xref: /illumos-gate/usr/src/uts/sun4u/vm/mach_vm_dep.c (revision d2a70789f056fc6c9ce3ab047b52126d80b0e3da)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */
27 /*	All Rights Reserved   */
28 
29 /*
30  * Portions of this source code were derived from Berkeley 4.3 BSD
31  * under license from the Regents of the University of California.
32  */
33 
34 /*
35  * UNIX machine dependent virtual memory support.
36  */
37 
38 #include <sys/vm.h>
39 #include <sys/exec.h>
40 #include <sys/cmn_err.h>
41 #include <sys/cpu_module.h>
42 #include <sys/cpu.h>
43 #include <sys/elf_SPARC.h>
44 #include <sys/archsystm.h>
45 #include <vm/hat_sfmmu.h>
46 #include <sys/memnode.h>
47 #include <sys/mem_cage.h>
48 #include <vm/vm_dep.h>
49 #include <sys/random.h>
50 
51 #if defined(__sparcv9) && defined(SF_ERRATA_57)
52 caddr_t errata57_limit;
53 #endif
54 
55 uint_t page_colors = 0;
56 uint_t page_colors_mask = 0;
57 uint_t page_coloring_shift = 0;
58 int consistent_coloring;
59 int update_proc_pgcolorbase_after_fork = 0;
60 
61 uint_t mmu_page_sizes = DEFAULT_MMU_PAGE_SIZES;
62 uint_t max_mmu_page_sizes = MMU_PAGE_SIZES;
63 uint_t mmu_hashcnt = DEFAULT_MAX_HASHCNT;
64 uint_t max_mmu_hashcnt = MAX_HASHCNT;
65 size_t mmu_ism_pagesize = DEFAULT_ISM_PAGESIZE;
66 
67 /*
68  * The sun4u hardware mapping sizes which will always be supported are
69  * 8K, 64K, 512K and 4M.  If sun4u based machines need to support other
70  * page sizes, platform or cpu specific routines need to modify the value.
71  * The base pagesize (p_szc == 0) must always be supported by the hardware.
72  */
73 int mmu_exported_pagesize_mask = (1 << TTE8K) | (1 << TTE64K) |
74 	(1 << TTE512K) | (1 << TTE4M);
75 uint_t mmu_exported_page_sizes;
76 
77 uint_t szc_2_userszc[MMU_PAGE_SIZES];
78 uint_t userszc_2_szc[MMU_PAGE_SIZES];
79 
80 extern uint_t vac_colors_mask;
81 extern int vac_shift;
82 
83 hw_pagesize_t hw_page_array[] = {
84 	{MMU_PAGESIZE, MMU_PAGESHIFT, 0, MMU_PAGESIZE >> MMU_PAGESHIFT},
85 	{MMU_PAGESIZE64K, MMU_PAGESHIFT64K, 0,
86 	    MMU_PAGESIZE64K >> MMU_PAGESHIFT},
87 	{MMU_PAGESIZE512K, MMU_PAGESHIFT512K, 0,
88 	    MMU_PAGESIZE512K >> MMU_PAGESHIFT},
89 	{MMU_PAGESIZE4M, MMU_PAGESHIFT4M, 0, MMU_PAGESIZE4M >> MMU_PAGESHIFT},
90 	{MMU_PAGESIZE32M, MMU_PAGESHIFT32M, 0,
91 	    MMU_PAGESIZE32M >> MMU_PAGESHIFT},
92 	{MMU_PAGESIZE256M, MMU_PAGESHIFT256M, 0,
93 	    MMU_PAGESIZE256M >> MMU_PAGESHIFT},
94 	{0, 0, 0, 0}
95 };
96 
97 /*
98  * Maximum page size used to map 64-bit memory segment kmem64_base..kmem64_end
99  */
100 int	max_bootlp_tteszc = TTE4M;
101 
102 /*
103  * use_text_pgsz64k and use_text_pgsz512k allow the user to turn on these
104  * additional text page sizes for USIII-IV+ and OPL by changing the default
105  * values via /etc/system.
