1 // SPDX-License-Identifier: GPL-2.0
2
3 /*
4 * fs/ext4/fast_commit.c
5 *
6 * Written by Harshad Shirwadkar <harshadshirwadkar@gmail.com>
7 *
8 * Ext4 fast commits routines.
9 */
10 #include "ext4.h"
11 #include "ext4_jbd2.h"
12 #include "ext4_extents.h"
13 #include "mballoc.h"
14
15 /*
16 * Ext4 Fast Commits
17 * -----------------
18 *
19 * Ext4 fast commits implement fine grained journalling for Ext4.
20 *
21 * Fast commits are organized as a log of tag-length-value (TLV) structs. (See
22 * struct ext4_fc_tl). Each TLV contains some delta that is replayed TLV by
23 * TLV during the recovery phase. For the scenarios for which we currently
24 * don't have replay code, fast commit falls back to full commits.
25 * Fast commits record delta in one of the following three categories.
26 *
27 * (A) Directory entry updates:
28 *
29 * - EXT4_FC_TAG_UNLINK - records directory entry unlink
30 * - EXT4_FC_TAG_LINK - records directory entry link
31 * - EXT4_FC_TAG_CREAT - records inode and directory entry creation
32 *
33 * (B) File specific data range updates:
34 *
35 * - EXT4_FC_TAG_ADD_RANGE - records addition of new blocks to an inode
36 * - EXT4_FC_TAG_DEL_RANGE - records deletion of blocks from an inode
37 *
38 * (C) Inode metadata (mtime / ctime etc):
39 *
40 * - EXT4_FC_TAG_INODE - record the inode that should be replayed
41 * during recovery. Note that iblocks field is
42 * not replayed and instead derived during
43 * replay.
44 * Commit Operation
45 * ----------------
46 * With fast commits, we maintain all the directory entry operations in the
47 * order in which they are issued in an in-memory queue. This queue is flushed
48 * to disk during the commit operation. We also maintain a list of inodes
49 * that need to be committed during a fast commit in another in memory queue of
50 * inodes. During the commit operation, we commit in the following order:
51 *
52 * [1] Lock inodes for any further data updates by setting COMMITTING state
53 * [2] Submit data buffers of all the inodes
54 * [3] Wait for [2] to complete
55 * [4] Commit all the directory entry updates in the fast commit space
56 * [5] Commit all the changed inode structures
57 * [6] Write tail tag (this tag ensures the atomicity, please read the following
58 * section for more details).
59 * [7] Wait for [4], [5] and [6] to complete.
60 *
61 * All the inode updates must call ext4_fc_start_update() before starting an
62 * update. If such an ongoing update is present, fast commit waits for it to
63 * complete. The completion of such an update is marked by
64 * ext4_fc_stop_update().
65 *
66 * Fast Commit Ineligibility
67 * -------------------------
68 *
69 * Not all operations are supported by fast commits today (e.g extended
70 * attributes). Fast commit ineligibility is marked by calling
71 * ext4_fc_mark_ineligible(): This makes next fast commit operation to fall back
72 * to full commit.
73 *
74 * Atomicity of commits
75 * --------------------
76 * In order to guarantee atomicity during the commit operation, fast commit
77 * uses "EXT4_FC_TAG_TAIL" tag that marks a fast commit as complete. Tail
78 * tag contains CRC of the contents and TID of the transaction after which
79 * this fast commit should be applied. Recovery code replays fast commit
80 * logs only if there's at least 1 valid tail present. For every fast commit
81 * operation, there is 1 tail. This means, we may end up with multiple tails
82 * in the fast commit space. Here's an example:
83 *
84 * - Create a new file A and remove existing file B
85 * - fsync()
86 * - Append contents to file A
87 * - Truncate file A
88 * - fsync()
89 *
90 * The fast commit space at the end of above operations would look like this:
91 * [HEAD] [CREAT A] [UNLINK B] [TAIL] [ADD_RANGE A] [DEL_RANGE A] [TAIL]
92 * |<--- Fast Commit 1 --->|<--- Fast Commit 2 ---->|
93 *
94 * Replay code should thus check for all the valid tails in the FC area.
95 *
96 * Fast Commit Replay Idempotence
97 * ------------------------------
98 *
99 * Fast commits tags are idempotent in nature provided the recovery code follows
100 * certain rules. The guiding principle that the commit path follows while
101 * committing is that it stores the result of a particular operation instead of
102 * storing the procedure.
103 *
104 * Let's consider this rename operation: 'mv /a /b'. Let's assume dirent '/a'
105 * was associated with inode 10. During fast commit, instead of storing this
106 * operation as a procedure "rename a to b", we store the resulting file system
107 * state as a "series" of outcomes:
108 *
109 * - Link dirent b to inode 10
110 * - Unlink dirent a
111 * - Inode <10> with valid refcount
112 *
113 * Now when recovery code runs, it needs "enforce" this state on the file
114 * system. This is what guarantees idempotence of fast commit replay.
115 *
116 * Let's take an example of a procedure that is not idempotent and see how fast
117 * commits make it idempotent. Consider following sequence of operations:
118 *
119 * rm A; mv B A; read A
120 * (x) (y) (z)
121 *
122 * (x), (y) and (z) are the points at which we can crash. If we store this
123 * sequence of operations as is then the replay is not idempotent. Let's say
124 * while in replay, we crash at (z). During the second replay, file A (which was
125 * actually created as a result of "mv B A" operation) would get deleted. Thus,
126 * file named A would be absent when we try to read A. So, this sequence of
127 * operations is not idempotent. However, as mentioned above, instead of storing
128 * the procedure fast commits store the outcome of each procedure. Thus the fast
129 * commit log for above procedure would be as follows:
130 *
131 * (Let's assume dirent A was linked to inode 10 and dirent B was linked to
132 * inode 11 before the replay)
133 *
134 * [Unlink A] [Link A to inode 11] [Unlink B] [Inode 11]
135 * (w) (x) (y) (z)
136 *
137 * If we crash at (z), we will have file A linked to inode 11. During the second
138 * replay, we will remove file A (inode 11). But we will create it back and make
139 * it point to inode 11. We won't find B, so we'll just skip that step. At this
140 * point, the refcount for inode 11 is not reliable, but that gets fixed by the
141 * replay of last inode 11 tag. Crashes at points (w), (x) and (y) get handled
142 * similarly. Thus, by converting a non-idempotent procedure into a series of
143 * idempotent outcomes, fast commits ensured idempotence during the replay.
144 *
145 * TODOs
146 * -----
147 *
148 * 0) Fast commit replay path hardening: Fast commit replay code should use
149 * journal handles to make sure all the updates it does during the replay
150 * path are atomic. With that if we crash during fast commit replay, after
151 * trying to do recovery again, we will find a file system where fast commit
152 * area is invalid (because new full commit would be found). In order to deal
153 * with that, fast commit replay code should ensure that the "FC_REPLAY"
154 * superblock state is persisted before starting the replay, so that after
155 * the crash, fast commit recovery code can look at that flag and perform
156 * fast commit recovery even if that area is invalidated by later full
157 * commits.
158 *
159 * 1) Fast commit's commit path locks the entire file system during fast
160 * commit. This has significant performance penalty. Instead of that, we
161 * should use ext4_fc_start/stop_update functions to start inode level
162 * updates from ext4_journal_start/stop. Once we do that we can drop file
163 * system locking during commit path.
164 *
165 * 2) Handle more ineligible cases.
166 */
167
168 #include <trace/events/ext4.h>
169 static struct kmem_cache *ext4_fc_dentry_cachep;
170
ext4_end_buffer_io_sync(struct buffer_head * bh,int uptodate)171 static void ext4_end_buffer_io_sync(struct buffer_head *bh, int uptodate)
172 {
173 BUFFER_TRACE(bh, "");
174 if (uptodate) {
175 ext4_debug("%s: Block %lld up-to-date",
176 __func__, bh->b_blocknr);
177 set_buffer_uptodate(bh);
178 } else {
179 ext4_debug("%s: Block %lld not up-to-date",
180 __func__, bh->b_blocknr);
181 clear_buffer_uptodate(bh);
182 }
183
184 unlock_buffer(bh);
185 }
186
ext4_fc_reset_inode(struct inode * inode)187 static inline void ext4_fc_reset_inode(struct inode *inode)
188 {
189 struct ext4_inode_info *ei = EXT4_I(inode);
190
191 ei->i_fc_lblk_start = 0;
192 ei->i_fc_lblk_len = 0;
193 }
194
ext4_fc_init_inode(struct inode * inode)195 void ext4_fc_init_inode(struct inode *inode)
196 {
197 struct ext4_inode_info *ei = EXT4_I(inode);
198
199 ext4_fc_reset_inode(inode);
200 ext4_clear_inode_state(inode, EXT4_STATE_FC_COMMITTING);
201 INIT_LIST_HEAD(&ei->i_fc_list);
202 INIT_LIST_HEAD(&ei->i_fc_dilist);
203 init_waitqueue_head(&ei->i_fc_wait);
204 atomic_set(&ei->i_fc_updates, 0);
205 }
206
207 /* This function must be called with sbi->s_fc_lock held. */
ext4_fc_wait_committing_inode(struct inode * inode)208 static void ext4_fc_wait_committing_inode(struct inode *inode)
209 __releases(&EXT4_SB(inode->i_sb)->s_fc_lock)
210 {
211 wait_queue_head_t *wq;
212 struct ext4_inode_info *ei = EXT4_I(inode);
213
214 #if (BITS_PER_LONG < 64)
215 DEFINE_WAIT_BIT(wait, &ei->i_state_flags,
216 EXT4_STATE_FC_COMMITTING);
217 wq = bit_waitqueue(&ei->i_state_flags,
218 EXT4_STATE_FC_COMMITTING);
219 #else
220 DEFINE_WAIT_BIT(wait, &ei->i_flags,
221 EXT4_STATE_FC_COMMITTING);
222 wq = bit_waitqueue(&ei->i_flags,
223 EXT4_STATE_FC_COMMITTING);
224 #endif
225 lockdep_assert_held(&EXT4_SB(inode->i_sb)->s_fc_lock);
226 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
227 spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock);
228 schedule();
229 finish_wait(wq, &wait.wq_entry);
230 }
231
ext4_fc_disabled(struct super_block * sb)232 static bool ext4_fc_disabled(struct super_block *sb)
233 {
234 return (!test_opt2(sb, JOURNAL_FAST_COMMIT) ||
235 (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY));
236 }
237
238 /*
239 * Inform Ext4's fast about start of an inode update
240 *
241 * This function is called by the high level call VFS callbacks before
242 * performing any inode update. This function blocks if there's an ongoing
243 * fast commit on the inode in question.
244 */
ext4_fc_start_update(struct inode * inode)245 void ext4_fc_start_update(struct inode *inode)
246 {
247 struct ext4_inode_info *ei = EXT4_I(inode);
248
249 if (ext4_fc_disabled(inode->i_sb))
250 return;
251
252 restart:
253 spin_lock(&EXT4_SB(inode->i_sb)->s_fc_lock);
254 if (list_empty(&ei->i_fc_list))
255 goto out;
256
257 if (ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING)) {
258 ext4_fc_wait_committing_inode(inode);
259 goto restart;
260 }
261 out:
262 atomic_inc(&ei->i_fc_updates);
263 spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock);
264 }
265
266 /*
267 * Stop inode update and wake up waiting fast commits if any.
268 */
ext4_fc_stop_update(struct inode * inode)269 void ext4_fc_stop_update(struct inode *inode)
270 {
271 struct ext4_inode_info *ei = EXT4_I(inode);
272
273 if (ext4_fc_disabled(inode->i_sb))
274 return;
275
276 if (atomic_dec_and_test(&ei->i_fc_updates))
277 wake_up_all(&ei->i_fc_wait);
278 }
279
280 /*
281 * Remove inode from fast commit list. If the inode is being committed
282 * we wait until inode commit is done.
283 */
ext4_fc_del(struct inode * inode)284 void ext4_fc_del(struct inode *inode)
285 {
286 struct ext4_inode_info *ei = EXT4_I(inode);
287 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
288 struct ext4_fc_dentry_update *fc_dentry;
289
290 if (ext4_fc_disabled(inode->i_sb))
291 return;
292
293 restart:
294 spin_lock(&sbi->s_fc_lock);
295 if (list_empty(&ei->i_fc_list) && list_empty(&ei->i_fc_dilist)) {
296 spin_unlock(&sbi->s_fc_lock);
297 return;
298 }
299
300 if (ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING)) {
301 ext4_fc_wait_committing_inode(inode);
302 goto restart;
303 }
304
305 if (!list_empty(&ei->i_fc_list))
306 list_del_init(&ei->i_fc_list);
307
308 /*
309 * Since this inode is getting removed, let's also remove all FC
310 * dentry create references, since it is not needed to log it anyways.
