xref: /freebsd/contrib/unbound/iterator/iter_utils.c (revision be771a7b7f4580a30d99e41a5bb1b93a385a119d)
1 /*
2  * iterator/iter_utils.c - iterative resolver module utility functions.
3  *
4  * Copyright (c) 2007, NLnet Labs. All rights reserved.
5  *
6  * This software is open source.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  * Redistributions of source code must retain the above copyright notice,
13  * this list of conditions and the following disclaimer.
14  *
15  * Redistributions in binary form must reproduce the above copyright notice,
16  * this list of conditions and the following disclaimer in the documentation
17  * and/or other materials provided with the distribution.
18  *
19  * Neither the name of the NLNET LABS nor the names of its contributors may
20  * be used to endorse or promote products derived from this software without
21  * specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
26  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
27  * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
28  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
29  * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
30  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
31  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
32  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
33  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
34  */
35 
36 /**
37  * \file
38  *
39  * This file contains functions to assist the iterator module.
40  * Configuration options. Forward zones.
41  */
42 #include "config.h"
43 #include "iterator/iter_utils.h"
44 #include "iterator/iterator.h"
45 #include "iterator/iter_hints.h"
46 #include "iterator/iter_fwd.h"
47 #include "iterator/iter_donotq.h"
48 #include "iterator/iter_delegpt.h"
49 #include "iterator/iter_priv.h"
50 #include "services/cache/infra.h"
51 #include "services/cache/dns.h"
52 #include "services/cache/rrset.h"
53 #include "services/outside_network.h"
54 #include "util/net_help.h"
55 #include "util/module.h"
56 #include "util/log.h"
57 #include "util/config_file.h"
58 #include "util/regional.h"
59 #include "util/data/msgparse.h"
60 #include "util/data/dname.h"
61 #include "util/random.h"
62 #include "util/fptr_wlist.h"
63 #include "validator/val_anchor.h"
64 #include "validator/val_kcache.h"
65 #include "validator/val_kentry.h"
66 #include "validator/val_utils.h"
67 #include "validator/val_sigcrypt.h"
68 #include "sldns/sbuffer.h"
69 #include "sldns/str2wire.h"
70 
71 /** time when nameserver glue is said to be 'recent' */
72 #define SUSPICION_RECENT_EXPIRY 86400
73 
74 /** if NAT64 is enabled and no NAT64 prefix is configured, first fall back to
75  * DNS64 prefix.  If that is not configured, fall back to this default value.
76  */
77 static const char DEFAULT_NAT64_PREFIX[] = "64:ff9b::/96";
78 
79 /** fillup fetch policy array */
80 static int
81 fetch_fill(int* target_fetch_policy, int max_dependency_depth, const char* str)
82 {
83 	char* s = (char*)str, *e;
84 	int i;
85 	for(i=0; i<max_dependency_depth+1; i++) {
86 		target_fetch_policy[i] = strtol(s, &e, 10);
87 		if(s == e) {
88 			log_err("cannot parse fetch policy number %s", s);
89 			return 0;
90 		}
91 		s = e;
92 	}
93 	return 1;
94 }
95 
96 /** Read config string that represents the target fetch policy */
97 int
98 read_fetch_policy(int** target_fetch_policy, int* max_dependency_depth,
99 	const char* str)
100 {
101 	int count = cfg_count_numbers(str);
102 	if(count < 1) {
103 		log_err("Cannot parse target fetch policy: \"%s\"", str);
104 		return 0;
105 	}
106 	*max_dependency_depth = count - 1;
107 	*target_fetch_policy = (int*)calloc(
108 		(size_t)(*max_dependency_depth)+1, sizeof(int));
109 	if(!*target_fetch_policy) {
110 		log_err("alloc fetch policy: out of memory");
111 		return 0;
112 	}
113 	if(!fetch_fill(*target_fetch_policy, *max_dependency_depth, str))
114 		return 0;
115 	return 1;
116 }
117 
118 struct rbtree_type*
119 caps_white_create(void)
120 {
121 	struct rbtree_type* caps_white = rbtree_create(name_tree_compare);
122 	if(!caps_white)
123 		log_err("out of memory");
124 	return caps_white;
125 }
126 
127 /** delete caps_whitelist element */
128 static void
129 caps_free(struct rbnode_type* n, void* ATTR_UNUSED(d))
130 {
131 	if(n) {
132 		free(((struct name_tree_node*)n)->name);
133 		free(n);
134 	}
135 }
136 
137 void
138 caps_white_delete(struct rbtree_type* caps_white)
139 {
140 	if(!caps_white)
141 		return;
142 	traverse_postorder(caps_white, caps_free, NULL);
143 	free(caps_white);
144 }
145 
146 int
147 caps_white_apply_cfg(rbtree_type* ntree, struct config_file* cfg)
148 {
149 	struct config_strlist* p;
150 	for(p=cfg->caps_whitelist; p; p=p->next) {
151 		struct name_tree_node* n;
152 		size_t len;
153 		uint8_t* nm = sldns_str2wire_dname(p->str, &len);
154 		if(!nm) {
155 			log_err("could not parse %s", p->str);
156 			return 0;
157 		}
158 		n = (struct name_tree_node*)calloc(1, sizeof(*n));
159 		if(!n) {
160 			log_err("out of memory");
161 			free(nm);
162 			return 0;
163 		}
164 		n->node.key = n;
165 		n->name = nm;
166 		n->len = len;
167 		n->labs = dname_count_labels(nm);
168 		n->dclass = LDNS_RR_CLASS_IN;
169 		if(!name_tree_insert(ntree, n, nm, len, n->labs, n->dclass)) {
170 			/* duplicate element ignored, idempotent */
171 			free(n->name);
172 			free(n);
173 		}
174 	}
175 	name_tree_init_parents(ntree);
176 	return 1;
177 }
178 
179 int
180 nat64_apply_cfg(struct iter_nat64* nat64, struct config_file* cfg)
181 {
182 	const char *nat64_prefix;
183 
184 	nat64_prefix = cfg->nat64_prefix;
185 	if(!nat64_prefix)
186 		nat64_prefix = cfg->dns64_prefix;
187 	if(!nat64_prefix)
188 		nat64_prefix = DEFAULT_NAT64_PREFIX;
189 	if(!netblockstrtoaddr(nat64_prefix, 0, &nat64->nat64_prefix_addr,
190 		&nat64->nat64_prefix_addrlen, &nat64->nat64_prefix_net)) {
191 		log_err("cannot parse nat64-prefix netblock: %s", nat64_prefix);
192 		return 0;
193 	}
194 	if(!addr_is_ip6(&nat64->nat64_prefix_addr,
195 		nat64->nat64_prefix_addrlen)) {
196 		log_err("nat64-prefix is not IPv6: %s", cfg->nat64_prefix);
197 		return 0;
198 	}
199 	if(!prefixnet_is_nat64(nat64->nat64_prefix_net)) {
200 		log_err("nat64-prefix length it not 32, 40, 48, 56, 64 or 96: %s",
201 			nat64_prefix);
202 		return 0;
203 	}
204 	nat64->use_nat64 = cfg->do_nat64;
205 	return 1;
206 }
207 
208 int
209 iter_apply_cfg(struct iter_env* iter_env, struct config_file* cfg)
210 {
211 	int i;
212 	/* target fetch policy */
213 	if(!read_fetch_policy(&iter_env->target_fetch_policy,
214 		&iter_env->max_dependency_depth, cfg->target_fetch_policy))
215 		return 0;
216 	for(i=0; i<iter_env->max_dependency_depth+1; i++)
217 		verbose(VERB_QUERY, "target fetch policy for level %d is %d",
218 			i, iter_env->target_fetch_policy[i]);
219 
220 	if(!iter_env->donotq)
221 		iter_env->donotq = donotq_create();
222 	if(!iter_env->donotq || !donotq_apply_cfg(iter_env->donotq, cfg)) {
223 		log_err("Could not set donotqueryaddresses");
224 		return 0;
225 	}
226 	if(!iter_env->priv)
227 		iter_env->priv = priv_create();
228 	if(!iter_env->priv || !priv_apply_cfg(iter_env->priv, cfg)) {
229 		log_err("Could not set private addresses");
230 		return 0;
231 	}
232 	if(cfg->caps_whitelist) {
233 		if(!iter_env->caps_white)
234 			iter_env->caps_white = caps_white_create();
235 		if(!iter_env->caps_white || !caps_white_apply_cfg(
236 			iter_env->caps_white, cfg)) {
237 			log_err("Could not set capsforid whitelist");
238 			return 0;
239 		}
240 
241 	}
242 
243 	if(!nat64_apply_cfg(&iter_env->nat64, cfg)) {
244 		log_err("Could not setup nat64");
245 		return 0;
246 	}
247 
248 	iter_env->supports_ipv6 = cfg->do_ip6;
249 	iter_env->supports_ipv4 = cfg->do_ip4;
250 	iter_env->outbound_msg_retry = cfg->outbound_msg_retry;
251 	iter_env->max_sent_count = cfg->max_sent_count;
252 	iter_env->max_query_restarts = cfg->max_query_restarts;
253 	return 1;
254 }
255 
256 /** filter out unsuitable targets
257  * @param iter_env: iterator environment with ipv6-support flag.
