1 /*
2 * iterator/iter_utils.c - iterative resolver module utility functions.
3 *
4 * Copyright (c) 2007, NLnet Labs. All rights reserved.
5 *
6 * This software is open source.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * Redistributions of source code must retain the above copyright notice,
13 * this list of conditions and the following disclaimer.
14 *
15 * Redistributions in binary form must reproduce the above copyright notice,
16 * this list of conditions and the following disclaimer in the documentation
17 * and/or other materials provided with the distribution.
18 *
19 * Neither the name of the NLNET LABS nor the names of its contributors may
20 * be used to endorse or promote products derived from this software without
21 * specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
26 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
27 * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
28 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
29 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
30 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
31 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
32 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
33 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
34 */
35
36 /**
37 * \file
38 *
39 * This file contains functions to assist the iterator module.
40 * Configuration options. Forward zones.
41 */
42 #include "config.h"
43 #include "iterator/iter_utils.h"
44 #include "iterator/iterator.h"
45 #include "iterator/iter_hints.h"
46 #include "iterator/iter_fwd.h"
47 #include "iterator/iter_donotq.h"
48 #include "iterator/iter_delegpt.h"
49 #include "iterator/iter_priv.h"
50 #include "services/cache/infra.h"
51 #include "services/cache/dns.h"
52 #include "services/cache/rrset.h"
53 #include "services/outside_network.h"
54 #include "util/net_help.h"
55 #include "util/module.h"
56 #include "util/log.h"
57 #include "util/config_file.h"
58 #include "util/regional.h"
59 #include "util/data/msgparse.h"
60 #include "util/data/dname.h"
61 #include "util/random.h"
62 #include "util/fptr_wlist.h"
63 #include "validator/val_anchor.h"
64 #include "validator/val_kcache.h"
65 #include "validator/val_kentry.h"
66 #include "validator/val_utils.h"
67 #include "validator/val_sigcrypt.h"
68 #include "sldns/sbuffer.h"
69 #include "sldns/str2wire.h"
70
71 /** time when nameserver glue is said to be 'recent' */
72 #define SUSPICION_RECENT_EXPIRY 86400
73
74 /** if NAT64 is enabled and no NAT64 prefix is configured, first fall back to
75 * DNS64 prefix. If that is not configured, fall back to this default value.
76 */
77 static const char DEFAULT_NAT64_PREFIX[] = "64:ff9b::/96";
78
79 /** fillup fetch policy array */
80 static void
fetch_fill(struct iter_env * ie,const char * str)81 fetch_fill(struct iter_env* ie, const char* str)
82 {
83 char* s = (char*)str, *e;
84 int i;
85 for(i=0; i<ie->max_dependency_depth+1; i++) {
86 ie->target_fetch_policy[i] = strtol(s, &e, 10);
87 if(s == e)
88 fatal_exit("cannot parse fetch policy number %s", s);
89 s = e;
90 }
91 }
92
93 /** Read config string that represents the target fetch policy */
94 static int
read_fetch_policy(struct iter_env * ie,const char * str)95 read_fetch_policy(struct iter_env* ie, const char* str)
96 {
97 int count = cfg_count_numbers(str);
98 if(count < 1) {
99 log_err("Cannot parse target fetch policy: \"%s\"", str);
100 return 0;
101 }
102 ie->max_dependency_depth = count - 1;
103 ie->target_fetch_policy = (int*)calloc(
104 (size_t)ie->max_dependency_depth+1, sizeof(int));
105 if(!ie->target_fetch_policy) {
106 log_err("alloc fetch policy: out of memory");
107 return 0;
108 }
109 fetch_fill(ie, str);
110 return 1;
111 }
112
113 /** apply config caps whitelist items to name tree */
114 static int
caps_white_apply_cfg(rbtree_type * ntree,struct config_file * cfg)115 caps_white_apply_cfg(rbtree_type* ntree, struct config_file* cfg)
116 {
117 struct config_strlist* p;
118 for(p=cfg->caps_whitelist; p; p=p->next) {
119 struct name_tree_node* n;
120 size_t len;
121 uint8_t* nm = sldns_str2wire_dname(p->str, &len);
122 if(!nm) {
123 log_err("could not parse %s", p->str);
124 return 0;
125 }
126 n = (struct name_tree_node*)calloc(1, sizeof(*n));
127 if(!n) {
128 log_err("out of memory");
129 free(nm);
130 return 0;
131 }
132 n->node.key = n;
133 n->name = nm;
134 n->len = len;
135 n->labs = dname_count_labels(nm);
136 n->dclass = LDNS_RR_CLASS_IN;
137 if(!name_tree_insert(ntree, n, nm, len, n->labs, n->dclass)) {
138 /* duplicate element ignored, idempotent */
139 free(n->name);
140 free(n);
141 }
142 }
143 name_tree_init_parents(ntree);
144 return 1;
145 }
146
147 int
iter_apply_cfg(struct iter_env * iter_env,struct config_file * cfg)148 iter_apply_cfg(struct iter_env* iter_env, struct config_file* cfg)
149 {
150 const char *nat64_prefix;
151 int i;
152 /* target fetch policy */
153 if(!read_fetch_policy(iter_env, cfg->target_fetch_policy))
154 return 0;
155 for(i=0; i<iter_env->max_dependency_depth+1; i++)
156 verbose(VERB_QUERY, "target fetch policy for level %d is %d",
157 i, iter_env->target_fetch_policy[i]);
158
159 if(!iter_env->donotq)
160 iter_env->donotq = donotq_create();
161 if(!iter_env->donotq || !donotq_apply_cfg(iter_env->donotq, cfg)) {
162 log_err("Could not set donotqueryaddresses");
163 return 0;
164 }
165 if(!iter_env->priv)
166 iter_env->priv = priv_create();
167 if(!iter_env->priv || !priv_apply_cfg(iter_env->priv, cfg)) {
168 log_err("Could not set private addresses");
169 return 0;
170 }
171 if(cfg->caps_whitelist) {
172 if(!iter_env->caps_white)
173 iter_env->caps_white = rbtree_create(name_tree_compare);
174 if(!iter_env->caps_white || !caps_white_apply_cfg(
175 iter_env->caps_white, cfg)) {
176 log_err("Could not set capsforid whitelist");
177 return 0;
178 }
179
180 }
181
182 nat64_prefix = cfg->nat64_prefix;
183 if(!nat64_prefix)
184 nat64_prefix = cfg->dns64_prefix;
185 if(!nat64_prefix)
186 nat64_prefix = DEFAULT_NAT64_PREFIX;
187 if(!netblockstrtoaddr(nat64_prefix, 0, &iter_env->nat64_prefix_addr,
188 &iter_env->nat64_prefix_addrlen,
189 &iter_env->nat64_prefix_net)) {
190 log_err("cannot parse nat64-prefix netblock: %s", nat64_prefix);
191 return 0;
192 }
193 if(!addr_is_ip6(&iter_env->nat64_prefix_addr,
194 iter_env->nat64_prefix_addrlen)) {
195 log_err("nat64-prefix is not IPv6: %s", cfg->nat64_prefix);
196 return 0;
197 }
198 if(!prefixnet_is_nat64(iter_env->nat64_prefix_net)) {
199 log_err("nat64-prefix length it not 32, 40, 48, 56, 64 or 96: %s",
200 nat64_prefix);
201 return 0;
202 }
203
204 iter_env->supports_ipv6 = cfg->do_ip6;
205 iter_env->supports_ipv4 = cfg->do_ip4;
206 iter_env->use_nat64 = cfg->do_nat64;
207 iter_env->outbound_msg_retry = cfg->outbound_msg_retry;
208 iter_env->max_sent_count = cfg->max_sent_count;
209 iter_env->max_query_restarts = cfg->max_query_restarts;
210 return 1;
211 }
212
213 /** filter out unsuitable targets
214 * @param iter_env: iterator environment with ipv6-support flag.
215 * @param env: module environment with infra cache.
216 * @param name: zone name
217 * @param namelen: length of name
218 * @param qtype: query type (host order).
219 * @param now: current time
220 * @param a: address in delegation point we are examining.
221 * @return an integer that signals the target suitability.
222 * as follows:
223 * -1: The address should be omitted from the list.
224 * Because:
225 * o The address is bogus (DNSSEC validation failure).
226 * o Listed as donotquery
227 * o is ipv6 but no ipv6 support (in operating system).
228 * o is ipv4 but no ipv4 support (in operating system).
229 * o is lame
230 * Otherwise, an rtt in milliseconds.
231 * 0 .. USEFUL_SERVER_TOP_TIMEOUT-1
232 * The roundtrip time timeout estimate. less than 2 minutes.
233 * Note that util/rtt.c has a MIN_TIMEOUT of 50 msec, thus
234 * values 0 .. 49 are not used, unless that is changed.
235 * USEFUL_SERVER_TOP_TIMEOUT
236 * This value exactly is given for unresponsive blacklisted.