311 */
312 if (list_empty(&ei->i_fc_dilist)) {
313 spin_unlock(&sbi->s_fc_lock);
314 return;
315 }
316
317 fc_dentry = list_first_entry(&ei->i_fc_dilist, struct ext4_fc_dentry_update, fcd_dilist);
318 WARN_ON(fc_dentry->fcd_op != EXT4_FC_TAG_CREAT);
319 list_del_init(&fc_dentry->fcd_list);
320 list_del_init(&fc_dentry->fcd_dilist);
321
322 WARN_ON(!list_empty(&ei->i_fc_dilist));
323 spin_unlock(&sbi->s_fc_lock);
324
325 release_dentry_name_snapshot(&fc_dentry->fcd_name);
326 kmem_cache_free(ext4_fc_dentry_cachep, fc_dentry);
327
328 return;
329 }
330
331 /*
332 * Mark file system as fast commit ineligible, and record latest
333 * ineligible transaction tid. This means until the recorded
334 * transaction, commit operation would result in a full jbd2 commit.
335 */
ext4_fc_mark_ineligible(struct super_block * sb,int reason,handle_t * handle)336 void ext4_fc_mark_ineligible(struct super_block *sb, int reason, handle_t *handle)
337 {
338 struct ext4_sb_info *sbi = EXT4_SB(sb);
339 tid_t tid;
340 bool has_transaction = true;
341 bool is_ineligible;
342
343 if (ext4_fc_disabled(sb))
344 return;
345
346 if (handle && !IS_ERR(handle))
347 tid = handle->h_transaction->t_tid;
348 else {
349 read_lock(&sbi->s_journal->j_state_lock);
350 if (sbi->s_journal->j_running_transaction)
351 tid = sbi->s_journal->j_running_transaction->t_tid;
352 else
353 has_transaction = false;
354 read_unlock(&sbi->s_journal->j_state_lock);
355 }
356 spin_lock(&sbi->s_fc_lock);
357 is_ineligible = ext4_test_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
358 if (has_transaction && (!is_ineligible || tid_gt(tid, sbi->s_fc_ineligible_tid)))
359 sbi->s_fc_ineligible_tid = tid;
360 ext4_set_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
361 spin_unlock(&sbi->s_fc_lock);
362 WARN_ON(reason >= EXT4_FC_REASON_MAX);
363 sbi->s_fc_stats.fc_ineligible_reason_count[reason]++;
364 }
365
366 /*
367 * Generic fast commit tracking function. If this is the first time this we are
368 * called after a full commit, we initialize fast commit fields and then call
369 * __fc_track_fn() with update = 0. If we have already been called after a full
370 * commit, we pass update = 1. Based on that, the track function can determine
371 * if it needs to track a field for the first time or if it needs to just
372 * update the previously tracked value.
373 *
374 * If enqueue is set, this function enqueues the inode in fast commit list.
375 */
ext4_fc_track_template(handle_t * handle,struct inode * inode,int (* __fc_track_fn)(handle_t * handle,struct inode *,void *,bool),void * args,int enqueue)376 static int ext4_fc_track_template(
377 handle_t *handle, struct inode *inode,
378 int (*__fc_track_fn)(handle_t *handle, struct inode *, void *, bool),
379 void *args, int enqueue)
380 {
381 bool update = false;
382 struct ext4_inode_info *ei = EXT4_I(inode);
383 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
384 tid_t tid = 0;
385 int ret;
386
387 tid = handle->h_transaction->t_tid;
388 mutex_lock(&ei->i_fc_lock);
389 if (tid == ei->i_sync_tid) {
390 update = true;
391 } else {
392 ext4_fc_reset_inode(inode);
393 ei->i_sync_tid = tid;
394 }
395 ret = __fc_track_fn(handle, inode, args, update);
396 mutex_unlock(&ei->i_fc_lock);
397
398 if (!enqueue)
399 return ret;
400
401 spin_lock(&sbi->s_fc_lock);
402 if (list_empty(&EXT4_I(inode)->i_fc_list))
403 list_add_tail(&EXT4_I(inode)->i_fc_list,
404 (sbi->s_journal->j_flags & JBD2_FULL_COMMIT_ONGOING ||
405 sbi->s_journal->j_flags & JBD2_FAST_COMMIT_ONGOING) ?
406 &sbi->s_fc_q[FC_Q_STAGING] :
407 &sbi->s_fc_q[FC_Q_MAIN]);
408 spin_unlock(&sbi->s_fc_lock);
409
410 return ret;
411 }
412
413 struct __track_dentry_update_args {
414 struct dentry *dentry;
415 int op;
416 };
417
418 /* __track_fn for directory entry updates. Called with ei->i_fc_lock. */
__track_dentry_update(handle_t * handle,struct inode * inode,void * arg,bool update)419 static int __track_dentry_update(handle_t *handle, struct inode *inode,
420 void *arg, bool update)
421 {
422 struct ext4_fc_dentry_update *node;
423 struct ext4_inode_info *ei = EXT4_I(inode);
424 struct __track_dentry_update_args *dentry_update =
425 (struct __track_dentry_update_args *)arg;
426 struct dentry *dentry = dentry_update->dentry;
427 struct inode *dir = dentry->d_parent->d_inode;
428 struct super_block *sb = inode->i_sb;
429 struct ext4_sb_info *sbi = EXT4_SB(sb);
430
431 mutex_unlock(&ei->i_fc_lock);
432
433 if (IS_ENCRYPTED(dir)) {
434 ext4_fc_mark_ineligible(sb, EXT4_FC_REASON_ENCRYPTED_FILENAME,
435 handle);
436 mutex_lock(&ei->i_fc_lock);
437 return -EOPNOTSUPP;
438 }
439
440 node = kmem_cache_alloc(ext4_fc_dentry_cachep, GFP_NOFS);
441 if (!node) {
442 ext4_fc_mark_ineligible(sb, EXT4_FC_REASON_NOMEM, handle);
443 mutex_lock(&ei->i_fc_lock);
444 return -ENOMEM;
445 }
446
447 node->fcd_op = dentry_update->op;
448 node->fcd_parent = dir->i_ino;
449 node->fcd_ino = inode->i_ino;
450 take_dentry_name_snapshot(&node->fcd_name, dentry);
451 INIT_LIST_HEAD(&node->fcd_dilist);
452 spin_lock(&sbi->s_fc_lock);
453 if (sbi->s_journal->j_flags & JBD2_FULL_COMMIT_ONGOING ||
454 sbi->s_journal->j_flags & JBD2_FAST_COMMIT_ONGOING)
455 list_add_tail(&node->fcd_list,
456 &sbi->s_fc_dentry_q[FC_Q_STAGING]);
457 else
458 list_add_tail(&node->fcd_list, &sbi->s_fc_dentry_q[FC_Q_MAIN]);
459
460 /*
461 * This helps us keep a track of all fc_dentry updates which is part of
462 * this ext4 inode. So in case the inode is getting unlinked, before
463 * even we get a chance to fsync, we could remove all fc_dentry
464 * references while evicting the inode in ext4_fc_del().
465 * Also with this, we don't need to loop over all the inodes in
466 * sbi->s_fc_q to get the corresponding inode in
467 * ext4_fc_commit_dentry_updates().
468 */
469 if (dentry_update->op == EXT4_FC_TAG_CREAT) {
470 WARN_ON(!list_empty(&ei->i_fc_dilist));
471 list_add_tail(&node->fcd_dilist, &ei->i_fc_dilist);
472 }
473 spin_unlock(&sbi->s_fc_lock);
474 mutex_lock(&ei->i_fc_lock);
475
476 return 0;
477 }
478
__ext4_fc_track_unlink(handle_t * handle,struct inode * inode,struct dentry * dentry)479 void __ext4_fc_track_unlink(handle_t *handle,
480 struct inode *inode, struct dentry *dentry)
481 {
482 struct __track_dentry_update_args args;
483 int ret;
484
485 args.dentry = dentry;
486 args.op = EXT4_FC_TAG_UNLINK;
487
488 ret = ext4_fc_track_template(handle, inode, __track_dentry_update,
489 (void *)&args, 0);
490 trace_ext4_fc_track_unlink(handle, inode, dentry, ret);
491 }
492
ext4_fc_track_unlink(handle_t * handle,struct dentry * dentry)493 void ext4_fc_track_unlink(handle_t *handle, struct dentry *dentry)
494 {
495 struct inode *inode = d_inode(dentry);
496
497 if (ext4_fc_disabled(inode->i_sb))
498 return;
499
500 if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE))
501 return;
502
503 __ext4_fc_track_unlink(handle, inode, dentry);
504 }
505
__ext4_fc_track_link(handle_t * handle,struct inode * inode,struct dentry * dentry)506 void __ext4_fc_track_link(handle_t *handle,
507 struct inode *inode, struct dentry *dentry)
508 {
509 struct __track_dentry_update_args args;
510 int ret;
511
512 args.dentry = dentry;
513 args.op = EXT4_FC_TAG_LINK;
514
515 ret = ext4_fc_track_template(handle, inode, __track_dentry_update,
516 (void *)&args, 0);
517 trace_ext4_fc_track_link(handle, inode, dentry, ret);
518 }
519
ext4_fc_track_link(handle_t * handle,struct dentry * dentry)520 void ext4_fc_track_link(handle_t *handle, struct dentry *dentry)
521 {
522 struct inode *inode = d_inode(dentry);
523
524 if (ext4_fc_disabled(inode->i_sb))
525 return;
526
527 if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE))
528 return;
529
530 __ext4_fc_track_link(handle, inode, dentry);
531 }
532
__ext4_fc_track_create(handle_t * handle,struct inode * inode,struct dentry * dentry)533 void __ext4_fc_track_create(handle_t *handle, struct inode *inode,
534 struct dentry *dentry)
535 {
536 struct __track_dentry_update_args args;
537 int ret;
538
539 args.dentry = dentry;
540 args.op = EXT4_FC_TAG_CREAT;
541
542 ret = ext4_fc_track_template(handle, inode, __track_dentry_update,
543 (void *)&args, 0);
544 trace_ext4_fc_track_create(handle, inode, dentry, ret);
545 }
546
ext4_fc_track_create(handle_t * handle,struct dentry * dentry)547 void ext4_fc_track_create(handle_t *handle, struct dentry *dentry)
548 {
549 struct inode *inode = d_inode(dentry);
550
551 if (ext4_fc_disabled(inode->i_sb))
552 return;
553
554 if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE))
555 return;
556
557 __ext4_fc_track_create(handle, inode, dentry);
558 }
559
560 /* __track_fn for inode tracking */
__track_inode(handle_t * handle,struct inode * inode,void * arg,bool update)561 static int __track_inode(handle_t *handle, struct inode *inode, void *arg,
562 bool update)
563 {
564 if (update)
565 return -EEXIST;
566
567 EXT4_I(inode)->i_fc_lblk_len = 0;
568
569 return 0;
570 }
571
ext4_fc_track_inode(handle_t * handle,struct inode * inode)572 void ext4_fc_track_inode(handle_t *handle, struct inode *inode)
573 {
574 int ret;
575
576 if (S_ISDIR(inode->i_mode))
577 return;
578
579 if (ext4_fc_disabled(inode->i_sb))
580 return;
581
582 if (ext4_should_journal_data(inode)) {
583 ext4_fc_mark_ineligible(inode->i_sb,
584 EXT4_FC_REASON_INODE_JOURNAL_DATA, handle);
585 return;
586 }
587
588 if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE))
589 return;
590
591 ret = ext4_fc_track_template(handle, inode, __track_inode, NULL, 1);
592 trace_ext4_fc_track_inode(handle, inode, ret);
593 }
594
595 struct __track_range_args {
596 ext4_lblk_t start, end;
597 };
598
599 /* __track_fn for tracking data updates */
__track_range(handle_t * handle,struct inode * inode,void * arg,bool update)600 static int __track_range(handle_t *handle, struct inode *inode, void *arg,
601 bool update)
602 {
603 struct ext4_inode_info *ei = EXT4_I(inode);
604 ext4_lblk_t oldstart;
605 struct __track_range_args *__arg =
606 (struct __track_range_args *)arg;
607
608 if (inode->i_ino < EXT4_FIRST_INO(inode->i_sb)) {
609 ext4_debug("Special inode %ld being modified\n", inode->i_ino);
610 return -ECANCELED;
611 }
612
613 oldstart = ei->i_fc_lblk_start;
614
615 if (update && ei->i_fc_lblk_len > 0) {
616 ei->i_fc_lblk_start = min(ei->i_fc_lblk_start, __arg->start);
617 ei->i_fc_lblk_len =
618 max(oldstart + ei->i_fc_lblk_len - 1, __arg->end) -
619 ei->i_fc_lblk_start + 1;
620 } else {
621 ei->i_fc_lblk_start = __arg->start;
622 ei->i_fc_lblk_len = __arg->end - __arg->start + 1;
623 }
624
625 return 0;
626 }
627
ext4_fc_track_range(handle_t * handle,struct inode * inode,ext4_lblk_t start,ext4_lblk_t end)628 void ext4_fc_track_range(handle_t *handle, struct inode *inode, ext4_lblk_t start,
629 ext4_lblk_t end)
630 {
631 struct __track_range_args args;
632 int ret;
633
634 if (S_ISDIR(inode->i_mode))
635 return;
636
637 if (ext4_fc_disabled(inode->i_sb))
638 return;
639
640 if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE))
641 return;
642
643 if (ext4_has_inline_data(inode)) {
644 ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_XATTR,
645 handle);
646 return;
647 }
648
649 args.start = start;
650 args.end = end;
651
652 ret = ext4_fc_track_template(handle, inode, __track_range, &args, 1);
653
654 trace_ext4_fc_track_range(handle, inode, start, end, ret);
655 }
656
ext4_fc_submit_bh(struct super_block * sb,bool is_tail)657 static void ext4_fc_submit_bh(struct super_block *sb, bool is_tail)
658 {
659 blk_opf_t write_flags = REQ_SYNC;
660 struct buffer_head *bh = EXT4_SB(sb)->s_fc_bh;
661
662 /* Add REQ_FUA | REQ_PREFLUSH only its tail */
663 if (test_opt(sb, BARRIER) && is_tail)
664 write_flags |= REQ_FUA | REQ_PREFLUSH;
665 lock_buffer(bh);
666 set_buffer_dirty(bh);
667 set_buffer_uptodate(bh);
668 bh->b_end_io = ext4_end_buffer_io_sync;
669 submit_bh(REQ_OP_WRITE | write_flags, bh);
670 EXT4_SB(sb)->s_fc_bh = NULL;
671 }
672
673 /* Ext4 commit path routines */
674
675 /*
676 * Allocate len bytes on a fast commit buffer.