258  * @param env: module environment with infra cache.
259  * @param name: zone name
260  * @param namelen: length of name
261  * @param qtype: query type (host order).
262  * @param now: current time
263  * @param a: address in delegation point we are examining.
264  * @return an integer that signals the target suitability.
265  *	as follows:
266  *	-1: The address should be omitted from the list.
267  *	    Because:
268  *		o The address is bogus (DNSSEC validation failure).
269  *		o Listed as donotquery
270  *		o is ipv6 but no ipv6 support (in operating system).
271  *		o is ipv4 but no ipv4 support (in operating system).
272  *		o is lame
273  *	Otherwise, an rtt in milliseconds.
274  *	0 .. USEFUL_SERVER_TOP_TIMEOUT-1
275  *		The roundtrip time timeout estimate. less than 2 minutes.
276  *		Note that util/rtt.c has a MIN_TIMEOUT of 50 msec, thus
277  *		values 0 .. 49 are not used, unless that is changed.
278  *	USEFUL_SERVER_TOP_TIMEOUT
279  *		This value exactly is given for unresponsive blacklisted.
280  *	USEFUL_SERVER_TOP_TIMEOUT+1
281  *		For non-blacklisted servers: huge timeout, but has traffic.
282  *	USEFUL_SERVER_TOP_TIMEOUT*1 ..
283  *		parent-side lame servers get this penalty. A dispreferential
284  *		server. (lame in delegpt).
285  *	USEFUL_SERVER_TOP_TIMEOUT*2 ..
286  *		dnsseclame servers get penalty
287  *	USEFUL_SERVER_TOP_TIMEOUT*3 ..
288  *		recursion lame servers get penalty
289  *	UNKNOWN_SERVER_NICENESS
290  *		If no information is known about the server, this is
291  *		returned. 376 msec or so.
292  *	+BLACKLIST_PENALTY (of USEFUL_TOP_TIMEOUT*4) for dnssec failed IPs.
293  *
294  * When a final value is chosen that is dnsseclame ; dnsseclameness checking
295  * is turned off (so we do not discard the reply).
296  * When a final value is chosen that is recursionlame; RD bit is set on query.
297  * Because of the numbers this means recursionlame also have dnssec lameness
298  * checking turned off.
299  */
300 static int
301 iter_filter_unsuitable(struct iter_env* iter_env, struct module_env* env,
302 	uint8_t* name, size_t namelen, uint16_t qtype, time_t now,
303 	struct delegpt_addr* a)
304 {
305 	int rtt, lame, reclame, dnsseclame;
306 	if(a->bogus)
307 		return -1; /* address of server is bogus */
308 	if(donotq_lookup(iter_env->donotq, &a->addr, a->addrlen)) {
309 		log_addr(VERB_ALGO, "skip addr on the donotquery list",
310 			&a->addr, a->addrlen);
311 		return -1; /* server is on the donotquery list */
312 	}
313 	if(!iter_env->supports_ipv6 && addr_is_ip6(&a->addr, a->addrlen)) {
314 		return -1; /* there is no ip6 available */
315 	}
316 	if(!iter_env->supports_ipv4 && !iter_env->nat64.use_nat64 &&
317 	   !addr_is_ip6(&a->addr, a->addrlen)) {
318 		return -1; /* there is no ip4 available */
319 	}
320 	/* check lameness - need zone , class info */
321 	if(infra_get_lame_rtt(env->infra_cache, &a->addr, a->addrlen,
322 		name, namelen, qtype, &lame, &dnsseclame, &reclame,
323 		&rtt, now)) {
324 		log_addr(VERB_ALGO, "servselect", &a->addr, a->addrlen);
325 		verbose(VERB_ALGO, "   rtt=%d%s%s%s%s%s", rtt,
326 			lame?" LAME":"",
327 			dnsseclame?" DNSSEC_LAME":"",
328 			a->dnsseclame?" ADDR_DNSSEC_LAME":"",
329 			reclame?" REC_LAME":"",
330 			a->lame?" ADDR_LAME":"");
331 		if(lame)
332 			return -1; /* server is lame */
333 		else if(rtt >= USEFUL_SERVER_TOP_TIMEOUT)
334 			/* server is unresponsive,
335 			 * we used to return TOP_TIMEOUT, but fairly useless,
336 			 * because if == TOP_TIMEOUT is dropped because
337 			 * blacklisted later, instead, remove it here, so
338 			 * other choices (that are not blacklisted) can be
339 			 * tried */
340 			return -1;
341 		/* select remainder from worst to best */
342 		else if(reclame)
343 			return rtt+USEFUL_SERVER_TOP_TIMEOUT*3; /* nonpref */
344 		else if(dnsseclame || a->dnsseclame)
345 			return rtt+USEFUL_SERVER_TOP_TIMEOUT*2; /* nonpref */
346 		else if(a->lame)
347 			return rtt+USEFUL_SERVER_TOP_TIMEOUT+1; /* nonpref */
348 		else	return rtt;
349 	}
350 	/* no server information present */
351 	if(a->dnsseclame)
352 		return UNKNOWN_SERVER_NICENESS+USEFUL_SERVER_TOP_TIMEOUT*2; /* nonpref */
353 	else if(a->lame)
354 		return USEFUL_SERVER_TOP_TIMEOUT+1+UNKNOWN_SERVER_NICENESS; /* nonpref */
355 	return UNKNOWN_SERVER_NICENESS;
356 }
357 
358 /** lookup RTT information, and also store fastest rtt (if any) */
359 static int
360 iter_fill_rtt(struct iter_env* iter_env, struct module_env* env,
361 	uint8_t* name, size_t namelen, uint16_t qtype, time_t now,
362 	struct delegpt* dp, int* best_rtt, struct sock_list* blacklist,
363 	size_t* num_suitable_results)
364 {
365 	int got_it = 0;
366 	struct delegpt_addr* a;
367 	*num_suitable_results = 0;
368 
369 	if(dp->bogus)
370 		return 0; /* NS bogus, all bogus, nothing found */
371 	for(a=dp->result_list; a; a = a->next_result) {
372 		a->sel_rtt = iter_filter_unsuitable(iter_env, env,
373 			name, namelen, qtype, now, a);
374 		if(a->sel_rtt != -1) {
375 			if(sock_list_find(blacklist, &a->addr, a->addrlen))
376 				a->sel_rtt += BLACKLIST_PENALTY;
377 
378 			if(!got_it) {
379 				*best_rtt = a->sel_rtt;
380 				got_it = 1;
381 			} else if(a->sel_rtt < *best_rtt) {
382 				*best_rtt = a->sel_rtt;
383 			}
384 			(*num_suitable_results)++;
385 		}
386 	}
387 	return got_it;
388 }
389 
390 /** compare two rtts, return -1, 0 or 1 */
391 static int
392 rtt_compare(const void* x, const void* y)
393 {
394 	if(*(int*)x == *(int*)y)
395 		return 0;
396 	if(*(int*)x > *(int*)y)
397 		return 1;
398 	return -1;
399 }
400 
401 /** get RTT for the Nth fastest server */
402 static int
403 nth_rtt(struct delegpt_addr* result_list, size_t num_results, size_t n)
404 {
405 	int rtt_band;
406 	size_t i;
407 	int* rtt_list, *rtt_index;
408 
409 	if(num_results < 1 || n >= num_results) {
410 		return -1;
411 	}
412 
413 	rtt_list = calloc(num_results, sizeof(int));
414 	if(!rtt_list) {
415 		log_err("malloc failure: allocating rtt_list");
416 		return -1;
417 	}
418 	rtt_index = rtt_list;
419 
420 	for(i=0; i<num_results && result_list; i++) {
421 		if(result_list->sel_rtt != -1) {
422 			*rtt_index = result_list->sel_rtt;
423 			rtt_index++;
424 		}
425 		result_list=result_list->next_result;
426 	}
427 	qsort(rtt_list, num_results, sizeof(*rtt_list), rtt_compare);
428 
429 	log_assert(n > 0);
430 	rtt_band = rtt_list[n-1];
431 	free(rtt_list);
432 
433 	return rtt_band;
434 }
435 
436 /** filter the address list, putting best targets at front,
437  * returns number of best targets (or 0, no suitable targets) */
438 static int
439 iter_filter_order(struct iter_env* iter_env, struct module_env* env,
440 	uint8_t* name, size_t namelen, uint16_t qtype, time_t now,
441 	struct delegpt* dp, int* selected_rtt, int open_target,
442 	struct sock_list* blacklist, time_t prefetch)
443 {
444 	int got_num = 0, low_rtt = 0, swap_to_front, rtt_band = RTT_BAND, nth;
445 	int alllame = 0;
446 	size_t num_results;
447 	struct delegpt_addr* a, *n, *prev=NULL;
448 
449 	/* fillup sel_rtt and find best rtt in the bunch */
450 	got_num = iter_fill_rtt(iter_env, env, name, namelen, qtype, now, dp,
451 		&low_rtt, blacklist, &num_results);
452 	if(got_num == 0)
453 		return 0;
454 	if(low_rtt >= USEFUL_SERVER_TOP_TIMEOUT &&
455 		/* If all missing (or not fully resolved) targets are lame,
456 		 * then use the remaining lame address. */
457 		((delegpt_count_missing_targets(dp, &alllame) > 0 && !alllame) ||
458 		open_target > 0)) {
459 		verbose(VERB_ALGO, "Bad choices, trying to get more choice");
460 		return 0; /* we want more choice. The best choice is a bad one.
