1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/drivers/mmc/core/core.c
4 *
5 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
6 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
7 * Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
8 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
9 */
10 #include <linux/module.h>
11 #include <linux/init.h>
12 #include <linux/interrupt.h>
13 #include <linux/completion.h>
14 #include <linux/device.h>
15 #include <linux/delay.h>
16 #include <linux/pagemap.h>
17 #include <linux/err.h>
18 #include <linux/leds.h>
19 #include <linux/scatterlist.h>
20 #include <linux/log2.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/suspend.h>
23 #include <linux/fault-inject.h>
24 #include <linux/random.h>
25 #include <linux/slab.h>
26 #include <linux/of.h>
27
28 #include <linux/mmc/card.h>
29 #include <linux/mmc/host.h>
30 #include <linux/mmc/mmc.h>
31 #include <linux/mmc/sd.h>
32 #include <linux/mmc/slot-gpio.h>
33
34 #define CREATE_TRACE_POINTS
35 #include <trace/events/mmc.h>
36
37 #include "core.h"
38 #include "card.h"
39 #include "crypto.h"
40 #include "bus.h"
41 #include "host.h"
42 #include "sdio_bus.h"
43 #include "pwrseq.h"
44
45 #include "mmc_ops.h"
46 #include "sd_ops.h"
47 #include "sdio_ops.h"
48
49 /* The max erase timeout, used when host->max_busy_timeout isn't specified */
50 #define MMC_ERASE_TIMEOUT_MS (60 * 1000) /* 60 s */
51 #define SD_DISCARD_TIMEOUT_MS (250)
52
53 static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
54
55 /*
56 * Enabling software CRCs on the data blocks can be a significant (30%)
57 * performance cost, and for other reasons may not always be desired.
58 * So we allow it to be disabled.
59 */
60 bool use_spi_crc = 1;
61 module_param(use_spi_crc, bool, 0);
62
mmc_schedule_delayed_work(struct delayed_work * work,unsigned long delay)63 static int mmc_schedule_delayed_work(struct delayed_work *work,
64 unsigned long delay)
65 {
66 /*
67 * We use the system_freezable_wq, because of two reasons.
68 * First, it allows several works (not the same work item) to be
69 * executed simultaneously. Second, the queue becomes frozen when
70 * userspace becomes frozen during system PM.
71 */
72 return queue_delayed_work(system_freezable_wq, work, delay);
73 }
74
75 #ifdef CONFIG_FAIL_MMC_REQUEST
76
77 /*
78 * Internal function. Inject random data errors.
79 * If mmc_data is NULL no errors are injected.
80 */
mmc_should_fail_request(struct mmc_host * host,struct mmc_request * mrq)81 static void mmc_should_fail_request(struct mmc_host *host,
82 struct mmc_request *mrq)
83 {
84 struct mmc_command *cmd = mrq->cmd;
85 struct mmc_data *data = mrq->data;
86 static const int data_errors[] = {
87 -ETIMEDOUT,
88 -EILSEQ,
89 -EIO,
90 };
91
92 if (!data)
93 return;
94
95 if ((cmd && cmd->error) || data->error ||
96 !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
97 return;
98
99 data->error = data_errors[get_random_u32_below(ARRAY_SIZE(data_errors))];
100 data->bytes_xfered = get_random_u32_below(data->bytes_xfered >> 9) << 9;
101 }
102
103 #else /* CONFIG_FAIL_MMC_REQUEST */
104
mmc_should_fail_request(struct mmc_host * host,struct mmc_request * mrq)105 static inline void mmc_should_fail_request(struct mmc_host *host,
106 struct mmc_request *mrq)
107 {
108 }
109
110 #endif /* CONFIG_FAIL_MMC_REQUEST */
111
mmc_complete_cmd(struct mmc_request * mrq)112 static inline void mmc_complete_cmd(struct mmc_request *mrq)
113 {
114 if (mrq->cap_cmd_during_tfr && !completion_done(&mrq->cmd_completion))
115 complete_all(&mrq->cmd_completion);
116 }
117
mmc_command_done(struct mmc_host * host,struct mmc_request * mrq)118 void mmc_command_done(struct mmc_host *host, struct mmc_request *mrq)
119 {
120 if (!mrq->cap_cmd_during_tfr)
121 return;
122
123 mmc_complete_cmd(mrq);
124
125 pr_debug("%s: cmd done, tfr ongoing (CMD%u)\n",
126 mmc_hostname(host), mrq->cmd->opcode);
127 }
128 EXPORT_SYMBOL(mmc_command_done);
129
130 /**
131 * mmc_request_done - finish processing an MMC request
132 * @host: MMC host which completed request
133 * @mrq: MMC request which request
134 *
135 * MMC drivers should call this function when they have completed
136 * their processing of a request.
137 */
mmc_request_done(struct mmc_host * host,struct mmc_request * mrq)138 void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
139 {
140 struct mmc_command *cmd = mrq->cmd;
141 int err = cmd->error;
142
143 /* Flag re-tuning needed on CRC errors */
144 if (!mmc_op_tuning(cmd->opcode) &&
145 !host->retune_crc_disable &&
146 (err == -EILSEQ || (mrq->sbc && mrq->sbc->error == -EILSEQ) ||
147 (mrq->data && mrq->data->error == -EILSEQ) ||
148 (mrq->stop && mrq->stop->error == -EILSEQ)))
149 mmc_retune_needed(host);
150
151 if (err && cmd->retries && mmc_host_is_spi(host)) {
152 if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
153 cmd->retries = 0;
154 }
155
156 if (host->ongoing_mrq == mrq)
157 host->ongoing_mrq = NULL;
158
159 mmc_complete_cmd(mrq);
160
161 trace_mmc_request_done(host, mrq);
162
163 /*
164 * We list various conditions for the command to be considered
165 * properly done:
166 *
167 * - There was no error, OK fine then
168 * - We are not doing some kind of retry
169 * - The card was removed (...so just complete everything no matter
170 * if there are errors or retries)
171 */
172 if (!err || !cmd->retries || mmc_card_removed(host->card)) {
173 mmc_should_fail_request(host, mrq);
174
175 if (!host->ongoing_mrq)
176 led_trigger_event(host->led, LED_OFF);
177
178 if (mrq->sbc) {
179 pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n",
180 mmc_hostname(host), mrq->sbc->opcode,
181 mrq->sbc->error,
182 mrq->sbc->resp[0], mrq->sbc->resp[1],
183 mrq->sbc->resp[2], mrq->sbc->resp[3]);
184 }
185
186 pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
187 mmc_hostname(host), cmd->opcode, err,
188 cmd->resp[0], cmd->resp[1],
189 cmd->resp[2], cmd->resp[3]);
190
191 if (mrq->data) {
192 pr_debug("%s: %d bytes transferred: %d\n",
193 mmc_hostname(host),
194 mrq->data->bytes_xfered, mrq->data->error);
195 }
196
197 if (mrq->stop) {
198 pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n",
199 mmc_hostname(host), mrq->stop->opcode,
200 mrq->stop->error,
201 mrq->stop->resp[0], mrq->stop->resp[1],
202 mrq->stop->resp[2], mrq->stop->resp[3]);
203 }
204 }
205 /*
206 * Request starter must handle retries - see
207 * mmc_wait_for_req_done().
208 */
209 if (mrq->done)
210 mrq->done(mrq);
211 }
212
213 EXPORT_SYMBOL(mmc_request_done);
214
__mmc_start_request(struct mmc_host * host,struct mmc_request * mrq)215 static void __mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
216 {
217 int err;
218
219 /* Assumes host controller has been runtime resumed by mmc_claim_host */
220 err = mmc_retune(host);
221 if (err) {
222 mrq->cmd->error = err;
223 mmc_request_done(host, mrq);
224 return;
225 }
226
227 /*
228 * For sdio rw commands we must wait for card busy otherwise some
229 * sdio devices won't work properly.
230 * And bypass I/O abort, reset and bus suspend operations.
231 */
232 if (sdio_is_io_busy(mrq->cmd->opcode, mrq->cmd->arg) &&
233 host->ops->card_busy) {
234 int tries = 500; /* Wait aprox 500ms at maximum */
235
236 while (host->ops->card_busy(host) && --tries)
237 mmc_delay(1);
238
239 if (tries == 0) {
240 mrq->cmd->error = -EBUSY;
241 mmc_request_done(host, mrq);
242 return;
243 }
244 }
245
246 if (mrq->cap_cmd_during_tfr) {
247 host->ongoing_mrq = mrq;
248 /*
249 * Retry path could come through here without having waiting on
250 * cmd_completion, so ensure it is reinitialised.
