1 //===- ICF.cpp ------------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // ICF is short for Identical Code Folding. That is a size optimization to
10 // identify and merge two or more read-only sections (typically functions)
11 // that happened to have the same contents. It usually reduces output size
12 // by a few percent.
13 //
14 // On Windows, ICF is enabled by default.
15 //
16 // See ELF/ICF.cpp for the details about the algorithm.
17 //
18 //===----------------------------------------------------------------------===//
19
20 #include "ICF.h"
21 #include "COFFLinkerContext.h"
22 #include "Chunks.h"
23 #include "Symbols.h"
24 #include "lld/Common/ErrorHandler.h"
25 #include "lld/Common/Timer.h"
26 #include "llvm/ADT/Hashing.h"
27 #include "llvm/Support/Debug.h"
28 #include "llvm/Support/Parallel.h"
29 #include "llvm/Support/TimeProfiler.h"
30 #include "llvm/Support/raw_ostream.h"
31 #include "llvm/Support/xxhash.h"
32 #include <algorithm>
33 #include <atomic>
34 #include <vector>
35
36 using namespace llvm;
37
38 namespace lld::coff {
39
40 class ICF {
41 public:
ICF(COFFLinkerContext & c)42 ICF(COFFLinkerContext &c) : ctx(c){};
43 void run();
44
45 private:
46 void segregate(size_t begin, size_t end, bool constant);
47
48 bool assocEquals(const SectionChunk *a, const SectionChunk *b);
49
50 bool equalsConstant(const SectionChunk *a, const SectionChunk *b);
51 bool equalsVariable(const SectionChunk *a, const SectionChunk *b);
52
53 bool isEligible(SectionChunk *c);
54
55 size_t findBoundary(size_t begin, size_t end);
56
57 void forEachClassRange(size_t begin, size_t end,
58 std::function<void(size_t, size_t)> fn);
59
60 void forEachClass(std::function<void(size_t, size_t)> fn);
61
62 std::vector<SectionChunk *> chunks;
63 int cnt = 0;
64 std::atomic<bool> repeat = {false};
65
66 COFFLinkerContext &ctx;
67 };
68
69 // Returns true if section S is subject of ICF.
70 //
71 // Microsoft's documentation
72 // (https://msdn.microsoft.com/en-us/library/bxwfs976.aspx; visited April
73 // 2017) says that /opt:icf folds both functions and read-only data.
74 // Despite that, the MSVC linker folds only functions. We found
75 // a few instances of programs that are not safe for data merging.
76 // Therefore, we merge only functions just like the MSVC tool. However, we also
77 // merge read-only sections in a couple of cases where the address of the
78 // section is insignificant to the user program and the behaviour matches that
79 // of the Visual C++ linker.
isEligible(SectionChunk * c)80 bool ICF::isEligible(SectionChunk *c) {
81 // Non-comdat chunks, dead chunks, and writable chunks are not eligible.
82 bool writable = c->getOutputCharacteristics() & llvm::COFF::IMAGE_SCN_MEM_WRITE;
83 if (!c->isCOMDAT() || !c->live || writable)
84 return false;
85
86 // Under regular (not safe) ICF, all code sections are eligible.
87 if ((ctx.config.doICF == ICFLevel::All) &&
88 c->getOutputCharacteristics() & llvm::COFF::IMAGE_SCN_MEM_EXECUTE)
89 return true;
90
91 // .pdata and .xdata unwind info sections are eligible.
92 StringRef outSecName = c->getSectionName().split('$').first;
93 if (outSecName == ".pdata" || outSecName == ".xdata")
94 return true;
95
96 // So are vtables.
97 const char *itaniumVtablePrefix =
98 ctx.config.machine == I386 ? "__ZTV" : "_ZTV";
99 if (c->sym && (c->sym->getName().starts_with("??_7") ||
100 c->sym->getName().starts_with(itaniumVtablePrefix)))
101 return true;
102
103 // Anything else not in an address-significance table is eligible.
104 return !c->keepUnique;
105 }
106
107 // Split an equivalence class into smaller classes.
segregate(size_t begin,size_t end,bool constant)108 void ICF::segregate(size_t begin, size_t end, bool constant) {
109 while (begin < end) {
110 // Divide [Begin, End) into two. Let Mid be the start index of the
111 // second group.
112 auto bound = std::stable_partition(
113 chunks.begin() + begin + 1, chunks.begin() + end, [&](SectionChunk *s) {
114 if (constant)
115 return equalsConstant(chunks[begin], s);
116 return equalsVariable(chunks[begin], s);
117 });
118 size_t mid = bound - chunks.begin();
119
120 // Split [Begin, End) into [Begin, Mid) and [Mid, End). We use Mid as an
121 // equivalence class ID because every group ends with a unique index.