677 *
678 * During the commit time this function is used to manage fast commit
679 * block space. We don't split a fast commit log onto different
680 * blocks. So this function makes sure that if there's not enough space
681 * on the current block, the remaining space in the current block is
682 * marked as unused by adding EXT4_FC_TAG_PAD tag. In that case,
683 * new block is from jbd2 and CRC is updated to reflect the padding
684 * we added.
685 */
ext4_fc_reserve_space(struct super_block * sb,int len,u32 * crc)686 static u8 *ext4_fc_reserve_space(struct super_block *sb, int len, u32 *crc)
687 {
688 struct ext4_fc_tl tl;
689 struct ext4_sb_info *sbi = EXT4_SB(sb);
690 struct buffer_head *bh;
691 int bsize = sbi->s_journal->j_blocksize;
692 int ret, off = sbi->s_fc_bytes % bsize;
693 int remaining;
694 u8 *dst;
695
696 /*
697 * If 'len' is too long to fit in any block alongside a PAD tlv, then we
698 * cannot fulfill the request.
699 */
700 if (len > bsize - EXT4_FC_TAG_BASE_LEN)
701 return NULL;
702
703 if (!sbi->s_fc_bh) {
704 ret = jbd2_fc_get_buf(EXT4_SB(sb)->s_journal, &bh);
705 if (ret)
706 return NULL;
707 sbi->s_fc_bh = bh;
708 }
709 dst = sbi->s_fc_bh->b_data + off;
710
711 /*
712 * Allocate the bytes in the current block if we can do so while still
713 * leaving enough space for a PAD tlv.
714 */
715 remaining = bsize - EXT4_FC_TAG_BASE_LEN - off;
716 if (len <= remaining) {
717 sbi->s_fc_bytes += len;
718 return dst;
719 }
720
721 /*
722 * Else, terminate the current block with a PAD tlv, then allocate a new
723 * block and allocate the bytes at the start of that new block.
724 */
725
726 tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_PAD);
727 tl.fc_len = cpu_to_le16(remaining);
728 memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN);
729 memset(dst + EXT4_FC_TAG_BASE_LEN, 0, remaining);
730 *crc = ext4_chksum(sbi, *crc, sbi->s_fc_bh->b_data, bsize);
731
732 ext4_fc_submit_bh(sb, false);
733
734 ret = jbd2_fc_get_buf(EXT4_SB(sb)->s_journal, &bh);
735 if (ret)
736 return NULL;
737 sbi->s_fc_bh = bh;
738 sbi->s_fc_bytes += bsize - off + len;
739 return sbi->s_fc_bh->b_data;
740 }
741
742 /*
743 * Complete a fast commit by writing tail tag.
744 *
745 * Writing tail tag marks the end of a fast commit. In order to guarantee
746 * atomicity, after writing tail tag, even if there's space remaining
747 * in the block, next commit shouldn't use it. That's why tail tag
748 * has the length as that of the remaining space on the block.
749 */
ext4_fc_write_tail(struct super_block * sb,u32 crc)750 static int ext4_fc_write_tail(struct super_block *sb, u32 crc)
751 {
752 struct ext4_sb_info *sbi = EXT4_SB(sb);
753 struct ext4_fc_tl tl;
754 struct ext4_fc_tail tail;
755 int off, bsize = sbi->s_journal->j_blocksize;
756 u8 *dst;
757
758 /*
759 * ext4_fc_reserve_space takes care of allocating an extra block if
760 * there's no enough space on this block for accommodating this tail.
761 */
762 dst = ext4_fc_reserve_space(sb, EXT4_FC_TAG_BASE_LEN + sizeof(tail), &crc);
763 if (!dst)
764 return -ENOSPC;
765
766 off = sbi->s_fc_bytes % bsize;
767
768 tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_TAIL);
769 tl.fc_len = cpu_to_le16(bsize - off + sizeof(struct ext4_fc_tail));
770 sbi->s_fc_bytes = round_up(sbi->s_fc_bytes, bsize);
771
772 memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN);
773 dst += EXT4_FC_TAG_BASE_LEN;
774 tail.fc_tid = cpu_to_le32(sbi->s_journal->j_running_transaction->t_tid);
775 memcpy(dst, &tail.fc_tid, sizeof(tail.fc_tid));
776 dst += sizeof(tail.fc_tid);
777 crc = ext4_chksum(sbi, crc, sbi->s_fc_bh->b_data,
778 dst - (u8 *)sbi->s_fc_bh->b_data);
779 tail.fc_crc = cpu_to_le32(crc);
780 memcpy(dst, &tail.fc_crc, sizeof(tail.fc_crc));
781 dst += sizeof(tail.fc_crc);
782 memset(dst, 0, bsize - off); /* Don't leak uninitialized memory. */
783
784 ext4_fc_submit_bh(sb, true);
785
786 return 0;
787 }
788
789 /*
790 * Adds tag, length, value and updates CRC. Returns true if tlv was added.
791 * Returns false if there's not enough space.
792 */
ext4_fc_add_tlv(struct super_block * sb,u16 tag,u16 len,u8 * val,u32 * crc)793 static bool ext4_fc_add_tlv(struct super_block *sb, u16 tag, u16 len, u8 *val,
794 u32 *crc)
795 {
796 struct ext4_fc_tl tl;
797 u8 *dst;
798
799 dst = ext4_fc_reserve_space(sb, EXT4_FC_TAG_BASE_LEN + len, crc);
800 if (!dst)
801 return false;
802
803 tl.fc_tag = cpu_to_le16(tag);
804 tl.fc_len = cpu_to_le16(len);
805
806 memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN);
807 memcpy(dst + EXT4_FC_TAG_BASE_LEN, val, len);
808
809 return true;
810 }
811
812 /* Same as above, but adds dentry tlv. */
ext4_fc_add_dentry_tlv(struct super_block * sb,u32 * crc,struct ext4_fc_dentry_update * fc_dentry)813 static bool ext4_fc_add_dentry_tlv(struct super_block *sb, u32 *crc,
814 struct ext4_fc_dentry_update *fc_dentry)
815 {
816 struct ext4_fc_dentry_info fcd;
817 struct ext4_fc_tl tl;
818 int dlen = fc_dentry->fcd_name.name.len;
819 u8 *dst = ext4_fc_reserve_space(sb,
820 EXT4_FC_TAG_BASE_LEN + sizeof(fcd) + dlen, crc);
821
822 if (!dst)
823 return false;
824
825 fcd.fc_parent_ino = cpu_to_le32(fc_dentry->fcd_parent);
826 fcd.fc_ino = cpu_to_le32(fc_dentry->fcd_ino);
827 tl.fc_tag = cpu_to_le16(fc_dentry->fcd_op);
828 tl.fc_len = cpu_to_le16(sizeof(fcd) + dlen);
829 memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN);
830 dst += EXT4_FC_TAG_BASE_LEN;
831 memcpy(dst, &fcd, sizeof(fcd));
832 dst += sizeof(fcd);
833 memcpy(dst, fc_dentry->fcd_name.name.name, dlen);
834
835 return true;
836 }
837
838 /*
839 * Writes inode in the fast commit space under TLV with tag @tag.
840 * Returns 0 on success, error on failure.
841 */
ext4_fc_write_inode(struct inode * inode,u32 * crc)842 static int ext4_fc_write_inode(struct inode *inode, u32 *crc)
843 {
844 struct ext4_inode_info *ei = EXT4_I(inode);
845 int inode_len = EXT4_GOOD_OLD_INODE_SIZE;
846 int ret;
847 struct ext4_iloc iloc;
848 struct ext4_fc_inode fc_inode;
849 struct ext4_fc_tl tl;
850 u8 *dst;
851
852 ret = ext4_get_inode_loc(inode, &iloc);
853 if (ret)
854 return ret;
855
856 if (ext4_test_inode_flag(inode, EXT4_INODE_INLINE_DATA))
857 inode_len = EXT4_INODE_SIZE(inode->i_sb);
858 else if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE)
859 inode_len += ei->i_extra_isize;
860
861 fc_inode.fc_ino = cpu_to_le32(inode->i_ino);
862 tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_INODE);
863 tl.fc_len = cpu_to_le16(inode_len + sizeof(fc_inode.fc_ino));
864
865 ret = -ECANCELED;
866 dst = ext4_fc_reserve_space(inode->i_sb,
867 EXT4_FC_TAG_BASE_LEN + inode_len + sizeof(fc_inode.fc_ino), crc);
868 if (!dst)
869 goto err;
870
871 memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN);
872 dst += EXT4_FC_TAG_BASE_LEN;
873 memcpy(dst, &fc_inode, sizeof(fc_inode));
874 dst += sizeof(fc_inode);
875 memcpy(dst, (u8 *)ext4_raw_inode(&iloc), inode_len);
876 ret = 0;
877 err:
878 brelse(iloc.bh);
879 return ret;
880 }
881
882 /*
883 * Writes updated data ranges for the inode in question. Updates CRC.
884 * Returns 0 on success, error otherwise.