251 */
252 reinit_completion(&mrq->cmd_completion);
253 }
254
255 trace_mmc_request_start(host, mrq);
256
257 if (host->cqe_on)
258 host->cqe_ops->cqe_off(host);
259
260 host->ops->request(host, mrq);
261 }
262
mmc_mrq_pr_debug(struct mmc_host * host,struct mmc_request * mrq,bool cqe)263 static void mmc_mrq_pr_debug(struct mmc_host *host, struct mmc_request *mrq,
264 bool cqe)
265 {
266 if (mrq->sbc) {
267 pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
268 mmc_hostname(host), mrq->sbc->opcode,
269 mrq->sbc->arg, mrq->sbc->flags);
270 }
271
272 if (mrq->cmd) {
273 pr_debug("%s: starting %sCMD%u arg %08x flags %08x\n",
274 mmc_hostname(host), cqe ? "CQE direct " : "",
275 mrq->cmd->opcode, mrq->cmd->arg, mrq->cmd->flags);
276 } else if (cqe) {
277 pr_debug("%s: starting CQE transfer for tag %d blkaddr %u\n",
278 mmc_hostname(host), mrq->tag, mrq->data->blk_addr);
279 }
280
281 if (mrq->data) {
282 pr_debug("%s: blksz %d blocks %d flags %08x "
283 "tsac %d ms nsac %d\n",
284 mmc_hostname(host), mrq->data->blksz,
285 mrq->data->blocks, mrq->data->flags,
286 mrq->data->timeout_ns / 1000000,
287 mrq->data->timeout_clks);
288 }
289
290 if (mrq->stop) {
291 pr_debug("%s: CMD%u arg %08x flags %08x\n",
292 mmc_hostname(host), mrq->stop->opcode,
293 mrq->stop->arg, mrq->stop->flags);
294 }
295 }
296
mmc_mrq_prep(struct mmc_host * host,struct mmc_request * mrq)297 static int mmc_mrq_prep(struct mmc_host *host, struct mmc_request *mrq)
298 {
299 unsigned int i, sz = 0;
300 struct scatterlist *sg;
301
302 if (mrq->cmd) {
303 mrq->cmd->error = 0;
304 mrq->cmd->mrq = mrq;
305 mrq->cmd->data = mrq->data;
306 }
307 if (mrq->sbc) {
308 mrq->sbc->error = 0;
309 mrq->sbc->mrq = mrq;
310 }
311 if (mrq->data) {
312 if (mrq->data->blksz > host->max_blk_size ||
313 mrq->data->blocks > host->max_blk_count ||
314 mrq->data->blocks * mrq->data->blksz > host->max_req_size)
315 return -EINVAL;
316
317 for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
318 sz += sg->length;
319 if (sz != mrq->data->blocks * mrq->data->blksz)
320 return -EINVAL;
321
322 mrq->data->error = 0;
323 mrq->data->mrq = mrq;
324 if (mrq->stop) {
325 mrq->data->stop = mrq->stop;
326 mrq->stop->error = 0;
327 mrq->stop->mrq = mrq;
328 }
329 }
330
331 return 0;
332 }
333
mmc_start_request(struct mmc_host * host,struct mmc_request * mrq)334 int mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
335 {
336 int err;
337
338 if (mrq->cmd && mrq->cmd->has_ext_addr)
339 mmc_send_ext_addr(host, mrq->cmd->ext_addr);
340
341 init_completion(&mrq->cmd_completion);
342
343 mmc_retune_hold(host);
344
345 if (mmc_card_removed(host->card))
346 return -ENOMEDIUM;
347
348 mmc_mrq_pr_debug(host, mrq, false);
349
350 WARN_ON(!host->claimed);
351
352 err = mmc_mrq_prep(host, mrq);
353 if (err)
354 return err;
355
356 if (host->uhs2_sd_tran)
357 mmc_uhs2_prepare_cmd(host, mrq);
358
359 led_trigger_event(host->led, LED_FULL);
360 __mmc_start_request(host, mrq);
361
362 return 0;
363 }
364 EXPORT_SYMBOL(mmc_start_request);
365
mmc_wait_done(struct mmc_request * mrq)366 static void mmc_wait_done(struct mmc_request *mrq)
367 {
368 complete(&mrq->completion);
369 }
370
mmc_wait_ongoing_tfr_cmd(struct mmc_host * host)371 static inline void mmc_wait_ongoing_tfr_cmd(struct mmc_host *host)
372 {
373 struct mmc_request *ongoing_mrq = READ_ONCE(host->ongoing_mrq);
374
375 /*
376 * If there is an ongoing transfer, wait for the command line to become
377 * available.
378 */
379 if (ongoing_mrq && !completion_done(&ongoing_mrq->cmd_completion))
380 wait_for_completion(&ongoing_mrq->cmd_completion);
381 }
382
__mmc_start_req(struct mmc_host * host,struct mmc_request * mrq)383 static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
384 {
385 int err;
386
387 mmc_wait_ongoing_tfr_cmd(host);
388
389 init_completion(&mrq->completion);
390 mrq->done = mmc_wait_done;
391
392 err = mmc_start_request(host, mrq);
393 if (err) {
394 mrq->cmd->error = err;
395 mmc_complete_cmd(mrq);
396 complete(&mrq->completion);
397 }
398
399 return err;
400 }
401
mmc_wait_for_req_done(struct mmc_host * host,struct mmc_request * mrq)402 void mmc_wait_for_req_done(struct mmc_host *host, struct mmc_request *mrq)
403 {
404 struct mmc_command *cmd;
405
406 while (1) {
407 wait_for_completion(&mrq->completion);
408
409 cmd = mrq->cmd;
410
411 if (!cmd->error || !cmd->retries ||
412 mmc_card_removed(host->card))
413 break;
414
415 mmc_retune_recheck(host);
416
417 pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
418 mmc_hostname(host), cmd->opcode, cmd->error);
419 cmd->retries--;
420 cmd->error = 0;
421 __mmc_start_request(host, mrq);
422 }
423
424 mmc_retune_release(host);
425 }
426 EXPORT_SYMBOL(mmc_wait_for_req_done);
427
428 /*
429 * mmc_cqe_start_req - Start a CQE request.
430 * @host: MMC host to start the request
431 * @mrq: request to start
432 *
433 * Start the request, re-tuning if needed and it is possible. Returns an error
434 * code if the request fails to start or -EBUSY if CQE is busy.
435 */
mmc_cqe_start_req(struct mmc_host * host,struct mmc_request * mrq)436 int mmc_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
437 {
438 int err;
439
440 /*
441 * CQE cannot process re-tuning commands. Caller must hold retuning
442 * while CQE is in use. Re-tuning can happen here only when CQE has no
443 * active requests i.e. this is the first. Note, re-tuning will call
444 * ->cqe_off().
445 */
446 err = mmc_retune(host);
447 if (err)
448 goto out_err;
449
450 mrq->host = host;
451
452 mmc_mrq_pr_debug(host, mrq, true);
453
454 err = mmc_mrq_prep(host, mrq);
455 if (err)
456 goto out_err;
457
458 if (host->uhs2_sd_tran)
459 mmc_uhs2_prepare_cmd(host, mrq);
460
461 err = host->cqe_ops->cqe_request(host, mrq);
462 if (err)
463 goto out_err;
464
465 trace_mmc_request_start(host, mrq);
466
467 return 0;
468
469 out_err:
470 if (mrq->cmd) {
471 pr_debug("%s: failed to start CQE direct CMD%u, error %d\n",
472 mmc_hostname(host), mrq->cmd->opcode, err);
473 } else {
474 pr_debug("%s: failed to start CQE transfer for tag %d, error %d\n",
475 mmc_hostname(host), mrq->tag, err);
476 }
477 return err;
478 }
479 EXPORT_SYMBOL(mmc_cqe_start_req);
480
481 /**
482 * mmc_cqe_request_done - CQE has finished processing an MMC request
483 * @host: MMC host which completed request
484 * @mrq: MMC request which completed
485 *
486 * CQE drivers should call this function when they have completed
487 * their processing of a request.
488 */
mmc_cqe_request_done(struct mmc_host * host,struct mmc_request * mrq)489 void mmc_cqe_request_done(struct mmc_host *host, struct mmc_request *mrq)
490 {
491 mmc_should_fail_request(host, mrq);
492
493 /* Flag re-tuning needed on CRC errors */
494 if ((mrq->cmd && mrq->cmd->error == -EILSEQ) ||
495 (mrq->data && mrq->data->error == -EILSEQ))
496 mmc_retune_needed(host);
497
498 trace_mmc_request_done(host, mrq);
499
500 if (mrq->cmd) {
501 pr_debug("%s: CQE req done (direct CMD%u): %d\n",
502 mmc_hostname(host), mrq->cmd->opcode, mrq->cmd->error);
503 } else {
504 pr_debug("%s: CQE transfer done tag %d\n",
505 mmc_hostname(host), mrq->tag);
506 }
507
508 if (mrq->data) {
509 pr_debug("%s: %d bytes transferred: %d\n",
510 mmc_hostname(host),
511 mrq->data->bytes_xfered, mrq->data->error);
512 }
513
514 mrq->done(mrq);
515 }
516 EXPORT_SYMBOL(mmc_cqe_request_done);
517
518 /**
519 * mmc_cqe_post_req - CQE post process of a completed MMC request
520 * @host: MMC host
521 * @mrq: MMC request to be processed
522 */
mmc_cqe_post_req(struct mmc_host * host,struct mmc_request * mrq)523 void mmc_cqe_post_req(struct mmc_host *host, struct mmc_request *mrq)
524 {
525 if (host->cqe_ops->cqe_post_req)
526 host->cqe_ops->cqe_post_req(host, mrq);
527 }
528 EXPORT_SYMBOL(mmc_cqe_post_req);
529
530 /* Arbitrary 1 second timeout */
531 #define MMC_CQE_RECOVERY_TIMEOUT 1000
532
533 /*
534 * mmc_cqe_recovery - Recover from CQE errors.
535 * @host: MMC host to recover
536 *
537 * Recovery consists of stopping CQE, stopping eMMC, discarding the queue
538 * in eMMC, and discarding the queue in CQE. CQE must call
539 * mmc_cqe_request_done() on all requests. An error is returned if the eMMC
540 * fails to discard its queue.
541 */
mmc_cqe_recovery(struct mmc_host * host)542 int mmc_cqe_recovery(struct mmc_host *host)
543 {
544 struct mmc_command cmd;
545 int err;
546
547 mmc_retune_hold_now(host);
548
549 /*
550 * Recovery is expected seldom, if at all, but it reduces performance,
551 * so make sure it is not completely silent.
552 */
553 pr_warn("%s: running CQE recovery\n", mmc_hostname(host));
554
555 host->cqe_ops->cqe_recovery_start(host);
556
557 memset(&cmd, 0, sizeof(cmd));
558 cmd.opcode = MMC_STOP_TRANSMISSION;
559 cmd.flags = MMC_RSP_R1B_NO_CRC | MMC_CMD_AC; /* Ignore CRC */
560 cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT;
561 mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
562
563 mmc_poll_for_busy(host->card, MMC_CQE_RECOVERY_TIMEOUT, true, MMC_BUSY_IO);
564
565 memset(&cmd, 0, sizeof(cmd));
566 cmd.opcode = MMC_CMDQ_TASK_MGMT;
567 cmd.arg = 1; /* Discard entire queue */
568 cmd.flags = MMC_RSP_R1B_NO_CRC | MMC_CMD_AC; /* Ignore CRC */
569 cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT;
570 err = mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
571
572 host->cqe_ops->cqe_recovery_finish(host);
573
574 if (err)
575 err = mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
576
577 mmc_retune_release(host);
578
579 return err;
580 }
581 EXPORT_SYMBOL(mmc_cqe_recovery);
582
583 /**
584 * mmc_is_req_done - Determine if a 'cap_cmd_during_tfr' request is done
585 * @host: MMC host
586 * @mrq: MMC request
587 *
588 * mmc_is_req_done() is used with requests that have
589 * mrq->cap_cmd_during_tfr = true. mmc_is_req_done() must be called after
590 * starting a request and before waiting for it to complete. That is,
591 * either in between calls to mmc_start_req(), or after mmc_wait_for_req()
592 * and before mmc_wait_for_req_done(). If it is called at other times the
593 * result is not meaningful.
594 */
mmc_is_req_done(struct mmc_host * host,struct mmc_request * mrq)595 bool mmc_is_req_done(struct mmc_host *host, struct mmc_request *mrq)
596 {
597 return completion_done(&mrq->completion);
598 }
599 EXPORT_SYMBOL(mmc_is_req_done);
600
601 /**
602 * mmc_wait_for_req - start a request and wait for completion
603 * @host: MMC host to start command
604 * @mrq: MMC request to start
605 *
606 * Start a new MMC custom command request for a host, and wait
607 * for the command to complete. In the case of 'cap_cmd_during_tfr'
608 * requests, the transfer is ongoing and the caller can issue further
609 * commands that do not use the data lines, and then wait by calling
610 * mmc_wait_for_req_done().
