1 /* 2 * iterator/iter_utils.c - iterative resolver module utility functions. 3 * 4 * Copyright (c) 2007, NLnet Labs. All rights reserved. 5 * 6 * This software is open source. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 12 * Redistributions of source code must retain the above copyright notice, 13 * this list of conditions and the following disclaimer. 14 * 15 * Redistributions in binary form must reproduce the above copyright notice, 16 * this list of conditions and the following disclaimer in the documentation 17 * and/or other materials provided with the distribution. 18 * 19 * Neither the name of the NLNET LABS nor the names of its contributors may 20 * be used to endorse or promote products derived from this software without 21 * specific prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 24 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 25 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 26 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 27 * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 28 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED 29 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 30 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 31 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 32 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 33 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 34 */ 35 36 /** 37 * \file 38 * 39 * This file contains functions to assist the iterator module. 40 * Configuration options. Forward zones. 41 */ 42 #include "config.h" 43 #include "iterator/iter_utils.h" 44 #include "iterator/iterator.h" 45 #include "iterator/iter_hints.h" 46 #include "iterator/iter_fwd.h" 47 #include "iterator/iter_donotq.h" 48 #include "iterator/iter_delegpt.h" 49 #include "iterator/iter_priv.h" 50 #include "services/cache/infra.h" 51 #include "services/cache/dns.h" 52 #include "services/cache/rrset.h" 53 #include "services/outside_network.h" 54 #include "util/net_help.h" 55 #include "util/module.h" 56 #include "util/log.h" 57 #include "util/config_file.h" 58 #include "util/regional.h" 59 #include "util/data/msgparse.h" 60 #include "util/data/dname.h" 61 #include "util/random.h" 62 #include "util/fptr_wlist.h" 63 #include "validator/val_anchor.h" 64 #include "validator/val_kcache.h" 65 #include "validator/val_kentry.h" 66 #include "validator/val_utils.h" 67 #include "validator/val_sigcrypt.h" 68 #include "sldns/sbuffer.h" 69 #include "sldns/str2wire.h" 70 71 /** time when nameserver glue is said to be 'recent' */ 72 #define SUSPICION_RECENT_EXPIRY 86400 73 74 /** if NAT64 is enabled and no NAT64 prefix is configured, first fall back to 75 * DNS64 prefix. If that is not configured, fall back to this default value. 76 */ 77 static const char DEFAULT_NAT64_PREFIX[] = "64:ff9b::/96"; 78 79 /** fillup fetch policy array */ 80 static int 81 fetch_fill(int* target_fetch_policy, int max_dependency_depth, const char* str) 82 { 83 char* s = (char*)str, *e; 84 int i; 85 for(i=0; i<max_dependency_depth+1; i++) { 86 target_fetch_policy[i] = strtol(s, &e, 10); 87 if(s == e) { 88 log_err("cannot parse fetch policy number %s", s); 89 return 0; 90 } 91 s = e; 92 } 93 return 1; 94 } 95 96 /** Read config string that represents the target fetch policy */ 97 int 98 read_fetch_policy(int** target_fetch_policy, int* max_dependency_depth, 99 const char* str) 100 { 101 int count = cfg_count_numbers(str); 102 if(count < 1) { 103 log_err("Cannot parse target fetch policy: \"%s\"", str); 104 return 0; 105 } 106 *max_dependency_depth = count - 1; 107 *target_fetch_policy = (int*)calloc( 108 (size_t)(*max_dependency_depth)+1, sizeof(int)); 109 if(!*target_fetch_policy) { 110 log_err("alloc fetch policy: out of memory"); 111 return 0; 112 } 113 if(!fetch_fill(*target_fetch_policy, *max_dependency_depth, str)) 114 return 0; 115 return 1; 116 } 117 118 struct rbtree_type* 119 caps_white_create(void) 120 { 121 struct rbtree_type* caps_white = rbtree_create(name_tree_compare); 122 if(!caps_white) 123 log_err("out of memory"); 124 return caps_white; 125 } 126 127 /** delete caps_whitelist element */ 128 static void 129 caps_free(struct rbnode_type* n, void* ATTR_UNUSED(d)) 130 { 131 if(n) { 132 free(((struct name_tree_node*)n)->name); 133 free(n); 134 } 135 } 136 137 void 138 caps_white_delete(struct rbtree_type* caps_white) 139 { 140 if(!caps_white) 141 return; 142 traverse_postorder(caps_white, caps_free, NULL); 143 free(caps_white); 144 } 145 146 int 147 caps_white_apply_cfg(rbtree_type* ntree, struct config_file* cfg) 148 { 149 struct config_strlist* p; 150 for(p=cfg->caps_whitelist; p; p=p->next) { 151 struct name_tree_node* n; 152 size_t len; 153 uint8_t* nm = sldns_str2wire_dname(p->str, &len); 154 if(!nm) { 155 log_err("could not parse %s", p->str); 156 return 0; 157 } 158 n = (struct name_tree_node*)calloc(1, sizeof(*n)); 159 if(!n) { 160 log_err("out of memory"); 161 free(nm); 162 return 0; 163 } 164 n->node.key = n; 165 n->name = nm; 166 n->len = len; 167 n->labs = dname_count_labels(nm); 168 n->dclass = LDNS_RR_CLASS_IN; 169 if(!name_tree_insert(ntree, n, nm, len, n->labs, n->dclass)) { 170 /* duplicate element ignored, idempotent */ 171 free(n->name); 172 free(n); 173 } 174 } 175 name_tree_init_parents(ntree); 176 return 1; 177 } 178 179 int 180 nat64_apply_cfg(struct iter_nat64* nat64, struct config_file* cfg) 181 { 182 const char *nat64_prefix; 183 184 nat64_prefix = cfg->nat64_prefix; 185 if(!nat64_prefix) 186 nat64_prefix = cfg->dns64_prefix; 187 if(!nat64_prefix) 188 nat64_prefix = DEFAULT_NAT64_PREFIX; 189 if(!netblockstrtoaddr(nat64_prefix, 0, &nat64->nat64_prefix_addr, 190 &nat64->nat64_prefix_addrlen, &nat64->nat64_prefix_net)) { 191 log_err("cannot parse nat64-prefix netblock: %s", nat64_prefix); 192 return 0; 193 } 194 if(!addr_is_ip6(&nat64->nat64_prefix_addr, 195 nat64->nat64_prefix_addrlen)) { 196 log_err("nat64-prefix is not IPv6: %s", cfg->nat64_prefix); 197 return 0; 198 } 199 if(!prefixnet_is_nat64(nat64->nat64_prefix_net)) { 200 log_err("nat64-prefix length it not 32, 40, 48, 56, 64 or 96: %s", 201 nat64_prefix); 202 return 0; 203 } 204 nat64->use_nat64 = cfg->do_nat64; 205 return 1; 206 } 207 208 int 209 iter_apply_cfg(struct iter_env* iter_env, struct config_file* cfg) 210 { 211 int i; 212 /* target fetch policy */ 213 if(!read_fetch_policy(&iter_env->target_fetch_policy, 214 &iter_env->max_dependency_depth, cfg->target_fetch_policy)) 215 return 0; 216 for(i=0; i<iter_env->max_dependency_depth+1; i++) 217 verbose(VERB_QUERY, "target fetch policy for level %d is %d", 218 i, iter_env->target_fetch_policy[i]); 219 220 if(!iter_env->donotq) 221 iter_env->donotq = donotq_create(); 222 if(!iter_env->donotq || !donotq_apply_cfg(iter_env->donotq, cfg)) { 