xref: /linux/drivers/mmc/core/core.c (revision 442bc81bd344dc52c37d8f80b854cc6da062b2d0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/drivers/mmc/core/core.c
4  *
5  *  Copyright (C) 2003-2004 Russell King, All Rights Reserved.
6  *  SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
7  *  Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
8  *  MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
9  */
10 #include <linux/module.h>
11 #include <linux/init.h>
12 #include <linux/interrupt.h>
13 #include <linux/completion.h>
14 #include <linux/device.h>
15 #include <linux/delay.h>
16 #include <linux/pagemap.h>
17 #include <linux/err.h>
18 #include <linux/leds.h>
19 #include <linux/scatterlist.h>
20 #include <linux/log2.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/suspend.h>
23 #include <linux/fault-inject.h>
24 #include <linux/random.h>
25 #include <linux/slab.h>
26 #include <linux/of.h>
27 
28 #include <linux/mmc/card.h>
29 #include <linux/mmc/host.h>
30 #include <linux/mmc/mmc.h>
31 #include <linux/mmc/sd.h>
32 #include <linux/mmc/slot-gpio.h>
33 
34 #define CREATE_TRACE_POINTS
35 #include <trace/events/mmc.h>
36 
37 #include "core.h"
38 #include "card.h"
39 #include "crypto.h"
40 #include "bus.h"
41 #include "host.h"
42 #include "sdio_bus.h"
43 #include "pwrseq.h"
44 
45 #include "mmc_ops.h"
46 #include "sd_ops.h"
47 #include "sdio_ops.h"
48 
49 /* The max erase timeout, used when host->max_busy_timeout isn't specified */
50 #define MMC_ERASE_TIMEOUT_MS	(60 * 1000) /* 60 s */
51 #define SD_DISCARD_TIMEOUT_MS	(250)
52 
53 static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
54 
55 /*
56  * Enabling software CRCs on the data blocks can be a significant (30%)
57  * performance cost, and for other reasons may not always be desired.
58  * So we allow it to be disabled.
59  */
60 bool use_spi_crc = 1;
61 module_param(use_spi_crc, bool, 0);
62 
mmc_schedule_delayed_work(struct delayed_work * work,unsigned long delay)63 static int mmc_schedule_delayed_work(struct delayed_work *work,
64 				     unsigned long delay)
65 {
66 	/*
67 	 * We use the system_freezable_wq, because of two reasons.
68 	 * First, it allows several works (not the same work item) to be
69 	 * executed simultaneously. Second, the queue becomes frozen when
70 	 * userspace becomes frozen during system PM.
71 	 */
72 	return queue_delayed_work(system_freezable_wq, work, delay);
73 }
74 
75 #ifdef CONFIG_FAIL_MMC_REQUEST
76 
77 /*
78  * Internal function. Inject random data errors.
79  * If mmc_data is NULL no errors are injected.
80  */
mmc_should_fail_request(struct mmc_host * host,struct mmc_request * mrq)81 static void mmc_should_fail_request(struct mmc_host *host,
82 				    struct mmc_request *mrq)
83 {
84 	struct mmc_command *cmd = mrq->cmd;
85 	struct mmc_data *data = mrq->data;
86 	static const int data_errors[] = {
87 		-ETIMEDOUT,
88 		-EILSEQ,
89 		-EIO,
90 	};
91 
92 	if (!data)
93 		return;
94 
95 	if ((cmd && cmd->error) || data->error ||
96 	    !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
97 		return;
98 
99 	data->error = data_errors[get_random_u32_below(ARRAY_SIZE(data_errors))];
100 	data->bytes_xfered = get_random_u32_below(data->bytes_xfered >> 9) << 9;
101 }
102 
103 #else /* CONFIG_FAIL_MMC_REQUEST */
104 
mmc_should_fail_request(struct mmc_host * host,struct mmc_request * mrq)105 static inline void mmc_should_fail_request(struct mmc_host *host,
106 					   struct mmc_request *mrq)
107 {
108 }
109 
110 #endif /* CONFIG_FAIL_MMC_REQUEST */
111 
mmc_complete_cmd(struct mmc_request * mrq)112 static inline void mmc_complete_cmd(struct mmc_request *mrq)
113 {
114 	if (mrq->cap_cmd_during_tfr && !completion_done(&mrq->cmd_completion))
115 		complete_all(&mrq->cmd_completion);
116 }
117 
mmc_command_done(struct mmc_host * host,struct mmc_request * mrq)118 void mmc_command_done(struct mmc_host *host, struct mmc_request *mrq)
119 {
120 	if (!mrq->cap_cmd_during_tfr)
121 		return;
122 
123 	mmc_complete_cmd(mrq);
124 
125 	pr_debug("%s: cmd done, tfr ongoing (CMD%u)\n",
126 		 mmc_hostname(host), mrq->cmd->opcode);
127 }
128 EXPORT_SYMBOL(mmc_command_done);
129 
130 /**
131  *	mmc_request_done - finish processing an MMC request
132  *	@host: MMC host which completed request
133  *	@mrq: MMC request which request
134  *
135  *	MMC drivers should call this function when they have completed
136  *	their processing of a request.
