xref: /linux/arch/powerpc/perf/isa207-common.c (revision 4f2c0a4acffbec01079c28f839422e64ddeff004)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Common Performance counter support functions for PowerISA v2.07 processors.
4  *
5  * Copyright 2009 Paul Mackerras, IBM Corporation.
6  * Copyright 2013 Michael Ellerman, IBM Corporation.
7  * Copyright 2016 Madhavan Srinivasan, IBM Corporation.
8  */
9 #include "isa207-common.h"
10 
11 PMU_FORMAT_ATTR(event,		"config:0-49");
12 PMU_FORMAT_ATTR(pmcxsel,	"config:0-7");
13 PMU_FORMAT_ATTR(mark,		"config:8");
14 PMU_FORMAT_ATTR(combine,	"config:11");
15 PMU_FORMAT_ATTR(unit,		"config:12-15");
16 PMU_FORMAT_ATTR(pmc,		"config:16-19");
17 PMU_FORMAT_ATTR(cache_sel,	"config:20-23");
18 PMU_FORMAT_ATTR(sample_mode,	"config:24-28");
19 PMU_FORMAT_ATTR(thresh_sel,	"config:29-31");
20 PMU_FORMAT_ATTR(thresh_stop,	"config:32-35");
21 PMU_FORMAT_ATTR(thresh_start,	"config:36-39");
22 PMU_FORMAT_ATTR(thresh_cmp,	"config:40-49");
23 
24 static struct attribute *isa207_pmu_format_attr[] = {
25 	&format_attr_event.attr,
26 	&format_attr_pmcxsel.attr,
27 	&format_attr_mark.attr,
28 	&format_attr_combine.attr,
29 	&format_attr_unit.attr,
30 	&format_attr_pmc.attr,
31 	&format_attr_cache_sel.attr,
32 	&format_attr_sample_mode.attr,
33 	&format_attr_thresh_sel.attr,
34 	&format_attr_thresh_stop.attr,
35 	&format_attr_thresh_start.attr,
36 	&format_attr_thresh_cmp.attr,
37 	NULL,
38 };
39 
40 const struct attribute_group isa207_pmu_format_group = {
41 	.name = "format",
42 	.attrs = isa207_pmu_format_attr,
43 };
44 
event_is_fab_match(u64 event)45 static inline bool event_is_fab_match(u64 event)
46 {
47 	/* Only check pmc, unit and pmcxsel, ignore the edge bit (0) */
48 	event &= 0xff0fe;
49 
50 	/* PM_MRK_FAB_RSP_MATCH & PM_MRK_FAB_RSP_MATCH_CYC */
51 	return (event == 0x30056 || event == 0x4f052);
52 }
53 
is_event_valid(u64 event)54 static bool is_event_valid(u64 event)
55 {
56 	u64 valid_mask = EVENT_VALID_MASK;
57 
58 	if (cpu_has_feature(CPU_FTR_ARCH_31))
59 		valid_mask = p10_EVENT_VALID_MASK;
60 	else if (cpu_has_feature(CPU_FTR_ARCH_300))
61 		valid_mask = p9_EVENT_VALID_MASK;
62 
63 	return !(event & ~valid_mask);
64 }
65 
is_event_marked(u64 event)66 static inline bool is_event_marked(u64 event)
67 {
68 	if (event & EVENT_IS_MARKED)
69 		return true;
70 
71 	return false;
72 }
73 
sdar_mod_val(u64 event)74 static unsigned long sdar_mod_val(u64 event)
75 {
76 	if (cpu_has_feature(CPU_FTR_ARCH_31))
77 		return p10_SDAR_MODE(event);
78 
79 	return p9_SDAR_MODE(event);
80 }
81 
mmcra_sdar_mode(u64 event,unsigned long * mmcra)82 static void mmcra_sdar_mode(u64 event, unsigned long *mmcra)
83 {
84 	/*
85 	 * MMCRA[SDAR_MODE] specifies how the SDAR should be updated in
86 	 * continuous sampling mode.
87 	 *
88 	 * Incase of Power8:
89 	 * MMCRA[SDAR_MODE] will be programmed as "0b01" for continuous sampling
90 	 * mode and will be un-changed when setting MMCRA[63] (Marked events).
91 	 *
92 	 * Incase of Power9/power10:
93 	 * Marked event: MMCRA[SDAR_MODE] will be set to 0b00 ('No Updates'),
94 	 *               or if group already have any marked events.
95 	 * For rest
96 	 *	MMCRA[SDAR_MODE] will be set from event code.
97 	 *      If sdar_mode from event is zero, default to 0b01. Hardware
98 	 *      requires that we set a non-zero value.