237 * USEFUL_SERVER_TOP_TIMEOUT+1
238 * For non-blacklisted servers: huge timeout, but has traffic.
239 * USEFUL_SERVER_TOP_TIMEOUT*1 ..
240 * parent-side lame servers get this penalty. A dispreferential
241 * server. (lame in delegpt).
242 * USEFUL_SERVER_TOP_TIMEOUT*2 ..
243 * dnsseclame servers get penalty
244 * USEFUL_SERVER_TOP_TIMEOUT*3 ..
245 * recursion lame servers get penalty
246 * UNKNOWN_SERVER_NICENESS
247 * If no information is known about the server, this is
248 * returned. 376 msec or so.
249 * +BLACKLIST_PENALTY (of USEFUL_TOP_TIMEOUT*4) for dnssec failed IPs.
250 *
251 * When a final value is chosen that is dnsseclame ; dnsseclameness checking
252 * is turned off (so we do not discard the reply).
253 * When a final value is chosen that is recursionlame; RD bit is set on query.
254 * Because of the numbers this means recursionlame also have dnssec lameness
255 * checking turned off.
256 */
257 static int
iter_filter_unsuitable(struct iter_env * iter_env,struct module_env * env,uint8_t * name,size_t namelen,uint16_t qtype,time_t now,struct delegpt_addr * a)258 iter_filter_unsuitable(struct iter_env* iter_env, struct module_env* env,
259 uint8_t* name, size_t namelen, uint16_t qtype, time_t now,
260 struct delegpt_addr* a)
261 {
262 int rtt, lame, reclame, dnsseclame;
263 if(a->bogus)
264 return -1; /* address of server is bogus */
265 if(donotq_lookup(iter_env->donotq, &a->addr, a->addrlen)) {
266 log_addr(VERB_ALGO, "skip addr on the donotquery list",
267 &a->addr, a->addrlen);
268 return -1; /* server is on the donotquery list */
269 }
270 if(!iter_env->supports_ipv6 && addr_is_ip6(&a->addr, a->addrlen)) {
271 return -1; /* there is no ip6 available */
272 }
273 if(!iter_env->supports_ipv4 && !iter_env->use_nat64 &&
274 !addr_is_ip6(&a->addr, a->addrlen)) {
275 return -1; /* there is no ip4 available */
276 }
277 /* check lameness - need zone , class info */
278 if(infra_get_lame_rtt(env->infra_cache, &a->addr, a->addrlen,
279 name, namelen, qtype, &lame, &dnsseclame, &reclame,
280 &rtt, now)) {
281 log_addr(VERB_ALGO, "servselect", &a->addr, a->addrlen);
282 verbose(VERB_ALGO, " rtt=%d%s%s%s%s%s", rtt,
283 lame?" LAME":"",
284 dnsseclame?" DNSSEC_LAME":"",
285 a->dnsseclame?" ADDR_DNSSEC_LAME":"",
286 reclame?" REC_LAME":"",
287 a->lame?" ADDR_LAME":"");
288 if(lame)
289 return -1; /* server is lame */
290 else if(rtt >= USEFUL_SERVER_TOP_TIMEOUT)
291 /* server is unresponsive,
292 * we used to return TOP_TIMEOUT, but fairly useless,
293 * because if == TOP_TIMEOUT is dropped because
294 * blacklisted later, instead, remove it here, so
295 * other choices (that are not blacklisted) can be
296 * tried */
297 return -1;
298 /* select remainder from worst to best */
299 else if(reclame)
300 return rtt+USEFUL_SERVER_TOP_TIMEOUT*3; /* nonpref */
301 else if(dnsseclame || a->dnsseclame)
302 return rtt+USEFUL_SERVER_TOP_TIMEOUT*2; /* nonpref */
303 else if(a->lame)
304 return rtt+USEFUL_SERVER_TOP_TIMEOUT+1; /* nonpref */
305 else return rtt;
306 }
307 /* no server information present */
308 if(a->dnsseclame)
309 return UNKNOWN_SERVER_NICENESS+USEFUL_SERVER_TOP_TIMEOUT*2; /* nonpref */
310 else if(a->lame)
311 return USEFUL_SERVER_TOP_TIMEOUT+1+UNKNOWN_SERVER_NICENESS; /* nonpref */
312 return UNKNOWN_SERVER_NICENESS;
313 }
314
315 /** lookup RTT information, and also store fastest rtt (if any) */
316 static int
iter_fill_rtt(struct iter_env * iter_env,struct module_env * env,uint8_t * name,size_t namelen,uint16_t qtype,time_t now,struct delegpt * dp,int * best_rtt,struct sock_list * blacklist,size_t * num_suitable_results)317 iter_fill_rtt(struct iter_env* iter_env, struct module_env* env,
318 uint8_t* name, size_t namelen, uint16_t qtype, time_t now,
319 struct delegpt* dp, int* best_rtt, struct sock_list* blacklist,
320 size_t* num_suitable_results)
321 {
322 int got_it = 0;
323 struct delegpt_addr* a;
324 *num_suitable_results = 0;
325
326 if(dp->bogus)
327 return 0; /* NS bogus, all bogus, nothing found */
328 for(a=dp->result_list; a; a = a->next_result) {
329 a->sel_rtt = iter_filter_unsuitable(iter_env, env,
330 name, namelen, qtype, now, a);
331 if(a->sel_rtt != -1) {
332 if(sock_list_find(blacklist, &a->addr, a->addrlen))
333 a->sel_rtt += BLACKLIST_PENALTY;
334
335 if(!got_it) {
336 *best_rtt = a->sel_rtt;
337 got_it = 1;
338 } else if(a->sel_rtt < *best_rtt) {
339 *best_rtt = a->sel_rtt;
340 }
341 (*num_suitable_results)++;
342 }
343 }
344 return got_it;
345 }
346
347 /** compare two rtts, return -1, 0 or 1 */
348 static int
rtt_compare(const void * x,const void * y)349 rtt_compare(const void* x, const void* y)
350 {
351 if(*(int*)x == *(int*)y)
352 return 0;
353 if(*(int*)x > *(int*)y)
354 return 1;
355 return -1;
356 }
357
358 /** get RTT for the Nth fastest server */
359 static int
nth_rtt(struct delegpt_addr * result_list,size_t num_results,size_t n)360 nth_rtt(struct delegpt_addr* result_list, size_t num_results, size_t n)
361 {
362 int rtt_band;
363 size_t i;
364 int* rtt_list, *rtt_index;
365
366 if(num_results < 1 || n >= num_results) {
367 return -1;
368 }
369
370 rtt_list = calloc(num_results, sizeof(int));
371 if(!rtt_list) {
372 log_err("malloc failure: allocating rtt_list");
373 return -1;
374 }
375 rtt_index = rtt_list;
376
377 for(i=0; i<num_results && result_list; i++) {
378 if(result_list->sel_rtt != -1) {
379 *rtt_index = result_list->sel_rtt;
380 rtt_index++;
381 }
382 result_list=result_list->next_result;
383 }
384 qsort(rtt_list, num_results, sizeof(*rtt_list), rtt_compare);
385
386 log_assert(n > 0);
387 rtt_band = rtt_list[n-1];
388 free(rtt_list);
389
390 return rtt_band;
391 }
392
393 /** filter the address list, putting best targets at front,
394 * returns number of best targets (or 0, no suitable targets) */
395 static int
iter_filter_order(struct iter_env * iter_env,struct module_env * env,uint8_t * name,size_t namelen,uint16_t qtype,time_t now,struct delegpt * dp,int * selected_rtt,int open_target,struct sock_list * blacklist,time_t prefetch)396 iter_filter_order(struct iter_env* iter_env, struct module_env* env,
397 uint8_t* name, size_t namelen, uint16_t qtype, time_t now,
398 struct delegpt* dp, int* selected_rtt, int open_target,
399 struct sock_list* blacklist, time_t prefetch)
400 {
401 int got_num = 0, low_rtt = 0, swap_to_front, rtt_band = RTT_BAND, nth;
402 int alllame = 0;
403 size_t num_results;
404 struct delegpt_addr* a, *n, *prev=NULL;
405
406 /* fillup sel_rtt and find best rtt in the bunch */
407 got_num = iter_fill_rtt(iter_env, env, name, namelen, qtype, now, dp,
408 &low_rtt, blacklist, &num_results);
409 if(got_num == 0)
410 return 0;
411 if(low_rtt >= USEFUL_SERVER_TOP_TIMEOUT &&
412 /* If all missing (or not fully resolved) targets are lame,
413 * then use the remaining lame address. */
414 ((delegpt_count_missing_targets(dp, &alllame) > 0 && !alllame) ||
415 open_target > 0)) {
416 verbose(VERB_ALGO, "Bad choices, trying to get more choice");
417 return 0; /* we want more choice. The best choice is a bad one.