461 			     return 0 to force the caller to fetch more */
462 	}
463 
464 	if(env->cfg->fast_server_permil != 0 && prefetch == 0 &&
465 		num_results > env->cfg->fast_server_num &&
466 		ub_random_max(env->rnd, 1000) < env->cfg->fast_server_permil) {
467 		/* the query is not prefetch, but for a downstream client,
468 		 * there are more servers available then the fastest N we want
469 		 * to choose from. Limit our choice to the fastest servers. */
470 		nth = nth_rtt(dp->result_list, num_results,
471 			env->cfg->fast_server_num);
472 		if(nth > 0) {
473 			rtt_band = nth - low_rtt;
474 			if(rtt_band > RTT_BAND)
475 				rtt_band = RTT_BAND;
476 		}
477 	}
478 
479 	got_num = 0;
480 	a = dp->result_list;
481 	while(a) {
482 		/* skip unsuitable targets */
483 		if(a->sel_rtt == -1) {
484 			prev = a;
485 			a = a->next_result;
486 			continue;
487 		}
488 		/* classify the server address and determine what to do */
489 		swap_to_front = 0;
490 		if(a->sel_rtt >= low_rtt && a->sel_rtt - low_rtt <= rtt_band) {
491 			got_num++;
492 			swap_to_front = 1;
493 		} else if(a->sel_rtt<low_rtt && low_rtt-a->sel_rtt<=rtt_band) {
494 			got_num++;
495 			swap_to_front = 1;
496 		}
497 		/* swap to front if necessary, or move to next result */
498 		if(swap_to_front && prev) {
499 			n = a->next_result;
500 			prev->next_result = n;
501 			a->next_result = dp->result_list;
502 			dp->result_list = a;
503 			a = n;
504 		} else {
505 			prev = a;
506 			a = a->next_result;
507 		}
508 	}
509 	*selected_rtt = low_rtt;
510 
511 	if (env->cfg->prefer_ip6) {
512 		int got_num6 = 0;
513 		int low_rtt6 = 0;
514 		int i;
515 		int attempt = -1; /* filter to make sure addresses have
516 		  less attempts on them than the first, to force round
517 		  robin when all the IPv6 addresses fail */
518 		int num4ok = 0; /* number ip4 at low attempt count */
519 		int num4_lowrtt = 0;
520 		prev = NULL;
521 		a = dp->result_list;
522 		for(i = 0; i < got_num; i++) {
523 			if(!a) break; /* robustness */
524 			swap_to_front = 0;
525 			if(a->addr.ss_family != AF_INET6 && attempt == -1) {
526 				/* if we only have ip4 at low attempt count,
527 				 * then ip6 is failing, and we need to
528 				 * select one of the remaining IPv4 addrs */
529 				attempt = a->attempts;
530 				num4ok++;
531 				num4_lowrtt = a->sel_rtt;
532 			} else if(a->addr.ss_family != AF_INET6 && attempt == a->attempts) {
533 				num4ok++;
534 				if(num4_lowrtt == 0 || a->sel_rtt < num4_lowrtt) {
535 					num4_lowrtt = a->sel_rtt;
536 				}
537 			}
538 			if(a->addr.ss_family == AF_INET6) {
539 				if(attempt == -1) {
540 					attempt = a->attempts;
541 				} else if(a->attempts > attempt) {
542 					break;
543 				}
544 				got_num6++;
545 				swap_to_front = 1;
546 				if(low_rtt6 == 0 || a->sel_rtt < low_rtt6) {
547 					low_rtt6 = a->sel_rtt;
548 				}
549 			}
550 			/* swap to front if IPv6, or move to next result */
551 			if(swap_to_front && prev) {
552 				n = a->next_result;
553 				prev->next_result = n;
554 				a->next_result = dp->result_list;
555 				dp->result_list = a;
556 				a = n;
557 			} else {
558 				prev = a;
559 				a = a->next_result;
560 			}
561 		}
562 		if(got_num6 > 0) {
563 			got_num = got_num6;
564 			*selected_rtt = low_rtt6;
565 		} else if(num4ok > 0) {
566 			got_num = num4ok;
567 			*selected_rtt = num4_lowrtt;
568 		}
569 	} else if (env->cfg->prefer_ip4) {
570 		int got_num4 = 0;
571 		int low_rtt4 = 0;
572 		int i;
573 		int attempt = -1; /* filter to make sure addresses have
574 		  less attempts on them than the first, to force round
575 		  robin when all the IPv4 addresses fail */
576 		int num6ok = 0; /* number ip6 at low attempt count */
577 		int num6_lowrtt = 0;
578 		prev = NULL;
579 		a = dp->result_list;
580 		for(i = 0; i < got_num; i++) {
581 			if(!a) break; /* robustness */
582 			swap_to_front = 0;
583 			if(a->addr.ss_family != AF_INET && attempt == -1) {
584 				/* if we only have ip6 at low attempt count,
585 				 * then ip4 is failing, and we need to
586 				 * select one of the remaining IPv6 addrs */
587 				attempt = a->attempts;
588 				num6ok++;
589 				num6_lowrtt = a->sel_rtt;
590 			} else if(a->addr.ss_family != AF_INET && attempt == a->attempts) {
591 				num6ok++;
592 				if(num6_lowrtt == 0 || a->sel_rtt < num6_lowrtt) {
593 					num6_lowrtt = a->sel_rtt;
594 				}
595 			}
596 			if(a->addr.ss_family == AF_INET) {
597 				if(attempt == -1) {
598 					attempt = a->attempts;
599 				} else if(a->attempts > attempt) {
600 					break;
601 				}
602 				got_num4++;
603 				swap_to_front = 1;
604 				if(low_rtt4 == 0 || a->sel_rtt < low_rtt4) {
605 					low_rtt4 = a->sel_rtt;
606 				}
607 			}
608 			/* swap to front if IPv4, or move to next result */
609 			if(swap_to_front && prev) {
610 				n = a->next_result;
611 				prev->next_result = n;
612 				a->next_result = dp->result_list;
613 				dp->result_list = a;
614 				a = n;
615 			} else {
616 				prev = a;
617 				a = a->next_result;
618 			}
619 		}
620 		if(got_num4 > 0) {
621 			got_num = got_num4;
622 			*selected_rtt = low_rtt4;
623 		} else if(num6ok > 0) {
624 			got_num = num6ok;
625 			*selected_rtt = num6_lowrtt;
626 		}
627 	}
628 	return got_num;
629 }
630 
631 struct delegpt_addr*
632 iter_server_selection(struct iter_env* iter_env,
633 	struct module_env* env, struct delegpt* dp,
634 	uint8_t* name, size_t namelen, uint16_t qtype, int* dnssec_lame,
635 	int* chase_to_rd, int open_target, struct sock_list* blacklist,
636 	time_t prefetch)
637 {
638 	int sel;
639 	int selrtt;
640 	struct delegpt_addr* a, *prev;
641 	int num = iter_filter_order(iter_env, env, name, namelen, qtype,
642 		*env->now, dp, &selrtt, open_target, blacklist, prefetch);
643 
644 	if(num == 0)
645 		return NULL;
646 	verbose(VERB_ALGO, "selrtt %d", selrtt);
647 	if(selrtt > BLACKLIST_PENALTY) {
648 		if(selrtt-BLACKLIST_PENALTY > USEFUL_SERVER_TOP_TIMEOUT*3) {
649 			verbose(VERB_ALGO, "chase to "
650 				"blacklisted recursion lame server");
651 			*chase_to_rd = 1;
652 		}
653 		if(selrtt-BLACKLIST_PENALTY > USEFUL_SERVER_TOP_TIMEOUT*2) {
654 			verbose(VERB_ALGO, "chase to "
655 				"blacklisted dnssec lame server");
656 			*dnssec_lame = 1;
657 		}
658 	} else {
659 		if(selrtt > USEFUL_SERVER_TOP_TIMEOUT*3) {
660 			verbose(VERB_ALGO, "chase to recursion lame server");
661 			*chase_to_rd = 1;
662 		}
663 		if(selrtt > USEFUL_SERVER_TOP_TIMEOUT*2) {
664 			verbose(VERB_ALGO, "chase to dnssec lame server");
665 			*dnssec_lame = 1;
666 		}
667 		if(selrtt == USEFUL_SERVER_TOP_TIMEOUT) {
668 			verbose(VERB_ALGO, "chase to blacklisted lame server");
669 			return NULL;
670 		}
671 	}
672 
673 	if(num == 1) {
674 		a = dp->result_list;
675 		if(++a->attempts < iter_env->outbound_msg_retry)
676 			return a;
677 		dp->result_list = a->next_result;
678 		return a;
679 	}
680 
681 	/* randomly select a target from the list */
682 	log_assert(num > 1);
683 	/* grab secure random number, to pick unexpected server.
