xref: /freebsd/sys/kern/kern_intr.c (revision 0863dc10354ff458a3ddf8ef3b47044d7a615154)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 1997, Stefan Esser <se@freebsd.org>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice unmodified, this list of conditions, and the following
12  *    disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 #include "opt_ddb.h"
31 #include "opt_hwpmc_hooks.h"
32 #include "opt_kstack_usage_prof.h"
33 
34 #include <sys/param.h>
35 #include <sys/bus.h>
36 #include <sys/conf.h>
37 #include <sys/cpuset.h>
38 #include <sys/rtprio.h>
39 #include <sys/systm.h>
40 #include <sys/interrupt.h>
41 #include <sys/kernel.h>
42 #include <sys/kthread.h>
43 #include <sys/ktr.h>
44 #include <sys/limits.h>
45 #include <sys/lock.h>
46 #include <sys/malloc.h>
47 #include <sys/mutex.h>
48 #include <sys/priv.h>
49 #include <sys/proc.h>
50 #include <sys/epoch.h>
51 #include <sys/random.h>
52 #include <sys/resourcevar.h>
53 #include <sys/sched.h>
54 #include <sys/smp.h>
55 #include <sys/sysctl.h>
56 #include <sys/syslog.h>
57 #include <sys/unistd.h>
58 #include <sys/vmmeter.h>
59 #include <machine/atomic.h>
60 #include <machine/cpu.h>
61 #include <machine/md_var.h>
62 #include <machine/smp.h>
63 #include <machine/stdarg.h>
64 #ifdef DDB
65 #include <ddb/ddb.h>
66 #include <ddb/db_sym.h>
67 #endif
68 
69 /*
70  * Describe an interrupt thread.  There is one of these per interrupt event.
71  */
72 struct intr_thread {
73 	struct intr_event *it_event;
74 	struct thread *it_thread;	/* Kernel thread. */
75 	int	it_flags;		/* (j) IT_* flags. */
76 	int	it_need;		/* Needs service. */
77 	int	it_waiting;		/* Waiting in the runq. */
78 };
79 
80 /* Interrupt thread flags kept in it_flags */
81 #define	IT_DEAD		0x000001	/* Thread is waiting to exit. */
82 #define	IT_WAIT		0x000002	/* Thread is waiting for completion. */
83 
84 struct	intr_entropy {
85 	struct	thread *td;
86 	uintptr_t event;
87 };
88 
89 struct	intr_event *clk_intr_event;
90 struct proc *intrproc;
91 
92 static MALLOC_DEFINE(M_ITHREAD, "ithread", "Interrupt Threads");
93 
94 static int intr_storm_threshold = 0;
95 SYSCTL_INT(_hw, OID_AUTO, intr_storm_threshold, CTLFLAG_RWTUN,
96     &intr_storm_threshold, 0,
97     "Number of consecutive interrupts before storm protection is enabled");
98 static int intr_epoch_batch = 1000;
99 SYSCTL_INT(_hw, OID_AUTO, intr_epoch_batch, CTLFLAG_RWTUN, &intr_epoch_batch,
100     0, "Maximum interrupt handler executions without re-entering epoch(9)");
101 #ifdef HWPMC_HOOKS
102 static int intr_hwpmc_waiting_report_threshold = 1;
103 SYSCTL_INT(_hw, OID_AUTO, intr_hwpmc_waiting_report_threshold, CTLFLAG_RWTUN,
104     &intr_hwpmc_waiting_report_threshold, 1,
105     "Threshold for reporting number of events in a workq");
106 #define	PMC_HOOK_INSTALLED_ANY() __predict_false(pmc_hook != NULL)
107 #endif
108 static TAILQ_HEAD(, intr_event) event_list =
109     TAILQ_HEAD_INITIALIZER(event_list);
110 static struct mtx event_lock;
111 MTX_SYSINIT(intr_event_list, &event_lock, "intr event list", MTX_DEF);
112 
113 static void	intr_event_update(struct intr_event *ie);
114 static int	intr_event_schedule_thread(struct intr_event *ie, struct trapframe *frame);
115 static struct intr_thread *ithread_create(const char *name);
116 static void	ithread_destroy(struct intr_thread *ithread);
117 static void	ithread_execute_handlers(struct proc *p,
118 		    struct intr_event *ie);
119 static void	ithread_loop(void *);
120 static void	ithread_update(struct intr_thread *ithd);
121 static void	start_softintr(void *);
122 
123 #ifdef HWPMC_HOOKS
124 #include <sys/pmckern.h>
125 PMC_SOFT_DEFINE( , , intr, all);
126 PMC_SOFT_DEFINE( , , intr, ithread);
127 PMC_SOFT_DEFINE( , , intr, filter);
128 PMC_SOFT_DEFINE( , , intr, stray);
129 PMC_SOFT_DEFINE( , , intr, schedule);
130 PMC_SOFT_DEFINE( , , intr, waiting);
131 
132 #define PMC_SOFT_CALL_INTR_HLPR(event, frame)			\
133 do {					\
134 	if (frame != NULL)					\
135 		PMC_SOFT_CALL_TF( , , intr, event, frame);	\
136 	else							\
137 		PMC_SOFT_CALL( , , intr, event);		\
138 } while (0)
139 #endif
140 
141 /* Map an interrupt type to an ithread priority. */
142 u_char
intr_priority(enum intr_type flags)143 intr_priority(enum intr_type flags)
144 {
145 	u_char pri;
146 
147 	flags &= (INTR_TYPE_TTY | INTR_TYPE_BIO | INTR_TYPE_NET |
148 	    INTR_TYPE_CAM | INTR_TYPE_MISC | INTR_TYPE_CLK | INTR_TYPE_AV);
149 	switch (flags) {
150 	case INTR_TYPE_TTY:
151 		pri = PI_TTY;
152 		break;
153 	case INTR_TYPE_BIO:
154 		pri = PI_DISK;
155 		break;
156 	case INTR_TYPE_NET:
157 		pri = PI_NET;
158 		break;
159 	case INTR_TYPE_CAM:
160 		pri = PI_DISK;
161 		break;
162 	case INTR_TYPE_AV:
163 		pri = PI_AV;
164 		break;
165 	case INTR_TYPE_CLK:
166 		pri = PI_REALTIME;
167 		break;
168 	case INTR_TYPE_MISC:
169 		pri = PI_DULL;          /* don't care */
170 		break;
171 	default:
172 		/* We didn't specify an interrupt level. */
173 		panic("intr_priority: no interrupt type in flags");
174 	}
175 
176 	return pri;
177 }
178 
179 /*
180  * Update an ithread based on the associated intr_event.
181  */
182 static void
ithread_update(struct intr_thread * ithd)183 ithread_update(struct intr_thread *ithd)
184 {
185 	struct intr_event *ie;
186 	struct thread *td;
187 	u_char pri;
188 
189 	ie = ithd->it_event;
190 	td = ithd->it_thread;
191 	mtx_assert(&ie->ie_lock, MA_OWNED);
192 
193 	/* Determine the overall priority of this event. */
194 	if (CK_SLIST_EMPTY(&ie->ie_handlers))
195 		pri = PRI_MAX_ITHD;
196 	else
197 		pri = CK_SLIST_FIRST(&ie->ie_handlers)->ih_pri;
198 
199 	/* Update name and priority. */
200 	strlcpy(td->td_name, ie->ie_fullname, sizeof(td->td_name));
201 #ifdef KTR
202 	sched_clear_tdname(td);
203 #endif
204 	thread_lock(td);
205 	sched_ithread_prio(td, pri);
206 	thread_unlock(td);
207 }
208 
209 /*
210  * Regenerate the full name of an interrupt event and update its priority.