418 return 0 to force the caller to fetch more */
419 }
420
421 if(env->cfg->fast_server_permil != 0 && prefetch == 0 &&
422 num_results > env->cfg->fast_server_num &&
423 ub_random_max(env->rnd, 1000) < env->cfg->fast_server_permil) {
424 /* the query is not prefetch, but for a downstream client,
425 * there are more servers available then the fastest N we want
426 * to choose from. Limit our choice to the fastest servers. */
427 nth = nth_rtt(dp->result_list, num_results,
428 env->cfg->fast_server_num);
429 if(nth > 0) {
430 rtt_band = nth - low_rtt;
431 if(rtt_band > RTT_BAND)
432 rtt_band = RTT_BAND;
433 }
434 }
435
436 got_num = 0;
437 a = dp->result_list;
438 while(a) {
439 /* skip unsuitable targets */
440 if(a->sel_rtt == -1) {
441 prev = a;
442 a = a->next_result;
443 continue;
444 }
445 /* classify the server address and determine what to do */
446 swap_to_front = 0;
447 if(a->sel_rtt >= low_rtt && a->sel_rtt - low_rtt <= rtt_band) {
448 got_num++;
449 swap_to_front = 1;
450 } else if(a->sel_rtt<low_rtt && low_rtt-a->sel_rtt<=rtt_band) {
451 got_num++;
452 swap_to_front = 1;
453 }
454 /* swap to front if necessary, or move to next result */
455 if(swap_to_front && prev) {
456 n = a->next_result;
457 prev->next_result = n;
458 a->next_result = dp->result_list;
459 dp->result_list = a;
460 a = n;
461 } else {
462 prev = a;
463 a = a->next_result;
464 }
465 }
466 *selected_rtt = low_rtt;
467
468 if (env->cfg->prefer_ip6) {
469 int got_num6 = 0;
470 int low_rtt6 = 0;
471 int i;
472 int attempt = -1; /* filter to make sure addresses have
473 less attempts on them than the first, to force round
474 robin when all the IPv6 addresses fail */
475 int num4ok = 0; /* number ip4 at low attempt count */
476 int num4_lowrtt = 0;
477 prev = NULL;
478 a = dp->result_list;
479 for(i = 0; i < got_num; i++) {
480 if(!a) break; /* robustness */
481 swap_to_front = 0;
482 if(a->addr.ss_family != AF_INET6 && attempt == -1) {
483 /* if we only have ip4 at low attempt count,
484 * then ip6 is failing, and we need to
485 * select one of the remaining IPv4 addrs */
486 attempt = a->attempts;
487 num4ok++;
488 num4_lowrtt = a->sel_rtt;
489 } else if(a->addr.ss_family != AF_INET6 && attempt == a->attempts) {
490 num4ok++;
491 if(num4_lowrtt == 0 || a->sel_rtt < num4_lowrtt) {
492 num4_lowrtt = a->sel_rtt;
493 }
494 }
495 if(a->addr.ss_family == AF_INET6) {
496 if(attempt == -1) {
497 attempt = a->attempts;
498 } else if(a->attempts > attempt) {
499 break;
500 }
501 got_num6++;
502 swap_to_front = 1;
503 if(low_rtt6 == 0 || a->sel_rtt < low_rtt6) {
504 low_rtt6 = a->sel_rtt;
505 }
506 }
507 /* swap to front if IPv6, or move to next result */
508 if(swap_to_front && prev) {
509 n = a->next_result;
510 prev->next_result = n;
511 a->next_result = dp->result_list;
512 dp->result_list = a;
513 a = n;
514 } else {
515 prev = a;
516 a = a->next_result;
517 }
518 }
519 if(got_num6 > 0) {
520 got_num = got_num6;
521 *selected_rtt = low_rtt6;
522 } else if(num4ok > 0) {
523 got_num = num4ok;
524 *selected_rtt = num4_lowrtt;
525 }
526 } else if (env->cfg->prefer_ip4) {
527 int got_num4 = 0;
528 int low_rtt4 = 0;
529 int i;
530 int attempt = -1; /* filter to make sure addresses have
531 less attempts on them than the first, to force round
532 robin when all the IPv4 addresses fail */
533 int num6ok = 0; /* number ip6 at low attempt count */
534 int num6_lowrtt = 0;
535 prev = NULL;
536 a = dp->result_list;
537 for(i = 0; i < got_num; i++) {
538 if(!a) break; /* robustness */
539 swap_to_front = 0;
540 if(a->addr.ss_family != AF_INET && attempt == -1) {
541 /* if we only have ip6 at low attempt count,
542 * then ip4 is failing, and we need to
543 * select one of the remaining IPv6 addrs */
544 attempt = a->attempts;
545 num6ok++;
546 num6_lowrtt = a->sel_rtt;
547 } else if(a->addr.ss_family != AF_INET && attempt == a->attempts) {
548 num6ok++;
549 if(num6_lowrtt == 0 || a->sel_rtt < num6_lowrtt) {
550 num6_lowrtt = a->sel_rtt;
551 }
552 }
553 if(a->addr.ss_family == AF_INET) {
554 if(attempt == -1) {
555 attempt = a->attempts;
556 } else if(a->attempts > attempt) {
557 break;
558 }
559 got_num4++;
560 swap_to_front = 1;
561 if(low_rtt4 == 0 || a->sel_rtt < low_rtt4) {
562 low_rtt4 = a->sel_rtt;
563 }
564 }
565 /* swap to front if IPv4, or move to next result */
566 if(swap_to_front && prev) {
567 n = a->next_result;
568 prev->next_result = n;
569 a->next_result = dp->result_list;
570 dp->result_list = a;
571 a = n;
572 } else {
573 prev = a;
574 a = a->next_result;
575 }
576 }
577 if(got_num4 > 0) {
578 got_num = got_num4;
579 *selected_rtt = low_rtt4;
580 } else if(num6ok > 0) {
581 got_num = num6ok;
582 *selected_rtt = num6_lowrtt;
583 }
584 }
585 return got_num;
586 }
587
588 struct delegpt_addr*
iter_server_selection(struct iter_env * iter_env,struct module_env * env,struct delegpt * dp,uint8_t * name,size_t namelen,uint16_t qtype,int * dnssec_lame,int * chase_to_rd,int open_target,struct sock_list * blacklist,time_t prefetch)589 iter_server_selection(struct iter_env* iter_env,
590 struct module_env* env, struct delegpt* dp,
591 uint8_t* name, size_t namelen, uint16_t qtype, int* dnssec_lame,
592 int* chase_to_rd, int open_target, struct sock_list* blacklist,
593 time_t prefetch)
594 {
595 int sel;
596 int selrtt;
597 struct delegpt_addr* a, *prev;
598 int num = iter_filter_order(iter_env, env, name, namelen, qtype,
599 *env->now, dp, &selrtt, open_target, blacklist, prefetch);
600
601 if(num == 0)
602 return NULL;
603 verbose(VERB_ALGO, "selrtt %d", selrtt);
604 if(selrtt > BLACKLIST_PENALTY) {
605 if(selrtt-BLACKLIST_PENALTY > USEFUL_SERVER_TOP_TIMEOUT*3) {
606 verbose(VERB_ALGO, "chase to "
607 "blacklisted recursion lame server");
608 *chase_to_rd = 1;
609 }
610 if(selrtt-BLACKLIST_PENALTY > USEFUL_SERVER_TOP_TIMEOUT*2) {
611 verbose(VERB_ALGO, "chase to "
612 "blacklisted dnssec lame server");
613 *dnssec_lame = 1;
614 }
615 } else {
616 if(selrtt > USEFUL_SERVER_TOP_TIMEOUT*3) {
617 verbose(VERB_ALGO, "chase to recursion lame server");
618 *chase_to_rd = 1;
619 }
620 if(selrtt > USEFUL_SERVER_TOP_TIMEOUT*2) {
621 verbose(VERB_ALGO, "chase to dnssec lame server");
622 *dnssec_lame = 1;
623 }
624 if(selrtt == USEFUL_SERVER_TOP_TIMEOUT) {
625 verbose(VERB_ALGO, "chase to blacklisted lame server");
626 return NULL;
627 }
628 }
629
630 if(num == 1) {
631 a = dp->result_list;
632 if(++a->attempts < iter_env->outbound_msg_retry)
633 return a;
634 dp->result_list = a->next_result;
635 return a;
636 }
637
638 /* randomly select a target from the list */
639 log_assert(num > 1);
640 /* grab secure random number, to pick unexpected server.