684 	 * also we need it to be threadsafe. */
685 	sel = ub_random_max(env->rnd, num);
686 	a = dp->result_list;
687 	prev = NULL;
688 	while(sel > 0 && a) {
689 		prev = a;
690 		a = a->next_result;
691 		sel--;
692 	}
693 	if(!a)  /* robustness */
694 		return NULL;
695 	if(++a->attempts < iter_env->outbound_msg_retry)
696 		return a;
697 	/* remove it from the delegation point result list */
698 	if(prev)
699 		prev->next_result = a->next_result;
700 	else	dp->result_list = a->next_result;
701 	return a;
702 }
703 
704 struct dns_msg*
705 dns_alloc_msg(sldns_buffer* pkt, struct msg_parse* msg,
706 	struct regional* region)
707 {
708 	struct dns_msg* m = (struct dns_msg*)regional_alloc(region,
709 		sizeof(struct dns_msg));
710 	if(!m)
711 		return NULL;
712 	memset(m, 0, sizeof(*m));
713 	if(!parse_create_msg(pkt, msg, NULL, &m->qinfo, &m->rep, region)) {
714 		log_err("malloc failure: allocating incoming dns_msg");
715 		return NULL;
716 	}
717 	return m;
718 }
719 
720 struct dns_msg*
721 dns_copy_msg(struct dns_msg* from, struct regional* region)
722 {
723 	struct dns_msg* m = (struct dns_msg*)regional_alloc(region,
724 		sizeof(struct dns_msg));
725 	if(!m)
726 		return NULL;
727 	m->qinfo = from->qinfo;
728 	if(!(m->qinfo.qname = regional_alloc_init(region, from->qinfo.qname,
729 		from->qinfo.qname_len)))
730 		return NULL;
731 	if(!(m->rep = reply_info_copy(from->rep, NULL, region)))
732 		return NULL;
733 	return m;
734 }
735 
736 void
737 iter_dns_store(struct module_env* env, struct query_info* msgqinf,
738 	struct reply_info* msgrep, int is_referral, time_t leeway, int pside,
739 	struct regional* region, uint16_t flags, time_t qstarttime,
740 	int is_valrec)
741 {
742 	if(!dns_cache_store(env, msgqinf, msgrep, is_referral, leeway,
743 		pside, region, flags, qstarttime, is_valrec))
744 		log_err("out of memory: cannot store data in cache");
745 }
746 
747 int
748 iter_ns_probability(struct ub_randstate* rnd, int n, int m)
749 {
750 	int sel;
751 	if(n == m) /* 100% chance */
752 		return 1;
753 	/* we do not need secure random numbers here, but
754 	 * we do need it to be threadsafe, so we use this */
755 	sel = ub_random_max(rnd, m);
756 	return (sel < n);
757 }
758 
759 /** detect dependency cycle for query and target */
760 static int
761 causes_cycle(struct module_qstate* qstate, uint8_t* name, size_t namelen,
762 	uint16_t t, uint16_t c)
763 {
764 	struct query_info qinf;
765 	qinf.qname = name;
766 	qinf.qname_len = namelen;
767 	qinf.qtype = t;
768 	qinf.qclass = c;
769 	qinf.local_alias = NULL;
770 	fptr_ok(fptr_whitelist_modenv_detect_cycle(
771 		qstate->env->detect_cycle));
772 	return (*qstate->env->detect_cycle)(qstate, &qinf,
773 		(uint16_t)(BIT_RD|BIT_CD), qstate->is_priming,
774 		qstate->is_valrec);
775 }
776 
777 void
778 iter_mark_cycle_targets(struct module_qstate* qstate, struct delegpt* dp)
779 {
780 	struct delegpt_ns* ns;
781 	for(ns = dp->nslist; ns; ns = ns->next) {
782 		if(ns->resolved)
783 			continue;
784 		/* see if this ns as target causes dependency cycle */
785 		if(causes_cycle(qstate, ns->name, ns->namelen,
786 			LDNS_RR_TYPE_AAAA, qstate->qinfo.qclass) ||
787 		   causes_cycle(qstate, ns->name, ns->namelen,
788 			LDNS_RR_TYPE_A, qstate->qinfo.qclass)) {
789 			log_nametypeclass(VERB_QUERY, "skipping target due "
790 			 	"to dependency cycle (harden-glue: no may "
791 				"fix some of the cycles)",
792 				ns->name, LDNS_RR_TYPE_A,
793 				qstate->qinfo.qclass);
794 			ns->resolved = 1;
795 		}
796 	}
797 }
798 
799 void
800 iter_mark_pside_cycle_targets(struct module_qstate* qstate, struct delegpt* dp)
801 {
802 	struct delegpt_ns* ns;
803 	for(ns = dp->nslist; ns; ns = ns->next) {
804 		if(ns->done_pside4 && ns->done_pside6)
805 			continue;
806 		/* see if this ns as target causes dependency cycle */
807 		if(causes_cycle(qstate, ns->name, ns->namelen,
808 			LDNS_RR_TYPE_A, qstate->qinfo.qclass)) {
809 			log_nametypeclass(VERB_QUERY, "skipping target due "
810 			 	"to dependency cycle", ns->name,
811 				LDNS_RR_TYPE_A, qstate->qinfo.qclass);
812 			ns->done_pside4 = 1;
813 		}
814 		if(causes_cycle(qstate, ns->name, ns->namelen,
815 			LDNS_RR_TYPE_AAAA, qstate->qinfo.qclass)) {
816 			log_nametypeclass(VERB_QUERY, "skipping target due "
817 			 	"to dependency cycle", ns->name,
818 				LDNS_RR_TYPE_AAAA, qstate->qinfo.qclass);
819 			ns->done_pside6 = 1;
820 		}
821 	}
822 }
823 
824 int
825 iter_dp_is_useless(struct query_info* qinfo, uint16_t qflags,
826 	struct delegpt* dp, int supports_ipv4, int supports_ipv6,
827 	int use_nat64)
828 {
829 	struct delegpt_ns* ns;
830 	struct delegpt_addr* a;
831 
832 	if(supports_ipv6 && use_nat64)
833 		supports_ipv4 = 1;
834 
835 	/* check:
836 	 *      o RD qflag is on.
837 	 *      o no addresses are provided.
838 	 *      o all NS items are required glue.
839 	 * OR
840 	 *      o RD qflag is on.
841 	 *      o no addresses are provided.
842 	 *      o the query is for one of the nameservers in dp,
843 	 *        and that nameserver is a glue-name for this dp.