211  */
212 static void
intr_event_update(struct intr_event * ie)213 intr_event_update(struct intr_event *ie)
214 {
215 	struct intr_handler *ih;
216 	char *last;
217 	int missed, space, flags;
218 
219 	/* Start off with no entropy and just the name of the event. */
220 	mtx_assert(&ie->ie_lock, MA_OWNED);
221 	strlcpy(ie->ie_fullname, ie->ie_name, sizeof(ie->ie_fullname));
222 	flags = 0;
223 	missed = 0;
224 	space = 1;
225 
226 	/* Run through all the handlers updating values. */
227 	CK_SLIST_FOREACH(ih, &ie->ie_handlers, ih_next) {
228 		if (strlen(ie->ie_fullname) + strlen(ih->ih_name) + 1 <
229 		    sizeof(ie->ie_fullname)) {
230 			strcat(ie->ie_fullname, " ");
231 			strcat(ie->ie_fullname, ih->ih_name);
232 			space = 0;
233 		} else
234 			missed++;
235 		flags |= ih->ih_flags;
236 	}
237 	ie->ie_hflags = flags;
238 
239 	/*
240 	 * If there is only one handler and its name is too long, just copy in
241 	 * as much of the end of the name (includes the unit number) as will
242 	 * fit.  Otherwise, we have multiple handlers and not all of the names
243 	 * will fit.  Add +'s to indicate missing names.  If we run out of room
244 	 * and still have +'s to add, change the last character from a + to a *.
245 	 */
246 	if (missed == 1 && space == 1) {
247 		ih = CK_SLIST_FIRST(&ie->ie_handlers);
248 		missed = strlen(ie->ie_fullname) + strlen(ih->ih_name) + 2 -
249 		    sizeof(ie->ie_fullname);
250 		strcat(ie->ie_fullname, (missed == 0) ? " " : "-");
251 		strcat(ie->ie_fullname, &ih->ih_name[missed]);
252 		missed = 0;
253 	}
254 	last = &ie->ie_fullname[sizeof(ie->ie_fullname) - 2];
255 	while (missed-- > 0) {
256 		if (strlen(ie->ie_fullname) + 1 == sizeof(ie->ie_fullname)) {
257 			if (*last == '+') {
258 				*last = '*';
259 				break;
260 			} else
261 				*last = '+';
262 		} else if (space) {
263 			strcat(ie->ie_fullname, " +");
264 			space = 0;
265 		} else
266 			strcat(ie->ie_fullname, "+");
267 	}
268 
269 	/*
270 	 * If this event has an ithread, update it's priority and
271 	 * name.
272 	 */
273 	if (ie->ie_thread != NULL)
274 		ithread_update(ie->ie_thread);
275 	CTR2(KTR_INTR, "%s: updated %s", __func__, ie->ie_fullname);
276 }
277 
278 int
intr_event_create(struct intr_event ** event,void * source,int flags,u_int irq,void (* pre_ithread)(void *),void (* post_ithread)(void *),void (* post_filter)(void *),int (* assign_cpu)(void *,int),const char * fmt,...)279 intr_event_create(struct intr_event **event, void *source, int flags, u_int irq,
280     void (*pre_ithread)(void *), void (*post_ithread)(void *),
281     void (*post_filter)(void *), int (*assign_cpu)(void *, int),
282     const char *fmt, ...)
283 {
284 	struct intr_event *ie;
285 	va_list ap;
286 
287 	/* The only valid flag during creation is IE_SOFT. */
288 	if ((flags & ~IE_SOFT) != 0)
289 		return (EINVAL);
290 	ie = malloc(sizeof(struct intr_event), M_ITHREAD, M_WAITOK | M_ZERO);
291 	ie->ie_source = source;
292 	ie->ie_pre_ithread = pre_ithread;
293 	ie->ie_post_ithread = post_ithread;
294 	ie->ie_post_filter = post_filter;
295 	ie->ie_assign_cpu = assign_cpu;
296 	ie->ie_flags = flags;
297 	ie->ie_irq = irq;
298 	ie->ie_cpu = NOCPU;
299 	CK_SLIST_INIT(&ie->ie_handlers);
300 	mtx_init(&ie->ie_lock, "intr event", NULL, MTX_DEF);
301 
302 	va_start(ap, fmt);
303 	vsnprintf(ie->ie_name, sizeof(ie->ie_name), fmt, ap);
304 	va_end(ap);
305 	strlcpy(ie->ie_fullname, ie->ie_name, sizeof(ie->ie_fullname));
306 	mtx_lock(&event_lock);
307 	TAILQ_INSERT_TAIL(&event_list, ie, ie_list);
308 	mtx_unlock(&event_lock);
309 	if (event != NULL)
310 		*event = ie;
311 	CTR2(KTR_INTR, "%s: created %s", __func__, ie->ie_name);
312 	return (0);
313 }
314 
315 /*
316  * Bind an interrupt event to the specified CPU.  Note that not all
317  * platforms support binding an interrupt to a CPU.  For those
318  * platforms this request will fail.  Using a cpu id of NOCPU unbinds
319  * the interrupt event.
320  */
321 static int
_intr_event_bind(struct intr_event * ie,int cpu,bool bindirq,bool bindithread)322 _intr_event_bind(struct intr_event *ie, int cpu, bool bindirq, bool bindithread)
323 {
324 	lwpid_t id;
325 	int error;
326 
327 	/* Need a CPU to bind to. */
328 	if (cpu != NOCPU && CPU_ABSENT(cpu))
329 		return (EINVAL);
330 
331 	if (ie->ie_assign_cpu == NULL)
332 		return (EOPNOTSUPP);
333 
334 	error = priv_check(curthread, PRIV_SCHED_CPUSET_INTR);
335 	if (error)
336 		return (error);
337 
338 	/*
339 	 * If we have any ithreads try to set their mask first to verify
340 	 * permissions, etc.
341 	 */
342 	if (bindithread) {
343 		mtx_lock(&ie->ie_lock);
344 		if (ie->ie_thread != NULL) {
345 			id = ie->ie_thread->it_thread->td_tid;
346 			mtx_unlock(&ie->ie_lock);
347 			error = cpuset_setithread(id, cpu);
348 			if (error)
349 				return (error);
350 		} else
351 			mtx_unlock(&ie->ie_lock);
352 	}
353 	if (bindirq)
354 		error = ie->ie_assign_cpu(ie->ie_source, cpu);
355 	if (error) {
356 		if (bindithread) {
357 			mtx_lock(&ie->ie_lock);
358 			if (ie->ie_thread != NULL) {
359 				cpu = ie->ie_cpu;
360 				id = ie->ie_thread->it_thread->td_tid;
361 				mtx_unlock(&ie->ie_lock);
362 				(void)cpuset_setithread(id, cpu);
363 			} else
364 				mtx_unlock(&ie->ie_lock);
365 		}
366 		return (error);
367 	}
368 
369 	if (bindirq) {
370 		mtx_lock(&ie->ie_lock);
371 		ie->ie_cpu = cpu;
372 		mtx_unlock(&ie->ie_lock);
373 	}
374 
375 	return (error);
376 }
377 
378 /*
379  * Bind an interrupt event to the specified CPU.  For supported platforms, any
380  * associated ithreads as well as the primary interrupt context will be bound
381  * to the specificed CPU.
382  */
383 int
intr_event_bind(struct intr_event * ie,int cpu)384 intr_event_bind(struct intr_event *ie, int cpu)
385 {
386 
387 	return (_intr_event_bind(ie, cpu, true, true));
388 }
389 
390 /*
391  * Bind an interrupt event to the specified CPU, but do not bind associated
392  * ithreads.
393  */
394 int
intr_event_bind_irqonly(struct intr_event * ie,int cpu)395 intr_event_bind_irqonly(struct intr_event *ie, int cpu)
396 {
397 
398 	return (_intr_event_bind(ie, cpu, true, false));
399 }
400 
401 /*
402  * Bind an interrupt event's ithread to the specified CPU.
403  */
404 int
intr_event_bind_ithread(struct intr_event * ie,int cpu)405 intr_event_bind_ithread(struct intr_event *ie, int cpu)
406 {
407 
408 	return (_intr_event_bind(ie, cpu, false, true));
409 }
410 
411 /*
412  * Bind an interrupt event's ithread to the specified cpuset.