223 log_err("Could not set donotqueryaddresses"); 224 return 0; 225 } 226 if(!iter_env->priv) 227 iter_env->priv = priv_create(); 228 if(!iter_env->priv || !priv_apply_cfg(iter_env->priv, cfg)) { 229 log_err("Could not set private addresses"); 230 return 0; 231 } 232 if(cfg->caps_whitelist) { 233 if(!iter_env->caps_white) 234 iter_env->caps_white = caps_white_create(); 235 if(!iter_env->caps_white || !caps_white_apply_cfg( 236 iter_env->caps_white, cfg)) { 237 log_err("Could not set capsforid whitelist"); 238 return 0; 239 } 240 241 } 242 243 if(!nat64_apply_cfg(&iter_env->nat64, cfg)) { 244 log_err("Could not setup nat64"); 245 return 0; 246 } 247 248 iter_env->supports_ipv6 = cfg->do_ip6; 249 iter_env->supports_ipv4 = cfg->do_ip4; 250 iter_env->outbound_msg_retry = cfg->outbound_msg_retry; 251 iter_env->max_sent_count = cfg->max_sent_count; 252 iter_env->max_query_restarts = cfg->max_query_restarts; 253 return 1; 254 } 255 256 /** filter out unsuitable targets 257 * @param iter_env: iterator environment with ipv6-support flag. 258 * @param env: module environment with infra cache. 259 * @param name: zone name 260 * @param namelen: length of name 261 * @param qtype: query type (host order). 262 * @param now: current time 263 * @param a: address in delegation point we are examining. 264 * @return an integer that signals the target suitability. 265 * as follows: 266 * -1: The address should be omitted from the list. 267 * Because: 268 * o The address is bogus (DNSSEC validation failure). 269 * o Listed as donotquery 270 * o is ipv6 but no ipv6 support (in operating system). 271 * o is ipv4 but no ipv4 support (in operating system). 272 * o is lame 273 * Otherwise, an rtt in milliseconds. 274 * 0 .. USEFUL_SERVER_TOP_TIMEOUT-1 275 * The roundtrip time timeout estimate. less than 2 minutes. 276 * Note that util/rtt.c has a MIN_TIMEOUT of 50 msec, thus 277 * values 0 .. 49 are not used, unless that is changed. 278 * USEFUL_SERVER_TOP_TIMEOUT 279 * This value exactly is given for unresponsive blacklisted. 280 * USEFUL_SERVER_TOP_TIMEOUT+1 281 * For non-blacklisted servers: huge timeout, but has traffic. 282 * USEFUL_SERVER_TOP_TIMEOUT*1 .. 283 * parent-side lame servers get this penalty. A dispreferential 284 * server. (lame in delegpt). 285 * USEFUL_SERVER_TOP_TIMEOUT*2 .. 286 * dnsseclame servers get penalty 287 * USEFUL_SERVER_TOP_TIMEOUT*3 .. 288 * recursion lame servers get penalty 289 * UNKNOWN_SERVER_NICENESS 290 * If no information is known about the server, this is 291 * returned. 376 msec or so. 292 * +BLACKLIST_PENALTY (of USEFUL_TOP_TIMEOUT*4) for dnssec failed IPs. 293 * 294 * When a final value is chosen that is dnsseclame ; dnsseclameness checking 295 * is turned off (so we do not discard the reply). 296 * When a final value is chosen that is recursionlame; RD bit is set on query. 297 * Because of the numbers this means recursionlame also have dnssec lameness 298 * checking turned off. 299 */ 300 static int 301 iter_filter_unsuitable(struct iter_env* iter_env, struct module_env* env, 302 uint8_t* name, size_t namelen, uint16_t qtype, time_t now, 303 struct delegpt_addr* a) 304 { 305 int rtt, lame, reclame, dnsseclame; 306 if(a->bogus) 307 return -1; /* address of server is bogus */ 308 if(donotq_lookup(iter_env->donotq, &a->addr, a->addrlen)) { 309 log_addr(VERB_ALGO, "skip addr on the donotquery list", 310 &a->addr, a->addrlen); 311 return -1; /* server is on the donotquery list */ 312 } 313 if(!iter_env->supports_ipv6 && addr_is_ip6(&a->addr, a->addrlen)) { 314 return -1; /* there is no ip6 available */ 315 } 316 if(!iter_env->supports_ipv4 && !iter_env->nat64.use_nat64 && 317 !addr_is_ip6(&a->addr, a->addrlen)) { 318 return -1; /* there is no ip4 available */ 319 } 320 /* check lameness - need zone , class info */ 321 if(infra_get_lame_rtt(env->infra_cache, &a->addr, a->addrlen, 322 name, namelen, qtype, &lame, &dnsseclame, &reclame, 323 &rtt, now)) { 324 log_addr(VERB_ALGO, "servselect", &a->addr, a->addrlen); 325 verbose(VERB_ALGO, " rtt=%d%s%s%s%s%s", rtt, 326 lame?" LAME":"", 327 dnsseclame?" DNSSEC_LAME":"", 328 a->dnsseclame?" ADDR_DNSSEC_LAME":"", 329 reclame?" REC_LAME":"", 330 a->lame?" ADDR_LAME":""); 331 if(lame) 332 return -1; /* server is lame */ 333 else if(rtt >= USEFUL_SERVER_TOP_TIMEOUT) 334 /* server is unresponsive, 335 * we used to return TOP_TIMEOUT, but fairly useless, 336 * because if == TOP_TIMEOUT is dropped because 337 * blacklisted later, instead, remove it here, so 338 * other choices (that are not blacklisted) can be 339 * tried */ 340 return -1; 341 /* select remainder from worst to best */ 342 else if(reclame) 343 return rtt+USEFUL_SERVER_TOP_TIMEOUT*3; /* nonpref */ 344 else if(dnsseclame || a->dnsseclame) 345 return rtt+USEFUL_SERVER_TOP_TIMEOUT*2; /* nonpref */ 346 else if(a->lame) 347 return rtt+USEFUL_SERVER_TOP_TIMEOUT+1; /* nonpref */ 348 else return rtt; 349 } 350 /* no server information present */ 351 if(a->dnsseclame) 352 return UNKNOWN_SERVER_NICENESS+USEFUL_SERVER_TOP_TIMEOUT*2; /* nonpref */ 353 else if(a->lame) 354 return USEFUL_SERVER_TOP_TIMEOUT+1+UNKNOWN_SERVER_NICENESS; /* nonpref */ 355 return UNKNOWN_SERVER_NICENESS; 356 } 357 358 /** lookup RTT information, and also store fastest rtt (if any) */ 359 static int 360 iter_fill_rtt(struct iter_env* iter_env, struct module_env* env, 361 uint8_t* name, size_t namelen, uint16_t qtype, time_t now, 362 struct delegpt* dp, int* best_rtt, struct sock_list* blacklist, 363 size_t* num_suitable_results) 364 { 365 int got_it = 0; 366 struct delegpt_addr* a; 367 *num_suitable_results = 0; 368 369 if(dp->bogus) 370 return 0; /* NS bogus, all bogus, nothing found */ 371 for(a=dp->result_list; a; a = a->next_result) { 372 a->sel_rtt = iter_filter_unsuitable(iter_env, env, 373 name, namelen, qtype, now, a); 374 if(a->sel_rtt != -1) { 375 if(sock_list_find(blacklist, &a->addr, a->addrlen)) 376 a->sel_rtt += BLACKLIST_PENALTY; 377 378 if(!got_it) { 379 *best_rtt = a->sel_rtt; 380 got_it = 1; 381 } else if(a->sel_rtt < *best_rtt) { 382 *best_rtt = a->sel_rtt; 383 } 384 (*num_suitable_results)++; 385 } 386 } 387 return got_it; 388 } 389 390 /** compare two rtts, return -1, 0 or 1 */ 391 static int 392 rtt_compare(const void* x, const void* y) 393 { 394 if(*(int*)x == *(int*)y) 395 return 0; 396 if(*(int*)x > *(int*)y) 397 return 1; 398 return -1; 399 } 400 401 /** get RTT for the Nth fastest server */ 402 static int 403 nth_rtt(struct delegpt_addr* result_list, size_t num_results, size_t n) 404 { 405 int rtt_band; 406 size_t i; 407 int* rtt_list, *rtt_index; 408 409 if(num_results < 1 || n >= num_results) { 410 return -1; 411 } 412 413 rtt_list = calloc(num_results, sizeof(int)); 414 if(!rtt_list) { 415 log_err("malloc failure: allocating rtt_list"); 416 return -1; 417 } 418 rtt_index = rtt_list; 419 420 for(i=0; i<num_results && result_list; i++) { 421 if(result_list->sel_rtt != -1) { 422 *rtt_index = result_list->sel_rtt; 423 rtt_index++; 424 } 425 result_list=result_list->next_result; 426 } 427 qsort(rtt_list, num_results, sizeof(*rtt_list), rtt_compare); 428 429 log_assert(n > 0); 430 rtt_band = rtt_list[n-1]; 431 free(rtt_list); 432 433 return rtt_band; 434 } 435 436 /** filter the address list, putting best targets at front, 437 * returns number of best targets (or 0, no suitable targets) */ 438 static int 439 iter_filter_order(struct iter_env* iter_env, struct module_env* env, 440 uint8_t* name, size_t namelen, uint16_t qtype, time_t now, 441 struct delegpt* dp, int* selected_rtt, int open_target, 442 struct sock_list* blacklist, time_t prefetch) 443 { 444 int got_num = 0, low_rtt = 0, swap_to_front, rtt_band = RTT_BAND, nth; 445 int alllame = 0; 446 size_t num_results; 447 struct delegpt_addr* a, *n, *prev=NULL; 448 449 /* fillup sel_rtt and find best rtt in the bunch */ 450 got_num = iter_fill_rtt(iter_env, env, name, namelen, qtype, now, dp, 451 &low_rtt, blacklist, &num_results); 452 if(got_num == 0) 453 return 0; 454 if(low_rtt >= USEFUL_SERVER_TOP_TIMEOUT && 455 /* If all missing (or not fully resolved) targets are lame, 456 * then use the remaining lame address. */ 457 ((delegpt_count_missing_targets(dp, &alllame) > 0 && !alllame) || 458 open_target > 0)) { 459 verbose(VERB_ALGO, "Bad choices, trying to get more choice"); 460 return 0; /* we want more choice. The best choice is a bad one. 461 return 0 to force the caller to fetch more */ 462 } 463 464 if(env->cfg->fast_server_permil != 0 && prefetch == 0 && 465 num_results > env->cfg->fast_server_num && 466 ub_random_max(env->rnd, 1000) < env->cfg->fast_server_permil) { 467 /* the query is not prefetch, but for a downstream client, 468 * there are more servers available then the fastest N we want 469 * to choose from. Limit our choice to the fastest servers. */ 470 nth = nth_rtt(dp->result_list, num_results, 471 env->cfg->fast_server_num); 472 if(nth > 0) { 473 rtt_band = nth - low_rtt; 474 if(rtt_band > RTT_BAND) 475 rtt_band = RTT_BAND; 476 } 477 } 478 479 got_num = 0; 480 a = dp->result_list; 481 while(a) { 482 /* skip unsuitable targets */ 483 if(a->sel_rtt == -1) { 484 prev = a; 485 a = a->next_result; 486 continue; 487 } 488 /* classify the server address and determine what to do */ 489 swap_to_front = 0; 490 if(a->sel_rtt >= low_rtt && a->sel_rtt - low_rtt <= rtt_band) { 491 got_num++; 492 swap_to_front = 1; 493 } else if(a->sel_rtt<low_rtt && low_rtt-a->sel_rtt<=rtt_band) { 494 got_num++; 495 swap_to_front = 1; 496 } 497 /* swap to front if necessary, or move to next result */ 498 if(swap_to_front && prev) { 499 n = a->next_result; 500 prev->next_result = n; 501 a->next_result = dp->result_list; 502 dp->result_list = a; 503 a = n; 504 } else { 505 prev = a; 506 a = a->next_result; 507 } 508 } 509 *selected_rtt = low_rtt; 510 511 if (env->cfg->prefer_ip6) { 512 int got_num6 = 0; 513 int low_rtt6 = 0; 514 int i; 515 int attempt = -1; /* filter to make sure addresses have 516 less attempts on them than the first, to force round 517 robin when all the IPv6 addresses fail */ 518 int num4ok = 0; /* number ip4 at low attempt count */ 519 int num4_lowrtt = 0; 520 prev = NULL; 521 a = dp->result_list; 522 for(i = 0; i < got_num; i++) { 523 if(!a) break; /* robustness */ 524 swap_to_front = 0; 525 if(a->addr.ss_family != AF_INET6 && attempt == -1) { 526 /* if we only have ip4 at low attempt count, 527 * then ip6 is failing, and we need to 528 * select one of the remaining IPv4 addrs */ 529 attempt = a->attempts; 530 num4ok++; 531 num4_lowrtt = a->sel_rtt; 532 } else if(a->addr.ss_family != AF_INET6 && attempt == a->attempts) { 533 num4ok++; 534 if(num4_lowrtt == 0 || a->sel_rtt < num4_lowrtt) { 535 num4_lowrtt = a->sel_rtt; 536 } 537 } 538 if(a->addr.ss_family == AF_INET6) { 539 if(attempt == -1) { 540 attempt = a->attempts; 541 } else if(a->attempts > attempt) { 542 break; 543 } 544 got_num6++; 545 swap_to_front = 1; 546 if(low_rtt6 == 0 || a->sel_rtt < low_rtt6) { 547 low_rtt6 = a->sel_rtt; 548 } 549 } 550 /* swap to front if IPv6, or move to next result */ 551 if(swap_to_front && prev) { 552 n = a->next_result; 553 prev->next_result = n; 554 a->next_result = dp->result_list; 555 dp->result_list = a; 556 a = n; 557 } else { 558 prev = a; 559 a = a->next_result; 560 } 561 } 562 if(got_num6 > 0) { 563 got_num = got_num6; 564 *selected_rtt = low_rtt6; 565 } else if(num4ok > 0) { 566 got_num = num4ok; 567 *selected_rtt = num4_lowrtt; 568 } 569 } else if (env->cfg->prefer_ip4) { 570 int got_num4 = 0; 571 int low_rtt4 = 0; 572 int i; 573 int attempt = -1; /* filter to make sure addresses have 574 less attempts on them than the first, to force round 575 robin when all the IPv4 addresses fail */ 576 int num6ok = 0; /* number ip6 at low attempt count */ 577 int num6_lowrtt = 0; 578 prev = NULL; 579 a = dp->result_list; 580 for(i = 0; i < got_num; i++) { 581 if(!a) break; /* robustness */ 582 swap_to_front = 0; 583 if(a->addr.ss_family != AF_INET && attempt == -1) { 584 /* if we only have ip6 at low attempt count, 585 * then ip4 is failing, and we need to 586 * select one of the remaining IPv6 addrs */ 587 attempt = a->attempts; 588 num6ok++; 589 num6_lowrtt = a->sel_rtt; 590 } else if(a->addr.ss_family != AF_INET && attempt == a->attempts) { 591 num6ok++; 592 if(num6_lowrtt == 0 || a->sel_rtt < num6_lowrtt) { 593 num6_lowrtt = a->sel_rtt; 594 } 595 } 596 if(a->addr.ss_family == AF_INET) { 597 if(attempt == -1) { 598 attempt = a->attempts; 599 } else if(a->attempts > attempt) { 600 break; 601 } 602 got_num4++; 603 swap_to_front = 1; 604 if(low_rtt4 == 0 || a->sel_rtt < low_rtt4) { 605 low_rtt4 = a->sel_rtt; 606 } 607 } 608 /* swap to front if IPv4, or move to next result */ 609 if(swap_to_front && prev) { 610 n = a->next_result; 611 prev->next_result = n; 612 a->next_result = dp->result_list; 613 dp->result_list = a; 614 a = n; 615 } else { 616 prev = a; 617 a = a->next_result; 618 } 619 } 620 if(got_num4 > 0) { 621 got_num = got_num4; 622 *selected_rtt = low_rtt4; 623 } else if(num6ok > 0) { 624 got_num = num6ok; 625 *selected_rtt = num6_lowrtt; 626 } 627 } 628 return got_num; 629 } 630 631 struct delegpt_addr* 632 iter_server_selection(struct iter_env* iter_env, 633 struct module_env* env, struct delegpt* dp, 634 uint8_t* name, size_t namelen, uint16_t qtype, int* dnssec_lame, 635 int* chase_to_rd, int open_target, struct sock_list* blacklist, 636 time_t prefetch) 637 { 638 int sel; 639 int selrtt; 640 struct delegpt_addr* a, *prev; 641 int num = iter_filter_order(iter_env, env, name, namelen, qtype, 