137  */
mmc_request_done(struct mmc_host * host,struct mmc_request * mrq)138 void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
139 {
140 	struct mmc_command *cmd = mrq->cmd;
141 	int err = cmd->error;
142 
143 	/* Flag re-tuning needed on CRC errors */
144 	if (!mmc_op_tuning(cmd->opcode) &&
145 	    !host->retune_crc_disable &&
146 	    (err == -EILSEQ || (mrq->sbc && mrq->sbc->error == -EILSEQ) ||
147 	    (mrq->data && mrq->data->error == -EILSEQ) ||
148 	    (mrq->stop && mrq->stop->error == -EILSEQ)))
149 		mmc_retune_needed(host);
150 
151 	if (err && cmd->retries && mmc_host_is_spi(host)) {
152 		if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
153 			cmd->retries = 0;
154 	}
155 
156 	if (host->ongoing_mrq == mrq)
157 		host->ongoing_mrq = NULL;
158 
159 	mmc_complete_cmd(mrq);
160 
161 	trace_mmc_request_done(host, mrq);
162 
163 	/*
164 	 * We list various conditions for the command to be considered
165 	 * properly done:
166 	 *
167 	 * - There was no error, OK fine then
168 	 * - We are not doing some kind of retry
169 	 * - The card was removed (...so just complete everything no matter
170 	 *   if there are errors or retries)
171 	 */
172 	if (!err || !cmd->retries || mmc_card_removed(host->card)) {
173 		mmc_should_fail_request(host, mrq);
174 
175 		if (!host->ongoing_mrq)
176 			led_trigger_event(host->led, LED_OFF);
177 
178 		if (mrq->sbc) {
179 			pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n",
180 				mmc_hostname(host), mrq->sbc->opcode,
181 				mrq->sbc->error,
182 				mrq->sbc->resp[0], mrq->sbc->resp[1],
183 				mrq->sbc->resp[2], mrq->sbc->resp[3]);
184 		}
185 
186 		pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
187 			mmc_hostname(host), cmd->opcode, err,
188 			cmd->resp[0], cmd->resp[1],
189 			cmd->resp[2], cmd->resp[3]);
190 
191 		if (mrq->data) {
192 			pr_debug("%s:     %d bytes transferred: %d\n",
193 				mmc_hostname(host),
194 				mrq->data->bytes_xfered, mrq->data->error);
195 		}
196 
197 		if (mrq->stop) {
198 			pr_debug("%s:     (CMD%u): %d: %08x %08x %08x %08x\n",
199 				mmc_hostname(host), mrq->stop->opcode,
200 				mrq->stop->error,
201 				mrq->stop->resp[0], mrq->stop->resp[1],
202 				mrq->stop->resp[2], mrq->stop->resp[3]);
203 		}
204 	}
205 	/*
206 	 * Request starter must handle retries - see
207 	 * mmc_wait_for_req_done().
208 	 */
209 	if (mrq->done)
210 		mrq->done(mrq);
211 }
212 
213 EXPORT_SYMBOL(mmc_request_done);
214 
__mmc_start_request(struct mmc_host * host,struct mmc_request * mrq)215 static void __mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
216 {
217 	int err;
218 
219 	/* Assumes host controller has been runtime resumed by mmc_claim_host */
220 	err = mmc_retune(host);
221 	if (err) {
222 		mrq->cmd->error = err;
223 		mmc_request_done(host, mrq);
224 		return;
225 	}
226 
227 	/*
228 	 * For sdio rw commands we must wait for card busy otherwise some
229 	 * sdio devices won't work properly.
230 	 * And bypass I/O abort, reset and bus suspend operations.
231 	 */
232 	if (sdio_is_io_busy(mrq->cmd->opcode, mrq->cmd->arg) &&
233 	    host->ops->card_busy) {
234 		int tries = 500; /* Wait aprox 500ms at maximum */
235 
236 		while (host->ops->card_busy(host) && --tries)
237 			mmc_delay(1);
238 
239 		if (tries == 0) {
240 			mrq->cmd->error = -EBUSY;
241 			mmc_request_done(host, mrq);
242 			return;
243 		}
244 	}
245 
246 	if (mrq->cap_cmd_during_tfr) {
247 		host->ongoing_mrq = mrq;
248 		/*
249 		 * Retry path could come through here without having waiting on
250 		 * cmd_completion, so ensure it is reinitialised.
251 		 */
252 		reinit_completion(&mrq->cmd_completion);
253 	}
254 
255 	trace_mmc_request_start(host, mrq);
256 
257 	if (host->cqe_on)
258 		host->cqe_ops->cqe_off(host);
259 
260 	host->ops->request(host, mrq);
261 }
262 
mmc_mrq_pr_debug(struct mmc_host * host,struct mmc_request * mrq,bool cqe)263 static void mmc_mrq_pr_debug(struct mmc_host *host, struct mmc_request *mrq,
264 			     bool cqe)
265 {
266 	if (mrq->sbc) {
267 		pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
268 			 mmc_hostname(host), mrq->sbc->opcode,
269 			 mrq->sbc->arg, mrq->sbc->flags);
270 	}
271 
272 	if (mrq->cmd) {
273 		pr_debug("%s: starting %sCMD%u arg %08x flags %08x\n",
274 			 mmc_hostname(host), cqe ? "CQE direct " : "",
275 			 mrq->cmd->opcode, mrq->cmd->arg, mrq->cmd->flags);
276 	} else if (cqe) {
277 		pr_debug("%s: starting CQE transfer for tag %d blkaddr %u\n",
278 			 mmc_hostname(host), mrq->tag, mrq->data->blk_addr);
279 	}
280 
281 	if (mrq->data) {
282 		pr_debug("%s:     blksz %d blocks %d flags %08x "
283 			"tsac %d ms nsac %d\n",
284 			mmc_hostname(host), mrq->data->blksz,
285 			mrq->data->blocks, mrq->data->flags,
286 			mrq->data->timeout_ns / 1000000,
287 			mrq->data->timeout_clks);
288 	}
289 
290 	if (mrq->stop) {
291 		pr_debug("%s:     CMD%u arg %08x flags %08x\n",
292 			 mmc_hostname(host), mrq->stop->opcode,
293 			 mrq->stop->arg, mrq->stop->flags);
294 	}
295 }
296 
mmc_mrq_prep(struct mmc_host * host,struct mmc_request * mrq)297 static int mmc_mrq_prep(struct mmc_host *host, struct mmc_request *mrq)
298 {
299 	unsigned int i, sz = 0;
