues; i++, rx_que++, vector++) {
2489 rid = vector + 1;
2490 snprintf(buf, sizeof(buf), "rxq%d", i);
2491 error = iflib_irq_alloc_generic(ctx, &rx_que->que_irq, rid,
2492 IFLIB_INTR_RXTX, em_msix_que, rx_que, rx_que->me, buf);
2493 if (error) {
2494 device_printf(iflib_get_dev(ctx),
2495 "Failed to allocate que int %d err: %d",
2496 i, error);
2497 sc->rx_num_queues = i + 1;
2498 goto fail;
2499 }
2500
2501 rx_que->msix = vector;
2502
2503 /*
2504 * Set the bit to enable interrupt
2505 * in E1000_IMS -- bits 20 and 21
2506 * are for RX0 and RX1, note this has
2507 * NOTHING to do with the MSI-X vector
2508 */
2509 if (sc->hw.mac.type == e1000_82574) {
2510 rx_que->eims = 1 << (20 + i);
2511 sc->ims |= rx_que->eims;
2512 sc->ivars |= (8 | rx_que->msix) << (i * 4);
2513 } else if (sc->hw.mac.type == e1000_82575)
2514 rx_que->eims = E1000_EICR_TX_QUEUE0 << vector;
2515 else
2516 rx_que->eims = 1 << vector;
2517 }
2518 rx_vectors = vector;
2519
2520 vector = 0;
2521 for (i = 0; i < sc->tx_num_queues; i++, tx_que++, vector++) {
2522 snprintf(buf, sizeof(buf), "txq%d", i);
2523 tx_que = &sc->tx_queues[i];
2524 iflib_softirq_alloc_generic(ctx,
2525 &sc->rx_queues[i % sc->rx_num_queues].que_irq,
2526 IFLIB_INTR_TX, tx_que, tx_que->me, buf);
2527
2528 tx_que->msix = (vector % sc->rx_num_queues);
2529
2530 /*
2531 * Set the bit to enable interrupt
2532 * in E1000_IMS -- bits 22 and 23
2533 * are for TX0 and TX1, note this has
2534 * NOTHING to do with the MSI-X vector
2535 */
2536 if (sc->hw.mac.type == e1000_82574) {
2537 tx_que->eims = 1 << (22 + i);
2538 sc->ims |= tx_que->eims;
2539 sc->ivars |= (8 | tx_que->msix) << (8 + (i * 4));
2540 } else if (sc->hw.mac.type == e1000_82575) {
2541 tx_que->eims = E1000_EICR_TX_QUEUE0 << i;
2542 } else {
2543 tx_que->eims = 1 << i;
2544 }
2545 }
2546
2547 /* Link interrupt */
2548 rid = rx_vectors + 1;
2549 error = iflib_irq_alloc_generic(ctx, &sc->irq, rid, IFLIB_INTR_ADMIN,
2550 em_msix_link, sc, 0, "aq");
2551
2552 if (error) {
2553 device_printf(iflib_get_dev(ctx),
2554 "Failed to register admin handler");
2555 goto fail;
2556 }
2557 sc->linkvec = rx_vectors;
2558 if (sc->hw.mac.type < igb_mac_min) {
2559 sc->ivars |= (8 | rx_vectors) << 16;
2560 sc->ivars |= 0x80000000;
2561 /* Enable the "Other" interrupt type for link status change */
2562 sc->ims |= E1000_IMS_OTHER;
2563 }
2564
2565 return (0);
2566 fail:
2567 iflib_irq_free(ctx, &sc->irq);
2568 rx_que = sc->rx_queues;
2569 for (int i = 0; i < sc->rx_num_queues; i++, rx_que++)
2570 iflib_irq_free(ctx, &rx_que->que_irq);
2571 return (error);
2572 }
2573
2574 static void
igb_configure_queues(struct e1000_softc * sc)2575 igb_configure_queues(struct e1000_softc *sc)
2576 {
2577 struct e1000_hw *hw = &sc->hw;
2578 struct em_rx_queue *rx_que;
2579 struct em_tx_queue *tx_que;
2580 u32 tmp, ivar = 0, newitr = 0;
2581
2582 /* First turn on RSS capability */
2583 if (hw->mac.type != e1000_82575)
2584 E1000_WRITE_REG(hw, E1000_GPIE,
2585 E1000_GPIE_MSIX_MODE | E1000_GPIE_EIAME |
2586 E1000_GPIE_PBA | E1000_GPIE_NSICR);
2587
2588 /* Turn on MSI-X */
2589 switch (hw->mac.type) {
2590 case e1000_82580:
2591 case e1000_i350:
2592 case e1000_i354:
2593 case e1000_i210:
2594 case e1000_i211:
2595 case e1000_vfadapt:
2596 case e1000_vfadapt_i350:
2597 /* RX entries */
2598 for (int i = 0; i < sc->rx_num_queues; i++) {
2599 u32 index = i >> 1;
2600 ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
2601 rx_que = &sc->rx_queues[i];
2602 if (i & 1) {
2603 ivar &= 0xFF00FFFF;
2604 ivar |= (rx_que->msix | E1000_IVAR_VALID) <<
2605 16;
2606 } else {
2607 ivar &= 0xFFFFFF00;
2608 ivar |= rx_que->msix | E1000_IVAR_VALID;
2609 }
2610 E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
2611 }
2612 /* TX entries */
2613 for (int i = 0; i < sc->tx_num_queues; i++) {
2614 u32 index = i >> 1;
2615 ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
2616 tx_que = &sc->tx_queues[i];
2617 if (i & 1) {
2618 ivar &= 0x00FFFFFF;
2619 ivar |= (tx_que->msix | E1000_IVAR_VALID) <<
2620 24;
2621 } else {
2622 ivar &= 0xFFFF00FF;
2623 ivar |= (tx_que->msix | E1000_IVAR_VALID) <<
2624 8;
2625 }
2626 E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
2627 sc->que_mask |= tx_que->eims;
2628 }
2629
2630 /* And for the link interrupt */
2631 ivar = (sc->linkvec | E1000_IVAR_VALID) << 8;
2632 sc->link_mask = 1 << sc->linkvec;
2633 E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
2634 break;
2635 case e1000_82576:
2636 /* RX entries */
2637 for (int i = 0; i < sc->rx_num_queues; i++) {
2638 u32 index = i & 0x7; /* Each IVAR has two entries */
2639 ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
2640 rx_que = &sc->rx_queues[i];
2641 if (i < 8) {
2642 ivar &= 0xFFFFFF00;
2643 ivar |= rx_que->msix | E1000_IVAR_VALID;
2644 } else {
2645 ivar &= 0xFF00FFFF;
2646 ivar |= (rx_que->msix | E1000_IVAR_VALID) <<
2647 16;
2648 }
2649 E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
2650 sc->que_mask |= rx_que->eims;
2651 }
2652 /* TX entries */
2653 for (int i = 0; i < sc->tx_num_queues; i++) {
2654 u32 index = i & 0x7; /* Each IVAR has two entries */
2655 ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
2656 tx_que = &sc->tx_queues[i];
2657 if (i < 8) {
2658 ivar &= 0xFFFF00FF;
2659 ivar |= (tx_que->msix | E1000_IVAR_VALID) <<
2660 8;
2661 } else {
2662 ivar &= 0x00FFFFFF;
2663 ivar |= (tx_que->msix | E1000_IVAR_VALID) <<
2664 24;
2665 }
2666 E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
2667 sc->que_mask |= tx_que->eims;
2668 }
2669
2670 /* And for the link interrupt */
2671 ivar = (sc->linkvec | E1000_IVAR_VALID) << 8;
2672 sc->link_mask = 1 << sc->linkvec;
2673 E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
2674 break;
2675
2676 case e1000_82575:
2677 /* enable MSI-X support*/
2678 tmp = E1000_READ_REG(hw, E1000_CTRL_EXT);
2679 tmp |= E1000_CTRL_EXT_PBA_CLR;
2680 /* Auto-Mask interrupts upon ICR read. */
2681 tmp |= E1000_CTRL_EXT_EIAME;
2682 tmp |= E1000_CTRL_EXT_IRCA;
2683 E1000_WRITE_REG(hw, E1000_CTRL_EXT, tmp);
2684
2685 /* Queues */
2686 for (int i = 0; i < sc->rx_num_queues; i++) {
2687 rx_que = &sc->rx_queues[i];
2688 tmp = E1000_EICR_RX_QUEUE0 << i;
2689 tmp |= E1000_EICR_TX_QUEUE0 << i;
2690 rx_que->eims = tmp;
2691 E1000_WRITE_REG_ARRAY(hw, E1000_MSIXBM(0), i,
2692 rx_que->eims);
2693 sc->que_mask |= rx_que->eims;
2694 }
2695
2696 /* Link */
2697 E1000_WRITE_REG(hw, E1000_MSIXBM(sc->linkvec),
2698 E1000_EIMS_OTHER);
2699 sc->link_mask |= E1000_EIMS_OTHER;
2700 default:
2701 break;
2702 }
2703
2704 /* Set the igb starting interrupt rate */
2705 if (em_max_interrupt_rate > 0) {
2706 newitr = IGB_INTS_TO_EITR(em_max_interrupt_rate);
2707
2708 if (hw->mac.type == e1000_82575)
2709 newitr |= newitr << 16;
2710 else
2711 newitr |= E1000_EITR_CNT_IGNR;
2712
2713 for (int i = 0; i < sc->rx_num_queues; i++) {
2714 rx_que = &sc->rx_queues[i];
2715 E1000_WRITE_REG(hw, E1000_EITR(rx_que->msix), newitr);
2716 }
2717 }
2718
2719 return;
2720 }
2721
2722 static void
em_free_pci_resources(if_ctx_t ctx)2723 em_free_pci_resources(if_ctx_t ctx)
2724 {
2725 struct e1000_softc *sc = iflib_get_softc(ctx);
2726 struct em_rx_queue *que = sc->rx_queues;
2727 device_t dev = iflib_get_dev(ctx);
2728
2729 /* Release all MSI-X queue resources */
2730 if (sc->intr_type == IFLIB_INTR_MSIX)
2731 iflib_irq_free(ctx, &sc->irq);
2732
2733 if (que != NULL) {
2734 for (int i = 0; i < sc->rx_num_queues; i++, que++) {
2735 iflib_irq_free(ctx, &que->que_irq);
2736 }
2737 }
2738
2739 if (sc->memory != NULL) {
2740 bus_release_resource(dev, SYS_RES_MEMORY,
2741 rman_get_rid(sc->memory), sc->memory);
2742 sc->memory = NULL;
2743 }
2744
2745 if (sc->flash != NULL) {
2746 bus_release_resource(dev, SYS_RES_MEMORY,
2747 rman_get_rid(sc->flash), sc->flash);
2748 sc->flash = NULL;
2749 }
2750
2751 if (sc->ioport != NULL) {
2752 bus_release_resource(dev, SYS_RES_IOPORT,
2753 rman_get_rid(sc->ioport), sc->ioport);
2754 sc->ioport = NULL;
2755 }
2756 }
2757
2758 /* Set up MSI or MSI-X */
2759 static int
em_setup_msix(if_ctx_t ctx)2760 em_setup_msix(if_ctx_t ctx)
2761 {
2762 struct e1000_softc *sc = iflib_get_softc(ctx);
2763
2764 if (sc->hw.mac.type == e1000_82574) {
2765 em_enable_vectors_82574(ctx);
2766 }
2767 return (0);
2768 }
2769
2770 /*********************************************************************
2771 *
2772 * Workaround for SmartSpeed on 82541 and 82547 controllers
2773 *
2774 **********************************************************************/
2775 static void
lem_smartspeed(struct e1000_softc * sc)2776 lem_smartspeed(struct e1000_softc *sc)
2777 {
2778 u16 phy_tmp;
2779
2780 if (sc->link_active || (sc->hw.phy.type != e1000_phy_igp) ||
2781 sc->hw.mac.autoneg == 0 ||
2782 (sc->hw.phy.autoneg_advertised & ADVERTISE_1000_FULL) == 0)
2783 return;
2784
2785 if (sc->smartspeed == 0) {
2786 /* If Master/Slave config fault is asserted twice,
2787 * we assume back-to-back */
2788 e1000_read_phy_reg(&sc->hw, PHY_1000T_STATUS, &phy_tmp);
2789 if (!(phy_tmp & SR_1000T_MS_CONFIG_FAULT))
2790 return;
2791 e1000_read_phy_reg(&sc->hw, PHY_1000T_STATUS, &phy_tmp);
2792 if (phy_tmp & SR_1000T_MS_CONFIG_FAULT) {
2793 e1000_read_phy_reg(&sc->hw,
2794 PHY_1000T_CTRL, &phy_tmp);
2795 if(phy_tmp & CR_1000T_MS_ENABLE) {
2796 phy_tmp &= ~CR_1000T_MS_ENABLE;
2797 e1000_write_phy_reg(&sc->hw,
2798 PHY_1000T_CTRL, phy_tmp);
2799 sc->smartspeed++;
2800 if(sc->hw.mac.autoneg &&
2801 !e1000_copper_link_autoneg(&sc->hw) &&
2802 !e1000_read_phy_reg(&sc->hw,
2803 PHY_CONTROL, &phy_tmp)) {
2804 phy_tmp |= (MII_CR_AUTO_NEG_EN |
2805 MII_CR_RESTART_AUTO_NEG);
2806 e1000_write_phy_reg(&sc->hw,
2807 PHY_CONTROL, phy_tmp);
2808 }
2809 }
2810 }
2811 return;
2812 } else if(sc->smartspeed == EM_SMARTSPEED_DOWNSHIFT) {
2813 /* If still no link, perhaps using 2/3 pair cable */
2814 e1000_read_phy_reg(&sc->hw, PHY_1000T_CTRL, &phy_tmp);
2815 phy_tmp |= CR_1000T_MS_ENABLE;
2816 e1000_write_phy_reg(&sc->hw, PHY_1000T_CTRL, phy_tmp);
2817 if(sc->hw.mac.autoneg &&
2818 !e1000_copper_link_autoneg(&sc->hw) &&
2819 !e1000_read_phy_reg(&sc->hw, PHY_CONTROL, &phy_tmp)) {
2820 phy_tmp |= (MII_CR_AUTO_NEG_EN |
2821 MII_CR_RESTART_AUTO_NEG);
2822 e1000_write_phy_reg(&sc->hw, PHY_CONTROL, phy_tmp);
2823 }
2824 }
2825 /* Restart process after EM_SMARTSPEED_MAX iterations */
2826 if(sc->smartspeed++ == EM_SMARTSPEED_MAX)
2827 sc->smartspeed = 0;
2828 }
2829
2830 /*********************************************************************
2831 *
2832 * Initialize the DMA Coalescing feature
2833 *
2834 **********************************************************************/
2835 static void
igb_init_dmac(struct e1000_softc * sc,u32 pba)2836 igb_init_dmac(struct e1000_softc *sc, u32 pba)
2837 {
2838 device_t dev = sc->dev;
2839 struct e1000_hw *hw = &sc->hw;
2840 u32 dmac, reg = ~E1000_DMACR_DMAC_EN;
2841 u16 hwm;
2842 u16 max_frame_size;
2843
2844 if (hw->mac.type == e1000_i211)
2845 return;
2846
2847 max_frame_size = sc->shared->isc_max_frame_size;
2848 if (hw->mac.type > e1000_82580) {
2849
2850 if (sc->dmac == 0) { /* Disabling it */
2851 E1000_WRITE_REG(hw, E1000_DMACR, reg);
2852 return;
2853 } else
2854 device_printf(dev, "DMA Coalescing enabled\n");
2855
2856 /* Set starting threshold */
2857 E1000_WRITE_REG(hw, E1000_DMCTXTH, 0);
2858
2859 hwm = 64 * pba - max_frame_size / 16;
2860 if (hwm < 64 * (pba - 6))
2861 hwm = 64 * (pba - 6);
2862 reg = E1000_READ_REG(hw, E1000_FCRTC);
2863 reg &= ~E1000_FCRTC_RTH_COAL_MASK;
2864 reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
2865 & E1000_FCRTC_RTH_COAL_MASK);
2866 E1000_WRITE_REG(hw, E1000_FCRTC, reg);
2867
2868
2869 dmac = pba - max_frame_size / 512;
2870 if (dmac < pba - 10)
2871 dmac = pba - 10;
2872 reg = E1000_READ_REG(hw, E1000_DMACR);
2873 reg &= ~E1000_DMACR_DMACTHR_MASK;
2874 reg |= ((dmac << E1000_DMACR_DMACTHR_SHIFT)
2875 & E1000_DMACR_DMACTHR_MASK);
2876
2877 /* transition to L0x or L1 if available..*/
2878 reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
2879
2880 /* Check if status is 2.5Gb backplane connection
2881 * before configuration of watchdog timer, which is
2882 * in msec values in 12.8usec intervals
2883 * watchdog timer= msec values in 32usec intervals
2884 * for non 2.5Gb connection
2885 */
2886 if (hw->mac.type == e1000_i354) {
2887 int status = E1000_READ_REG(hw, E1000_STATUS);
2888 if ((status & E1000_STATUS_2P5_SKU) &&
2889 (!(status & E1000_STATUS_2P5_SKU_OVER)))
2890 reg |= ((sc->dmac * 5) >> 6);
2891 else
2892 reg |= (sc->dmac >> 5);
2893 } else {
2894 reg |= (sc->dmac >> 5);
2895 }
2896
2897 E1000_WRITE_REG(hw, E1000_DMACR, reg);
2898
2899 E1000_WRITE_REG(hw, E1000_DMCRTRH, 0);
2900
2901 /* Set the interval before transition */
2902 reg = E1000_READ_REG(hw, E1000_DMCTLX);
2903 if (hw->mac.type == e1000_i350)
2904 reg |= IGB_DMCTLX_DCFLUSH_DIS;
2905 /*
2906 ** in 2.5Gb connection, TTLX unit is 0.4 usec
2907 ** which is 0x4*2 = 0xA. But delay is still 4 usec
2908 */
2909 if (hw->mac.type == e1000_i354) {
2910 int status = E1000_READ_REG(hw, E1000_STATUS);
2911 if ((status & E1000_STATUS_2P5_SKU) &&
2912 (!(status & E1000_STATUS_2P5_SKU_OVER)))
2913 reg |= 0xA;
2914 else
2915 reg |= 0x4;
2916 } else {
2917 reg |= 0x4;
2918 }
2919
2920 E1000_WRITE_REG(hw, E1000_DMCTLX, reg);
2921
2922 /* free space in tx packet buffer to wake from DMA coal */
2923 E1000_WRITE_REG(hw, E1000_DMCTXTH, (IGB_TXPBSIZE -
2924 (2 * max_frame_size)) >> 6);
2925
2926 /* make low power state decision controlled by DMA coal */
2927 reg = E1000_READ_REG(hw, E1000_PCIEMISC);
2928 reg &= ~E1000_PCIEMISC_LX_DECISION;
2929 E1000_WRITE_REG(hw, E1000_PCIEMISC, reg);
2930
2931 } else if (hw->mac.type == e1000_82580) {
2932 u32 reg = E1000_READ_REG(hw, E1000_PCIEMISC);
2933 E1000_WRITE_REG(hw, E1000_PCIEMISC,
2934 reg & ~E1000_PCIEMISC_LX_DECISION);
2935 E1000_WRITE_REG(hw, E1000_DMACR, 0);
2936 }
2937 }
2938 /*********************************************************************
2939 * The 3 following flush routines are used as a workaround in the
2940 * I219 client parts and only for them.