885 */
ext4_fc_write_inode_data(struct inode * inode,u32 * crc)886 static int ext4_fc_write_inode_data(struct inode *inode, u32 *crc)
887 {
888 ext4_lblk_t old_blk_size, cur_lblk_off, new_blk_size;
889 struct ext4_inode_info *ei = EXT4_I(inode);
890 struct ext4_map_blocks map;
891 struct ext4_fc_add_range fc_ext;
892 struct ext4_fc_del_range lrange;
893 struct ext4_extent *ex;
894 int ret;
895
896 mutex_lock(&ei->i_fc_lock);
897 if (ei->i_fc_lblk_len == 0) {
898 mutex_unlock(&ei->i_fc_lock);
899 return 0;
900 }
901 old_blk_size = ei->i_fc_lblk_start;
902 new_blk_size = ei->i_fc_lblk_start + ei->i_fc_lblk_len - 1;
903 ei->i_fc_lblk_len = 0;
904 mutex_unlock(&ei->i_fc_lock);
905
906 cur_lblk_off = old_blk_size;
907 ext4_debug("will try writing %d to %d for inode %ld\n",
908 cur_lblk_off, new_blk_size, inode->i_ino);
909
910 while (cur_lblk_off <= new_blk_size) {
911 map.m_lblk = cur_lblk_off;
912 map.m_len = new_blk_size - cur_lblk_off + 1;
913 ret = ext4_map_blocks(NULL, inode, &map, 0);
914 if (ret < 0)
915 return -ECANCELED;
916
917 if (map.m_len == 0) {
918 cur_lblk_off++;
919 continue;
920 }
921
922 if (ret == 0) {
923 lrange.fc_ino = cpu_to_le32(inode->i_ino);
924 lrange.fc_lblk = cpu_to_le32(map.m_lblk);
925 lrange.fc_len = cpu_to_le32(map.m_len);
926 if (!ext4_fc_add_tlv(inode->i_sb, EXT4_FC_TAG_DEL_RANGE,
927 sizeof(lrange), (u8 *)&lrange, crc))
928 return -ENOSPC;
929 } else {
930 unsigned int max = (map.m_flags & EXT4_MAP_UNWRITTEN) ?
931 EXT_UNWRITTEN_MAX_LEN : EXT_INIT_MAX_LEN;
932
933 /* Limit the number of blocks in one extent */
934 map.m_len = min(max, map.m_len);
935
936 fc_ext.fc_ino = cpu_to_le32(inode->i_ino);
937 ex = (struct ext4_extent *)&fc_ext.fc_ex;
938 ex->ee_block = cpu_to_le32(map.m_lblk);
939 ex->ee_len = cpu_to_le16(map.m_len);
940 ext4_ext_store_pblock(ex, map.m_pblk);
941 if (map.m_flags & EXT4_MAP_UNWRITTEN)
942 ext4_ext_mark_unwritten(ex);
943 else
944 ext4_ext_mark_initialized(ex);
945 if (!ext4_fc_add_tlv(inode->i_sb, EXT4_FC_TAG_ADD_RANGE,
946 sizeof(fc_ext), (u8 *)&fc_ext, crc))
947 return -ENOSPC;
948 }
949
950 cur_lblk_off += map.m_len;
951 }
952
953 return 0;
954 }
955
956
957 /* Submit data for all the fast commit inodes */
ext4_fc_submit_inode_data_all(journal_t * journal)958 static int ext4_fc_submit_inode_data_all(journal_t *journal)
959 {
960 struct super_block *sb = journal->j_private;
961 struct ext4_sb_info *sbi = EXT4_SB(sb);
962 struct ext4_inode_info *ei;
963 int ret = 0;
964
965 spin_lock(&sbi->s_fc_lock);
966 list_for_each_entry(ei, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) {
967 ext4_set_inode_state(&ei->vfs_inode, EXT4_STATE_FC_COMMITTING);
968 while (atomic_read(&ei->i_fc_updates)) {
969 DEFINE_WAIT(wait);
970
971 prepare_to_wait(&ei->i_fc_wait, &wait,
972 TASK_UNINTERRUPTIBLE);
973 if (atomic_read(&ei->i_fc_updates)) {
974 spin_unlock(&sbi->s_fc_lock);
975 schedule();
976 spin_lock(&sbi->s_fc_lock);
977 }
978 finish_wait(&ei->i_fc_wait, &wait);
979 }
980 spin_unlock(&sbi->s_fc_lock);
981 ret = jbd2_submit_inode_data(journal, ei->jinode);
982 if (ret)
983 return ret;
984 spin_lock(&sbi->s_fc_lock);
985 }
986 spin_unlock(&sbi->s_fc_lock);
987
988 return ret;
989 }
990
991 /* Wait for completion of data for all the fast commit inodes */
ext4_fc_wait_inode_data_all(journal_t * journal)992 static int ext4_fc_wait_inode_data_all(journal_t *journal)
993 {
994 struct super_block *sb = journal->j_private;
995 struct ext4_sb_info *sbi = EXT4_SB(sb);
996 struct ext4_inode_info *pos, *n;
997 int ret = 0;
998
999 spin_lock(&sbi->s_fc_lock);
1000 list_for_each_entry_safe(pos, n, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) {
1001 if (!ext4_test_inode_state(&pos->vfs_inode,
1002 EXT4_STATE_FC_COMMITTING))
1003 continue;
1004 spin_unlock(&sbi->s_fc_lock);
1005
1006 ret = jbd2_wait_inode_data(journal, pos->jinode);
1007 if (ret)
1008 return ret;
1009 spin_lock(&sbi->s_fc_lock);
1010 }
1011 spin_unlock(&sbi->s_fc_lock);
1012
1013 return 0;
1014 }
1015
1016 /* Commit all the directory entry updates */
ext4_fc_commit_dentry_updates(journal_t * journal,u32 * crc)1017 static int ext4_fc_commit_dentry_updates(journal_t *journal, u32 *crc)
1018 __acquires(&sbi->s_fc_lock)
1019 __releases(&sbi->s_fc_lock)
1020 {
1021 struct super_block *sb = journal->j_private;
1022 struct ext4_sb_info *sbi = EXT4_SB(sb);
1023 struct ext4_fc_dentry_update *fc_dentry, *fc_dentry_n;
1024 struct inode *inode;
1025 struct ext4_inode_info *ei;
1026 int ret;
1027
1028 if (list_empty(&sbi->s_fc_dentry_q[FC_Q_MAIN]))
1029 return 0;
1030 list_for_each_entry_safe(fc_dentry, fc_dentry_n,
1031 &sbi->s_fc_dentry_q[FC_Q_MAIN], fcd_list) {
1032 if (fc_dentry->fcd_op != EXT4_FC_TAG_CREAT) {
1033 spin_unlock(&sbi->s_fc_lock);
1034 if (!ext4_fc_add_dentry_tlv(sb, crc, fc_dentry)) {
1035 ret = -ENOSPC;
1036 goto lock_and_exit;
1037 }
1038 spin_lock(&sbi->s_fc_lock);
1039 continue;
1040 }
1041 /*
1042 * With fcd_dilist we need not loop in sbi->s_fc_q to get the
1043 * corresponding inode pointer
1044 */
1045 WARN_ON(list_empty(&fc_dentry->fcd_dilist));
1046 ei = list_first_entry(&fc_dentry->fcd_dilist,
1047 struct ext4_inode_info, i_fc_dilist);
1048 inode = &ei->vfs_inode;
1049 WARN_ON(inode->i_ino != fc_dentry->fcd_ino);
1050
1051 spin_unlock(&sbi->s_fc_lock);
1052
1053 /*
1054 * We first write the inode and then the create dirent. This
1055 * allows the recovery code to create an unnamed inode first
1056 * and then link it to a directory entry. This allows us
1057 * to use namei.c routines almost as is and simplifies
1058 * the recovery code.
1059 */
1060 ret = ext4_fc_write_inode(inode, crc);
1061 if (ret)
1062 goto lock_and_exit;
1063
1064 ret = ext4_fc_write_inode_data(inode, crc);
1065 if (ret)
1066 goto lock_and_exit;
1067
1068 if (!ext4_fc_add_dentry_tlv(sb, crc, fc_dentry)) {
1069 ret = -ENOSPC;
1070 goto lock_and_exit;
1071 }
1072
1073 spin_lock(&sbi->s_fc_lock);
1074 }
1075 return 0;
1076 lock_and_exit:
1077 spin_lock(&sbi->s_fc_lock);
1078 return ret;
1079 }
1080
ext4_fc_perform_commit(journal_t * journal)1081 static int ext4_fc_perform_commit(journal_t *journal)
1082 {
1083 struct super_block *sb = journal->j_private;
1084 struct ext4_sb_info *sbi = EXT4_SB(sb);
1085 struct ext4_inode_info *iter;
1086 struct ext4_fc_head head;
1087 struct inode *inode;
1088 struct blk_plug plug;
1089 int ret = 0;
1090 u32 crc = 0;
1091
1092 ret = ext4_fc_submit_inode_data_all(journal);
1093 if (ret)
1094 return ret;
1095
1096 ret = ext4_fc_wait_inode_data_all(journal);
1097 if (ret)
1098 return ret;
1099
1100 /*
1101 * If file system device is different from journal device, issue a cache
1102 * flush before we start writing fast commit blocks.
1103 */
1104 if (journal->j_fs_dev != journal->j_dev)
1105 blkdev_issue_flush(journal->j_fs_dev);
1106
1107 blk_start_plug(&plug);
1108 if (sbi->s_fc_bytes == 0) {
1109 /*
1110 * Add a head tag only if this is the first fast commit
1111 * in this TID.
1112 */
1113 head.fc_features = cpu_to_le32(EXT4_FC_SUPPORTED_FEATURES);
1114 head.fc_tid = cpu_to_le32(
1115 sbi->s_journal->j_running_transaction->t_tid);
1116 if (!ext4_fc_add_tlv(sb, EXT4_FC_TAG_HEAD, sizeof(head),
1117 (u8 *)&head, &crc)) {
1118 ret = -ENOSPC;
1119 goto out;
1120 }
1121 }
1122
1123 spin_lock(&sbi->s_fc_lock);
1124 ret = ext4_fc_commit_dentry_updates(journal, &crc);
1125 if (ret) {
1126 spin_unlock(&sbi->s_fc_lock);
1127 goto out;
1128 }
1129
1130 list_for_each_entry(iter, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) {
1131 inode = &iter->vfs_inode;
1132 if (!ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING))
1133 continue;
1134
1135 spin_unlock(&sbi->s_fc_lock);
1136 ret = ext4_fc_write_inode_data(inode, &crc);
1137 if (ret)
1138 goto out;
1139 ret = ext4_fc_write_inode(inode, &crc);
1140 if (ret)
1141 goto out;
1142 spin_lock(&sbi->s_fc_lock);
1143 }
1144 spin_unlock(&sbi->s_fc_lock);
1145
1146 ret = ext4_fc_write_tail(sb, crc);
1147
1148 out:
1149 blk_finish_plug(&plug);
1150 return ret;
1151 }
1152
ext4_fc_update_stats(struct super_block * sb,int status,u64 commit_time,int nblks,tid_t commit_tid)1153 static void ext4_fc_update_stats(struct super_block *sb, int status,
1154 u64 commit_time, int nblks, tid_t commit_tid)
1155 {
1156 struct ext4_fc_stats *stats = &EXT4_SB(sb)->s_fc_stats;
1157
1158 ext4_debug("Fast commit ended with status = %d for tid %u",
1159 status, commit_tid);
1160 if (status == EXT4_FC_STATUS_OK) {
1161 stats->fc_num_commits++;
1162 stats->fc_numblks += nblks;
1163 if (likely(stats->s_fc_avg_commit_time))
1164 stats->s_fc_avg_commit_time =
1165 (commit_time +
1166 stats->s_fc_avg_commit_time * 3) / 4;
1167 else
1168 stats->s_fc_avg_commit_time = commit_time;
1169 } else if (status == EXT4_FC_STATUS_FAILED ||
1170 status == EXT4_FC_STATUS_INELIGIBLE) {
1171 if (status == EXT4_FC_STATUS_FAILED)
1172 stats->fc_failed_commits++;
1173 stats->fc_ineligible_commits++;
1174 } else {
1175 stats->fc_skipped_commits++;
1176 }
1177 trace_ext4_fc_commit_stop(sb, nblks, status, commit_tid);
1178 }
1179
1180 /*
1181 * The main commit entry point. Performs a fast commit for transaction
1182 * commit_tid if needed. If it's not possible to perform a fast commit
1183 * due to various reasons, we fall back to full commit. Returns 0
1184 * on success, error otherwise.