99 	 */
100 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
101 		if (is_event_marked(event) || (*mmcra & MMCRA_SAMPLE_ENABLE))
102 			*mmcra &= MMCRA_SDAR_MODE_NO_UPDATES;
103 		else if (sdar_mod_val(event))
104 			*mmcra |= sdar_mod_val(event) << MMCRA_SDAR_MODE_SHIFT;
105 		else
106 			*mmcra |= MMCRA_SDAR_MODE_DCACHE;
107 	} else
108 		*mmcra |= MMCRA_SDAR_MODE_TLB;
109 }
110 
p10_thresh_cmp_val(u64 value)111 static int p10_thresh_cmp_val(u64 value)
112 {
113 	int exp = 0;
114 	u64 result = value;
115 
116 	if (!value)
117 		return value;
118 
119 	/*
120 	 * Incase of P10, thresh_cmp value is not part of raw event code
121 	 * and provided via attr.config1 parameter. To program threshold in MMCRA,
122 	 * take a 18 bit number N and shift right 2 places and increment
123 	 * the exponent E by 1 until the upper 10 bits of N are zero.
124 	 * Write E to the threshold exponent and write the lower 8 bits of N
125 	 * to the threshold mantissa.
126 	 * The max threshold that can be written is 261120.
127 	 */
128 	if (cpu_has_feature(CPU_FTR_ARCH_31)) {
129 		if (value > 261120)
130 			value = 261120;
131 		while ((64 - __builtin_clzl(value)) > 8) {
132 			exp++;
133 			value >>= 2;
134 		}
135 
136 		/*
137 		 * Note that it is invalid to write a mantissa with the
138 		 * upper 2 bits of mantissa being zero, unless the
139 		 * exponent is also zero.
140 		 */
141 		if (!(value & 0xC0) && exp)
142 			result = -1;
143 		else
144 			result = (exp << 8) | value;
145 	}
146 	return result;
147 }
148 
thresh_cmp_val(u64 value)149 static u64 thresh_cmp_val(u64 value)
150 {
151 	if (cpu_has_feature(CPU_FTR_ARCH_31))
152 		value = p10_thresh_cmp_val(value);
153 
154 	/*
155 	 * Since location of threshold compare bits in MMCRA
156 	 * is different for p8, using different shift value.
157 	 */
158 	if (cpu_has_feature(CPU_FTR_ARCH_300))
159 		return value << p9_MMCRA_THR_CMP_SHIFT;
160 	else
161 		return value << MMCRA_THR_CMP_SHIFT;
162 }
163 
combine_from_event(u64 event)164 static unsigned long combine_from_event(u64 event)
165 {
166 	if (cpu_has_feature(CPU_FTR_ARCH_300))
167 		return p9_EVENT_COMBINE(event);
168 
169 	return EVENT_COMBINE(event);
170 }
171 
combine_shift(unsigned long pmc)172 static unsigned long combine_shift(unsigned long pmc)
173 {
174 	if (cpu_has_feature(CPU_FTR_ARCH_300))
175 		return p9_MMCR1_COMBINE_SHIFT(pmc);
176 
177 	return MMCR1_COMBINE_SHIFT(pmc);
178 }
179 
event_is_threshold(u64 event)180 static inline bool event_is_threshold(u64 event)
181 {
182 	return (event >> EVENT_THR_SEL_SHIFT) & EVENT_THR_SEL_MASK;
183 }
184 
is_thresh_cmp_valid(u64 event)185 static bool is_thresh_cmp_valid(u64 event)
186 {
187 	unsigned int cmp, exp;
188 
189 	if (cpu_has_feature(CPU_FTR_ARCH_31))
190 		return p10_thresh_cmp_val(event) >= 0;
191 
192 	/*
193 	 * Check the mantissa upper two bits are not zero, unless the
194 	 * exponent is also zero. See the THRESH_CMP_MANTISSA doc.