844 	 */
845 	if(!(qflags&BIT_RD))
846 		return 0;
847 	/* either available or unused targets,
848 	 * if they exist, the dp is not useless. */
849 	for(a = dp->usable_list; a; a = a->next_usable) {
850 		if(!addr_is_ip6(&a->addr, a->addrlen) && supports_ipv4)
851 			return 0;
852 		else if(addr_is_ip6(&a->addr, a->addrlen) && supports_ipv6)
853 			return 0;
854 	}
855 	for(a = dp->result_list; a; a = a->next_result) {
856 		if(!addr_is_ip6(&a->addr, a->addrlen) && supports_ipv4)
857 			return 0;
858 		else if(addr_is_ip6(&a->addr, a->addrlen) && supports_ipv6)
859 			return 0;
860 	}
861 
862 	/* see if query is for one of the nameservers, which is glue */
863 	if( ((qinfo->qtype == LDNS_RR_TYPE_A && supports_ipv4) ||
864 		(qinfo->qtype == LDNS_RR_TYPE_AAAA && supports_ipv6)) &&
865 		dname_subdomain_c(qinfo->qname, dp->name) &&
866 		delegpt_find_ns(dp, qinfo->qname, qinfo->qname_len))
867 		return 1;
868 
869 	for(ns = dp->nslist; ns; ns = ns->next) {
870 		if(ns->resolved) /* skip failed targets */
871 			continue;
872 		if(!dname_subdomain_c(ns->name, dp->name))
873 			return 0; /* one address is not required glue */
874 	}
875 	return 1;
876 }
877 
878 int
879 iter_qname_indicates_dnssec(struct module_env* env, struct query_info *qinfo)
880 {
881 	struct trust_anchor* a;
882 	if(!env || !env->anchors || !qinfo || !qinfo->qname)
883 		return 0;
884 	/* a trust anchor exists above the name? */
885 	if((a=anchors_lookup(env->anchors, qinfo->qname, qinfo->qname_len,
886 		qinfo->qclass))) {
887 		if(a->numDS == 0 && a->numDNSKEY == 0) {
888 			/* insecure trust point */
889 			lock_basic_unlock(&a->lock);
890 			return 0;
891 		}
892 		lock_basic_unlock(&a->lock);
893 		return 1;
894 	}
895 	/* no trust anchor above it. */
896 	return 0;
897 }
898 
899 int
900 iter_indicates_dnssec(struct module_env* env, struct delegpt* dp,
901         struct dns_msg* msg, uint16_t dclass)
902 {
903 	struct trust_anchor* a;
904 	/* information not available, !env->anchors can be common */
905 	if(!env || !env->anchors || !dp || !dp->name)
906 		return 0;
907 	/* a trust anchor exists with this name, RRSIGs expected */
908 	if((a=anchor_find(env->anchors, dp->name, dp->namelabs, dp->namelen,
909 		dclass))) {
910 		if(a->numDS == 0 && a->numDNSKEY == 0) {
911 			/* insecure trust point */
912 			lock_basic_unlock(&a->lock);
913 			return 0;
914 		}
915 		lock_basic_unlock(&a->lock);
916 		return 1;
917 	}
918 	/* see if DS rrset was given, in AUTH section */
919 	if(msg && msg->rep &&
920 		reply_find_rrset_section_ns(msg->rep, dp->name, dp->namelen,
921 		LDNS_RR_TYPE_DS, dclass))
922 		return 1;
923 	/* look in key cache */
924 	if(env->key_cache) {
925 		struct key_entry_key* kk = key_cache_obtain(env->key_cache,
926 			dp->name, dp->namelen, dclass, env->scratch, *env->now);
927 		if(kk) {
928 			if(query_dname_compare(kk->name, dp->name) == 0) {
929 			  if(key_entry_isgood(kk) || key_entry_isbad(kk)) {
930 				regional_free_all(env->scratch);
931 				return 1;
932 			  } else if(key_entry_isnull(kk)) {
933 				regional_free_all(env->scratch);
934 				return 0;
935 			  }
936 			}
937 			regional_free_all(env->scratch);
938 		}
939 	}
940 	return 0;
941 }
942 
943 int
944 iter_msg_has_dnssec(struct dns_msg* msg)
945 {
946 	size_t i;
947 	if(!msg || !msg->rep)
948 		return 0;
949 	for(i=0; i<msg->rep->an_numrrsets + msg->rep->ns_numrrsets; i++) {
950 		if(((struct packed_rrset_data*)msg->rep->rrsets[i]->
951 			entry.data)->rrsig_count > 0)
952 			return 1;
953 	}
954 	/* empty message has no DNSSEC info, with DNSSEC the reply is
955 	 * not empty (NSEC) */
956 	return 0;
957 }
958 
959 int iter_msg_from_zone(struct dns_msg* msg, struct delegpt* dp,
960         enum response_type type, uint16_t dclass)
961 {
962 	if(!msg || !dp || !msg->rep || !dp->name)
963 		return 0;
964 	/* SOA RRset - always from reply zone */
965 	if(reply_find_rrset_section_an(msg->rep, dp->name, dp->namelen,
966 		LDNS_RR_TYPE_SOA, dclass) ||
967 	   reply_find_rrset_section_ns(msg->rep, dp->name, dp->namelen,
968 		LDNS_RR_TYPE_SOA, dclass))
969 		return 1;
970 	if(type == RESPONSE_TYPE_REFERRAL) {
971 		size_t i;
972 		/* if it adds a single label, i.e. we expect .com,
973 		 * and referral to example.com. NS ... , then origin zone
974 		 * is .com. For a referral to sub.example.com. NS ... then
975 		 * we do not know, since example.com. may be in between. */
976 		for(i=0; i<msg->rep->an_numrrsets+msg->rep->ns_numrrsets;
977 			i++) {
978 			struct ub_packed_rrset_key* s = msg->rep->rrsets[i];
979 			if(ntohs(s->rk.type) == LDNS_RR_TYPE_NS &&
980 				ntohs(s->rk.rrset_class) == dclass) {
981 				int l = dname_count_labels(s->rk.dname);
982 				if(l == dp->namelabs + 1 &&
983 					dname_strict_subdomain(s->rk.dname,
984 					l, dp->name, dp->namelabs))
985 					return 1;
986 			}
987 		}
988 		return 0;
989 	}
990 	log_assert(type==RESPONSE_TYPE_ANSWER || type==RESPONSE_TYPE_CNAME);
991 	/* not a referral, and not lame delegation (upwards), so,
992 	 * any NS rrset must be from the zone itself */
993 	if(reply_find_rrset_section_an(msg->rep, dp->name, dp->namelen,
994 		LDNS_RR_TYPE_NS, dclass) ||
995 	   reply_find_rrset_section_ns(msg->rep, dp->name, dp->namelen,
996 		LDNS_RR_TYPE_NS, dclass))
997 		return 1;
998 	/* a DNSKEY set is expected at the zone apex as well */
999 	/* this is for 'minimal responses' for DNSKEYs */
1000 	if(reply_find_rrset_section_an(msg->rep, dp->name, dp->namelen,
1001 		LDNS_RR_TYPE_DNSKEY, dclass))
1002 		return 1;
1003 	return 0;
1004 }
1005 
1006 /**
1007  * check equality of two rrsets
1008  * @param k1: rrset
1009  * @param k2: rrset
1010  * @return true if equal
1011  */
1012 static int
1013 rrset_equal(struct ub_packed_rrset_key* k1, struct ub_packed_rrset_key* k2)
1014 {
1015 	struct packed_rrset_data* d1 = (struct packed_rrset_data*)
1016 		k1->entry.data;
1017 	struct packed_rrset_data* d2 = (struct packed_rrset_data*)
1018 		k2->entry.data;
1019 	size_t i, t;
1020 	if(k1->rk.dname_len != k2->rk.dname_len ||
1021 		k1->rk.flags != k2->rk.flags ||
1022 		k1->rk.type != k2->rk.type ||
1023 		k1->rk.rrset_class != k2->rk.rrset_class ||
1024 		query_dname_compare(k1->rk.dname, k2->rk.dname) != 0)
1025 		return 0;
1026 	if(	/* do not check ttl: d1->ttl != d2->ttl || */
1027 		d1->count != d2->count ||
1028 		d1->rrsig_count != d2->rrsig_count ||
1029 		d1->trust != d2->trust ||
1030 		d1->security != d2->security)
1031 		return 0;
1032 	t = d1->count + d1->rrsig_count;
1033 	for(i=0; i<t; i++) {
1034 		if(d1->rr_len[i] != d2->rr_len[i] ||
1035 			/* no ttl check: d1->rr_ttl[i] != d2->rr_ttl[i] ||*/
1036 			memcmp(d1->rr_data[i], d2->rr_data[i],
1037 				d1->rr_len[i]) != 0)
1038 			return 0;
1039 	}
1040 	return 1;
1041 }
1042 
1043 /** compare rrsets and sort canonically.  Compares rrset name, type, class.
1044  * return 0 if equal, +1 if x > y, and -1 if x < y.