611 * Does not attempt to parse the response.
612 */
mmc_wait_for_req(struct mmc_host * host,struct mmc_request * mrq)613 void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
614 {
615 __mmc_start_req(host, mrq);
616
617 if (!mrq->cap_cmd_during_tfr)
618 mmc_wait_for_req_done(host, mrq);
619 }
620 EXPORT_SYMBOL(mmc_wait_for_req);
621
622 /**
623 * mmc_wait_for_cmd - start a command and wait for completion
624 * @host: MMC host to start command
625 * @cmd: MMC command to start
626 * @retries: maximum number of retries
627 *
628 * Start a new MMC command for a host, and wait for the command
629 * to complete. Return any error that occurred while the command
630 * was executing. Do not attempt to parse the response.
631 */
mmc_wait_for_cmd(struct mmc_host * host,struct mmc_command * cmd,int retries)632 int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
633 {
634 struct mmc_request mrq = {};
635
636 WARN_ON(!host->claimed);
637
638 memset(cmd->resp, 0, sizeof(cmd->resp));
639 cmd->retries = retries;
640
641 mrq.cmd = cmd;
642 cmd->data = NULL;
643
644 mmc_wait_for_req(host, &mrq);
645
646 return cmd->error;
647 }
648
649 EXPORT_SYMBOL(mmc_wait_for_cmd);
650
651 /**
652 * mmc_set_data_timeout - set the timeout for a data command
653 * @data: data phase for command
654 * @card: the MMC card associated with the data transfer
655 *
656 * Computes the data timeout parameters according to the
657 * correct algorithm given the card type.
658 */
mmc_set_data_timeout(struct mmc_data * data,const struct mmc_card * card)659 void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
660 {
661 unsigned int mult;
662
663 /*
664 * SDIO cards only define an upper 1 s limit on access.
665 */
666 if (mmc_card_sdio(card)) {
667 data->timeout_ns = 1000000000;
668 data->timeout_clks = 0;
669 return;
670 }
671
672 /*
673 * SD cards use a 100 multiplier rather than 10
674 */
675 mult = mmc_card_sd(card) ? 100 : 10;
676
677 /*
678 * Scale up the multiplier (and therefore the timeout) by
679 * the r2w factor for writes.
680 */
681 if (data->flags & MMC_DATA_WRITE)
682 mult <<= card->csd.r2w_factor;
683
684 data->timeout_ns = card->csd.taac_ns * mult;
685 data->timeout_clks = card->csd.taac_clks * mult;
686
687 /*
688 * SD cards also have an upper limit on the timeout.
689 */
690 if (mmc_card_sd(card)) {
691 unsigned int timeout_us, limit_us;
692
693 timeout_us = data->timeout_ns / 1000;
694 if (card->host->ios.clock)
695 timeout_us += data->timeout_clks * 1000 /
696 (card->host->ios.clock / 1000);
697
698 if (data->flags & MMC_DATA_WRITE)
699 /*
700 * The MMC spec "It is strongly recommended
701 * for hosts to implement more than 500ms
702 * timeout value even if the card indicates
703 * the 250ms maximum busy length." Even the
704 * previous value of 300ms is known to be
705 * insufficient for some cards.
706 */
707 limit_us = 3000000;
708 else
709 limit_us = 100000;
710
711 /*
712 * SDHC cards always use these fixed values.
713 */
714 if (timeout_us > limit_us) {
715 data->timeout_ns = limit_us * 1000;
716 data->timeout_clks = 0;
717 }
718
719 /* assign limit value if invalid */
720 if (timeout_us == 0)
721 data->timeout_ns = limit_us * 1000;
722 }
723
724 /*
725 * Some cards require longer data read timeout than indicated in CSD.
726 * Address this by setting the read timeout to a "reasonably high"
727 * value. For the cards tested, 600ms has proven enough. If necessary,
728 * this value can be increased if other problematic cards require this.
729 */
730 if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
731 data->timeout_ns = 600000000;
732 data->timeout_clks = 0;
733 }
734
735 /*
736 * Some cards need very high timeouts if driven in SPI mode.
737 * The worst observed timeout was 900ms after writing a
738 * continuous stream of data until the internal logic
739 * overflowed.
740 */
741 if (mmc_host_is_spi(card->host)) {
742 if (data->flags & MMC_DATA_WRITE) {
743 if (data->timeout_ns < 1000000000)
744 data->timeout_ns = 1000000000; /* 1s */
745 } else {
746 if (data->timeout_ns < 100000000)
747 data->timeout_ns = 100000000; /* 100ms */
748 }
749 }
750 }
751 EXPORT_SYMBOL(mmc_set_data_timeout);
752
753 /*
754 * Allow claiming an already claimed host if the context is the same or there is
755 * no context but the task is the same.
756 */
mmc_ctx_matches(struct mmc_host * host,struct mmc_ctx * ctx,struct task_struct * task)757 static inline bool mmc_ctx_matches(struct mmc_host *host, struct mmc_ctx *ctx,
758 struct task_struct *task)
759 {
760 return host->claimer == ctx ||
761 (!ctx && task && host->claimer->task == task);
762 }
763
mmc_ctx_set_claimer(struct mmc_host * host,struct mmc_ctx * ctx,struct task_struct * task)764 static inline void mmc_ctx_set_claimer(struct mmc_host *host,
765 struct mmc_ctx *ctx,
766 struct task_struct *task)
767 {
768 if (!host->claimer) {
769 if (ctx)
770 host->claimer = ctx;
771 else
772 host->claimer = &host->default_ctx;
773 }
774 if (task)
775 host->claimer->task = task;
776 }
777
778 /**
779 * __mmc_claim_host - exclusively claim a host
780 * @host: mmc host to claim
781 * @ctx: context that claims the host or NULL in which case the default
782 * context will be used
783 * @abort: whether or not the operation should be aborted
784 *
785 * Claim a host for a set of operations. If @abort is non null and
786 * dereference a non-zero value then this will return prematurely with
787 * that non-zero value without acquiring the lock. Returns zero
788 * with the lock held otherwise.
789 */
__mmc_claim_host(struct mmc_host * host,struct mmc_ctx * ctx,atomic_t * abort)790 int __mmc_claim_host(struct mmc_host *host, struct mmc_ctx *ctx,
791 atomic_t *abort)
792 {
793 struct task_struct *task = ctx ? NULL : current;
794 DECLARE_WAITQUEUE(wait, current);
795 unsigned long flags;
796 int stop;
797 bool pm = false;
798
799 might_sleep();
800
801 add_wait_queue(&host->wq, &wait);
802 spin_lock_irqsave(&host->lock, flags);
803 while (1) {
804 set_current_state(TASK_UNINTERRUPTIBLE);
805 stop = abort ? atomic_read(abort) : 0;
806 if (stop || !host->claimed || mmc_ctx_matches(host, ctx, task))
807 break;
808 spin_unlock_irqrestore(&host->lock, flags);
809 schedule();
810 spin_lock_irqsave(&host->lock, flags);
811 }
812 set_current_state(TASK_RUNNING);
813 if (!stop) {
814 host->claimed = 1;
815 mmc_ctx_set_claimer(host, ctx, task);
816 host->claim_cnt += 1;
817 if (host->claim_cnt == 1)
818 pm = true;
819 } else
820 wake_up(&host->wq);
821 spin_unlock_irqrestore(&host->lock, flags);
822 remove_wait_queue(&host->wq, &wait);
823
824 if (pm)
825 pm_runtime_get_sync(mmc_dev(host));
826
827 return stop;
828 }
829 EXPORT_SYMBOL(__mmc_claim_host);
830
831 /**
832 * mmc_release_host - release a host
833 * @host: mmc host to release
834 *
835 * Release a MMC host, allowing others to claim the host
836 * for their operations.
837 */
mmc_release_host(struct mmc_host * host)838 void mmc_release_host(struct mmc_host *host)
839 {
840 unsigned long flags;
841
842 WARN_ON(!host->claimed);
843
844 spin_lock_irqsave(&host->lock, flags);
845 if (--host->claim_cnt) {
846 /* Release for nested claim */
847 spin_unlock_irqrestore(&host->lock, flags);
848 } else {
849 host->claimed = 0;
850 host->claimer->task = NULL;
851 host->claimer = NULL;
852 spin_unlock_irqrestore(&host->lock, flags);
853 wake_up(&host->wq);
854 pm_runtime_mark_last_busy(mmc_dev(host));
855 if (host->caps & MMC_CAP_SYNC_RUNTIME_PM)
856 pm_runtime_put_sync_suspend(mmc_dev(host));
857 else
858 pm_runtime_put_autosuspend(mmc_dev(host));
859 }
860 }
861 EXPORT_SYMBOL(mmc_release_host);
862
863 /*
864 * This is a helper function, which fetches a runtime pm reference for the
865 * card device and also claims the host.
866 */
mmc_get_card(struct mmc_card * card,struct mmc_ctx * ctx)867 void mmc_get_card(struct mmc_card *card, struct mmc_ctx *ctx)
868 {
869 pm_runtime_get_sync(&card->dev);
870 __mmc_claim_host(card->host, ctx, NULL);
871 }
872 EXPORT_SYMBOL(mmc_get_card);
873
874 /*
875 * This is a helper function, which releases the host and drops the runtime
876 * pm reference for the card device.
877 */
mmc_put_card(struct mmc_card * card,struct mmc_ctx * ctx)878 void mmc_put_card(struct mmc_card *card, struct mmc_ctx *ctx)
879 {
880 struct mmc_host *host = card->host;
881
882 WARN_ON(ctx && host->claimer != ctx);
883
884 mmc_release_host(host);
885 pm_runtime_mark_last_busy(&card->dev);
886 pm_runtime_put_autosuspend(&card->dev);
887 }
888 EXPORT_SYMBOL(mmc_put_card);
889
890 /*
891 * Internal function that does the actual ios call to the host driver,
892 * optionally printing some debug output.
893 */
mmc_set_ios(struct mmc_host * host)894 static inline void mmc_set_ios(struct mmc_host *host)
895 {
896 struct mmc_ios *ios = &host->ios;
897
898 pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
899 "width %u timing %u\n",
900 mmc_hostname(host), ios->clock, ios->bus_mode,
901 ios->power_mode, ios->chip_select, ios->vdd,
902 1 << ios->bus_width, ios->timing);
903
904 host->ops->set_ios(host, ios);
905 }
906
907 /*
908 * Control chip select pin on a host.