195 	 */
196 
197 	cmp = (event >> EVENT_THR_CMP_SHIFT) & EVENT_THR_CMP_MASK;
198 	exp = cmp >> 7;
199 
200 	if (exp && (cmp & 0x60) == 0)
201 		return false;
202 
203 	return true;
204 }
205 
dc_ic_rld_quad_l1_sel(u64 event)206 static unsigned int dc_ic_rld_quad_l1_sel(u64 event)
207 {
208 	unsigned int cache;
209 
210 	cache = (event >> EVENT_CACHE_SEL_SHIFT) & MMCR1_DC_IC_QUAL_MASK;
211 	return cache;
212 }
213 
isa207_find_source(u64 idx,u32 sub_idx)214 static inline u64 isa207_find_source(u64 idx, u32 sub_idx)
215 {
216 	u64 ret = PERF_MEM_NA;
217 
218 	switch(idx) {
219 	case 0:
220 		/* Nothing to do */
221 		break;
222 	case 1:
223 		ret = PH(LVL, L1) | LEVEL(L1) | P(SNOOP, HIT);
224 		break;
225 	case 2:
226 		ret = PH(LVL, L2) | LEVEL(L2) | P(SNOOP, HIT);
227 		break;
228 	case 3:
229 		ret = PH(LVL, L3) | LEVEL(L3) | P(SNOOP, HIT);
230 		break;
231 	case 4:
232 		if (cpu_has_feature(CPU_FTR_ARCH_31)) {
233 			ret = P(SNOOP, HIT);
234 
235 			if (sub_idx == 1)
236 				ret |= PH(LVL, LOC_RAM) | LEVEL(RAM);
237 			else if (sub_idx == 2 || sub_idx == 3)
238 				ret |= P(LVL, HIT) | LEVEL(PMEM);
239 			else if (sub_idx == 4)
240 				ret |= PH(LVL, REM_RAM1) | REM | LEVEL(RAM) | P(HOPS, 2);
241 			else if (sub_idx == 5 || sub_idx == 7)
242 				ret |= P(LVL, HIT) | LEVEL(PMEM) | REM;
243 			else if (sub_idx == 6)
244 				ret |= PH(LVL, REM_RAM2) | REM | LEVEL(RAM) | P(HOPS, 3);
245 		} else {
246 			if (sub_idx <= 1)
247 				ret = PH(LVL, LOC_RAM);
248 			else if (sub_idx > 1 && sub_idx <= 2)
249 				ret = PH(LVL, REM_RAM1);
250 			else
251 				ret = PH(LVL, REM_RAM2);
252 			ret |= P(SNOOP, HIT);
253 		}
254 		break;
255 	case 5:
256 		if (cpu_has_feature(CPU_FTR_ARCH_31)) {
257 			ret = REM | P(HOPS, 0);
258 
259 			if (sub_idx == 0 || sub_idx == 4)
260 				ret |= PH(LVL, L2) | LEVEL(L2) | P(SNOOP, HIT);
261 			else if (sub_idx == 1 || sub_idx == 5)
262 				ret |= PH(LVL, L2) | LEVEL(L2) | P(SNOOP, HITM);
263 			else if (sub_idx == 2 || sub_idx == 6)
264 				ret |= PH(LVL, L3) | LEVEL(L3) | P(SNOOP, HIT);
265 			else if (sub_idx == 3 || sub_idx == 7)
266 				ret |= PH(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM);
267 		} else {
268 			if (sub_idx == 0)
269 				ret = PH(LVL, L2) | LEVEL(L2) | REM | P(SNOOP, HIT) | P(HOPS, 0);
270 			else if (sub_idx == 1)
271 				ret = PH(LVL, L2) | LEVEL(L2) | REM | P(SNOOP, HITM) | P(HOPS, 0);
272 			else if (sub_idx == 2 || sub_idx == 4)
273 				ret = PH(LVL, L3) | LEVEL(L3) | REM | P(SNOOP, HIT) | P(HOPS, 0);
274 			else if (sub_idx == 3 || sub_idx == 5)
275 				ret = PH(LVL, L3) | LEVEL(L3) | REM | P(SNOOP, HITM) | P(HOPS, 0);
276 		}
277 		break;
278 	case 6:
279 		if (cpu_has_feature(CPU_FTR_ARCH_31)) {
280 			if (sub_idx == 0)
281 				ret = PH(LVL, REM_CCE1) | LEVEL(ANY_CACHE) | REM |
282 					P(SNOOP, HIT) | P(HOPS, 2);
283 			else if (sub_idx == 1)
284 				ret = PH(LVL, REM_CCE1) | LEVEL(ANY_CACHE) | REM |
285 					P(SNOOP, HITM) | P(HOPS, 2);
286 			else if (sub_idx == 2)
287 				ret = PH(LVL, REM_CCE2) | LEVEL(ANY_CACHE) | REM |
288 					P(SNOOP, HIT) | P(HOPS, 3);
289 			else if (sub_idx == 3)
290 				ret = PH(LVL, REM_CCE2) | LEVEL(ANY_CACHE) | REM |
291 					P(SNOOP, HITM) | P(HOPS, 3);
292 		} else {
293 			ret = PH(LVL, REM_CCE2);
294 			if (sub_idx == 0 || sub_idx == 2)
295 				ret |= P(SNOOP, HIT);
296 			else if (sub_idx == 1 || sub_idx == 3)
297 				ret |= P(SNOOP, HITM);
298 		}
299 		break;
300 	case 7:
301 		ret = PM(LVL, L1);
302 		break;
303 	}
304 
305 	return ret;
306 }
307 
isa207_get_mem_data_src(union perf_mem_data_src * dsrc,u32 flags,struct pt_regs * regs)308 void isa207_get_mem_data_src(union perf_mem_data_src *dsrc, u32 flags,
309 							struct pt_regs *regs)
310 {
311 	u64 idx;
312 	u32 sub_idx;
313 	u64 sier;
314 	u64 val;
315 
316 	/* Skip if no SIER support */
317 	if (!(flags & PPMU_HAS_SIER)) {
318 		dsrc->val = 0;
319 		return;
320 	}
321 
322 	sier = mfspr(SPRN_SIER);
323 	val = (sier & ISA207_SIER_TYPE_MASK) >> ISA207_SIER_TYPE_SHIFT;
324 	if (val != 1 && val != 2 && !(val == 7 && cpu_has_feature(CPU_FTR_ARCH_31)))
325 		return;
326 
327 	idx = (sier & ISA207_SIER_LDST_MASK) >> ISA207_SIER_LDST_SHIFT;
328 	sub_idx = (sier & ISA207_SIER_DATA_SRC_MASK) >> ISA207_SIER_DATA_SRC_SHIFT;
329 
330 	dsrc->val = isa207_find_source(idx, sub_idx);
331 	if (val == 7) {
332 		u64 mmcra;
333 		u32 op_type;
334 
335 		/*
336 		 * Type 0b111 denotes either larx or stcx instruction. Use the
337 		 * MMCRA sampling bits [57:59] along with the type value
338 		 * to determine the exact instruction type. If the sampling
339 		 * criteria is neither load or store, set the type as default
340 		 * to NA.