2941 *
2942 * em_flush_tx_ring - remove all descriptors from the tx_ring
2943 *
2944 * We want to clear all pending descriptors from the TX ring.
2945 * zeroing happens when the HW reads the regs. We assign the ring itself as
2946 * the data of the next descriptor. We don't care about the data we are about
2947 * to reset the HW.
2948 **********************************************************************/
2949 static void
em_flush_tx_ring(struct e1000_softc * sc)2950 em_flush_tx_ring(struct e1000_softc *sc)
2951 {
2952 struct e1000_hw *hw = &sc->hw;
2953 struct tx_ring *txr = &sc->tx_queues->txr;
2954 struct e1000_tx_desc *txd;
2955 u32 tctl, txd_lower = E1000_TXD_CMD_IFCS;
2956 u16 size = 512;
2957
2958 tctl = E1000_READ_REG(hw, E1000_TCTL);
2959 E1000_WRITE_REG(hw, E1000_TCTL, tctl | E1000_TCTL_EN);
2960
2961 txd = &txr->tx_base[txr->tx_cidx_processed];
2962
2963 /* Just use the ring as a dummy buffer addr */
2964 txd->buffer_addr = txr->tx_paddr;
2965 txd->lower.data = htole32(txd_lower | size);
2966 txd->upper.data = 0;
2967
2968 /* flush descriptors to memory before notifying the HW */
2969 wmb();
2970
2971 E1000_WRITE_REG(hw, E1000_TDT(0), txr->tx_cidx_processed);
2972 mb();
2973 usec_delay(250);
2974 }
2975
2976 /*********************************************************************
2977 * em_flush_rx_ring - remove all descriptors from the rx_ring
2978 *
2979 * Mark all descriptors in the RX ring as consumed and disable the rx ring
2980 **********************************************************************/
2981 static void
em_flush_rx_ring(struct e1000_softc * sc)2982 em_flush_rx_ring(struct e1000_softc *sc)
2983 {
2984 struct e1000_hw *hw = &sc->hw;
2985 u32 rctl, rxdctl;
2986
2987 rctl = E1000_READ_REG(hw, E1000_RCTL);
2988 E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
2989 E1000_WRITE_FLUSH(hw);
2990 usec_delay(150);
2991
2992 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(0));
2993 /* zero the lower 14 bits (prefetch and host thresholds) */
2994 rxdctl &= 0xffffc000;
2995 /*
2996 * update thresholds: prefetch threshold to 31, host threshold to 1
2997 * and make sure the granularity is "descriptors" and not
2998 * "cache lines"
2999 */
3000 rxdctl |= (0x1F | (1 << 8) | E1000_RXDCTL_THRESH_UNIT_DESC);
3001 E1000_WRITE_REG(hw, E1000_RXDCTL(0), rxdctl);
3002
3003 /* momentarily enable the RX ring for the changes to take effect */
3004 E1000_WRITE_REG(hw, E1000_RCTL, rctl | E1000_RCTL_EN);
3005 E1000_WRITE_FLUSH(hw);
3006 usec_delay(150);
3007 E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
3008 }
3009
3010 /*********************************************************************
3011 * em_flush_desc_rings - remove all descriptors from the descriptor rings
3012 *
3013 * In I219, the descriptor rings must be emptied before resetting the HW
3014 * or before changing the device state to D3 during runtime (runtime PM).
3015 *
3016 * Failure to do this will cause the HW to enter a unit hang state which can
3017 * only be released by PCI reset on the device
3018 *
3019 **********************************************************************/
3020 static void
em_flush_desc_rings(struct e1000_softc * sc)3021 em_flush_desc_rings(struct e1000_softc *sc)
3022 {
3023 struct e1000_hw *hw = &sc->hw;
3024 device_t dev = sc->dev;
3025 u16 hang_state;
3026 u32 fext_nvm11, tdlen;
3027
3028 /* First, disable MULR fix in FEXTNVM11 */
3029 fext_nvm11 = E1000_READ_REG(hw, E1000_FEXTNVM11);
3030 fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX;
3031 E1000_WRITE_REG(hw, E1000_FEXTNVM11, fext_nvm11);
3032
3033 /* do nothing if we're not in faulty state, or the queue is empty */
3034 tdlen = E1000_READ_REG(hw, E1000_TDLEN(0));
3035 hang_state = pci_read_config(dev, PCICFG_DESC_RING_STATUS, 2);
3036 if (!(hang_state & FLUSH_DESC_REQUIRED) || !tdlen)
3037 return;
3038 em_flush_tx_ring(sc);
3039
3040 /* recheck, maybe the fault is caused by the rx ring */
3041 hang_state = pci_read_config(dev, PCICFG_DESC_RING_STATUS, 2);
3042 if (hang_state & FLUSH_DESC_REQUIRED)
3043 em_flush_rx_ring(sc);
3044 }
3045
3046
3047 /*********************************************************************
3048 *
3049 * Initialize the hardware to a configuration as specified by the
3050 * sc structure.
3051 *
3052 **********************************************************************/
3053 static void
em_reset(if_ctx_t ctx)3054 em_reset(if_ctx_t ctx)
3055 {
3056 device_t dev = iflib_get_dev(ctx);
3057 struct e1000_softc *sc = iflib_get_softc(ctx);
3058 if_t ifp = iflib_get_ifp(ctx);
3059 struct e1000_hw *hw = &sc->hw;
3060 u32 rx_buffer_size;
3061 u32 pba;
3062
3063 INIT_DEBUGOUT("em_reset: begin");
3064 /* Let the firmware know the OS is in control */
3065 em_get_hw_control(sc);
3066
3067 /* Set up smart power down as default off on newer adapters. */
3068 if (!em_smart_pwr_down && (hw->mac.type == e1000_82571 ||
3069 hw->mac.type == e1000_82572)) {
3070 u16 phy_tmp = 0;
3071
3072 /* Speed up time to link by disabling smart power down. */
3073 e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_tmp);
3074 phy_tmp &= ~IGP02E1000_PM_SPD;
3075 e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_tmp);
3076 }
3077
3078 /*
3079 * Packet Buffer Allocation (PBA)
3080 * Writing PBA sets the receive portion of the buffer
3081 * the remainder is used for the transmit buffer.
3082 */
3083 switch (hw->mac.type) {
3084 /* 82547: Total Packet Buffer is 40K */
3085 case e1000_82547:
3086 case e1000_82547_rev_2:
3087 if (hw->mac.max_frame_size > 8192)
3088 pba = E1000_PBA_22K; /* 22K for Rx, 18K for Tx */
3089 else
3090 pba = E1000_PBA_30K; /* 30K for Rx, 10K for Tx */
3091 break;
3092 /* 82571/82572/80003es2lan: Total Packet Buffer is 48K */
3093 case e1000_82571:
3094 case e1000_82572:
3095 case e1000_80003es2lan:
3096 pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
3097 break;
3098 /* 82573: Total Packet Buffer is 32K */
3099 case e1000_82573:
3100 pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
3101 break;
3102 case e1000_82574:
3103 case e1000_82583:
3104 pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
3105 break;
3106 case e1000_ich8lan:
3107 pba = E1000_PBA_8K;
3108 break;
3109 case e1000_ich9lan:
3110 case e1000_ich10lan:
3111 /* Boost Receive side for jumbo frames */
3112 if (hw->mac.max_frame_size > 4096)
3113 pba = E1000_PBA_14K;
3114 else
3115 pba = E1000_PBA_10K;
3116 break;
3117 case e1000_pchlan:
3118 case e1000_pch2lan:
3119 case e1000_pch_lpt:
3120 case e1000_pch_spt:
3121 case e1000_pch_cnp:
3122 case e1000_pch_tgp:
3123 case e1000_pch_adp:
3124 case e1000_pch_mtp:
3125 case e1000_pch_ptp:
3126 pba = E1000_PBA_26K;
3127 break;
3128 case e1000_82575:
3129 pba = E1000_PBA_32K;
3130 break;
3131 case e1000_82576:
3132 case e1000_vfadapt:
3133 pba = E1000_READ_REG(hw, E1000_RXPBS);
3134 pba &= E1000_RXPBS_SIZE_MASK_82576;
3135 break;
3136 case e1000_82580:
3137 case e1000_i350:
3138 case e1000_i354:
3139 case e1000_vfadapt_i350:
3140 pba = E1000_READ_REG(hw, E1000_RXPBS);
3141 pba = e1000_rxpbs_adjust_82580(pba);
3142 break;
3143 case e1000_i210:
3144 case e1000_i211:
3145 pba = E1000_PBA_34K;
3146 break;
3147 default:
3148 /* Remaining devices assumed to have Packet Buffer of 64K. */
3149 if (hw->mac.max_frame_size > 8192)
3150 pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
3151 else
3152 pba = E1000_PBA_48K; /* 48K for Rx, 16K for Tx */
3153 }
3154
3155 /* Special needs in case of Jumbo frames */
3156 if ((hw->mac.type == e1000_82575) && (if_getmtu(ifp) > ETHERMTU)) {
3157 u32 tx_space, min_tx, min_rx;
3158 pba = E1000_READ_REG(hw, E1000_PBA);
3159 tx_space = pba >> 16;
3160 pba &= 0xffff;
3161 min_tx = (hw->mac.max_frame_size +
3162 sizeof(struct e1000_tx_desc) - ETHERNET_FCS_SIZE) * 2;
3163 min_tx = roundup2(min_tx, 1024);
3164 min_tx >>= 10;
3165 min_rx = hw->mac.max_frame_size;
3166 min_rx = roundup2(min_rx, 1024);
3167 min_rx >>= 10;
3168 if (tx_space < min_tx &&
3169 ((min_tx - tx_space) < pba)) {
3170 pba = pba - (min_tx - tx_space);
3171 /*
3172 * if short on rx space, rx wins
3173 * and must trump tx adjustment
3174 */
3175 if (pba < min_rx)
3176 pba = min_rx;
3177 }
3178 E1000_WRITE_REG(hw, E1000_PBA, pba);
3179 }
3180
3181 if (hw->mac.type < igb_mac_min)
3182 E1000_WRITE_REG(hw, E1000_PBA, pba);
3183
3184 INIT_DEBUGOUT1("em_reset: pba=%dK",pba);
3185
3186 /*
3187 * These parameters control the automatic generation (Tx) and
3188 * response (Rx) to Ethernet PAUSE frames.
3189 * - High water mark should allow for at least two frames to be
3190 * received after sending an XOFF.
3191 * - Low water mark works best when it is very near the high water
3192 mark.
3193 * This allows the receiver to restart by sending XON when it has
3194 * drained a bit. Here we use an arbitrary value of 1500 which will
3195 * restart after one full frame is pulled from the buffer. There
3196 * could be several smaller frames in the buffer and if so they will
3197 * not trigger the XON until their total number reduces the buffer
3198 * by 1500.
3199 * - The pause time is fairly large at 1000 x 512ns = 512 usec.
3200 */
3201 rx_buffer_size = (pba & 0xffff) << 10;
3202 hw->fc.high_water = rx_buffer_size -
3203 roundup2(hw->mac.max_frame_size, 1024);
3204 hw->fc.low_water = hw->fc.high_water - 1500;
3205
3206 if (sc->fc) /* locally set flow control value? */
3207 hw->fc.requested_mode = sc->fc;
3208 else
3209 hw->fc.requested_mode = e1000_fc_full;
3210
3211 if (hw->mac.type == e1000_80003es2lan)
3212 hw->fc.pause_time = 0xFFFF;
3213 else
3214 hw->fc.pause_time = EM_FC_PAUSE_TIME;
3215
3216 hw->fc.send_xon = true;
3217
3218 /* Device specific overrides/settings */
3219 switch (hw->mac.type) {
3220 case e1000_pchlan:
3221 /* Workaround: no TX flow ctrl for PCH */
3222 hw->fc.requested_mode = e1000_fc_rx_pause;
3223 hw->fc.pause_time = 0xFFFF; /* override */
3224 if (if_getmtu(ifp) > ETHERMTU) {
3225 hw->fc.high_water = 0x3500;
3226 hw->fc.low_water = 0x1500;
3227 } else {
3228 hw->fc.high_water = 0x5000;
3229 hw->fc.low_water = 0x3000;
3230 }
3231 hw->fc.refresh_time = 0x1000;
3232 break;
3233 case e1000_pch2lan:
3234 case e1000_pch_lpt:
3235 case e1000_pch_spt:
3236 case e1000_pch_cnp:
3237 case e1000_pch_tgp:
3238 case e1000_pch_adp:
3239 case e1000_pch_mtp:
3240 case e1000_pch_ptp:
3241 hw->fc.high_water = 0x5C20;
3242 hw->fc.low_water = 0x5048;
3243 hw->fc.pause_time = 0x0650;
3244 hw->fc.refresh_time = 0x0400;
3245 /* Jumbos need adjusted PBA */
3246 if (if_getmtu(ifp) > ETHERMTU)
3247 E1000_WRITE_REG(hw, E1000_PBA, 12);
3248 else
3249 E1000_WRITE_REG(hw, E1000_PBA, 26);
3250 break;
3251 case e1000_82575:
3252 case e1000_82576:
3253 /* 8-byte granularity */
3254 hw->fc.low_water = hw->fc.high_water - 8;
3255 break;
3256 case e1000_82580:
3257 case e1000_i350:
3258 case e1000_i354:
3259 case e1000_i210:
3260 case e1000_i211:
3261 case e1000_vfadapt:
3262 case e1000_vfadapt_i350:
3263 /* 16-byte granularity */
3264 hw->fc.low_water = hw->fc.high_water - 16;
3265 break;
3266 case e1000_ich9lan:
3267 case e1000_ich10lan:
3268 if (if_getmtu(ifp) > ETHERMTU) {
3269 hw->fc.high_water = 0x2800;
3270 hw->fc.low_water = hw->fc.high_water - 8;
3271 break;
3272 }
3273 /* FALLTHROUGH */
3274 default:
3275 if (hw->mac.type == e1000_80003es2lan)
3276 hw->fc.pause_time = 0xFFFF;
3277 break;
3278 }
3279
3280 /* I219 needs some special flushing to avoid hangs */
3281 if (sc->hw.mac.type >= e1000_pch_spt && sc->hw.mac.type < igb_mac_min)
3282 em_flush_desc_rings(sc);
3283
3284 /* Issue a global reset */
3285 e1000_reset_hw(hw);
3286 if (hw->mac.type >= igb_mac_min) {
3287 E1000_WRITE_REG(hw, E1000_WUC, 0);
3288 } else {
3289 E1000_WRITE_REG(hw, E1000_WUFC, 0);
3290 em_disable_aspm(sc);
3291 }
3292 if (sc->flags & IGB_MEDIA_RESET) {
3293 e1000_setup_init_funcs(hw, true);
3294 e1000_get_bus_info(hw);
3295 sc->flags &= ~IGB_MEDIA_RESET;
3296 }
3297 /* and a re-init */
3298 if (e1000_init_hw(hw) < 0) {
3299 device_printf(dev, "Hardware Initialization Failed\n");
3300 return;
3301 }
3302 if (hw->mac.type >= igb_mac_min)
3303 igb_init_dmac(sc, pba);
3304
3305 /* Save the final PBA off if it needs to be used elsewhere i.e. AIM */
3306 sc->pba = pba;
3307
3308 E1000_WRITE_REG(hw, E1000_VET, ETHERTYPE_VLAN);
3309 e1000_get_phy_info(hw);
3310 e1000_check_for_link(hw);
3311 }
3312
3313 /*
3314 * Initialise the RSS mapping for NICs that support multiple transmit/
3315 * receive rings.