909 */
mmc_set_chip_select(struct mmc_host * host,int mode)910 void mmc_set_chip_select(struct mmc_host *host, int mode)
911 {
912 host->ios.chip_select = mode;
913 mmc_set_ios(host);
914 }
915
916 /*
917 * Sets the host clock to the highest possible frequency that
918 * is below "hz".
919 */
mmc_set_clock(struct mmc_host * host,unsigned int hz)920 void mmc_set_clock(struct mmc_host *host, unsigned int hz)
921 {
922 WARN_ON(hz && hz < host->f_min);
923
924 if (hz > host->f_max)
925 hz = host->f_max;
926
927 host->ios.clock = hz;
928 mmc_set_ios(host);
929 }
930
mmc_execute_tuning(struct mmc_card * card)931 int mmc_execute_tuning(struct mmc_card *card)
932 {
933 struct mmc_host *host = card->host;
934 u32 opcode;
935 int err;
936
937 if (!host->ops->execute_tuning)
938 return 0;
939
940 if (host->cqe_on)
941 host->cqe_ops->cqe_off(host);
942
943 if (mmc_card_mmc(card))
944 opcode = MMC_SEND_TUNING_BLOCK_HS200;
945 else
946 opcode = MMC_SEND_TUNING_BLOCK;
947
948 err = host->ops->execute_tuning(host, opcode);
949 if (!err) {
950 mmc_retune_clear(host);
951 mmc_retune_enable(host);
952 return 0;
953 }
954
955 /* Only print error when we don't check for card removal */
956 if (!host->detect_change) {
957 pr_err("%s: tuning execution failed: %d\n",
958 mmc_hostname(host), err);
959 mmc_debugfs_err_stats_inc(host, MMC_ERR_TUNING);
960 }
961
962 return err;
963 }
964
965 /*
966 * Change the bus mode (open drain/push-pull) of a host.
967 */
mmc_set_bus_mode(struct mmc_host * host,unsigned int mode)968 void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
969 {
970 host->ios.bus_mode = mode;
971 mmc_set_ios(host);
972 }
973
974 /*
975 * Change data bus width of a host.
976 */
mmc_set_bus_width(struct mmc_host * host,unsigned int width)977 void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
978 {
979 host->ios.bus_width = width;
980 mmc_set_ios(host);
981 }
982
983 /*
984 * Set initial state after a power cycle or a hw_reset.
985 */
mmc_set_initial_state(struct mmc_host * host)986 void mmc_set_initial_state(struct mmc_host *host)
987 {
988 if (host->cqe_on)
989 host->cqe_ops->cqe_off(host);
990
991 mmc_retune_disable(host);
992
993 if (mmc_host_is_spi(host))
994 host->ios.chip_select = MMC_CS_HIGH;
995 else
996 host->ios.chip_select = MMC_CS_DONTCARE;
997 host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
998 host->ios.bus_width = MMC_BUS_WIDTH_1;
999 host->ios.timing = MMC_TIMING_LEGACY;
1000 host->ios.drv_type = 0;
1001 host->ios.enhanced_strobe = false;
1002
1003 /*
1004 * Make sure we are in non-enhanced strobe mode before we
1005 * actually enable it in ext_csd.
1006 */
1007 if ((host->caps2 & MMC_CAP2_HS400_ES) &&
1008 host->ops->hs400_enhanced_strobe)
1009 host->ops->hs400_enhanced_strobe(host, &host->ios);
1010
1011 mmc_set_ios(host);
1012
1013 mmc_crypto_set_initial_state(host);
1014 }
1015
1016 /**
1017 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
1018 * @vdd: voltage (mV)
1019 * @low_bits: prefer low bits in boundary cases
1020 *
1021 * This function returns the OCR bit number according to the provided @vdd
1022 * value. If conversion is not possible a negative errno value returned.
1023 *
1024 * Depending on the @low_bits flag the function prefers low or high OCR bits
1025 * on boundary voltages. For example,
1026 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1027 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1028 *
1029 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1030 */
mmc_vdd_to_ocrbitnum(int vdd,bool low_bits)1031 static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
1032 {
1033 const int max_bit = ilog2(MMC_VDD_35_36);
1034 int bit;
1035
1036 if (vdd < 1650 || vdd > 3600)
1037 return -EINVAL;
1038
1039 if (vdd >= 1650 && vdd <= 1950)
1040 return ilog2(MMC_VDD_165_195);
1041
1042 if (low_bits)
1043 vdd -= 1;
1044
1045 /* Base 2000 mV, step 100 mV, bit's base 8. */
1046 bit = (vdd - 2000) / 100 + 8;
1047 if (bit > max_bit)
1048 return max_bit;
1049 return bit;
1050 }
1051
1052 /**
1053 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1054 * @vdd_min: minimum voltage value (mV)
1055 * @vdd_max: maximum voltage value (mV)
1056 *
1057 * This function returns the OCR mask bits according to the provided @vdd_min
1058 * and @vdd_max values. If conversion is not possible the function returns 0.
1059 *
1060 * Notes wrt boundary cases:
1061 * This function sets the OCR bits for all boundary voltages, for example
1062 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1063 * MMC_VDD_34_35 mask.
1064 */
mmc_vddrange_to_ocrmask(int vdd_min,int vdd_max)1065 u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
1066 {
1067 u32 mask = 0;
1068
1069 if (vdd_max < vdd_min)
1070 return 0;
1071
1072 /* Prefer high bits for the boundary vdd_max values. */
1073 vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
1074 if (vdd_max < 0)
1075 return 0;
1076
1077 /* Prefer low bits for the boundary vdd_min values. */
1078 vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
1079 if (vdd_min < 0)
1080 return 0;
1081
1082 /* Fill the mask, from max bit to min bit. */
1083 while (vdd_max >= vdd_min)
1084 mask |= 1 << vdd_max--;
1085
1086 return mask;
1087 }
1088
mmc_of_get_func_num(struct device_node * node)1089 static int mmc_of_get_func_num(struct device_node *node)
1090 {
1091 u32 reg;
1092 int ret;
1093
1094 ret = of_property_read_u32(node, "reg", ®);
1095 if (ret < 0)
1096 return ret;
1097
1098 return reg;
1099 }
1100
mmc_of_find_child_device(struct mmc_host * host,unsigned func_num)1101 struct device_node *mmc_of_find_child_device(struct mmc_host *host,
1102 unsigned func_num)
1103 {
1104 struct device_node *node;
1105
1106 if (!host->parent || !host->parent->of_node)
1107 return NULL;
1108
1109 for_each_child_of_node(host->parent->of_node, node) {
1110 if (mmc_of_get_func_num(node) == func_num)
1111 return node;
1112 }
1113
1114 return NULL;
1115 }
1116
1117 /*
1118 * Mask off any voltages we don't support and select
1119 * the lowest voltage
1120 */
mmc_select_voltage(struct mmc_host * host,u32 ocr)1121 u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1122 {
1123 int bit;
1124
1125 /*
1126 * Sanity check the voltages that the card claims to
1127 * support.
1128 */
1129 if (ocr & 0x7F) {
1130 dev_warn(mmc_dev(host),
1131 "card claims to support voltages below defined range\n");
1132 ocr &= ~0x7F;
1133 }
1134
1135 ocr &= host->ocr_avail;
1136 if (!ocr) {
1137 dev_warn(mmc_dev(host), "no support for card's volts\n");
1138 return 0;
1139 }
1140
1141 if (!mmc_card_uhs2(host) && host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) {
1142 bit = ffs(ocr) - 1;
1143 ocr &= 3 << bit;
1144 mmc_power_cycle(host, ocr);
1145 } else {
1146 bit = fls(ocr) - 1;
1147 /*
1148 * The bit variable represents the highest voltage bit set in
1149 * the OCR register.
1150 * To keep a range of 2 values (e.g. 3.2V/3.3V and 3.3V/3.4V),
1151 * we must shift the mask '3' with (bit - 1).
1152 */
1153 ocr &= 3 << (bit - 1);
1154 if (bit != host->ios.vdd)
1155 dev_warn(mmc_dev(host), "exceeding card's volts\n");
1156 }
1157
1158 return ocr;
1159 }
1160
mmc_set_signal_voltage(struct mmc_host * host,int signal_voltage)1161 int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
1162 {
1163 int err = 0;
1164 int old_signal_voltage = host->ios.signal_voltage;
1165
1166 host->ios.signal_voltage = signal_voltage;
1167 if (host->ops->start_signal_voltage_switch)
1168 err = host->ops->start_signal_voltage_switch(host, &host->ios);
1169
1170 if (err)
1171 host->ios.signal_voltage = old_signal_voltage;
1172
1173 return err;
1174
1175 }
1176
mmc_set_initial_signal_voltage(struct mmc_host * host)1177 void mmc_set_initial_signal_voltage(struct mmc_host *host)
1178 {
1179 /* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */
1180 if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330))
1181 dev_dbg(mmc_dev(host), "Initial signal voltage of 3.3v\n");
1182 else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1183 dev_dbg(mmc_dev(host), "Initial signal voltage of 1.8v\n");
1184 else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120))
1185 dev_dbg(mmc_dev(host), "Initial signal voltage of 1.2v\n");
1186 }
1187
mmc_host_set_uhs_voltage(struct mmc_host * host)1188 int mmc_host_set_uhs_voltage(struct mmc_host *host)
1189 {
1190 u32 clock;
1191
1192 /*
1193 * During a signal voltage level switch, the clock must be gated
1194 * for 5 ms according to the SD spec
1195 */
1196 clock = host->ios.clock;
1197 host->ios.clock = 0;
1198 mmc_set_ios(host);
1199
1200 if (mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1201 return -EAGAIN;
1202
1203 /* Keep clock gated for at least 10 ms, though spec only says 5 ms */
1204 mmc_delay(10);
1205 host->ios.clock = clock;
1206 mmc_set_ios(host);
1207
1208 return 0;
1209 }
1210
mmc_set_uhs_voltage(struct mmc_host * host,u32 ocr)1211 int mmc_set_uhs_voltage(struct mmc_host *host, u32 ocr)
1212 {
1213 struct mmc_command cmd = {};
1214 int err = 0;
1215
1216 /*
1217 * If we cannot switch voltages, return failure so the caller
1218 * can continue without UHS mode
1219 */
1220 if (!host->ops->start_signal_voltage_switch)
1221 return -EPERM;
1222 if (!host->ops->card_busy)
1223 pr_warn("%s: cannot verify signal voltage switch\n",
1224 mmc_hostname(host));
1225
1226 cmd.opcode = SD_SWITCH_VOLTAGE;
1227 cmd.arg = 0;
1228 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1229
1230 err = mmc_wait_for_cmd(host, &cmd, 0);
1231 if (err)
1232 goto power_cycle;
1233
1234 if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1235 return -EIO;
1236
1237 /*
1238 * The card should drive cmd and dat[0:3] low immediately
1239 * after the response of cmd11, but wait 1 ms to be sure
1240 */
1241 mmc_delay(1);
1242 if (host->ops->card_busy && !host->ops->card_busy(host)) {
1243 err = -EAGAIN;
1244 goto power_cycle;
1245 }
1246
1247 if (mmc_host_set_uhs_voltage(host)) {
1248 /*
1249 * Voltages may not have been switched, but we've already
1250 * sent CMD11, so a power cycle is required anyway
1251 */
1252 err = -EAGAIN;
1253 goto power_cycle;
1254 }
1255
1256 /* Wait for at least 1 ms according to spec */
1257 mmc_delay(1);
1258
1259 /*
1260 * Failure to switch is indicated by the card holding
1261 * dat[0:3] low
1262 */
1263 if (host->ops->card_busy && host->ops->card_busy(host))
1264 err = -EAGAIN;
1265
1266 power_cycle:
1267 if (err) {
1268 pr_debug("%s: Signal voltage switch failed, "
1269 "power cycling card\n", mmc_hostname(host));
1270 mmc_power_cycle(host, ocr);
1271 }
1272
1273 return err;
1274 }
1275
1276 /*
1277 * Select timing parameters for host.