641 * also we need it to be threadsafe. */
642 sel = ub_random_max(env->rnd, num);
643 a = dp->result_list;
644 prev = NULL;
645 while(sel > 0 && a) {
646 prev = a;
647 a = a->next_result;
648 sel--;
649 }
650 if(!a) /* robustness */
651 return NULL;
652 if(++a->attempts < iter_env->outbound_msg_retry)
653 return a;
654 /* remove it from the delegation point result list */
655 if(prev)
656 prev->next_result = a->next_result;
657 else dp->result_list = a->next_result;
658 return a;
659 }
660
661 struct dns_msg*
dns_alloc_msg(sldns_buffer * pkt,struct msg_parse * msg,struct regional * region)662 dns_alloc_msg(sldns_buffer* pkt, struct msg_parse* msg,
663 struct regional* region)
664 {
665 struct dns_msg* m = (struct dns_msg*)regional_alloc(region,
666 sizeof(struct dns_msg));
667 if(!m)
668 return NULL;
669 memset(m, 0, sizeof(*m));
670 if(!parse_create_msg(pkt, msg, NULL, &m->qinfo, &m->rep, region)) {
671 log_err("malloc failure: allocating incoming dns_msg");
672 return NULL;
673 }
674 return m;
675 }
676
677 struct dns_msg*
dns_copy_msg(struct dns_msg * from,struct regional * region)678 dns_copy_msg(struct dns_msg* from, struct regional* region)
679 {
680 struct dns_msg* m = (struct dns_msg*)regional_alloc(region,
681 sizeof(struct dns_msg));
682 if(!m)
683 return NULL;
684 m->qinfo = from->qinfo;
685 if(!(m->qinfo.qname = regional_alloc_init(region, from->qinfo.qname,
686 from->qinfo.qname_len)))
687 return NULL;
688 if(!(m->rep = reply_info_copy(from->rep, NULL, region)))
689 return NULL;
690 return m;
691 }
692
693 void
iter_dns_store(struct module_env * env,struct query_info * msgqinf,struct reply_info * msgrep,int is_referral,time_t leeway,int pside,struct regional * region,uint16_t flags,time_t qstarttime)694 iter_dns_store(struct module_env* env, struct query_info* msgqinf,
695 struct reply_info* msgrep, int is_referral, time_t leeway, int pside,
696 struct regional* region, uint16_t flags, time_t qstarttime)
697 {
698 if(!dns_cache_store(env, msgqinf, msgrep, is_referral, leeway,
699 pside, region, flags, qstarttime))
700 log_err("out of memory: cannot store data in cache");
701 }
702
703 int
iter_ns_probability(struct ub_randstate * rnd,int n,int m)704 iter_ns_probability(struct ub_randstate* rnd, int n, int m)
705 {
706 int sel;
707 if(n == m) /* 100% chance */
708 return 1;
709 /* we do not need secure random numbers here, but
710 * we do need it to be threadsafe, so we use this */
711 sel = ub_random_max(rnd, m);
712 return (sel < n);
713 }
714
715 /** detect dependency cycle for query and target */
716 static int
causes_cycle(struct module_qstate * qstate,uint8_t * name,size_t namelen,uint16_t t,uint16_t c)717 causes_cycle(struct module_qstate* qstate, uint8_t* name, size_t namelen,
718 uint16_t t, uint16_t c)
719 {
720 struct query_info qinf;
721 qinf.qname = name;
722 qinf.qname_len = namelen;
723 qinf.qtype = t;
724 qinf.qclass = c;
725 qinf.local_alias = NULL;
726 fptr_ok(fptr_whitelist_modenv_detect_cycle(
727 qstate->env->detect_cycle));
728 return (*qstate->env->detect_cycle)(qstate, &qinf,
729 (uint16_t)(BIT_RD|BIT_CD), qstate->is_priming,
730 qstate->is_valrec);
731 }
732
733 void
iter_mark_cycle_targets(struct module_qstate * qstate,struct delegpt * dp)734 iter_mark_cycle_targets(struct module_qstate* qstate, struct delegpt* dp)
735 {
736 struct delegpt_ns* ns;
737 for(ns = dp->nslist; ns; ns = ns->next) {
738 if(ns->resolved)
739 continue;
740 /* see if this ns as target causes dependency cycle */
741 if(causes_cycle(qstate, ns->name, ns->namelen,
742 LDNS_RR_TYPE_AAAA, qstate->qinfo.qclass) ||
743 causes_cycle(qstate, ns->name, ns->namelen,
744 LDNS_RR_TYPE_A, qstate->qinfo.qclass)) {
745 log_nametypeclass(VERB_QUERY, "skipping target due "
746 "to dependency cycle (harden-glue: no may "
747 "fix some of the cycles)",
748 ns->name, LDNS_RR_TYPE_A,
749 qstate->qinfo.qclass);
750 ns->resolved = 1;
751 }
752 }
753 }
754
755 void
iter_mark_pside_cycle_targets(struct module_qstate * qstate,struct delegpt * dp)756 iter_mark_pside_cycle_targets(struct module_qstate* qstate, struct delegpt* dp)
757 {
758 struct delegpt_ns* ns;
759 for(ns = dp->nslist; ns; ns = ns->next) {
760 if(ns->done_pside4 && ns->done_pside6)
761 continue;
762 /* see if this ns as target causes dependency cycle */
763 if(causes_cycle(qstate, ns->name, ns->namelen,
764 LDNS_RR_TYPE_A, qstate->qinfo.qclass)) {
765 log_nametypeclass(VERB_QUERY, "skipping target due "
766 "to dependency cycle", ns->name,
767 LDNS_RR_TYPE_A, qstate->qinfo.qclass);
768 ns->done_pside4 = 1;
769 }
770 if(causes_cycle(qstate, ns->name, ns->namelen,
771 LDNS_RR_TYPE_AAAA, qstate->qinfo.qclass)) {
772 log_nametypeclass(VERB_QUERY, "skipping target due "
773 "to dependency cycle", ns->name,
774 LDNS_RR_TYPE_AAAA, qstate->qinfo.qclass);
775 ns->done_pside6 = 1;
776 }
777 }
778 }
779
780 int
iter_dp_is_useless(struct query_info * qinfo,uint16_t qflags,struct delegpt * dp,int supports_ipv4,int supports_ipv6,int use_nat64)781 iter_dp_is_useless(struct query_info* qinfo, uint16_t qflags,
782 struct delegpt* dp, int supports_ipv4, int supports_ipv6,
783 int use_nat64)
784 {
785 struct delegpt_ns* ns;
786 struct delegpt_addr* a;
787
788 if(supports_ipv6 && use_nat64)
789 supports_ipv4 = 1;
790
791 /* check:
792 * o RD qflag is on.
793 * o no addresses are provided.
794 * o all NS items are required glue.
795 * OR
796 * o RD qflag is on.
797 * o no addresses are provided.
798 * o the query is for one of the nameservers in dp,
799 * and that nameserver is a glue-name for this dp.
800 */
801 if(!(qflags&BIT_RD))
802 return 0;
803 /* either available or unused targets,
804 * if they exist, the dp is not useless. */
805 for(a = dp->usable_list; a; a = a->next_usable) {
806 if(!addr_is_ip6(&a->addr, a->addrlen) && supports_ipv4)
807 return 0;
808 else if(addr_is_ip6(&a->addr, a->addrlen) && supports_ipv6)
809 return 0;
810 }
811 for(a = dp->result_list; a; a = a->next_result) {
812 if(!addr_is_ip6(&a->addr, a->addrlen) && supports_ipv4)
813 return 0;
814 else if(addr_is_ip6(&a->addr, a->addrlen) && supports_ipv6)
815 return 0;
816 }
817
818 /* see if query is for one of the nameservers, which is glue */
819 if( ((qinfo->qtype == LDNS_RR_TYPE_A && supports_ipv4) ||
820 (qinfo->qtype == LDNS_RR_TYPE_AAAA && supports_ipv6)) &&
821 dname_subdomain_c(qinfo->qname, dp->name) &&
822 delegpt_find_ns(dp, qinfo->qname, qinfo->qname_len))
823 return 1;
824
825 for(ns = dp->nslist; ns; ns = ns->next) {
826 if(ns->resolved) /* skip failed targets */
827 continue;
828 if(!dname_subdomain_c(ns->name, dp->name))
829 return 0; /* one address is not required glue */
830 }
831 return 1;
832 }
833
834 int