300 	struct scatterlist *sg;
301 
302 	if (mrq->cmd) {
303 		mrq->cmd->error = 0;
304 		mrq->cmd->mrq = mrq;
305 		mrq->cmd->data = mrq->data;
306 	}
307 	if (mrq->sbc) {
308 		mrq->sbc->error = 0;
309 		mrq->sbc->mrq = mrq;
310 	}
311 	if (mrq->data) {
312 		if (mrq->data->blksz > host->max_blk_size ||
313 		    mrq->data->blocks > host->max_blk_count ||
314 		    mrq->data->blocks * mrq->data->blksz > host->max_req_size)
315 			return -EINVAL;
316 
317 		for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
318 			sz += sg->length;
319 		if (sz != mrq->data->blocks * mrq->data->blksz)
320 			return -EINVAL;
321 
322 		mrq->data->error = 0;
323 		mrq->data->mrq = mrq;
324 		if (mrq->stop) {
325 			mrq->data->stop = mrq->stop;
326 			mrq->stop->error = 0;
327 			mrq->stop->mrq = mrq;
328 		}
329 	}
330 
331 	return 0;
332 }
333 
mmc_start_request(struct mmc_host * host,struct mmc_request * mrq)334 int mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
335 {
336 	int err;
337 
338 	if (mrq->cmd && mrq->cmd->has_ext_addr)
339 		mmc_send_ext_addr(host, mrq->cmd->ext_addr);
340 
341 	init_completion(&mrq->cmd_completion);
342 
343 	mmc_retune_hold(host);
344 
345 	if (mmc_card_removed(host->card))
346 		return -ENOMEDIUM;
347 
348 	mmc_mrq_pr_debug(host, mrq, false);
349 
350 	WARN_ON(!host->claimed);
351 
352 	err = mmc_mrq_prep(host, mrq);
353 	if (err)
354 		return err;
355 
356 	if (host->uhs2_sd_tran)
357 		mmc_uhs2_prepare_cmd(host, mrq);
358 
359 	led_trigger_event(host->led, LED_FULL);
360 	__mmc_start_request(host, mrq);
361 
362 	return 0;
363 }
364 EXPORT_SYMBOL(mmc_start_request);
365 
mmc_wait_done(struct mmc_request * mrq)366 static void mmc_wait_done(struct mmc_request *mrq)
367 {
368 	complete(&mrq->completion);
369 }
370 
mmc_wait_ongoing_tfr_cmd(struct mmc_host * host)371 static inline void mmc_wait_ongoing_tfr_cmd(struct mmc_host *host)
372 {
373 	struct mmc_request *ongoing_mrq = READ_ONCE(host->ongoing_mrq);
374 
375 	/*
376 	 * If there is an ongoing transfer, wait for the command line to become
377 	 * available.
378 	 */
379 	if (ongoing_mrq && !completion_done(&ongoing_mrq->cmd_completion))
380 		wait_for_completion(&ongoing_mrq->cmd_completion);
381 }
382 
__mmc_start_req(struct mmc_host * host,struct mmc_request * mrq)383 static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
384 {
385 	int err;
386 
387 	mmc_wait_ongoing_tfr_cmd(host);
388 
389 	init_completion(&mrq->completion);
390 	mrq->done = mmc_wait_done;
391 
392 	err = mmc_start_request(host, mrq);
393 	if (err) {
394 		mrq->cmd->error = err;
395 		mmc_complete_cmd(mrq);
396 		complete(&mrq->completion);
397 	}
398 
399 	return err;
400 }
401 
mmc_wait_for_req_done(struct mmc_host * host,struct mmc_request * mrq)402 void mmc_wait_for_req_done(struct mmc_host *host, struct mmc_request *mrq)
403 {
404 	struct mmc_command *cmd;
405 
406 	while (1) {
407 		wait_for_completion(&mrq->completion);
408 
409 		cmd = mrq->cmd;
410 
411 		if (!cmd->error || !cmd->retries ||
412 		    mmc_card_removed(host->card))
413 			break;
414 
415 		mmc_retune_recheck(host);
416 
417 		pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
418 			 mmc_hostname(host), cmd->opcode, cmd->error);
419 		cmd->retries--;
420 		cmd->error = 0;
421 		__mmc_start_request(host, mrq);
422 	}
423 
424 	mmc_retune_release(host);
425 }
426 EXPORT_SYMBOL(mmc_wait_for_req_done);
427 
428 /*
429  * mmc_cqe_start_req - Start a CQE request.
430  * @host: MMC host to start the request
431  * @mrq: request to start
432  *
433  * Start the request, re-tuning if needed and it is possible. Returns an error
434  * code if the request fails to start or -EBUSY if CQE is busy.
435  */
mmc_cqe_start_req(struct mmc_host * host,struct mmc_request * mrq)436 int mmc_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
437 {
438 	int err;
439 
440 	/*
441 	 * CQE cannot process re-tuning commands. Caller must hold retuning
442 	 * while CQE is in use.  Re-tuning can happen here only when CQE has no
443 	 * active requests i.e. this is the first.  Note, re-tuning will call
444 	 * ->cqe_off().
445 	 */
446 	err = mmc_retune(host);
447 	if (err)
448 		goto out_err;
449 
450 	mrq->host = host;
451 
452 	mmc_mrq_pr_debug(host, mrq, true);
453 
454 	err = mmc_mrq_prep(host, mrq);
455 	if (err)
456 		goto out_err;
457 
458 	if (host->uhs2_sd_tran)
459 		mmc_uhs2_prepare_cmd(host, mrq);
460 
461 	err = host->cqe_ops->cqe_request(host, mrq);
462 	if (err)
463 		goto out_err;
464 
465 	trace_mmc_request_start(host, mrq);
466 
467 	return 0;
468 
469 out_err:
470 	if (mrq->cmd) {
471 		pr_debug("%s: failed to start CQE direct CMD%u, error %d\n",
472 			 mmc_hostname(host), mrq->cmd->opcode, err);
473 	} else {
474 		pr_debug("%s: failed to start CQE transfer for tag %d, error %d\n",
475 			 mmc_hostname(host), mrq->tag, err);
476 	}
477 	return err;
478 }
479 EXPORT_SYMBOL(mmc_cqe_start_req);
480 
481 /**
482  *	mmc_cqe_request_done - CQE has finished processing an MMC request
483  *	@host: MMC host which completed request
484  *	@mrq: MMC request which completed
485  *
486  *	CQE drivers should call this function when they have completed
487  *	their processing of a request.