3316 */
3317
3318 #define RSSKEYLEN 10
3319 static void
em_initialize_rss_mapping(struct e1000_softc * sc)3320 em_initialize_rss_mapping(struct e1000_softc *sc)
3321 {
3322 uint8_t rss_key[4 * RSSKEYLEN];
3323 uint32_t reta = 0;
3324 struct e1000_hw *hw = &sc->hw;
3325 int i;
3326
3327 /*
3328 * Configure RSS key
3329 */
3330 arc4rand(rss_key, sizeof(rss_key), 0);
3331 for (i = 0; i < RSSKEYLEN; ++i) {
3332 uint32_t rssrk = 0;
3333
3334 rssrk = EM_RSSRK_VAL(rss_key, i);
3335 E1000_WRITE_REG(hw,E1000_RSSRK(i), rssrk);
3336 }
3337
3338 /*
3339 * Configure RSS redirect table in following fashion:
3340 * (hash & ring_cnt_mask) == rdr_table[(hash & rdr_table_mask)]
3341 */
3342 for (i = 0; i < sizeof(reta); ++i) {
3343 uint32_t q;
3344
3345 q = (i % sc->rx_num_queues) << 7;
3346 reta |= q << (8 * i);
3347 }
3348
3349 for (i = 0; i < 32; ++i)
3350 E1000_WRITE_REG(hw, E1000_RETA(i), reta);
3351
3352 E1000_WRITE_REG(hw, E1000_MRQC, E1000_MRQC_RSS_ENABLE_2Q |
3353 E1000_MRQC_RSS_FIELD_IPV4_TCP |
3354 E1000_MRQC_RSS_FIELD_IPV4 |
3355 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX |
3356 E1000_MRQC_RSS_FIELD_IPV6_EX |
3357 E1000_MRQC_RSS_FIELD_IPV6);
3358 }
3359
3360 static void
igb_initialize_rss_mapping(struct e1000_softc * sc)3361 igb_initialize_rss_mapping(struct e1000_softc *sc)
3362 {
3363 struct e1000_hw *hw = &sc->hw;
3364 int i;
3365 int queue_id;
3366 u32 reta;
3367 u32 rss_key[10], mrqc, shift = 0;
3368
3369 /* XXX? */
3370 if (hw->mac.type == e1000_82575)
3371 shift = 6;
3372
3373 /*
3374 * The redirection table controls which destination
3375 * queue each bucket redirects traffic to.
3376 * Each DWORD represents four queues, with the LSB
3377 * being the first queue in the DWORD.
3378 *
3379 * This just allocates buckets to queues using round-robin
3380 * allocation.
3381 *
3382 * NOTE: It Just Happens to line up with the default
3383 * RSS allocation method.
3384 */
3385
3386 /* Warning FM follows */
3387 reta = 0;
3388 for (i = 0; i < 128; i++) {
3389 #ifdef RSS
3390 queue_id = rss_get_indirection_to_bucket(i);
3391 /*
3392 * If we have more queues than buckets, we'll
3393 * end up mapping buckets to a subset of the
3394 * queues.
3395 *
3396 * If we have more buckets than queues, we'll
3397 * end up instead assigning multiple buckets
3398 * to queues.
3399 *
3400 * Both are suboptimal, but we need to handle
3401 * the case so we don't go out of bounds
3402 * indexing arrays and such.
3403 */
3404 queue_id = queue_id % sc->rx_num_queues;
3405 #else
3406 queue_id = (i % sc->rx_num_queues);
3407 #endif
3408 /* Adjust if required */
3409 queue_id = queue_id << shift;
3410
3411 /*
3412 * The low 8 bits are for hash value (n+0);
3413 * The next 8 bits are for hash value (n+1), etc.
3414 */
3415 reta = reta >> 8;
3416 reta = reta | ( ((uint32_t) queue_id) << 24);
3417 if ((i & 3) == 3) {
3418 E1000_WRITE_REG(hw, E1000_RETA(i >> 2), reta);
3419 reta = 0;
3420 }
3421 }
3422
3423 /* Now fill in hash table */
3424
3425 /*
3426 * MRQC: Multiple Receive Queues Command
3427 * Set queuing to RSS control, number depends on the device.
3428 */
3429 mrqc = E1000_MRQC_ENABLE_RSS_MQ;
3430
3431 #ifdef RSS
3432 /* XXX ew typecasting */
3433 rss_getkey((uint8_t *) &rss_key);
3434 #else
3435 arc4rand(&rss_key, sizeof(rss_key), 0);
3436 #endif
3437 for (i = 0; i < 10; i++)
3438 E1000_WRITE_REG_ARRAY(hw, E1000_RSSRK(0), i, rss_key[i]);
3439
3440 /*
3441 * Configure the RSS fields to hash upon.
3442 */
3443 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
3444 E1000_MRQC_RSS_FIELD_IPV4_TCP);
3445 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 |
3446 E1000_MRQC_RSS_FIELD_IPV6_TCP);
3447 mrqc |=( E1000_MRQC_RSS_FIELD_IPV4_UDP |
3448 E1000_MRQC_RSS_FIELD_IPV6_UDP);
3449 mrqc |=( E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
3450 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
3451
3452 E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
3453 }
3454
3455 /*********************************************************************
3456 *
3457 * Setup networking device structure and register interface media.
3458 *
3459 **********************************************************************/
3460 static int
em_setup_interface(if_ctx_t ctx)3461 em_setup_interface(if_ctx_t ctx)
3462 {
3463 if_t ifp = iflib_get_ifp(ctx);
3464 struct e1000_softc *sc = iflib_get_softc(ctx);
3465 if_softc_ctx_t scctx = sc->shared;
3466
3467 INIT_DEBUGOUT("em_setup_interface: begin");
3468
3469 /* Single Queue */
3470 if (sc->tx_num_queues == 1) {
3471 if_setsendqlen(ifp, scctx->isc_ntxd[0] - 1);
3472 if_setsendqready(ifp);
3473 }
3474
3475 /*
3476 * Specify the media types supported by this adapter and register
3477 * callbacks to update media and link information
3478 */
3479 if (sc->hw.phy.media_type == e1000_media_type_fiber ||
3480 sc->hw.phy.media_type == e1000_media_type_internal_serdes) {
3481 u_char fiber_type = IFM_1000_SX; /* default type */
3482
3483 if (sc->hw.mac.type == e1000_82545)
3484 fiber_type = IFM_1000_LX;
3485 ifmedia_add(sc->media,
3486 IFM_ETHER | fiber_type | IFM_FDX, 0, NULL);
3487 ifmedia_add(sc->media, IFM_ETHER | fiber_type, 0, NULL);
3488 } else {
3489 ifmedia_add(sc->media, IFM_ETHER | IFM_10_T, 0, NULL);
3490 ifmedia_add(sc->media,
3491 IFM_ETHER | IFM_10_T | IFM_FDX, 0, NULL);
3492 ifmedia_add(sc->media, IFM_ETHER | IFM_100_TX, 0, NULL);
3493 ifmedia_add(sc->media,
3494 IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL);
3495 if (sc->hw.phy.type != e1000_phy_ife) {
3496 ifmedia_add(sc->media,
3497 IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
3498 ifmedia_add(sc->media,
3499 IFM_ETHER | IFM_1000_T, 0, NULL);
3500 }
3501 }
3502 ifmedia_add(sc->media, IFM_ETHER | IFM_AUTO, 0, NULL);
3503 ifmedia_set(sc->media, IFM_ETHER | IFM_AUTO);
3504 return (0);
3505 }
3506
3507 static int
em_if_tx_queues_alloc(if_ctx_t ctx,caddr_t * vaddrs,uint64_t * paddrs,int ntxqs,int ntxqsets)3508 em_if_tx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs,
3509 int ntxqs, int ntxqsets)
3510 {
3511 struct e1000_softc *sc = iflib_get_softc(ctx);
3512 if_softc_ctx_t scctx = sc->shared;
3513 int error = E1000_SUCCESS;
3514 struct em_tx_queue *que;
3515 int i, j;
3516
3517 MPASS(sc->tx_num_queues > 0);
3518 MPASS(sc->tx_num_queues == ntxqsets);
3519
3520 /* First allocate the top level queue structs */
3521 if (!(sc->tx_queues =
3522 (struct em_tx_queue *) malloc(sizeof(struct em_tx_queue) *
3523 sc->tx_num_queues, M_DEVBUF, M_NOWAIT | M_ZERO))) {
3524 device_printf(iflib_get_dev(ctx),
3525 "Unable to allocate queue memory\n");
3526 return(ENOMEM);
3527 }
3528
3529 for (i = 0, que = sc->tx_queues; i < sc->tx_num_queues; i++, que++) {
3530 /* Set up some basics */
3531
3532 struct tx_ring *txr = &que->txr;
3533 txr->sc = que->sc = sc;
3534 que->me = txr->me = i;
3535
3536 /* Allocate report status array */
3537 if (!(txr->tx_rsq =
3538 (qidx_t *) malloc(sizeof(qidx_t) * scctx->isc_ntxd[0],
3539 M_DEVBUF, M_NOWAIT | M_ZERO))) {
3540 device_printf(iflib_get_dev(ctx),
3541 "failed to allocate rs_idxs memory\n");
3542 error = ENOMEM;
3543 goto fail;
3544 }
3545 for (j = 0; j < scctx->isc_ntxd[0]; j++)
3546 txr->tx_rsq[j] = QIDX_INVALID;
3547 /* get the virtual and physical address of hardware queues */
3548 txr->tx_base = (struct e1000_tx_desc *)vaddrs[i*ntxqs];
3549 txr->tx_paddr = paddrs[i*ntxqs];
3550 }
3551
3552 if (bootverbose)
3553 device_printf(iflib_get_dev(ctx),
3554 "allocated for %d tx_queues\n", sc->tx_num_queues);
3555 return (0);
3556 fail:
3557 em_if_queues_free(ctx);
3558 return (error);
3559 }
3560
3561 static int
em_if_rx_queues_alloc(if_ctx_t ctx,caddr_t * vaddrs,uint64_t * paddrs,int nrxqs,int nrxqsets)3562 em_if_rx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs,
3563 int nrxqs, int nrxqsets)
3564 {
3565 struct e1000_softc *sc = iflib_get_softc(ctx);
3566 int error = E1000_SUCCESS;
3567 struct em_rx_queue *que;
3568 int i;
3569
3570 MPASS(sc->rx_num_queues > 0);
3571 MPASS(sc->rx_num_queues == nrxqsets);
3572
3573 /* First allocate the top level queue structs */
3574 if (!(sc->rx_queues =
3575 (struct em_rx_queue *) malloc(sizeof(struct em_rx_queue) *
3576 sc->rx_num_queues, M_DEVBUF, M_NOWAIT | M_ZERO))) {
3577 device_printf(iflib_get_dev(ctx),
3578 "Unable to allocate queue memory\n");
3579 error = ENOMEM;
3580 goto fail;
3581 }
3582
3583 for (i = 0, que = sc->rx_queues; i < nrxqsets; i++, que++) {
3584 /* Set up some basics */
3585 struct rx_ring *rxr = &que->rxr;
3586 rxr->sc = que->sc = sc;
3587 rxr->que = que;
3588 que->me = rxr->me = i;
3589
3590 /* get the virtual and physical address of hardware queues */
3591 rxr->rx_base =
3592 (union e1000_rx_desc_extended *)vaddrs[i*nrxqs];
3593 rxr->rx_paddr = paddrs[i*nrxqs];
3594 }
3595
3596 if (bootverbose)
3597 device_printf(iflib_get_dev(ctx),
3598 "allocated for %d rx_queues\n", sc->rx_num_queues);
3599
3600 return (0);
3601 fail:
3602 em_if_queues_free(ctx);
3603 return (error);
3604 }
3605
3606 static void
em_if_queues_free(if_ctx_t ctx)3607 em_if_queues_free(if_ctx_t ctx)
3608 {
3609 struct e1000_softc *sc = iflib_get_softc(ctx);
3610 struct em_tx_queue *tx_que = sc->tx_queues;
3611 struct em_rx_queue *rx_que = sc->rx_queues;
3612
3613 if (tx_que != NULL) {
3614 for (int i = 0; i < sc->tx_num_queues; i++, tx_que++) {
3615 struct tx_ring *txr = &tx_que->txr;
3616 if (txr->tx_rsq == NULL)
3617 break;
3618
3619 free(txr->tx_rsq, M_DEVBUF);
3620 txr->tx_rsq = NULL;
3621 }
3622 free(sc->tx_queues, M_DEVBUF);
3623 sc->tx_queues = NULL;
3624 }
3625
3626 if (rx_que != NULL) {
3627 free(sc->rx_queues, M_DEVBUF);
3628 sc->rx_queues = NULL;
3629 }
3630 }
3631
3632 /*********************************************************************
3633 *
3634 * Enable transmit unit.
3635 *
3636 **********************************************************************/
3637 static void
em_initialize_transmit_unit(if_ctx_t ctx)3638 em_initialize_transmit_unit(if_ctx_t ctx)
3639 {
3640 struct e1000_softc *sc = iflib_get_softc(ctx);
3641 if_softc_ctx_t scctx = sc->shared;
3642 struct em_tx_queue *que;
3643 struct tx_ring *txr;
3644 struct e1000_hw *hw = &sc->hw;
3645 u32 tctl, txdctl = 0, tarc, tipg = 0;
3646
3647 INIT_DEBUGOUT("em_initialize_transmit_unit: begin");
3648
3649 for (int i = 0; i < sc->tx_num_queues; i++, txr++) {
3650 u64 bus_addr;
3651 caddr_t offp, endp;
3652
3653 que = &sc->tx_queues[i];
3654 txr = &que->txr;
3655 bus_addr = txr->tx_paddr;
3656
3657 /* Clear checksum offload context. */
3658 offp = (caddr_t)&txr->csum_flags;
3659 endp = (caddr_t)(txr + 1);
3660 bzero(offp, endp - offp);
3661
3662 /* Base and Len of TX Ring */
3663 E1000_WRITE_REG(hw, E1000_TDLEN(i),
3664 scctx->isc_ntxd[0] * sizeof(struct e1000_tx_desc));
3665 E1000_WRITE_REG(hw, E1000_TDBAH(i), (u32)(bus_addr >> 32));
3666 E1000_WRITE_REG(hw, E1000_TDBAL(i), (u32)bus_addr);
3667 /* Init the HEAD/TAIL indices */
3668 E1000_WRITE_REG(hw, E1000_TDT(i), 0);
3669 E1000_WRITE_REG(hw, E1000_TDH(i), 0);
3670
3671 HW_DEBUGOUT2("Base = %x, Length = %x\n",
3672 E1000_READ_REG(hw, E1000_TDBAL(i)),
3673 E1000_READ_REG(hw, E1000_TDLEN(i)));
3674
3675 txdctl = 0; /* clear txdctl */
3676 txdctl |= 0x1f; /* PTHRESH */
3677 txdctl |= 1 << 8; /* HTHRESH */
3678 txdctl |= 1 << 16;/* WTHRESH */
3679 txdctl |= 1 << 22; /* Reserved bit 22 must always be 1 */
3680 txdctl |= E1000_TXDCTL_GRAN;
3681 txdctl |= 1 << 25; /* LWTHRESH */
3682
3683 E1000_WRITE_REG(hw, E1000_TXDCTL(i), txdctl);
3684 }
3685
3686 /* Set the default values for the Tx Inter Packet Gap timer */
3687 switch (hw->mac.type) {
3688 case e1000_80003es2lan:
3689 tipg = DEFAULT_82543_TIPG_IPGR1;
3690 tipg |= DEFAULT_80003ES2LAN_TIPG_IPGR2 <<
3691 E1000_TIPG_IPGR2_SHIFT;
3692 break;
3693 case e1000_82542:
3694 tipg = DEFAULT_82542_TIPG_IPGT;
3695 tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
3696 tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
3697 break;
3698 default:
3699 if (hw->phy.media_type == e1000_media_type_fiber ||
3700 hw->phy.media_type == e1000_media_type_internal_serdes)
3701 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
3702 else
3703 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
3704 tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
3705 tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
3706 }
3707
3708 if (hw->mac.type < igb_mac_min) {
3709 E1000_WRITE_REG(hw, E1000_TIPG, tipg);
3710 E1000_WRITE_REG(hw, E1000_TIDV, sc->tx_int_delay.value);
3711
3712 if (sc->tx_int_delay.value > 0)
3713 sc->txd_cmd |= E1000_TXD_CMD_IDE;
3714 }
3715
3716 if (hw->mac.type >= e1000_82540)
3717 E1000_WRITE_REG(hw, E1000_TADV, sc->tx_abs_int_delay.value);
3718
3719 if (hw->mac.type == e1000_82571 || hw->mac.type == e1000_82572) {
3720 tarc = E1000_READ_REG(hw, E1000_TARC(0));
3721 tarc |= TARC_SPEED_MODE_BIT;
3722 E1000_WRITE_REG(hw, E1000_TARC(0), tarc);
3723 } else if (hw->mac.type == e1000_80003es2lan) {
3724 /* errata: program both queues to unweighted RR */
3725 tarc = E1000_READ_REG(hw, E1000_TARC(0));
3726 tarc |= 1;
3727 E1000_WRITE_REG(hw, E1000_TARC(0), tarc);
3728 tarc = E1000_READ_REG(hw, E1000_TARC(1));
3729 tarc |= 1;
3730 E1000_WRITE_REG(hw, E1000_TARC(1), tarc);
3731 } else if (hw->mac.type == e1000_82574) {
3732 tarc = E1000_READ_REG(hw, E1000_TARC(0));
3733 tarc |= TARC_ERRATA_BIT;
3734 if ( sc->tx_num_queues > 1) {
3735 tarc |= (TARC_COMPENSATION_MODE | TARC_MQ_FIX);
3736 E1000_WRITE_REG(hw, E1000_TARC(0), tarc);
3737 E1000_WRITE_REG(hw, E1000_TARC(1), tarc);
3738 } else
3739 E1000_WRITE_REG(hw, E1000_TARC(0), tarc);
3740 }
3741
3742 /* Program the Transmit Control Register */
3743 tctl = E1000_READ_REG(hw, E1000_TCTL);
3744 tctl &= ~E1000_TCTL_CT;
3745 tctl |= (E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
3746 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT));
3747
3748 if (hw->mac.type >= e1000_82571 && hw->mac.type < igb_mac_min)
3749 tctl |= E1000_TCTL_MULR;
3750
3751 /* This write will effectively turn on the transmit unit. */
3752 E1000_WRITE_REG(hw, E1000_TCTL, tctl);
3753
3754 /* SPT and KBL errata workarounds */
3755 if (hw->mac.type == e1000_pch_spt) {
3756 u32 reg;
3757 reg = E1000_READ_REG(hw, E1000_IOSFPC);
3758 reg |= E1000_RCTL_RDMTS_HEX;
3759 E1000_WRITE_REG(hw, E1000_IOSFPC, reg);
3760 /* i218-i219 Specification Update 1.5.4.5 */
3761 reg = E1000_READ_REG(hw, E1000_TARC(0));
3762 reg &= ~E1000_TARC0_CB_MULTIQ_3_REQ;
3763 reg |= E1000_TARC0_CB_MULTIQ_2_REQ;
3764 E1000_WRITE_REG(hw, E1000_TARC(0), reg);
3765 }
3766 }
3767
3768 /*********************************************************************
3769 *
3770 * Enable receive unit.