642 *env->now, dp, &selrtt, open_target, blacklist, prefetch); 643 644 if(num == 0) 645 return NULL; 646 verbose(VERB_ALGO, "selrtt %d", selrtt); 647 if(selrtt > BLACKLIST_PENALTY) { 648 if(selrtt-BLACKLIST_PENALTY > USEFUL_SERVER_TOP_TIMEOUT*3) { 649 verbose(VERB_ALGO, "chase to " 650 "blacklisted recursion lame server"); 651 *chase_to_rd = 1; 652 } 653 if(selrtt-BLACKLIST_PENALTY > USEFUL_SERVER_TOP_TIMEOUT*2) { 654 verbose(VERB_ALGO, "chase to " 655 "blacklisted dnssec lame server"); 656 *dnssec_lame = 1; 657 } 658 } else { 659 if(selrtt > USEFUL_SERVER_TOP_TIMEOUT*3) { 660 verbose(VERB_ALGO, "chase to recursion lame server"); 661 *chase_to_rd = 1; 662 } 663 if(selrtt > USEFUL_SERVER_TOP_TIMEOUT*2) { 664 verbose(VERB_ALGO, "chase to dnssec lame server"); 665 *dnssec_lame = 1; 666 } 667 if(selrtt == USEFUL_SERVER_TOP_TIMEOUT) { 668 verbose(VERB_ALGO, "chase to blacklisted lame server"); 669 return NULL; 670 } 671 } 672 673 if(num == 1) { 674 a = dp->result_list; 675 if(++a->attempts < iter_env->outbound_msg_retry) 676 return a; 677 dp->result_list = a->next_result; 678 return a; 679 } 680 681 /* randomly select a target from the list */ 682 log_assert(num > 1); 683 /* grab secure random number, to pick unexpected server. 684 * also we need it to be threadsafe. */ 685 sel = ub_random_max(env->rnd, num); 686 a = dp->result_list; 687 prev = NULL; 688 while(sel > 0 && a) { 689 prev = a; 690 a = a->next_result; 691 sel--; 692 } 693 if(!a) /* robustness */ 694 return NULL; 695 if(++a->attempts < iter_env->outbound_msg_retry) 696 return a; 697 /* remove it from the delegation point result list */ 698 if(prev) 699 prev->next_result = a->next_result; 700 else dp->result_list = a->next_result; 701 return a; 702 } 703 704 struct dns_msg* 705 dns_alloc_msg(sldns_buffer* pkt, struct msg_parse* msg, 706 struct regional* region) 707 { 708 struct dns_msg* m = (struct dns_msg*)regional_alloc(region, 709 sizeof(struct dns_msg)); 710 if(!m) 711 return NULL; 712 memset(m, 0, sizeof(*m)); 713 if(!parse_create_msg(pkt, msg, NULL, &m->qinfo, &m->rep, region)) { 714 log_err("malloc failure: allocating incoming dns_msg"); 715 return NULL; 716 } 717 return m; 718 } 719 720 struct dns_msg* 721 dns_copy_msg(struct dns_msg* from, struct regional* region) 722 { 723 struct dns_msg* m = (struct dns_msg*)regional_alloc(region, 724 sizeof(struct dns_msg)); 725 if(!m) 726 return NULL; 727 m->qinfo = from->qinfo; 728 if(!(m->qinfo.qname = regional_alloc_init(region, from->qinfo.qname, 729 from->qinfo.qname_len))) 730 return NULL; 731 if(!(m->rep = reply_info_copy(from->rep, NULL, region))) 732 return NULL; 733 return m; 734 } 735 736 void 737 iter_dns_store(struct module_env* env, struct query_info* msgqinf, 738 struct reply_info* msgrep, int is_referral, time_t leeway, int pside, 739 struct regional* region, uint16_t flags, time_t qstarttime, 740 int is_valrec) 741 { 742 if(!dns_cache_store(env, msgqinf, msgrep, is_referral, leeway, 743 pside, region, flags, qstarttime, is_valrec)) 744 log_err("out of memory: cannot store data in cache"); 745 } 746 747 int 748 iter_ns_probability(struct ub_randstate* rnd, int n, int m) 749 { 750 int sel; 751 if(n == m) /* 100% chance */ 752 return 1; 753 /* we do not need secure random numbers here, but 754 * we do need it to be threadsafe, so we use this */ 755 sel = ub_random_max(rnd, m); 756 return (sel < n); 757 } 758 759 /** detect dependency cycle for query and target */ 760 static int 761 causes_cycle(struct module_qstate* qstate, uint8_t* name, size_t namelen, 762 uint16_t t, uint16_t c) 763 { 764 struct query_info qinf; 765 qinf.qname = name; 766 qinf.qname_len = namelen; 767 qinf.qtype = t; 768 qinf.qclass = c; 769 qinf.local_alias = NULL; 770 fptr_ok(fptr_whitelist_modenv_detect_cycle( 771 qstate->env->detect_cycle)); 772 return (*qstate->env->detect_cycle)(qstate, &qinf, 773 (uint16_t)(BIT_RD|BIT_CD), qstate->is_priming, 774 qstate->is_valrec); 775 } 776 777 void 778 iter_mark_cycle_targets(struct module_qstate* qstate, struct delegpt* dp) 779 { 780 struct delegpt_ns* ns; 781 for(ns = dp->nslist; ns; ns = ns->next) { 782 if(ns->resolved) 783 continue; 784 /* see if this ns as target causes dependency cycle */ 785 if(causes_cycle(qstate, ns->name, ns->namelen, 786 LDNS_RR_TYPE_AAAA, qstate->qinfo.qclass) || 787 causes_cycle(qstate, ns->name, ns->namelen, 788 LDNS_RR_TYPE_A, qstate->qinfo.qclass)) { 789 log_nametypeclass(VERB_QUERY, "skipping target due " 790 "to dependency cycle (harden-glue: no may " 791 "fix some of the cycles)", 792 ns->name, LDNS_RR_TYPE_A, 793 qstate->qinfo.qclass); 794 ns->resolved = 1; 795 } 796 } 797 } 798 799 void 800 iter_mark_pside_cycle_targets(struct module_qstate* qstate, struct delegpt* dp) 801 { 802 struct delegpt_ns* ns; 803 for(ns = dp->nslist; ns; ns = ns->next) { 804 if(ns->done_pside4 && ns->done_pside6) 805 continue; 806 /* see if this ns as target causes dependency cycle */ 807 if(causes_cycle(qstate, ns->name, ns->namelen, 808 LDNS_RR_TYPE_A, qstate->qinfo.qclass)) { 809 log_nametypeclass(VERB_QUERY, "skipping target due " 810 "to dependency cycle", ns->name, 811 LDNS_RR_TYPE_A, qstate->qinfo.qclass); 812 ns->done_pside4 = 1; 813 } 814 if(causes_cycle(qstate, ns->name, ns->namelen, 815 LDNS_RR_TYPE_AAAA, qstate->qinfo.qclass)) { 816 log_nametypeclass(VERB_QUERY, "skipping target due " 817 "to dependency cycle", ns->name, 818 LDNS_RR_TYPE_AAAA, qstate->qinfo.qclass); 819 ns->done_pside6 = 1; 820 } 821 } 822 } 823 824 int 825 iter_dp_is_useless(struct query_info* qinfo, uint16_t qflags, 826 struct delegpt* dp, int supports_ipv4, int supports_ipv6, 827 int use_nat64) 828 { 829 struct delegpt_ns* ns; 830 struct delegpt_addr* a; 831 832 if(supports_ipv6 && use_nat64) 833 supports_ipv4 = 1; 834 835 /* check: 836 * o RD qflag is on. 837 * o no addresses are provided. 838 * o all NS items are required glue. 839 * OR 840 * o RD qflag is on. 841 * o no addresses are provided. 842 * o the query is for one of the nameservers in dp, 843 * and that nameserver is a glue-name for this dp. 844 */ 845 if(!