iter_qname_indicates_dnssec(struct module_env * env,struct query_info * qinfo)835 iter_qname_indicates_dnssec(struct module_env* env, struct query_info *qinfo)
836 {
837 struct trust_anchor* a;
838 if(!env || !env->anchors || !qinfo || !qinfo->qname)
839 return 0;
840 /* a trust anchor exists above the name? */
841 if((a=anchors_lookup(env->anchors, qinfo->qname, qinfo->qname_len,
842 qinfo->qclass))) {
843 if(a->numDS == 0 && a->numDNSKEY == 0) {
844 /* insecure trust point */
845 lock_basic_unlock(&a->lock);
846 return 0;
847 }
848 lock_basic_unlock(&a->lock);
849 return 1;
850 }
851 /* no trust anchor above it. */
852 return 0;
853 }
854
855 int
iter_indicates_dnssec(struct module_env * env,struct delegpt * dp,struct dns_msg * msg,uint16_t dclass)856 iter_indicates_dnssec(struct module_env* env, struct delegpt* dp,
857 struct dns_msg* msg, uint16_t dclass)
858 {
859 struct trust_anchor* a;
860 /* information not available, !env->anchors can be common */
861 if(!env || !env->anchors || !dp || !dp->name)
862 return 0;
863 /* a trust anchor exists with this name, RRSIGs expected */
864 if((a=anchor_find(env->anchors, dp->name, dp->namelabs, dp->namelen,
865 dclass))) {
866 if(a->numDS == 0 && a->numDNSKEY == 0) {
867 /* insecure trust point */
868 lock_basic_unlock(&a->lock);
869 return 0;
870 }
871 lock_basic_unlock(&a->lock);
872 return 1;
873 }
874 /* see if DS rrset was given, in AUTH section */
875 if(msg && msg->rep &&
876 reply_find_rrset_section_ns(msg->rep, dp->name, dp->namelen,
877 LDNS_RR_TYPE_DS, dclass))
878 return 1;
879 /* look in key cache */
880 if(env->key_cache) {
881 struct key_entry_key* kk = key_cache_obtain(env->key_cache,
882 dp->name, dp->namelen, dclass, env->scratch, *env->now);
883 if(kk) {
884 if(query_dname_compare(kk->name, dp->name) == 0) {
885 if(key_entry_isgood(kk) || key_entry_isbad(kk)) {
886 regional_free_all(env->scratch);
887 return 1;
888 } else if(key_entry_isnull(kk)) {
889 regional_free_all(env->scratch);
890 return 0;
891 }
892 }
893 regional_free_all(env->scratch);
894 }
895 }
896 return 0;
897 }
898
899 int
iter_msg_has_dnssec(struct dns_msg * msg)900 iter_msg_has_dnssec(struct dns_msg* msg)
901 {
902 size_t i;
903 if(!msg || !msg->rep)
904 return 0;
905 for(i=0; i<msg->rep->an_numrrsets + msg->rep->ns_numrrsets; i++) {
906 if(((struct packed_rrset_data*)msg->rep->rrsets[i]->
907 entry.data)->rrsig_count > 0)
908 return 1;
909 }
910 /* empty message has no DNSSEC info, with DNSSEC the reply is
911 * not empty (NSEC) */
912 return 0;
913 }
914
iter_msg_from_zone(struct dns_msg * msg,struct delegpt * dp,enum response_type type,uint16_t dclass)915 int iter_msg_from_zone(struct dns_msg* msg, struct delegpt* dp,
916 enum response_type type, uint16_t dclass)
917 {
918 if(!msg || !dp || !msg->rep || !dp->name)
919 return 0;
920 /* SOA RRset - always from reply zone */
921 if(reply_find_rrset_section_an(msg->rep, dp->name, dp->namelen,
922 LDNS_RR_TYPE_SOA, dclass) ||
923 reply_find_rrset_section_ns(msg->rep, dp->name, dp->namelen,
924 LDNS_RR_TYPE_SOA, dclass))
925 return 1;
926 if(type == RESPONSE_TYPE_REFERRAL) {
927 size_t i;
928 /* if it adds a single label, i.e. we expect .com,
929 * and referral to example.com. NS ... , then origin zone
930 * is .com. For a referral to sub.example.com. NS ... then
931 * we do not know, since example.com. may be in between. */
932 for(i=0; i<msg->rep->an_numrrsets+msg->rep->ns_numrrsets;
933 i++) {
934 struct ub_packed_rrset_key* s = msg->rep->rrsets[i];
935 if(ntohs(s->rk.type) == LDNS_RR_TYPE_NS &&
936 ntohs(s->rk.rrset_class) == dclass) {
937 int l = dname_count_labels(s->rk.dname);
938 if(l == dp->namelabs + 1 &&
939 dname_strict_subdomain(s->rk.dname,
940 l, dp->name, dp->namelabs))
941 return 1;
942 }
943 }
944 return 0;
945 }
946 log_assert(type==RESPONSE_TYPE_ANSWER || type==RESPONSE_TYPE_CNAME);
947 /* not a referral, and not lame delegation (upwards), so,
948 * any NS rrset must be from the zone itself */
949 if(reply_find_rrset_section_an(msg->rep, dp->name, dp->namelen,
950 LDNS_RR_TYPE_NS, dclass) ||
951 reply_find_rrset_section_ns(msg->rep, dp->name, dp->namelen,
952 LDNS_RR_TYPE_NS, dclass))
953 return 1;
954 /* a DNSKEY set is expected at the zone apex as well */
955 /* this is for 'minimal responses' for DNSKEYs */
956 if(reply_find_rrset_section_an(msg->rep, dp->name, dp->namelen,
957 LDNS_RR_TYPE_DNSKEY, dclass))
958 return 1;
959 return 0;
960 }
961
962 /**
963 * check equality of two rrsets
964 * @param k1: rrset
965 * @param k2: rrset
966 * @return true if equal
967 */
968 static int
rrset_equal(struct ub_packed_rrset_key * k1,struct ub_packed_rrset_key * k2)969 rrset_equal(struct ub_packed_rrset_key* k1, struct ub_packed_rrset_key* k2)
970 {
971 struct packed_rrset_data* d1 = (struct packed_rrset_data*)
972 k1->entry.data;
973 struct packed_rrset_data* d2 = (struct packed_rrset_data*)
974 k2->entry.data;
975 size_t i, t;
976 if(k1->rk.dname_len != k2->rk.dname_len ||
977 k1->rk.flags != k2->rk.flags ||
978 k1->rk.type != k2->rk.type ||
979 k1->rk.rrset_class != k2->rk.rrset_class ||
980 query_dname_compare(k1->rk.dname, k2->rk.dname) != 0)
981 return 0;
982 if( /* do not check ttl: d1->ttl != d2->ttl || */
983 d1->count != d2->count ||
984 d1->rrsig_count != d2->rrsig_count ||
985 d1->trust != d2->trust ||
986 d1->security != d2->security)
987 return 0;
988 t = d1->count + d1->rrsig_count;
989 for(i=0; i<t; i++) {
990 if(d1->rr_len[i] != d2->rr_len[i] ||
991 /* no ttl check: d1->rr_ttl[i] != d2->rr_ttl[i] ||*/
992 memcmp(d1->rr_data[i], d2->rr_data[i],
993 d1->rr_len[i]) != 0)
994 return 0;
995 }
996 return 1;
997 }
998
999 /** compare rrsets and sort canonically. Compares rrset name, type, class.
1000 * return 0 if equal, +1 if x > y, and -1 if x < y.
1001 */
1002 static int
rrset_canonical_sort_cmp(const void * x,const void * y)1003 rrset_canonical_sort_cmp(const void* x, const void* y)
1004 {
1005 struct ub_packed_rrset_key* rrx = *(struct ub_packed_rrset_key**)x;
1006 struct ub_packed_rrset_key* rry = *(struct ub_packed_rrset_key**)y;
1007 int r = dname_canonical_compare(rrx->rk.dname, rry->rk.dname);
1008 if(r != 0)
1009 return r;
1010 if(rrx->rk.type != rry->rk.type) {
1011 if(ntohs(rrx->rk.type) > ntohs(rry->rk.type))
1012 return 1;
1013 else return -1;
1014 }
1015 if(rrx->rk.rrset_class != rry->rk.rrset_class) {
1016 if(ntohs(rrx->rk.rrset_class) > ntohs(rry->rk.rrset_class))
1017 return 1;
1018 else return -1;
1019 }
1020 return 0;
1021 }
1022
1023 int
reply_equal(struct reply_info * p,struct reply_info * q,struct regional * region)1024 reply_equal(struct reply_info* p, struct reply_info* q, struct regional* region)
1025 {
1026 size_t i;
1027 struct ub_packed_rrset_key** sorted_p, **sorted_q;
1028 if(p->flags != q->flags ||
1029 p->qdcount != q->qdcount ||