3771 *
3772 **********************************************************************/
3773 #define BSIZEPKT_ROUNDUP ((1<<E1000_SRRCTL_BSIZEPKT_SHIFT)-1)
3774
3775 static void
em_initialize_receive_unit(if_ctx_t ctx)3776 em_initialize_receive_unit(if_ctx_t ctx)
3777 {
3778 struct e1000_softc *sc = iflib_get_softc(ctx);
3779 if_softc_ctx_t scctx = sc->shared;
3780 if_t ifp = iflib_get_ifp(ctx);
3781 struct e1000_hw *hw = &sc->hw;
3782 struct em_rx_queue *que;
3783 int i;
3784 uint32_t rctl, rxcsum;
3785
3786 INIT_DEBUGOUT("em_initialize_receive_units: begin");
3787
3788 /*
3789 * Make sure receives are disabled while setting
3790 * up the descriptor ring
3791 */
3792 rctl = E1000_READ_REG(hw, E1000_RCTL);
3793 /* Do not disable if ever enabled on this hardware */
3794 if ((hw->mac.type != e1000_82574) && (hw->mac.type != e1000_82583))
3795 E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
3796
3797 /* Setup the Receive Control Register */
3798 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3799 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
3800 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
3801 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3802
3803 /* Do not store bad packets */
3804 rctl &= ~E1000_RCTL_SBP;
3805
3806 /* Enable Long Packet receive */
3807 if (if_getmtu(ifp) > ETHERMTU)
3808 rctl |= E1000_RCTL_LPE;
3809 else
3810 rctl &= ~E1000_RCTL_LPE;
3811
3812 /* Strip the CRC */
3813 if (!em_disable_crc_stripping)
3814 rctl |= E1000_RCTL_SECRC;
3815
3816 /* lem/em default interrupt moderation */
3817 if (hw->mac.type < igb_mac_min) {
3818 if (hw->mac.type >= e1000_82540) {
3819 E1000_WRITE_REG(hw, E1000_RADV,
3820 sc->rx_abs_int_delay.value);
3821
3822 /* Set the default interrupt throttling rate */
3823 E1000_WRITE_REG(hw, E1000_ITR,
3824 EM_INTS_TO_ITR(em_max_interrupt_rate));
3825 }
3826
3827 /* XXX TEMPORARY WORKAROUND: on some systems with 82573
3828 * long latencies are observed, like Lenovo X60. This
3829 * change eliminates the problem, but since having positive
3830 * values in RDTR is a known source of problems on other
3831 * platforms another solution is being sought.
3832 */
3833 if (hw->mac.type == e1000_82573)
3834 E1000_WRITE_REG(hw, E1000_RDTR, 0x20);
3835 else
3836 E1000_WRITE_REG(hw, E1000_RDTR,
3837 sc->rx_int_delay.value);
3838 }
3839
3840 if (hw->mac.type >= em_mac_min) {
3841 uint32_t rfctl;
3842 /* Use extended rx descriptor formats */
3843 rfctl = E1000_READ_REG(hw, E1000_RFCTL);
3844 rfctl |= E1000_RFCTL_EXTEN;
3845
3846 /*
3847 * When using MSI-X interrupts we need to throttle
3848 * using the EITR register (82574 only)
3849 */
3850 if (hw->mac.type == e1000_82574) {
3851 for (int i = 0; i < 4; i++)
3852 E1000_WRITE_REG(hw, E1000_EITR_82574(i),
3853 EM_INTS_TO_ITR(em_max_interrupt_rate));
3854 /* Disable accelerated acknowledge */
3855 rfctl |= E1000_RFCTL_ACK_DIS;
3856 }
3857 E1000_WRITE_REG(hw, E1000_RFCTL, rfctl);
3858 }
3859
3860 /* Set up L3 and L4 csum Rx descriptor offloads */
3861 rxcsum = E1000_READ_REG(hw, E1000_RXCSUM);
3862 if (if_getcapenable(ifp) & IFCAP_RXCSUM) {
3863 rxcsum |= E1000_RXCSUM_TUOFL | E1000_RXCSUM_IPOFL;
3864 if (hw->mac.type > e1000_82575)
3865 rxcsum |= E1000_RXCSUM_CRCOFL;
3866 else if (hw->mac.type < em_mac_min &&
3867 if_getcapenable(ifp) & IFCAP_HWCSUM_IPV6)
3868 rxcsum |= E1000_RXCSUM_IPV6OFL;
3869 } else {
3870 rxcsum &= ~(E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL);
3871 if (hw->mac.type > e1000_82575)
3872 rxcsum &= ~E1000_RXCSUM_CRCOFL;
3873 else if (hw->mac.type < em_mac_min)
3874 rxcsum &= ~E1000_RXCSUM_IPV6OFL;
3875 }
3876
3877 if (sc->rx_num_queues > 1) {
3878 /* RSS hash needed in the Rx descriptor */
3879 rxcsum |= E1000_RXCSUM_PCSD;
3880
3881 if (hw->mac.type >= igb_mac_min)
3882 igb_initialize_rss_mapping(sc);
3883 else
3884 em_initialize_rss_mapping(sc);
3885 }
3886 E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum);
3887
3888 for (i = 0, que = sc->rx_queues; i < sc->rx_num_queues; i++, que++) {
3889 struct rx_ring *rxr = &que->rxr;
3890 /* Setup the Base and Length of the Rx Descriptor Ring */
3891 u64 bus_addr = rxr->rx_paddr;
3892 #if 0
3893 u32 rdt = sc->rx_num_queues -1; /* default */
3894 #endif
3895
3896 E1000_WRITE_REG(hw, E1000_RDLEN(i),
3897 scctx->isc_nrxd[0] *
3898 sizeof(union e1000_rx_desc_extended));
3899 E1000_WRITE_REG(hw, E1000_RDBAH(i), (u32)(bus_addr >> 32));
3900 E1000_WRITE_REG(hw, E1000_RDBAL(i), (u32)bus_addr);
3901 /* Setup the Head and Tail Descriptor Pointers */
3902 E1000_WRITE_REG(hw, E1000_RDH(i), 0);
3903 E1000_WRITE_REG(hw, E1000_RDT(i), 0);
3904 }
3905
3906 /*
3907 * Set PTHRESH for improved jumbo performance
3908 * According to 10.2.5.11 of Intel 82574 Datasheet,
3909 * RXDCTL(1) is written whenever RXDCTL(0) is written.
3910 * Only write to RXDCTL(1) if there is a need for different
3911 * settings.
3912 */
3913 if ((hw->mac.type == e1000_ich9lan || hw->mac.type == e1000_pch2lan ||
3914 hw->mac.type == e1000_ich10lan) && if_getmtu(ifp) > ETHERMTU) {
3915 u32 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(0));
3916 E1000_WRITE_REG(hw, E1000_RXDCTL(0), rxdctl | 3);
3917 } else if (hw->mac.type == e1000_82574) {
3918 for (int i = 0; i < sc->rx_num_queues; i++) {
3919 u32 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i));
3920 rxdctl |= 0x20; /* PTHRESH */
3921 rxdctl |= 4 << 8; /* HTHRESH */
3922 rxdctl |= 4 << 16;/* WTHRESH */
3923 rxdctl |= 1 << 24; /* Switch to granularity */
3924 E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl);
3925 }
3926 } else if (hw->mac.type >= igb_mac_min) {
3927 u32 psize, srrctl = 0;
3928
3929 if (if_getmtu(ifp) > ETHERMTU) {
3930 psize = scctx->isc_max_frame_size;
3931 /* are we on a vlan? */
3932 if (if_vlantrunkinuse(ifp))
3933 psize += VLAN_TAG_SIZE;
3934
3935 if (sc->vf_ifp)
3936 e1000_rlpml_set_vf(hw, psize);
3937 else
3938 E1000_WRITE_REG(hw, E1000_RLPML, psize);
3939 }
3940
3941 /* Set maximum packet buffer len */
3942 srrctl |= (sc->rx_mbuf_sz + BSIZEPKT_ROUNDUP) >>
3943 E1000_SRRCTL_BSIZEPKT_SHIFT;
3944
3945 /*
3946 * If TX flow control is disabled and there's >1 queue
3947 * defined, enable DROP.
3948 *
3949 * This drops frames rather than hanging the RX MAC for all
3950 * queues.
3951 */
3952 if ((sc->rx_num_queues > 1) &&
3953 (sc->fc == e1000_fc_none ||
3954 sc->fc == e1000_fc_rx_pause)) {
3955 srrctl |= E1000_SRRCTL_DROP_EN;
3956 }
3957 /* Setup the Base and Length of the Rx Descriptor Rings */
3958 for (i = 0, que = sc->rx_queues; i < sc->rx_num_queues;
3959 i++, que++) {
3960 struct rx_ring *rxr = &que->rxr;
3961 u64 bus_addr = rxr->rx_paddr;
3962 u32 rxdctl;
3963
3964 #ifdef notyet
3965 /* Configure for header split? -- ignore for now */
3966 rxr->hdr_split = igb_header_split;
3967 #else
3968 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3969 #endif
3970
3971 E1000_WRITE_REG(hw, E1000_RDLEN(i),
3972 scctx->isc_nrxd[0] *
3973 sizeof(struct e1000_rx_desc));
3974 E1000_WRITE_REG(hw, E1000_RDBAH(i),
3975 (uint32_t)(bus_addr >> 32));
3976 E1000_WRITE_REG(hw, E1000_RDBAL(i),
3977 (uint32_t)bus_addr);
3978 E1000_WRITE_REG(hw, E1000_SRRCTL(i), srrctl);
3979 /* Enable this Queue */
3980 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i));
3981 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3982 rxdctl &= 0xFFF00000;
3983 rxdctl |= IGB_RX_PTHRESH;
3984 rxdctl |= IGB_RX_HTHRESH << 8;
3985 rxdctl |= IGB_RX_WTHRESH << 16;
3986 E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl);
3987 }
3988 } else if (hw->mac.type >= e1000_pch2lan) {
3989 if (if_getmtu(ifp) > ETHERMTU)
3990 e1000_lv_jumbo_workaround_ich8lan(hw, true);
3991 else
3992 e1000_lv_jumbo_workaround_ich8lan(hw, false);
3993 }
3994
3995 /* Make sure VLAN Filters are off */
3996 rctl &= ~E1000_RCTL_VFE;
3997
3998 /* Set up packet buffer size, overridden by per queue srrctl on igb */
3999 if (hw->mac.type < igb_mac_min) {
4000 if (sc->rx_mbuf_sz > 2048 && sc->rx_mbuf_sz <= 4096)
4001 rctl |= E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX;
4002 else if (sc->rx_mbuf_sz > 4096 && sc->rx_mbuf_sz <= 8192)
4003 rctl |= E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX;
4004 else if (sc->rx_mbuf_sz > 8192)
4005 rctl |= E1000_RCTL_SZ_16384 | E1000_RCTL_BSEX;
4006 else {
4007 rctl |= E1000_RCTL_SZ_2048;
4008 rctl &= ~E1000_RCTL_BSEX;
4009 }
4010 } else
4011 rctl |= E1000_RCTL_SZ_2048;
4012
4013 /*
4014 * rctl bits 11:10 are as follows
4015 * lem: reserved
4016 * em: DTYPE
4017 * igb: reserved
4018 * and should be 00 on all of the above
4019 */
4020 rctl &= ~0x00000C00;
4021
4022 /* Write out the settings */
4023 E1000_WRITE_REG(hw, E1000_RCTL, rctl);
4024
4025 return;
4026 }
4027
4028 static void
em_if_vlan_register(if_ctx_t ctx,u16 vtag)4029 em_if_vlan_register(if_ctx_t ctx, u16 vtag)
4030 {
4031 struct e1000_softc *sc = iflib_get_softc(ctx);
4032 u32 index, bit;
4033
4034 index = (vtag >> 5) & 0x7F;
4035 bit = vtag & 0x1F;
4036 sc->shadow_vfta[index] |= (1 << bit);
4037 ++sc->num_vlans;
4038 em_if_vlan_filter_write(sc);
4039 }
4040
4041 static void
em_if_vlan_unregister(if_ctx_t ctx,u16 vtag)4042 em_if_vlan_unregister(if_ctx_t ctx, u16 vtag)
4043 {
4044 struct e1000_softc *sc = iflib_get_softc(ctx);
4045 u32 index, bit;
4046
4047 index = (vtag >> 5) & 0x7F;
4048 bit = vtag & 0x1F;
4049 sc->shadow_vfta[index] &= ~(1 << bit);
4050 --sc->num_vlans;
4051 em_if_vlan_filter_write(sc);
4052 }
4053
4054 static bool
em_if_vlan_filter_capable(if_ctx_t ctx)4055 em_if_vlan_filter_capable(if_ctx_t ctx)
4056 {
4057 if_t ifp = iflib_get_ifp(ctx);
4058
4059 if ((if_getcapenable(ifp) & IFCAP_VLAN_HWFILTER) &&
4060 !em_disable_crc_stripping)
4061 return (true);
4062
4063 return (false);
4064 }
4065
4066 static bool
em_if_vlan_filter_used(if_ctx_t ctx)4067 em_if_vlan_filter_used(if_ctx_t ctx)
4068 {
4069 struct e1000_softc *sc = iflib_get_softc(ctx);
4070
4071 if (!em_if_vlan_filter_capable(ctx))
4072 return (false);
4073
4074 for (int i = 0; i < EM_VFTA_SIZE; i++)
4075 if (sc->shadow_vfta[i] != 0)
4076 return (true);
4077
4078 return (false);
4079 }
4080
4081 static void
em_if_vlan_filter_enable(struct e1000_softc * sc)4082 em_if_vlan_filter_enable(struct e1000_softc *sc)
4083 {
4084 struct e1000_hw *hw = &sc->hw;
4085 u32 reg;
4086
4087 reg = E1000_READ_REG(hw, E1000_RCTL);
4088 reg &= ~E1000_RCTL_CFIEN;
4089 reg |= E1000_RCTL_VFE;
4090 E1000_WRITE_REG(hw, E1000_RCTL, reg);
4091 }
4092
4093 static void
em_if_vlan_filter_disable(struct e1000_softc * sc)4094 em_if_vlan_filter_disable(struct e1000_softc *sc)
4095 {
4096 struct e1000_hw *hw = &sc->hw;
4097 u32 reg;
4098
4099 reg = E1000_READ_REG(hw, E1000_RCTL);
4100 reg &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN);
4101 E1000_WRITE_REG(hw, E1000_RCTL, reg);
4102 }
4103
4104 static void
em_if_vlan_filter_write(struct e1000_softc * sc)4105 em_if_vlan_filter_write(struct e1000_softc *sc)
4106 {
4107 struct e1000_hw *hw = &sc->hw;
4108
4109 if (sc->vf_ifp)
4110 return;
4111
4112 /* Disable interrupts for lem(4) devices during the filter change */
4113 if (hw->mac.type < em_mac_min)
4114 em_if_intr_disable(sc->ctx);
4115
4116 for (int i = 0; i < EM_VFTA_SIZE; i++)
4117 if (sc->shadow_vfta[i] != 0) {
4118 /* XXXKB: incomplete VF support, we returned above */
4119 if (sc->vf_ifp)
4120 e1000_vfta_set_vf(hw, sc->shadow_vfta[i],
4121 true);
4122 else
4123 e1000_write_vfta(hw, i, sc->shadow_vfta[i]);
4124 }
4125
4126 /* Re-enable interrupts for lem-class devices */
4127 if (hw->mac.type < em_mac_min)
4128 em_if_intr_enable(sc->ctx);
4129 }
4130
4131 static void
em_setup_vlan_hw_support(if_ctx_t ctx)4132 em_setup_vlan_hw_support(if_ctx_t ctx)
4133 {
4134 struct e1000_softc *sc = iflib_get_softc(ctx);
4135 struct e1000_hw *hw = &sc->hw;
4136 if_t ifp = iflib_get_ifp(ctx);
4137 u32 reg;
4138
4139 /* XXXKB: Return early if we are a VF until VF decap and filter
4140 * management is ready and tested.
