1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */
25
26 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */
27 /* All Rights Reserved */
28
29 /*
30 * Portions of this source code were derived from Berkeley 4.3 BSD
31 * under license from the Regents of the University of California.
32 */
33
34 /*
35 * UNIX machine dependent virtual memory support.
36 */
37
38 #include <sys/vm.h>
39 #include <sys/exec.h>
40 #include <sys/cmn_err.h>
41 #include <sys/cpu_module.h>
42 #include <sys/cpu.h>
43 #include <sys/elf_SPARC.h>
44 #include <sys/archsystm.h>
45 #include <vm/hat_sfmmu.h>
46 #include <sys/memnode.h>
47 #include <sys/mem_cage.h>
48 #include <vm/vm_dep.h>
49 #include <sys/random.h>
50
51 #if defined(__sparcv9) && defined(SF_ERRATA_57)
52 caddr_t errata57_limit;
53 #endif
54
55 uint_t page_colors = 0;
56 uint_t page_colors_mask = 0;
57 uint_t page_coloring_shift = 0;
58 int consistent_coloring;
59 int update_proc_pgcolorbase_after_fork = 0;
60
61 uint_t mmu_page_sizes = DEFAULT_MMU_PAGE_SIZES;
62 uint_t max_mmu_page_sizes = MMU_PAGE_SIZES;
63 uint_t mmu_hashcnt = DEFAULT_MAX_HASHCNT;
64 uint_t max_mmu_hashcnt = MAX_HASHCNT;
65 size_t mmu_ism_pagesize = DEFAULT_ISM_PAGESIZE;
66
67 /*
68 * The sun4u hardware mapping sizes which will always be supported are
69 * 8K, 64K, 512K and 4M. If sun4u based machines need to support other
70 * page sizes, platform or cpu specific routines need to modify the value.
71 * The base pagesize (p_szc == 0) must always be supported by the hardware.
72 */
73 int mmu_exported_pagesize_mask = (1 << TTE8K) | (1 << TTE64K) |
74 (1 << TTE512K) | (1 << TTE4M);
75 uint_t mmu_exported_page_sizes;
76
77 uint_t szc_2_userszc[MMU_PAGE_SIZES];
78 uint_t userszc_2_szc[MMU_PAGE_SIZES];
79
80 extern uint_t vac_colors_mask;
81 extern int vac_shift;
82
83 hw_pagesize_t hw_page_array[] = {
84 {MMU_PAGESIZE, MMU_PAGESHIFT, 0, MMU_PAGESIZE >> MMU_PAGESHIFT},
85 {MMU_PAGESIZE64K, MMU_PAGESHIFT64K, 0,
86 MMU_PAGESIZE64K >> MMU_PAGESHIFT},
87 {MMU_PAGESIZE512K, MMU_PAGESHIFT512K, 0,
88 MMU_PAGESIZE512K >> MMU_PAGESHIFT},
89 {MMU_PAGESIZE4M, MMU_PAGESHIFT4M, 0, MMU_PAGESIZE4M >> MMU_PAGESHIFT},
90 {MMU_PAGESIZE32M, MMU_PAGESHIFT32M, 0,
91 MMU_PAGESIZE32M >> MMU_PAGESHIFT},
92 {MMU_PAGESIZE256M, MMU_PAGESHIFT256M, 0,
93 MMU_PAGESIZE256M >> MMU_PAGESHIFT},
94 {0, 0, 0, 0}
95 };
96
97 /*
98 * Maximum page size used to map 64-bit memory segment kmem64_base..kmem64_end
99 */
100 int max_bootlp_tteszc = TTE4M;
101
102 /*
103 * use_text_pgsz64k and use_text_pgsz512k allow the user to turn on these
104 * additional text page sizes for USIII-IV+ and OPL by changing the default
105 * values via /etc/system.
106 */
107 int use_text_pgsz64K = 0;
108 int use_text_pgsz512K = 0;
109
110 /*
111 * Maximum and default segment size tunables for user heap, stack, private
112 * and shared anonymous memory, and user text and initialized data.