1045  */
1046 static int
1047 rrset_canonical_sort_cmp(const void* x, const void* y)
1048 {
1049 	struct ub_packed_rrset_key* rrx = *(struct ub_packed_rrset_key**)x;
1050 	struct ub_packed_rrset_key* rry = *(struct ub_packed_rrset_key**)y;
1051 	int r = dname_canonical_compare(rrx->rk.dname, rry->rk.dname);
1052 	if(r != 0)
1053 		return r;
1054 	if(rrx->rk.type != rry->rk.type) {
1055 		if(ntohs(rrx->rk.type) > ntohs(rry->rk.type))
1056 			return 1;
1057 		else	return -1;
1058 	}
1059 	if(rrx->rk.rrset_class != rry->rk.rrset_class) {
1060 		if(ntohs(rrx->rk.rrset_class) > ntohs(rry->rk.rrset_class))
1061 			return 1;
1062 		else	return -1;
1063 	}
1064 	return 0;
1065 }
1066 
1067 int
1068 reply_equal(struct reply_info* p, struct reply_info* q, struct regional* region)
1069 {
1070 	size_t i;
1071 	struct ub_packed_rrset_key** sorted_p, **sorted_q;
1072 	if(p->flags != q->flags ||
1073 		p->qdcount != q->qdcount ||
1074 		/* do not check TTL, this may differ */
1075 		/*
1076 		p->ttl != q->ttl ||
1077 		p->prefetch_ttl != q->prefetch_ttl ||
1078 		*/
1079 		p->security != q->security ||
1080 		p->an_numrrsets != q->an_numrrsets ||
1081 		p->ns_numrrsets != q->ns_numrrsets ||
1082 		p->ar_numrrsets != q->ar_numrrsets ||
1083 		p->rrset_count != q->rrset_count)
1084 		return 0;
1085 	/* sort the rrsets in the authority and additional sections before
1086 	 * compare, the query and answer sections are ordered in the sequence
1087 	 * they should have (eg. one after the other for aliases). */
1088 	sorted_p = (struct ub_packed_rrset_key**)regional_alloc_init(
1089 		region, p->rrsets, sizeof(*sorted_p)*p->rrset_count);
1090 	if(!sorted_p) return 0;
1091 	log_assert(p->an_numrrsets + p->ns_numrrsets + p->ar_numrrsets <=
1092 		p->rrset_count);
1093 	qsort(sorted_p + p->an_numrrsets, p->ns_numrrsets,
1094 		sizeof(*sorted_p), rrset_canonical_sort_cmp);
1095 	qsort(sorted_p + p->an_numrrsets + p->ns_numrrsets, p->ar_numrrsets,
1096 		sizeof(*sorted_p), rrset_canonical_sort_cmp);
1097 
1098 	sorted_q = (struct ub_packed_rrset_key**)regional_alloc_init(
1099 		region, q->rrsets, sizeof(*sorted_q)*q->rrset_count);
1100 	if(!sorted_q) {
1101 		regional_free_all(region);
1102 		return 0;
1103 	}
1104 	log_assert(q->an_numrrsets + q->ns_numrrsets + q->ar_numrrsets <=
1105 		q->rrset_count);
1106 	qsort(sorted_q + q->an_numrrsets, q->ns_numrrsets,
1107 		sizeof(*sorted_q), rrset_canonical_sort_cmp);
1108 	qsort(sorted_q + q->an_numrrsets + q->ns_numrrsets, q->ar_numrrsets,
1109 		sizeof(*sorted_q), rrset_canonical_sort_cmp);
1110 
1111 	/* compare the rrsets */
1112 	for(i=0; i<p->rrset_count; i++) {
1113 		if(!rrset_equal(sorted_p[i], sorted_q[i])) {
1114 			if(!rrset_canonical_equal(region, sorted_p[i],
1115 				sorted_q[i])) {
1116 				regional_free_all(region);
1117 				return 0;
1118 			}
1119 		}
1120 	}
1121 	regional_free_all(region);
1122 	return 1;
1123 }
1124 
1125 void
1126 caps_strip_reply(struct reply_info* rep)
1127 {
1128 	size_t i;
1129 	if(!rep) return;
1130 	/* see if message is a referral, in which case the additional and
1131 	 * NS record cannot be removed */
1132 	/* referrals have the AA flag unset (strict check, not elsewhere in
1133 	 * unbound, but for 0x20 this is very convenient). */
1134 	if(!(rep->flags&BIT_AA))
1135 		return;
1136 	/* remove the additional section from the reply */
1137 	if(rep->ar_numrrsets != 0) {
1138 		verbose(VERB_ALGO, "caps fallback: removing additional section");
1139 		rep->rrset_count -= rep->ar_numrrsets;
1140 		rep->ar_numrrsets = 0;
1141 	}
1142 	/* is there an NS set in the authority section to remove? */
1143 	/* the failure case (Cisco firewalls) only has one rrset in authsec */
1144 	for(i=rep->an_numrrsets; i<rep->an_numrrsets+rep->ns_numrrsets; i++) {
1145 		struct ub_packed_rrset_key* s = rep->rrsets[i];
1146 		if(ntohs(s->rk.type) == LDNS_RR_TYPE_NS) {
1147 			/* remove NS rrset and break from loop (loop limits
1148 			 * have changed) */
1149 			/* move last rrset into this position (there is no
1150 			 * additional section any more) */
1151 			verbose(VERB_ALGO, "caps fallback: removing NS rrset");
1152 			if(i < rep->rrset_count-1)
1153 				rep->rrsets[i]=rep->rrsets[rep->rrset_count-1];
1154 			rep->rrset_count --;
1155 			rep->ns_numrrsets --;
1156 			break;
1157 		}
1158 	}
1159 }
1160 
1161 int caps_failed_rcode(struct reply_info* rep)
1162 {
1163 	return !(FLAGS_GET_RCODE(rep->flags) == LDNS_RCODE_NOERROR ||
1164 		FLAGS_GET_RCODE(rep->flags) == LDNS_RCODE_NXDOMAIN);
1165 }
1166 
1167 void
1168 iter_store_parentside_rrset(struct module_env* env,
1169 	struct ub_packed_rrset_key* rrset)
1170 {
1171 	struct rrset_ref ref;
1172 	rrset = packed_rrset_copy_alloc(rrset, env->alloc, *env->now);
1173 	if(!rrset) {
1174 		log_err("malloc failure in store_parentside_rrset");
1175 		return;
1176 	}
1177 	rrset->rk.flags |= PACKED_RRSET_PARENT_SIDE;
1178 	rrset->entry.hash = rrset_key_hash(&rrset->rk);
1179 	ref.key = rrset;
1180 	ref.id = rrset->id;
1181 	/* ignore ret: if it was in the cache, ref updated */
1182 	(void)rrset_cache_update(env->rrset_cache, &ref, env->alloc, *env->now);
1183 }
1184 
1185 /** fetch NS record from reply, if any */
1186 static struct ub_packed_rrset_key*
1187 reply_get_NS_rrset(struct reply_info* rep)
1188 {
1189 	size_t i;
1190 	for(i=0; i<rep->rrset_count; i++) {
1191 		if(rep->rrsets[i]->rk.type == htons(LDNS_RR_TYPE_NS)) {
1192 			return rep->rrsets[i];
1193 		}
1194 	}
1195 	return NULL;
1196 }
1197 
1198 void
1199 iter_store_parentside_NS(struct module_env* env, struct reply_info* rep)
1200 {
1201 	struct ub_packed_rrset_key* rrset = reply_get_NS_rrset(rep);
1202 	if(rrset) {
1203 		log_rrset_key(VERB_ALGO, "store parent-side NS", rrset);
1204 		iter_store_parentside_rrset(env, rrset);
1205 	}
1206 }
1207 
1208 void iter_store_parentside_neg(struct module_env* env,
1209         struct query_info* qinfo, struct reply_info* rep)
1210 {
1211 	/* TTL: NS from referral in iq->deleg_msg,
1212 	 *      or first RR from iq->response,
1213 	 *      or servfail5secs if !iq->response */
1214 	time_t ttl = NORR_TTL;
1215 	struct ub_packed_rrset_key* neg;
1216 	struct packed_rrset_data* newd;
1217 	if(rep) {
1218 		struct ub_packed_rrset_key* rrset = reply_get_NS_rrset(rep);
1219 		if(!rrset && rep->rrset_count != 0) rrset = rep->rrsets[0];
1220 		if(rrset) ttl = ub_packed_rrset_ttl(rrset);
1221 	}
1222 	/* create empty rrset to store */
1223 	neg = (struct ub_packed_rrset_key*)regional_alloc(env->scratch,
1224 	                sizeof(struct ub_packed_rrset_key));
1225 	if(!neg) {
1226 		log_err("out of memory in store_parentside_neg");
1227 		return;
1228 	}
1229 	memset(&neg->entry, 0, sizeof(neg->entry));
1230 	neg->entry.key = neg;
1231 	neg->rk.type = htons(qinfo->qtype);
1232 	neg->rk.rrset_class = htons(qinfo->qclass);
1233 	neg->rk.flags = 0;
1234 	neg->rk.dname = regional_alloc_init(env->scratch, qinfo->qname,
1235 		qinfo->qname_len);
1236 	if(!neg->rk.dname) {
1237 		log_err("out of memory in store_parentside_neg");
1238 		return;
1239 	}
1240 	neg->rk.dname_len = qinfo->qname_len;
1241 	neg->entry.hash = rrset_key_hash(&neg->rk);
1242 	newd = (struct packed_rrset_data*)regional_alloc_zero(env->scratch,
1243 		sizeof(struct packed_rrset_data) + sizeof(size_t) +
1244 		sizeof(uint8_t*) + sizeof(time_t) + sizeof(uint16_t));
1245 	if(!newd) {
1246 		log_err("out of memory in store_parentside_neg");
1247 		return;
1248 	}
1249 	neg->entry.data = newd;
1250 	newd->ttl = ttl;
1251 	/* entry must have one RR, otherwise not valid in cache.