4141 */
4142 if (sc->vf_ifp)
4143 return;
4144
4145 if (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING &&
4146 !em_disable_crc_stripping) {
4147 reg = E1000_READ_REG(hw, E1000_CTRL);
4148 reg |= E1000_CTRL_VME;
4149 E1000_WRITE_REG(hw, E1000_CTRL, reg);
4150 } else {
4151 reg = E1000_READ_REG(hw, E1000_CTRL);
4152 reg &= ~E1000_CTRL_VME;
4153 E1000_WRITE_REG(hw, E1000_CTRL, reg);
4154 }
4155
4156 /* If we aren't doing HW filtering, we're done */
4157 if (!em_if_vlan_filter_capable(ctx)) {
4158 em_if_vlan_filter_disable(sc);
4159 return;
4160 }
4161
4162 /*
4163 * A soft reset zero's out the VFTA, so
4164 * we need to repopulate it now.
4165 * We also insert VLAN 0 in the filter list, so we pass VLAN 0 tagged
4166 * traffic through. This will write the entire table.
4167 */
4168 em_if_vlan_register(ctx, 0);
4169
4170 /* Enable the Filter Table */
4171 em_if_vlan_filter_enable(sc);
4172 }
4173
4174 static void
em_if_intr_enable(if_ctx_t ctx)4175 em_if_intr_enable(if_ctx_t ctx)
4176 {
4177 struct e1000_softc *sc = iflib_get_softc(ctx);
4178 struct e1000_hw *hw = &sc->hw;
4179 u32 ims_mask = IMS_ENABLE_MASK;
4180
4181 if (sc->intr_type == IFLIB_INTR_MSIX) {
4182 E1000_WRITE_REG(hw, EM_EIAC, sc->ims);
4183 ims_mask |= sc->ims;
4184 }
4185
4186 E1000_WRITE_REG(hw, E1000_IMS, ims_mask);
4187 E1000_WRITE_FLUSH(hw);
4188 }
4189
4190 static void
em_if_intr_disable(if_ctx_t ctx)4191 em_if_intr_disable(if_ctx_t ctx)
4192 {
4193 struct e1000_softc *sc = iflib_get_softc(ctx);
4194 struct e1000_hw *hw = &sc->hw;
4195
4196 if (sc->intr_type == IFLIB_INTR_MSIX)
4197 E1000_WRITE_REG(hw, EM_EIAC, 0);
4198 E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
4199 E1000_WRITE_FLUSH(hw);
4200 }
4201
4202 static void
igb_if_intr_enable(if_ctx_t ctx)4203 igb_if_intr_enable(if_ctx_t ctx)
4204 {
4205 struct e1000_softc *sc = iflib_get_softc(ctx);
4206 struct e1000_hw *hw = &sc->hw;
4207 u32 mask;
4208
4209 if (__predict_true(sc->intr_type == IFLIB_INTR_MSIX)) {
4210 mask = (sc->que_mask | sc->link_mask);
4211 E1000_WRITE_REG(hw, E1000_EIAC, mask);
4212 E1000_WRITE_REG(hw, E1000_EIAM, mask);
4213 E1000_WRITE_REG(hw, E1000_EIMS, mask);
4214 E1000_WRITE_REG(hw, E1000_IMS, E1000_IMS_LSC);
4215 } else
4216 E1000_WRITE_REG(hw, E1000_IMS, IMS_ENABLE_MASK);
4217 E1000_WRITE_FLUSH(hw);
4218 }
4219
4220 static void
igb_if_intr_disable(if_ctx_t ctx)4221 igb_if_intr_disable(if_ctx_t ctx)
4222 {
4223 struct e1000_softc *sc = iflib_get_softc(ctx);
4224 struct e1000_hw *hw = &sc->hw;
4225
4226 if (__predict_true(sc->intr_type == IFLIB_INTR_MSIX)) {
4227 E1000_WRITE_REG(hw, E1000_EIMC, 0xffffffff);
4228 E1000_WRITE_REG(hw, E1000_EIAC, 0);
4229 }
4230 E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
4231 E1000_WRITE_FLUSH(hw);
4232 }
4233
4234 /*
4235 * Bit of a misnomer, what this really means is
4236 * to enable OS management of the system... aka
4237 * to disable special hardware management features
4238 */
4239 static void
em_init_manageability(struct e1000_softc * sc)4240 em_init_manageability(struct e1000_softc *sc)
4241 {
4242 /* A shared code workaround */
4243 #define E1000_82542_MANC2H E1000_MANC2H
4244 if (sc->has_manage) {
4245 int manc2h = E1000_READ_REG(&sc->hw, E1000_MANC2H);
4246 int manc = E1000_READ_REG(&sc->hw, E1000_MANC);
4247
4248 /* disable hardware interception of ARP */
4249 manc &= ~(E1000_MANC_ARP_EN);
4250
4251 /* enable receiving management packets to the host */
4252 manc |= E1000_MANC_EN_MNG2HOST;
4253 #define E1000_MNG2HOST_PORT_623 (1 << 5)
4254 #define E1000_MNG2HOST_PORT_664 (1 << 6)
4255 manc2h |= E1000_MNG2HOST_PORT_623;
4256 manc2h |= E1000_MNG2HOST_PORT_664;
4257 E1000_WRITE_REG(&sc->hw, E1000_MANC2H, manc2h);
4258 E1000_WRITE_REG(&sc->hw, E1000_MANC, manc);
4259 }
4260 }
4261
4262 /*
4263 * Give control back to hardware management
4264 * controller if there is one.
4265 */
4266 static void
em_release_manageability(struct e1000_softc * sc)4267 em_release_manageability(struct e1000_softc *sc)
4268 {
4269 if (sc->has_manage) {
4270 int manc = E1000_READ_REG(&sc->hw, E1000_MANC);
4271
4272 /* re-enable hardware interception of ARP */
4273 manc |= E1000_MANC_ARP_EN;
4274 manc &= ~E1000_MANC_EN_MNG2HOST;
4275
4276 E1000_WRITE_REG(&sc->hw, E1000_MANC, manc);
4277 }
4278 }
4279
4280 /*
4281 * em_get_hw_control sets the {CTRL_EXT|FWSM}:DRV_LOAD bit.
4282 * For ASF and Pass Through versions of f/w this means
4283 * that the driver is loaded. For AMT version type f/w
4284 * this means that the network i/f is open.
4285 */
4286 static void
em_get_hw_control(struct e1000_softc * sc)4287 em_get_hw_control(struct e1000_softc *sc)
4288 {
4289 u32 ctrl_ext, swsm;
4290
4291 if (sc->vf_ifp)
4292 return;
4293
4294 if (sc->hw.mac.type == e1000_82573) {
4295 swsm = E1000_READ_REG(&sc->hw, E1000_SWSM);
4296 E1000_WRITE_REG(&sc->hw, E1000_SWSM,
4297 swsm | E1000_SWSM_DRV_LOAD);
4298 return;
4299 }
4300 /* else */
4301 ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
4302 E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT,
4303 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
4304 }
4305
4306 /*
4307 * em_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
4308 * For ASF and Pass Through versions of f/w this means that
4309 * the driver is no longer loaded. For AMT versions of the
4310 * f/w this means that the network i/f is closed.
4311 */
4312 static void
em_release_hw_control(struct e1000_softc * sc)4313 em_release_hw_control(struct e1000_softc *sc)
4314 {
4315 u32 ctrl_ext, swsm;
4316
4317 if (!sc->has_manage)
4318 return;
4319
4320 if (sc->hw.mac.type == e1000_82573) {
4321 swsm = E1000_READ_REG(&sc->hw, E1000_SWSM);
4322 E1000_WRITE_REG(&sc->hw, E1000_SWSM,
4323 swsm & ~E1000_SWSM_DRV_LOAD);
4324 return;
4325 }
4326 /* else */
4327 ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
4328 E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT,
4329 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
4330 return;
4331 }
4332
4333 static int
em_is_valid_ether_addr(u8 * addr)4334 em_is_valid_ether_addr(u8 *addr)
4335 {
4336 char zero_addr[6] = { 0, 0, 0, 0, 0, 0 };
4337
4338 if ((addr[0] & 1) || (!bcmp(addr, zero_addr, ETHER_ADDR_LEN))) {
4339 return (false);
4340 }
4341
4342 return (true);
4343 }
4344
4345 static bool
em_automask_tso(if_ctx_t ctx)4346 em_automask_tso(if_ctx_t ctx)
4347 {
4348 struct e1000_softc *sc = iflib_get_softc(ctx);
4349 if_softc_ctx_t scctx = iflib_get_softc_ctx(ctx);
4350 if_t ifp = iflib_get_ifp(ctx);
4351
4352 if (!em_unsupported_tso && sc->link_speed &&
4353 sc->link_speed != SPEED_1000 &&
4354 scctx->isc_capenable & IFCAP_TSO) {
4355 device_printf(sc->dev,
4356 "Disabling TSO for 10/100 Ethernet.\n");
4357 sc->tso_automasked = scctx->isc_capenable & IFCAP_TSO;
4358 scctx->isc_capenable &= ~IFCAP_TSO;
4359 if_setcapenablebit(ifp, 0, IFCAP_TSO);
4360 /* iflib_init_locked handles ifnet hwassistbits */
4361 iflib_request_reset(ctx);
4362 return true;
4363 } else if (sc->link_speed == SPEED_1000 && sc->tso_automasked) {
4364 device_printf(sc->dev, "Re-enabling TSO for GbE.\n");
4365 scctx->isc_capenable |= sc->tso_automasked;
4366 if_setcapenablebit(ifp, sc->tso_automasked, 0);
4367 sc->tso_automasked = 0;
4368 /* iflib_init_locked handles ifnet hwassistbits */
4369 iflib_request_reset(ctx);
4370 return true;
4371 }
4372
4373 return false;
4374 }
4375
4376 /*
4377 ** Parse the interface capabilities with regard
4378 ** to both system management and wake-on-lan for
4379 ** later use.
4380 */
4381 static void
em_get_wakeup(if_ctx_t ctx)4382 em_get_wakeup(if_ctx_t ctx)
4383 {
4384 struct e1000_softc *sc = iflib_get_softc(ctx);
4385 device_t dev = iflib_get_dev(ctx);
4386 u16 eeprom_data = 0, device_id, apme_mask;
4387
4388 sc->has_manage = e1000_enable_mng_pass_thru(&sc->hw);
4389 apme_mask = EM_EEPROM_APME;
4390
4391 switch (sc->hw.mac.type) {
4392 case e1000_82542:
4393 case e1000_82543:
4394 break;
4395 case e1000_82544:
4396 e1000_read_nvm(&sc->hw,
4397 NVM_INIT_CONTROL2_REG, 1, &eeprom_data);
4398 apme_mask = EM_82544_APME;
4399 break;
4400 case e1000_82546:
4401 case e1000_82546_rev_3:
4402 if (sc->hw.bus.func == 1) {
4403 e1000_read_nvm(&sc->hw,
4404 NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
4405 break;
4406 } else
4407 e1000_read_nvm(&sc->hw,
4408 NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
4409 break;
4410 case e1000_82573:
4411 case e1000_82583:
4412 sc->has_amt = true;
4413 /* FALLTHROUGH */
4414 case e1000_82571:
4415 case e1000_82572:
4416 case e1000_80003es2lan:
4417 if (sc->hw.bus.func == 1) {
4418 e1000_read_nvm(&sc->hw,
4419 NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
4420 break;
4421 } else
4422 e1000_read_nvm(&sc->hw,
4423 NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
4424 break;
4425 case e1000_ich8lan:
4426 case e1000_ich9lan:
4427 case e1000_ich10lan:
4428 case e1000_pchlan:
4429 case e1000_pch2lan:
4430 case e1000_pch_lpt:
4431 case e1000_pch_spt:
4432 case e1000_82575: /* listing all igb devices */
4433 case e1000_82576:
4434 case e1000_82580:
4435 case e1000_i350:
4436 case e1000_i354:
4437 case e1000_i210:
4438 case e1000_i211:
4439 case e1000_vfadapt:
4440 case e1000_vfadapt_i350:
4441 apme_mask = E1000_WUC_APME;
4442 sc->has_amt = true;
4443 eeprom_data = E1000_READ_REG(&sc->hw, E1000_WUC);
4444 break;
4445 default:
4446 e1000_read_nvm(&sc->hw,
4447 NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
4448 break;
4449 }
4450 if (eeprom_data & apme_mask)
4451 sc->wol = (E1000_WUFC_MAG | E1000_WUFC_MC);
4452 /*
4453 * We have the eeprom settings, now apply the special cases
4454 * where the eeprom may be wrong or the board won't support
4455 * wake on lan on a particular port
4456 */
4457 device_id = pci_get_device(dev);
4458 switch (device_id) {
4459 case E1000_DEV_ID_82546GB_PCIE:
4460 sc->wol = 0;
4461 break;
4462 case E1000_DEV_ID_82546EB_FIBER:
4463 case E1000_DEV_ID_82546GB_FIBER:
4464 /* Wake events only supported on port A for dual fiber
4465 * regardless of eeprom setting */
4466 if (E1000_READ_REG(&sc->hw, E1000_STATUS) &
4467 E1000_STATUS_FUNC_1)
4468 sc->wol = 0;
4469 break;
4470 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
4471 /* if quad port adapter, disable WoL on all but port A */
4472 if (global_quad_port_a != 0)
4473 sc->wol = 0;
4474 /* Reset for multiple quad port adapters */
4475 if (++global_quad_port_a == 4)
4476 global_quad_port_a = 0;
4477 break;
4478 case E1000_DEV_ID_82571EB_FIBER:
4479 /* Wake events only supported on port A for dual fiber
4480 * regardless of eeprom setting */
4481 if (E1000_READ_REG(&sc->hw, E1000_STATUS) &
4482 E1000_STATUS_FUNC_1)
4483 sc->wol = 0;
4484 break;
4485 case E1000_DEV_ID_82571EB_QUAD_COPPER:
4486 case E1000_DEV_ID_82571EB_QUAD_FIBER:
4487 case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
4488 /* if quad port adapter, disable WoL on all but port A */
4489 if (global_quad_port_a != 0)
4490 sc->wol = 0;
4491 /* Reset for multiple quad port adapters */
4492 if (++global_quad_port_a == 4)
4493 global_quad_port_a = 0;
4494 break;
4495 }
4496 return;
4497 }
4498
4499
4500 /*
4501 * Enable PCI Wake On Lan capability
4502 */
4503 static void
em_enable_wakeup(if_ctx_t ctx)4504 em_enable_wakeup(if_ctx_t ctx)
4505 {
4506 struct e1000_softc *sc = iflib_get_softc(ctx);
4507 device_t dev = iflib_get_dev(ctx);
4508 if_t ifp = iflib_get_ifp(ctx);
4509 int error = 0;
4510 u32 pmc, ctrl, ctrl_ext, rctl;
4511 u16 status;
4512
4513 if (pci_find_cap(dev, PCIY_PMG, &pmc) != 0)
4514 return;
4515
4516 /*
4517 * Determine type of Wakeup: note that wol
4518 * is set with all bits on by default.