1185 */
ext4_fc_commit(journal_t * journal,tid_t commit_tid)1186 int ext4_fc_commit(journal_t *journal, tid_t commit_tid)
1187 {
1188 struct super_block *sb = journal->j_private;
1189 struct ext4_sb_info *sbi = EXT4_SB(sb);
1190 int nblks = 0, ret, bsize = journal->j_blocksize;
1191 int subtid = atomic_read(&sbi->s_fc_subtid);
1192 int status = EXT4_FC_STATUS_OK, fc_bufs_before = 0;
1193 ktime_t start_time, commit_time;
1194
1195 if (!test_opt2(sb, JOURNAL_FAST_COMMIT))
1196 return jbd2_complete_transaction(journal, commit_tid);
1197
1198 trace_ext4_fc_commit_start(sb, commit_tid);
1199
1200 start_time = ktime_get();
1201
1202 restart_fc:
1203 ret = jbd2_fc_begin_commit(journal, commit_tid);
1204 if (ret == -EALREADY) {
1205 /* There was an ongoing commit, check if we need to restart */
1206 if (atomic_read(&sbi->s_fc_subtid) <= subtid &&
1207 tid_gt(commit_tid, journal->j_commit_sequence))
1208 goto restart_fc;
1209 ext4_fc_update_stats(sb, EXT4_FC_STATUS_SKIPPED, 0, 0,
1210 commit_tid);
1211 return 0;
1212 } else if (ret) {
1213 /*
1214 * Commit couldn't start. Just update stats and perform a
1215 * full commit.
1216 */
1217 ext4_fc_update_stats(sb, EXT4_FC_STATUS_FAILED, 0, 0,
1218 commit_tid);
1219 return jbd2_complete_transaction(journal, commit_tid);
1220 }
1221
1222 /*
1223 * After establishing journal barrier via jbd2_fc_begin_commit(), check
1224 * if we are fast commit ineligible.
1225 */
1226 if (ext4_test_mount_flag(sb, EXT4_MF_FC_INELIGIBLE)) {
1227 status = EXT4_FC_STATUS_INELIGIBLE;
1228 goto fallback;
1229 }
1230
1231 fc_bufs_before = (sbi->s_fc_bytes + bsize - 1) / bsize;
1232 ret = ext4_fc_perform_commit(journal);
1233 if (ret < 0) {
1234 status = EXT4_FC_STATUS_FAILED;
1235 goto fallback;
1236 }
1237 nblks = (sbi->s_fc_bytes + bsize - 1) / bsize - fc_bufs_before;
1238 ret = jbd2_fc_wait_bufs(journal, nblks);
1239 if (ret < 0) {
1240 status = EXT4_FC_STATUS_FAILED;
1241 goto fallback;
1242 }
1243 atomic_inc(&sbi->s_fc_subtid);
1244 ret = jbd2_fc_end_commit(journal);
1245 /*
1246 * weight the commit time higher than the average time so we
1247 * don't react too strongly to vast changes in the commit time
1248 */
1249 commit_time = ktime_to_ns(ktime_sub(ktime_get(), start_time));
1250 ext4_fc_update_stats(sb, status, commit_time, nblks, commit_tid);
1251 return ret;
1252
1253 fallback:
1254 ret = jbd2_fc_end_commit_fallback(journal);
1255 ext4_fc_update_stats(sb, status, 0, 0, commit_tid);
1256 return ret;
1257 }
1258
1259 /*
1260 * Fast commit cleanup routine. This is called after every fast commit and
1261 * full commit. full is true if we are called after a full commit.
1262 */
ext4_fc_cleanup(journal_t * journal,int full,tid_t tid)1263 static void ext4_fc_cleanup(journal_t *journal, int full, tid_t tid)
1264 {
1265 struct super_block *sb = journal->j_private;
1266 struct ext4_sb_info *sbi = EXT4_SB(sb);
1267 struct ext4_inode_info *iter, *iter_n;
1268 struct ext4_fc_dentry_update *fc_dentry;
1269
1270 if (full && sbi->s_fc_bh)
1271 sbi->s_fc_bh = NULL;
1272
1273 trace_ext4_fc_cleanup(journal, full, tid);
1274 jbd2_fc_release_bufs(journal);
1275
1276 spin_lock(&sbi->s_fc_lock);
1277 list_for_each_entry_safe(iter, iter_n, &sbi->s_fc_q[FC_Q_MAIN],
1278 i_fc_list) {
1279 list_del_init(&iter->i_fc_list);
1280 ext4_clear_inode_state(&iter->vfs_inode,
1281 EXT4_STATE_FC_COMMITTING);
1282 if (tid_geq(tid, iter->i_sync_tid)) {
1283 ext4_fc_reset_inode(&iter->vfs_inode);
1284 } else if (full) {
1285 /*
1286 * We are called after a full commit, inode has been
1287 * modified while the commit was running. Re-enqueue
1288 * the inode into STAGING, which will then be splice
1289 * back into MAIN. This cannot happen during
1290 * fastcommit because the journal is locked all the
1291 * time in that case (and tid doesn't increase so
1292 * tid check above isn't reliable).
1293 */
1294 list_add_tail(&EXT4_I(&iter->vfs_inode)->i_fc_list,
1295 &sbi->s_fc_q[FC_Q_STAGING]);
1296 }
1297 /* Make sure EXT4_STATE_FC_COMMITTING bit is clear */
1298 smp_mb();
1299 #if (BITS_PER_LONG < 64)
1300 wake_up_bit(&iter->i_state_flags, EXT4_STATE_FC_COMMITTING);
1301 #else
1302 wake_up_bit(&iter->i_flags, EXT4_STATE_FC_COMMITTING);
1303 #endif
1304 }
1305
1306 while (!list_empty(&sbi->s_fc_dentry_q[FC_Q_MAIN])) {
1307 fc_dentry = list_first_entry(&sbi->s_fc_dentry_q[FC_Q_MAIN],
1308 struct ext4_fc_dentry_update,
1309 fcd_list);
1310 list_del_init(&fc_dentry->fcd_list);
1311 list_del_init(&fc_dentry->fcd_dilist);
1312 spin_unlock(&sbi->s_fc_lock);
1313
1314 release_dentry_name_snapshot(&fc_dentry->fcd_name);
1315 kmem_cache_free(ext4_fc_dentry_cachep, fc_dentry);
1316 spin_lock(&sbi->s_fc_lock);
1317 }
1318
1319 list_splice_init(&sbi->s_fc_dentry_q[FC_Q_STAGING],
1320 &sbi->s_fc_dentry_q[FC_Q_MAIN]);
1321 list_splice_init(&sbi->s_fc_q[FC_Q_STAGING],
1322 &sbi->s_fc_q[FC_Q_MAIN]);
1323
1324 if (tid_geq(tid, sbi->s_fc_ineligible_tid)) {
1325 sbi->s_fc_ineligible_tid = 0;
1326 ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
1327 }
1328
1329 if (full)
1330 sbi->s_fc_bytes = 0;
1331 spin_unlock(&sbi->s_fc_lock);
1332 trace_ext4_fc_stats(sb);
1333 }
1334
1335 /* Ext4 Replay Path Routines */
1336
1337 /* Helper struct for dentry replay routines */
1338 struct dentry_info_args {
1339 int parent_ino, dname_len, ino, inode_len;
1340 char *dname;
1341 };
1342
1343 /* Same as struct ext4_fc_tl, but uses native endianness fields */
1344 struct ext4_fc_tl_mem {
1345 u16 fc_tag;
1346 u16 fc_len;
1347 };
1348
tl_to_darg(struct dentry_info_args * darg,struct ext4_fc_tl_mem * tl,u8 * val)1349 static inline void tl_to_darg(struct dentry_info_args *darg,
1350 struct ext4_fc_tl_mem *tl, u8 *val)
1351 {
1352 struct ext4_fc_dentry_info fcd;
1353
1354 memcpy(&fcd, val, sizeof(fcd));
1355
1356 darg->parent_ino = le32_to_cpu(fcd.fc_parent_ino);
1357 darg->ino = le32_to_cpu(fcd.fc_ino);
1358 darg->dname = val + offsetof(struct ext4_fc_dentry_info, fc_dname);
1359 darg->dname_len = tl->fc_len - sizeof(struct ext4_fc_dentry_info);
1360 }
1361
ext4_fc_get_tl(struct ext4_fc_tl_mem * tl,u8 * val)1362 static inline void ext4_fc_get_tl(struct ext4_fc_tl_mem *tl, u8 *val)
1363 {
1364 struct ext4_fc_tl tl_disk;
1365
1366 memcpy(&tl_disk, val, EXT4_FC_TAG_BASE_LEN);
1367 tl->fc_len = le16_to_cpu(tl_disk.fc_len);
1368 tl->fc_tag = le16_to_cpu(tl_disk.fc_tag);
1369 }
1370
1371 /* Unlink replay function */
ext4_fc_replay_unlink(struct super_block * sb,struct ext4_fc_tl_mem * tl,u8 * val)1372 static int ext4_fc_replay_unlink(struct super_block *sb,
1373 struct ext4_fc_tl_mem *tl, u8 *val)
1374 {
1375 struct inode *inode, *old_parent;
1376 struct qstr entry;
1377 struct dentry_info_args darg;
1378 int ret = 0;
1379
1380 tl_to_darg(&darg, tl, val);
1381
1382 trace_ext4_fc_replay(sb, EXT4_FC_TAG_UNLINK, darg.ino,
1383 darg.parent_ino, darg.dname_len);
1384
1385 entry.name = darg.dname;
1386 entry.len = darg.dname_len;
1387 inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL);
1388
1389 if (IS_ERR(inode)) {
1390 ext4_debug("Inode %d not found", darg.ino);
1391 return 0;
1392 }
1393
1394 old_parent = ext4_iget(sb, darg.parent_ino,
1395 EXT4_IGET_NORMAL);
1396 if (IS_ERR(old_parent)) {
1397 ext4_debug("Dir with inode %d not found", darg.parent_ino);
1398 iput(inode);
1399 return 0;
1400 }
1401
1402 ret = __ext4_unlink(old_parent, &entry, inode, NULL);
1403 /* -ENOENT ok coz it might not exist anymore. */
1404 if (ret == -ENOENT)
1405 ret = 0;
1406 iput(old_parent);
1407 iput(inode);
1408 return ret;
1409 }
1410
ext4_fc_replay_link_internal(struct super_block * sb,struct dentry_info_args * darg,struct inode * inode)1411 static int ext4_fc_replay_link_internal(struct super_block *sb,
1412 struct dentry_info_args *darg,
1413 struct inode *inode)
1414 {
1415 struct inode *dir = NULL;
1416 struct dentry *dentry_dir = NULL, *dentry_inode = NULL;
1417 struct qstr qstr_dname = QSTR_INIT(darg->dname, darg->dname_len);
1418 int ret = 0;
1419
1420 dir = ext4_iget(sb, darg->parent_ino, EXT4_IGET_NORMAL);
1421 if (IS_ERR(dir)) {
1422 ext4_debug("Dir with inode %d not found.", darg->parent_ino);
1423 dir = NULL;
1424 goto out;
1425 }
1426
1427 dentry_dir = d_obtain_alias(dir);
1428 if (IS_ERR(dentry_dir)) {
1429 ext4_debug("Failed to obtain dentry");
1430 dentry_dir = NULL;
1431 goto out;
1432 }
1433
1434 dentry_inode = d_alloc(dentry_dir, &qstr_dname);
1435 if (!dentry_inode) {
1436 ext4_debug("Inode dentry not created.");
1437 ret = -ENOMEM;
1438 goto out;
1439 }
1440
1441 ret = __ext4_link(dir, inode, dentry_inode);
1442 /*
1443 * It's possible that link already existed since data blocks
1444 * for the dir in question got persisted before we crashed OR
1445 * we replayed this tag and crashed before the entire replay
1446 * could complete.
1447 */
1448 if (ret && ret != -EEXIST) {
1449 ext4_debug("Failed to link\n");
1450 goto out;
1451 }
1452
1453 ret = 0;
1454 out:
1455 if (dentry_dir) {
1456 d_drop(dentry_dir);
1457 dput(dentry_dir);
1458 } else if (dir) {
1459 iput(dir);
1460 }
1461 if (dentry_inode) {
1462 d_drop(dentry_inode);
1463 dput(dentry_inode);
1464 }
1465
1466 return ret;
1467 }
1468
1469 /* Link replay function */
ext4_fc_replay_link(struct super_block * sb,struct ext4_fc_tl_mem * tl,u8 * val)1470 static int ext4_fc_replay_link(struct super_block *sb,
1471 struct ext4_fc_tl_mem *tl, u8 *val)
1472 {
1473 struct inode *inode;
1474 struct dentry_info_args darg;
1475 int ret = 0;
1476
1477 tl_to_darg(&darg, tl, val);
1478 trace_ext4_fc_replay(sb, EXT4_FC_TAG_LINK, darg.ino,
1479 darg.parent_ino, darg.dname_len);
1480
1481 inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL);
1482 if (IS_ERR(inode)) {
1483 ext4_debug("Inode not found.");
1484 return 0;
1485 }
1486
1487 ret = ext4_fc_replay_link_internal(sb, &darg, inode);
1488 iput(inode);
1489 return ret;
1490 }
1491
1492 /*
1493 * Record all the modified inodes during replay. We use this later to setup
1494 * block bitmaps correctly.