1278 */
mmc_set_timing(struct mmc_host * host,unsigned int timing)1279 void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1280 {
1281 host->ios.timing = timing;
1282 mmc_set_ios(host);
1283 }
1284
1285 /*
1286 * Select appropriate driver type for host.
1287 */
mmc_set_driver_type(struct mmc_host * host,unsigned int drv_type)1288 void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1289 {
1290 host->ios.drv_type = drv_type;
1291 mmc_set_ios(host);
1292 }
1293
mmc_select_drive_strength(struct mmc_card * card,unsigned int max_dtr,int card_drv_type,int * drv_type)1294 int mmc_select_drive_strength(struct mmc_card *card, unsigned int max_dtr,
1295 int card_drv_type, int *drv_type)
1296 {
1297 struct mmc_host *host = card->host;
1298 int host_drv_type = SD_DRIVER_TYPE_B;
1299
1300 *drv_type = 0;
1301
1302 if (!host->ops->select_drive_strength)
1303 return 0;
1304
1305 /* Use SD definition of driver strength for hosts */
1306 if (host->caps & MMC_CAP_DRIVER_TYPE_A)
1307 host_drv_type |= SD_DRIVER_TYPE_A;
1308
1309 if (host->caps & MMC_CAP_DRIVER_TYPE_C)
1310 host_drv_type |= SD_DRIVER_TYPE_C;
1311
1312 if (host->caps & MMC_CAP_DRIVER_TYPE_D)
1313 host_drv_type |= SD_DRIVER_TYPE_D;
1314
1315 /*
1316 * The drive strength that the hardware can support
1317 * depends on the board design. Pass the appropriate
1318 * information and let the hardware specific code
1319 * return what is possible given the options
1320 */
1321 return host->ops->select_drive_strength(card, max_dtr,
1322 host_drv_type,
1323 card_drv_type,
1324 drv_type);
1325 }
1326
1327 /*
1328 * Apply power to the MMC stack. This is a two-stage process.
1329 * First, we enable power to the card without the clock running.
1330 * We then wait a bit for the power to stabilise. Finally,
1331 * enable the bus drivers and clock to the card.
1332 *
1333 * We must _NOT_ enable the clock prior to power stablising.
1334 *
1335 * If a host does all the power sequencing itself, ignore the
1336 * initial MMC_POWER_UP stage.
1337 */
mmc_power_up(struct mmc_host * host,u32 ocr)1338 void mmc_power_up(struct mmc_host *host, u32 ocr)
1339 {
1340 if (host->ios.power_mode == MMC_POWER_ON)
1341 return;
1342
1343 mmc_pwrseq_pre_power_on(host);
1344
1345 host->ios.vdd = fls(ocr) - 1;
1346 host->ios.power_mode = MMC_POWER_UP;
1347 /* Set initial state and call mmc_set_ios */
1348 mmc_set_initial_state(host);
1349
1350 mmc_set_initial_signal_voltage(host);
1351
1352 /*
1353 * This delay should be sufficient to allow the power supply
1354 * to reach the minimum voltage.
1355 */
1356 mmc_delay(host->ios.power_delay_ms);
1357
1358 mmc_pwrseq_post_power_on(host);
1359
1360 host->ios.clock = host->f_init;
1361
1362 host->ios.power_mode = MMC_POWER_ON;
1363 mmc_set_ios(host);
1364
1365 /*
1366 * This delay must be at least 74 clock sizes, or 1 ms, or the
1367 * time required to reach a stable voltage.
1368 */
1369 mmc_delay(host->ios.power_delay_ms);
1370 }
1371
mmc_power_off(struct mmc_host * host)1372 void mmc_power_off(struct mmc_host *host)
1373 {
1374 if (host->ios.power_mode == MMC_POWER_OFF)
1375 return;
1376
1377 mmc_pwrseq_power_off(host);
1378
1379 host->ios.clock = 0;
1380 host->ios.vdd = 0;
1381
1382 host->ios.power_mode = MMC_POWER_OFF;
1383 /* Set initial state and call mmc_set_ios */
1384 mmc_set_initial_state(host);
1385
1386 /*
1387 * Some configurations, such as the 802.11 SDIO card in the OLPC
1388 * XO-1.5, require a short delay after poweroff before the card
1389 * can be successfully turned on again.
1390 */
1391 mmc_delay(1);
1392 }
1393
mmc_power_cycle(struct mmc_host * host,u32 ocr)1394 void mmc_power_cycle(struct mmc_host *host, u32 ocr)
1395 {
1396 mmc_power_off(host);
1397 /* Wait at least 1 ms according to SD spec */
1398 mmc_delay(1);
1399 mmc_power_up(host, ocr);
1400 }
1401
1402 /*
1403 * Assign a mmc bus handler to a host. Only one bus handler may control a
1404 * host at any given time.
1405 */
mmc_attach_bus(struct mmc_host * host,const struct mmc_bus_ops * ops)1406 void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1407 {
1408 host->bus_ops = ops;
1409 }
1410
1411 /*
1412 * Remove the current bus handler from a host.
1413 */
mmc_detach_bus(struct mmc_host * host)1414 void mmc_detach_bus(struct mmc_host *host)
1415 {
1416 host->bus_ops = NULL;
1417 }
1418
_mmc_detect_change(struct mmc_host * host,unsigned long delay,bool cd_irq)1419 void _mmc_detect_change(struct mmc_host *host, unsigned long delay, bool cd_irq)
1420 {
1421 /*
1422 * Prevent system sleep for 5s to allow user space to consume the
1423 * corresponding uevent. This is especially useful, when CD irq is used
1424 * as a system wakeup, but doesn't hurt in other cases.
1425 */
1426 if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL))
1427 __pm_wakeup_event(host->ws, 5000);
1428
1429 host->detect_change = 1;
1430 mmc_schedule_delayed_work(&host->detect, delay);
1431 }
1432
1433 /**
1434 * mmc_detect_change - process change of state on a MMC socket
1435 * @host: host which changed state.
1436 * @delay: optional delay to wait before detection (jiffies)
1437 *
1438 * MMC drivers should call this when they detect a card has been
1439 * inserted or removed. The MMC layer will confirm that any
1440 * present card is still functional, and initialize any newly
1441 * inserted.
1442 */
mmc_detect_change(struct mmc_host * host,unsigned long delay)1443 void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1444 {
1445 _mmc_detect_change(host, delay, true);
1446 }
1447 EXPORT_SYMBOL(mmc_detect_change);
1448
mmc_init_erase(struct mmc_card * card)1449 void mmc_init_erase(struct mmc_card *card)
1450 {
1451 unsigned int sz;
1452
1453 if (is_power_of_2(card->erase_size))
1454 card->erase_shift = ffs(card->erase_size) - 1;
1455 else
1456 card->erase_shift = 0;
1457
1458 /*
1459 * It is possible to erase an arbitrarily large area of an SD or MMC
1460 * card. That is not desirable because it can take a long time
1461 * (minutes) potentially delaying more important I/O, and also the
1462 * timeout calculations become increasingly hugely over-estimated.
1463 * Consequently, 'pref_erase' is defined as a guide to limit erases
1464 * to that size and alignment.
1465 *
1466 * For SD cards that define Allocation Unit size, limit erases to one
1467 * Allocation Unit at a time.
1468 * For MMC, have a stab at ai good value and for modern cards it will
1469 * end up being 4MiB. Note that if the value is too small, it can end
1470 * up taking longer to erase. Also note, erase_size is already set to
1471 * High Capacity Erase Size if available when this function is called.
1472 */
1473 if (mmc_card_sd(card) && card->ssr.au) {
1474 card->pref_erase = card->ssr.au;
1475 card->erase_shift = ffs(card->ssr.au) - 1;
1476 } else if (card->erase_size) {
1477 sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1478 if (sz < 128)
1479 card->pref_erase = 512 * 1024 / 512;
1480 else if (sz < 512)
1481 card->pref_erase = 1024 * 1024 / 512;
1482 else if (sz < 1024)
1483 card->pref_erase = 2 * 1024 * 1024 / 512;
1484 else
1485 card->pref_erase = 4 * 1024 * 1024 / 512;
1486 if (card->pref_erase < card->erase_size)
1487 card->pref_erase = card->erase_size;
1488 else {
1489 sz = card->pref_erase % card->erase_size;
1490 if (sz)
1491 card->pref_erase += card->erase_size - sz;
1492 }
1493 } else
1494 card->pref_erase = 0;
1495 }
1496
is_trim_arg(unsigned int arg)1497 static bool is_trim_arg(unsigned int arg)
1498 {
1499 return (arg & MMC_TRIM_OR_DISCARD_ARGS) && arg != MMC_DISCARD_ARG;
1500 }
1501
mmc_mmc_erase_timeout(struct mmc_card * card,unsigned int arg,unsigned int qty)1502 static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1503 unsigned int arg, unsigned int qty)
1504 {
1505 unsigned int erase_timeout;
1506
1507 if (arg == MMC_DISCARD_ARG ||
1508 (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
1509 erase_timeout = card->ext_csd.trim_timeout;
1510 } else if (card->ext_csd.erase_group_def & 1) {
1511 /* High Capacity Erase Group Size uses HC timeouts */
1512 if (arg == MMC_TRIM_ARG)
1513 erase_timeout = card->ext_csd.trim_timeout;
1514 else
1515 erase_timeout = card->ext_csd.hc_erase_timeout;
1516 } else {
1517 /* CSD Erase Group Size uses write timeout */
1518 unsigned int mult = (10 << card->csd.r2w_factor);
1519 unsigned int timeout_clks = card->csd.taac_clks * mult;
1520 unsigned int timeout_us;
1521
1522 /* Avoid overflow: e.g. taac_ns=80000000 mult=1280 */
1523 if (card->csd.taac_ns < 1000000)
1524 timeout_us = (card->csd.taac_ns * mult) / 1000;
1525 else
1526 timeout_us = (card->csd.taac_ns / 1000) * mult;
1527
1528 /*
1529 * ios.clock is only a target. The real clock rate might be
1530 * less but not that much less, so fudge it by multiplying by 2.