106  */
107 int	use_text_pgsz64K = 0;
108 int	use_text_pgsz512K = 0;
109 
110 /*
111  * Maximum and default segment size tunables for user heap, stack, private
112  * and shared anonymous memory, and user text and initialized data.
113  */
114 size_t max_uheap_lpsize = MMU_PAGESIZE4M;
115 size_t default_uheap_lpsize = MMU_PAGESIZE;
116 size_t max_ustack_lpsize = MMU_PAGESIZE4M;
117 size_t default_ustack_lpsize = MMU_PAGESIZE;
118 size_t max_privmap_lpsize = MMU_PAGESIZE4M;
119 size_t max_uidata_lpsize = MMU_PAGESIZE;
120 size_t max_utext_lpsize = MMU_PAGESIZE4M;
121 size_t max_shm_lpsize = MMU_PAGESIZE4M;
122 
123 void
adjust_data_maxlpsize(size_t ismpagesize)124 adjust_data_maxlpsize(size_t ismpagesize)
125 {
126 	if (max_uheap_lpsize == MMU_PAGESIZE4M) {
127 		max_uheap_lpsize = ismpagesize;
128 	}
129 	if (max_ustack_lpsize == MMU_PAGESIZE4M) {
130 		max_ustack_lpsize = ismpagesize;
131 	}
132 	if (max_privmap_lpsize == MMU_PAGESIZE4M) {
133 		max_privmap_lpsize = ismpagesize;
134 	}
135 	if (max_shm_lpsize == MMU_PAGESIZE4M) {
136 		max_shm_lpsize = ismpagesize;
137 	}
138 }
139 
140 /*
141  * The maximum amount a randomized mapping will be slewed.  We should perhaps
142  * arrange things so these tunables can be separate for mmap, mmapobj, and
143  * ld.so
144  */
145 size_t aslr_max_map_skew = 256 * 1024 * 1024; /* 256MB */
146 
147 /*
148  * map_addr_proc() is the routine called when the system is to
149  * choose an address for the user.  We will pick an address
150  * range which is just below the current stack limit.  The
151  * algorithm used for cache consistency on machines with virtual
152  * address caches is such that offset 0 in the vnode is always
153  * on a shm_alignment'ed aligned address.  Unfortunately, this
154  * means that vnodes which are demand paged will not be mapped
155  * cache consistently with the executable images.  When the
156  * cache alignment for a given object is inconsistent, the
157  * lower level code must manage the translations so that this
158  * is not seen here (at the cost of efficiency, of course).
159  *
160  * Every mapping will have a redzone of a single page on either side of
161  * the request. This is done to leave one page unmapped between segments.
162  * This is not required, but it's useful for the user because if their
163  * program strays across a segment boundary, it will catch a fault
164  * immediately making debugging a little easier.  Currently the redzone
165  * is mandatory.
166  *
167  *
168  * addrp is a value/result parameter.
169  *	On input it is a hint from the user to be used in a completely
170  *	machine dependent fashion.  For MAP_ALIGN, addrp contains the
171  *	minimal alignment, which must be some "power of two" multiple of
172  *	pagesize.
173  *
174  *	On output it is NULL if no address can be found in the current
175  *	processes address space or else an address that is currently
176  *	not mapped for len bytes with a page of red zone on either side.
177  *	If vacalign is true, then the selected address will obey the alignment
178  *	constraints of a vac machine based on the given off value.
