1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */
25
26 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */
27 /* All Rights Reserved */
28
29 /*
30 * Portions of this source code were derived from Berkeley 4.3 BSD
31 * under license from the Regents of the University of California.
32 */
33
34 /*
35 * UNIX machine dependent virtual memory support.
36 */
37
38 #include <sys/vm.h>
39 #include <sys/exec.h>
40 #include <sys/cmn_err.h>
41 #include <sys/cpu_module.h>
42 #include <sys/cpu.h>
43 #include <sys/elf_SPARC.h>
44 #include <sys/archsystm.h>
45 #include <vm/hat_sfmmu.h>
46 #include <sys/memnode.h>
47 #include <sys/mem_cage.h>
48 #include <vm/vm_dep.h>
49
50 #if defined(__sparcv9) && defined(SF_ERRATA_57)
51 caddr_t errata57_limit;
52 #endif
53
54 uint_t page_colors = 0;
55 uint_t page_colors_mask = 0;
56 uint_t page_coloring_shift = 0;
57 int consistent_coloring;
58 int update_proc_pgcolorbase_after_fork = 0;
59
60 uint_t mmu_page_sizes = DEFAULT_MMU_PAGE_SIZES;
61 uint_t max_mmu_page_sizes = MMU_PAGE_SIZES;
62 uint_t mmu_hashcnt = DEFAULT_MAX_HASHCNT;
63 uint_t max_mmu_hashcnt = MAX_HASHCNT;
64 size_t mmu_ism_pagesize = DEFAULT_ISM_PAGESIZE;
65
66 /*
67 * The sun4u hardware mapping sizes which will always be supported are
68 * 8K, 64K, 512K and 4M. If sun4u based machines need to support other
69 * page sizes, platform or cpu specific routines need to modify the value.
70 * The base pagesize (p_szc == 0) must always be supported by the hardware.
71 */
72 int mmu_exported_pagesize_mask = (1 << TTE8K) | (1 << TTE64K) |
73 (1 << TTE512K) | (1 << TTE4M);
74 uint_t mmu_exported_page_sizes;
75
76 uint_t szc_2_userszc[MMU_PAGE_SIZES];
77 uint_t userszc_2_szc[MMU_PAGE_SIZES];
78
79 extern uint_t vac_colors_mask;
80 extern int vac_shift;
81
82 hw_pagesize_t hw_page_array[] = {
83 {MMU_PAGESIZE, MMU_PAGESHIFT, 0, MMU_PAGESIZE >> MMU_PAGESHIFT},
84 {MMU_PAGESIZE64K, MMU_PAGESHIFT64K, 0,
85 MMU_PAGESIZE64K >> MMU_PAGESHIFT},
86 {MMU_PAGESIZE512K, MMU_PAGESHIFT512K, 0,
87 MMU_PAGESIZE512K >> MMU_PAGESHIFT},
88 {MMU_PAGESIZE4M, MMU_PAGESHIFT4M, 0, MMU_PAGESIZE4M >> MMU_PAGESHIFT},
89 {MMU_PAGESIZE32M, MMU_PAGESHIFT32M, 0,
90 MMU_PAGESIZE32M >> MMU_PAGESHIFT},
91 {MMU_PAGESIZE256M, MMU_PAGESHIFT256M, 0,
92 MMU_PAGESIZE256M >> MMU_PAGESHIFT},
93 {0, 0, 0, 0}
94 };
95
96 /*
97 * Maximum page size used to map 64-bit memory segment kmem64_base..kmem64_end
98 */
99 int max_bootlp_tteszc = TTE4M;
100
101 /*
102 * use_text_pgsz64k and use_text_pgsz512k allow the user to turn on these
103 * additional text page sizes for USIII-IV+ and OPL by changing the default
104 * values via /etc/system.
105 */
106 int use_text_pgsz64K = 0;
107 int use_text_pgsz512K = 0;
108
109 /*
110 * Maximum and default segment size tunables for user heap, stack, private
111 * and shared anonymous memory, and user text and initialized data.