113 */
114 size_t max_uheap_lpsize = MMU_PAGESIZE4M;
115 size_t default_uheap_lpsize = MMU_PAGESIZE;
116 size_t max_ustack_lpsize = MMU_PAGESIZE4M;
117 size_t default_ustack_lpsize = MMU_PAGESIZE;
118 size_t max_privmap_lpsize = MMU_PAGESIZE4M;
119 size_t max_uidata_lpsize = MMU_PAGESIZE;
120 size_t max_utext_lpsize = MMU_PAGESIZE4M;
121 size_t max_shm_lpsize = MMU_PAGESIZE4M;
122
123 void
adjust_data_maxlpsize(size_t ismpagesize)124 adjust_data_maxlpsize(size_t ismpagesize)
125 {
126 if (max_uheap_lpsize == MMU_PAGESIZE4M) {
127 max_uheap_lpsize = ismpagesize;
128 }
129 if (max_ustack_lpsize == MMU_PAGESIZE4M) {
130 max_ustack_lpsize = ismpagesize;
131 }
132 if (max_privmap_lpsize == MMU_PAGESIZE4M) {
133 max_privmap_lpsize = ismpagesize;
134 }
135 if (max_shm_lpsize == MMU_PAGESIZE4M) {
136 max_shm_lpsize = ismpagesize;
137 }
138 }
139
140 /*
141 * The maximum amount a randomized mapping will be slewed. We should perhaps
142 * arrange things so these tunables can be separate for mmap, mmapobj, and
143 * ld.so
144 */
145 size_t aslr_max_map_skew = 256 * 1024 * 1024; /* 256MB */
146
147 /*
148 * map_addr_proc() is the routine called when the system is to
149 * choose an address for the user. We will pick an address
150 * range which is just below the current stack limit. The
151 * algorithm used for cache consistency on machines with virtual
152 * address caches is such that offset 0 in the vnode is always
153 * on a shm_alignment'ed aligned address. Unfortunately, this
154 * means that vnodes which are demand paged will not be mapped
155 * cache consistently with the executable images. When the
156 * cache alignment for a given object is inconsistent, the
157 * lower level code must manage the translations so that this
158 * is not seen here (at the cost of efficiency, of course).
159 *
160 * Every mapping will have a redzone of a single page on either side of
161 * the request. This is done to leave one page unmapped between segments.
162 * This is not required, but it's useful for the user because if their
163 * program strays across a segment boundary, it will catch a fault
164 * immediately making debugging a little easier. Currently the redzone
165 * is mandatory.
166 *
167 *
168 * addrp is a value/result parameter.
169 * On input it is a hint from the user to be used in a completely
170 * machine dependent fashion. For MAP_ALIGN, addrp contains the
171 * minimal alignment, which must be some "power of two" multiple of
172 * pagesize.
173 *
174 * On output it is NULL if no address can be found in the current
175 * processes address space or else an address that is currently
176 * not mapped for len bytes with a page of red zone on either side.
177 * If vacalign is true, then the selected address will obey the alignment
178 * constraints of a vac machine based on the given off value.
179 */
180 /*ARGSUSED4*/
181 void
map_addr_proc(caddr_t * addrp,size_t len,offset_t off,int vacalign,caddr_t userlimit,struct proc * p,uint_t flags)182 map_addr_proc(caddr_t *addrp, size_t len, offset_t off, int vacalign,
183 caddr_t userlimit, struct proc *p, uint_t flags)
184 {
185 struct as *as = p->p_as;
186 caddr_t addr;
187 caddr_t base;
188 size_t slen;
189 uintptr_t align_amount;
190 int allow_largepage_alignment = 1;
191
192 base = p->p_brkbase;
193 if (userlimit < as->a_userlimit) {
194 /*
195 * This happens when a program wants to map something in
196 * a range that's accessible to a program in a smaller
197 * address space. For example, a 64-bit program might
198 * be calling mmap32(2) to guarantee that the returned
199 * address is below 4Gbytes.
200 */
201 ASSERT(userlimit > base);
202 slen = userlimit - base;
203 } else {
204 slen = p->p_usrstack - base -
205 ((p->p_stk_ctl + PAGEOFFSET) & PAGEMASK);
206 }
207
208 /* Make len be a multiple of PAGESIZE */
209 len = (len + PAGEOFFSET) & PAGEMASK;
210
211 /*
212 * If the request is larger than the size of a particular
213 * mmu level, then we use that level to map the request.
214 * But this requires that both the virtual and the physical
215 * addresses be aligned with respect to that level, so we
216 * do the virtual bit of nastiness here.
217 *
218 * For 32-bit processes, only those which have specified
219 * MAP_ALIGN or an addr will be aligned on a page size > 4MB. Otherwise
220 * we can potentially waste up to 256MB of the 4G process address
221 * space just for alignment.
222 */
223 if (p->p_model == DATAMODEL_ILP32 && ((flags & MAP_ALIGN) == 0 ||
224 ((uintptr_t)*addrp) != 0)) {
225 allow_largepage_alignment = 0;
226 }
227 if ((mmu_page_sizes == max_mmu_page_sizes) &&
228 allow_largepage_alignment &&
229 (len >= MMU_PAGESIZE256M)) { /* 256MB mappings */
230 align_amount = MMU_PAGESIZE256M;
231 } else if ((mmu_page_sizes == max_mmu_page_sizes) &&
232 allow_largepage_alignment &&
233 (len >= MMU_PAGESIZE32M)) { /* 32MB mappings */
234 align_amount = MMU_PAGESIZE32M;
235 } else if (len >= MMU_PAGESIZE4M) { /* 4MB mappings */
236 align_amount = MMU_PAGESIZE4M;
237 } else if (len >= MMU_PAGESIZE512K) { /* 512KB mappings */
238 align_amount = MMU_PAGESIZE512K;
239 } else if (len >= MMU_PAGESIZE64K) { /* 64KB mappings */
240 align_amount = MMU_PAGESIZE64K;
241 } else {
242 /*
243 * Align virtual addresses on a 64K boundary to ensure
244 * that ELF shared libraries are mapped with the appropriate
245 * alignment constraints by the run-time linker.