179  */
180 /*ARGSUSED4*/
181 void
map_addr_proc(caddr_t * addrp,size_t len,offset_t off,int vacalign,caddr_t userlimit,struct proc * p,uint_t flags)182 map_addr_proc(caddr_t *addrp, size_t len, offset_t off, int vacalign,
183     caddr_t userlimit, struct proc *p, uint_t flags)
184 {
185 	struct as *as = p->p_as;
186 	caddr_t addr;
187 	caddr_t base;
188 	size_t slen;
189 	uintptr_t align_amount;
190 	int allow_largepage_alignment = 1;
191 
192 	base = p->p_brkbase;
193 	if (userlimit < as->a_userlimit) {
194 		/*
195 		 * This happens when a program wants to map something in
196 		 * a range that's accessible to a program in a smaller
197 		 * address space.  For example, a 64-bit program might
198 		 * be calling mmap32(2) to guarantee that the returned
199 		 * address is below 4Gbytes.
200 		 */
201 		ASSERT(userlimit > base);
202 		slen = userlimit - base;
203 	} else {
204 		slen = p->p_usrstack - base -
205 		    ((p->p_stk_ctl + PAGEOFFSET) & PAGEMASK);
206 	}
207 
208 	/* Make len be a multiple of PAGESIZE */
209 	len = (len + PAGEOFFSET) & PAGEMASK;
210 
211 	/*
212 	 *  If the request is larger than the size of a particular
213 	 *  mmu level, then we use that level to map the request.
214 	 *  But this requires that both the virtual and the physical
215 	 *  addresses be aligned with respect to that level, so we
216 	 *  do the virtual bit of nastiness here.
217 	 *
218 	 *  For 32-bit processes, only those which have specified
219 	 *  MAP_ALIGN or an addr will be aligned on a page size > 4MB. Otherwise
220 	 *  we can potentially waste up to 256MB of the 4G process address
221 	 *  space just for alignment.
222 	 */
223 	if (p->p_model == DATAMODEL_ILP32 && ((flags & MAP_ALIGN) == 0 ||
224 	    ((uintptr_t)*addrp) != 0)) {
225 		allow_largepage_alignment = 0;
226 	}
227 	if ((mmu_page_sizes == max_mmu_page_sizes) &&
228 	    allow_largepage_alignment &&
229 	    (len >= MMU_PAGESIZE256M)) {	/* 256MB mappings */
230 		align_amount = MMU_PAGESIZE256M;
231 	} else if ((mmu_page_sizes == max_mmu_page_sizes) &&
232 	    allow_largepage_alignment &&
233 	    (len >= MMU_PAGESIZE32M)) {	/* 32MB mappings */
234 		align_amount = MMU_PAGESIZE32M;
235 	} else if (len >= MMU_PAGESIZE4M) {  /* 4MB mappings */
236 		align_amount = MMU_PAGESIZE4M;
237 	} else if (len >= MMU_PAGESIZE512K) { /* 512KB mappings */
238 		align_amount = MMU_PAGESIZE512K;
239 	} else if (len >= MMU_PAGESIZE64K) { /* 64KB mappings */
240 		align_amount = MMU_PAGESIZE64K;
241 	} else  {
242 		/*
243 		 * Align virtual addresses on a 64K boundary to ensure
244 		 * that ELF shared libraries are mapped with the appropriate
245 		 * alignment constraints by the run-time linker.
246 		 */
247 		align_amount = ELF_SPARC_MAXPGSZ;
248 		if ((flags & MAP_ALIGN) && ((uintptr_t)*addrp != 0) &&
249 		    ((uintptr_t)*addrp < align_amount))
250 			align_amount = (uintptr_t)*addrp;
251 	}
252 
253 	/*
254 	 * 64-bit processes require 1024K alignment of ELF shared libraries.
255 	 */
256 	if (p->p_model == DATAMODEL_LP64)
257 		align_amount = MAX(align_amount, ELF_SPARCV9_MAXPGSZ);
258 #ifdef VAC
259 	if (vac && vacalign && (align_amount < shm_alignment))
260 		align_amount = shm_alignment;
261 #endif
262 
263 	if ((flags & MAP_ALIGN) && ((uintptr_t)*addrp > align_amount)) {
264 		align_amount = (uintptr_t)*addrp;
265 	}
266 
267 	ASSERT(ISP2(align_amount));
268 	ASSERT(align_amount == 0 || align_amount >= PAGESIZE);
269 
270 	/*
271 	 * Look for a large enough hole starting below the stack limit.