413  */
414 int
intr_event_bind_ithread_cpuset(struct intr_event * ie,cpuset_t * cs)415 intr_event_bind_ithread_cpuset(struct intr_event *ie, cpuset_t *cs)
416 {
417 	lwpid_t id;
418 
419 	mtx_lock(&ie->ie_lock);
420 	if (ie->ie_thread != NULL) {
421 		id = ie->ie_thread->it_thread->td_tid;
422 		mtx_unlock(&ie->ie_lock);
423 		return (cpuset_setthread(id, cs));
424 	} else {
425 		mtx_unlock(&ie->ie_lock);
426 	}
427 	return (ENODEV);
428 }
429 
430 static struct intr_event *
intr_lookup(int irq)431 intr_lookup(int irq)
432 {
433 	struct intr_event *ie;
434 
435 	mtx_lock(&event_lock);
436 	TAILQ_FOREACH(ie, &event_list, ie_list)
437 		if (ie->ie_irq == irq &&
438 		    (ie->ie_flags & IE_SOFT) == 0 &&
439 		    CK_SLIST_FIRST(&ie->ie_handlers) != NULL)
440 			break;
441 	mtx_unlock(&event_lock);
442 	return (ie);
443 }
444 
445 int
intr_setaffinity(int irq,int mode,const void * m)446 intr_setaffinity(int irq, int mode, const void *m)
447 {
448 	struct intr_event *ie;
449 	const cpuset_t *mask;
450 	int cpu, n;
451 
452 	mask = m;
453 	cpu = NOCPU;
454 	/*
455 	 * If we're setting all cpus we can unbind.  Otherwise make sure
456 	 * only one cpu is in the set.
457 	 */
458 	if (CPU_CMP(cpuset_root, mask)) {
459 		for (n = 0; n < CPU_SETSIZE; n++) {
460 			if (!CPU_ISSET(n, mask))
461 				continue;
462 			if (cpu != NOCPU)
463 				return (EINVAL);
464 			cpu = n;
465 		}
466 	}
467 	ie = intr_lookup(irq);
468 	if (ie == NULL)
469 		return (ESRCH);
470 	switch (mode) {
471 	case CPU_WHICH_IRQ:
472 		return (intr_event_bind(ie, cpu));
473 	case CPU_WHICH_INTRHANDLER:
474 		return (intr_event_bind_irqonly(ie, cpu));
475 	case CPU_WHICH_ITHREAD:
476 		return (intr_event_bind_ithread(ie, cpu));
477 	default:
478 		return (EINVAL);
479 	}
480 }
481 
482 int
intr_getaffinity(int irq,int mode,void * m)483 intr_getaffinity(int irq, int mode, void *m)
484 {
485 	struct intr_event *ie;
486 	struct thread *td;
487 	struct proc *p;
488 	cpuset_t *mask;
489 	lwpid_t id;
490 	int error;
491 
492 	mask = m;
493 	ie = intr_lookup(irq);
494 	if (ie == NULL)
495 		return (ESRCH);
496 
497 	error = 0;
498 	CPU_ZERO(mask);
499 	switch (mode) {
500 	case CPU_WHICH_IRQ:
501 	case CPU_WHICH_INTRHANDLER:
502 		mtx_lock(&ie->ie_lock);
503 		if (ie->ie_cpu == NOCPU)
504 			CPU_COPY(cpuset_root, mask);
505 		else
506 			CPU_SET(ie->ie_cpu, mask);
507 		mtx_unlock(&ie->ie_lock);
508 		break;
509 	case CPU_WHICH_ITHREAD:
510 		mtx_lock(&ie->ie_lock);
511 		if (ie->ie_thread == NULL) {
512 			mtx_unlock(&ie->ie_lock);
513 			CPU_COPY(cpuset_root, mask);
514 		} else {
515 			id = ie->ie_thread->it_thread->td_tid;
516 			mtx_unlock(&ie->ie_lock);
517 			error = cpuset_which(CPU_WHICH_TID, id, &p, &td, NULL);
518 			if (error != 0)
519 				return (error);
520 			CPU_COPY(&td->td_cpuset->cs_mask, mask);
521 			PROC_UNLOCK(p);
522 		}
523 	default:
524 		return (EINVAL);
525 	}
526 	return (0);
527 }
528 
529 int
intr_event_destroy(struct intr_event * ie)530 intr_event_destroy(struct intr_event *ie)
531 {
532 
533 	if (ie == NULL)
534 		return (EINVAL);
535 
536 	mtx_lock(&event_lock);
537 	mtx_lock(&ie->ie_lock);
538 	if (!CK_SLIST_EMPTY(&ie->ie_handlers)) {
539 		mtx_unlock(&ie->ie_lock);
540 		mtx_unlock(&event_lock);
541 		return (EBUSY);
542 	}
543 	TAILQ_REMOVE(&event_list, ie, ie_list);
544 	mtx_unlock(&event_lock);
545 	if (ie->ie_thread != NULL)
546 		ithread_destroy(ie->ie_thread);
547 	mtx_unlock(&ie->ie_lock);
548 	mtx_destroy(&ie->ie_lock);
549 	free(ie, M_ITHREAD);
550 	return (0);
551 }
552 
553 static struct intr_thread *
ithread_create(const char * name)554 ithread_create(const char *name)
555 {
556 	struct intr_thread *ithd;
557 	struct thread *td;
558 	int error;
559 
560 	ithd = malloc(sizeof(struct intr_thread), M_ITHREAD, M_WAITOK | M_ZERO);
561 
562 	error = kproc_kthread_add(ithread_loop, ithd, &intrproc,
563 		    &td, RFSTOPPED | RFHIGHPID,
564 		    0, "intr", "%s", name);
565 	if (error)
566 		panic("kproc_create() failed with %d", error);
567 	thread_lock(td);
568 	sched_class(td, PRI_ITHD);
569 	TD_SET_IWAIT(td);
570 	thread_unlock(td);
571 	td->td_pflags |= TDP_ITHREAD;
572 	ithd->it_thread = td;
573 	CTR2(KTR_INTR, "%s: created %s", __func__, name);
574 	return (ithd);
575 }
576 
577 static void
ithread_destroy(struct intr_thread * ithread)578 ithread_destroy(struct intr_thread *ithread)
579 {
580 	struct intr_event *ie;
581 	struct thread *td;
582 
583 	td = ithread->it_thread;
584 	ie = ithread->it_event;
585 
586 	mtx_assert(&ie->ie_lock, MA_OWNED);
587 
588 	CTR2(KTR_INTR, "%s: killing %s", __func__, ie->ie_name);
589 
590 	thread_lock(td);
591 	ithread->it_flags |= IT_DEAD;
592 	if (TD_AWAITING_INTR(td)) {
593 		TD_CLR_IWAIT(td);
594 		sched_wakeup(td, SRQ_INTR);
595 	} else
596 		thread_unlock(td);
597 	while (ie->ie_thread != NULL)
598 		msleep(ithread, &ie->ie_lock, 0, "ithd_dth", 0);
599 }
600 
601 int
intr_event_add_handler(struct intr_event * ie,const char * name,driver_filter_t filter,driver_intr_t handler,void * arg,u_char pri,enum intr_type flags,void ** cookiep)602 intr_event_add_handler(struct intr_event *ie, const char *name,
603     driver_filter_t filter, driver_intr_t handler, void *arg, u_char pri,
604     enum intr_type flags, void **cookiep)
605 {
606 	struct intr_handler *ih, *temp_ih;
607 	struct intr_handler **prevptr;
608 	struct intr_thread *it;
609 
610 	if (ie == NULL || name == NULL || (handler == NULL && filter == NULL))
611 		return (EINVAL);
612 
613 	if ((flags & INTR_SLEEPABLE) != 0 && (flags & INTR_EXCL) == 0) {
614 		printf("%s: INTR_SLEEPABLE requires INTR_EXCL to be set\n",
615 		    __func__);
616 		return (EINVAL);
617 	}
618 
619 	/* Allocate and populate an interrupt handler structure. */
620 	ih = malloc(sizeof(struct intr_handler), M_ITHREAD, M_WAITOK | M_ZERO);
621 	ih->ih_filter = filter;
622 	ih->ih_handler = handler;
623 	ih->ih_argument = arg;
624 	strlcpy(ih->ih_name, name, sizeof(ih->ih_name));
625 	ih->ih_event = ie;
626 	ih->ih_pri = pri;
627 	if (flags & INTR_EXCL)
628 		ih->ih_flags = IH_EXCLUSIVE;
629 	if (flags & INTR_MPSAFE)
630 		ih->ih_flags |= IH_MPSAFE;
631 	if (flags & INTR_ENTROPY)
632 		ih->ih_flags |= IH_ENTROPY;
633 	if (flags & INTR_TYPE_NET)
634 		ih->ih_flags |= IH_NET;
635 
636 	/* We can only have one exclusive or sleepable handler in a event. */
637 	mtx_lock(&ie->ie_lock);
638 	if (!CK_SLIST_EMPTY(&ie->ie_handlers)) {
639 		if ((flags & (INTR_EXCL | INTR_SLEEPABLE)) ||
640 		    (CK_SLIST_FIRST(&ie->ie_handlers)->ih_flags & IH_EXCLUSIVE)) {
641 			mtx_unlock(&ie->ie_lock);
642 			free(ih, M_ITHREAD);
643 			return (EINVAL);
644 		}
645 	}
646 	if (flags & INTR_SLEEPABLE)
647 		ie->ie_flags |= IE_SLEEPABLE;
648 
649 	/* Create a thread if we need one. */
650 	while (ie->ie_thread == NULL && handler != NULL) {
651 		if (ie->ie_flags & IE_ADDING_THREAD)
652 			msleep(ie, &ie->ie_lock, 0, "ithread", 0);
653 		else {
654 			ie->ie_flags |= IE_ADDING_THREAD;
655 			mtx_unlock(&ie->ie_lock);
656 			it = ithread_create("intr: newborn");
657 			mtx_lock(&ie->ie_lock);
658 			ie->ie_flags &= ~IE_ADDING_THREAD;
659 			ie->ie_thread = it;
660 			it->it_event = ie;
661 			ithread_update(it);
662 			wakeup(ie);
663 		}
664 	}
665 
666 	/* Add the new handler to the event in priority order. */
667 	CK_SLIST_FOREACH_PREVPTR(temp_ih, prevptr, &ie->ie_handlers, ih_next) {
668 		if (temp_ih->ih_pri > ih->ih_pri)
669 			break;
670 	}
671 	CK_SLIST_INSERT_PREVPTR(prevptr, temp_ih, ih, ih_next);
672 
673 	intr_event_update(ie);
674 
675 	CTR3(KTR_INTR, "%s: added %s to %s", __func__, ih->ih_name,
676 	    ie->ie_name);
677 	mtx_unlock(&ie->ie_lock);
678 
679 	if (cookiep != NULL)
680 		*cookiep = ih;
681 	return (0);
682 }
683 
684 /*
685  * Append a description preceded by a ':' to the name of the specified
686  * interrupt handler.