1030 /* do not check TTL, this may differ */
1031 /*
1032 p->ttl != q->ttl ||
1033 p->prefetch_ttl != q->prefetch_ttl ||
1034 */
1035 p->security != q->security ||
1036 p->an_numrrsets != q->an_numrrsets ||
1037 p->ns_numrrsets != q->ns_numrrsets ||
1038 p->ar_numrrsets != q->ar_numrrsets ||
1039 p->rrset_count != q->rrset_count)
1040 return 0;
1041 /* sort the rrsets in the authority and additional sections before
1042 * compare, the query and answer sections are ordered in the sequence
1043 * they should have (eg. one after the other for aliases). */
1044 sorted_p = (struct ub_packed_rrset_key**)regional_alloc_init(
1045 region, p->rrsets, sizeof(*sorted_p)*p->rrset_count);
1046 if(!sorted_p) return 0;
1047 log_assert(p->an_numrrsets + p->ns_numrrsets + p->ar_numrrsets <=
1048 p->rrset_count);
1049 qsort(sorted_p + p->an_numrrsets, p->ns_numrrsets,
1050 sizeof(*sorted_p), rrset_canonical_sort_cmp);
1051 qsort(sorted_p + p->an_numrrsets + p->ns_numrrsets, p->ar_numrrsets,
1052 sizeof(*sorted_p), rrset_canonical_sort_cmp);
1053
1054 sorted_q = (struct ub_packed_rrset_key**)regional_alloc_init(
1055 region, q->rrsets, sizeof(*sorted_q)*q->rrset_count);
1056 if(!sorted_q) {
1057 regional_free_all(region);
1058 return 0;
1059 }
1060 log_assert(q->an_numrrsets + q->ns_numrrsets + q->ar_numrrsets <=
1061 q->rrset_count);
1062 qsort(sorted_q + q->an_numrrsets, q->ns_numrrsets,
1063 sizeof(*sorted_q), rrset_canonical_sort_cmp);
1064 qsort(sorted_q + q->an_numrrsets + q->ns_numrrsets, q->ar_numrrsets,
1065 sizeof(*sorted_q), rrset_canonical_sort_cmp);
1066
1067 /* compare the rrsets */
1068 for(i=0; i<p->rrset_count; i++) {
1069 if(!rrset_equal(sorted_p[i], sorted_q[i])) {
1070 if(!rrset_canonical_equal(region, sorted_p[i],
1071 sorted_q[i])) {
1072 regional_free_all(region);
1073 return 0;
1074 }
1075 }
1076 }
1077 regional_free_all(region);
1078 return 1;
1079 }
1080
1081 void
caps_strip_reply(struct reply_info * rep)1082 caps_strip_reply(struct reply_info* rep)
1083 {
1084 size_t i;
1085 if(!rep) return;
1086 /* see if message is a referral, in which case the additional and
1087 * NS record cannot be removed */
1088 /* referrals have the AA flag unset (strict check, not elsewhere in
1089 * unbound, but for 0x20 this is very convenient). */
1090 if(!(rep->flags&BIT_AA))
1091 return;
1092 /* remove the additional section from the reply */
1093 if(rep->ar_numrrsets != 0) {
1094 verbose(VERB_ALGO, "caps fallback: removing additional section");
1095 rep->rrset_count -= rep->ar_numrrsets;
1096 rep->ar_numrrsets = 0;
1097 }
1098 /* is there an NS set in the authority section to remove? */
1099 /* the failure case (Cisco firewalls) only has one rrset in authsec */
1100 for(i=rep->an_numrrsets; i<rep->an_numrrsets+rep->ns_numrrsets; i++) {
1101 struct ub_packed_rrset_key* s = rep->rrsets[i];
1102 if(ntohs(s->rk.type) == LDNS_RR_TYPE_NS) {
1103 /* remove NS rrset and break from loop (loop limits
1104 * have changed) */
1105 /* move last rrset into this position (there is no
1106 * additional section any more) */
1107 verbose(VERB_ALGO, "caps fallback: removing NS rrset");
1108 if(i < rep->rrset_count-1)
1109 rep->rrsets[i]=rep->rrsets[rep->rrset_count-1];
1110 rep->rrset_count --;
1111 rep->ns_numrrsets --;
1112 break;
1113 }
1114 }
1115 }
1116
caps_failed_rcode(struct reply_info * rep)1117 int caps_failed_rcode(struct reply_info* rep)
1118 {
1119 return !(FLAGS_GET_RCODE(rep->flags) == LDNS_RCODE_NOERROR ||
1120 FLAGS_GET_RCODE(rep->flags) == LDNS_RCODE_NXDOMAIN);
1121 }
1122
1123 void
iter_store_parentside_rrset(struct module_env * env,struct ub_packed_rrset_key * rrset)1124 iter_store_parentside_rrset(struct module_env* env,
1125 struct ub_packed_rrset_key* rrset)
1126 {
1127 struct rrset_ref ref;
1128 rrset = packed_rrset_copy_alloc(rrset, env->alloc, *env->now);
1129 if(!rrset) {
1130 log_err("malloc failure in store_parentside_rrset");
1131 return;
1132 }
1133 rrset->rk.flags |= PACKED_RRSET_PARENT_SIDE;
1134 rrset->entry.hash = rrset_key_hash(&rrset->rk);
1135 ref.key = rrset;
1136 ref.id = rrset->id;
1137 /* ignore ret: if it was in the cache, ref updated */
1138 (void)rrset_cache_update(env->rrset_cache, &ref, env->alloc, *env->now);
1139 }
1140
1141 /** fetch NS record from reply, if any */
1142 static struct ub_packed_rrset_key*
reply_get_NS_rrset(struct reply_info * rep)1143 reply_get_NS_rrset(struct reply_info* rep)
1144 {
1145 size_t i;
1146 for(i=0; i<rep->rrset_count; i++) {
1147 if(rep->rrsets[i]->rk.type == htons(LDNS_RR_TYPE_NS)) {
1148 return rep->rrsets[i];
1149 }
1150 }
1151 return NULL;
1152 }
1153
1154 void
iter_store_parentside_NS(struct module_env * env,struct reply_info * rep)1155 iter_store_parentside_NS(struct module_env* env, struct reply_info* rep)
1156 {
1157 struct ub_packed_rrset_key* rrset = reply_get_NS_rrset(rep);
1158 if(rrset) {
1159 log_rrset_key(VERB_ALGO, "store parent-side NS", rrset);
1160 iter_store_parentside_rrset(env, rrset);
1161 }
1162 }
1163
iter_store_parentside_neg(struct module_env * env,struct query_info * qinfo,struct reply_info * rep)1164 void iter_store_parentside_neg(struct module_env* env,
1165 struct query_info* qinfo, struct reply_info* rep)
1166 {
1167 /* TTL: NS from referral in iq->deleg_msg,
1168 * or first RR from iq->response,
1169 * or servfail5secs if !iq->response */
1170 time_t ttl = NORR_TTL;
1171 struct ub_packed_rrset_key* neg;
1172 struct packed_rrset_data* newd;
1173 if(rep) {
1174 struct ub_packed_rrset_key* rrset = reply_get_NS_rrset(rep);
1175 if(!rrset && rep->rrset_count != 0) rrset = rep->rrsets[0];
1176 if(rrset) ttl = ub_packed_rrset_ttl(rrset);
1177 }
1178 /* create empty rrset to store */
1179 neg = (struct ub_packed_rrset_key*)regional_alloc(env->scratch,
1180 sizeof(struct ub_packed_rrset_key));
1181 if(!neg) {
1182 log_err("out of memory in store_parentside_neg");
1183 return;
1184 }
1185 memset(&neg->entry, 0, sizeof(neg->entry));
1186 neg->entry.key = neg;
1187 neg->rk.type = htons(qinfo->qtype);
1188 neg->rk.rrset_class = htons(qinfo->qclass);
1189 neg->rk.flags = 0;
1190 neg->rk.dname = regional_alloc_init(env->scratch, qinfo->qname,
1191 qinfo->qname_len);
1192 if(!neg->rk.dname) {
1193 log_err("out of memory in store_parentside_neg");
1194 return;
1195 }
1196 neg->rk.dname_len = qinfo->qname_len;
1197 neg->entry.hash = rrset_key_hash(&neg->rk);
1198 newd = (struct packed_rrset_data*)regional_alloc_zero(env->scratch,
1199 sizeof(struct packed_rrset_data) + sizeof(size_t) +
1200 sizeof(uint8_t*) + sizeof(time_t) + sizeof(uint16_t));
1201 if(!newd) {
1202 log_err("out of memory in store_parentside_neg");
1203 return;
1204 }
1205 neg->entry.data = newd;
1206 newd->ttl = ttl;
1207 /* entry must have one RR, otherwise not valid in cache.