1531 */
1532 timeout_clks <<= 1;
1533 timeout_us += (timeout_clks * 1000) /
1534 (card->host->ios.clock / 1000);
1535
1536 erase_timeout = timeout_us / 1000;
1537
1538 /*
1539 * Theoretically, the calculation could underflow so round up
1540 * to 1ms in that case.
1541 */
1542 if (!erase_timeout)
1543 erase_timeout = 1;
1544 }
1545
1546 /* Multiplier for secure operations */
1547 if (arg & MMC_SECURE_ARGS) {
1548 if (arg == MMC_SECURE_ERASE_ARG)
1549 erase_timeout *= card->ext_csd.sec_erase_mult;
1550 else
1551 erase_timeout *= card->ext_csd.sec_trim_mult;
1552 }
1553
1554 erase_timeout *= qty;
1555
1556 /*
1557 * Ensure at least a 1 second timeout for SPI as per
1558 * 'mmc_set_data_timeout()'
1559 */
1560 if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1561 erase_timeout = 1000;
1562
1563 return erase_timeout;
1564 }
1565
mmc_sd_erase_timeout(struct mmc_card * card,unsigned int arg,unsigned int qty)1566 static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
1567 unsigned int arg,
1568 unsigned int qty)
1569 {
1570 unsigned int erase_timeout;
1571
1572 /* for DISCARD none of the below calculation applies.
1573 * the busy timeout is 250msec per discard command.
1574 */
1575 if (arg == SD_DISCARD_ARG)
1576 return SD_DISCARD_TIMEOUT_MS;
1577
1578 if (card->ssr.erase_timeout) {
1579 /* Erase timeout specified in SD Status Register (SSR) */
1580 erase_timeout = card->ssr.erase_timeout * qty +
1581 card->ssr.erase_offset;
1582 } else {
1583 /*
1584 * Erase timeout not specified in SD Status Register (SSR) so
1585 * use 250ms per write block.
1586 */
1587 erase_timeout = 250 * qty;
1588 }
1589
1590 /* Must not be less than 1 second */
1591 if (erase_timeout < 1000)
1592 erase_timeout = 1000;
1593
1594 return erase_timeout;
1595 }
1596
mmc_erase_timeout(struct mmc_card * card,unsigned int arg,unsigned int qty)1597 static unsigned int mmc_erase_timeout(struct mmc_card *card,
1598 unsigned int arg,
1599 unsigned int qty)
1600 {
1601 if (mmc_card_sd(card))
1602 return mmc_sd_erase_timeout(card, arg, qty);
1603 else
1604 return mmc_mmc_erase_timeout(card, arg, qty);
1605 }
1606
mmc_do_erase(struct mmc_card * card,sector_t from,sector_t to,unsigned int arg)1607 static int mmc_do_erase(struct mmc_card *card, sector_t from,
1608 sector_t to, unsigned int arg)
1609 {
1610 struct mmc_command cmd = {};
1611 unsigned int qty = 0, busy_timeout = 0;
1612 bool use_r1b_resp;
1613 int err;
1614
1615 mmc_retune_hold(card->host);
1616
1617 /*
1618 * qty is used to calculate the erase timeout which depends on how many
1619 * erase groups (or allocation units in SD terminology) are affected.
1620 * We count erasing part of an erase group as one erase group.
1621 * For SD, the allocation units are always a power of 2. For MMC, the
1622 * erase group size is almost certainly also power of 2, but it does not
1623 * seem to insist on that in the JEDEC standard, so we fall back to
1624 * division in that case. SD may not specify an allocation unit size,
1625 * in which case the timeout is based on the number of write blocks.
1626 *
1627 * Note that the timeout for secure trim 2 will only be correct if the
1628 * number of erase groups specified is the same as the total of all
1629 * preceding secure trim 1 commands. Since the power may have been
1630 * lost since the secure trim 1 commands occurred, it is generally
1631 * impossible to calculate the secure trim 2 timeout correctly.
1632 */
1633 if (card->erase_shift)
1634 qty += ((to >> card->erase_shift) -
1635 (from >> card->erase_shift)) + 1;
1636 else if (mmc_card_sd(card))
1637 qty += to - from + 1;
1638 else
1639 qty += (mmc_sector_div(to, card->erase_size) -
1640 mmc_sector_div(from, card->erase_size)) + 1;
1641
1642 if (!mmc_card_blockaddr(card)) {
1643 from <<= 9;
1644 to <<= 9;
1645 }
1646
1647 if (mmc_card_sd(card))
1648 cmd.opcode = SD_ERASE_WR_BLK_START;
1649 else
1650 cmd.opcode = MMC_ERASE_GROUP_START;
1651 cmd.arg = from;
1652 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1653
1654 if (mmc_card_ult_capacity(card)) {
1655 cmd.ext_addr = from >> 32;
1656 cmd.has_ext_addr = true;
1657 }
1658
1659 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1660 if (err) {
1661 pr_err("mmc_erase: group start error %d, "
1662 "status %#x\n", err, cmd.resp[0]);
1663 err = -EIO;
1664 goto out;
1665 }
1666
1667 memset(&cmd, 0, sizeof(struct mmc_command));
1668 if (mmc_card_sd(card))
1669 cmd.opcode = SD_ERASE_WR_BLK_END;
1670 else
1671 cmd.opcode = MMC_ERASE_GROUP_END;
1672 cmd.arg = to;
1673 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1674
1675 if (mmc_card_ult_capacity(card)) {
1676 cmd.ext_addr = to >> 32;
1677 cmd.has_ext_addr = true;
1678 }
1679
1680 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1681 if (err) {
1682 pr_err("mmc_erase: group end error %d, status %#x\n",
1683 err, cmd.resp[0]);
1684 err = -EIO;
1685 goto out;
1686 }
1687
1688 memset(&cmd, 0, sizeof(struct mmc_command));
1689 cmd.opcode = MMC_ERASE;
1690 cmd.arg = arg;
1691 busy_timeout = mmc_erase_timeout(card, arg, qty);
1692 use_r1b_resp = mmc_prepare_busy_cmd(card->host, &cmd, busy_timeout);
1693
1694 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1695 if (err) {
1696 pr_err("mmc_erase: erase error %d, status %#x\n",
1697 err, cmd.resp[0]);
1698 err = -EIO;
1699 goto out;
1700 }
1701
1702 if (mmc_host_is_spi(card->host))
1703 goto out;
1704
1705 /*
1706 * In case of when R1B + MMC_CAP_WAIT_WHILE_BUSY is used, the polling
1707 * shall be avoided.
1708 */
1709 if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp)
1710 goto out;
1711
1712 /* Let's poll to find out when the erase operation completes. */
1713 err = mmc_poll_for_busy(card, busy_timeout, false, MMC_BUSY_ERASE);
1714
1715 out:
1716 mmc_retune_release(card->host);
1717 return err;
1718 }
1719
mmc_align_erase_size(struct mmc_card * card,sector_t * from,sector_t * to,unsigned int nr)1720 static unsigned int mmc_align_erase_size(struct mmc_card *card,
1721 sector_t *from,
1722 sector_t *to,
1723 unsigned int nr)
1724 {
1725 sector_t from_new = *from;
1726 unsigned int nr_new = nr, rem;
1727
1728 /*
1729 * When the 'card->erase_size' is power of 2, we can use round_up/down()
1730 * to align the erase size efficiently.
1731 */
1732 if (is_power_of_2(card->erase_size)) {
1733 sector_t temp = from_new;
1734
1735 from_new = round_up(temp, card->erase_size);
1736 rem = from_new - temp;
1737
1738 if (nr_new > rem)
1739 nr_new -= rem;
1740 else
1741 return 0;
1742
1743 nr_new = round_down(nr_new, card->erase_size);
1744 } else {
1745 rem = mmc_sector_mod(from_new, card->erase_size);
1746 if (rem) {
1747 rem = card->erase_size - rem;
1748 from_new += rem;
1749 if (nr_new > rem)
1750 nr_new -= rem;
1751 else
1752 return 0;
1753 }
1754
1755 rem = nr_new % card->erase_size;
1756 if (rem)
1757 nr_new -= rem;
1758 }
1759
1760 if (nr_new == 0)
1761 return 0;
1762
1763 *to = from_new + nr_new;
1764 *from = from_new;
1765
1766 return nr_new;
1767 }
1768
1769 /**
1770 * mmc_erase - erase sectors.
1771 * @card: card to erase
1772 * @from: first sector to erase
1773 * @nr: number of sectors to erase
1774 * @arg: erase command argument
1775 *
1776 * Caller must claim host before calling this function.
1777 */
mmc_erase(struct mmc_card * card,sector_t from,unsigned int nr,unsigned int arg)1778 int mmc_erase(struct mmc_card *card, sector_t from, unsigned int nr,
1779 unsigned int arg)
1780 {
1781 unsigned int rem;
1782 sector_t to = from + nr;
1783
1784 int err;
1785
1786 if (!(card->csd.cmdclass & CCC_ERASE))
1787 return -EOPNOTSUPP;
1788
1789 if (!card->erase_size)
1790 return -EOPNOTSUPP;
1791
1792 if (mmc_card_sd(card) && arg != SD_ERASE_ARG && arg != SD_DISCARD_ARG)
1793 return -EOPNOTSUPP;
1794
1795 if (mmc_card_mmc(card) && (arg & MMC_SECURE_ARGS) &&
1796 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
1797 return -EOPNOTSUPP;
1798
1799 if (mmc_card_mmc(card) && is_trim_arg(arg) &&
1800 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
1801 return -EOPNOTSUPP;
1802
1803 if (arg == MMC_SECURE_ERASE_ARG) {
1804 if (mmc_sector_mod(from, card->erase_size) || nr % card->erase_size)
1805 return -EINVAL;
1806 }
1807
1808 if (arg == MMC_ERASE_ARG)
1809 nr = mmc_align_erase_size(card, &from, &to, nr);
1810
1811 if (nr == 0)
1812 return 0;
1813
1814 if (to <= from)
1815 return -EINVAL;
1816
1817 /* 'from' and 'to' are inclusive */
1818 to -= 1;
1819
1820 /*
1821 * Special case where only one erase-group fits in the timeout budget:
1822 * If the region crosses an erase-group boundary on this particular
1823 * case, we will be trimming more than one erase-group which, does not
1824 * fit in the timeout budget of the controller, so we need to split it
1825 * and call mmc_do_erase() twice if necessary. This special case is
1826 * identified by the card->eg_boundary flag.