687  */
688 int
intr_event_describe_handler(struct intr_event * ie,void * cookie,const char * descr)689 intr_event_describe_handler(struct intr_event *ie, void *cookie,
690     const char *descr)
691 {
692 	struct intr_handler *ih;
693 	size_t space;
694 	char *start;
695 
696 	mtx_lock(&ie->ie_lock);
697 #ifdef INVARIANTS
698 	CK_SLIST_FOREACH(ih, &ie->ie_handlers, ih_next) {
699 		if (ih == cookie)
700 			break;
701 	}
702 	if (ih == NULL) {
703 		mtx_unlock(&ie->ie_lock);
704 		panic("handler %p not found in interrupt event %p", cookie, ie);
705 	}
706 #endif
707 	ih = cookie;
708 
709 	/*
710 	 * Look for an existing description by checking for an
711 	 * existing ":".  This assumes device names do not include
712 	 * colons.  If one is found, prepare to insert the new
713 	 * description at that point.  If one is not found, find the
714 	 * end of the name to use as the insertion point.
715 	 */
716 	start = strchr(ih->ih_name, ':');
717 	if (start == NULL)
718 		start = strchr(ih->ih_name, 0);
719 
720 	/*
721 	 * See if there is enough remaining room in the string for the
722 	 * description + ":".  The "- 1" leaves room for the trailing
723 	 * '\0'.  The "+ 1" accounts for the colon.
724 	 */
725 	space = sizeof(ih->ih_name) - (start - ih->ih_name) - 1;
726 	if (strlen(descr) + 1 > space) {
727 		mtx_unlock(&ie->ie_lock);
728 		return (ENOSPC);
729 	}
730 
731 	/* Append a colon followed by the description. */
732 	*start = ':';
733 	strcpy(start + 1, descr);
734 	intr_event_update(ie);
735 	mtx_unlock(&ie->ie_lock);
736 	return (0);
737 }
738 
739 /*
740  * Return the ie_source field from the intr_event an intr_handler is
741  * associated with.
742  */
743 void *
intr_handler_source(void * cookie)744 intr_handler_source(void *cookie)
745 {
746 	struct intr_handler *ih;
747 	struct intr_event *ie;
748 
749 	ih = (struct intr_handler *)cookie;
750 	if (ih == NULL)
751 		return (NULL);
752 	ie = ih->ih_event;
753 	KASSERT(ie != NULL,
754 	    ("interrupt handler \"%s\" has a NULL interrupt event",
755 	    ih->ih_name));
756 	return (ie->ie_source);
757 }
758 
759 /*
760  * If intr_event_handle() is running in the ISR context at the time of the call,
761  * then wait for it to complete.
762  */
763 static void
intr_event_barrier(struct intr_event * ie)764 intr_event_barrier(struct intr_event *ie)
765 {
766 	int phase;
767 
768 	mtx_assert(&ie->ie_lock, MA_OWNED);
769 	phase = ie->ie_phase;
770 
771 	/*
772 	 * Switch phase to direct future interrupts to the other active counter.
773 	 * Make sure that any preceding stores are visible before the switch.
774 	 */
775 	KASSERT(ie->ie_active[!phase] == 0, ("idle phase has activity"));
776 	atomic_store_rel_int(&ie->ie_phase, !phase);
777 
778 	/*
779 	 * This code cooperates with wait-free iteration of ie_handlers
780 	 * in intr_event_handle.
781 	 * Make sure that the removal and the phase update are not reordered
782 	 * with the active count check.
783 	 * Note that no combination of acquire and release fences can provide
784 	 * that guarantee as Store->Load sequences can always be reordered.
785 	 */
786 	atomic_thread_fence_seq_cst();
787 
788 	/*
789 	 * Now wait on the inactive phase.
790 	 * The acquire fence is needed so that all post-barrier accesses
791 	 * are after the check.
792 	 */
793 	while (ie->ie_active[phase] > 0)
794 		cpu_spinwait();
795 	atomic_thread_fence_acq();
796 }
797 
798 static void
intr_handler_barrier(struct intr_handler * handler)799 intr_handler_barrier(struct intr_handler *handler)
800 {
801 	struct intr_event *ie;
802 
803 	ie = handler->ih_event;
804 	mtx_assert(&ie->ie_lock, MA_OWNED);
805 	KASSERT((handler->ih_flags & IH_DEAD) == 0,
806 	    ("update for a removed handler"));
807 
808 	if (ie->ie_thread == NULL) {
809 		intr_event_barrier(ie);
810 		return;
811 	}
812 	if ((handler->ih_flags & IH_CHANGED) == 0) {
813 		handler->ih_flags |= IH_CHANGED;
814 		intr_event_schedule_thread(ie, NULL);
815 	}
816 	while ((handler->ih_flags & IH_CHANGED) != 0)
817 		msleep(handler, &ie->ie_lock, 0, "ih_barr", 0);
818 }
819 
820 /*
821  * Sleep until an ithread finishes executing an interrupt handler.
822  *
823  * XXX Doesn't currently handle interrupt filters or fast interrupt
824  * handlers. This is intended for LinuxKPI drivers only.
825  * Do not use in BSD code.
826  */
827 void
_intr_drain(int irq)828 _intr_drain(int irq)
829 {
830 	struct intr_event *ie;
831 	struct intr_thread *ithd;
832 	struct thread *td;
833 
834 	ie = intr_lookup(irq);
835 	if (ie == NULL)
836 		return;
837 	if (ie->ie_thread == NULL)
838 		return;
839 	ithd = ie->ie_thread;
840 	td = ithd->it_thread;
841 	/*
842 	 * We set the flag and wait for it to be cleared to avoid
843 	 * long delays with potentially busy interrupt handlers
844 	 * were we to only sample TD_AWAITING_INTR() every tick.