1208 * put in one RR with empty rdata: those are ignored as nameserver */
1209 newd->count = 1;
1210 newd->rrsig_count = 0;
1211 newd->trust = rrset_trust_ans_noAA;
1212 newd->rr_len = (size_t*)((uint8_t*)newd +
1213 sizeof(struct packed_rrset_data));
1214 newd->rr_len[0] = 0 /* zero len rdata */ + sizeof(uint16_t);
1215 packed_rrset_ptr_fixup(newd);
1216 newd->rr_ttl[0] = newd->ttl;
1217 sldns_write_uint16(newd->rr_data[0], 0 /* zero len rdata */);
1218 /* store it */
1219 log_rrset_key(VERB_ALGO, "store parent-side negative", neg);
1220 iter_store_parentside_rrset(env, neg);
1221 }
1222
1223 int
iter_lookup_parent_NS_from_cache(struct module_env * env,struct delegpt * dp,struct regional * region,struct query_info * qinfo)1224 iter_lookup_parent_NS_from_cache(struct module_env* env, struct delegpt* dp,
1225 struct regional* region, struct query_info* qinfo)
1226 {
1227 struct ub_packed_rrset_key* akey;
1228 akey = rrset_cache_lookup(env->rrset_cache, dp->name,
1229 dp->namelen, LDNS_RR_TYPE_NS, qinfo->qclass,
1230 PACKED_RRSET_PARENT_SIDE, *env->now, 0);
1231 if(akey) {
1232 log_rrset_key(VERB_ALGO, "found parent-side NS in cache", akey);
1233 dp->has_parent_side_NS = 1;
1234 /* and mark the new names as lame */
1235 if(!delegpt_rrset_add_ns(dp, region, akey, 1)) {
1236 lock_rw_unlock(&akey->entry.lock);
1237 return 0;
1238 }
1239 lock_rw_unlock(&akey->entry.lock);
1240 }
1241 return 1;
1242 }
1243
iter_lookup_parent_glue_from_cache(struct module_env * env,struct delegpt * dp,struct regional * region,struct query_info * qinfo)1244 int iter_lookup_parent_glue_from_cache(struct module_env* env,
1245 struct delegpt* dp, struct regional* region, struct query_info* qinfo)
1246 {
1247 struct ub_packed_rrset_key* akey;
1248 struct delegpt_ns* ns;
1249 size_t num = delegpt_count_targets(dp);
1250 for(ns = dp->nslist; ns; ns = ns->next) {
1251 if(ns->cache_lookup_count > ITERATOR_NAME_CACHELOOKUP_MAX_PSIDE)
1252 continue;
1253 ns->cache_lookup_count++;
1254 /* get cached parentside A */
1255 akey = rrset_cache_lookup(env->rrset_cache, ns->name,
1256 ns->namelen, LDNS_RR_TYPE_A, qinfo->qclass,
1257 PACKED_RRSET_PARENT_SIDE, *env->now, 0);
1258 if(akey) {
1259 log_rrset_key(VERB_ALGO, "found parent-side", akey);
1260 ns->done_pside4 = 1;
1261 /* a negative-cache-element has no addresses it adds */
1262 if(!delegpt_add_rrset_A(dp, region, akey, 1, NULL))
1263 log_err("malloc failure in lookup_parent_glue");
1264 lock_rw_unlock(&akey->entry.lock);
1265 }
1266 /* get cached parentside AAAA */
1267 akey = rrset_cache_lookup(env->rrset_cache, ns->name,
1268 ns->namelen, LDNS_RR_TYPE_AAAA, qinfo->qclass,
1269 PACKED_RRSET_PARENT_SIDE, *env->now, 0);
1270 if(akey) {
1271 log_rrset_key(VERB_ALGO, "found parent-side", akey);
1272 ns->done_pside6 = 1;
1273 /* a negative-cache-element has no addresses it adds */
1274 if(!delegpt_add_rrset_AAAA(dp, region, akey, 1, NULL))
1275 log_err("malloc failure in lookup_parent_glue");
1276 lock_rw_unlock(&akey->entry.lock);
1277 }
1278 }
1279 /* see if new (but lame) addresses have become available */
1280 return delegpt_count_targets(dp) != num;
1281 }
1282
1283 int
iter_get_next_root(struct iter_hints * hints,struct iter_forwards * fwd,uint16_t * c)1284 iter_get_next_root(struct iter_hints* hints, struct iter_forwards* fwd,
1285 uint16_t* c)
1286 {
1287 uint16_t c1 = *c, c2 = *c;
1288 int r1, r2;
1289 int nolock = 1;
1290
1291 /* prelock both forwards and hints for atomic read. */
1292 lock_rw_rdlock(&fwd->lock);
1293 lock_rw_rdlock(&hints->lock);
1294 r1 = hints_next_root(hints, &c1, nolock);
1295 r2 = forwards_next_root(fwd, &c2, nolock);
1296 lock_rw_unlock(&fwd->lock);
1297 lock_rw_unlock(&hints->lock);
1298
1299 if(!r1 && !r2) /* got none, end of list */
1300 return 0;
1301 else if(!r1) /* got one, return that */
1302 *c = c2;
1303 else if(!r2)
1304 *c = c1;
1305 else if(c1 < c2) /* got both take smallest */
1306 *c = c1;
1307 else *c = c2;
1308 return 1;
1309 }
1310
1311 void
iter_scrub_ds(struct dns_msg * msg,struct ub_packed_rrset_key * ns,uint8_t * z)1312 iter_scrub_ds(struct dns_msg* msg, struct ub_packed_rrset_key* ns, uint8_t* z)
1313 {
1314 /* Only the DS record for the delegation itself is expected.
1315 * We allow DS for everything between the bailiwick and the
1316 * zonecut, thus DS records must be at or above the zonecut.
1317 * And the DS records must be below the server authority zone.
1318 * The answer section is already scrubbed. */
1319 size_t i = msg->rep->an_numrrsets;
1320 while(i < (msg->rep->an_numrrsets + msg->rep->ns_numrrsets)) {
1321 struct ub_packed_rrset_key* s = msg->rep->rrsets[i];
1322 if(ntohs(s->rk.type) == LDNS_RR_TYPE_DS &&
1323 (!ns || !dname_subdomain_c(ns->rk.dname, s->rk.dname)
1324 || query_dname_compare(z, s->rk.dname) == 0)) {
1325 log_nametypeclass(VERB_ALGO, "removing irrelevant DS",
1326 s->rk.dname, ntohs(s->rk.type),
1327 ntohs(s->rk.rrset_class));
1328 memmove(msg->rep->rrsets+i, msg->rep->rrsets+i+1,
1329 sizeof(struct ub_packed_rrset_key*) *
1330 (msg->rep->rrset_count-i-1));
1331 msg->rep->ns_numrrsets--;
1332 msg->rep->rrset_count--;
1333 /* stay at same i, but new record */
1334 continue;
1335 }
1336 i++;
1337 }
1338 }
1339
1340 void
iter_scrub_nxdomain(struct dns_msg * msg)1341 iter_scrub_nxdomain(struct dns_msg* msg)
1342 {
1343 if(msg->rep->an_numrrsets == 0)
1344 return;
1345
1346 memmove(msg->rep->rrsets, msg->rep->rrsets+msg->rep->an_numrrsets,
1347 sizeof(struct ub_packed_rrset_key*) *
1348 (msg->rep->rrset_count-msg->rep->an_numrrsets));
1349 msg->rep->rrset_count -= msg->rep->an_numrrsets;
1350 msg->rep->an_numrrsets = 0;
1351 }
1352
iter_dec_attempts(struct delegpt * dp,int d,int outbound_msg_retry)1353 void iter_dec_attempts(struct delegpt* dp, int d, int outbound_msg_retry)
1354 {
1355 struct delegpt_addr* a;
1356 for(a=dp->target_list; a; a = a->next_target) {
1357 if(a->attempts >= outbound_msg_retry) {
1358 /* add back to result list */
1359 delegpt_add_to_result_list(dp, a);
1360 }
1361 if(a->attempts > d)
1362 a->attempts -= d;
1363 else a->attempts = 0;
1364 }
1365 }
1366
iter_merge_retry_counts(struct delegpt * dp,struct delegpt * old,int outbound_msg_retry)1367 void iter_merge_retry_counts(struct delegpt* dp, struct delegpt* old,
1368 int outbound_msg_retry)
1369 {
1370 struct delegpt_addr* a, *o, *prev;
1371 for(a=dp->target_list; a; a = a->next_target) {
1372 o = delegpt_find_addr(old, &a->addr, a->addrlen);
1373 if(o) {
1374 log_addr(VERB_ALGO, "copy attempt count previous dp",
1375 &a->addr, a->addrlen);
1376 a->attempts = o->attempts;
1377 }
1378 }
1379 prev = NULL;
1380 a = dp->usable_list;
1381 while(a) {
1382 if(a->attempts >= outbound_msg_retry) {
1383 log_addr(VERB_ALGO, "remove from usable list dp",
1384 &a->addr, a->addrlen);
1385 /* remove from result list */
1386 if(prev)
1387 prev->next_usable = a->next_usable;
1388 else dp->usable_list = a->next_usable;
1389 /* prev stays the same */
1390 a = a->next_usable;
1391 continue;
1392 }
1393 prev = a;
1394 a = a->next_usable;
1395 }
1396 }
1397
1398 int
iter_ds_toolow(struct dns_msg * msg,struct delegpt * dp)1399 iter_ds_toolow(struct dns_msg* msg, struct delegpt* dp)
1400 {
1401 /* if for query example.com, there is example.com SOA or a subdomain
1402 * of example.com, then we are too low and need to fetch NS. */