112 */
113 size_t max_uheap_lpsize = MMU_PAGESIZE4M;
114 size_t default_uheap_lpsize = MMU_PAGESIZE;
115 size_t max_ustack_lpsize = MMU_PAGESIZE4M;
116 size_t default_ustack_lpsize = MMU_PAGESIZE;
117 size_t max_privmap_lpsize = MMU_PAGESIZE4M;
118 size_t max_uidata_lpsize = MMU_PAGESIZE;
119 size_t max_utext_lpsize = MMU_PAGESIZE4M;
120 size_t max_shm_lpsize = MMU_PAGESIZE4M;
121
122 void
adjust_data_maxlpsize(size_t ismpagesize)123 adjust_data_maxlpsize(size_t ismpagesize)
124 {
125 if (max_uheap_lpsize == MMU_PAGESIZE4M) {
126 max_uheap_lpsize = ismpagesize;
127 }
128 if (max_ustack_lpsize == MMU_PAGESIZE4M) {
129 max_ustack_lpsize = ismpagesize;
130 }
131 if (max_privmap_lpsize == MMU_PAGESIZE4M) {
132 max_privmap_lpsize = ismpagesize;
133 }
134 if (max_shm_lpsize == MMU_PAGESIZE4M) {
135 max_shm_lpsize = ismpagesize;
136 }
137 }
138
139 /*
140 * map_addr_proc() is the routine called when the system is to
141 * choose an address for the user. We will pick an address
142 * range which is just below the current stack limit. The
143 * algorithm used for cache consistency on machines with virtual
144 * address caches is such that offset 0 in the vnode is always
145 * on a shm_alignment'ed aligned address. Unfortunately, this
146 * means that vnodes which are demand paged will not be mapped
147 * cache consistently with the executable images. When the
148 * cache alignment for a given object is inconsistent, the
149 * lower level code must manage the translations so that this
150 * is not seen here (at the cost of efficiency, of course).
151 *
152 * Every mapping will have a redzone of a single page on either side of
153 * the request. This is done to leave one page unmapped between segments.
154 * This is not required, but it's useful for the user because if their
155 * program strays across a segment boundary, it will catch a fault
156 * immediately making debugging a little easier. Currently the redzone
157 * is mandatory.
158 *
159 *
160 * addrp is a value/result parameter.
161 * On input it is a hint from the user to be used in a completely
162 * machine dependent fashion. For MAP_ALIGN, addrp contains the
163 * minimal alignment, which must be some "power of two" multiple of
164 * pagesize.
165 *
166 * On output it is NULL if no address can be found in the current
167 * processes address space or else an address that is currently
168 * not mapped for len bytes with a page of red zone on either side.
169 * If vacalign is true, then the selected address will obey the alignment
170 * constraints of a vac machine based on the given off value.
171 */
172 /*ARGSUSED4*/
173 void
map_addr_proc(caddr_t * addrp,size_t len,offset_t off,int vacalign,caddr_t userlimit,struct proc * p,uint_t flags)174 map_addr_proc(caddr_t *addrp, size_t len, offset_t off, int vacalign,
175 caddr_t userlimit, struct proc *p, uint_t flags)
176 {
177 struct as *as = p->p_as;
178 caddr_t addr;
179 caddr_t base;
180 size_t slen;
181 uintptr_t align_amount;
182 int allow_largepage_alignment = 1;
183
184 base = p->p_brkbase;
185 if (userlimit < as->a_userlimit) {
186 /*
187 * This happens when a program wants to map something in
188 * a range that's accessible to a program in a smaller
189 * address space. For example, a 64-bit program might
190 * be calling mmap32(2) to guarantee that the returned
191 * address is below 4Gbytes.
192 */
193 ASSERT(userlimit > base);
194 slen = userlimit - base;
195 } else {
196 slen = p->p_usrstack - base -
197 ((p->p_stk_ctl + PAGEOFFSET) & PAGEMASK);
198 }
199
200 /* Make len be a multiple of PAGESIZE */
201 len = (len + PAGEOFFSET) & PAGEMASK;
202
203 /*
204 * If the request is larger than the size of a particular
205 * mmu level, then we use that level to map the request.
206 * But this requires that both the virtual and the physical
207 * addresses be aligned with respect to that level, so we
208 * do the virtual bit of nastiness here.
209 *
210 * For 32-bit processes, only those which have specified
211 * MAP_ALIGN or an addr will be aligned on a page size > 4MB. Otherwise
212 * we can potentially waste up to 256MB of the 4G process address
213 * space just for alignment.
214 */
215 if (p->p_model == DATAMODEL_ILP32 && ((flags & MAP_ALIGN) == 0 ||
216 ((uintptr_t)*addrp) != 0)) {
217 allow_largepage_alignment = 0;
218 }
219 if ((mmu_page_sizes == max_mmu_page_sizes) &&
220 allow_largepage_alignment &&
221 (len >= MMU_PAGESIZE256M)) { /* 256MB mappings */
222 align_amount = MMU_PAGESIZE256M;
223 } else if ((mmu_page_sizes == max_mmu_page_sizes) &&
224 allow_largepage_alignment &&
225 (len >= MMU_PAGESIZE32M)) { /* 32MB mappings */
226 align_amount = MMU_PAGESIZE32M;
227 } else if (len >= MMU_PAGESIZE4M) { /* 4MB mappings */
228 align_amount = MMU_PAGESIZE4M;
229 } else if (len >= MMU_PAGESIZE512K) { /* 512KB mappings */
230 align_amount = MMU_PAGESIZE512K;
231 } else if (len >= MMU_PAGESIZE64K) { /* 64KB mappings */
232 align_amount = MMU_PAGESIZE64K;
233 } else {
234 /*
235 * Align virtual addresses on a 64K boundary to ensure
236 * that ELF shared libraries are mapped with the appropriate
237 * alignment constraints by the run-time linker.