1252 	 * put in one RR with empty rdata: those are ignored as nameserver */
1253 	newd->count = 1;
1254 	newd->rrsig_count = 0;
1255 	newd->trust = rrset_trust_ans_noAA;
1256 	newd->rr_len = (size_t*)((uint8_t*)newd +
1257 		sizeof(struct packed_rrset_data));
1258 	newd->rr_len[0] = 0 /* zero len rdata */ + sizeof(uint16_t);
1259 	packed_rrset_ptr_fixup(newd);
1260 	newd->rr_ttl[0] = newd->ttl;
1261 	sldns_write_uint16(newd->rr_data[0], 0 /* zero len rdata */);
1262 	/* store it */
1263 	log_rrset_key(VERB_ALGO, "store parent-side negative", neg);
1264 	iter_store_parentside_rrset(env, neg);
1265 }
1266 
1267 int
1268 iter_lookup_parent_NS_from_cache(struct module_env* env, struct delegpt* dp,
1269 	struct regional* region, struct query_info* qinfo)
1270 {
1271 	struct ub_packed_rrset_key* akey;
1272 	akey = rrset_cache_lookup(env->rrset_cache, dp->name,
1273 		dp->namelen, LDNS_RR_TYPE_NS, qinfo->qclass,
1274 		PACKED_RRSET_PARENT_SIDE, *env->now, 0);
1275 	if(akey) {
1276 		log_rrset_key(VERB_ALGO, "found parent-side NS in cache", akey);
1277 		dp->has_parent_side_NS = 1;
1278 		/* and mark the new names as lame */
1279 		if(!delegpt_rrset_add_ns(dp, region, akey, 1)) {
1280 			lock_rw_unlock(&akey->entry.lock);
1281 			return 0;
1282 		}
1283 		lock_rw_unlock(&akey->entry.lock);
1284 	}
1285 	return 1;
1286 }
1287 
1288 int iter_lookup_parent_glue_from_cache(struct module_env* env,
1289         struct delegpt* dp, struct regional* region, struct query_info* qinfo)
1290 {
1291 	struct ub_packed_rrset_key* akey;
1292 	struct delegpt_ns* ns;
1293 	size_t num = delegpt_count_targets(dp);
1294 	for(ns = dp->nslist; ns; ns = ns->next) {
1295 		if(ns->cache_lookup_count > ITERATOR_NAME_CACHELOOKUP_MAX_PSIDE)
1296 			continue;
1297 		ns->cache_lookup_count++;
1298 		/* get cached parentside A */
1299 		akey = rrset_cache_lookup(env->rrset_cache, ns->name,
1300 			ns->namelen, LDNS_RR_TYPE_A, qinfo->qclass,
1301 			PACKED_RRSET_PARENT_SIDE, *env->now, 0);
1302 		if(akey) {
1303 			log_rrset_key(VERB_ALGO, "found parent-side", akey);
1304 			ns->done_pside4 = 1;
1305 			/* a negative-cache-element has no addresses it adds */
1306 			if(!delegpt_add_rrset_A(dp, region, akey, 1, NULL))
1307 				log_err("malloc failure in lookup_parent_glue");
1308 			lock_rw_unlock(&akey->entry.lock);
1309 		}
1310 		/* get cached parentside AAAA */
1311 		akey = rrset_cache_lookup(env->rrset_cache, ns->name,
1312 			ns->namelen, LDNS_RR_TYPE_AAAA, qinfo->qclass,
1313 			PACKED_RRSET_PARENT_SIDE, *env->now, 0);
1314 		if(akey) {
1315 			log_rrset_key(VERB_ALGO, "found parent-side", akey);
1316 			ns->done_pside6 = 1;
1317 			/* a negative-cache-element has no addresses it adds */
1318 			if(!delegpt_add_rrset_AAAA(dp, region, akey, 1, NULL))
1319 				log_err("malloc failure in lookup_parent_glue");
1320 			lock_rw_unlock(&akey->entry.lock);
1321 		}
1322 	}
1323 	/* see if new (but lame) addresses have become available */
1324 	return delegpt_count_targets(dp) != num;
1325 }
1326 
1327 int
1328 iter_get_next_root(struct iter_hints* hints, struct iter_forwards* fwd,
1329 	uint16_t* c)
1330 {
1331 	uint16_t c1 = *c, c2 = *c;
1332 	int r1, r2;
1333 	int nolock = 1;
1334 
1335 	/* prelock both forwards and hints for atomic read. */
1336 	lock_rw_rdlock(&fwd->lock);
1337 	lock_rw_rdlock(&hints->lock);
1338 	r1 = hints_next_root(hints, &c1, nolock);
1339 	r2 = forwards_next_root(fwd, &c2, nolock);
1340 	lock_rw_unlock(&fwd->lock);
1341 	lock_rw_unlock(&hints->lock);
1342 
1343 	if(!r1 && !r2) /* got none, end of list */
1344 		return 0;
1345 	else if(!r1) /* got one, return that */
1346 		*c = c2;
1347 	else if(!r2)
1348 		*c = c1;
1349 	else if(c1 < c2) /* got both take smallest */
1350 		*c = c1;
1351 	else	*c = c2;
1352 	return 1;
1353 }
1354 
1355 void
1356 iter_scrub_ds(struct dns_msg* msg, struct ub_packed_rrset_key* ns, uint8_t* z)
1357 {
1358 	/* Only the DS record for the delegation itself is expected.
1359 	 * We allow DS for everything between the bailiwick and the
1360 	 * zonecut, thus DS records must be at or above the zonecut.
1361 	 * And the DS records must be below the server authority zone.
1362 	 * The answer section is already scrubbed. */
1363 	size_t i = msg->rep->an_numrrsets;
1364 	while(i < (msg->rep->an_numrrsets + msg->rep->ns_numrrsets)) {
1365 		struct ub_packed_rrset_key* s = msg->rep->rrsets[i];
1366 		if(ntohs(s->rk.type) == LDNS_RR_TYPE_DS &&
1367 			(!ns || !dname_subdomain_c(ns->rk.dname, s->rk.dname)
1368 			|| query_dname_compare(z, s->rk.dname) == 0)) {
1369 			log_nametypeclass(VERB_ALGO, "removing irrelevant DS",
1370 				s->rk.dname, ntohs(s->rk.type),
1371 				ntohs(s->rk.rrset_class));
1372 			memmove(msg->rep->rrsets+i, msg->rep->rrsets+i+1,
1373 				sizeof(struct ub_packed_rrset_key*) *
1374 				(msg->rep->rrset_count-i-1));
1375 			msg->rep->ns_numrrsets--;
1376 			msg->rep->rrset_count--;
1377 			/* stay at same i, but new record */
1378 			continue;
1379 		}
1380 		i++;
1381 	}
1382 }
1383 
1384 void
1385 iter_scrub_nxdomain(struct dns_msg* msg)
1386 {
1387 	if(msg->rep->an_numrrsets == 0)
1388 		return;
1389 
1390 	memmove(msg->rep->rrsets, msg->rep->rrsets+msg->rep->an_numrrsets,
1391 		sizeof(struct ub_packed_rrset_key*) *
1392 		(msg->rep->rrset_count-msg->rep->an_numrrsets));
1393 	msg->rep->rrset_count -= msg->rep->an_numrrsets;
1394 	msg->rep->an_numrrsets = 0;
1395 }
1396 
1397 void iter_dec_attempts(struct delegpt* dp, int d, int outbound_msg_retry)
1398 {
1399 	struct delegpt_addr* a;
1400 	for(a=dp->target_list; a; a = a->next_target) {
1401 		if(a->attempts >= outbound_msg_retry) {
1402 			/* add back to result list */
1403 			delegpt_add_to_result_list(dp, a);
1404 		}
1405 		if(a->attempts > d)
1406 			a->attempts -= d;
1407 		else a->attempts = 0;
1408 	}
1409 }
1410 
1411 void iter_merge_retry_counts(struct delegpt* dp, struct delegpt* old,
1412 	int outbound_msg_retry)
1413 {
1414 	struct delegpt_addr* a, *o, *prev;
1415 	for(a=dp->target_list; a; a = a->next_target) {
1416 		o = delegpt_find_addr(old, &a->addr, a->addrlen);
1417 		if(o) {
1418 			log_addr(VERB_ALGO, "copy attempt count previous dp",
1419 				&a->addr, a->addrlen);
1420 			a->attempts = o->attempts;
1421 		}
1422 	}
1423 	prev = NULL;
1424 	a = dp->usable_list;
1425 	while(a) {
1426 		if(a->attempts >= outbound_msg_retry) {
1427 			log_addr(VERB_ALGO, "remove from usable list dp",
1428 				&a->addr, a->addrlen);
1429 			/* remove from result list */
1430 			if(prev)
1431 				prev->next_usable = a->next_usable;
1432 			else	dp->usable_list = a->next_usable;
1433 			/* prev stays the same */
1434 			a = a->next_usable;
1435 			continue;
1436 		}
1437 		prev = a;
1438 		a = a->next_usable;
1439 	}
1440 }
1441 
1442 int
1443 iter_ds_toolow(struct dns_msg* msg, struct delegpt* dp)
1444 {
1445 	/* if for query example.com, there is example.com SOA or a subdomain
1446 	 * of example.com, then we are too low and need to fetch NS. */
1447 	size_t i;
1448 	/* if we have a DNAME or CNAME we are probably wrong */
1449 	/* if we have a qtype DS in the answer section, its fine */
1450 	for(i=0; i < msg->rep->an_numrrsets; i++) {
1451 		struct ub_packed_rrset_key* s = msg->rep->rrsets[i];
1452 		if(ntohs(s->rk.type) == LDNS_RR_TYPE_DNAME ||
1453 			ntohs(s->rk.type) == LDNS_RR_TYPE_CNAME) {
1454 			/* not the right answer, maybe too low, check the