341 		 */
342 		mmcra = mfspr(SPRN_MMCRA);
343 
344 		op_type = (mmcra >> MMCRA_SAMP_ELIG_SHIFT) & MMCRA_SAMP_ELIG_MASK;
345 		switch (op_type) {
346 		case 5:
347 			dsrc->val |= P(OP, LOAD);
348 			break;
349 		case 7:
350 			dsrc->val |= P(OP, STORE);
351 			break;
352 		default:
353 			dsrc->val |= P(OP, NA);
354 			break;
355 		}
356 	} else {
357 		dsrc->val |= (val == 1) ? P(OP, LOAD) : P(OP, STORE);
358 	}
359 }
360 
isa207_get_mem_weight(u64 * weight,u64 type)361 void isa207_get_mem_weight(u64 *weight, u64 type)
362 {
363 	union perf_sample_weight *weight_fields;
364 	u64 weight_lat;
365 	u64 mmcra = mfspr(SPRN_MMCRA);
366 	u64 exp = MMCRA_THR_CTR_EXP(mmcra);
367 	u64 mantissa = MMCRA_THR_CTR_MANT(mmcra);
368 	u64 sier = mfspr(SPRN_SIER);
369 	u64 val = (sier & ISA207_SIER_TYPE_MASK) >> ISA207_SIER_TYPE_SHIFT;
370 
371 	if (cpu_has_feature(CPU_FTR_ARCH_31))
372 		mantissa = P10_MMCRA_THR_CTR_MANT(mmcra);
373 
374 	if (val == 0 || (val == 7 && !cpu_has_feature(CPU_FTR_ARCH_31)))
375 		weight_lat = 0;
376 	else
377 		weight_lat = mantissa << (2 * exp);
378 
379 	/*
380 	 * Use 64 bit weight field (full) if sample type is
381 	 * WEIGHT.
382 	 *
383 	 * if sample type is WEIGHT_STRUCT:
384 	 * - store memory latency in the lower 32 bits.
385 	 * - For ISA v3.1, use remaining two 16 bit fields of
386 	 *   perf_sample_weight to store cycle counter values
387 	 *   from sier2.
388 	 */
389 	weight_fields = (union perf_sample_weight *)weight;
390 	if (type & PERF_SAMPLE_WEIGHT)
391 		weight_fields->full = weight_lat;
392 	else {
393 		weight_fields->var1_dw = (u32)weight_lat;
394 		if (cpu_has_feature(CPU_FTR_ARCH_31)) {
395 			weight_fields->var2_w = P10_SIER2_FINISH_CYC(mfspr(SPRN_SIER2));
396 			weight_fields->var3_w = P10_SIER2_DISPATCH_CYC(mfspr(SPRN_SIER2));
397 		}
398 	}
399 }
400 
isa207_get_constraint(u64 event,unsigned long * maskp,unsigned long * valp,u64 event_config1)401 int isa207_get_constraint(u64 event, unsigned long *maskp, unsigned long *valp, u64 event_config1)
402 {
403 	unsigned int unit, pmc, cache, ebb;
404 	unsigned long mask, value;
405 
406 	mask = value = 0;
407 
408 	if (!is_event_valid(event))
409 		return -1;
410 
411 	pmc   = (event >> EVENT_PMC_SHIFT)        & EVENT_PMC_MASK;
412 	unit  = (event >> EVENT_UNIT_SHIFT)       & EVENT_UNIT_MASK;
413 	if (cpu_has_feature(CPU_FTR_ARCH_31))
414 		cache = (event >> EVENT_CACHE_SEL_SHIFT) &
415 			p10_EVENT_CACHE_SEL_MASK;
416 	else
417 		cache = (event >> EVENT_CACHE_SEL_SHIFT) &
418 			EVENT_CACHE_SEL_MASK;
419 	ebb   = (event >> EVENT_EBB_SHIFT)        & EVENT_EBB_MASK;
420 
421 	if (pmc) {
422 		u64 base_event;
423 
424 		if (pmc > 6)
425 			return -1;
426 
427 		/* Ignore Linux defined bits when checking event below */
428 		base_event = event & ~EVENT_LINUX_MASK;
429 
430 		if (pmc >= 5 && base_event != 0x500fa &&
431 				base_event != 0x600f4)
432 			return -1;
433 
434 		mask  |= CNST_PMC_MASK(pmc);
435 		value |= CNST_PMC_VAL(pmc);
436 
437 		/*
438 		 * PMC5 and PMC6 are used to count cycles and instructions and
439 		 * they do not support most of the constraint bits. Add a check
440 		 * to exclude PMC5/6 from most of the constraints except for
441 		 * EBB/BHRB.