122 for (size_t i = begin; i < mid; ++i)
123 chunks[i]->eqClass[(cnt + 1) % 2] = mid;
124
125 // If we created a group, we need to iterate the main loop again.
126 if (mid != end)
127 repeat = true;
128
129 begin = mid;
130 }
131 }
132
133 // Returns true if two sections' associative children are equal.
assocEquals(const SectionChunk * a,const SectionChunk * b)134 bool ICF::assocEquals(const SectionChunk *a, const SectionChunk *b) {
135 // Ignore associated metadata sections that don't participate in ICF, such as
136 // debug info and CFGuard metadata.
137 auto considerForICF = [](const SectionChunk &assoc) {
138 StringRef Name = assoc.getSectionName();
139 return !(Name.starts_with(".debug") || Name == ".gfids$y" ||
140 Name == ".giats$y" || Name == ".gljmp$y");
141 };
142 auto ra = make_filter_range(a->children(), considerForICF);
143 auto rb = make_filter_range(b->children(), considerForICF);
144 return std::equal(ra.begin(), ra.end(), rb.begin(), rb.end(),
145 [&](const SectionChunk &ia, const SectionChunk &ib) {
146 return ia.eqClass[cnt % 2] == ib.eqClass[cnt % 2];
147 });
148 }
149
150 // Compare "non-moving" part of two sections, namely everything
151 // except relocation targets.
equalsConstant(const SectionChunk * a,const SectionChunk * b)152 bool ICF::equalsConstant(const SectionChunk *a, const SectionChunk *b) {
153 if (a->relocsSize != b->relocsSize)
154 return false;
155
156 // Compare relocations.
157 auto eq = [&](const coff_relocation &r1, const coff_relocation &r2) {
158 if (r1.Type != r2.Type ||
159 r1.VirtualAddress != r2.VirtualAddress) {
160 return false;
161 }
162 Symbol *b1 = a->file->getSymbol(r1.SymbolTableIndex);
163 Symbol *b2 = b->file->getSymbol(r2.SymbolTableIndex);
164 if (b1 == b2)
165 return true;
166 if (auto *d1 = dyn_cast<DefinedRegular>(b1))
167 if (auto *d2 = dyn_cast<DefinedRegular>(b2))
168 return d1->getValue() == d2->getValue() &&
169 d1->getChunk()->eqClass[cnt % 2] == d2->getChunk()->eqClass[cnt % 2];
170 return false;
171 };
172 if (!std::equal(a->getRelocs().begin(), a->getRelocs().end(),
173 b->getRelocs().begin(), eq))
174 return false;
175
176 // Compare section attributes and contents.
177 return a->getOutputCharacteristics() == b->getOutputCharacteristics() &&
178 a->getSectionName() == b->getSectionName() &&
179 a->header->SizeOfRawData == b->header->SizeOfRawData &&
180 a->checksum == b->checksum && a->getContents() == b->getContents() &&
181 a->getMachine() == b->getMachine() && assocEquals(a, b);
182 }
183
184 // Compare "moving" part of two sections, namely relocation targets.
equalsVariable(const SectionChunk * a,const SectionChunk * b)185 bool ICF::equalsVariable(const SectionChunk *a, const SectionChunk *b) {
186 // Compare relocations.
187 auto eqSym = [&](Symbol *b1, Symbol *b2) {
188 if (b1 == b2)
189 return true;
190 if (auto *d1 = dyn_cast<DefinedRegular>(b1))
191 if (auto *d2 = dyn_cast<DefinedRegular>(b2))
192 return d1->getChunk()->eqClass[cnt % 2] == d2->getChunk()->eqClass[cnt % 2];
193 return false;
194 };
195 auto eq = [&](const coff_relocation &r1, const coff_relocation &r2) {
196 Symbol *b1 = a->file->getSymbol(r1.SymbolTableIndex);
197 Symbol *b2 = b->file->getSymbol(r2.SymbolTableIndex);
198 return eqSym(b1, b2);
199 };
200
201 Symbol *e1 = a->getEntryThunk();
202 Symbol *e2 = b->getEntryThunk();
203 if ((e1 || e2) && (!e1 || !e2 || !eqSym(e1, e2)))
204 return false;
205
206 return std::equal(a->getRelocs().begin(), a->getRelocs().end(),
207 b->getRelocs().begin(), eq) &&
208 assocEquals(a, b);
209 }
210
211 // Find the first Chunk after Begin that has a different class from Begin.
findBoundary(size_t begin,size_t end)212 size_t ICF::findBoundary(size_t begin, size_t end) {
213 for (size_t i = begin + 1; i < end; ++i)
214 if (chunks[begin]->eqClass[cnt % 2] != chunks[i]->eqClass[cnt % 2])
215 return i;
216 return end;
217 }
218
forEachClassRange(size_t begin,size_t end,std::function<void (size_t,size_t)> fn)219 void ICF::forEachClassRange(size_t begin, size_t end,
220 std::function<void(size_t, size_t)> fn) {
221 while (begin < end) {
222 size_t mid = findBoundary(begin, end);
223 fn(begin, mid);
224 begin = mid;
225 }
226 }
227
228 // Call Fn on each class group.
forEachClass(std::function<void (size_t,size_t)> fn)229 void ICF::forEachClass(std::function<void(size_t, size_t)> fn) {
230 // If the number of sections are too small to use threading,
231 // call Fn sequentially.