4519 */
4520 if ((if_getcapenable(ifp) & IFCAP_WOL_MAGIC) == 0)
4521 sc->wol &= ~E1000_WUFC_MAG;
4522
4523 if ((if_getcapenable(ifp) & IFCAP_WOL_UCAST) == 0)
4524 sc->wol &= ~E1000_WUFC_EX;
4525
4526 if ((if_getcapenable(ifp) & IFCAP_WOL_MCAST) == 0)
4527 sc->wol &= ~E1000_WUFC_MC;
4528 else {
4529 rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
4530 rctl |= E1000_RCTL_MPE;
4531 E1000_WRITE_REG(&sc->hw, E1000_RCTL, rctl);
4532 }
4533
4534 if (!(sc->wol & (E1000_WUFC_EX | E1000_WUFC_MAG | E1000_WUFC_MC)))
4535 goto pme;
4536
4537 /* Advertise the wakeup capability */
4538 ctrl = E1000_READ_REG(&sc->hw, E1000_CTRL);
4539 ctrl |= (E1000_CTRL_SWDPIN2 | E1000_CTRL_SWDPIN3);
4540 E1000_WRITE_REG(&sc->hw, E1000_CTRL, ctrl);
4541
4542 /* Keep the laser running on Fiber adapters */
4543 if (sc->hw.phy.media_type == e1000_media_type_fiber ||
4544 sc->hw.phy.media_type == e1000_media_type_internal_serdes) {
4545 ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
4546 ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
4547 E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT, ctrl_ext);
4548 }
4549
4550 if ((sc->hw.mac.type == e1000_ich8lan) ||
4551 (sc->hw.mac.type == e1000_pchlan) ||
4552 (sc->hw.mac.type == e1000_ich9lan) ||
4553 (sc->hw.mac.type == e1000_ich10lan))
4554 e1000_suspend_workarounds_ich8lan(&sc->hw);
4555
4556 if ( sc->hw.mac.type >= e1000_pchlan) {
4557 error = em_enable_phy_wakeup(sc);
4558 if (error)
4559 goto pme;
4560 } else {
4561 /* Enable wakeup by the MAC */
4562 E1000_WRITE_REG(&sc->hw, E1000_WUC, E1000_WUC_PME_EN);
4563 E1000_WRITE_REG(&sc->hw, E1000_WUFC, sc->wol);
4564 }
4565
4566 if (sc->hw.phy.type == e1000_phy_igp_3)
4567 e1000_igp3_phy_powerdown_workaround_ich8lan(&sc->hw);
4568
4569 pme:
4570 status = pci_read_config(dev, pmc + PCIR_POWER_STATUS, 2);
4571 status &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
4572 if (!error && (if_getcapenable(ifp) & IFCAP_WOL))
4573 status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
4574 pci_write_config(dev, pmc + PCIR_POWER_STATUS, status, 2);
4575
4576 return;
4577 }
4578
4579 /*
4580 * WOL in the newer chipset interfaces (pchlan)
4581 * require thing to be copied into the phy
4582 */
4583 static int
em_enable_phy_wakeup(struct e1000_softc * sc)4584 em_enable_phy_wakeup(struct e1000_softc *sc)
4585 {
4586 struct e1000_hw *hw = &sc->hw;
4587 u32 mreg, ret = 0;
4588 u16 preg;
4589
4590 /* copy MAC RARs to PHY RARs */
4591 e1000_copy_rx_addrs_to_phy_ich8lan(hw);
4592
4593 /* copy MAC MTA to PHY MTA */
4594 for (int i = 0; i < hw->mac.mta_reg_count; i++) {
4595 mreg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
4596 e1000_write_phy_reg(hw, BM_MTA(i), (u16)(mreg & 0xFFFF));
4597 e1000_write_phy_reg(hw, BM_MTA(i) + 1,
4598 (u16)((mreg >> 16) & 0xFFFF));
4599 }
4600
4601 /* configure PHY Rx Control register */
4602 e1000_read_phy_reg(hw, BM_RCTL, &preg);
4603 mreg = E1000_READ_REG(hw, E1000_RCTL);
4604 if (mreg & E1000_RCTL_UPE)
4605 preg |= BM_RCTL_UPE;
4606 if (mreg & E1000_RCTL_MPE)
4607 preg |= BM_RCTL_MPE;
4608 preg &= ~(BM_RCTL_MO_MASK);
4609 if (mreg & E1000_RCTL_MO_3)
4610 preg |= (((mreg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
4611 << BM_RCTL_MO_SHIFT);
4612 if (mreg & E1000_RCTL_BAM)
4613 preg |= BM_RCTL_BAM;
4614 if (mreg & E1000_RCTL_PMCF)
4615 preg |= BM_RCTL_PMCF;
4616 mreg = E1000_READ_REG(hw, E1000_CTRL);
4617 if (mreg & E1000_CTRL_RFCE)
4618 preg |= BM_RCTL_RFCE;
4619 e1000_write_phy_reg(hw, BM_RCTL, preg);
4620
4621 /* enable PHY wakeup in MAC register */
4622 E1000_WRITE_REG(hw, E1000_WUC,
4623 E1000_WUC_PHY_WAKE | E1000_WUC_PME_EN | E1000_WUC_APME);
4624 E1000_WRITE_REG(hw, E1000_WUFC, sc->wol);
4625
4626 /* configure and enable PHY wakeup in PHY registers */
4627 e1000_write_phy_reg(hw, BM_WUFC, sc->wol);
4628 e1000_write_phy_reg(hw, BM_WUC, E1000_WUC_PME_EN);
4629
4630 /* activate PHY wakeup */
4631 ret = hw->phy.ops.acquire(hw);
4632 if (ret) {
4633 printf("Could not acquire PHY\n");
4634 return ret;
4635 }
4636 e1000_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
4637 (BM_WUC_ENABLE_PAGE << IGP_PAGE_SHIFT));
4638 ret = e1000_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, &preg);
4639 if (ret) {
4640 printf("Could not read PHY page 769\n");
4641 goto out;
4642 }
4643 preg |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
4644 ret = e1000_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, preg);
4645 if (ret)
4646 printf("Could not set PHY Host Wakeup bit\n");
4647 out:
4648 hw->phy.ops.release(hw);
4649
4650 return ret;
4651 }
4652
4653 static void
em_if_led_func(if_ctx_t ctx,int onoff)4654 em_if_led_func(if_ctx_t ctx, int onoff)
4655 {
4656 struct e1000_softc *sc = iflib_get_softc(ctx);
4657
4658 if (onoff) {
4659 e1000_setup_led(&sc->hw);
4660 e1000_led_on(&sc->hw);
4661 } else {
4662 e1000_led_off(&sc->hw);
4663 e1000_cleanup_led(&sc->hw);
4664 }
4665 }
4666
4667 /*
4668 * Disable the L0S and L1 LINK states
4669 */
4670 static void
em_disable_aspm(struct e1000_softc * sc)4671 em_disable_aspm(struct e1000_softc *sc)
4672 {
4673 int base, reg;
4674 u16 link_cap,link_ctrl;
4675 device_t dev = sc->dev;
4676
4677 switch (sc->hw.mac.type) {
4678 case e1000_82573:
4679 case e1000_82574:
4680 case e1000_82583:
4681 break;
4682 default:
4683 return;
4684 }
4685 if (pci_find_cap(dev, PCIY_EXPRESS, &base) != 0)
4686 return;
4687 reg = base + PCIER_LINK_CAP;
4688 link_cap = pci_read_config(dev, reg, 2);
4689 if ((link_cap & PCIEM_LINK_CAP_ASPM) == 0)
4690 return;
4691 reg = base + PCIER_LINK_CTL;
4692 link_ctrl = pci_read_config(dev, reg, 2);
4693 link_ctrl &= ~PCIEM_LINK_CTL_ASPMC;
4694 pci_write_config(dev, reg, link_ctrl, 2);
4695 return;
4696 }
4697
4698 /**********************************************************************
4699 *
4700 * Update the board statistics counters.
4701 *
4702 **********************************************************************/
4703 static void
em_update_stats_counters(struct e1000_softc * sc)4704 em_update_stats_counters(struct e1000_softc *sc)
4705 {
4706 u64 prev_xoffrxc = sc->stats.xoffrxc;
4707
4708 if(sc->hw.phy.media_type == e1000_media_type_copper ||
4709 (E1000_READ_REG(&sc->hw, E1000_STATUS) & E1000_STATUS_LU)) {
4710 sc->stats.symerrs += E1000_READ_REG(&sc->hw, E1000_SYMERRS);
4711 sc->stats.sec += E1000_READ_REG(&sc->hw, E1000_SEC);
4712 }
4713 sc->stats.crcerrs += E1000_READ_REG(&sc->hw, E1000_CRCERRS);
4714 sc->stats.mpc += E1000_READ_REG(&sc->hw, E1000_MPC);
4715 sc->stats.scc += E1000_READ_REG(&sc->hw, E1000_SCC);
4716 sc->stats.ecol += E1000_READ_REG(&sc->hw, E1000_ECOL);
4717
4718 sc->stats.mcc += E1000_READ_REG(&sc->hw, E1000_MCC);
4719 sc->stats.latecol += E1000_READ_REG(&sc->hw, E1000_LATECOL);
4720 sc->stats.colc += E1000_READ_REG(&sc->hw, E1000_COLC);
4721 sc->stats.dc += E1000_READ_REG(&sc->hw, E1000_DC);
4722 sc->stats.rlec += E1000_READ_REG(&sc->hw, E1000_RLEC);
4723 sc->stats.xonrxc += E1000_READ_REG(&sc->hw, E1000_XONRXC);
4724 sc->stats.xontxc += E1000_READ_REG(&sc->hw, E1000_XONTXC);
4725 sc->stats.xoffrxc += E1000_READ_REG(&sc->hw, E1000_XOFFRXC);
4726 /*
4727 ** For watchdog management we need to know if we have been
4728 ** paused during the last interval, so capture that here.
4729 */
4730 if (sc->stats.xoffrxc != prev_xoffrxc)
4731 sc->shared->isc_pause_frames = 1;
4732 sc->stats.xofftxc += E1000_READ_REG(&sc->hw, E1000_XOFFTXC);
4733 sc->stats.fcruc += E1000_READ_REG(&sc->hw, E1000_FCRUC);
4734 sc->stats.prc64 += E1000_READ_REG(&sc->hw, E1000_PRC64);
4735 sc->stats.prc127 += E1000_READ_REG(&sc->hw, E1000_PRC127);
4736 sc->stats.prc255 += E1000_READ_REG(&sc->hw, E1000_PRC255);
4737 sc->stats.prc511 += E1000_READ_REG(&sc->hw, E1000_PRC511);
4738 sc->stats.prc1023 += E1000_READ_REG(&sc->hw, E1000_PRC1023);
4739 sc->stats.prc1522 += E1000_READ_REG(&sc->hw, E1000_PRC1522);
4740 sc->stats.gprc += E1000_READ_REG(&sc->hw, E1000_GPRC);
4741 sc->stats.bprc += E1000_READ_REG(&sc->hw, E1000_BPRC);
4742 sc->stats.mprc += E1000_READ_REG(&sc->hw, E1000_MPRC);
4743 sc->stats.gptc += E1000_READ_REG(&sc->hw, E1000_GPTC);
4744
4745 /* For the 64-bit byte counters the low dword must be read first. */
4746 /* Both registers clear on the read of the high dword */
4747
4748 sc->stats.gorc += E1000_READ_REG(&sc->hw, E1000_GORCL) +
4749 ((u64)E1000_READ_REG(&sc->hw, E1000_GORCH) << 32);
4750 sc->stats.gotc += E1000_READ_REG(&sc->hw, E1000_GOTCL) +
4751 ((u64)E1000_READ_REG(&sc->hw, E1000_GOTCH) << 32);
4752
4753 sc->stats.rnbc += E1000_READ_REG(&sc->hw, E1000_RNBC);
4754 sc->stats.ruc += E1000_READ_REG(&sc->hw, E1000_RUC);
4755 sc->stats.rfc += E1000_READ_REG(&sc->hw, E1000_RFC);
4756 sc->stats.roc += E1000_READ_REG(&sc->hw, E1000_ROC);
4757 sc->stats.rjc += E1000_READ_REG(&sc->hw, E1000_RJC);
4758
4759 sc->stats.mgprc += E1000_READ_REG(&sc->hw, E1000_MGTPRC);
4760 sc->stats.mgpdc += E1000_READ_REG(&sc->hw, E1000_MGTPDC);
4761 sc->stats.mgptc += E1000_READ_REG(&sc->hw, E1000_MGTPTC);
4762
4763 sc->stats.tor += E1000_READ_REG(&sc->hw, E1000_TORH);
4764 sc->stats.tot += E1000_READ_REG(&sc->hw, E1000_TOTH);
4765
4766 sc->stats.tpr += E1000_READ_REG(&sc->hw, E1000_TPR);
4767 sc->stats.tpt += E1000_READ_REG(&sc->hw, E1000_TPT);
4768 sc->stats.ptc64 += E1000_READ_REG(&sc->hw, E1000_PTC64);
4769 sc->stats.ptc127 += E1000_READ_REG(&sc->hw, E1000_PTC127);
4770 sc->stats.ptc255 += E1000_READ_REG(&sc->hw, E1000_PTC255);
4771 sc->stats.ptc511 += E1000_READ_REG(&sc->hw, E1000_PTC511);
4772 sc->stats.ptc1023 += E1000_READ_REG(&sc->hw, E1000_PTC1023);
4773 sc->stats.ptc1522 += E1000_READ_REG(&sc->hw, E1000_PTC1522);
4774 sc->stats.mptc += E1000_READ_REG(&sc->hw, E1000_MPTC);
4775 sc->stats.bptc += E1000_READ_REG(&sc->hw, E1000_BPTC);
4776
4777 /* Interrupt Counts */
4778
4779 sc->stats.iac += E1000_READ_REG(&sc->hw, E1000_IAC);
4780 sc->stats.icrxptc += E1000_READ_REG(&sc->hw, E1000_ICRXPTC);
4781 sc->stats.icrxatc += E1000_READ_REG(&sc->hw, E1000_ICRXATC);
4782 sc->stats.ictxptc += E1000_READ_REG(&sc->hw, E1000_ICTXPTC);
4783 sc->stats.ictxatc += E1000_READ_REG(&sc->hw, E1000_ICTXATC);
4784 sc->stats.ictxqec += E1000_READ_REG(&sc->hw, E1000_ICTXQEC);
4785 sc->stats.ictxqmtc += E1000_READ_REG(&sc->hw, E1000_ICTXQMTC);
4786 sc->stats.icrxdmtc += E1000_READ_REG(&sc->hw, E1000_ICRXDMTC);
4787 sc->stats.icrxoc += E1000_READ_REG(&sc->hw, E1000_ICRXOC);
4788
4789 if (sc->hw.mac.type >= e1000_82543) {
4790 sc->stats.algnerrc +=
4791 E1000_READ_REG(&sc->hw, E1000_ALGNERRC);
4792 sc->stats.rxerrc +=
4793 E1000_READ_REG(&sc->hw, E1000_RXERRC);
4794 sc->stats.tncrs +=
4795 E1000_READ_REG(&sc->hw, E1000_TNCRS);
4796 sc->stats.cexterr +=
4797 E1000_READ_REG(&sc->hw, E1000_CEXTERR);
4798 sc->stats.tsctc +=
4799 E1000_READ_REG(&sc->hw, E1000_TSCTC);
4800 sc->stats.tsctfc +=
4801 E1000_READ_REG(&sc->hw, E1000_TSCTFC);
4802 }
4803 }
4804
4805 static uint64_t
em_if_get_counter(if_ctx_t ctx,ift_counter cnt)4806 em_if_get_counter(if_ctx_t ctx, ift_counter cnt)
4807 {
4808 struct e1000_softc *sc = iflib_get_softc(ctx);
4809 if_t ifp = iflib_get_ifp(ctx);
4810
4811 switch (cnt) {
4812 case IFCOUNTER_COLLISIONS:
4813 return (sc->stats.colc);
4814 case IFCOUNTER_IERRORS:
4815 return (sc->dropped_pkts + sc->stats.rxerrc +
4816 sc->stats.crcerrs + sc->stats.algnerrc +
4817 sc->stats.ruc + sc->stats.roc +
4818 sc->stats.mpc + sc->stats.cexterr);
4819 case IFCOUNTER_OERRORS:
4820 return (sc->stats.ecol + sc->stats.latecol +
4821 sc->watchdog_events);
4822 default:
4823 return (if_get_counter_default(ifp, cnt));
4824 }
4825 }
4826
4827 /* em_if_needs_restart - Tell iflib when the driver needs to be reinitialized
4828 * @ctx: iflib context
4829 * @event: event code to check
4830 *
4831 * Defaults to returning false for unknown events.