1827 */
1828 rem = card->erase_size - mmc_sector_mod(from, card->erase_size);
1829 if ((arg & MMC_TRIM_OR_DISCARD_ARGS) && card->eg_boundary && nr > rem) {
1830 err = mmc_do_erase(card, from, from + rem - 1, arg);
1831 from += rem;
1832 if ((err) || (to <= from))
1833 return err;
1834 }
1835
1836 return mmc_do_erase(card, from, to, arg);
1837 }
1838 EXPORT_SYMBOL(mmc_erase);
1839
mmc_can_erase(struct mmc_card * card)1840 int mmc_can_erase(struct mmc_card *card)
1841 {
1842 if (card->csd.cmdclass & CCC_ERASE && card->erase_size)
1843 return 1;
1844 return 0;
1845 }
1846 EXPORT_SYMBOL(mmc_can_erase);
1847
mmc_can_trim(struct mmc_card * card)1848 int mmc_can_trim(struct mmc_card *card)
1849 {
1850 if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN) &&
1851 (!(card->quirks & MMC_QUIRK_TRIM_BROKEN)))
1852 return 1;
1853 return 0;
1854 }
1855 EXPORT_SYMBOL(mmc_can_trim);
1856
mmc_can_discard(struct mmc_card * card)1857 int mmc_can_discard(struct mmc_card *card)
1858 {
1859 /*
1860 * As there's no way to detect the discard support bit at v4.5
1861 * use the s/w feature support filed.
1862 */
1863 if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
1864 return 1;
1865 return 0;
1866 }
1867 EXPORT_SYMBOL(mmc_can_discard);
1868
mmc_can_sanitize(struct mmc_card * card)1869 int mmc_can_sanitize(struct mmc_card *card)
1870 {
1871 if (!mmc_can_trim(card) && !mmc_can_erase(card))
1872 return 0;
1873 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
1874 return 1;
1875 return 0;
1876 }
1877
mmc_can_secure_erase_trim(struct mmc_card * card)1878 int mmc_can_secure_erase_trim(struct mmc_card *card)
1879 {
1880 if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) &&
1881 !(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN))
1882 return 1;
1883 return 0;
1884 }
1885 EXPORT_SYMBOL(mmc_can_secure_erase_trim);
1886
mmc_erase_group_aligned(struct mmc_card * card,sector_t from,unsigned int nr)1887 int mmc_erase_group_aligned(struct mmc_card *card, sector_t from,
1888 unsigned int nr)
1889 {
1890 if (!card->erase_size)
1891 return 0;
1892 if (mmc_sector_mod(from, card->erase_size) || nr % card->erase_size)
1893 return 0;
1894 return 1;
1895 }
1896 EXPORT_SYMBOL(mmc_erase_group_aligned);
1897
mmc_do_calc_max_discard(struct mmc_card * card,unsigned int arg)1898 static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
1899 unsigned int arg)
1900 {
1901 struct mmc_host *host = card->host;
1902 unsigned int max_discard, x, y, qty = 0, max_qty, min_qty, timeout;
1903 unsigned int last_timeout = 0;
1904 unsigned int max_busy_timeout = host->max_busy_timeout ?
1905 host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS;
1906
1907 if (card->erase_shift) {
1908 max_qty = UINT_MAX >> card->erase_shift;
1909 min_qty = card->pref_erase >> card->erase_shift;
1910 } else if (mmc_card_sd(card)) {
1911 max_qty = UINT_MAX;
1912 min_qty = card->pref_erase;
1913 } else {
1914 max_qty = UINT_MAX / card->erase_size;
1915 min_qty = card->pref_erase / card->erase_size;
1916 }
1917
1918 /*
1919 * We should not only use 'host->max_busy_timeout' as the limitation
1920 * when deciding the max discard sectors. We should set a balance value
1921 * to improve the erase speed, and it can not get too long timeout at
1922 * the same time.
1923 *
1924 * Here we set 'card->pref_erase' as the minimal discard sectors no
1925 * matter what size of 'host->max_busy_timeout', but if the
1926 * 'host->max_busy_timeout' is large enough for more discard sectors,
1927 * then we can continue to increase the max discard sectors until we
1928 * get a balance value. In cases when the 'host->max_busy_timeout'
1929 * isn't specified, use the default max erase timeout.
1930 */
1931 do {
1932 y = 0;
1933 for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
1934 timeout = mmc_erase_timeout(card, arg, qty + x);
1935
1936 if (qty + x > min_qty && timeout > max_busy_timeout)
1937 break;
1938
1939 if (timeout < last_timeout)
1940 break;
1941 last_timeout = timeout;
1942 y = x;
1943 }
1944 qty += y;
1945 } while (y);
1946
1947 if (!qty)
1948 return 0;
1949
1950 /*
1951 * When specifying a sector range to trim, chances are we might cross
1952 * an erase-group boundary even if the amount of sectors is less than
1953 * one erase-group.
1954 * If we can only fit one erase-group in the controller timeout budget,
1955 * we have to care that erase-group boundaries are not crossed by a
1956 * single trim operation. We flag that special case with "eg_boundary".
1957 * In all other cases we can just decrement qty and pretend that we
1958 * always touch (qty + 1) erase-groups as a simple optimization.
1959 */
1960 if (qty == 1)
1961 card->eg_boundary = 1;
1962 else
1963 qty--;
1964
1965 /* Convert qty to sectors */
1966 if (card->erase_shift)
1967 max_discard = qty << card->erase_shift;
1968 else if (mmc_card_sd(card))
1969 max_discard = qty + 1;
1970 else
1971 max_discard = qty * card->erase_size;
1972
1973 return max_discard;
1974 }
1975
mmc_calc_max_discard(struct mmc_card * card)1976 unsigned int mmc_calc_max_discard(struct mmc_card *card)
1977 {
1978 struct mmc_host *host = card->host;
1979 unsigned int max_discard, max_trim;
1980
1981 /*
1982 * Without erase_group_def set, MMC erase timeout depends on clock
1983 * frequence which can change. In that case, the best choice is
1984 * just the preferred erase size.
1985 */
1986 if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
1987 return card->pref_erase;
1988
1989 max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
1990 if (mmc_can_trim(card)) {
1991 max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
1992 if (max_trim < max_discard || max_discard == 0)
1993 max_discard = max_trim;
1994 } else if (max_discard < card->erase_size) {
1995 max_discard = 0;
1996 }
1997 pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
1998 mmc_hostname(host), max_discard, host->max_busy_timeout ?
1999 host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS);
2000 return max_discard;
2001 }
2002 EXPORT_SYMBOL(mmc_calc_max_discard);
2003
mmc_card_is_blockaddr(struct mmc_card * card)2004 bool mmc_card_is_blockaddr(struct mmc_card *card)
2005 {
2006 return card ? mmc_card_blockaddr(card) : false;
2007 }
2008 EXPORT_SYMBOL(mmc_card_is_blockaddr);
2009
mmc_set_blocklen(struct mmc_card * card,unsigned int blocklen)2010 int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
2011 {
2012 struct mmc_command cmd = {};
2013
2014 if (mmc_card_blockaddr(card) || mmc_card_ddr52(card) ||
2015 mmc_card_hs400(card) || mmc_card_hs400es(card))
2016 return 0;
2017
2018 cmd.opcode = MMC_SET_BLOCKLEN;
2019 cmd.arg = blocklen;
2020 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2021 return mmc_wait_for_cmd(card->host, &cmd, 5);
2022 }
2023 EXPORT_SYMBOL(mmc_set_blocklen);
2024
mmc_hw_reset_for_init(struct mmc_host * host)2025 static void mmc_hw_reset_for_init(struct mmc_host *host)
2026 {
2027 mmc_pwrseq_reset(host);
2028
2029 if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->card_hw_reset)
2030 return;
2031 host->ops->card_hw_reset(host);
2032 }
2033
2034 /**
2035 * mmc_hw_reset - reset the card in hardware
2036 * @card: card to be reset
2037 *
2038 * Hard reset the card. This function is only for upper layers, like the
2039 * block layer or card drivers. You cannot use it in host drivers (struct
2040 * mmc_card might be gone then).
2041 *
2042 * Return: 0 on success, -errno on failure
2043 */
mmc_hw_reset(struct mmc_card * card)2044 int mmc_hw_reset(struct mmc_card *card)
2045 {
2046 struct mmc_host *host = card->host;
2047 int ret;
2048
2049 ret = host->bus_ops->hw_reset(host);
2050 if (ret < 0)
2051 pr_warn("%s: tried to HW reset card, got error %d\n",
2052 mmc_hostname(host), ret);
2053
2054 return ret;
2055 }
2056 EXPORT_SYMBOL(mmc_hw_reset);
2057
mmc_sw_reset(struct mmc_card * card)2058 int mmc_sw_reset(struct mmc_card *card)
2059 {
2060 struct mmc_host *host = card->host;
2061 int ret;
2062
2063 if (!host->bus_ops->sw_reset)
2064 return -EOPNOTSUPP;
2065
2066 ret = host->bus_ops->sw_reset(host);
2067 if (ret)
2068 pr_warn("%s: tried to SW reset card, got error %d\n",
2069 mmc_hostname(host), ret);
2070
2071 return ret;
2072 }
2073 EXPORT_SYMBOL(mmc_sw_reset);
2074
mmc_rescan_try_freq(struct mmc_host * host,unsigned freq)2075 static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
2076 {
2077 host->f_init = freq;
2078
2079 pr_debug("%s: %s: trying to init card at %u Hz\n",
2080 mmc_hostname(host), __func__, host->f_init);
2081
2082 mmc_power_up(host, host->ocr_avail);
2083
2084 /*
2085 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2086 * do a hardware reset if possible.
2087 */
2088 mmc_hw_reset_for_init(host);
2089
2090 /*
2091 * sdio_reset sends CMD52 to reset card. Since we do not know
2092 * if the card is being re-initialized, just send it. CMD52
2093 * should be ignored by SD/eMMC cards.