488  */
mmc_cqe_request_done(struct mmc_host * host,struct mmc_request * mrq)489 void mmc_cqe_request_done(struct mmc_host *host, struct mmc_request *mrq)
490 {
491 	mmc_should_fail_request(host, mrq);
492 
493 	/* Flag re-tuning needed on CRC errors */
494 	if ((mrq->cmd && mrq->cmd->error == -EILSEQ) ||
495 	    (mrq->data && mrq->data->error == -EILSEQ))
496 		mmc_retune_needed(host);
497 
498 	trace_mmc_request_done(host, mrq);
499 
500 	if (mrq->cmd) {
501 		pr_debug("%s: CQE req done (direct CMD%u): %d\n",
502 			 mmc_hostname(host), mrq->cmd->opcode, mrq->cmd->error);
503 	} else {
504 		pr_debug("%s: CQE transfer done tag %d\n",
505 			 mmc_hostname(host), mrq->tag);
506 	}
507 
508 	if (mrq->data) {
509 		pr_debug("%s:     %d bytes transferred: %d\n",
510 			 mmc_hostname(host),
511 			 mrq->data->bytes_xfered, mrq->data->error);
512 	}
513 
514 	mrq->done(mrq);
515 }
516 EXPORT_SYMBOL(mmc_cqe_request_done);
517 
518 /**
519  *	mmc_cqe_post_req - CQE post process of a completed MMC request
520  *	@host: MMC host
521  *	@mrq: MMC request to be processed
522  */
mmc_cqe_post_req(struct mmc_host * host,struct mmc_request * mrq)523 void mmc_cqe_post_req(struct mmc_host *host, struct mmc_request *mrq)
524 {
525 	if (host->cqe_ops->cqe_post_req)
526 		host->cqe_ops->cqe_post_req(host, mrq);
527 }
528 EXPORT_SYMBOL(mmc_cqe_post_req);
529 
530 /* Arbitrary 1 second timeout */
531 #define MMC_CQE_RECOVERY_TIMEOUT	1000
532 
533 /*
534  * mmc_cqe_recovery - Recover from CQE errors.
535  * @host: MMC host to recover
536  *
537  * Recovery consists of stopping CQE, stopping eMMC, discarding the queue
538  * in eMMC, and discarding the queue in CQE. CQE must call
539  * mmc_cqe_request_done() on all requests. An error is returned if the eMMC
540  * fails to discard its queue.
541  */
mmc_cqe_recovery(struct mmc_host * host)542 int mmc_cqe_recovery(struct mmc_host *host)
543 {
544 	struct mmc_command cmd;
545 	int err;
546 
547 	mmc_retune_hold_now(host);
548 
549 	/*
550 	 * Recovery is expected seldom, if at all, but it reduces performance,
551 	 * so make sure it is not completely silent.
552 	 */
553 	pr_warn("%s: running CQE recovery\n", mmc_hostname(host));
554 
555 	host->cqe_ops->cqe_recovery_start(host);
556 
557 	memset(&cmd, 0, sizeof(cmd));
558 	cmd.opcode       = MMC_STOP_TRANSMISSION;
559 	cmd.flags        = MMC_RSP_R1B_NO_CRC | MMC_CMD_AC; /* Ignore CRC */
560 	cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT;
561 	mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
562 
563 	mmc_poll_for_busy(host->card, MMC_CQE_RECOVERY_TIMEOUT, true, MMC_BUSY_IO);
564 
565 	memset(&cmd, 0, sizeof(cmd));
566 	cmd.opcode       = MMC_CMDQ_TASK_MGMT;
567 	cmd.arg          = 1; /* Discard entire queue */
568 	cmd.flags        = MMC_RSP_R1B_NO_CRC | MMC_CMD_AC; /* Ignore CRC */
569 	cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT;
570 	err = mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
571 
572 	host->cqe_ops->cqe_recovery_finish(host);
573 
574 	if (err)
575 		err = mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
576 
577 	mmc_retune_release(host);
578 
579 	return err;
580 }
581 EXPORT_SYMBOL(mmc_cqe_recovery);
582 
583 /**
584  *	mmc_is_req_done - Determine if a 'cap_cmd_during_tfr' request is done
585  *	@host: MMC host
586  *	@mrq: MMC request
587  *
588  *	mmc_is_req_done() is used with requests that have
589  *	mrq->cap_cmd_during_tfr = true. mmc_is_req_done() must be called after
590  *	starting a request and before waiting for it to complete. That is,
591  *	either in between calls to mmc_start_req(), or after mmc_wait_for_req()
592  *	and before mmc_wait_for_req_done(). If it is called at other times the
593  *	result is not meaningful.
594  */
mmc_is_req_done(struct mmc_host * host,struct mmc_request * mrq)595 bool mmc_is_req_done(struct mmc_host *host, struct mmc_request *mrq)
596 {
597 	return completion_done(&mrq->completion);
598 }
599 EXPORT_SYMBOL(mmc_is_req_done);
600 
601 /**
602  *	mmc_wait_for_req - start a request and wait for completion
603  *	@host: MMC host to start command
604  *	@mrq: MMC request to start
605  *
606  *	Start a new MMC custom command request for a host, and wait
607  *	for the command to complete. In the case of 'cap_cmd_during_tfr'
608  *	requests, the transfer is ongoing and the caller can issue further
609  *	commands that do not use the data lines, and then wait by calling
610  *	mmc_wait_for_req_done().
611  *	Does not attempt to parse the response.