845 	 */
846 	thread_lock(td);
847 	if (!TD_AWAITING_INTR(td)) {
848 		ithd->it_flags |= IT_WAIT;
849 		while (ithd->it_flags & IT_WAIT) {
850 			thread_unlock(td);
851 			pause("idrain", 1);
852 			thread_lock(td);
853 		}
854 	}
855 	thread_unlock(td);
856 	return;
857 }
858 
859 int
intr_event_remove_handler(void * cookie)860 intr_event_remove_handler(void *cookie)
861 {
862 	struct intr_handler *handler = (struct intr_handler *)cookie;
863 	struct intr_event *ie;
864 	struct intr_handler *ih;
865 	struct intr_handler **prevptr;
866 
867 	if (handler == NULL)
868 		return (EINVAL);
869 	ie = handler->ih_event;
870 	KASSERT(ie != NULL,
871 	    ("interrupt handler \"%s\" has a NULL interrupt event",
872 	    handler->ih_name));
873 
874 	mtx_lock(&ie->ie_lock);
875 	CTR3(KTR_INTR, "%s: removing %s from %s", __func__, handler->ih_name,
876 	    ie->ie_name);
877 	CK_SLIST_FOREACH_PREVPTR(ih, prevptr, &ie->ie_handlers, ih_next) {
878 		if (ih == handler)
879 			break;
880 	}
881 	if (ih == NULL) {
882 		panic("interrupt handler \"%s\" not found in "
883 		    "interrupt event \"%s\"", handler->ih_name, ie->ie_name);
884 	}
885 
886 	if (ie->ie_thread == NULL) {
887 		/*
888 		 * If there is no ithread, then directly remove the handler.
889 		 * Note that intr_event_handle() iterates ie_handlers in a
890 		 * lock-less fashion, so care needs to be taken to keep
891 		 * ie_handlers consistent and to free the removed handler only
892 		 * when ie_handlers is quiescent.
893 		 */
894 		CK_SLIST_REMOVE_PREVPTR(prevptr, ih, ih_next);
895 		intr_event_barrier(ie);
896 	} else {
897 		/*
898 		 * Let the interrupt thread do the job.  The interrupt source is
899 		 * disabled when the interrupt thread is running, so it does not
900 		 * have to worry about interaction with intr_event_handle().
901 		 */
902 		KASSERT((handler->ih_flags & IH_DEAD) == 0,
903 		    ("duplicate handle remove"));
904 		handler->ih_flags |= IH_DEAD;
905 		intr_event_schedule_thread(ie, NULL);
906 		while (handler->ih_flags & IH_DEAD)
907 			msleep(handler, &ie->ie_lock, 0, "iev_rmh", 0);
908 	}
909 	intr_event_update(ie);
910 	mtx_unlock(&ie->ie_lock);
911 	free(handler, M_ITHREAD);
912 	return (0);
913 }
914 
915 int
intr_event_suspend_handler(void * cookie)916 intr_event_suspend_handler(void *cookie)
917 {
918 	struct intr_handler *handler = (struct intr_handler *)cookie;
919 	struct intr_event *ie;
920 
921 	if (handler == NULL)
922 		return (EINVAL);
923 	ie = handler->ih_event;
924 	KASSERT(ie != NULL,
925 	    ("interrupt handler \"%s\" has a NULL interrupt event",
926 	    handler->ih_name));
927 	mtx_lock(&ie->ie_lock);
928 	handler->ih_flags |= IH_SUSP;
929 	intr_handler_barrier(handler);
930 	mtx_unlock(&ie->ie_lock);
931 	return (0);
932 }
933 
934 int
intr_event_resume_handler(void * cookie)935 intr_event_resume_handler(void *cookie)
936 {
937 	struct intr_handler *handler = (struct intr_handler *)cookie;
938 	struct intr_event *ie;
939 
940 	if (handler == NULL)
941 		return (EINVAL);
942 	ie = handler->ih_event;
943 	KASSERT(ie != NULL,
944 	    ("interrupt handler \"%s\" has a NULL interrupt event",
945 	    handler->ih_name));
946 
947 	/*
948 	 * intr_handler_barrier() acts not only as a barrier,
949 	 * it also allows to check for any pending interrupts.
950 	 */
951 	mtx_lock(&ie->ie_lock);
952 	handler->ih_flags &= ~IH_SUSP;
953 	intr_handler_barrier(handler);
954 	mtx_unlock(&ie->ie_lock);
955 	return (0);
956 }
957 
958 static int
intr_event_schedule_thread(struct intr_event * ie,struct trapframe * frame)959 intr_event_schedule_thread(struct intr_event *ie, struct trapframe *frame)
960 {
961 	struct intr_entropy entropy;
962 	struct intr_thread *it;
963 	struct thread *td;
964 	struct thread *ctd;
965 
966 	/*
967 	 * If no ithread or no handlers, then we have a stray interrupt.
968 	 */
969 	if (ie == NULL || CK_SLIST_EMPTY(&ie->ie_handlers) ||
970 	    ie->ie_thread == NULL)
971 		return (EINVAL);
972 
973 	ctd = curthread;
974 	it = ie->ie_thread;
975 	td = it->it_thread;
976 
977 	/*
978 	 * If any of the handlers for this ithread claim to be good
979 	 * sources of entropy, then gather some.
980 	 */
981 	if (ie->ie_hflags & IH_ENTROPY) {
982 		entropy.event = (uintptr_t)ie;
983 		entropy.td = ctd;
984 		random_harvest_queue(&entropy, sizeof(entropy), RANDOM_INTERRUPT);
985 	}
986 
987 	KASSERT(td->td_proc != NULL, ("ithread %s has no process", ie->ie_name));
988 
989 	/*
990 	 * Set it_need to tell the thread to keep running if it is already
991 	 * running.  Then, lock the thread and see if we actually need to
992 	 * put it on the runqueue.
993 	 *
994 	 * Use store_rel to arrange that the store to ih_need in
995 	 * swi_sched() is before the store to it_need and prepare for
996 	 * transfer of this order to loads in the ithread.
997 	 */
998 	atomic_store_rel_int(&it->it_need, 1);
999 	thread_lock(td);
1000 	if (TD_AWAITING_INTR(td)) {
1001 #ifdef HWPMC_HOOKS
1002 		it->it_waiting = 0;
1003 		if (PMC_HOOK_INSTALLED_ANY())
1004 			PMC_SOFT_CALL_INTR_HLPR(schedule, frame);
1005 #endif
1006 		CTR3(KTR_INTR, "%s: schedule pid %d (%s)", __func__, td->td_proc->p_pid,
1007 		    td->td_name);
1008 		TD_CLR_IWAIT(td);
1009 		sched_wakeup(td, SRQ_INTR);
1010 	} else {
1011 #ifdef HWPMC_HOOKS
1012 		it->it_waiting++;
1013 		if (PMC_HOOK_INSTALLED_ANY() &&
1014 		    (it->it_waiting >= intr_hwpmc_waiting_report_threshold))
1015 			PMC_SOFT_CALL_INTR_HLPR(waiting, frame);
1016 #endif
1017 		CTR5(KTR_INTR, "%s: pid %d (%s): it_need %d, state %d",
1018 		    __func__, td->td_proc->p_pid, td->td_name, it->it_need, TD_GET_STATE(td));
1019 		thread_unlock(td);
1020 	}
1021 
1022 	return (0);
1023 }
1024 
1025 /*
1026  * Allow interrupt event binding for software interrupt handlers -- a no-op,
1027  * since interrupts are generated in software rather than being directed by
1028  * a PIC.
1029  */
1030 static int
swi_assign_cpu(void * arg,int cpu)1031 swi_assign_cpu(void *arg, int cpu)
1032 {
1033 
1034 	return (0);
1035 }
1036 
1037 /*
1038  * Add a software interrupt handler to a specified event.  If a given event
1039  * is not specified, then a new event is created.
1040  */
1041 int
swi_add(struct intr_event ** eventp,const char * name,driver_intr_t handler,void * arg,int pri,enum intr_type flags,void ** cookiep)1042 swi_add(struct intr_event **eventp, const char *name, driver_intr_t handler,
1043 	    void *arg, int pri, enum intr_type flags, void **cookiep)
1044 {
1045 	struct intr_event *ie;
1046 	int error = 0;
1047 
1048 	if (flags & INTR_ENTROPY)
1049 		return (EINVAL);
1050 
1051 	ie = (eventp != NULL) ? *eventp : NULL;
1052 
1053 	if (ie != NULL) {
1054 		if (!(ie->ie_flags & IE_SOFT))
1055 			return (EINVAL);
1056 	} else {
1057 		error = intr_event_create(&ie, NULL, IE_SOFT, 0,
1058 		    NULL, NULL, NULL, swi_assign_cpu, "swi%d:", pri);
1059 		if (error)
1060 			return (error);
1061 		if (eventp != NULL)
1062 			*eventp = ie;
1063 	}
1064 	if (handler != NULL) {
1065 		error = intr_event_add_handler(ie, name, NULL, handler, arg,
1066 		    PI_SWI(pri), flags, cookiep);
1067 	}
1068 	return (error);
1069 }
1070 
1071 /*
1072  * Schedule a software interrupt thread.