4832 *
4833 * @returns true if iflib needs to reinit the interface
4834 */
4835 static bool
em_if_needs_restart(if_ctx_t ctx __unused,enum iflib_restart_event event)4836 em_if_needs_restart(if_ctx_t ctx __unused, enum iflib_restart_event event)
4837 {
4838 switch (event) {
4839 case IFLIB_RESTART_VLAN_CONFIG:
4840 default:
4841 return (false);
4842 }
4843 }
4844
4845 /* Export a single 32-bit register via a read-only sysctl. */
4846 static int
em_sysctl_reg_handler(SYSCTL_HANDLER_ARGS)4847 em_sysctl_reg_handler(SYSCTL_HANDLER_ARGS)
4848 {
4849 struct e1000_softc *sc;
4850 u_int val;
4851
4852 sc = oidp->oid_arg1;
4853 val = E1000_READ_REG(&sc->hw, oidp->oid_arg2);
4854 return (sysctl_handle_int(oidp, &val, 0, req));
4855 }
4856
4857 /* Per queue holdoff interrupt rate handler */
4858 static int
em_sysctl_interrupt_rate_handler(SYSCTL_HANDLER_ARGS)4859 em_sysctl_interrupt_rate_handler(SYSCTL_HANDLER_ARGS)
4860 {
4861 struct em_rx_queue *rque;
4862 struct em_tx_queue *tque;
4863 struct e1000_hw *hw;
4864 int error;
4865 u32 reg, usec, rate;
4866
4867 bool tx = oidp->oid_arg2;
4868
4869 if (tx) {
4870 tque = oidp->oid_arg1;
4871 hw = &tque->sc->hw;
4872 if (hw->mac.type >= igb_mac_min)
4873 reg = E1000_READ_REG(hw, E1000_EITR(tque->me));
4874 else if (hw->mac.type == e1000_82574 && tque->msix)
4875 reg = E1000_READ_REG(hw, E1000_EITR_82574(tque->me));
4876 else
4877 reg = E1000_READ_REG(hw, E1000_ITR);
4878 } else {
4879 rque = oidp->oid_arg1;
4880 hw = &rque->sc->hw;
4881 if (hw->mac.type >= igb_mac_min)
4882 reg = E1000_READ_REG(hw, E1000_EITR(rque->msix));
4883 else if (hw->mac.type == e1000_82574 && rque->msix)
4884 reg = E1000_READ_REG(hw,
4885 E1000_EITR_82574(rque->msix));
4886 else
4887 reg = E1000_READ_REG(hw, E1000_ITR);
4888 }
4889
4890 if (hw->mac.type < igb_mac_min) {
4891 if (reg > 0)
4892 rate = EM_INTS_TO_ITR(reg);
4893 else
4894 rate = 0;
4895 } else {
4896 usec = (reg & IGB_QVECTOR_MASK);
4897 if (usec > 0)
4898 rate = IGB_INTS_TO_EITR(usec);
4899 else
4900 rate = 0;
4901 }
4902
4903 error = sysctl_handle_int(oidp, &rate, 0, req);
4904 if (error || !req->newptr)
4905 return error;
4906 return 0;
4907 }
4908
4909 /*
4910 * Add sysctl variables, one per statistic, to the system.
4911 */
4912 static void
em_add_hw_stats(struct e1000_softc * sc)4913 em_add_hw_stats(struct e1000_softc *sc)
4914 {
4915 device_t dev = iflib_get_dev(sc->ctx);
4916 struct em_tx_queue *tx_que = sc->tx_queues;
4917 struct em_rx_queue *rx_que = sc->rx_queues;
4918
4919 struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(dev);
4920 struct sysctl_oid *tree = device_get_sysctl_tree(dev);
4921 struct sysctl_oid_list *child = SYSCTL_CHILDREN(tree);
4922 struct e1000_hw_stats *stats = &sc->stats;
4923
4924 struct sysctl_oid *stat_node, *queue_node, *int_node;
4925 struct sysctl_oid_list *stat_list, *queue_list, *int_list;
4926
4927 #define QUEUE_NAME_LEN 32
4928 char namebuf[QUEUE_NAME_LEN];
4929
4930 /* Driver Statistics */
4931 SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "dropped",
4932 CTLFLAG_RD, &sc->dropped_pkts,
4933 "Driver dropped packets");
4934 SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "link_irq",
4935 CTLFLAG_RD, &sc->link_irq,
4936 "Link MSI-X IRQ Handled");
4937 SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "rx_overruns",
4938 CTLFLAG_RD, &sc->rx_overruns,
4939 "RX overruns");
4940 SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "watchdog_timeouts",
4941 CTLFLAG_RD, &sc->watchdog_events,
4942 "Watchdog timeouts");
4943 SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "device_control",
4944 CTLTYPE_UINT | CTLFLAG_RD,
4945 sc, E1000_CTRL, em_sysctl_reg_handler, "IU",
4946 "Device Control Register");
4947 SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "rx_control",
4948 CTLTYPE_UINT | CTLFLAG_RD,
4949 sc, E1000_RCTL, em_sysctl_reg_handler, "IU",
4950 "Receiver Control Register");
4951 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "fc_high_water",
4952 CTLFLAG_RD, &sc->hw.fc.high_water, 0,
4953 "Flow Control High Watermark");
4954 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "fc_low_water",
4955 CTLFLAG_RD, &sc->hw.fc.low_water, 0,
4956 "Flow Control Low Watermark");
4957
4958 for (int i = 0; i < sc->tx_num_queues; i++, tx_que++) {
4959 struct tx_ring *txr = &tx_que->txr;
4960 snprintf(namebuf, QUEUE_NAME_LEN, "queue_tx_%d", i);
4961 queue_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, namebuf,
4962 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TX Queue Name");
4963 queue_list = SYSCTL_CHILDREN(queue_node);
4964
4965 SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "interrupt_rate",
4966 CTLTYPE_UINT | CTLFLAG_RD, tx_que,
4967 true, em_sysctl_interrupt_rate_handler,
4968 "IU", "Interrupt Rate");
4969
4970 SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "txd_head",
4971 CTLTYPE_UINT | CTLFLAG_RD, sc,
4972 E1000_TDH(txr->me), em_sysctl_reg_handler, "IU",
4973 "Transmit Descriptor Head");
4974 SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "txd_tail",
4975 CTLTYPE_UINT | CTLFLAG_RD, sc,
4976 E1000_TDT(txr->me), em_sysctl_reg_handler, "IU",
4977 "Transmit Descriptor Tail");
4978 SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO, "tx_irq",
4979 CTLFLAG_RD, &txr->tx_irq,
4980 "Queue MSI-X Transmit Interrupts");
4981 }
4982
4983 for (int j = 0; j < sc->rx_num_queues; j++, rx_que++) {
4984 struct rx_ring *rxr = &rx_que->rxr;
4985 snprintf(namebuf, QUEUE_NAME_LEN, "queue_rx_%d", j);
4986 queue_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, namebuf,
4987 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "RX Queue Name");
4988 queue_list = SYSCTL_CHILDREN(queue_node);
4989
4990 SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "interrupt_rate",
4991 CTLTYPE_UINT | CTLFLAG_RD, rx_que,
4992 false, em_sysctl_interrupt_rate_handler,
4993 "IU", "Interrupt Rate");
4994
4995 SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "rxd_head",
4996 CTLTYPE_UINT | CTLFLAG_RD, sc,
4997 E1000_RDH(rxr->me), em_sysctl_reg_handler, "IU",
4998 "Receive Descriptor Head");
4999 SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "rxd_tail",
5000 CTLTYPE_UINT | CTLFLAG_RD, sc,
5001 E1000_RDT(rxr->me), em_sysctl_reg_handler, "IU",
5002 "Receive Descriptor Tail");
5003 SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO, "rx_irq",
5004 CTLFLAG_RD, &rxr->rx_irq,
5005 "Queue MSI-X Receive Interrupts");
5006 }
5007
5008 /* MAC stats get their own sub node */
5009 stat_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "mac_stats",
5010 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Statistics");
5011 stat_list = SYSCTL_CHILDREN(stat_node);
5012
5013 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "excess_coll",
5014 CTLFLAG_RD, &stats->ecol,
5015 "Excessive collisions");
5016 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "single_coll",
5017 CTLFLAG_RD, &stats->scc,
5018 "Single collisions");
5019 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "multiple_coll",
5020 CTLFLAG_RD, &stats->mcc,
5021 "Multiple collisions");
5022 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "late_coll",
5023 CTLFLAG_RD, &stats->latecol,
5024 "Late collisions");
5025 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "collision_count",
5026 CTLFLAG_RD, &stats->colc,
5027 "Collision Count");
5028 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "symbol_errors",
5029 CTLFLAG_RD, &sc->stats.symerrs,
5030 "Symbol Errors");
5031 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "sequence_errors",
5032 CTLFLAG_RD, &sc->stats.sec,
5033 "Sequence Errors");
5034 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "defer_count",
5035 CTLFLAG_RD, &sc->stats.dc,
5036 "Defer Count");
5037 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "missed_packets",
5038 CTLFLAG_RD, &sc->stats.mpc,
5039 "Missed Packets");
5040 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_length_errors",
5041 CTLFLAG_RD, &sc->stats.rlec,
5042 "Receive Length Errors");
5043 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_no_buff",
5044 CTLFLAG_RD, &sc->stats.rnbc,
5045 "Receive No Buffers");
5046 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_undersize",
5047 CTLFLAG_RD, &sc->stats.ruc,
5048 "Receive Undersize");
5049 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_fragmented",
5050 CTLFLAG_RD, &sc->stats.rfc,
5051 "Fragmented Packets Received ");
5052 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_oversize",
5053 CTLFLAG_RD, &sc->stats.roc,
5054 "Oversized Packets Received");
5055 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_jabber",
5056 CTLFLAG_RD, &sc->stats.rjc,
5057 "Recevied Jabber");
5058 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_errs",
5059 CTLFLAG_RD, &sc->stats.rxerrc,
5060 "Receive Errors");
5061 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "crc_errs",
5062 CTLFLAG_RD, &sc->stats.crcerrs,
5063 "CRC errors");
5064 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "alignment_errs",
5065 CTLFLAG_RD, &sc->stats.algnerrc,
5066 "Alignment Errors");
5067 /* On 82575 these are collision counts */
5068 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "coll_ext_errs",
5069 CTLFLAG_RD, &sc->stats.cexterr,
5070 "Collision/Carrier extension errors");
5071 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xon_recvd",
5072 CTLFLAG_RD, &sc->stats.xonrxc,
5073 "XON Received");
5074 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xon_txd",
5075 CTLFLAG_RD, &sc->stats.xontxc,
5076 "XON Transmitted");
5077 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xoff_recvd",
5078 CTLFLAG_RD, &sc->stats.xoffrxc,
5079 "XOFF Received");
5080 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xoff_txd",
5081 CTLFLAG_RD, &sc->stats.xofftxc,
5082 "XOFF Transmitted");
5083 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "unsupported_fc_recvd",
5084 CTLFLAG_RD, &sc->stats.fcruc,
5085 "Unsupported Flow Control Received");
5086 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "mgmt_pkts_recvd",
5087 CTLFLAG_RD, &sc->stats.mgprc,
5088 "Management Packets Received");
5089 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "mgmt_pkts_drop",
5090 CTLFLAG_RD, &sc->stats.mgpdc,
5091 "Management Packets Dropped");
5092 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "mgmt_pkts_txd",
5093 CTLFLAG_RD, &sc->stats.mgptc,
5094 "Management Packets Transmitted");
5095
5096 /* Packet Reception Stats */
5097 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "total_pkts_recvd",
5098 CTLFLAG_RD, &sc->stats.tpr,
5099 "Total Packets Received ");
5100 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_pkts_recvd",
5101 CTLFLAG_RD, &sc->stats.gprc,
5102 "Good Packets Received");
5103 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "bcast_pkts_recvd",
5104 CTLFLAG_RD, &sc->stats.bprc,
5105 "Broadcast Packets Received");
5106 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "mcast_pkts_recvd",
5107 CTLFLAG_RD, &sc->stats.mprc,
5108 "Multicast Packets Received");
5109 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_64",
5110 CTLFLAG_RD, &sc->stats.prc64,
5111 "64 byte frames received ");
5112 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_65_127",
5113 CTLFLAG_RD, &sc->stats.prc127,
5114 "65-127 byte frames received");
5115 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_128_255",
5116 CTLFLAG_RD, &sc->stats.prc255,
5117 "128-255 byte frames received");
5118 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_256_511",
5119 CTLFLAG_RD, &sc->stats.prc511,
5120 "256-511 byte frames received");
5121 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_512_1023",
5122 CTLFLAG_RD, &sc->stats.prc1023,
5123 "512-1023 byte frames received");
5124 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_1024_1522",
5125 CTLFLAG_RD, &sc->stats.prc1522,
5126 "1023-1522 byte frames received");
5127 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_octets_recvd",
5128 CTLFLAG_RD, &sc->stats.gorc,
5129 "Good Octets Received");
5130
5131 /* Packet Transmission Stats */
5132 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_octets_txd",
5133 CTLFLAG_RD, &sc->stats.gotc,
5134 "Good Octets Transmitted");
5135 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "total_pkts_txd",
5136 CTLFLAG_RD, &sc->stats.tpt,
5137 "Total Packets Transmitted");
5138 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_pkts_txd",
5139 CTLFLAG_RD, &sc->stats.gptc,
5140 "Good Packets Transmitted");
5141 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "bcast_pkts_txd",
5142 CTLFLAG_RD, &sc->stats.bptc,
5143 "Broadcast Packets Transmitted");
5144 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "mcast_pkts_txd",
5145 CTLFLAG_RD, &sc->stats.mptc,
5146 "Multicast Packets Transmitted");
5147 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_64",
5148 CTLFLAG_RD, &sc->stats.ptc64,
5149 "64 byte frames transmitted ");
5150 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_65_127",
5151 CTLFLAG_RD, &sc->stats.ptc127,
5152 "65-127 byte frames transmitted");
5153 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_128_255",
5154 CTLFLAG_RD, &sc->stats.ptc255,
5155 "128-255 byte frames transmitted");
5156 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_256_511",
5157 CTLFLAG_RD, &sc->stats.ptc511,
5158 "256-511 byte frames transmitted");
5159 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_512_1023",
5160 CTLFLAG_RD, &sc->stats.ptc1023,
5161 "512-1023 byte frames transmitted");
5162 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_1024_1522",
5163 CTLFLAG_RD, &sc->stats.ptc1522,
5164 "1024-1522 byte frames transmitted");
5165 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tso_txd",
5166 CTLFLAG_RD, &sc->stats.tsctc,
5167 "TSO Contexts Transmitted");
5168 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tso_ctx_fail",
5169 CTLFLAG_RD, &sc->stats.tsctfc,
5170 "TSO Contexts Failed");
5171
5172 /* Interrupt Stats */
5173 int_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "interrupts",
5174 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Interrupt Statistics");
5175 int_list = SYSCTL_CHILDREN(int_node);
5176
5177 SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "asserts",
5178 CTLFLAG_RD, &sc->stats.iac,
5179 "Interrupt Assertion Count");
5180
5181 SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_pkt_timer",
5182 CTLFLAG_RD, &sc->stats.icrxptc,
5183 "Interrupt Cause Rx Pkt Timer Expire Count");
5184
5185 SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_abs_timer",
5186 CTLFLAG_RD, &sc->stats.icrxatc,
5187 "Interrupt Cause Rx Abs Timer Expire Count");
5188
5189 SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_pkt_timer",
5190 CTLFLAG_RD, &sc->stats.ictxptc,
5191 "Interrupt Cause Tx Pkt Timer Expire Count");
5192
5193 SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_abs_timer",
5194 CTLFLAG_RD, &sc->stats.ictxatc,
5195 "Interrupt Cause Tx Abs Timer Expire Count");
5196
5197 SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_queue_empty",
5198 CTLFLAG_RD, &sc->stats.ictxqec,
5199 "Interrupt Cause Tx Queue Empty Count");
5200
5201 SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_queue_min_thresh",
5202 CTLFLAG_RD, &sc->stats.ictxqmtc,
5203 "Interrupt Cause Tx Queue Min Thresh Count");
5204
5205 SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_desc_min_thresh",
5206 CTLFLAG_RD, &sc->stats.icrxdmtc,
5207 "Interrupt Cause Rx Desc Min Thresh Count");
5208
5209 SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_overrun",
5210 CTLFLAG_RD, &sc->stats.icrxoc,
5211 "Interrupt Cause Receiver Overrun Count");
5212 }
5213
5214 static void
em_fw_version_locked(if_ctx_t ctx)5215 em_fw_version_locked(if_ctx_t ctx)
5216 {
5217 struct e1000_softc *sc = iflib_get_softc(ctx);
5218 struct e1000_hw *hw = &sc->hw;
5219 struct e1000_fw_version *fw_ver = &sc->fw_ver;
5220 uint16_t eep = 0;
5221
5222 /*
5223 * em_fw_version_locked() must run under the IFLIB_CTX_LOCK to meet
5224 * the NVM locking model, so we do it in em_if_attach_pre() and store
5225 * the info in the softc
5226 */
5227 ASSERT_CTX_LOCK_HELD(hw);
5228
5229 *fw_ver = (struct e1000_fw_version){0};
5230
5231 if (hw->mac.type >= igb_mac_min) {
5232 /*
5233 * Use the Shared Code for igb(4)
5234 */
5235 e1000_get_fw_version(hw, fw_ver);
5236 } else {
5237 /*
5238 * Otherwise, EEPROM version should be present on (almost?)