612  */
mmc_wait_for_req(struct mmc_host * host,struct mmc_request * mrq)613 void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
614 {
615 	__mmc_start_req(host, mrq);
616 
617 	if (!mrq->cap_cmd_during_tfr)
618 		mmc_wait_for_req_done(host, mrq);
619 }
620 EXPORT_SYMBOL(mmc_wait_for_req);
621 
622 /**
623  *	mmc_wait_for_cmd - start a command and wait for completion
624  *	@host: MMC host to start command
625  *	@cmd: MMC command to start
626  *	@retries: maximum number of retries
627  *
628  *	Start a new MMC command for a host, and wait for the command
629  *	to complete.  Return any error that occurred while the command
630  *	was executing.  Do not attempt to parse the response.
631  */
mmc_wait_for_cmd(struct mmc_host * host,struct mmc_command * cmd,int retries)632 int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
633 {
634 	struct mmc_request mrq = {};
635 
636 	WARN_ON(!host->claimed);
637 
638 	memset(cmd->resp, 0, sizeof(cmd->resp));
639 	cmd->retries = retries;
640 
641 	mrq.cmd = cmd;
642 	cmd->data = NULL;
643 
644 	mmc_wait_for_req(host, &mrq);
645 
646 	return cmd->error;
647 }
648 
649 EXPORT_SYMBOL(mmc_wait_for_cmd);
650 
651 /**
652  *	mmc_set_data_timeout - set the timeout for a data command
653  *	@data: data phase for command
654  *	@card: the MMC card associated with the data transfer
655  *
656  *	Computes the data timeout parameters according to the
657  *	correct algorithm given the card type.
658  */
mmc_set_data_timeout(struct mmc_data * data,const struct mmc_card * card)659 void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
660 {
661 	unsigned int mult;
662 
663 	/*
664 	 * SDIO cards only define an upper 1 s limit on access.
665 	 */
666 	if (mmc_card_sdio(card)) {
667 		data->timeout_ns = 1000000000;
668 		data->timeout_clks = 0;
669 		return;
670 	}
671 
672 	/*
673 	 * SD cards use a 100 multiplier rather than 10
674 	 */
675 	mult = mmc_card_sd(card) ? 100 : 10;
676 
677 	/*
678 	 * Scale up the multiplier (and therefore the timeout) by
679 	 * the r2w factor for writes.
680 	 */
681 	if (data->flags & MMC_DATA_WRITE)
682 		mult <<= card->csd.r2w_factor;
683 
684 	data->timeout_ns = card->csd.taac_ns * mult;
685 	data->timeout_clks = card->csd.taac_clks * mult;
686 
687 	/*
688 	 * SD cards also have an upper limit on the timeout.
689 	 */
690 	if (mmc_card_sd(card)) {
691 		unsigned int timeout_us, limit_us;
692 
693 		timeout_us = data->timeout_ns / 1000;
694 		if (card->host->ios.clock)
695 			timeout_us += data->timeout_clks * 1000 /
696 				(card->host->ios.clock / 1000);
697 
698 		if (data->flags & MMC_DATA_WRITE)
699 			/*
700 			 * The MMC spec "It is strongly recommended
701 			 * for hosts to implement more than 500ms
702 			 * timeout value even if the card indicates
703 			 * the 250ms maximum busy length."  Even the
704 			 * previous value of 300ms is known to be
705 			 * insufficient for some cards.
706 			 */
707 			limit_us = 3000000;
708 		else
709 			limit_us = 100000;
710 
711 		/*
712 		 * SDHC cards always use these fixed values.
713 		 */
714 		if (timeout_us > limit_us) {
715 			data->timeout_ns = limit_us * 1000;
716 			data->timeout_clks = 0;
717 		}
718 
719 		/* assign limit value if invalid */
720 		if (timeout_us == 0)
721 			data->timeout_ns = limit_us * 1000;
722 	}
723 
724 	/*
725 	 * Some cards require longer data read timeout than indicated in CSD.
726 	 * Address this by setting the read timeout to a "reasonably high"
727 	 * value. For the cards tested, 600ms has proven enough. If necessary,
728 	 * this value can be increased if other problematic cards require this.
729 	 */
730 	if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
731 		data->timeout_ns = 600000000;
732 		data->timeout_clks = 0;
733 	}
734 
735 	/*
736 	 * Some cards need very high timeouts if driven in SPI mode.
737 	 * The worst observed timeout was 900ms after writing a
738 	 * continuous stream of data until the internal logic
739 	 * overflowed.
740 	 */
741 	if (mmc_host_is_spi(card->host)) {
742 		if (data->flags & MMC_DATA_WRITE) {
743 			if (data->timeout_ns < 1000000000)
744 				data->timeout_ns = 1000000000;	/* 1s */
745 		} else {
746 			if (data->timeout_ns < 100000000)
747 				data->timeout_ns =  100000000;	/* 100ms */
748 		}
749 	}
750 }
751 EXPORT_SYMBOL(mmc_set_data_timeout);
752 
753 /*
754  * Allow claiming an already claimed host if the context is the same or there is
755  * no context but the task is the same.
756  */
mmc_ctx_matches(struct mmc_host * host,struct mmc_ctx * ctx,struct task_struct * task)757 static inline bool mmc_ctx_matches(struct mmc_host *host, struct mmc_ctx *ctx,
758 				   struct task_struct *task)
759 {
760 	return host->claimer == ctx ||
761 	       (!ctx && task && host->claimer->task == task);
762 }
763 
mmc_ctx_set_claimer(struct mmc_host * host,struct mmc_ctx * ctx,struct task_struct * task)764 static inline void mmc_ctx_set_claimer(struct mmc_host *host,
765 				       struct mmc_ctx *ctx,
766 				       struct task_struct *task)
767 {
768 	if (!host->claimer) {
769 		if (ctx)
770 			host->claimer = ctx;
771 		else
772 			host->claimer = &host->default_ctx;
773 	}
774 	if (task)
775 		host->claimer->task = task;
776 }
777 
778 /**
779  *	__mmc_claim_host - exclusively claim a host
780  *	@host: mmc host to claim
781  *	@ctx: context that claims the host or NULL in which case the default
782  *	context will be used
783  *	@abort: whether or not the operation should be aborted
784  *
785  *	Claim a host for a set of operations.  If @abort is non null and
786  *	dereference a non-zero value then this will return prematurely with
787  *	that non-zero value without acquiring the lock.  Returns zero
788  *	with the lock held otherwise.