1495 */
ext4_fc_record_modified_inode(struct super_block * sb,int ino)1496 static int ext4_fc_record_modified_inode(struct super_block *sb, int ino)
1497 {
1498 struct ext4_fc_replay_state *state;
1499 int i;
1500
1501 state = &EXT4_SB(sb)->s_fc_replay_state;
1502 for (i = 0; i < state->fc_modified_inodes_used; i++)
1503 if (state->fc_modified_inodes[i] == ino)
1504 return 0;
1505 if (state->fc_modified_inodes_used == state->fc_modified_inodes_size) {
1506 int *fc_modified_inodes;
1507
1508 fc_modified_inodes = krealloc(state->fc_modified_inodes,
1509 sizeof(int) * (state->fc_modified_inodes_size +
1510 EXT4_FC_REPLAY_REALLOC_INCREMENT),
1511 GFP_KERNEL);
1512 if (!fc_modified_inodes)
1513 return -ENOMEM;
1514 state->fc_modified_inodes = fc_modified_inodes;
1515 state->fc_modified_inodes_size +=
1516 EXT4_FC_REPLAY_REALLOC_INCREMENT;
1517 }
1518 state->fc_modified_inodes[state->fc_modified_inodes_used++] = ino;
1519 return 0;
1520 }
1521
1522 /*
1523 * Inode replay function
1524 */
ext4_fc_replay_inode(struct super_block * sb,struct ext4_fc_tl_mem * tl,u8 * val)1525 static int ext4_fc_replay_inode(struct super_block *sb,
1526 struct ext4_fc_tl_mem *tl, u8 *val)
1527 {
1528 struct ext4_fc_inode fc_inode;
1529 struct ext4_inode *raw_inode;
1530 struct ext4_inode *raw_fc_inode;
1531 struct inode *inode = NULL;
1532 struct ext4_iloc iloc;
1533 int inode_len, ino, ret, tag = tl->fc_tag;
1534 struct ext4_extent_header *eh;
1535 size_t off_gen = offsetof(struct ext4_inode, i_generation);
1536
1537 memcpy(&fc_inode, val, sizeof(fc_inode));
1538
1539 ino = le32_to_cpu(fc_inode.fc_ino);
1540 trace_ext4_fc_replay(sb, tag, ino, 0, 0);
1541
1542 inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL);
1543 if (!IS_ERR(inode)) {
1544 ext4_ext_clear_bb(inode);
1545 iput(inode);
1546 }
1547 inode = NULL;
1548
1549 ret = ext4_fc_record_modified_inode(sb, ino);
1550 if (ret)
1551 goto out;
1552
1553 raw_fc_inode = (struct ext4_inode *)
1554 (val + offsetof(struct ext4_fc_inode, fc_raw_inode));
1555 ret = ext4_get_fc_inode_loc(sb, ino, &iloc);
1556 if (ret)
1557 goto out;
1558
1559 inode_len = tl->fc_len - sizeof(struct ext4_fc_inode);
1560 raw_inode = ext4_raw_inode(&iloc);
1561
1562 memcpy(raw_inode, raw_fc_inode, offsetof(struct ext4_inode, i_block));
1563 memcpy((u8 *)raw_inode + off_gen, (u8 *)raw_fc_inode + off_gen,
1564 inode_len - off_gen);
1565 if (le32_to_cpu(raw_inode->i_flags) & EXT4_EXTENTS_FL) {
1566 eh = (struct ext4_extent_header *)(&raw_inode->i_block[0]);
1567 if (eh->eh_magic != EXT4_EXT_MAGIC) {
1568 memset(eh, 0, sizeof(*eh));
1569 eh->eh_magic = EXT4_EXT_MAGIC;
1570 eh->eh_max = cpu_to_le16(
1571 (sizeof(raw_inode->i_block) -
1572 sizeof(struct ext4_extent_header))
1573 / sizeof(struct ext4_extent));
1574 }
1575 } else if (le32_to_cpu(raw_inode->i_flags) & EXT4_INLINE_DATA_FL) {
1576 memcpy(raw_inode->i_block, raw_fc_inode->i_block,
1577 sizeof(raw_inode->i_block));
1578 }
1579
1580 /* Immediately update the inode on disk. */
1581 ret = ext4_handle_dirty_metadata(NULL, NULL, iloc.bh);
1582 if (ret)
1583 goto out;
1584 ret = sync_dirty_buffer(iloc.bh);
1585 if (ret)
1586 goto out;
1587 ret = ext4_mark_inode_used(sb, ino);
1588 if (ret)
1589 goto out;
1590
1591 /* Given that we just wrote the inode on disk, this SHOULD succeed. */
1592 inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL);
1593 if (IS_ERR(inode)) {
1594 ext4_debug("Inode not found.");
1595 return -EFSCORRUPTED;
1596 }
1597
1598 /*
1599 * Our allocator could have made different decisions than before
1600 * crashing. This should be fixed but until then, we calculate
1601 * the number of blocks the inode.
1602 */
1603 if (!ext4_test_inode_flag(inode, EXT4_INODE_INLINE_DATA))
1604 ext4_ext_replay_set_iblocks(inode);
1605
1606 inode->i_generation = le32_to_cpu(ext4_raw_inode(&iloc)->i_generation);
1607 ext4_reset_inode_seed(inode);
1608
1609 ext4_inode_csum_set(inode, ext4_raw_inode(&iloc), EXT4_I(inode));
1610 ret = ext4_handle_dirty_metadata(NULL, NULL, iloc.bh);
1611 sync_dirty_buffer(iloc.bh);
1612 brelse(iloc.bh);
1613 out:
1614 iput(inode);
1615 if (!ret)
1616 blkdev_issue_flush(sb->s_bdev);
1617
1618 return 0;
1619 }
1620
1621 /*
1622 * Dentry create replay function.
1623 *
1624 * EXT4_FC_TAG_CREAT is preceded by EXT4_FC_TAG_INODE_FULL. Which means, the
1625 * inode for which we are trying to create a dentry here, should already have
1626 * been replayed before we start here.
1627 */
ext4_fc_replay_create(struct super_block * sb,struct ext4_fc_tl_mem * tl,u8 * val)1628 static int ext4_fc_replay_create(struct super_block *sb,
1629 struct ext4_fc_tl_mem *tl, u8 *val)
1630 {
1631 int ret = 0;
1632 struct inode *inode = NULL;
1633 struct inode *dir = NULL;
1634 struct dentry_info_args darg;
1635
1636 tl_to_darg(&darg, tl, val);
1637
1638 trace_ext4_fc_replay(sb, EXT4_FC_TAG_CREAT, darg.ino,
1639 darg.parent_ino, darg.dname_len);
1640
1641 /* This takes care of update group descriptor and other metadata */
1642 ret = ext4_mark_inode_used(sb, darg.ino);
1643 if (ret)
1644 goto out;
1645
1646 inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL);
1647 if (IS_ERR(inode)) {
1648 ext4_debug("inode %d not found.", darg.ino);
1649 inode = NULL;
1650 ret = -EINVAL;
1651 goto out;
1652 }
1653
1654 if (S_ISDIR(inode->i_mode)) {
1655 /*
1656 * If we are creating a directory, we need to make sure that the
1657 * dot and dot dot dirents are setup properly.
1658 */
1659 dir = ext4_iget(sb, darg.parent_ino, EXT4_IGET_NORMAL);
1660 if (IS_ERR(dir)) {
1661 ext4_debug("Dir %d not found.", darg.ino);
1662 goto out;
1663 }
1664 ret = ext4_init_new_dir(NULL, dir, inode);
1665 iput(dir);
1666 if (ret) {
1667 ret = 0;
1668 goto out;
1669 }
1670 }
1671 ret = ext4_fc_replay_link_internal(sb, &darg, inode);
1672 if (ret)
1673 goto out;
1674 set_nlink(inode, 1);
1675 ext4_mark_inode_dirty(NULL, inode);
1676 out:
1677 iput(inode);
1678 return ret;
1679 }
1680
1681 /*
1682 * Record physical disk regions which are in use as per fast commit area,
1683 * and used by inodes during replay phase. Our simple replay phase
1684 * allocator excludes these regions from allocation.
1685 */
ext4_fc_record_regions(struct super_block * sb,int ino,ext4_lblk_t lblk,ext4_fsblk_t pblk,int len,int replay)1686 int ext4_fc_record_regions(struct super_block *sb, int ino,
1687 ext4_lblk_t lblk, ext4_fsblk_t pblk, int len, int replay)
1688 {
1689 struct ext4_fc_replay_state *state;
1690 struct ext4_fc_alloc_region *region;
1691
1692 state = &EXT4_SB(sb)->s_fc_replay_state;
1693 /*
1694 * during replay phase, the fc_regions_valid may not same as
1695 * fc_regions_used, update it when do new additions.
1696 */
1697 if (replay && state->fc_regions_used != state->fc_regions_valid)
1698 state->fc_regions_used = state->fc_regions_valid;
1699 if (state->fc_regions_used == state->fc_regions_size) {
1700 struct ext4_fc_alloc_region *fc_regions;
1701
1702 fc_regions = krealloc(state->fc_regions,
1703 sizeof(struct ext4_fc_alloc_region) *
1704 (state->fc_regions_size +
1705 EXT4_FC_REPLAY_REALLOC_INCREMENT),
1706 GFP_KERNEL);
1707 if (!fc_regions)
1708 return -ENOMEM;
1709 state->fc_regions_size +=
1710 EXT4_FC_REPLAY_REALLOC_INCREMENT;
1711 state->fc_regions = fc_regions;
1712 }
1713 region = &state->fc_regions[state->fc_regions_used++];
1714 region->ino = ino;
1715 region->lblk = lblk;
1716 region->pblk = pblk;
1717 region->len = len;
1718
1719 if (replay)
1720 state->fc_regions_valid++;
1721
1722 return 0;
1723 }
1724
1725 /* Replay add range tag */
ext4_fc_replay_add_range(struct super_block * sb,struct ext4_fc_tl_mem * tl,u8 * val)1726 static int ext4_fc_replay_add_range(struct super_block *sb,
1727 struct ext4_fc_tl_mem *tl, u8 *val)
1728 {
1729 struct ext4_fc_add_range fc_add_ex;
1730 struct ext4_extent newex, *ex;
1731 struct inode *inode;
1732 ext4_lblk_t start, cur;
1733 int remaining, len;
1734 ext4_fsblk_t start_pblk;
1735 struct ext4_map_blocks map;
1736 struct ext4_ext_path *path = NULL;
1737 int ret;
1738
1739 memcpy(&fc_add_ex, val, sizeof(fc_add_ex));
1740 ex = (struct ext4_extent *)&fc_add_ex.fc_ex;
1741
1742 trace_ext4_fc_replay(sb, EXT4_FC_TAG_ADD_RANGE,
1743 le32_to_cpu(fc_add_ex.fc_ino), le32_to_cpu(ex->ee_block),
1744 ext4_ext_get_actual_len(ex));
1745
1746 inode = ext4_iget(sb, le32_to_cpu(fc_add_ex.fc_ino), EXT4_IGET_NORMAL);
1747 if (IS_ERR(inode)) {
1748 ext4_debug("Inode not found.");
1749 return 0;
1750 }
1751
1752 ret = ext4_fc_record_modified_inode(sb, inode->i_ino);
1753 if (ret)
1754 goto out;
1755
1756 start = le32_to_cpu(ex->ee_block);
1757 start_pblk = ext4_ext_pblock(ex);
1758 len = ext4_ext_get_actual_len(ex);
1759
1760 cur = start;
1761 remaining = len;
1762 ext4_debug("ADD_RANGE, lblk %d, pblk %lld, len %d, unwritten %d, inode %ld\n",
1763 start, start_pblk, len, ext4_ext_is_unwritten(ex),
1764 inode->i_ino);
1765
1766 while (remaining > 0) {
1767 map.m_lblk = cur;
1768 map.m_len = remaining;
1769 map.m_pblk = 0;
1770 ret = ext4_map_blocks(NULL, inode, &map, 0);
1771
1772 if (ret < 0)
1773 goto out;
1774
1775 if (ret == 0) {
1776 /* Range is not mapped */
1777 path = ext4_find_extent(inode, cur, path, 0);
1778 if (IS_ERR(path))
1779 goto out;
1780 memset(&newex, 0, sizeof(newex));
1781 newex.ee_block = cpu_to_le32(cur);
1782 ext4_ext_store_pblock(
1783 &newex, start_pblk + cur - start);
1784 newex.ee_len = cpu_to_le16(map.m_len);
1785 if (ext4_ext_is_unwritten(ex))
1786 ext4_ext_mark_unwritten(&newex);
1787 down_write(&EXT4_I(inode)->i_data_sem);
1788 path = ext4_ext_insert_extent(NULL, inode,
1789 path, &newex, 0);
1790 up_write((&EXT4_I(inode)->i_data_sem));
1791 if (IS_ERR(path))
1792 goto out;
1793 goto next;
1794 }
1795
1796 if (start_pblk + cur - start != map.m_pblk) {
1797 /*
1798 * Logical to physical mapping changed. This can happen
1799 * if this range was removed and then reallocated to
1800 * map to new physical blocks during a fast commit.