232 if (chunks.size() < 1024) {
233 forEachClassRange(0, chunks.size(), fn);
234 ++cnt;
235 return;
236 }
237
238 // Shard into non-overlapping intervals, and call Fn in parallel.
239 // The sharding must be completed before any calls to Fn are made
240 // so that Fn can modify the Chunks in its shard without causing data
241 // races.
242 const size_t numShards = 256;
243 size_t step = chunks.size() / numShards;
244 size_t boundaries[numShards + 1];
245 boundaries[0] = 0;
246 boundaries[numShards] = chunks.size();
247 parallelFor(1, numShards, [&](size_t i) {
248 boundaries[i] = findBoundary((i - 1) * step, chunks.size());
249 });
250 parallelFor(1, numShards + 1, [&](size_t i) {
251 if (boundaries[i - 1] < boundaries[i]) {
252 forEachClassRange(boundaries[i - 1], boundaries[i], fn);
253 }
254 });
255 ++cnt;
256 }
257
258 // Merge identical COMDAT sections.
259 // Two sections are considered the same if their section headers,
260 // contents and relocations are all the same.
run()261 void ICF::run() {
262 llvm::TimeTraceScope timeScope("ICF");
263 ScopedTimer t(ctx.icfTimer);
264
265 // Collect only mergeable sections and group by hash value.
266 uint32_t nextId = 1;
267 for (Chunk *c : ctx.symtab.getChunks()) {
268 if (auto *sc = dyn_cast<SectionChunk>(c)) {
269 if (isEligible(sc))
270 chunks.push_back(sc);
271 else
272 sc->eqClass[0] = nextId++;
273 }
274 }
275
276 // Make sure that ICF doesn't merge sections that are being handled by string
277 // tail merging.
278 for (MergeChunk *mc : ctx.mergeChunkInstances)
279 if (mc)
280 for (SectionChunk *sc : mc->sections)
281 sc->eqClass[0] = nextId++;
282
283 // Initially, we use hash values to partition sections.
284 parallelForEach(chunks, [&](SectionChunk *sc) {
285 sc->eqClass[0] = xxh3_64bits(sc->getContents());
286 });
287
288 // Combine the hashes of the sections referenced by each section into its
289 // hash.
290 for (unsigned cnt = 0; cnt != 2; ++cnt) {
291 parallelForEach(chunks, [&](SectionChunk *sc) {
292 uint32_t hash = sc->eqClass[cnt % 2];
293 for (Symbol *b : sc->symbols())
294 if (auto *sym = dyn_cast_or_null<DefinedRegular>(b))
295 hash += sym->getChunk()->eqClass[cnt % 2];
296 // Set MSB to 1 to avoid collisions with non-hash classes.
297 sc->eqClass[(cnt + 1) % 2] = hash | (1U << 31);
298 });
299 }
300
301 // From now on, sections in Chunks are ordered so that sections in
302 // the same group are consecutive in the vector.
303 llvm::stable_sort(chunks, [](const SectionChunk *a, const SectionChunk *b) {
304 return a->eqClass[0] < b->eqClass[0];
305 });
306
307 // Compare static contents and assign unique IDs for each static content.
308 forEachClass([&](size_t begin, size_t end) { segregate(begin, end, true); });
309
310 // Split groups by comparing relocations until convergence is obtained.
311 do {
312 repeat = false;
313 forEachClass(
314 [&](size_t begin, size_t end) { segregate(begin, end, false); });
315 } while (repeat);
316
317 log("ICF needed " + Twine(cnt) + " iterations");
318
319 // Merge sections in the same classes.
320 forEachClass([&](size_t begin, size_t end) {
321 if (end - begin == 1)
322 return;
323
324 log("Selected " + chunks[begin]->getDebugName());
325 for (size_t i = begin + 1; i < end; ++i) {
326 log(" Removed " + chunks[i]->getDebugName());
327 chunks[begin]->replace(chunks[i]);
328 }
329 });
330 }
331
332 // Entry point to ICF.
doICF(COFFLinkerContext & ctx)333 void doICF(COFFLinkerContext &ctx) { ICF(ctx).run(); }
334
335 } // namespace lld::coff
336