5239 * all devices here
5240 */
5241 if(e1000_read_nvm(hw, NVM_VERSION, 1, &eep)) {
5242 INIT_DEBUGOUT("can't get EEPROM version");
5243 return;
5244 }
5245
5246 fw_ver->eep_major = (eep & NVM_MAJOR_MASK) >> NVM_MAJOR_SHIFT;
5247 fw_ver->eep_minor = (eep & NVM_MINOR_MASK) >> NVM_MINOR_SHIFT;
5248 fw_ver->eep_build = (eep & NVM_IMAGE_ID_MASK);
5249 }
5250 }
5251
5252 static void
em_sbuf_fw_version(struct e1000_fw_version * fw_ver,struct sbuf * buf)5253 em_sbuf_fw_version(struct e1000_fw_version *fw_ver, struct sbuf *buf)
5254 {
5255 const char *space = "";
5256
5257 if (fw_ver->eep_major || fw_ver->eep_minor || fw_ver->eep_build) {
5258 sbuf_printf(buf, "EEPROM V%d.%d-%d", fw_ver->eep_major,
5259 fw_ver->eep_minor, fw_ver->eep_build);
5260 space = " ";
5261 }
5262
5263 if (fw_ver->invm_major || fw_ver->invm_minor ||
5264 fw_ver->invm_img_type) {
5265 sbuf_printf(buf, "%sNVM V%d.%d imgtype%d",
5266 space, fw_ver->invm_major, fw_ver->invm_minor,
5267 fw_ver->invm_img_type);
5268 space = " ";
5269 }
5270
5271 if (fw_ver->or_valid) {
5272 sbuf_printf(buf, "%sOption ROM V%d-b%d-p%d",
5273 space, fw_ver->or_major, fw_ver->or_build,
5274 fw_ver->or_patch);
5275 space = " ";
5276 }
5277
5278 if (fw_ver->etrack_id)
5279 sbuf_printf(buf, "%seTrack 0x%08x", space, fw_ver->etrack_id);
5280 }
5281
5282 static void
em_print_fw_version(struct e1000_softc * sc)5283 em_print_fw_version(struct e1000_softc *sc )
5284 {
5285 device_t dev = sc->dev;
5286 struct sbuf *buf;
5287 int error = 0;
5288
5289 buf = sbuf_new_auto();
5290 if (!buf) {
5291 device_printf(dev, "Could not allocate sbuf for output.\n");
5292 return;
5293 }
5294
5295 em_sbuf_fw_version(&sc->fw_ver, buf);
5296
5297 error = sbuf_finish(buf);
5298 if (error)
5299 device_printf(dev, "Error finishing sbuf: %d\n", error);
5300 else if (sbuf_len(buf))
5301 device_printf(dev, "%s\n", sbuf_data(buf));
5302
5303 sbuf_delete(buf);
5304 }
5305
5306 static int
em_sysctl_print_fw_version(SYSCTL_HANDLER_ARGS)5307 em_sysctl_print_fw_version(SYSCTL_HANDLER_ARGS)
5308 {
5309 struct e1000_softc *sc = (struct e1000_softc *)arg1;
5310 device_t dev = sc->dev;
5311 struct sbuf *buf;
5312 int error = 0;
5313
5314 buf = sbuf_new_for_sysctl(NULL, NULL, 128, req);
5315 if (!buf) {
5316 device_printf(dev, "Could not allocate sbuf for output.\n");
5317 return (ENOMEM);
5318 }
5319
5320 em_sbuf_fw_version(&sc->fw_ver, buf);
5321
5322 error = sbuf_finish(buf);
5323 if (error)
5324 device_printf(dev, "Error finishing sbuf: %d\n", error);
5325
5326 sbuf_delete(buf);
5327
5328 return (0);
5329 }
5330
5331 /**********************************************************************
5332 *
5333 * This routine provides a way to dump out the adapter eeprom,
5334 * often a useful debug/service tool. This only dumps the first
5335 * 32 words, stuff that matters is in that extent.
5336 *
5337 **********************************************************************/
5338 static int
em_sysctl_nvm_info(SYSCTL_HANDLER_ARGS)5339 em_sysctl_nvm_info(SYSCTL_HANDLER_ARGS)
5340 {
5341 struct e1000_softc *sc = (struct e1000_softc *)arg1;
5342 int error;
5343 int result;
5344
5345 result = -1;
5346 error = sysctl_handle_int(oidp, &result, 0, req);
5347
5348 if (error || !req->newptr)
5349 return (error);
5350
5351 /*
5352 * This value will cause a hex dump of the
5353 * first 32 16-bit words of the EEPROM to
5354 * the screen.
5355 */
5356 if (result == 1)
5357 em_print_nvm_info(sc);
5358
5359 return (error);
5360 }
5361
5362 static void
em_print_nvm_info(struct e1000_softc * sc)5363 em_print_nvm_info(struct e1000_softc *sc)
5364 {
5365 struct e1000_hw *hw = &sc->hw;
5366 struct sx *iflib_ctx_lock = iflib_ctx_lock_get(sc->ctx);
5367 u16 eeprom_data;
5368 int i, j, row = 0;
5369
5370 /* Its a bit crude, but it gets the job done */
5371 printf("\nInterface EEPROM Dump:\n");
5372 printf("Offset\n0x0000 ");
5373
5374 /* We rely on the IFLIB_CTX_LOCK as part of NVM locking model */
5375 sx_xlock(iflib_ctx_lock);
5376 ASSERT_CTX_LOCK_HELD(hw);
5377 for (i = 0, j = 0; i < 32; i++, j++) {
5378 if (j == 8) { /* Make the offset block */
5379 j = 0; ++row;
5380 printf("\n0x00%x0 ",row);
5381 }
5382 e1000_read_nvm(hw, i, 1, &eeprom_data);
5383 printf("%04x ", eeprom_data);
5384 }
5385 sx_xunlock(iflib_ctx_lock);
5386 printf("\n");
5387 }
5388
5389 static int
em_sysctl_int_delay(SYSCTL_HANDLER_ARGS)5390 em_sysctl_int_delay(SYSCTL_HANDLER_ARGS)
5391 {
5392 struct em_int_delay_info *info;
5393 struct e1000_softc *sc;
5394 u32 regval;
5395 int error, usecs, ticks;
5396
5397 info = (struct em_int_delay_info *) arg1;
5398 usecs = info->value;
5399 error = sysctl_handle_int(oidp, &usecs, 0, req);
5400 if (error != 0 || req->newptr == NULL)
5401 return (error);
5402 if (usecs < 0 || usecs > EM_TICKS_TO_USECS(65535))
5403 return (EINVAL);
5404 info->value = usecs;
5405 ticks = EM_USECS_TO_TICKS(usecs);
5406 if (info->offset == E1000_ITR) /* units are 256ns here */
5407 ticks *= 4;
5408
5409 sc = info->sc;
5410
5411 regval = E1000_READ_OFFSET(&sc->hw, info->offset);
5412 regval = (regval & ~0xffff) | (ticks & 0xffff);
5413 /* Handle a few special cases. */
5414 switch (info->offset) {
5415 case E1000_RDTR:
5416 break;
5417 case E1000_TIDV:
5418 if (ticks == 0) {
5419 sc->txd_cmd &= ~E1000_TXD_CMD_IDE;
5420 /* Don't write 0 into the TIDV register. */
5421 regval++;
5422 } else
5423 sc->txd_cmd |= E1000_TXD_CMD_IDE;
5424 break;
5425 }
5426 E1000_WRITE_OFFSET(&sc->hw, info->offset, regval);
5427 return (0);
5428 }
5429
5430 static int
em_sysctl_tso_tcp_flags_mask(SYSCTL_HANDLER_ARGS)5431 em_sysctl_tso_tcp_flags_mask(SYSCTL_HANDLER_ARGS)
5432 {
5433 struct e1000_softc *sc;
5434 u32 reg, val, shift;
5435 int error, mask;
5436
5437 sc = oidp->oid_arg1;
5438 switch (oidp->oid_arg2) {
5439 case 0:
5440 reg = E1000_DTXTCPFLGL;
5441 shift = 0;
5442 break;
5443 case 1:
5444 reg = E1000_DTXTCPFLGL;
5445 shift = 16;
5446 break;
5447 case 2:
5448 reg = E1000_DTXTCPFLGH;
5449 shift = 0;
5450 break;
5451 default:
5452 return (EINVAL);
5453 break;
5454 }
5455 val = E1000_READ_REG(&sc->hw, reg);
5456 mask = (val >> shift) & 0xfff;
5457 error = sysctl_handle_int(oidp, &mask, 0, req);
5458 if (error != 0 || req->newptr == NULL)
5459 return (error);
5460 if (mask < 0 || mask > 0xfff)
5461 return (EINVAL);
5462 val = (val & ~(0xfff << shift)) | (mask << shift);
5463 E1000_WRITE_REG(&sc->hw, reg, val);
5464 return (0);
5465 }
5466
5467 static void
em_add_int_delay_sysctl(struct e1000_softc * sc,const char * name,const char * description,struct em_int_delay_info * info,int offset,int value)5468 em_add_int_delay_sysctl(struct e1000_softc *sc, const char *name,
5469 const char *description, struct em_int_delay_info *info, int offset,
5470 int value)
5471 {
5472 info->sc = sc;
5473 info->offset = offset;
5474 info->value = value;
5475 SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->dev),
5476 SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)),
5477 OID_AUTO, name, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
5478 info, 0, em_sysctl_int_delay, "I", description);
5479 }
5480
5481 /*
5482 * Set flow control using sysctl:
5483 * Flow control values:
5484 * 0 - off
5485 * 1 - rx pause
5486 * 2 - tx pause
5487 * 3 - full
5488 */
5489 static int
em_set_flowcntl(SYSCTL_HANDLER_ARGS)5490 em_set_flowcntl(SYSCTL_HANDLER_ARGS)
5491 {
5492 int error;
5493 static int input = 3; /* default is full */
5494 struct e1000_softc *sc = (struct e1000_softc *) arg1;
5495
5496 error = sysctl_handle_int(oidp, &input, 0, req);
5497
5498 if ((error) || (req->newptr == NULL))
5499 return (error);
5500
5501 if (input == sc->fc) /* no change? */
5502 return (error);
5503
5504 switch (input) {
5505 case e1000_fc_rx_pause:
5506 case e1000_fc_tx_pause:
5507 case e1000_fc_full:
5508 case e1000_fc_none:
5509 sc->hw.fc.requested_mode = input;
5510 sc->fc = input;
5511 break;
5512 default:
5513 /* Do nothing */
5514 return (error);
5515 }
5516
5517 sc->hw.fc.current_mode = sc->hw.fc.requested_mode;
5518 e1000_force_mac_fc(&sc->hw);
5519 return (error);
5520 }
5521
5522 /*
5523 * Manage DMA Coalesce:
5524 * Control values:
5525 * 0/1 - off/on
5526 * Legal timer values are:
5527 * 250,500,1000-10000 in thousands
5528 */
5529 static int
igb_sysctl_dmac(SYSCTL_HANDLER_ARGS)5530 igb_sysctl_dmac(SYSCTL_HANDLER_ARGS)
5531 {
5532 struct e1000_softc *sc = (struct e1000_softc *) arg1;
5533 int error;
5534
5535 error = sysctl_handle_int(oidp, &sc->dmac, 0, req);
5536
5537 if ((error) || (req->newptr == NULL))
5538 return (error);
5539
5540 switch (sc->dmac) {
5541 case 0:
5542 /* Disabling */
5543 break;
5544 case 1: /* Just enable and use default */
5545 sc->dmac = 1000;
5546 break;
5547 case 250:
5548 case 500:
5549 case 1000:
5550 case 2000:
5551 case 3000:
5552 case 4000:
5553 case 5000:
5554 case 6000:
5555 case 7000:
5556 case 8000:
5557 case 9000:
5558 case 10000:
5559 /* Legal values - allow */
5560 break;
5561 default:
5562 /* Do nothing, illegal value */
5563 sc->dmac = 0;
5564 return (EINVAL);
5565 }
5566 /* Reinit the interface */
5567 em_if_init(sc->ctx);
5568 return (error);
5569 }
5570
5571 /*
5572 * Manage Energy Efficient Ethernet:
5573 * Control values:
5574 * 0/1 - enabled/disabled
5575 */
5576 static int
em_sysctl_eee(SYSCTL_HANDLER_ARGS)5577 em_sysctl_eee(SYSCTL_HANDLER_ARGS)
5578 {
5579 struct e1000_softc *sc = (struct e1000_softc *) arg1;
5580 int error, value;
5581
5582 if (sc->hw.mac.type < igb_mac_min)
5583 value = sc->hw.dev_spec.ich8lan.eee_disable;
5584 else
5585 value = sc->hw.dev_spec._82575.eee_disable;
5586 error = sysctl_handle_int(oidp, &value, 0, req);
5587 if (error || req->newptr == NULL)
5588 return (error);
5589 if (sc->hw.mac.type < igb_mac_min)
5590 sc->hw.dev_spec.ich8lan.eee_disable = (value != 0);
5591 else
5592 sc->hw.dev_spec._82575.eee_disable = (value != 0);
5593 em_if_init(sc->ctx);
5594
5595 return (0);
5596 }
5597
5598 static int
em_sysctl_debug_info(SYSCTL_HANDLER_ARGS)5599 em_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
5600 {
5601 struct e1000_softc *sc;
5602 int error;
5603 int result;
5604
5605 result = -1;
5606 error = sysctl_handle_int(oidp, &result, 0, req);
5607
5608 if (error || !req->newptr)
5609 return (error);
5610
5611 if (result == 1) {
5612 sc = (struct e1000_softc *) arg1;
5613 em_print_debug_info(sc);
5614 }
5615
5616 return (error);
5617 }
5618
5619 static int
em_get_rs(SYSCTL_HANDLER_ARGS)5620 em_get_rs(SYSCTL_HANDLER_ARGS)
5621 {
5622 struct e1000_softc *sc = (struct e1000_softc *) arg1;
5623 int error;
5624 int result;
5625
5626 result = 0;
5627 error = sysctl_handle_int(oidp, &result, 0, req);
5628
5629 if (error || !req->newptr || result != 1)
5630 return (error);
5631 em_dump_rs(sc);
5632
5633 return (error);
5634 }
5635
5636 static void
em_if_debug(if_ctx_t ctx)5637 em_if_debug(if_ctx_t ctx)
5638 {
5639 em_dump_rs(iflib_get_softc(ctx));
5640 }
5641
5642 /*
5643 * This routine is meant to be fluid, add whatever is
5644 * needed for debugging a problem. -jfv
5645 */
5646 static void
em_print_debug_info(struct e1000_softc * sc)5647 em_print_debug_info(struct e1000_softc *sc)
5648 {
5649 device_t dev = iflib_get_dev(sc->ctx);
5650 if_t ifp = iflib_get_ifp(sc->ctx);
5651 struct tx_ring *txr = &sc->tx_queues->txr;
5652 struct rx_ring *rxr = &sc->rx_queues->rxr;
5653
5654 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
5655 printf("Interface is RUNNING ");
5656 else
5657 printf("Interface is NOT RUNNING\n");
5658
5659 if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE)
5660 printf("and INACTIVE\n");
5661 else
5662 printf("and ACTIVE\n");
5663
5664 for (int i = 0; i < sc->tx_num_queues; i++, txr++) {
5665 device_printf(dev, "TX Queue %d ------\n", i);
5666 device_printf(dev, "hw tdh = %d, hw tdt = %d\n",
5667 E1000_READ_REG(&sc->hw, E1000_TDH(i)),
5668 E1000_READ_REG(&sc->hw, E1000_TDT(i)));
5669
5670 }
5671 for (int j=0; j < sc->rx_num_queues; j++, rxr++) {
5672 device_printf(dev, "RX Queue %d ------\n", j);
5673 device_printf(dev, "hw rdh = %d, hw rdt = %d\n",
5674 E1000_READ_REG(&sc->hw, E1000_RDH(j)),
5675 E1000_READ_REG(&sc->hw, E1000_RDT(j)));
5676 }
5677 }
5678
5679 /*
5680 * 82574 only:
5681 * Write a new value to the EEPROM increasing the number of MSI-X
5682 * vectors from 3 to 5, for proper multiqueue support.
5683 */
5684 static void
em_enable_vectors_82574(if_ctx_t ctx)5685 em_enable_vectors_82574(if_ctx_t ctx)
5686 {
5687 struct e1000_softc *sc = iflib_get_softc(ctx);
5688 struct e1000_hw *hw = &sc->hw;
5689 device_t dev = iflib_get_dev(ctx);
5690 u16 edata;
5691
5692 e1000_read_nvm(hw, EM_NVM_PCIE_CTRL, 1, &edata);
5693 if (bootverbose)
5694 device_printf(dev, "EM_NVM_PCIE_CTRL = %#06x\n", edata);
5695 if (((edata & EM_NVM_MSIX_N_MASK) >> EM_NVM_MSIX_N_SHIFT) != 4) {
5696 device_printf(dev, "Writing to eeprom: increasing "
5697 "reported MSI-X vectors from 3 to 5...\n");
5698 edata &= ~(EM_NVM_MSIX_N_MASK);
5699 edata |= 4 << EM_NVM_MSIX_N_SHIFT;
5700 e1000_write_nvm(hw, EM_NVM_PCIE_CTRL, 1, &edata);
5701 e1000_update_nvm_checksum(hw);
5702 device_printf(dev, "Writing to eeprom: done\n");
5703 }
5704 }
5705