789  */
__mmc_claim_host(struct mmc_host * host,struct mmc_ctx * ctx,atomic_t * abort)790 int __mmc_claim_host(struct mmc_host *host, struct mmc_ctx *ctx,
791 		     atomic_t *abort)
792 {
793 	struct task_struct *task = ctx ? NULL : current;
794 	DECLARE_WAITQUEUE(wait, current);
795 	unsigned long flags;
796 	int stop;
797 	bool pm = false;
798 
799 	might_sleep();
800 
801 	add_wait_queue(&host->wq, &wait);
802 	spin_lock_irqsave(&host->lock, flags);
803 	while (1) {
804 		set_current_state(TASK_UNINTERRUPTIBLE);
805 		stop = abort ? atomic_read(abort) : 0;
806 		if (stop || !host->claimed || mmc_ctx_matches(host, ctx, task))
807 			break;
808 		spin_unlock_irqrestore(&host->lock, flags);
809 		schedule();
810 		spin_lock_irqsave(&host->lock, flags);
811 	}
812 	set_current_state(TASK_RUNNING);
813 	if (!stop) {
814 		host->claimed = 1;
815 		mmc_ctx_set_claimer(host, ctx, task);
816 		host->claim_cnt += 1;
817 		if (host->claim_cnt == 1)
818 			pm = true;
819 	} else
820 		wake_up(&host->wq);
821 	spin_unlock_irqrestore(&host->lock, flags);
822 	remove_wait_queue(&host->wq, &wait);
823 
824 	if (pm)
825 		pm_runtime_get_sync(mmc_dev(host));
826 
827 	return stop;
828 }
829 EXPORT_SYMBOL(__mmc_claim_host);
830 
831 /**
832  *	mmc_release_host - release a host
833  *	@host: mmc host to release
834  *
835  *	Release a MMC host, allowing others to claim the host
836  *	for their operations.
837  */
mmc_release_host(struct mmc_host * host)838 void mmc_release_host(struct mmc_host *host)
839 {
840 	unsigned long flags;
841 
842 	WARN_ON(!host->claimed);
843 
844 	spin_lock_irqsave(&host->lock, flags);
845 	if (--host->claim_cnt) {
846 		/* Release for nested claim */
847 		spin_unlock_irqrestore(&host->lock, flags);
848 	} else {
849 		host->claimed = 0;
850 		host->claimer->task = NULL;
851 		host->claimer = NULL;
852 		spin_unlock_irqrestore(&host->lock, flags);
853 		wake_up(&host->wq);
854 		pm_runtime_mark_last_busy(mmc_dev(host));
855 		if (host->caps & MMC_CAP_SYNC_RUNTIME_PM)
856 			pm_runtime_put_sync_suspend(mmc_dev(host));
857 		else
858 			pm_runtime_put_autosuspend(mmc_dev(host));
859 	}
860 }
861 EXPORT_SYMBOL(mmc_release_host);
862 
863 /*
864  * This is a helper function, which fetches a runtime pm reference for the
865  * card device and also claims the host.
866  */
mmc_get_card(struct mmc_card * card,struct mmc_ctx * ctx)867 void mmc_get_card(struct mmc_card *card, struct mmc_ctx *ctx)
868 {
869 	pm_runtime_get_sync(&card->dev);
870 	__mmc_claim_host(card->host, ctx, NULL);
871 }
872 EXPORT_SYMBOL(mmc_get_card);
873 
874 /*
875  * This is a helper function, which releases the host and drops the runtime
876  * pm reference for the card device.
877  */
mmc_put_card(struct mmc_card * card,struct mmc_ctx * ctx)878 void mmc_put_card(struct mmc_card *card, struct mmc_ctx *ctx)
879 {
880 	struct mmc_host *host = card->host;
881 
882 	WARN_ON(ctx && host->claimer != ctx);
883 
884 	mmc_release_host(host);
885 	pm_runtime_mark_last_busy(&card->dev);
886 	pm_runtime_put_autosuspend(&card->dev);
887 }
888 EXPORT_SYMBOL(mmc_put_card);
889 
890 /*
891  * Internal function that does the actual ios call to the host driver,
892  * optionally printing some debug output.
893  */
mmc_set_ios(struct mmc_host * host)894 static inline void mmc_set_ios(struct mmc_host *host)
895 {
896 	struct mmc_ios *ios = &host->ios;
897 
898 	pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
899 		"width %u timing %u\n",
900 		 mmc_hostname(host), ios->clock, ios->bus_mode,
901 		 ios->power_mode, ios->chip_select, ios->vdd,
902 		 1 << ios->bus_width, ios->timing);
903 
904 	host->ops->set_ios(host, ios);
905 }
906 
907 /*
908  * Control chip select pin on a host.
909  */
mmc_set_chip_select(struct mmc_host * host,int mode)910 void mmc_set_chip_select(struct mmc_host *host, int mode)
911 {
912 	host->ios.chip_select = mode;
913 	mmc_set_ios(host);
914 }
915 
916 /*
917  * Sets the host clock to the highest possible frequency that
918  * is below "hz".