2094 * Skip it if we already know that we do not support SDIO commands
2095 */
2096 if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2097 sdio_reset(host);
2098
2099 mmc_go_idle(host);
2100
2101 if (!(host->caps2 & MMC_CAP2_NO_SD)) {
2102 if (mmc_send_if_cond_pcie(host, host->ocr_avail))
2103 goto out;
2104 if (mmc_card_sd_express(host))
2105 return 0;
2106 }
2107
2108 /* Order's important: probe SDIO, then SD, then MMC */
2109 if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2110 if (!mmc_attach_sdio(host))
2111 return 0;
2112
2113 if (!(host->caps2 & MMC_CAP2_NO_SD))
2114 if (!mmc_attach_sd(host))
2115 return 0;
2116
2117 if (!(host->caps2 & MMC_CAP2_NO_MMC))
2118 if (!mmc_attach_mmc(host))
2119 return 0;
2120
2121 out:
2122 mmc_power_off(host);
2123 return -EIO;
2124 }
2125
_mmc_detect_card_removed(struct mmc_host * host)2126 int _mmc_detect_card_removed(struct mmc_host *host)
2127 {
2128 int ret;
2129
2130 if (!host->card || mmc_card_removed(host->card))
2131 return 1;
2132
2133 ret = host->bus_ops->alive(host);
2134
2135 /*
2136 * Card detect status and alive check may be out of sync if card is
2137 * removed slowly, when card detect switch changes while card/slot
2138 * pads are still contacted in hardware (refer to "SD Card Mechanical
2139 * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2140 * detect work 200ms later for this case.
2141 */
2142 if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) {
2143 mmc_detect_change(host, msecs_to_jiffies(200));
2144 pr_debug("%s: card removed too slowly\n", mmc_hostname(host));
2145 }
2146
2147 if (ret) {
2148 mmc_card_set_removed(host->card);
2149 pr_debug("%s: card remove detected\n", mmc_hostname(host));
2150 }
2151
2152 return ret;
2153 }
2154
mmc_detect_card_removed(struct mmc_host * host)2155 int mmc_detect_card_removed(struct mmc_host *host)
2156 {
2157 struct mmc_card *card = host->card;
2158 int ret;
2159
2160 WARN_ON(!host->claimed);
2161
2162 if (!card)
2163 return 1;
2164
2165 if (!mmc_card_is_removable(host))
2166 return 0;
2167
2168 ret = mmc_card_removed(card);
2169 /*
2170 * The card will be considered unchanged unless we have been asked to
2171 * detect a change or host requires polling to provide card detection.
2172 */
2173 if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL))
2174 return ret;
2175
2176 host->detect_change = 0;
2177 if (!ret) {
2178 ret = _mmc_detect_card_removed(host);
2179 if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) {
2180 /*
2181 * Schedule a detect work as soon as possible to let a
2182 * rescan handle the card removal.
2183 */
2184 cancel_delayed_work(&host->detect);
2185 _mmc_detect_change(host, 0, false);
2186 }
2187 }
2188
2189 return ret;
2190 }
2191 EXPORT_SYMBOL(mmc_detect_card_removed);
2192
mmc_card_alternative_gpt_sector(struct mmc_card * card,sector_t * gpt_sector)2193 int mmc_card_alternative_gpt_sector(struct mmc_card *card, sector_t *gpt_sector)
2194 {
2195 unsigned int boot_sectors_num;
2196
2197 if ((!(card->host->caps2 & MMC_CAP2_ALT_GPT_TEGRA)))
2198 return -EOPNOTSUPP;
2199
2200 /* filter out unrelated cards */
2201 if (card->ext_csd.rev < 3 ||
2202 !mmc_card_mmc(card) ||
2203 !mmc_card_is_blockaddr(card) ||
2204 mmc_card_is_removable(card->host))
2205 return -ENOENT;
2206
2207 /*
2208 * eMMC storage has two special boot partitions in addition to the
2209 * main one. NVIDIA's bootloader linearizes eMMC boot0->boot1->main
2210 * accesses, this means that the partition table addresses are shifted
2211 * by the size of boot partitions. In accordance with the eMMC
2212 * specification, the boot partition size is calculated as follows:
2213 *
2214 * boot partition size = 128K byte x BOOT_SIZE_MULT
2215 *
2216 * Calculate number of sectors occupied by the both boot partitions.
2217 */
2218 boot_sectors_num = card->ext_csd.raw_boot_mult * SZ_128K /
2219 SZ_512 * MMC_NUM_BOOT_PARTITION;
2220
2221 /* Defined by NVIDIA and used by Android devices. */
2222 *gpt_sector = card->ext_csd.sectors - boot_sectors_num - 1;
2223
2224 return 0;
2225 }
2226 EXPORT_SYMBOL(mmc_card_alternative_gpt_sector);
2227
mmc_rescan(struct work_struct * work)2228 void mmc_rescan(struct work_struct *work)
2229 {
2230 struct mmc_host *host =
2231 container_of(work, struct mmc_host, detect.work);
2232 int i;
2233
2234 if (host->rescan_disable)
2235 return;
2236
2237 /* If there is a non-removable card registered, only scan once */
2238 if (!mmc_card_is_removable(host) && host->rescan_entered)
2239 return;
2240 host->rescan_entered = 1;
2241
2242 if (host->trigger_card_event && host->ops->card_event) {
2243 mmc_claim_host(host);
2244 host->ops->card_event(host);
2245 mmc_release_host(host);
2246 host->trigger_card_event = false;
2247 }
2248
2249 /* Verify a registered card to be functional, else remove it. */
2250 if (host->bus_ops)
2251 host->bus_ops->detect(host);
2252
2253 host->detect_change = 0;
2254
2255 /* if there still is a card present, stop here */
2256 if (host->bus_ops != NULL)
2257 goto out;
2258
2259 mmc_claim_host(host);
2260 if (mmc_card_is_removable(host) && host->ops->get_cd &&
2261 host->ops->get_cd(host) == 0) {
2262 mmc_power_off(host);
2263 mmc_release_host(host);
2264 goto out;
2265 }
2266
2267 /* If an SD express card is present, then leave it as is. */
2268 if (mmc_card_sd_express(host)) {
2269 mmc_release_host(host);
2270 goto out;
2271 }
2272
2273 /*
2274 * Ideally we should favor initialization of legacy SD cards and defer
2275 * UHS-II enumeration. However, it seems like cards doesn't reliably
2276 * announce their support for UHS-II in the response to the ACMD41,
2277 * while initializing the legacy SD interface. Therefore, let's start
2278 * with UHS-II for now.
2279 */
2280 if (!mmc_attach_sd_uhs2(host)) {
2281 mmc_release_host(host);
2282 goto out;
2283 }
2284
2285 for (i = 0; i < ARRAY_SIZE(freqs); i++) {
2286 unsigned int freq = freqs[i];
2287 if (freq > host->f_max) {
2288 if (i + 1 < ARRAY_SIZE(freqs))
2289 continue;
2290 freq = host->f_max;
2291 }
2292 if (!mmc_rescan_try_freq(host, max(freq, host->f_min)))
2293 break;
2294 if (freqs[i] <= host->f_min)
2295 break;
2296 }
2297
2298 /* A non-removable card should have been detected by now. */
2299 if (!mmc_card_is_removable(host) && !host->bus_ops)
2300 pr_info("%s: Failed to initialize a non-removable card",
2301 mmc_hostname(host));
2302
2303 /*
2304 * Ignore the command timeout errors observed during
2305 * the card init as those are excepted.
2306 */
2307 host->err_stats[MMC_ERR_CMD_TIMEOUT] = 0;
2308 mmc_release_host(host);
2309
2310 out:
2311 if (host->caps & MMC_CAP_NEEDS_POLL)
2312 mmc_schedule_delayed_work(&host->detect, HZ);
2313 }
2314
mmc_start_host(struct mmc_host * host)2315 void mmc_start_host(struct mmc_host *host)
2316 {
2317 bool power_up = !(host->caps2 &
2318 (MMC_CAP2_NO_PRESCAN_POWERUP | MMC_CAP2_SD_UHS2));
2319
2320 host->f_init = max(min(freqs[0], host->f_max), host->f_min);
2321 host->rescan_disable = 0;
2322
2323 if (power_up) {
2324 mmc_claim_host(host);
2325 mmc_power_up(host, host->ocr_avail);
2326 mmc_release_host(host);
2327 }
2328
2329 mmc_gpiod_request_cd_irq(host);
2330 _mmc_detect_change(host, 0, false);
2331 }
2332
__mmc_stop_host(struct mmc_host * host)2333 void __mmc_stop_host(struct mmc_host *host)
2334 {
2335 if (host->rescan_disable)
2336 return;
2337
2338 if (host->slot.cd_irq >= 0) {
2339 mmc_gpio_set_cd_wake(host, false);
2340 disable_irq(host->slot.cd_irq);
2341 }
2342
2343 host->rescan_disable = 1;
2344 cancel_delayed_work_sync(&host->detect);
2345 }
2346
mmc_stop_host(struct mmc_host * host)2347 void mmc_stop_host(struct mmc_host *host)
2348 {
2349 __mmc_stop_host(host);
2350
2351 /* clear pm flags now and let card drivers set them as needed */
2352 host->pm_flags = 0;
2353
2354 if (host->bus_ops) {
2355 /* Calling bus_ops->remove() with a claimed host can deadlock */
2356 host->bus_ops->remove(host);
2357 mmc_claim_host(host);
2358 mmc_detach_bus(host);
2359 mmc_power_off(host);
2360 mmc_release_host(host);
2361 return;
2362 }
2363
2364 mmc_claim_host(host);
2365 mmc_power_off(host);
2366 mmc_release_host(host);
2367 }
2368
mmc_init(void)2369 static int __init mmc_init(void)
2370 {
2371 int ret;
2372
2373 ret = mmc_register_bus();
2374 if (ret)
2375 return ret;
2376
2377 ret = mmc_register_host_class();
2378 if (ret)
2379 goto unregister_bus;
2380
2381 ret = sdio_register_bus();
2382 if (ret)
2383 goto unregister_host_class;
2384
2385 return 0;
2386
2387 unregister_host_class:
2388 mmc_unregister_host_class();
2389 unregister_bus:
2390 mmc_unregister_bus();
2391 return ret;
2392 }
2393
mmc_exit(void)2394 static void __exit mmc_exit(void)
2395 {
2396 sdio_unregister_bus();
2397 mmc_unregister_host_class();
2398 mmc_unregister_bus();
2399 }
2400
2401 subsys_initcall(mmc_init);
2402 module_exit(mmc_exit);
2403
2404 MODULE_DESCRIPTION("MMC core driver");
2405 MODULE_LICENSE("GPL");
2406