442 		 */
443 		if (pmc >= 5)
444 			goto ebb_bhrb;
445 	}
446 
447 	if (pmc <= 4) {
448 		/*
449 		 * Add to number of counters in use. Note this includes events with
450 		 * a PMC of 0 - they still need a PMC, it's just assigned later.
451 		 * Don't count events on PMC 5 & 6, there is only one valid event
452 		 * on each of those counters, and they are handled above.
453 		 */
454 		mask  |= CNST_NC_MASK;
455 		value |= CNST_NC_VAL;
456 	}
457 
458 	if (unit >= 6 && unit <= 9) {
459 		if (cpu_has_feature(CPU_FTR_ARCH_31)) {
460 			if (unit == 6) {
461 				mask |= CNST_L2L3_GROUP_MASK;
462 				value |= CNST_L2L3_GROUP_VAL(event >> p10_L2L3_EVENT_SHIFT);
463 			}
464 		} else if (cpu_has_feature(CPU_FTR_ARCH_300)) {
465 			mask  |= CNST_CACHE_GROUP_MASK;
466 			value |= CNST_CACHE_GROUP_VAL(event & 0xff);
467 
468 			mask |= CNST_CACHE_PMC4_MASK;
469 			if (pmc == 4)
470 				value |= CNST_CACHE_PMC4_VAL;
471 		} else if (cache & 0x7) {
472 			/*
473 			 * L2/L3 events contain a cache selector field, which is
474 			 * supposed to be programmed into MMCRC. However MMCRC is only
475 			 * HV writable, and there is no API for guest kernels to modify
476 			 * it. The solution is for the hypervisor to initialise the
477 			 * field to zeroes, and for us to only ever allow events that
478 			 * have a cache selector of zero. The bank selector (bit 3) is
479 			 * irrelevant, as long as the rest of the value is 0.
480 			 */
481 			return -1;
482 		}
483 
484 	} else if (cpu_has_feature(CPU_FTR_ARCH_300) || (event & EVENT_IS_L1)) {
485 		mask  |= CNST_L1_QUAL_MASK;
486 		value |= CNST_L1_QUAL_VAL(cache);
487 	}
488 
489 	if (cpu_has_feature(CPU_FTR_ARCH_31)) {
490 		mask |= CNST_RADIX_SCOPE_GROUP_MASK;
491 		value |= CNST_RADIX_SCOPE_GROUP_VAL(event >> p10_EVENT_RADIX_SCOPE_QUAL_SHIFT);
492 	}
493 
494 	if (is_event_marked(event)) {
495 		mask  |= CNST_SAMPLE_MASK;
496 		value |= CNST_SAMPLE_VAL(event >> EVENT_SAMPLE_SHIFT);
497 	}
498 
499 	if (cpu_has_feature(CPU_FTR_ARCH_31)) {
500 		if (event_is_threshold(event) && is_thresh_cmp_valid(event_config1)) {
501 			mask  |= CNST_THRESH_CTL_SEL_MASK;
502 			value |= CNST_THRESH_CTL_SEL_VAL(event >> EVENT_THRESH_SHIFT);
503 			mask  |= p10_CNST_THRESH_CMP_MASK;
504 			value |= p10_CNST_THRESH_CMP_VAL(p10_thresh_cmp_val(event_config1));
505 		} else if (event_is_threshold(event))
506 			return -1;
507 	} else if (cpu_has_feature(CPU_FTR_ARCH_300))  {
508 		if (event_is_threshold(event) && is_thresh_cmp_valid(event)) {
509 			mask  |= CNST_THRESH_MASK;
510 			value |= CNST_THRESH_VAL(event >> EVENT_THRESH_SHIFT);
511 		} else if (event_is_threshold(event))
512 			return -1;
513 	} else {
514 		/*
515 		 * Special case for PM_MRK_FAB_RSP_MATCH and PM_MRK_FAB_RSP_MATCH_CYC,
516 		 * the threshold control bits are used for the match value.