(qflags&BIT_RD)) 846 return 0; 847 /* either available or unused targets, 848 * if they exist, the dp is not useless. */ 849 for(a = dp->usable_list; a; a = a->next_usable) { 850 if(!addr_is_ip6(&a->addr, a->addrlen) && supports_ipv4) 851 return 0; 852 else if(addr_is_ip6(&a->addr, a->addrlen) && supports_ipv6) 853 return 0; 854 } 855 for(a = dp->result_list; a; a = a->next_result) { 856 if(!addr_is_ip6(&a->addr, a->addrlen) && supports_ipv4) 857 return 0; 858 else if(addr_is_ip6(&a->addr, a->addrlen) && supports_ipv6) 859 return 0; 860 } 861 862 /* see if query is for one of the nameservers, which is glue */ 863 if( ((qinfo->qtype == LDNS_RR_TYPE_A && supports_ipv4) || 864 (qinfo->qtype == LDNS_RR_TYPE_AAAA && supports_ipv6)) && 865 dname_subdomain_c(qinfo->qname, dp->name) && 866 delegpt_find_ns(dp, qinfo->qname, qinfo->qname_len)) 867 return 1; 868 869 for(ns = dp->nslist; ns; ns = ns->next) { 870 if(ns->resolved) /* skip failed targets */ 871 continue; 872 if(!dname_subdomain_c(ns->name, dp->name)) 873 return 0; /* one address is not required glue */ 874 } 875 return 1; 876 } 877 878 int 879 iter_qname_indicates_dnssec(struct module_env* env, struct query_info *qinfo) 880 { 881 struct trust_anchor* a; 882 if(!env || !env->anchors || !qinfo || !qinfo->qname) 883 return 0; 884 /* a trust anchor exists above the name? */ 885 if((a=anchors_lookup(env->anchors, qinfo->qname, qinfo->qname_len, 886 qinfo->qclass))) { 887 if(a->numDS == 0 && a->numDNSKEY == 0) { 888 /* insecure trust point */ 889 lock_basic_unlock(&a->lock); 890 return 0; 891 } 892 lock_basic_unlock(&a->lock); 893 return 1; 894 } 895 /* no trust anchor above it. */ 896 return 0; 897 } 898 899 int 900 iter_indicates_dnssec(struct module_env* env, struct delegpt* dp, 901 struct dns_msg* msg, uint16_t dclass) 902 { 903 struct trust_anchor* a; 904 /* information not available, !env->anchors can be common */ 905 if(!env || !env->anchors || !dp || !dp->name) 906 return 0; 907 /* a trust anchor exists with this name, RRSIGs expected */ 908 if((a=anchor_find(env->anchors, dp->name, dp->namelabs, dp->namelen, 909 dclass))) { 910 if(a->numDS == 0 && a->numDNSKEY == 0) { 911 /* insecure trust point */ 912 lock_basic_unlock(&a->lock); 913 return 0; 914 } 915 lock_basic_unlock(&a->lock); 916 return 1; 917 } 918 /* see if DS rrset was given, in AUTH section */ 919 if(msg && msg->rep && 920 reply_find_rrset_section_ns(msg->rep, dp->name, dp->namelen, 921 LDNS_RR_TYPE_DS, dclass)) 922 return 1; 923 /* look in key cache */ 924 if(env->key_cache) { 925 struct key_entry_key* kk = key_cache_obtain(env->key_cache, 926 dp->name, dp->namelen, dclass, env->scratch, *env->now); 927 if(kk) { 928 if(query_dname_compare(kk->name, dp->name) == 0) { 929 if(key_entry_isgood(kk) || key_entry_isbad(kk)) { 930 regional_free_all(env->scratch); 931 return 1; 932 } else if(key_entry_isnull(kk)) { 933 regional_free_all(env->scratch); 934 return 0; 935 } 936 } 937 regional_free_all(env->scratch); 938 } 939 } 940 return 0; 941 } 942 943 int 944 iter_msg_has_dnssec(struct dns_msg* msg) 945 { 946 size_t i; 947 if(!msg || !msg->rep) 948 return 0; 949 for(i=0; i<msg->rep->an_numrrsets + msg->rep->ns_numrrsets; i++) { 950 if(((struct packed_rrset_data*)msg->rep->rrsets[i]-> 951 entry.data)->rrsig_count > 0) 952 return 1; 953 } 954 /* empty message has no DNSSEC info, with DNSSEC the reply is 955 * not empty (NSEC) */ 956 return 0; 957 } 958 959 int iter_msg_from_zone(struct dns_msg* msg, struct delegpt* dp, 960 enum response_type type, uint16_t dclass) 961 { 962 if(!msg || !dp || !msg->rep || !dp->name) 963 return 0; 964 /* SOA RRset - always from reply zone */ 965 if(reply_find_rrset_section_an(msg->rep, dp->name, dp->namelen, 966 LDNS_RR_TYPE_SOA, dclass) || 967 reply_find_rrset_section_ns(msg->rep, dp->name, dp->namelen, 968 LDNS_RR_TYPE_SOA, dclass)) 969 return 1; 970 if(type == RESPONSE_TYPE_REFERRAL) { 971 size_t i; 972 /* if it adds a single label, i.e. we expect .com, 973 * and referral to example.com. NS ... , then origin zone 974 * is .com. For a referral to sub.example.com. NS ... then 975 * we do not know, since example.com. may be in between. */ 976 for(i=0; i<msg->rep->an_numrrsets+msg->rep->ns_numrrsets; 977 i++) { 978 struct ub_packed_rrset_key* s = msg->rep->rrsets[i]; 979 if(ntohs(s->rk.type) == LDNS_RR_TYPE_NS && 980 ntohs(s->rk.rrset_class) == dclass) { 981 int l = dname_count_labels(s->rk.dname); 982 if(l == dp->namelabs + 1 && 983 dname_strict_subdomain(s->rk.dname, 984 l, dp->name, dp->namelabs)) 985 return 1; 986 } 987 } 988 return 0; 989 } 990 log_assert(type==RESPONSE_TYPE_ANSWER || type==RESPONSE_TYPE_CNAME); 991 /* not a referral, and not lame delegation (upwards), so, 992 * any NS rrset must be from the zone itself */ 993 if(reply_find_rrset_section_an(msg->rep, dp->name, dp->namelen, 994 LDNS_RR_TYPE_NS, dclass) || 995 reply_find_rrset_section_ns(msg->rep, dp->name, dp->namelen, 996 LDNS_RR_TYPE_NS, dclass)) 997 return 1; 998 /* a DNSKEY set is expected at the zone apex as well */ 999 /* this is for 'minimal responses' for DNSKEYs */ 1000 if(reply_find_rrset_section_an(msg->rep, dp->name, dp->namelen, 1001 LDNS_RR_TYPE_DNSKEY, dclass)) 1002 return 1; 1003 return 0; 1004 } 1005 1006 /** 1007 * check equality of two rrsets 1008 * @param k1: rrset 1009 * @param k2: rrset 1010 * @return true if equal 1011 */ 1012 static int 1013 rrset_equal(struct ub_packed_rrset_key* k1, struct ub_packed_rrset_key* k2) 1014 { 1015 struct packed_rrset_data* d1 = (struct packed_rrset_data*) 1016 k1->entry.data; 1017 struct packed_rrset_data* d2 = (struct packed_rrset_data*) 1018 k2->entry.data; 1019 size_t i, t; 1020 if(k1->rk.dname_len != k2->rk.dname_len || 1021 k1->rk.flags != k2->rk.flags || 1022 k1->rk.type != k2->rk.type || 1023 k1->rk.rrset_class != k2->rk.rrset_class || 1024 query_dname_compare(k1->rk.dname, k2->rk.dname) != 0) 1025 return 0; 1026 if( /* do not check ttl: d1->ttl != d2->ttl || */ 1027 d1->count != d2->count || 1028 d1->rrsig_count != d2->rrsig_count || 1029 d1->trust != d2->trust || 1030 d1->security != d2->security) 1031 return 0; 1032 t = d1->count + d1->rrsig_count; 1033 for(i=0; i<t; i++) { 1034 if(d1->rr_len[i] != d2->rr_len[i] || 1035 /* no ttl check: d1->rr_ttl[i] != d2->rr_ttl[i] ||*/ 1036 memcmp(d1->rr_data[i], d2->rr_data[i], 1037 d1->rr_len[i]) != 0) 1038 return 0; 1039 } 1040 return 1; 1041 } 1042 1043 /** compare rrsets and sort canonically. Compares rrset name, type, class. 