272 	 * After finding it, use the upper part.
273 	 */
274 	as_purge(as);
275 	off = off & (align_amount - 1);
276 
277 	if (as_gap_aligned(as, len, &base, &slen, AH_HI, NULL, align_amount,
278 	    PAGESIZE, off) == 0) {
279 		caddr_t as_addr;
280 
281 		/*
282 		 * addr is the highest possible address to use since we have
283 		 * a PAGESIZE redzone at the beginning and end.
284 		 */
285 		addr = base + slen - (PAGESIZE + len);
286 		as_addr = addr;
287 		/*
288 		 * Round address DOWN to the alignment amount and
289 		 * add the offset in.
290 		 * If addr is greater than as_addr, len would not be large
291 		 * enough to include the redzone, so we must adjust down
292 		 * by the alignment amount.
293 		 */
294 		addr = (caddr_t)((uintptr_t)addr & (~(align_amount - 1l)));
295 		addr += (long)off;
296 		if (addr > as_addr) {
297 			addr -= align_amount;
298 		}
299 
300 		/*
301 		 * If randomization is requested, slew the allocation
302 		 * backwards, within the same gap, by a random amount.
303 		 */
304 		if (flags & _MAP_RANDOMIZE) {
305 			uint32_t slew;
306 			uint32_t maxslew;
307 
308 			(void) random_get_pseudo_bytes((uint8_t *)&slew,
309 			    sizeof (slew));
310 
311 			maxslew = MIN(aslr_max_map_skew, (addr - base));
312 			/*
313 			 * Don't allow ASLR to cause mappings to fail below
314 			 * because of SF erratum #57
315 			 */
316 			maxslew = MIN(maxslew, (addr - errata57_limit));
317 
318 			slew = slew % maxslew;
319 			addr -= P2ALIGN(slew, align_amount);
320 		}
321 
322 		ASSERT(addr > base);
323 		ASSERT(addr + len < base + slen);
324 		ASSERT(((uintptr_t)addr & (align_amount - 1l)) ==
325 		    ((uintptr_t)(off)));
326 		*addrp = addr;
327 
328 #if defined(SF_ERRATA_57)
329 		if (AS_TYPE_64BIT(as) && addr < errata57_limit) {
330 			*addrp = NULL;
331 		}
332 #endif
333 	} else {
334 		*addrp = NULL;	/* no more virtual space */
335 	}
336 }
337 
338 /*
339  * Platform-dependent page scrub call.
340  */
341 void
pagescrub(page_t * pp,uint_t off,uint_t len)342 pagescrub(page_t *pp, uint_t off, uint_t len)
343 {
344 	/*
345 	 * For now, we rely on the fact that pagezero() will
346 	 * always clear UEs.
347 	 */
348 	pagezero(pp, off, len);
349 }
350 
351 /*ARGSUSED*/
352 void
sync_data_memory(caddr_t va,size_t len)353 sync_data_memory(caddr_t va, size_t len)
354 {
355 	cpu_flush_ecache();
356 }
357 
358 /*
359  * platform specific large pages for kernel heap support
360  */
361 void
mmu_init_kcontext()362 mmu_init_kcontext()
363 {
364 	extern void set_kcontextreg();
365 
366 	if (kcontextreg)
367 		set_kcontextreg();
368 }
369 
370 void
contig_mem_init(void)371 contig_mem_init(void)
372 {
373 	/* not applicable to sun4u */
374 }
375 
376 /*ARGSUSED*/
377 caddr_t
contig_mem_prealloc(caddr_t alloc_base,pgcnt_t npages)378 contig_mem_prealloc(caddr_t alloc_base, pgcnt_t npages)
379 {
380 	/* not applicable to sun4u */
381 	return (alloc_base);
382 }
383