517 		 */
518 		if (event_is_fab_match(event)) {
519 			mask  |= CNST_FAB_MATCH_MASK;
520 			value |= CNST_FAB_MATCH_VAL(event >> EVENT_THR_CTL_SHIFT);
521 		} else {
522 			if (!is_thresh_cmp_valid(event))
523 				return -1;
524 
525 			mask  |= CNST_THRESH_MASK;
526 			value |= CNST_THRESH_VAL(event >> EVENT_THRESH_SHIFT);
527 		}
528 	}
529 
530 ebb_bhrb:
531 	if (!pmc && ebb)
532 		/* EBB events must specify the PMC */
533 		return -1;
534 
535 	if (event & EVENT_WANTS_BHRB) {
536 		if (!ebb)
537 			/* Only EBB events can request BHRB */
538 			return -1;
539 
540 		mask  |= CNST_IFM_MASK;
541 		value |= CNST_IFM_VAL(event >> EVENT_IFM_SHIFT);
542 	}
543 
544 	/*
545 	 * All events must agree on EBB, either all request it or none.
546 	 * EBB events are pinned & exclusive, so this should never actually
547 	 * hit, but we leave it as a fallback in case.
548 	 */
549 	mask  |= CNST_EBB_MASK;
550 	value |= CNST_EBB_VAL(ebb);
551 
552 	*maskp = mask;
553 	*valp = value;
554 
555 	return 0;
556 }
557 
isa207_compute_mmcr(u64 event[],int n_ev,unsigned int hwc[],struct mmcr_regs * mmcr,struct perf_event * pevents[],u32 flags)558 int isa207_compute_mmcr(u64 event[], int n_ev,
559 			       unsigned int hwc[], struct mmcr_regs *mmcr,
560 			       struct perf_event *pevents[], u32 flags)
561 {
562 	unsigned long mmcra, mmcr1, mmcr2, unit, combine, psel, cache, val;
563 	unsigned long mmcr3;
564 	unsigned int pmc, pmc_inuse;
565 	int i;
566 
567 	pmc_inuse = 0;
568 
569 	/* First pass to count resource use */
570 	for (i = 0; i < n_ev; ++i) {
571 		pmc = (event[i] >> EVENT_PMC_SHIFT) & EVENT_PMC_MASK;
572 		if (pmc)
573 			pmc_inuse |= 1 << pmc;
574 	}
575 
576 	mmcra = mmcr1 = mmcr2 = mmcr3 = 0;
577 
578 	/*
579 	 * Disable bhrb unless explicitly requested
580 	 * by setting MMCRA (BHRBRD) bit.
581 	 */
582 	if (cpu_has_feature(CPU_FTR_ARCH_31))
583 		mmcra |= MMCRA_BHRB_DISABLE;
584 
585 	/* Second pass: assign PMCs, set all MMCR1 fields */
586 	for (i = 0; i < n_ev; ++i) {
587 		pmc     = (event[i] >> EVENT_PMC_SHIFT) & EVENT_PMC_MASK;
588 		unit    = (event[i] >> EVENT_UNIT_SHIFT) & EVENT_UNIT_MASK;
589 		combine = combine_from_event(event[i]);
590 		psel    =  event[i] & EVENT_PSEL_MASK;
591 
592 		if (!pmc) {
593 			for (pmc = 1; pmc <= 4; ++pmc) {
594 				if (!(pmc_inuse & (1 << pmc)))
595 					break;
596 			}
597 
598 			pmc_inuse |= 1 << pmc;
599 		}
600 
601 		if (pmc <= 4) {
602 			mmcr1 |= unit << MMCR1_UNIT_SHIFT(pmc);
603 			mmcr1 |= combine << combine_shift(pmc);
604 			mmcr1 |= psel << MMCR1_PMCSEL_SHIFT(pmc);
605 		}
606 
607 		/* In continuous sampling mode, update SDAR on TLB miss */
608 		mmcra_sdar_mode(event[i], &mmcra);
609 
610 		if (cpu_has_feature(CPU_FTR_ARCH_300)) {
611 			cache = dc_ic_rld_quad_l1_sel(event[i]);
612 			mmcr1 |= (cache) << MMCR1_DC_IC_QUAL_SHIFT;
613 		} else {
614 			if (event[i] & EVENT_IS_L1) {
615 				cache = dc_ic_rld_quad_l1_sel(event[i]);
616 				mmcr1 |= (cache) << MMCR1_DC_IC_QUAL_SHIFT;
617 			}
618 		}
619 
620 		/* Set RADIX_SCOPE_QUAL bit */
621 		if (cpu_has_feature(CPU_FTR_ARCH_31)) {
622 			val = (event[i] >> p10_EVENT_RADIX_SCOPE_QUAL_SHIFT) &
623 				p10_EVENT_RADIX_SCOPE_QUAL_MASK;
624 			mmcr1 |= val << p10_MMCR1_RADIX_SCOPE_QUAL_SHIFT;
625 		}
626 
627 		if (is_event_marked(event[i])) {
628 			mmcra |= MMCRA_SAMPLE_ENABLE;
629 
630 			val = (event[i] >> EVENT_SAMPLE_SHIFT) & EVENT_SAMPLE_MASK;
631 			if (val) {
632 				mmcra |= (val &  3) << MMCRA_SAMP_MODE_SHIFT;
633 				mmcra |= (val >> 2) << MMCRA_SAMP_ELIG_SHIFT;
634 			}
635 		}
636 
637 		/*
638 		 * PM_MRK_FAB_RSP_MATCH and PM_MRK_FAB_RSP_MATCH_CYC,
639 		 * the threshold bits are used for the match value.