246 */
247 align_amount = ELF_SPARC_MAXPGSZ;
248 if ((flags & MAP_ALIGN) && ((uintptr_t)*addrp != 0) &&
249 ((uintptr_t)*addrp < align_amount))
250 align_amount = (uintptr_t)*addrp;
251 }
252
253 /*
254 * 64-bit processes require 1024K alignment of ELF shared libraries.
255 */
256 if (p->p_model == DATAMODEL_LP64)
257 align_amount = MAX(align_amount, ELF_SPARCV9_MAXPGSZ);
258 #ifdef VAC
259 if (vac && vacalign && (align_amount < shm_alignment))
260 align_amount = shm_alignment;
261 #endif
262
263 if ((flags & MAP_ALIGN) && ((uintptr_t)*addrp > align_amount)) {
264 align_amount = (uintptr_t)*addrp;
265 }
266
267 ASSERT(ISP2(align_amount));
268 ASSERT(align_amount == 0 || align_amount >= PAGESIZE);
269
270 /*
271 * Look for a large enough hole starting below the stack limit.
272 * After finding it, use the upper part.
273 */
274 as_purge(as);
275 off = off & (align_amount - 1);
276
277 if (as_gap_aligned(as, len, &base, &slen, AH_HI, NULL, align_amount,
278 PAGESIZE, off) == 0) {
279 caddr_t as_addr;
280
281 /*
282 * addr is the highest possible address to use since we have
283 * a PAGESIZE redzone at the beginning and end.
284 */
285 addr = base + slen - (PAGESIZE + len);
286 as_addr = addr;
287 /*
288 * Round address DOWN to the alignment amount and
289 * add the offset in.
290 * If addr is greater than as_addr, len would not be large
291 * enough to include the redzone, so we must adjust down
292 * by the alignment amount.
293 */
294 addr = (caddr_t)((uintptr_t)addr & (~(align_amount - 1l)));
295 addr += (long)off;
296 if (addr > as_addr) {
297 addr -= align_amount;
298 }
299
300 /*
301 * If randomization is requested, slew the allocation
302 * backwards, within the same gap, by a random amount.
303 */
304 if (flags & _MAP_RANDOMIZE) {
305 uint32_t slew;
306 uint32_t maxslew;
307
308 (void) random_get_pseudo_bytes((uint8_t *)&slew,
309 sizeof (slew));
310
311 maxslew = MIN(aslr_max_map_skew, (addr - base));
312 /*
313 * Don't allow ASLR to cause mappings to fail below
314 * because of SF erratum #57
315 */
316 maxslew = MIN(maxslew, (addr - errata57_limit));
317
318 slew = slew % maxslew;
319 addr -= P2ALIGN(slew, align_amount);
320 }
321
322 ASSERT(addr > base);
323 ASSERT(addr + len < base + slen);
324 ASSERT(((uintptr_t)addr & (align_amount - 1l)) ==
325 ((uintptr_t)(off)));
326 *addrp = addr;
327
328 #if defined(SF_ERRATA_57)
329 if (AS_TYPE_64BIT(as) && addr < errata57_limit) {
330 *addrp = NULL;
331 }
332 #endif
333 } else {
334 *addrp = NULL; /* no more virtual space */
335 }
336 }
337
338 /*
339 * Platform-dependent page scrub call.
340 */
341 void
pagescrub(page_t * pp,uint_t off,uint_t len)342 pagescrub(page_t *pp, uint_t off, uint_t len)
343 {
344 /*
345 * For now, we rely on the fact that pagezero() will
346 * always clear UEs.
347 */
348 pagezero(pp, off, len);
349 }
350
351 /*ARGSUSED*/
352 void
sync_data_memory(caddr_t va,size_t len)353 sync_data_memory(caddr_t va, size_t len)
354 {
355 cpu_flush_ecache();
356 }
357
358 /*
359 * platform specific large pages for kernel heap support
360 */
361 void
mmu_init_kcontext()362 mmu_init_kcontext()
363 {
364 extern void set_kcontextreg();
365
366 if (kcontextreg)
367 set_kcontextreg();
368 }
369
370 void
contig_mem_init(void)371 contig_mem_init(void)
372 {
373 /* not applicable to sun4u */
374 }
375
376 /*ARGSUSED*/
377 caddr_t
contig_mem_prealloc(caddr_t alloc_base,pgcnt_t npages)378 contig_mem_prealloc(caddr_t alloc_base, pgcnt_t npages)
379 {
380 /* not applicable to sun4u */
381 return (alloc_base);
382 }
383