1801 */
1802 ret = ext4_ext_replay_update_ex(inode, cur, map.m_len,
1803 ext4_ext_is_unwritten(ex),
1804 start_pblk + cur - start);
1805 if (ret)
1806 goto out;
1807 /*
1808 * Mark the old blocks as free since they aren't used
1809 * anymore. We maintain an array of all the modified
1810 * inodes. In case these blocks are still used at either
1811 * a different logical range in the same inode or in
1812 * some different inode, we will mark them as allocated
1813 * at the end of the FC replay using our array of
1814 * modified inodes.
1815 */
1816 ext4_mb_mark_bb(inode->i_sb, map.m_pblk, map.m_len, false);
1817 goto next;
1818 }
1819
1820 /* Range is mapped and needs a state change */
1821 ext4_debug("Converting from %ld to %d %lld",
1822 map.m_flags & EXT4_MAP_UNWRITTEN,
1823 ext4_ext_is_unwritten(ex), map.m_pblk);
1824 ret = ext4_ext_replay_update_ex(inode, cur, map.m_len,
1825 ext4_ext_is_unwritten(ex), map.m_pblk);
1826 if (ret)
1827 goto out;
1828 /*
1829 * We may have split the extent tree while toggling the state.
1830 * Try to shrink the extent tree now.
1831 */
1832 ext4_ext_replay_shrink_inode(inode, start + len);
1833 next:
1834 cur += map.m_len;
1835 remaining -= map.m_len;
1836 }
1837 ext4_ext_replay_shrink_inode(inode, i_size_read(inode) >>
1838 sb->s_blocksize_bits);
1839 out:
1840 ext4_free_ext_path(path);
1841 iput(inode);
1842 return 0;
1843 }
1844
1845 /* Replay DEL_RANGE tag */
1846 static int
ext4_fc_replay_del_range(struct super_block * sb,struct ext4_fc_tl_mem * tl,u8 * val)1847 ext4_fc_replay_del_range(struct super_block *sb,
1848 struct ext4_fc_tl_mem *tl, u8 *val)
1849 {
1850 struct inode *inode;
1851 struct ext4_fc_del_range lrange;
1852 struct ext4_map_blocks map;
1853 ext4_lblk_t cur, remaining;
1854 int ret;
1855
1856 memcpy(&lrange, val, sizeof(lrange));
1857 cur = le32_to_cpu(lrange.fc_lblk);
1858 remaining = le32_to_cpu(lrange.fc_len);
1859
1860 trace_ext4_fc_replay(sb, EXT4_FC_TAG_DEL_RANGE,
1861 le32_to_cpu(lrange.fc_ino), cur, remaining);
1862
1863 inode = ext4_iget(sb, le32_to_cpu(lrange.fc_ino), EXT4_IGET_NORMAL);
1864 if (IS_ERR(inode)) {
1865 ext4_debug("Inode %d not found", le32_to_cpu(lrange.fc_ino));
1866 return 0;
1867 }
1868
1869 ret = ext4_fc_record_modified_inode(sb, inode->i_ino);
1870 if (ret)
1871 goto out;
1872
1873 ext4_debug("DEL_RANGE, inode %ld, lblk %d, len %d\n",
1874 inode->i_ino, le32_to_cpu(lrange.fc_lblk),
1875 le32_to_cpu(lrange.fc_len));
1876 while (remaining > 0) {
1877 map.m_lblk = cur;
1878 map.m_len = remaining;
1879
1880 ret = ext4_map_blocks(NULL, inode, &map, 0);
1881 if (ret < 0)
1882 goto out;
1883 if (ret > 0) {
1884 remaining -= ret;
1885 cur += ret;
1886 ext4_mb_mark_bb(inode->i_sb, map.m_pblk, map.m_len, false);
1887 } else {
1888 remaining -= map.m_len;
1889 cur += map.m_len;
1890 }
1891 }
1892
1893 down_write(&EXT4_I(inode)->i_data_sem);
1894 ret = ext4_ext_remove_space(inode, le32_to_cpu(lrange.fc_lblk),
1895 le32_to_cpu(lrange.fc_lblk) +
1896 le32_to_cpu(lrange.fc_len) - 1);
1897 up_write(&EXT4_I(inode)->i_data_sem);
1898 if (ret)
1899 goto out;
1900 ext4_ext_replay_shrink_inode(inode,
1901 i_size_read(inode) >> sb->s_blocksize_bits);
1902 ext4_mark_inode_dirty(NULL, inode);
1903 out:
1904 iput(inode);
1905 return 0;
1906 }
1907
ext4_fc_set_bitmaps_and_counters(struct super_block * sb)1908 static void ext4_fc_set_bitmaps_and_counters(struct super_block *sb)
1909 {
1910 struct ext4_fc_replay_state *state;
1911 struct inode *inode;
1912 struct ext4_ext_path *path = NULL;
1913 struct ext4_map_blocks map;
1914 int i, ret, j;
1915 ext4_lblk_t cur, end;
1916
1917 state = &EXT4_SB(sb)->s_fc_replay_state;
1918 for (i = 0; i < state->fc_modified_inodes_used; i++) {
1919 inode = ext4_iget(sb, state->fc_modified_inodes[i],
1920 EXT4_IGET_NORMAL);
1921 if (IS_ERR(inode)) {
1922 ext4_debug("Inode %d not found.",
1923 state->fc_modified_inodes[i]);
1924 continue;
1925 }
1926 cur = 0;
1927 end = EXT_MAX_BLOCKS;
1928 if (ext4_test_inode_flag(inode, EXT4_INODE_INLINE_DATA)) {
1929 iput(inode);
1930 continue;
1931 }
1932 while (cur < end) {
1933 map.m_lblk = cur;
1934 map.m_len = end - cur;
1935
1936 ret = ext4_map_blocks(NULL, inode, &map, 0);
1937 if (ret < 0)
1938 break;
1939
1940 if (ret > 0) {
1941 path = ext4_find_extent(inode, map.m_lblk, path, 0);
1942 if (!IS_ERR(path)) {
1943 for (j = 0; j < path->p_depth; j++)
1944 ext4_mb_mark_bb(inode->i_sb,
1945 path[j].p_block, 1, true);
1946 } else {
1947 path = NULL;
1948 }
1949 cur += ret;
1950 ext4_mb_mark_bb(inode->i_sb, map.m_pblk,
1951 map.m_len, true);
1952 } else {
1953 cur = cur + (map.m_len ? map.m_len : 1);
1954 }
1955 }
1956 iput(inode);
1957 }
1958
1959 ext4_free_ext_path(path);
1960 }
1961
1962 /*
1963 * Check if block is in excluded regions for block allocation. The simple
1964 * allocator that runs during replay phase is calls this function to see
1965 * if it is okay to use a block.
1966 */
ext4_fc_replay_check_excluded(struct super_block * sb,ext4_fsblk_t blk)1967 bool ext4_fc_replay_check_excluded(struct super_block *sb, ext4_fsblk_t blk)
1968 {
1969 int i;
1970 struct ext4_fc_replay_state *state;
1971
1972 state = &EXT4_SB(sb)->s_fc_replay_state;
1973 for (i = 0; i < state->fc_regions_valid; i++) {
1974 if (state->fc_regions[i].ino == 0 ||
1975 state->fc_regions[i].len == 0)
1976 continue;
1977 if (in_range(blk, state->fc_regions[i].pblk,
1978 state->fc_regions[i].len))
1979 return true;
1980 }
1981 return false;
1982 }
1983
1984 /* Cleanup function called after replay */
ext4_fc_replay_cleanup(struct super_block * sb)1985 void ext4_fc_replay_cleanup(struct super_block *sb)
1986 {
1987 struct ext4_sb_info *sbi = EXT4_SB(sb);
1988
1989 sbi->s_mount_state &= ~EXT4_FC_REPLAY;
1990 kfree(sbi->s_fc_replay_state.fc_regions);
1991 kfree(sbi->s_fc_replay_state.fc_modified_inodes);
1992 }
1993
ext4_fc_value_len_isvalid(struct ext4_sb_info * sbi,int tag,int len)1994 static bool ext4_fc_value_len_isvalid(struct ext4_sb_info *sbi,
1995 int tag, int len)
1996 {
1997 switch (tag) {
1998 case EXT4_FC_TAG_ADD_RANGE:
1999 return len == sizeof(struct ext4_fc_add_range);
2000 case EXT4_FC_TAG_DEL_RANGE:
2001 return len == sizeof(struct ext4_fc_del_range);
2002 case EXT4_FC_TAG_CREAT:
2003 case EXT4_FC_TAG_LINK:
2004 case EXT4_FC_TAG_UNLINK:
2005 len -= sizeof(struct ext4_fc_dentry_info);
2006 return len >= 1 && len <= EXT4_NAME_LEN;
2007 case EXT4_FC_TAG_INODE:
2008 len -= sizeof(struct ext4_fc_inode);
2009 return len >= EXT4_GOOD_OLD_INODE_SIZE &&
2010 len <= sbi->s_inode_size;
2011 case EXT4_FC_TAG_PAD:
2012 return true; /* padding can have any length */
2013 case EXT4_FC_TAG_TAIL:
2014 return len >= sizeof(struct ext4_fc_tail);
2015 case EXT4_FC_TAG_HEAD:
2016 return len == sizeof(struct ext4_fc_head);
2017 }
2018 return false;
2019 }
2020
2021 /*
2022 * Recovery Scan phase handler
2023 *
2024 * This function is called during the scan phase and is responsible
2025 * for doing following things:
2026 * - Make sure the fast commit area has valid tags for replay
2027 * - Count number of tags that need to be replayed by the replay handler
2028 * - Verify CRC
2029 * - Create a list of excluded blocks for allocation during replay phase
2030 *
2031 * This function returns JBD2_FC_REPLAY_CONTINUE to indicate that SCAN is
2032 * incomplete and JBD2 should send more blocks. It returns JBD2_FC_REPLAY_STOP
2033 * to indicate that scan has finished and JBD2 can now start replay phase.
2034 * It returns a negative error to indicate that there was an error. At the end
2035 * of a successful scan phase, sbi->s_fc_replay_state.fc_replay_num_tags is set
2036 * to indicate the number of tags that need to replayed during the replay phase.