919  */
mmc_set_clock(struct mmc_host * host,unsigned int hz)920 void mmc_set_clock(struct mmc_host *host, unsigned int hz)
921 {
922 	WARN_ON(hz && hz < host->f_min);
923 
924 	if (hz > host->f_max)
925 		hz = host->f_max;
926 
927 	host->ios.clock = hz;
928 	mmc_set_ios(host);
929 }
930 
mmc_execute_tuning(struct mmc_card * card)931 int mmc_execute_tuning(struct mmc_card *card)
932 {
933 	struct mmc_host *host = card->host;
934 	u32 opcode;
935 	int err;
936 
937 	if (!host->ops->execute_tuning)
938 		return 0;
939 
940 	if (host->cqe_on)
941 		host->cqe_ops->cqe_off(host);
942 
943 	if (mmc_card_mmc(card))
944 		opcode = MMC_SEND_TUNING_BLOCK_HS200;
945 	else
946 		opcode = MMC_SEND_TUNING_BLOCK;
947 
948 	err = host->ops->execute_tuning(host, opcode);
949 	if (!err) {
950 		mmc_retune_clear(host);
951 		mmc_retune_enable(host);
952 		return 0;
953 	}
954 
955 	/* Only print error when we don't check for card removal */
956 	if (!host->detect_change) {
957 		pr_err("%s: tuning execution failed: %d\n",
958 			mmc_hostname(host), err);
959 		mmc_debugfs_err_stats_inc(host, MMC_ERR_TUNING);
960 	}
961 
962 	return err;
963 }
964 
965 /*
966  * Change the bus mode (open drain/push-pull) of a host.
967  */
mmc_set_bus_mode(struct mmc_host * host,unsigned int mode)968 void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
969 {
970 	host->ios.bus_mode = mode;
971 	mmc_set_ios(host);
972 }
973 
974 /*
975  * Change data bus width of a host.
976  */
mmc_set_bus_width(struct mmc_host * host,unsigned int width)977 void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
978 {
979 	host->ios.bus_width = width;
980 	mmc_set_ios(host);
981 }
982 
983 /*
984  * Set initial state after a power cycle or a hw_reset.
985  */
mmc_set_initial_state(struct mmc_host * host)986 void mmc_set_initial_state(struct mmc_host *host)
987 {
988 	if (host->cqe_on)
989 		host->cqe_ops->cqe_off(host);
990 
991 	mmc_retune_disable(host);
992 
993 	if (mmc_host_is_spi(host))
994 		host->ios.chip_select = MMC_CS_HIGH;
995 	else
996 		host->ios.chip_select = MMC_CS_DONTCARE;
997 	host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
998 	host->ios.bus_width = MMC_BUS_WIDTH_1;
999 	host->ios.timing = MMC_TIMING_LEGACY;
1000 	host->ios.drv_type = 0;
1001 	host->ios.enhanced_strobe = false;
1002 
1003 	/*
1004 	 * Make sure we are in non-enhanced strobe mode before we
1005 	 * actually enable it in ext_csd.
1006 	 */
1007 	if ((host->caps2 & MMC_CAP2_HS400_ES) &&
1008 	     host->ops->hs400_enhanced_strobe)
1009 		host->ops->hs400_enhanced_strobe(host, &host->ios);
1010 
1011 	mmc_set_ios(host);
1012 
1013 	mmc_crypto_set_initial_state(host);
1014 }
1015 
1016 /**
1017  * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
1018  * @vdd:	voltage (mV)
1019  * @low_bits:	prefer low bits in boundary cases
1020  *
1021  * This function returns the OCR bit number according to the provided @vdd
1022  * value. If conversion is not possible a negative errno value returned.
1023  *
1024  * Depending on the @low_bits flag the function prefers low or high OCR bits
1025  * on boundary voltages. For example,
1026  * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1027  * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1028  *
1029  * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1030  */
mmc_vdd_to_ocrbitnum(int vdd,bool low_bits)1031 static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
1032 {
1033 	const int max_bit = ilog2(MMC_VDD_35_36);
1034 	int bit;
1035 
1036 	if (vdd < 1650 || vdd > 3600)
1037 		return -EINVAL;
1038 
1039 	if (vdd >= 1650 && vdd <= 1950)
1040 		return ilog2(MMC_VDD_165_195);
1041 
1042 	if (low_bits)
1043 		vdd -= 1;
1044 
1045 	/* Base 2000 mV, step 100 mV, bit's base 8. */
1046 	bit = (vdd - 2000) / 100 + 8;
1047 	if (bit > max_bit)
1048 		return max_bit;
1049 	return bit;
1050 }
1051 
1052 /**
1053  * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1054  * @vdd_min:	minimum voltage value (mV)
1055  * @vdd_max:	maximum voltage value (mV)
1056  *
1057  * This function returns the OCR mask bits according to the provided @vdd_min
1058  * and @vdd_max values. If conversion is not possible the function returns 0.
1059  *
1060  * Notes wrt boundary cases:
1061  * This function sets the OCR bits for all boundary voltages, for example
1062  * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1063  * MMC_VDD_34_35 mask.
1064  */
mmc_vddrange_to_ocrmask(int vdd_min,int vdd_max)1065 u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
1066 {
1067 	u32 mask = 0;
1068 
1069 	if (vdd_max < vdd_min)
1070 		return 0;
1071 
1072 	/* Prefer high bits for the boundary vdd_max values. */
1073 	vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
1074 	if (vdd_max < 0)
1075 		return 0;
1076 
1077 	/* Prefer low bits for the boundary vdd_min values. */
1078 	vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
1079 	if (vdd_min < 0)
1080 		return 0;
1081 
1082 	/* Fill the mask, from max bit to min bit. */
1083 	while (vdd_max >= vdd_min)
1084 		mask |= 1 << vdd_max--;
1085 
1086 	return mask;
1087 }
1088 
mmc_of_get_func_num(struct device_node * node)1089 static int mmc_of_get_func_num(struct device_node *node)
1090 {
1091 	u32 reg;
1092 	int ret;
1093 
1094 	ret = of_property_read_u32(node, "reg", &reg);
1095 	if (ret < 0)
1096 		return ret;
1097 
1098 	return reg;
1099 }
1100 
mmc_of_find_child_device(struct mmc_host * host,unsigned func_num)1101 struct device_node *mmc_of_find_child_device(struct mmc_host *host,
1102 		unsigned func_num)
1103 {
1104 	struct device_node *node;
1105 
1106 	if (!host->parent || !host->parent->of_node)
1107 		return NULL;
1108 
1109 	for_each_child_of_node(host->parent->of_node, node) {
1110 		if (mmc_of_get_func_num(node) == func_num)
1111 			return node;
1112 	}
1113 
1114 	return NULL;
1115 }
1116 
1117 /*
1118  * Mask off any voltages we don't support and select
1119  * the lowest voltage
1120  */
mmc_select_voltage(struct mmc_host * host,u32 ocr)1121 u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1122 {
1123 	int bit;
1124 
1125 	/*
1126 	 * Sanity check the voltages that the card claims to
1127 	 * support.