1044 * return 0 if equal, +1 if x > y, and -1 if x < y. 1045 */ 1046 static int 1047 rrset_canonical_sort_cmp(const void* x, const void* y) 1048 { 1049 struct ub_packed_rrset_key* rrx = *(struct ub_packed_rrset_key**)x; 1050 struct ub_packed_rrset_key* rry = *(struct ub_packed_rrset_key**)y; 1051 int r = dname_canonical_compare(rrx->rk.dname, rry->rk.dname); 1052 if(r != 0) 1053 return r; 1054 if(rrx->rk.type != rry->rk.type) { 1055 if(ntohs(rrx->rk.type) > ntohs(rry->rk.type)) 1056 return 1; 1057 else return -1; 1058 } 1059 if(rrx->rk.rrset_class != rry->rk.rrset_class) { 1060 if(ntohs(rrx->rk.rrset_class) > ntohs(rry->rk.rrset_class)) 1061 return 1; 1062 else return -1; 1063 } 1064 return 0; 1065 } 1066 1067 int 1068 reply_equal(struct reply_info* p, struct reply_info* q, struct regional* region) 1069 { 1070 size_t i; 1071 struct ub_packed_rrset_key** sorted_p, **sorted_q; 1072 if(p->flags != q->flags || 1073 p->qdcount != q->qdcount || 1074 /* do not check TTL, this may differ */ 1075 /* 1076 p->ttl != q->ttl || 1077 p->prefetch_ttl != q->prefetch_ttl || 1078 */ 1079 p->security != q->security || 1080 p->an_numrrsets != q->an_numrrsets || 1081 p->ns_numrrsets != q->ns_numrrsets || 1082 p->ar_numrrsets != q->ar_numrrsets || 1083 p->rrset_count != q->rrset_count) 1084 return 0; 1085 /* sort the rrsets in the authority and additional sections before 1086 * compare, the query and answer sections are ordered in the sequence 1087 * they should have (eg. one after the other for aliases). */ 1088 sorted_p = (struct ub_packed_rrset_key**)regional_alloc_init( 1089 region, p->rrsets, sizeof(*sorted_p)*p->rrset_count); 1090 if(!sorted_p) return 0; 1091 log_assert(p->an_numrrsets + p->ns_numrrsets + p->ar_numrrsets <= 1092 p->rrset_count); 1093 qsort(sorted_p + p->an_numrrsets, p->ns_numrrsets, 1094 sizeof(*sorted_p), rrset_canonical_sort_cmp); 1095 qsort(sorted_p + p->an_numrrsets + p->ns_numrrsets, p->ar_numrrsets, 1096 sizeof(*sorted_p), rrset_canonical_sort_cmp); 1097 1098 sorted_q = (struct ub_packed_rrset_key**)regional_alloc_init( 1099 region, q->rrsets, sizeof(*sorted_q)*q->rrset_count); 1100 if(!sorted_q) { 1101 regional_free_all(region); 1102 return 0; 1103 } 1104 log_assert(q->an_numrrsets + q->ns_numrrsets + q->ar_numrrsets <= 1105 q->rrset_count); 1106 qsort(sorted_q + q->an_numrrsets, q->ns_numrrsets, 1107 sizeof(*sorted_q), rrset_canonical_sort_cmp); 1108 qsort(sorted_q + q->an_numrrsets + q->ns_numrrsets, q->ar_numrrsets, 1109 sizeof(*sorted_q), rrset_canonical_sort_cmp); 1110 1111 /* compare the rrsets */ 1112 for(i=0; i<p->rrset_count; i++) { 1113 if(!rrset_equal(sorted_p[i], sorted_q[i])) { 1114 if(!rrset_canonical_equal(region, sorted_p[i], 1115 sorted_q[i])) { 1116 regional_free_all(region); 1117 return 0; 1118 } 1119 } 1120 } 1121 regional_free_all(region); 1122 return 1; 1123 } 1124 1125 void 1126 caps_strip_reply(struct reply_info* rep) 1127 { 1128 size_t i; 1129 if(!rep) return; 1130 /* see if message is a referral, in which case the additional and 1131 * NS record cannot be removed */ 1132 /* referrals have the AA flag unset (strict check, not elsewhere in 1133 * unbound, but for 0x20 this is very convenient). */ 1134 if(!(rep->flags&BIT_AA)) 1135 return; 1136 /* remove the additional section from the reply */ 1137 if(rep->ar_numrrsets != 0) { 1138 verbose(VERB_ALGO, "caps fallback: removing additional section"); 1139 rep->rrset_count -= rep->ar_numrrsets; 1140 rep->ar_numrrsets = 0; 1141 } 1142 /* is there an NS set in the authority section to remove? */ 1143 /* the failure case (Cisco firewalls) only has one rrset in authsec */ 1144 for(i=rep->an_numrrsets; i<rep->an_numrrsets+rep->ns_numrrsets; i++) { 1145 struct ub_packed_rrset_key* s = rep->rrsets[i]; 1146 if(ntohs(s->rk.type) == LDNS_RR_TYPE_NS) { 1147 /* remove NS rrset and break from loop (loop limits 1148 * have changed) */ 1149 /* move last rrset into this position (there is no 1150 * additional section any more) */ 1151 verbose(VERB_ALGO, "caps fallback: removing NS rrset"); 1152 if(i < rep->rrset_count-1) 1153 rep->rrsets[i]=rep->rrsets[rep->rrset_count-1]; 1154 rep->rrset_count --; 1155 rep->ns_numrrsets --; 1156 break; 1157 } 1158 } 1159 } 1160 1161 int caps_failed_rcode(struct reply_info* rep) 1162 { 1163 return !(FLAGS_GET_RCODE(rep->flags) == LDNS_RCODE_NOERROR || 1164 FLAGS_GET_RCODE(rep->flags) == LDNS_RCODE_NXDOMAIN); 1165 } 1166 1167 void 1168 iter_store_parentside_rrset(struct module_env* env, 1169 struct ub_packed_rrset_key* rrset) 1170 { 1171 struct rrset_ref ref; 1172 rrset = packed_rrset_copy_alloc(rrset, env->alloc, *env->now); 1173 if(!rrset) { 1174 log_err("malloc failure in store_parentside_rrset"); 1175 return; 1176 } 1177 rrset->rk.flags |= PACKED_RRSET_PARENT_SIDE; 1178 rrset->entry.hash = rrset_key_hash(&rrset->rk); 1179 ref.key = rrset; 1180 ref.id = rrset->id; 1181 /* ignore ret: if it was in the cache, ref updated */ 1182 (void)rrset_cache_update(env->rrset_cache, &ref, env->alloc, *env->now); 1183 } 1184 1185 /** fetch NS record from reply, if any */ 1186 static struct ub_packed_rrset_key* 1187 reply_get_NS_rrset(struct reply_info* rep) 1188 { 1189 size_t i; 1190 for(i=0; i<rep->rrset_count; i++) { 1191 if(rep->rrsets[i]->rk.type == htons(LDNS_RR_TYPE_NS)) { 1192 return rep->rrsets[i]; 1193 } 1194 } 1195 return NULL; 1196 } 1197 1198 void 1199 iter_store_parentside_NS(struct module_env* env, struct reply_info* rep) 1200 { 1201 struct ub_packed_rrset_key* rrset = reply_get_NS_rrset(rep); 1202 if(rrset) { 1203 log_rrset_key(VERB_ALGO, "store parent-side NS", rrset); 1204 iter_store_parentside_rrset(env, rrset); 1205 } 1206 } 1207 1208 void iter_store_parentside_neg(struct module_env* env, 1209 struct query_info* qinfo, struct reply_info* rep) 1210 { 1211 /* TTL: NS from referral in iq->deleg_msg, 1212 * or first RR from iq->response, 1213 * or servfail5secs if !iq->response */ 1214 time_t ttl = NORR_TTL; 1215 struct ub_packed_rrset_key* neg; 1216 struct packed_rrset_data* newd; 1217 if(rep) { 1218 struct ub_packed_rrset_key* rrset = reply_get_NS_rrset(rep); 1219 if(!rrset && rep->rrset_count != 0) rrset = rep->rrsets[0]; 1220 if(rrset) ttl = ub_packed_rrset_ttl(rrset); 1221 } 1222 /* create empty rrset to store */ 1223 neg = (struct ub_packed_rrset_key*)regional_alloc(env->scratch, 1224 sizeof(struct ub_packed_rrset_key)); 1225 if(!neg) { 1226 log_err("out of memory in store_parentside_neg"); 1227 return; 1228 } 1229 memset(&neg->entry, 0, sizeof(neg->entry)); 1230 neg->entry.key = neg; 1231 neg->rk.type = htons(qinfo->qtype); 1232 neg->rk.rrset_class = htons(qinfo->qclass); 1233 neg->rk.flags = 0; 1234 neg->rk.dname = regional_alloc_init(env->scratch, qinfo->qname, 1235 qinfo->qname_len); 1236 if(!neg->rk.dname) { 1237 log_err("out of memory in store_parentside_neg"); 1238 return; 1239 } 1240 neg->rk.dname_len = qinfo->qname_len; 1241 neg->entry.hash = rrset_key_hash(&neg->rk); 1242 newd = (struct packed_rrset_data*)regional_alloc_zero(env->scratch, 1243 sizeof(struct packed_rrset_data) + sizeof(size_t) + 1244 sizeof(uint8_t*) + sizeof(time_t) + sizeof(uint16_t)); 1245 if(!newd) { 1246 log_err("out of memory in store_parentside_neg"); 1247 return; 1248 } 1249 neg->entry.data = newd; 1250 newd->ttl = ttl; 1251 /* entry must have one RR, otherwise not valid in cache. 