238 */
239 align_amount = ELF_SPARC_MAXPGSZ;
240 if ((flags & MAP_ALIGN) && ((uintptr_t)*addrp != 0) &&
241 ((uintptr_t)*addrp < align_amount))
242 align_amount = (uintptr_t)*addrp;
243 }
244
245 /*
246 * 64-bit processes require 1024K alignment of ELF shared libraries.
247 */
248 if (p->p_model == DATAMODEL_LP64)
249 align_amount = MAX(align_amount, ELF_SPARCV9_MAXPGSZ);
250 #ifdef VAC
251 if (vac && vacalign && (align_amount < shm_alignment))
252 align_amount = shm_alignment;
253 #endif
254
255 if ((flags & MAP_ALIGN) && ((uintptr_t)*addrp > align_amount)) {
256 align_amount = (uintptr_t)*addrp;
257 }
258
259 ASSERT(ISP2(align_amount));
260 ASSERT(align_amount == 0 || align_amount >= PAGESIZE);
261
262 /*
263 * Look for a large enough hole starting below the stack limit.
264 * After finding it, use the upper part.
265 */
266 as_purge(as);
267 off = off & (align_amount - 1);
268 if (as_gap_aligned(as, len, &base, &slen, AH_HI, NULL, align_amount,
269 PAGESIZE, off) == 0) {
270 caddr_t as_addr;
271
272 /*
273 * addr is the highest possible address to use since we have
274 * a PAGESIZE redzone at the beginning and end.
275 */
276 addr = base + slen - (PAGESIZE + len);
277 as_addr = addr;
278 /*
279 * Round address DOWN to the alignment amount and
280 * add the offset in.
281 * If addr is greater than as_addr, len would not be large
282 * enough to include the redzone, so we must adjust down
283 * by the alignment amount.
284 */
285 addr = (caddr_t)((uintptr_t)addr & (~(align_amount - 1l)));
286 addr += (long)off;
287 if (addr > as_addr) {
288 addr -= align_amount;
289 }
290
291 ASSERT(addr > base);
292 ASSERT(addr + len < base + slen);
293 ASSERT(((uintptr_t)addr & (align_amount - 1l)) ==
294 ((uintptr_t)(off)));
295 *addrp = addr;
296
297 #if defined(SF_ERRATA_57)
298 if (AS_TYPE_64BIT(as) && addr < errata57_limit) {
299 *addrp = NULL;
300 }
301 #endif
302 } else {
303 *addrp = NULL; /* no more virtual space */
304 }
305 }
306
307 /*
308 * Platform-dependent page scrub call.
309 */
310 void
pagescrub(page_t * pp,uint_t off,uint_t len)311 pagescrub(page_t *pp, uint_t off, uint_t len)
312 {
313 /*
314 * For now, we rely on the fact that pagezero() will
315 * always clear UEs.
316 */
317 pagezero(pp, off, len);
318 }
319
320 /*ARGSUSED*/
321 void
sync_data_memory(caddr_t va,size_t len)322 sync_data_memory(caddr_t va, size_t len)
323 {
324 cpu_flush_ecache();
325 }
326
327 /*
328 * platform specific large pages for kernel heap support
329 */
330 void
mmu_init_kcontext()331 mmu_init_kcontext()
332 {
333 extern void set_kcontextreg();
334
335 if (kcontextreg)
336 set_kcontextreg();
337 }
338
339 void
contig_mem_init(void)340 contig_mem_init(void)
341 {
342 /* not applicable to sun4u */
343 }
344
345 /*ARGSUSED*/
346 caddr_t
contig_mem_prealloc(caddr_t alloc_base,pgcnt_t npages)347 contig_mem_prealloc(caddr_t alloc_base, pgcnt_t npages)
348 {
349 /* not applicable to sun4u */
350 return (alloc_base);
351 }
352
353 size_t
exec_get_spslew(void)354 exec_get_spslew(void)
355 {
356 return (0);
357 }
358