1403 size_t i;
1404 /* if we have a DNAME or CNAME we are probably wrong */
1405 /* if we have a qtype DS in the answer section, its fine */
1406 for(i=0; i < msg->rep->an_numrrsets; i++) {
1407 struct ub_packed_rrset_key* s = msg->rep->rrsets[i];
1408 if(ntohs(s->rk.type) == LDNS_RR_TYPE_DNAME ||
1409 ntohs(s->rk.type) == LDNS_RR_TYPE_CNAME) {
1410 /* not the right answer, maybe too low, check the
1411 * RRSIG signer name (if there is any) for a hint
1412 * that it is from the dp zone anyway */
1413 uint8_t* sname;
1414 size_t slen;
1415 val_find_rrset_signer(s, &sname, &slen);
1416 if(sname && query_dname_compare(dp->name, sname)==0)
1417 return 0; /* it is fine, from the right dp */
1418 return 1;
1419 }
1420 if(ntohs(s->rk.type) == LDNS_RR_TYPE_DS)
1421 return 0; /* fine, we have a DS record */
1422 }
1423 for(i=msg->rep->an_numrrsets;
1424 i < msg->rep->an_numrrsets + msg->rep->ns_numrrsets; i++) {
1425 struct ub_packed_rrset_key* s = msg->rep->rrsets[i];
1426 if(ntohs(s->rk.type) == LDNS_RR_TYPE_SOA) {
1427 if(dname_subdomain_c(s->rk.dname, msg->qinfo.qname))
1428 return 1; /* point is too low */
1429 if(query_dname_compare(s->rk.dname, dp->name)==0)
1430 return 0; /* right dp */
1431 }
1432 if(ntohs(s->rk.type) == LDNS_RR_TYPE_NSEC ||
1433 ntohs(s->rk.type) == LDNS_RR_TYPE_NSEC3) {
1434 uint8_t* sname;
1435 size_t slen;
1436 val_find_rrset_signer(s, &sname, &slen);
1437 if(sname && query_dname_compare(dp->name, sname)==0)
1438 return 0; /* it is fine, from the right dp */
1439 return 1;
1440 }
1441 }
1442 /* we do not know */
1443 return 1;
1444 }
1445
iter_dp_cangodown(struct query_info * qinfo,struct delegpt * dp)1446 int iter_dp_cangodown(struct query_info* qinfo, struct delegpt* dp)
1447 {
1448 /* no delegation point, do not see how we can go down,
1449 * robust check, it should really exist */
1450 if(!dp) return 0;
1451
1452 /* see if dp equals the qname, then we cannot go down further */
1453 if(query_dname_compare(qinfo->qname, dp->name) == 0)
1454 return 0;
1455 /* if dp is one label above the name we also cannot go down further */
1456 if(dname_count_labels(qinfo->qname) == dp->namelabs+1)
1457 return 0;
1458 return 1;
1459 }
1460
1461 int
iter_stub_fwd_no_cache(struct module_qstate * qstate,struct query_info * qinf,uint8_t ** retdpname,size_t * retdpnamelen,uint8_t * dpname_storage,size_t dpname_storage_len)1462 iter_stub_fwd_no_cache(struct module_qstate *qstate, struct query_info *qinf,
1463 uint8_t** retdpname, size_t* retdpnamelen, uint8_t* dpname_storage,
1464 size_t dpname_storage_len)
1465 {
1466 struct iter_hints_stub *stub;
1467 struct delegpt *dp;
1468 int nolock = 1;
1469
1470 /* Check for stub. */
1471 /* Lock both forwards and hints for atomic read. */
1472 lock_rw_rdlock(&qstate->env->fwds->lock);
1473 lock_rw_rdlock(&qstate->env->hints->lock);
1474 stub = hints_lookup_stub(qstate->env->hints, qinf->qname,
1475 qinf->qclass, NULL, nolock);
1476 dp = forwards_lookup(qstate->env->fwds, qinf->qname, qinf->qclass,
1477 nolock);
1478
1479 /* see if forward or stub is more pertinent */
1480 if(stub && stub->dp && dp) {
1481 if(dname_strict_subdomain(dp->name, dp->namelabs,
1482 stub->dp->name, stub->dp->namelabs)) {
1483 stub = NULL; /* ignore stub, forward is lower */
1484 } else {
1485 dp = NULL; /* ignore forward, stub is lower */
1486 }
1487 }
1488
1489 /* check stub */
1490 if (stub != NULL && stub->dp != NULL) {
1491 int stub_no_cache = stub->dp->no_cache;
1492 lock_rw_unlock(&qstate->env->fwds->lock);
1493 if(stub_no_cache) {
1494 char qname[255+1];
1495 char dpname[255+1];
1496 dname_str(qinf->qname, qname);
1497 dname_str(stub->dp->name, dpname);
1498 verbose(VERB_ALGO, "stub for %s %s has no_cache", qname, dpname);
1499 }
1500 if(retdpname) {
1501 if(stub->dp->namelen > dpname_storage_len) {
1502 verbose(VERB_ALGO, "no cache stub dpname too long");
1503 lock_rw_unlock(&qstate->env->hints->lock);
1504 *retdpname = NULL;
1505 *retdpnamelen = 0;
1506 return stub_no_cache;
1507 }
1508 memmove(dpname_storage, stub->dp->name,
1509 stub->dp->namelen);
1510 *retdpname = dpname_storage;
1511 *retdpnamelen = stub->dp->namelen;
1512 }
1513 lock_rw_unlock(&qstate->env->hints->lock);
1514 return stub_no_cache;
1515 }
1516
1517 /* Check for forward. */
1518 if (dp) {
1519 int dp_no_cache = dp->no_cache;
1520 lock_rw_unlock(&qstate->env->hints->lock);
1521 if(dp_no_cache) {
1522 char qname[255+1];
1523 char dpname[255+1];
1524 dname_str(qinf->qname, qname);
1525 dname_str(dp->name, dpname);
1526 verbose(VERB_ALGO, "forward for %s %s has no_cache", qname, dpname);
1527 }
1528 if(retdpname) {
1529 if(dp->namelen > dpname_storage_len) {
1530 verbose(VERB_ALGO, "no cache dpname too long");
1531 lock_rw_unlock(&qstate->env->fwds->lock);
1532 *retdpname = NULL;
1533 *retdpnamelen = 0;
1534 return dp_no_cache;
1535 }
1536 memmove(dpname_storage, dp->name, dp->namelen);
1537 *retdpname = dpname_storage;
1538 *retdpnamelen = dp->namelen;
1539 }
1540 lock_rw_unlock(&qstate->env->fwds->lock);
1541 return dp_no_cache;
1542 }
1543 lock_rw_unlock(&qstate->env->fwds->lock);
1544 lock_rw_unlock(&qstate->env->hints->lock);
1545 if(retdpname) {
1546 *retdpname = NULL;
1547 *retdpnamelen = 0;
1548 }
1549 return 0;
1550 }
1551
iterator_set_ip46_support(struct module_stack * mods,struct module_env * env,struct outside_network * outnet)1552 void iterator_set_ip46_support(struct module_stack* mods,
1553 struct module_env* env, struct outside_network* outnet)
1554 {
1555 int m = modstack_find(mods, "iterator");
1556 struct iter_env* ie = NULL;
1557 if(m == -1)
1558 return;
1559 ie = (struct iter_env*)env->modinfo[m];
1560 if(outnet->pending == NULL)
1561 return; /* we are in testbound, no rbtree for UDP */
1562 if(outnet->num_ip4 == 0)
1563 ie->supports_ipv4 = 0;
1564 if(outnet->num_ip6 == 0)
1565 ie->supports_ipv6 = 0;
1566 }
1567
1568 void
limit_nsec_ttl(struct dns_msg * msg)1569 limit_nsec_ttl(struct dns_msg* msg)
1570 {
1571 /* Limit NSEC and NSEC3 TTL in response, RFC9077 */
1572 size_t i;
1573 int found = 0;
1574 time_t soa_ttl = 0;
1575 /* Limit the NSEC and NSEC3 TTL values to the SOA TTL and SOA minimum
1576 * TTL. That has already been applied to the SOA record ttl. */
1577 for(i=0; i<msg->rep->rrset_count; i++) {
1578 struct ub_packed_rrset_key* s = msg->rep->rrsets[i];
1579 if(ntohs(s->rk.type) == LDNS_RR_TYPE_SOA) {
1580 struct packed_rrset_data* soadata = (struct packed_rrset_data*)s->entry.data;
1581 found = 1;
1582 soa_ttl = soadata->ttl;
1583 break;
1584 }
1585 }
1586 if(!found)
1587 return;
1588 for(i=0; i<msg->rep->rrset_count; i++) {
1589 struct ub_packed_rrset_key* s = msg->rep->rrsets[i];
1590 if(ntohs(s->rk.type) == LDNS_RR_TYPE_NSEC ||
1591 ntohs(s->rk.type) == LDNS_RR_TYPE_NSEC3) {
1592 struct packed_rrset_data* data = (struct packed_rrset_data*)s->entry.data;
1593 /* Limit the negative TTL. */
1594 if(data->ttl > soa_ttl) {
1595 if(verbosity >= VERB_ALGO) {
1596 char buf[256];
1597 snprintf(buf, sizeof(buf),
1598 "limiting TTL %d of %s record to the SOA TTL of %d for",
1599 (int)data->ttl, ((ntohs(s->rk.type) == LDNS_RR_TYPE_NSEC)?"NSEC":"NSEC3"), (int)soa_ttl);
1600 log_nametypeclass(VERB_ALGO, buf,
1601 s->rk.dname, ntohs(s->rk.type),
1602 ntohs(s->rk.rrset_class));
1603 }
1604 data->ttl = soa_ttl;
1605 }
1606 }
1607 }
1608 }
1609