1252 * put in one RR with empty rdata: those are ignored as nameserver */ 1253 newd->count = 1; 1254 newd->rrsig_count = 0; 1255 newd->trust = rrset_trust_ans_noAA; 1256 newd->rr_len = (size_t*)((uint8_t*)newd + 1257 sizeof(struct packed_rrset_data)); 1258 newd->rr_len[0] = 0 /* zero len rdata */ + sizeof(uint16_t); 1259 packed_rrset_ptr_fixup(newd); 1260 newd->rr_ttl[0] = newd->ttl; 1261 sldns_write_uint16(newd->rr_data[0], 0 /* zero len rdata */); 1262 /* store it */ 1263 log_rrset_key(VERB_ALGO, "store parent-side negative", neg); 1264 iter_store_parentside_rrset(env, neg); 1265 } 1266 1267 int 1268 iter_lookup_parent_NS_from_cache(struct module_env* env, struct delegpt* dp, 1269 struct regional* region, struct query_info* qinfo) 1270 { 1271 struct ub_packed_rrset_key* akey; 1272 akey = rrset_cache_lookup(env->rrset_cache, dp->name, 1273 dp->namelen, LDNS_RR_TYPE_NS, qinfo->qclass, 1274 PACKED_RRSET_PARENT_SIDE, *env->now, 0); 1275 if(akey) { 1276 log_rrset_key(VERB_ALGO, "found parent-side NS in cache", akey); 1277 dp->has_parent_side_NS = 1; 1278 /* and mark the new names as lame */ 1279 if(!delegpt_rrset_add_ns(dp, region, akey, 1)) { 1280 lock_rw_unlock(&akey->entry.lock); 1281 return 0; 1282 } 1283 lock_rw_unlock(&akey->entry.lock); 1284 } 1285 return 1; 1286 } 1287 1288 int iter_lookup_parent_glue_from_cache(struct module_env* env, 1289 struct delegpt* dp, struct regional* region, struct query_info* qinfo) 1290 { 1291 struct ub_packed_rrset_key* akey; 1292 struct delegpt_ns* ns; 1293 size_t num = delegpt_count_targets(dp); 1294 for(ns = dp->nslist; ns; ns = ns->next) { 1295 if(ns->cache_lookup_count > ITERATOR_NAME_CACHELOOKUP_MAX_PSIDE) 1296 continue; 1297 ns->cache_lookup_count++; 1298 /* get cached parentside A */ 1299 akey = rrset_cache_lookup(env->rrset_cache, ns->name, 1300 ns->namelen, LDNS_RR_TYPE_A, qinfo->qclass, 1301 PACKED_RRSET_PARENT_SIDE, *env->now, 0); 1302 if(akey) { 1303 log_rrset_key(VERB_ALGO, "found parent-side", akey); 1304 ns->done_pside4 = 1; 1305 /* a negative-cache-element has no addresses it adds */ 1306 if(!delegpt_add_rrset_A(dp, region, akey, 1, NULL)) 1307 log_err("malloc failure in lookup_parent_glue"); 1308 lock_rw_unlock(&akey->entry.lock); 1309 } 1310 /* get cached parentside AAAA */ 1311 akey = rrset_cache_lookup(env->rrset_cache, ns->name, 1312 ns->namelen, LDNS_RR_TYPE_AAAA, qinfo->qclass, 1313 PACKED_RRSET_PARENT_SIDE, *env->now, 0); 1314 if(akey) { 1315 log_rrset_key(VERB_ALGO, "found parent-side", akey); 1316 ns->done_pside6 = 1; 1317 /* a negative-cache-element has no addresses it adds */ 1318 if(!delegpt_add_rrset_AAAA(dp, region, akey, 1, NULL)) 1319 log_err("malloc failure in lookup_parent_glue"); 1320 lock_rw_unlock(&akey->entry.lock); 1321 } 1322 } 1323 /* see if new (but lame) addresses have become available */ 1324 return delegpt_count_targets(dp) != num; 1325 } 1326 1327 int 1328 iter_get_next_root(struct iter_hints* hints, struct iter_forwards* fwd, 1329 uint16_t* c) 1330 { 1331 uint16_t c1 = *c, c2 = *c; 1332 int r1, r2; 1333 int nolock = 1; 1334 1335 /* prelock both forwards and hints for atomic read. */ 1336 lock_rw_rdlock(&fwd->lock); 1337 lock_rw_rdlock(&hints->lock); 1338 r1 = hints_next_root(hints, &c1, nolock); 1339 r2 = forwards_next_root(fwd, &c2, nolock); 1340 lock_rw_unlock(&fwd->lock); 1341 lock_rw_unlock(&hints->lock); 1342 1343 if(!r1 && !r2) /* got none, end of list */ 1344 return 0; 1345 else if(!r1) /* got one, return that */ 1346 *c = c2; 1347 else if(!r2) 1348 *c = c1; 1349 else if(c1 < c2) /* got both take smallest */ 1350 *c = c1; 1351 else *c = c2; 1352 return 1; 1353 } 1354 1355 void 1356 iter_scrub_ds(struct dns_msg* msg, struct ub_packed_rrset_key* ns, uint8_t* z) 1357 { 1358 /* Only the DS record for the delegation itself is expected. 1359 * We allow DS for everything between the bailiwick and the 1360 * zonecut, thus DS records must be at or above the zonecut. 1361 * And the DS records must be below the server authority zone. 1362 * The answer section is already scrubbed. */ 1363 size_t i = msg->rep->an_numrrsets; 1364 while(i < (msg->rep->an_numrrsets + msg->rep->ns_numrrsets)) { 1365 struct ub_packed_rrset_key* s = msg->rep->rrsets[i]; 1366 if(ntohs(s->rk.type) == LDNS_RR_TYPE_DS && 1367 (!ns || !dname_subdomain_c(ns->rk.dname, s->rk.dname) 1368 || query_dname_compare(z, s->rk.dname) == 0)) { 1369 log_nametypeclass(VERB_ALGO, "removing irrelevant DS", 1370 s->rk.dname, ntohs(s->rk.type), 1371 ntohs(s->rk.rrset_class)); 1372 memmove(msg->rep->rrsets+i, msg->rep->rrsets+i+1, 1373 sizeof(struct ub_packed_rrset_key*) * 1374 (msg->rep->rrset_count-i-1)); 1375 msg->rep->ns_numrrsets--; 1376 msg->rep->rrset_count--; 1377 /* stay at same i, but new record */ 1378 continue; 1379 } 1380 i++; 1381 } 1382 } 1383 1384 void 1385 iter_scrub_nxdomain(struct dns_msg* msg) 1386 { 1387 if(msg->rep->an_numrrsets == 0) 1388 return; 1389 1390 memmove(msg->rep->rrsets, msg->rep->rrsets+msg->rep->an_numrrsets, 1391 sizeof(struct ub_packed_rrset_key*) * 1392 (msg->rep->rrset_count-msg->rep->an_numrrsets)); 1393 msg->rep->rrset_count -= msg->rep->an_numrrsets; 1394 msg->rep->an_numrrsets = 0; 1395 } 1396 1397 void iter_dec_attempts(struct delegpt* dp, int d, int outbound_msg_retry) 1398 { 1399 struct delegpt_addr* a; 1400 for(a=dp->target_list; a; a = a->next_target) { 1401 if(a->attempts >= outbound_msg_retry) { 1402 /* add back to result list */ 1403 delegpt_add_to_result_list(dp, a); 1404 } 1405 if(a->attempts > d) 1406 a->attempts -= d; 1407 else a->attempts = 0; 1408 } 1409 } 1410 1411 void iter_merge_retry_counts(struct delegpt* dp, struct delegpt* old, 1412 int outbound_msg_retry) 1413 { 1414 struct delegpt_addr* a, *o, *prev; 1415 for(a=dp->target_list; a; a = a->next_target) { 1416 o = delegpt_find_addr(old, &a->addr, a->addrlen); 1417 if(o) { 1418 log_addr(VERB_ALGO, "copy attempt count previous dp", 1419 &a->addr, a->addrlen); 1420 a->attempts = o->attempts; 1421 } 1422 } 1423 prev = NULL; 1424 a = dp->usable_list; 1425 while(a) { 1426 if(a->attempts >= outbound_msg_retry) { 1427 log_addr(VERB_ALGO, "remove from usable list dp", 1428 &a->addr, a->addrlen); 1429 /* remove from result list */ 1430 if(prev) 1431 prev->next_usable = a->next_usable; 1432 else dp->usable_list = a->next_usable; 1433 /* prev stays the same */ 1434 a = a->next_usable; 1435 continue; 1436 } 1437 prev = a; 1438 a = a->next_usable; 1439 } 1440 } 1441 1442 int 1443 iter_ds_toolow(struct dns_msg* msg, struct delegpt* dp) 1444 { 1445 /* if for query example.com, there is example.com SOA or a subdomain 1446 * of example.com, then we are too low and need to fetch NS. */ 1447 size_t i; 1448 /* if we have a DNAME or CNAME we are probably wrong */ 1449 /* if we have a qtype DS in the answer section, its fine */ 1450 for(i=0; i < msg->rep->an_numrrsets; i++) { 1451 struct ub_packed_rrset_key* s = msg->rep->rrsets[i]; 1452 if(ntohs(s->rk.type) == LDNS_RR_TYPE_DNAME || 1453 ntohs(s->rk.type) == LDNS_RR_TYPE_CNAME) { 1454 /* not the right answer, maybe too low, check the 1455 * RRSIG signer name (if there is any) for a hint 1456 * that it is from the dp zone anyway */ 1457 uint8_t* sname; 1458 size_t slen; 1459 