1073  */
1074 void
swi_sched(void * cookie,int flags)1075 swi_sched(void *cookie, int flags)
1076 {
1077 	struct intr_handler *ih = (struct intr_handler *)cookie;
1078 	struct intr_event *ie = ih->ih_event;
1079 	struct intr_entropy entropy;
1080 	int error __unused;
1081 
1082 	CTR3(KTR_INTR, "swi_sched: %s %s need=%d", ie->ie_name, ih->ih_name,
1083 	    ih->ih_need);
1084 
1085 	if ((flags & SWI_FROMNMI) == 0) {
1086 		entropy.event = (uintptr_t)ih;
1087 		entropy.td = curthread;
1088 		random_harvest_queue(&entropy, sizeof(entropy), RANDOM_SWI);
1089 	}
1090 
1091 	/*
1092 	 * Set ih_need for this handler so that if the ithread is already
1093 	 * running it will execute this handler on the next pass.  Otherwise,
1094 	 * it will execute it the next time it runs.
1095 	 */
1096 	ih->ih_need = 1;
1097 
1098 	if (flags & SWI_DELAY)
1099 		return;
1100 
1101 	if (flags & SWI_FROMNMI) {
1102 #if defined(SMP) && (defined(__i386__) || defined(__amd64__))
1103 		KASSERT(ie == clk_intr_event,
1104 		    ("SWI_FROMNMI used not with clk_intr_event"));
1105 		ipi_self_from_nmi(IPI_SWI);
1106 #endif
1107 	} else {
1108 		VM_CNT_INC(v_soft);
1109 		error = intr_event_schedule_thread(ie, NULL);
1110 		KASSERT(error == 0, ("stray software interrupt"));
1111 	}
1112 }
1113 
1114 /*
1115  * Remove a software interrupt handler.  Currently this code does not
1116  * remove the associated interrupt event if it becomes empty.  Calling code
1117  * may do so manually via intr_event_destroy(), but that's not really
1118  * an optimal interface.
1119  */
1120 int
swi_remove(void * cookie)1121 swi_remove(void *cookie)
1122 {
1123 
1124 	return (intr_event_remove_handler(cookie));
1125 }
1126 
1127 static void
intr_event_execute_handlers(struct proc * p,struct intr_event * ie)1128 intr_event_execute_handlers(struct proc *p, struct intr_event *ie)
1129 {
1130 	struct intr_handler *ih, *ihn, *ihp;
1131 
1132 	ihp = NULL;
1133 	CK_SLIST_FOREACH_SAFE(ih, &ie->ie_handlers, ih_next, ihn) {
1134 		/*
1135 		 * If this handler is marked for death, remove it from
1136 		 * the list of handlers and wake up the sleeper.
1137 		 */
1138 		if (ih->ih_flags & IH_DEAD) {
1139 			mtx_lock(&ie->ie_lock);
1140 			if (ihp == NULL)
1141 				CK_SLIST_REMOVE_HEAD(&ie->ie_handlers, ih_next);
1142 			else
1143 				CK_SLIST_REMOVE_AFTER(ihp, ih_next);
1144 			ih->ih_flags &= ~IH_DEAD;
1145 			wakeup(ih);
1146 			mtx_unlock(&ie->ie_lock);
1147 			continue;
1148 		}
1149 
1150 		/*
1151 		 * Now that we know that the current element won't be removed
1152 		 * update the previous element.
1153 		 */
1154 		ihp = ih;
1155 
1156 		if ((ih->ih_flags & IH_CHANGED) != 0) {
1157 			mtx_lock(&ie->ie_lock);
1158 			ih->ih_flags &= ~IH_CHANGED;
1159 			wakeup(ih);
1160 			mtx_unlock(&ie->ie_lock);
1161 		}
1162 
1163 		/* Skip filter only handlers */
1164 		if (ih->ih_handler == NULL)
1165 			continue;
1166 
1167 		/* Skip suspended handlers */
1168 		if ((ih->ih_flags & IH_SUSP) != 0)
1169 			continue;
1170 
1171 		/*
1172 		 * For software interrupt threads, we only execute
1173 		 * handlers that have their need flag set.  Hardware
1174 		 * interrupt threads always invoke all of their handlers.
1175 		 *
1176 		 * ih_need can only be 0 or 1.  Failed cmpset below
1177 		 * means that there is no request to execute handlers,
1178 		 * so a retry of the cmpset is not needed.
1179 		 */
1180 		if ((ie->ie_flags & IE_SOFT) != 0 &&
1181 		    atomic_cmpset_int(&ih->ih_need, 1, 0) == 0)
1182 			continue;
1183 
1184 		/* Execute this handler. */
1185 		CTR6(KTR_INTR, "%s: pid %d exec %p(%p) for %s flg=%x",
1186 		    __func__, p->p_pid, (void *)ih->ih_handler,
1187 		    ih->ih_argument, ih->ih_name, ih->ih_flags);
1188 
1189 		if (!(ih->ih_flags & IH_MPSAFE))
1190 			mtx_lock(&Giant);
1191 		ih->ih_handler(ih->ih_argument);
1192 		if (!(ih->ih_flags & IH_MPSAFE))
1193 			mtx_unlock(&Giant);
1194 	}
1195 }
1196 
1197 static void
ithread_execute_handlers(struct proc * p,struct intr_event * ie)1198 ithread_execute_handlers(struct proc *p, struct intr_event *ie)
1199 {
1200 
1201 	/* Only specifically marked sleepable interrupt handlers can sleep. */
1202 	if (!(ie->ie_flags & (IE_SOFT | IE_SLEEPABLE)))
1203 		THREAD_NO_SLEEPING();
1204 	intr_event_execute_handlers(p, ie);
1205 	if (!(ie->ie_flags & (IE_SOFT | IE_SLEEPABLE)))
1206 		THREAD_SLEEPING_OK();
1207 
1208 	/*
1209 	 * Interrupt storm handling:
1210 	 *
1211 	 * If this interrupt source is currently storming, then throttle
1212 	 * it to only fire the handler once  per clock tick.
1213 	 *
1214 	 * If this interrupt source is not currently storming, but the
1215 	 * number of back to back interrupts exceeds the storm threshold,
1216 	 * then enter storming mode.
1217 	 */
1218 	if (__predict_false(intr_storm_threshold != 0 &&
1219 	    ie->ie_count >= intr_storm_threshold &&
1220 	    (ie->ie_flags & IE_SOFT) == 0)) {
1221 		/* Report the message only once every second. */
1222 		if (ppsratecheck(&ie->ie_warntm, &ie->ie_warncnt, 1)) {
1223 			printf(
1224 	"interrupt storm detected on \"%s\"; throttling interrupt source\n",
1225 			    ie->ie_name);
1226 		}
1227 		pause("istorm", 1);
1228 	} else
1229 		ie->ie_count++;
1230 
1231 	/*
1232 	 * Now that all the handlers have had a chance to run, reenable
1233 	 * the interrupt source.
1234 	 */
1235 	if (ie->ie_post_ithread != NULL)
1236 		ie->ie_post_ithread(ie->ie_source);
1237 }
1238 
1239 /*
1240  * This is the main code for interrupt threads.
1241  */
1242 static void
ithread_loop(void * arg)1243 ithread_loop(void *arg)
1244 {
1245 	struct epoch_tracker et;
1246 	struct intr_thread *ithd;
1247 	struct intr_event *ie;
1248 	struct thread *td;
1249 	struct proc *p;
1250 	int epoch_count;
1251 	bool needs_epoch;
1252 
1253 	td = curthread;
1254 	p = td->td_proc;
1255 	ithd = (struct intr_thread *)arg;
1256 	KASSERT(ithd->it_thread == td,
1257 	    ("%s: ithread and proc linkage out of sync", __func__));
1258 	ie = ithd->it_event;
1259 	ie->ie_count = 0;
1260 
1261 	/*
1262 	 * As long as we have interrupts outstanding, go through the
1263 	 * list of handlers, giving each one a go at it.
1264 	 */
1265 	for (;;) {
1266 		/*
1267 		 * If we are an orphaned thread, then just die.