640 		 */
641 		if (!cpu_has_feature(CPU_FTR_ARCH_300) && event_is_fab_match(event[i])) {
642 			mmcr1 |= ((event[i] >> EVENT_THR_CTL_SHIFT) &
643 				  EVENT_THR_CTL_MASK) << MMCR1_FAB_SHIFT;
644 		} else {
645 			val = (event[i] >> EVENT_THR_CTL_SHIFT) & EVENT_THR_CTL_MASK;
646 			mmcra |= val << MMCRA_THR_CTL_SHIFT;
647 			val = (event[i] >> EVENT_THR_SEL_SHIFT) & EVENT_THR_SEL_MASK;
648 			mmcra |= val << MMCRA_THR_SEL_SHIFT;
649 			if (!cpu_has_feature(CPU_FTR_ARCH_31)) {
650 				val = (event[i] >> EVENT_THR_CMP_SHIFT) &
651 					EVENT_THR_CMP_MASK;
652 				mmcra |= thresh_cmp_val(val);
653 			} else if (flags & PPMU_HAS_ATTR_CONFIG1) {
654 				val = (pevents[i]->attr.config1 >> p10_EVENT_THR_CMP_SHIFT) &
655 					p10_EVENT_THR_CMP_MASK;
656 				mmcra |= thresh_cmp_val(val);
657 			}
658 		}
659 
660 		if (cpu_has_feature(CPU_FTR_ARCH_31) && (unit == 6)) {
661 			val = (event[i] >> p10_L2L3_EVENT_SHIFT) &
662 				p10_EVENT_L2L3_SEL_MASK;
663 			mmcr2 |= val << p10_L2L3_SEL_SHIFT;
664 		}
665 
666 		if (event[i] & EVENT_WANTS_BHRB) {
667 			val = (event[i] >> EVENT_IFM_SHIFT) & EVENT_IFM_MASK;
668 			mmcra |= val << MMCRA_IFM_SHIFT;
669 		}
670 
671 		/* set MMCRA (BHRBRD) to 0 if there is user request for BHRB */
672 		if (cpu_has_feature(CPU_FTR_ARCH_31) &&
673 				(has_branch_stack(pevents[i]) || (event[i] & EVENT_WANTS_BHRB)))
674 			mmcra &= ~MMCRA_BHRB_DISABLE;
675 
676 		if (pevents[i]->attr.exclude_user)
677 			mmcr2 |= MMCR2_FCP(pmc);
678 
679 		if (pevents[i]->attr.exclude_hv)
680 			mmcr2 |= MMCR2_FCH(pmc);
681 
682 		if (pevents[i]->attr.exclude_kernel) {
683 			if (cpu_has_feature(CPU_FTR_HVMODE))
684 				mmcr2 |= MMCR2_FCH(pmc);
685 			else
686 				mmcr2 |= MMCR2_FCS(pmc);
687 		}
688 
689 		if (pevents[i]->attr.exclude_idle)
690 			mmcr2 |= MMCR2_FCWAIT(pmc);
691 
692 		if (cpu_has_feature(CPU_FTR_ARCH_31)) {
693 			if (pmc <= 4) {
694 				val = (event[i] >> p10_EVENT_MMCR3_SHIFT) &
695 					p10_EVENT_MMCR3_MASK;
696 				mmcr3 |= val << MMCR3_SHIFT(pmc);
697 			}
698 		}
699 
700 		hwc[i] = pmc - 1;
701 	}
702 
703 	/* Return MMCRx values */
704 	mmcr->mmcr0 = 0;
705 
706 	/* pmc_inuse is 1-based */
707 	if (pmc_inuse & 2)
708 		mmcr->mmcr0 = MMCR0_PMC1CE;
709 
710 	if (pmc_inuse & 0x7c)
711 		mmcr->mmcr0 |= MMCR0_PMCjCE;
712 
713 	/* If we're not using PMC 5 or 6, freeze them */
714 	if (!(pmc_inuse & 0x60))
715 		mmcr->mmcr0 |= MMCR0_FC56;
716 
717 	/*
718 	 * Set mmcr0 (PMCCEXT) for p10 which
719 	 * will restrict access to group B registers
720 	 * when MMCR0 PMCC=0b00.