val_find_rrset_signer(s, &sname, &slen); 1460 if(sname && query_dname_compare(dp->name, sname)==0) 1461 return 0; /* it is fine, from the right dp */ 1462 return 1; 1463 } 1464 if(ntohs(s->rk.type) == LDNS_RR_TYPE_DS) 1465 return 0; /* fine, we have a DS record */ 1466 } 1467 for(i=msg->rep->an_numrrsets; 1468 i < msg->rep->an_numrrsets + msg->rep->ns_numrrsets; i++) { 1469 struct ub_packed_rrset_key* s = msg->rep->rrsets[i]; 1470 if(ntohs(s->rk.type) == LDNS_RR_TYPE_SOA) { 1471 if(dname_subdomain_c(s->rk.dname, msg->qinfo.qname)) 1472 return 1; /* point is too low */ 1473 if(query_dname_compare(s->rk.dname, dp->name)==0) 1474 return 0; /* right dp */ 1475 } 1476 if(ntohs(s->rk.type) == LDNS_RR_TYPE_NSEC || 1477 ntohs(s->rk.type) == LDNS_RR_TYPE_NSEC3) { 1478 uint8_t* sname; 1479 size_t slen; 1480 val_find_rrset_signer(s, &sname, &slen); 1481 if(sname && query_dname_compare(dp->name, sname)==0) 1482 return 0; /* it is fine, from the right dp */ 1483 return 1; 1484 } 1485 } 1486 /* we do not know */ 1487 return 1; 1488 } 1489 1490 int iter_dp_cangodown(struct query_info* qinfo, struct delegpt* dp) 1491 { 1492 /* no delegation point, do not see how we can go down, 1493 * robust check, it should really exist */ 1494 if(!dp) return 0; 1495 1496 /* see if dp equals the qname, then we cannot go down further */ 1497 if(query_dname_compare(qinfo->qname, dp->name) == 0) 1498 return 0; 1499 /* if dp is one label above the name we also cannot go down further */ 1500 if(dname_count_labels(qinfo->qname) == dp->namelabs+1) 1501 return 0; 1502 return 1; 1503 } 1504 1505 int 1506 iter_stub_fwd_no_cache(struct module_qstate *qstate, struct query_info *qinf, 1507 uint8_t** retdpname, size_t* retdpnamelen, uint8_t* dpname_storage, 1508 size_t dpname_storage_len) 1509 { 1510 struct iter_hints_stub *stub; 1511 struct delegpt *dp; 1512 int nolock = 1; 1513 1514 /* Check for stub. */ 1515 /* Lock both forwards and hints for atomic read. */ 1516 lock_rw_rdlock(&qstate->env->fwds->lock); 1517 lock_rw_rdlock(&qstate->env->hints->lock); 1518 stub = hints_lookup_stub(qstate->env->hints, qinf->qname, 1519 qinf->qclass, NULL, nolock); 1520 dp = forwards_lookup(qstate->env->fwds, qinf->qname, qinf->qclass, 1521 nolock); 1522 1523 /* see if forward or stub is more pertinent */ 1524 if(stub && stub->dp && dp) { 1525 if(dname_strict_subdomain(dp->name, dp->namelabs, 1526 stub->dp->name, stub->dp->namelabs)) { 1527 stub = NULL; /* ignore stub, forward is lower */ 1528 } else { 1529 dp = NULL; /* ignore forward, stub is lower */ 1530 } 1531 } 1532 1533 /* check stub */ 1534 if (stub != NULL && stub->dp != NULL) { 1535 enum verbosity_value level = VERB_ALGO; 1536 int stub_no_cache = stub->dp->no_cache; 1537 lock_rw_unlock(&qstate->env->fwds->lock); 1538 if(verbosity >= level && stub_no_cache) { 1539 char qname[LDNS_MAX_DOMAINLEN]; 1540 char dpname[LDNS_MAX_DOMAINLEN]; 1541 dname_str(qinf->qname, qname); 1542 dname_str(stub->dp->name, dpname); 1543 verbose(level, "stub for %s %s has no_cache", qname, dpname); 1544 } 1545 if(retdpname) { 1546 if(stub->dp->namelen > dpname_storage_len) { 1547 verbose(VERB_ALGO, "no cache stub dpname too long"); 1548 lock_rw_unlock(&qstate->env->hints->lock); 1549 *retdpname = NULL; 1550 *retdpnamelen = 0; 1551 return stub_no_cache; 1552 } 1553 memmove(dpname_storage, stub->dp->name, 1554 stub->dp->namelen); 1555 *retdpname = dpname_storage; 1556 *retdpnamelen = stub->dp->namelen; 1557 } 1558 lock_rw_unlock(&qstate->env->hints->lock); 1559 return stub_no_cache; 1560 } 1561 1562 /* Check for forward. */ 1563 if (dp) { 1564 enum verbosity_value level = VERB_ALGO; 1565 int dp_no_cache = dp->no_cache; 1566 lock_rw_unlock(&qstate->env->hints->lock); 1567 if(verbosity >= level && dp_no_cache) { 1568 char qname[LDNS_MAX_DOMAINLEN]; 1569 char dpname[LDNS_MAX_DOMAINLEN]; 1570 dname_str(qinf->qname, qname); 1571 dname_str(dp->name, dpname); 1572 verbose(level, "forward for %s %s has no_cache", qname, dpname); 1573 } 1574 if(retdpname) { 1575 if(dp->namelen > dpname_storage_len) { 1576 verbose(VERB_ALGO, "no cache dpname too long"); 1577 lock_rw_unlock(&qstate->env->fwds->lock); 1578 *retdpname = NULL; 1579 *retdpnamelen = 0; 1580 return dp_no_cache; 1581 } 1582 memmove(dpname_storage, dp->name, dp->namelen); 1583 *retdpname = dpname_storage; 1584 *retdpnamelen = dp->namelen; 1585 } 1586 lock_rw_unlock(&qstate->env->fwds->lock); 1587 return dp_no_cache; 1588 } 1589 lock_rw_unlock(&qstate->env->fwds->lock); 1590 lock_rw_unlock(&qstate->env->hints->lock); 1591 if(retdpname) { 1592 *retdpname = NULL; 1593 *retdpnamelen = 0; 1594 } 1595 return 0; 1596 } 1597 1598 void iterator_set_ip46_support(struct module_stack* mods, 1599 struct module_env* env, struct outside_network* outnet) 1600 { 1601 int m = modstack_find(mods, "iterator"); 1602 struct iter_env* ie = NULL; 1603 if(m == -1) 1604 return; 1605 ie = (struct iter_env*)env->modinfo[m]; 1606 if(outnet->pending == NULL) 1607 return; /* we are in testbound, no rbtree for UDP */ 1608 if(outnet->num_ip4 == 0) 1609 ie->supports_ipv4 = 0; 1610 if(outnet->num_ip6 == 0) 1611 ie->supports_ipv6 = 0; 1612 } 1613 1614 void 1615 limit_nsec_ttl(struct dns_msg* msg) 1616 { 1617 /* Limit NSEC and NSEC3 TTL in response, RFC9077 */ 1618 size_t i; 1619 int found = 0; 1620 time_t soa_ttl = 0; 1621 /* Limit the NSEC and NSEC3 TTL values to the SOA TTL and SOA minimum 1622 * TTL. That has already been applied to the SOA record ttl. */ 1623 for(i=0; i<msg->rep->rrset_count; i++) { 1624 struct ub_packed_rrset_key* s = msg->rep->rrsets[i]; 1625 if(ntohs(s->rk.type) == LDNS_RR_TYPE_SOA) { 1626 struct packed_rrset_data* soadata = (struct packed_rrset_data*)s->entry.data; 1627 found = 1; 1628 soa_ttl = soadata->ttl; 1629 break; 1630 } 1631 } 1632 if(!found) 1633 return; 1634 for(i=0; i<msg->rep->rrset_count; i++) { 1635 struct ub_packed_rrset_key* s = msg->rep->rrsets[i]; 1636 if(ntohs(s->rk.type) == LDNS_RR_TYPE_NSEC || 1637 ntohs(s->rk.type) == LDNS_RR_TYPE_NSEC3) { 1638 struct packed_rrset_data* data = (struct packed_rrset_data*)s->entry.data; 1639 /* Limit the negative TTL. */ 1640 if(data->ttl > soa_ttl) { 1641 if(verbosity >= VERB_ALGO) { 1642 char buf[256]; 1643 snprintf(buf, sizeof(buf), 1644 "limiting TTL %d of %s record to the SOA TTL of %d for", 1645 (int)data->ttl, ((ntohs(s->rk.type) == LDNS_RR_TYPE_NSEC)?"NSEC":"NSEC3"), (int)soa_ttl); 1646 log_nametypeclass(VERB_ALGO, buf, 1647 s->rk.dname, ntohs(s->rk.type), 1648 ntohs(s->rk.rrset_class)); 1649 } 1650 data->ttl = soa_ttl; 1651 } 1652 } 1653 } 1654 } 1655 1656 void 1657 iter_make_minimal(struct reply_info* rep) 1658 { 1659 size_t rem = rep->ns_numrrsets + rep->ar_numrrsets; 1660 rep->ns_numrrsets = 0; 1661 rep->ar_numrrsets = 0; 1662 rep->rrset_count -= rem; 1663 } 1664