1268 		 */
1269 		if (__predict_false((ithd->it_flags & IT_DEAD) != 0)) {
1270 			CTR3(KTR_INTR, "%s: pid %d (%s) exiting", __func__,
1271 			    p->p_pid, td->td_name);
1272 			mtx_lock(&ie->ie_lock);
1273 			ie->ie_thread = NULL;
1274 			wakeup(ithd);
1275 			mtx_unlock(&ie->ie_lock);
1276 
1277 			free(ithd, M_ITHREAD);
1278 			kthread_exit();
1279 		}
1280 
1281 		/*
1282 		 * Service interrupts.  If another interrupt arrives while
1283 		 * we are running, it will set it_need to note that we
1284 		 * should make another pass.
1285 		 *
1286 		 * The load_acq part of the following cmpset ensures
1287 		 * that the load of ih_need in ithread_execute_handlers()
1288 		 * is ordered after the load of it_need here.
1289 		 */
1290 		needs_epoch =
1291 		    (atomic_load_int(&ie->ie_hflags) & IH_NET) != 0;
1292 		if (needs_epoch) {
1293 			epoch_count = 0;
1294 			NET_EPOCH_ENTER(et);
1295 		}
1296 		while (atomic_cmpset_acq_int(&ithd->it_need, 1, 0) != 0) {
1297 			ithread_execute_handlers(p, ie);
1298 			if (needs_epoch &&
1299 			    ++epoch_count >= intr_epoch_batch) {
1300 				NET_EPOCH_EXIT(et);
1301 				epoch_count = 0;
1302 				NET_EPOCH_ENTER(et);
1303 			}
1304 		}
1305 		if (needs_epoch)
1306 			NET_EPOCH_EXIT(et);
1307 		WITNESS_WARN(WARN_PANIC, NULL, "suspending ithread");
1308 		mtx_assert(&Giant, MA_NOTOWNED);
1309 
1310 		/*
1311 		 * Processed all our interrupts.  Now get the sched
1312 		 * lock.  This may take a while and it_need may get
1313 		 * set again, so we have to check it again.
1314 		 */
1315 		thread_lock(td);
1316 		if (atomic_load_acq_int(&ithd->it_need) == 0 &&
1317 		    (ithd->it_flags & (IT_DEAD | IT_WAIT)) == 0) {
1318 			TD_SET_IWAIT(td);
1319 			ie->ie_count = 0;
1320 			mi_switch(SW_VOL | SWT_IWAIT);
1321 		} else if ((ithd->it_flags & IT_WAIT) != 0) {
1322 			ithd->it_flags &= ~IT_WAIT;
1323 			thread_unlock(td);
1324 			wakeup(ithd);
1325 		} else
1326 			thread_unlock(td);
1327 	}
1328 }
1329 
1330 /*
1331  * Main interrupt handling body.
1332  *
1333  * Input:
1334  * o ie:                        the event connected to this interrupt.
1335 --------------------------------------------------------------------------------
1336  * o frame:                     the current trap frame. If the client interrupt
1337  *				handler needs this frame, they should get it
1338  *				via curthread->td_intr_frame.
1339  *
1340  * Return value:
1341  * o 0:                         everything ok.
1342  * o EINVAL:                    stray interrupt.
1343  */
1344 int
intr_event_handle(struct intr_event * ie,struct trapframe * frame)1345 intr_event_handle(struct intr_event *ie, struct trapframe *frame)
1346 {
1347 	struct intr_handler *ih;
1348 	struct trapframe *oldframe;
1349 	struct thread *td;
1350 	int phase;
1351 	int ret;
1352 	bool filter, thread;
1353 
1354 	td = curthread;
1355 
1356 #ifdef KSTACK_USAGE_PROF
1357 	intr_prof_stack_use(td, frame);
1358 #endif
1359 
1360 	/* An interrupt with no event or handlers is a stray interrupt. */
1361 	if (ie == NULL || CK_SLIST_EMPTY(&ie->ie_handlers))
1362 		return (EINVAL);
1363 
1364 	/*
1365 	 * Execute fast interrupt handlers directly.
1366 	 */
1367 	td->td_intr_nesting_level++;
1368 	filter = false;
1369 	thread = false;
1370 	ret = 0;
1371 	critical_enter();
1372 	oldframe = td->td_intr_frame;
1373 	td->td_intr_frame = frame;
1374 
1375 	phase = ie->ie_phase;
1376 	atomic_add_int(&ie->ie_active[phase], 1);
1377 
1378 	/*
1379 	 * This fence is required to ensure that no later loads are
1380 	 * re-ordered before the ie_active store.
1381 	 */
1382 	atomic_thread_fence_seq_cst();
1383 
1384 	CK_SLIST_FOREACH(ih, &ie->ie_handlers, ih_next) {
1385 		if ((ih->ih_flags & IH_SUSP) != 0)
1386 			continue;
1387 		if ((ie->ie_flags & IE_SOFT) != 0 && ih->ih_need == 0)
1388 			continue;
1389 		if (ih->ih_filter == NULL) {
1390 			thread = true;
1391 			continue;
1392 		}
1393 		CTR4(KTR_INTR, "%s: exec %p(%p) for %s", __func__,
1394 		    ih->ih_filter, ih->ih_argument, ih->ih_name);
1395 		ret = ih->ih_filter(ih->ih_argument);
1396 #ifdef HWPMC_HOOKS
1397 		PMC_SOFT_CALL_TF( , , intr, all, frame);
1398 #endif
1399 		KASSERT(ret == FILTER_STRAY ||
1400 		    ((ret & (FILTER_SCHEDULE_THREAD | FILTER_HANDLED)) != 0 &&
1401 		    (ret & ~(FILTER_SCHEDULE_THREAD | FILTER_HANDLED)) == 0),
1402 		    ("%s: incorrect return value %#x from %s", __func__, ret,
1403 		    ih->ih_name));
1404 		filter = filter || ret == FILTER_HANDLED;
1405 #ifdef HWPMC_HOOKS
1406 		if (ret & FILTER_SCHEDULE_THREAD)
1407 			PMC_SOFT_CALL_TF( , , intr, ithread, frame);
1408 		else if (ret & FILTER_HANDLED)
1409 			PMC_SOFT_CALL_TF( , , intr, filter, frame);
1410 		else if (ret == FILTER_STRAY)
1411 			PMC_SOFT_CALL_TF( , , intr, stray, frame);
1412 #endif
1413 
1414 		/*
1415 		 * Wrapper handler special handling:
1416 		 *
1417 		 * in some particular cases (like pccard and pccbb),
1418 		 * the _real_ device handler is wrapped in a couple of
1419 		 * functions - a filter wrapper and an ithread wrapper.
1420 		 * In this case (and just in this case), the filter wrapper
1421 		 * could ask the system to schedule the ithread and mask
1422 		 * the interrupt source if the wrapped handler is composed
1423 		 * of just an ithread handler.
1424 		 *
1425 		 * TODO: write a generic wrapper to avoid people rolling
1426 		 * their own.