2037 */
ext4_fc_replay_scan(journal_t * journal,struct buffer_head * bh,int off,tid_t expected_tid)2038 static int ext4_fc_replay_scan(journal_t *journal,
2039 struct buffer_head *bh, int off,
2040 tid_t expected_tid)
2041 {
2042 struct super_block *sb = journal->j_private;
2043 struct ext4_sb_info *sbi = EXT4_SB(sb);
2044 struct ext4_fc_replay_state *state;
2045 int ret = JBD2_FC_REPLAY_CONTINUE;
2046 struct ext4_fc_add_range ext;
2047 struct ext4_fc_tl_mem tl;
2048 struct ext4_fc_tail tail;
2049 __u8 *start, *end, *cur, *val;
2050 struct ext4_fc_head head;
2051 struct ext4_extent *ex;
2052
2053 state = &sbi->s_fc_replay_state;
2054
2055 start = (u8 *)bh->b_data;
2056 end = start + journal->j_blocksize;
2057
2058 if (state->fc_replay_expected_off == 0) {
2059 state->fc_cur_tag = 0;
2060 state->fc_replay_num_tags = 0;
2061 state->fc_crc = 0;
2062 state->fc_regions = NULL;
2063 state->fc_regions_valid = state->fc_regions_used =
2064 state->fc_regions_size = 0;
2065 /* Check if we can stop early */
2066 if (le16_to_cpu(((struct ext4_fc_tl *)start)->fc_tag)
2067 != EXT4_FC_TAG_HEAD)
2068 return 0;
2069 }
2070
2071 if (off != state->fc_replay_expected_off) {
2072 ret = -EFSCORRUPTED;
2073 goto out_err;
2074 }
2075
2076 state->fc_replay_expected_off++;
2077 for (cur = start; cur <= end - EXT4_FC_TAG_BASE_LEN;
2078 cur = cur + EXT4_FC_TAG_BASE_LEN + tl.fc_len) {
2079 ext4_fc_get_tl(&tl, cur);
2080 val = cur + EXT4_FC_TAG_BASE_LEN;
2081 if (tl.fc_len > end - val ||
2082 !ext4_fc_value_len_isvalid(sbi, tl.fc_tag, tl.fc_len)) {
2083 ret = state->fc_replay_num_tags ?
2084 JBD2_FC_REPLAY_STOP : -ECANCELED;
2085 goto out_err;
2086 }
2087 ext4_debug("Scan phase, tag:%s, blk %lld\n",
2088 tag2str(tl.fc_tag), bh->b_blocknr);
2089 switch (tl.fc_tag) {
2090 case EXT4_FC_TAG_ADD_RANGE:
2091 memcpy(&ext, val, sizeof(ext));
2092 ex = (struct ext4_extent *)&ext.fc_ex;
2093 ret = ext4_fc_record_regions(sb,
2094 le32_to_cpu(ext.fc_ino),
2095 le32_to_cpu(ex->ee_block), ext4_ext_pblock(ex),
2096 ext4_ext_get_actual_len(ex), 0);
2097 if (ret < 0)
2098 break;
2099 ret = JBD2_FC_REPLAY_CONTINUE;
2100 fallthrough;
2101 case EXT4_FC_TAG_DEL_RANGE:
2102 case EXT4_FC_TAG_LINK:
2103 case EXT4_FC_TAG_UNLINK:
2104 case EXT4_FC_TAG_CREAT:
2105 case EXT4_FC_TAG_INODE:
2106 case EXT4_FC_TAG_PAD:
2107 state->fc_cur_tag++;
2108 state->fc_crc = ext4_chksum(sbi, state->fc_crc, cur,
2109 EXT4_FC_TAG_BASE_LEN + tl.fc_len);
2110 break;
2111 case EXT4_FC_TAG_TAIL:
2112 state->fc_cur_tag++;
2113 memcpy(&tail, val, sizeof(tail));
2114 state->fc_crc = ext4_chksum(sbi, state->fc_crc, cur,
2115 EXT4_FC_TAG_BASE_LEN +
2116 offsetof(struct ext4_fc_tail,
2117 fc_crc));
2118 if (le32_to_cpu(tail.fc_tid) == expected_tid &&
2119 le32_to_cpu(tail.fc_crc) == state->fc_crc) {
2120 state->fc_replay_num_tags = state->fc_cur_tag;
2121 state->fc_regions_valid =
2122 state->fc_regions_used;
2123 } else {
2124 ret = state->fc_replay_num_tags ?
2125 JBD2_FC_REPLAY_STOP : -EFSBADCRC;
2126 }
2127 state->fc_crc = 0;
2128 break;
2129 case EXT4_FC_TAG_HEAD:
2130 memcpy(&head, val, sizeof(head));
2131 if (le32_to_cpu(head.fc_features) &
2132 ~EXT4_FC_SUPPORTED_FEATURES) {
2133 ret = -EOPNOTSUPP;
2134 break;
2135 }
2136 if (le32_to_cpu(head.fc_tid) != expected_tid) {
2137 ret = JBD2_FC_REPLAY_STOP;
2138 break;
2139 }
2140 state->fc_cur_tag++;
2141 state->fc_crc = ext4_chksum(sbi, state->fc_crc, cur,
2142 EXT4_FC_TAG_BASE_LEN + tl.fc_len);
2143 break;
2144 default:
2145 ret = state->fc_replay_num_tags ?
2146 JBD2_FC_REPLAY_STOP : -ECANCELED;
2147 }
2148 if (ret < 0 || ret == JBD2_FC_REPLAY_STOP)
2149 break;
2150 }
2151
2152 out_err:
2153 trace_ext4_fc_replay_scan(sb, ret, off);
2154 return ret;
2155 }
2156
2157 /*
2158 * Main recovery path entry point.
2159 * The meaning of return codes is similar as above.
2160 */
ext4_fc_replay(journal_t * journal,struct buffer_head * bh,enum passtype pass,int off,tid_t expected_tid)2161 static int ext4_fc_replay(journal_t *journal, struct buffer_head *bh,
2162 enum passtype pass, int off, tid_t expected_tid)
2163 {
2164 struct super_block *sb = journal->j_private;
2165 struct ext4_sb_info *sbi = EXT4_SB(sb);
2166 struct ext4_fc_tl_mem tl;
2167 __u8 *start, *end, *cur, *val;
2168 int ret = JBD2_FC_REPLAY_CONTINUE;
2169 struct ext4_fc_replay_state *state = &sbi->s_fc_replay_state;
2170 struct ext4_fc_tail tail;
2171
2172 if (pass == PASS_SCAN) {
2173 state->fc_current_pass = PASS_SCAN;
2174 return ext4_fc_replay_scan(journal, bh, off, expected_tid);
2175 }
2176
2177 if (state->fc_current_pass != pass) {
2178 state->fc_current_pass = pass;
2179 sbi->s_mount_state |= EXT4_FC_REPLAY;
2180 }
2181 if (!sbi->s_fc_replay_state.fc_replay_num_tags) {
2182 ext4_debug("Replay stops\n");
2183 ext4_fc_set_bitmaps_and_counters(sb);
2184 return 0;
2185 }
2186
2187 #ifdef CONFIG_EXT4_DEBUG
2188 if (sbi->s_fc_debug_max_replay && off >= sbi->s_fc_debug_max_replay) {
2189 pr_warn("Dropping fc block %d because max_replay set\n", off);
2190 return JBD2_FC_REPLAY_STOP;
2191 }
2192 #endif
2193
2194 start = (u8 *)bh->b_data;
2195 end = start + journal->j_blocksize;
2196
2197 for (cur = start; cur <= end - EXT4_FC_TAG_BASE_LEN;
2198 cur = cur + EXT4_FC_TAG_BASE_LEN + tl.fc_len) {
2199 ext4_fc_get_tl(&tl, cur);
2200 val = cur + EXT4_FC_TAG_BASE_LEN;
2201
2202 if (state->fc_replay_num_tags == 0) {
2203 ret = JBD2_FC_REPLAY_STOP;
2204 ext4_fc_set_bitmaps_and_counters(sb);
2205 break;
2206 }
2207
2208 ext4_debug("Replay phase, tag:%s\n", tag2str(tl.fc_tag));
2209 state->fc_replay_num_tags--;
2210 switch (tl.fc_tag) {
2211 case EXT4_FC_TAG_LINK:
2212 ret = ext4_fc_replay_link(sb, &tl, val);
2213 break;
2214 case EXT4_FC_TAG_UNLINK:
2215 ret = ext4_fc_replay_unlink(sb, &tl, val);
2216 break;
2217 case EXT4_FC_TAG_ADD_RANGE:
2218 ret = ext4_fc_replay_add_range(sb, &tl, val);
2219 break;
2220 case EXT4_FC_TAG_CREAT:
2221 ret = ext4_fc_replay_create(sb, &tl, val);
2222 break;
2223 case EXT4_FC_TAG_DEL_RANGE:
2224 ret = ext4_fc_replay_del_range(sb, &tl, val);
2225 break;
2226 case EXT4_FC_TAG_INODE:
2227 ret = ext4_fc_replay_inode(sb, &tl, val);
2228 break;
2229 case EXT4_FC_TAG_PAD:
2230 trace_ext4_fc_replay(sb, EXT4_FC_TAG_PAD, 0,
2231 tl.fc_len, 0);
2232 break;
2233 case EXT4_FC_TAG_TAIL:
2234 trace_ext4_fc_replay(sb, EXT4_FC_TAG_TAIL,
2235 0, tl.fc_len, 0);
2236 memcpy(&tail, val, sizeof(tail));
2237 WARN_ON(le32_to_cpu(tail.fc_tid) != expected_tid);
2238 break;
2239 case EXT4_FC_TAG_HEAD:
2240 break;
2241 default:
2242 trace_ext4_fc_replay(sb, tl.fc_tag, 0, tl.fc_len, 0);
2243 ret = -ECANCELED;
2244 break;
2245 }
2246 if (ret < 0)
2247 break;
2248 ret = JBD2_FC_REPLAY_CONTINUE;
2249 }
2250 return ret;
2251 }
2252
ext4_fc_init(struct super_block * sb,journal_t * journal)2253 void ext4_fc_init(struct super_block *sb, journal_t *journal)
2254 {
2255 /*
2256 * We set replay callback even if fast commit disabled because we may
2257 * could still have fast commit blocks that need to be replayed even if
2258 * fast commit has now been turned off.
2259 */
2260 journal->j_fc_replay_callback = ext4_fc_replay;
2261 if (!test_opt2(sb, JOURNAL_FAST_COMMIT))
2262 return;
2263 journal->j_fc_cleanup_callback = ext4_fc_cleanup;
2264 }
2265
2266 static const char * const fc_ineligible_reasons[] = {
2267 [EXT4_FC_REASON_XATTR] = "Extended attributes changed",
2268 [EXT4_FC_REASON_CROSS_RENAME] = "Cross rename",
2269 [EXT4_FC_REASON_JOURNAL_FLAG_CHANGE] = "Journal flag changed",
2270 [EXT4_FC_REASON_NOMEM] = "Insufficient memory",
2271 [EXT4_FC_REASON_SWAP_BOOT] = "Swap boot",
2272 [EXT4_FC_REASON_RESIZE] = "Resize",
2273 [EXT4_FC_REASON_RENAME_DIR] = "Dir renamed",
2274 [EXT4_FC_REASON_FALLOC_RANGE] = "Falloc range op",
2275 [EXT4_FC_REASON_INODE_JOURNAL_DATA] = "Data journalling",
2276 [EXT4_FC_REASON_ENCRYPTED_FILENAME] = "Encrypted filename",
2277 };
2278
ext4_fc_info_show(struct seq_file * seq,void * v)2279 int ext4_fc_info_show(struct seq_file *seq, void *v)
2280 {
2281 struct ext4_sb_info *sbi = EXT4_SB((struct super_block *)seq->private);
2282 struct ext4_fc_stats *stats = &sbi->s_fc_stats;
2283 int i;
2284
2285 if (v != SEQ_START_TOKEN)
2286 return 0;
2287
2288 seq_printf(seq,
2289 "fc stats:\n%ld commits\n%ld ineligible\n%ld numblks\n%lluus avg_commit_time\n",
2290 stats->fc_num_commits, stats->fc_ineligible_commits,
2291 stats->fc_numblks,
2292 div_u64(stats->s_fc_avg_commit_time, 1000));
2293 seq_puts(seq, "Ineligible reasons:\n");
2294 for (i = 0; i < EXT4_FC_REASON_MAX; i++)
2295 seq_printf(seq, "\"%s\":\t%d\n", fc_ineligible_reasons[i],
2296 stats->fc_ineligible_reason_count[i]);
2297
2298 return 0;
2299 }
2300
ext4_fc_init_dentry_cache(void)2301 int __init ext4_fc_init_dentry_cache(void)
2302 {
2303 ext4_fc_dentry_cachep = KMEM_CACHE(ext4_fc_dentry_update,
2304 SLAB_RECLAIM_ACCOUNT);
2305
2306 if (ext4_fc_dentry_cachep == NULL)
2307 return -ENOMEM;
2308
2309 return 0;
2310 }
2311
ext4_fc_destroy_dentry_cache(void)2312 void ext4_fc_destroy_dentry_cache(void)
2313 {
2314 kmem_cache_destroy(ext4_fc_dentry_cachep);
2315 }
2316