721 	 */
722 	if (cpu_has_feature(CPU_FTR_ARCH_31))
723 		mmcr->mmcr0 |= MMCR0_PMCCEXT;
724 
725 	mmcr->mmcr1 = mmcr1;
726 	mmcr->mmcra = mmcra;
727 	mmcr->mmcr2 = mmcr2;
728 	mmcr->mmcr3 = mmcr3;
729 
730 	return 0;
731 }
732 
isa207_disable_pmc(unsigned int pmc,struct mmcr_regs * mmcr)733 void isa207_disable_pmc(unsigned int pmc, struct mmcr_regs *mmcr)
734 {
735 	if (pmc <= 3)
736 		mmcr->mmcr1 &= ~(0xffUL << MMCR1_PMCSEL_SHIFT(pmc + 1));
737 }
738 
find_alternative(u64 event,const unsigned int ev_alt[][MAX_ALT],int size)739 static int find_alternative(u64 event, const unsigned int ev_alt[][MAX_ALT], int size)
740 {
741 	int i, j;
742 
743 	for (i = 0; i < size; ++i) {
744 		if (event < ev_alt[i][0])
745 			break;
746 
747 		for (j = 0; j < MAX_ALT && ev_alt[i][j]; ++j)
748 			if (event == ev_alt[i][j])
749 				return i;
750 	}
751 
752 	return -1;
753 }
754 
isa207_get_alternatives(u64 event,u64 alt[],int size,unsigned int flags,const unsigned int ev_alt[][MAX_ALT])755 int isa207_get_alternatives(u64 event, u64 alt[], int size, unsigned int flags,
756 					const unsigned int ev_alt[][MAX_ALT])
757 {
758 	int i, j, num_alt = 0;
759 	u64 alt_event;
760 
761 	alt[num_alt++] = event;
762 	i = find_alternative(event, ev_alt, size);
763 	if (i >= 0) {
764 		/* Filter out the original event, it's already in alt[0] */
765 		for (j = 0; j < MAX_ALT; ++j) {
766 			alt_event = ev_alt[i][j];
767 			if (alt_event && alt_event != event)
768 				alt[num_alt++] = alt_event;
769 		}
770 	}
771 
772 	if (flags & PPMU_ONLY_COUNT_RUN) {
773 		/*
774 		 * We're only counting in RUN state, so PM_CYC is equivalent to
775 		 * PM_RUN_CYC and PM_INST_CMPL === PM_RUN_INST_CMPL.
776 		 */
777 		j = num_alt;
778 		for (i = 0; i < num_alt; ++i) {
779 			switch (alt[i]) {
780 			case 0x1e:			/* PMC_CYC */
781 				alt[j++] = 0x600f4;	/* PM_RUN_CYC */
782 				break;
783 			case 0x600f4:
784 				alt[j++] = 0x1e;
785 				break;
786 			case 0x2:			/* PM_INST_CMPL */
787 				alt[j++] = 0x500fa;	/* PM_RUN_INST_CMPL */
788 				break;
789 			case 0x500fa:
790 				alt[j++] = 0x2;
791 				break;
792 			}
793 		}
794 		num_alt = j;
795 	}
796 
797 	return num_alt;
798 }
799 
isa3XX_check_attr_config(struct perf_event * ev)800 int isa3XX_check_attr_config(struct perf_event *ev)
801 {
802 	u64 val, sample_mode;
803 	u64 event = ev->attr.config;
804 
805 	val = (event >> EVENT_SAMPLE_SHIFT) & EVENT_SAMPLE_MASK;
806 	sample_mode = val & 0x3;
807 
808 	/*
809 	 * MMCRA[61:62] is Random Sampling Mode (SM).
810 	 * value of 0b11 is reserved.
811 	 */
812 	if (sample_mode == 0x3)
813 		return -EINVAL;
814 
815 	/*
816 	 * Check for all reserved value
817 	 * Source: Performance Monitoring Unit User Guide
818 	 */
819 	switch (val) {
820 	case 0x5:
821 	case 0x9:
822 	case 0xD:
823 	case 0x19:
824 	case 0x1D:
825 	case 0x1A:
826 	case 0x1E:
827 		return -EINVAL;
828 	}
829 
830 	/*
831 	 * MMCRA[48:51]/[52:55]) Threshold Start/Stop
832 	 * Events Selection.
833 	 * 0b11110000/0b00001111 is reserved.
834 	 */
835 	val = (event >> EVENT_THR_CTL_SHIFT) & EVENT_THR_CTL_MASK;
836 	if (((val & 0xF0) == 0xF0) || ((val & 0xF) == 0xF))
837 		return -EINVAL;
838 
839 	return 0;
840 }
841