1427 		 */
1428 		if (!thread) {
1429 			if (ret == FILTER_SCHEDULE_THREAD)
1430 				thread = true;
1431 		}
1432 	}
1433 	atomic_add_rel_int(&ie->ie_active[phase], -1);
1434 
1435 	td->td_intr_frame = oldframe;
1436 
1437 	if (thread) {
1438 		if (ie->ie_pre_ithread != NULL)
1439 			ie->ie_pre_ithread(ie->ie_source);
1440 	} else {
1441 		if (ie->ie_post_filter != NULL)
1442 			ie->ie_post_filter(ie->ie_source);
1443 	}
1444 
1445 	/* Schedule the ithread if needed. */
1446 	if (thread) {
1447 		int error __unused;
1448 
1449 		error =  intr_event_schedule_thread(ie, frame);
1450 		KASSERT(error == 0, ("bad stray interrupt"));
1451 	}
1452 	critical_exit();
1453 	td->td_intr_nesting_level--;
1454 #ifdef notyet
1455 	/* The interrupt is not aknowledged by any filter and has no ithread. */
1456 	if (!thread && !filter)
1457 		return (EINVAL);
1458 #endif
1459 	return (0);
1460 }
1461 
1462 #ifdef DDB
1463 /*
1464  * Dump details about an interrupt handler
1465  */
1466 static void
db_dump_intrhand(struct intr_handler * ih)1467 db_dump_intrhand(struct intr_handler *ih)
1468 {
1469 	int comma;
1470 
1471 	db_printf("\t%-10s ", ih->ih_name);
1472 	switch (ih->ih_pri) {
1473 	case PI_REALTIME:
1474 		db_printf("CLK ");
1475 		break;
1476 	case PI_INTR:
1477 		db_printf("INTR");
1478 		break;
1479 	default:
1480 		if (ih->ih_pri >= PI_SOFT)
1481 			db_printf("SWI ");
1482 		else
1483 			db_printf("%4u", ih->ih_pri);
1484 		break;
1485 	}
1486 	db_printf(" ");
1487 	if (ih->ih_filter != NULL) {
1488 		db_printf("[F]");
1489 		db_printsym((uintptr_t)ih->ih_filter, DB_STGY_PROC);
1490 	}
1491 	if (ih->ih_handler != NULL) {
1492 		if (ih->ih_filter != NULL)
1493 			db_printf(",");
1494 		db_printf("[H]");
1495 		db_printsym((uintptr_t)ih->ih_handler, DB_STGY_PROC);
1496 	}
1497 	db_printf("(%p)", ih->ih_argument);
1498 	if (ih->ih_need ||
1499 	    (ih->ih_flags & (IH_EXCLUSIVE | IH_ENTROPY | IH_DEAD |
1500 	    IH_MPSAFE)) != 0) {
1501 		db_printf(" {");
1502 		comma = 0;
1503 		if (ih->ih_flags & IH_EXCLUSIVE) {
1504 			if (comma)
1505 				db_printf(", ");
1506 			db_printf("EXCL");
1507 			comma = 1;
1508 		}
1509 		if (ih->ih_flags & IH_ENTROPY) {
1510 			if (comma)
1511 				db_printf(", ");
1512 			db_printf("ENTROPY");
1513 			comma = 1;
1514 		}
1515 		if (ih->ih_flags & IH_DEAD) {
1516 			if (comma)
1517 				db_printf(", ");
1518 			db_printf("DEAD");
1519 			comma = 1;
1520 		}
1521 		if (ih->ih_flags & IH_MPSAFE) {
1522 			if (comma)
1523 				db_printf(", ");
1524 			db_printf("MPSAFE");
1525 			comma = 1;
1526 		}
1527 		if (ih->ih_need) {
1528 			if (comma)
1529 				db_printf(", ");
1530 			db_printf("NEED");
1531 		}
1532 		db_printf("}");
1533 	}
1534 	db_printf("\n");
1535 }
1536 
1537 /*
1538  * Dump details about a event.
1539  */
1540 void
db_dump_intr_event(struct intr_event * ie,int handlers)1541 db_dump_intr_event(struct intr_event *ie, int handlers)
1542 {
1543 	struct intr_handler *ih;
1544 	struct intr_thread *it;
1545 	int comma;
1546 
1547 	db_printf("%s ", ie->ie_fullname);
1548 	it = ie->ie_thread;
1549 	if (it != NULL)
1550 		db_printf("(pid %d)", it->it_thread->td_proc->p_pid);
1551 	else
1552 		db_printf("(no thread)");
1553 	if ((ie->ie_flags & (IE_SOFT | IE_ADDING_THREAD)) != 0 ||
1554 	    (it != NULL && it->it_need)) {
1555 		db_printf(" {");
1556 		comma = 0;
1557 		if (ie->ie_flags & IE_SOFT) {
1558 			db_printf("SOFT");
1559 			comma = 1;
1560 		}
1561 		if (ie->ie_flags & IE_ADDING_THREAD) {
1562 			if (comma)
1563 				db_printf(", ");
1564 			db_printf("ADDING_THREAD");
1565 			comma = 1;
1566 		}
1567 		if (it != NULL && it->it_need) {
1568 			if (comma)
1569 				db_printf(", ");
1570 			db_printf("NEED");
1571 		}
1572 		db_printf("}");
1573 	}
1574 	db_printf("\n");
1575 
1576 	if (handlers)
1577 		CK_SLIST_FOREACH(ih, &ie->ie_handlers, ih_next)
1578 		    db_dump_intrhand(ih);
1579 }
1580 
1581 /*
1582  * Dump data about interrupt handlers
1583  */
DB_SHOW_COMMAND_FLAGS(intr,db_show_intr,DB_CMD_MEMSAFE)1584 DB_SHOW_COMMAND_FLAGS(intr, db_show_intr, DB_CMD_MEMSAFE)
1585 {
1586 	struct intr_event *ie;
1587 	int all, verbose;
1588 
1589 	verbose = strchr(modif, 'v') != NULL;
1590 	all = strchr(modif, 'a') != NULL;
1591 	TAILQ_FOREACH(ie, &event_list, ie_list) {
1592 		if (!all && CK_SLIST_EMPTY(&ie->ie_handlers))
1593 			continue;
1594 		db_dump_intr_event(ie, verbose);
1595 		if (db_pager_quit)
1596 			break;
1597 	}
1598 }
1599 #endif /* DDB */
1600 
1601 /*
1602  * Start standard software interrupt threads
1603  */
1604 static void
start_softintr(void * dummy)1605 start_softintr(void *dummy)
1606 {
1607 
1608 	if (swi_add(&clk_intr_event, "clk", NULL, NULL, SWI_CLOCK,
1609 	    INTR_MPSAFE, NULL))
1610 		panic("died while creating clk swi ithread");
1611 }
1612 SYSINIT(start_softintr, SI_SUB_SOFTINTR, SI_ORDER_FIRST, start_softintr,
1613     NULL);
1614 
1615 /*
1616  * Sysctls used by systat and others: hw.intrnames and hw.intrcnt.
1617  * The data for this machine dependent, and the declarations are in machine
1618  * dependent code.  The layout of intrnames and intrcnt however is machine
1619  * independent.
1620  *
1621  * We do not know the length of intrcnt and intrnames at compile time, so
1622  * calculate things at run time.
1623  */
1624 static int
sysctl_intrnames(SYSCTL_HANDLER_ARGS)1625 sysctl_intrnames(SYSCTL_HANDLER_ARGS)
1626 {
1627 	return (sysctl_handle_opaque(oidp, intrnames, sintrnames, req));
1628 }
1629 
1630 SYSCTL_PROC(_hw, OID_AUTO, intrnames,
1631     CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
1632     sysctl_intrnames, "",
1633     "Interrupt Names");
1634 
1635 static int
sysctl_intrcnt(SYSCTL_HANDLER_ARGS)1636 sysctl_intrcnt(SYSCTL_HANDLER_ARGS)
1637 {
1638 #ifdef SCTL_MASK32
1639 	uint32_t *intrcnt32;
1640 	unsigned i;
1641 	int error;
1642 
1643 	if (req->flags & SCTL_MASK32) {
1644 		if (!req->oldptr)
1645 			return (sysctl_handle_opaque(oidp, NULL, sintrcnt / 2, req));
1646 		intrcnt32 = malloc(sintrcnt / 2, M_TEMP, M_NOWAIT);
1647 		if (intrcnt32 == NULL)
1648 			return (ENOMEM);
1649 		for (i = 0; i < sintrcnt / sizeof (u_long); i++)
1650 			intrcnt32[i] = intrcnt[i];
1651 		error = sysctl_handle_opaque(oidp, intrcnt32, sintrcnt / 2, req);
1652 		free(intrcnt32, M_TEMP);
1653 		return (error);
1654 	}
1655 #endif
1656 	return (sysctl_handle_opaque(oidp, intrcnt, sintrcnt, req));
1657 }
1658 
1659 SYSCTL_PROC(_hw, OID_AUTO, intrcnt,
1660     CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
1661     sysctl_intrcnt, "",
1662     "Interrupt Counts");
1663 
1664 #ifdef DDB
1665 /*
1666  * DDB command to dump the interrupt statistics.
1667  */
DB_SHOW_COMMAND_FLAGS(intrcnt,db_show_intrcnt,DB_CMD_MEMSAFE)1668 DB_SHOW_COMMAND_FLAGS(intrcnt, db_show_intrcnt, DB_CMD_MEMSAFE)
1669 {
1670 	u_long *i;
1671 	char *cp;
1672 	u_int j;
1673 
1674 	cp = intrnames;
1675 	j = 0;
1676 	for (i = intrcnt; j < (sintrcnt / sizeof(u_long)) && !db_pager_quit;
1677 	    i++, j++) {
1678 		if (*cp == '\0')
1679 			break;
1680 		if (*i != 0)
1681 			db_printf("%s\t%lu\n", cp, *i);
1682 		cp += strlen(cp) + 1;
1683 	}
1684 }
1685 #endif
1686