1455 			 * RRSIG signer name (if there is any) for a hint
1456 			 * that it is from the dp zone anyway */
1457 			uint8_t* sname;
1458 			size_t slen;
1459 			val_find_rrset_signer(s, &sname, &slen);
1460 			if(sname && query_dname_compare(dp->name, sname)==0)
1461 				return 0; /* it is fine, from the right dp */
1462 			return 1;
1463 		}
1464 		if(ntohs(s->rk.type) == LDNS_RR_TYPE_DS)
1465 			return 0; /* fine, we have a DS record */
1466 	}
1467 	for(i=msg->rep->an_numrrsets;
1468 		i < msg->rep->an_numrrsets + msg->rep->ns_numrrsets; i++) {
1469 		struct ub_packed_rrset_key* s = msg->rep->rrsets[i];
1470 		if(ntohs(s->rk.type) == LDNS_RR_TYPE_SOA) {
1471 			if(dname_subdomain_c(s->rk.dname, msg->qinfo.qname))
1472 				return 1; /* point is too low */
1473 			if(query_dname_compare(s->rk.dname, dp->name)==0)
1474 				return 0; /* right dp */
1475 		}
1476 		if(ntohs(s->rk.type) == LDNS_RR_TYPE_NSEC ||
1477 			ntohs(s->rk.type) == LDNS_RR_TYPE_NSEC3) {
1478 			uint8_t* sname;
1479 			size_t slen;
1480 			val_find_rrset_signer(s, &sname, &slen);
1481 			if(sname && query_dname_compare(dp->name, sname)==0)
1482 				return 0; /* it is fine, from the right dp */
1483 			return 1;
1484 		}
1485 	}
1486 	/* we do not know */
1487 	return 1;
1488 }
1489 
1490 int iter_dp_cangodown(struct query_info* qinfo, struct delegpt* dp)
1491 {
1492 	/* no delegation point, do not see how we can go down,
1493 	 * robust check, it should really exist */
1494 	if(!dp) return 0;
1495 
1496 	/* see if dp equals the qname, then we cannot go down further */
1497 	if(query_dname_compare(qinfo->qname, dp->name) == 0)
1498 		return 0;
1499 	/* if dp is one label above the name we also cannot go down further */
1500 	if(dname_count_labels(qinfo->qname) == dp->namelabs+1)
1501 		return 0;
1502 	return 1;
1503 }
1504 
1505 int
1506 iter_stub_fwd_no_cache(struct module_qstate *qstate, struct query_info *qinf,
1507 	uint8_t** retdpname, size_t* retdpnamelen, uint8_t* dpname_storage,
1508 	size_t dpname_storage_len)
1509 {
1510 	struct iter_hints_stub *stub;
1511 	struct delegpt *dp;
1512 	int nolock = 1;
1513 
1514 	/* Check for stub. */
1515 	/* Lock both forwards and hints for atomic read. */
1516 	lock_rw_rdlock(&qstate->env->fwds->lock);
1517 	lock_rw_rdlock(&qstate->env->hints->lock);
1518 	stub = hints_lookup_stub(qstate->env->hints, qinf->qname,
1519 	    qinf->qclass, NULL, nolock);
1520 	dp = forwards_lookup(qstate->env->fwds, qinf->qname, qinf->qclass,
1521 		nolock);
1522 
1523 	/* see if forward or stub is more pertinent */
1524 	if(stub && stub->dp && dp) {
1525 		if(dname_strict_subdomain(dp->name, dp->namelabs,
1526 			stub->dp->name, stub->dp->namelabs)) {
1527 			stub = NULL; /* ignore stub, forward is lower */
1528 		} else {
1529 			dp = NULL; /* ignore forward, stub is lower */
1530 		}
1531 	}
1532 
1533 	/* check stub */
1534 	if (stub != NULL && stub->dp != NULL) {
1535 		enum verbosity_value level = VERB_ALGO;
1536 		int stub_no_cache = stub->dp->no_cache;
1537 		lock_rw_unlock(&qstate->env->fwds->lock);
1538 		if(verbosity >= level && stub_no_cache) {
1539 			char qname[LDNS_MAX_DOMAINLEN];
1540 			char dpname[LDNS_MAX_DOMAINLEN];
1541 			dname_str(qinf->qname, qname);
1542 			dname_str(stub->dp->name, dpname);
1543 			verbose(level, "stub for %s %s has no_cache", qname, dpname);
1544 		}
1545 		if(retdpname) {
1546 			if(stub->dp->namelen > dpname_storage_len) {
1547 				verbose(VERB_ALGO, "no cache stub dpname too long");
1548 				lock_rw_unlock(&qstate->env->hints->lock);
1549 				*retdpname = NULL;
1550 				*retdpnamelen = 0;
1551 				return stub_no_cache;
1552 			}
1553 			memmove(dpname_storage, stub->dp->name,
1554 				stub->dp->namelen);
1555 			*retdpname = dpname_storage;
1556 			*retdpnamelen = stub->dp->namelen;
1557 		}
1558 		lock_rw_unlock(&qstate->env->hints->lock);
1559 		return stub_no_cache;
1560 	}
1561 
1562 	/* Check for forward. */
1563 	if (dp) {
1564 		enum verbosity_value level = VERB_ALGO;
1565 		int dp_no_cache = dp->no_cache;
1566 		lock_rw_unlock(&qstate->env->hints->lock);
1567 		if(verbosity >= level && dp_no_cache) {
1568 			char qname[LDNS_MAX_DOMAINLEN];
1569 			char dpname[LDNS_MAX_DOMAINLEN];
1570 			dname_str(qinf->qname, qname);
1571 			dname_str(dp->name, dpname);
1572 			verbose(level, "forward for %s %s has no_cache", qname, dpname);
1573 		}
1574 		if(retdpname) {
1575 			if(dp->namelen > dpname_storage_len) {
1576 				verbose(VERB_ALGO, "no cache dpname too long");
1577 				lock_rw_unlock(&qstate->env->fwds->lock);
1578 				*retdpname = NULL;
1579 				*retdpnamelen = 0;
1580 				return dp_no_cache;
1581 			}
1582 			memmove(dpname_storage, dp->name, dp->namelen);
1583 			*retdpname = dpname_storage;
1584 			*retdpnamelen = dp->namelen;
1585 		}
1586 		lock_rw_unlock(&qstate->env->fwds->lock);
1587 		return dp_no_cache;
1588 	}
1589 	lock_rw_unlock(&qstate->env->fwds->lock);
1590 	lock_rw_unlock(&qstate->env->hints->lock);
1591 	if(retdpname) {
1592 		*retdpname = NULL;
1593 		*retdpnamelen = 0;
1594 	}
1595 	return 0;
1596 }
1597 
1598 void iterator_set_ip46_support(struct module_stack* mods,
1599 	struct module_env* env, struct outside_network* outnet)
1600 {
1601 	int m = modstack_find(mods, "iterator");
1602 	struct iter_env* ie = NULL;
1603 	if(m == -1)
1604 		return;
1605 	ie = (struct iter_env*)env->modinfo[m];
1606 	if(outnet->pending == NULL)
1607 		return; /* we are in testbound, no rbtree for UDP */
1608 	if(outnet->num_ip4 == 0)
1609 		ie->supports_ipv4 = 0;
1610 	if(outnet->num_ip6 == 0)
1611 		ie->supports_ipv6 = 0;
1612 }
1613 
1614 void
1615 limit_nsec_ttl(struct dns_msg* msg)
1616 {
1617 	/* Limit NSEC and NSEC3 TTL in response, RFC9077 */
1618 	size_t i;
1619 	int found = 0;
1620 	time_t soa_ttl = 0;
1621 	/* Limit the NSEC and NSEC3 TTL values to the SOA TTL and SOA minimum
1622 	 * TTL. That has already been applied to the SOA record ttl. */
1623 	for(i=0; i<msg->rep->rrset_count; i++) {
1624 		struct ub_packed_rrset_key* s = msg->rep->rrsets[i];
1625 		if(ntohs(s->rk.type) == LDNS_RR_TYPE_SOA) {
1626 			struct packed_rrset_data* soadata = (struct packed_rrset_data*)s->entry.data;
1627 			found = 1;
1628 			soa_ttl = soadata->ttl;
1629 			break;
1630 		}
1631 	}
1632 	if(!found)
1633 		return;
1634 	for(i=0; i<msg->rep->rrset_count; i++) {
1635 		struct ub_packed_rrset_key* s = msg->rep->rrsets[i];
1636 		if(ntohs(s->rk.type) == LDNS_RR_TYPE_NSEC ||
1637 			ntohs(s->rk.type) == LDNS_RR_TYPE_NSEC3) {
1638 			struct packed_rrset_data* data = (struct packed_rrset_data*)s->entry.data;
1639 			/* Limit the negative TTL. */
1640 			if(data->ttl > soa_ttl) {
1641 				if(verbosity >= VERB_ALGO) {
1642 					char buf[256];
1643 					snprintf(buf, sizeof(buf),
1644 						"limiting TTL %d of %s record to the SOA TTL of %d for",
1645 						(int)data->ttl, ((ntohs(s->rk.type) == LDNS_RR_TYPE_NSEC)?"NSEC":"NSEC3"), (int)soa_ttl);
1646 					log_nametypeclass(VERB_ALGO, buf,
1647 						s->rk.dname, ntohs(s->rk.type),
1648 						ntohs(s->rk.rrset_class));
1649 				}
1650 				data->ttl = soa_ttl;
1651 			}
1652 		}
1653 	}
1654 }
1655 
1656 void
1657 iter_make_minimal(struct reply_info* rep)
1658 {
1659 	size_t rem = rep->ns_numrrsets + rep->ar_numrrsets;
1660 	rep->ns_numrrsets = 0;
1661 	rep->ar_numrrsets = 0;
1662 	rep->rrset_count -= rem;
1663 }
1664