1128 	 */
1129 	if (ocr & 0x7F) {
1130 		dev_warn(mmc_dev(host),
1131 		"card claims to support voltages below defined range\n");
1132 		ocr &= ~0x7F;
1133 	}
1134 
1135 	ocr &= host->ocr_avail;
1136 	if (!ocr) {
1137 		dev_warn(mmc_dev(host), "no support for card's volts\n");
1138 		return 0;
1139 	}
1140 
1141 	if (!mmc_card_uhs2(host) && host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) {
1142 		bit = ffs(ocr) - 1;
1143 		ocr &= 3 << bit;
1144 		mmc_power_cycle(host, ocr);
1145 	} else {
1146 		bit = fls(ocr) - 1;
1147 		/*
1148 		 * The bit variable represents the highest voltage bit set in
1149 		 * the OCR register.
1150 		 * To keep a range of 2 values (e.g. 3.2V/3.3V and 3.3V/3.4V),
1151 		 * we must shift the mask '3' with (bit - 1).
1152 		 */
1153 		ocr &= 3 << (bit - 1);
1154 		if (bit != host->ios.vdd)
1155 			dev_warn(mmc_dev(host), "exceeding card's volts\n");
1156 	}
1157 
1158 	return ocr;
1159 }
1160 
mmc_set_signal_voltage(struct mmc_host * host,int signal_voltage)1161 int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
1162 {
1163 	int err = 0;
1164 	int old_signal_voltage = host->ios.signal_voltage;
1165 
1166 	host->ios.signal_voltage = signal_voltage;
1167 	if (host->ops->start_signal_voltage_switch)
1168 		err = host->ops->start_signal_voltage_switch(host, &host->ios);
1169 
1170 	if (err)
1171 		host->ios.signal_voltage = old_signal_voltage;
1172 
1173 	return err;
1174 
1175 }
1176 
mmc_set_initial_signal_voltage(struct mmc_host * host)1177 void mmc_set_initial_signal_voltage(struct mmc_host *host)
1178 {
1179 	/* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */
1180 	if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330))
1181 		dev_dbg(mmc_dev(host), "Initial signal voltage of 3.3v\n");
1182 	else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1183 		dev_dbg(mmc_dev(host), "Initial signal voltage of 1.8v\n");
1184 	else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120))
1185 		dev_dbg(mmc_dev(host), "Initial signal voltage of 1.2v\n");
1186 }
1187 
mmc_host_set_uhs_voltage(struct mmc_host * host)1188 int mmc_host_set_uhs_voltage(struct mmc_host *host)
1189 {
1190 	u32 clock;
1191 
1192 	/*
1193 	 * During a signal voltage level switch, the clock must be gated
1194 	 * for 5 ms according to the SD spec
1195 	 */
1196 	clock = host->ios.clock;
1197 	host->ios.clock = 0;
1198 	mmc_set_ios(host);
1199 
1200 	if (mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1201 		return -EAGAIN;
1202 
1203 	/* Keep clock gated for at least 10 ms, though spec only says 5 ms */
1204 	mmc_delay(10);
1205 	host->ios.clock = clock;
1206 	mmc_set_ios(host);
1207 
1208 	return 0;
1209 }
1210 
mmc_set_uhs_voltage(struct mmc_host * host,u32 ocr)1211 int mmc_set_uhs_voltage(struct mmc_host *host, u32 ocr)
1212 {
1213 	struct mmc_command cmd = {};
1214 	int err = 0;
1215 
1216 	/*
1217 	 * If we cannot switch voltages, return failure so the caller
1218 	 * can continue without UHS mode
1219 	 */
1220 	if (!host->ops->start_signal_voltage_switch)
1221 		return -EPERM;
1222 	if (!host->ops->card_busy)
1223 		pr_warn("%s: cannot verify signal voltage switch\n",
1224 			mmc_hostname(host));
1225 
1226 	cmd.opcode = SD_SWITCH_VOLTAGE;
1227 	cmd.arg = 0;
1228 	cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1229 
1230 	err = mmc_wait_for_cmd(host, &cmd, 0);
1231 	if (err)
1232 		goto power_cycle;
1233 
1234 	if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1235 		return -EIO;
1236 
1237 	/*
1238 	 * The card should drive cmd and dat[0:3] low immediately
1239 	 * after the response of cmd11, but wait 1 ms to be sure
1240 	 */
1241 	mmc_delay(1);
1242 	if (host->ops->card_busy && !host->ops->card_busy(host)) {
1243 		err = -EAGAIN;
1244 		goto power_cycle;
1245 	}
1246 
1247 	if (mmc_host_set_uhs_voltage(host)) {
1248 		/*
1249 		 * Voltages may not have been switched, but we've already
1250 		 * sent CMD11, so a power cycle is required anyway
1251 		 */
1252 		err = -EAGAIN;
1253 		goto power_cycle;
1254 	}
1255 
1256 	/* Wait for at least 1 ms according to spec */
1257 	mmc_delay(1);
1258 
1259 	/*
1260 	 * Failure to switch is indicated by the card holding
1261 	 * dat[0:3] low
1262 	 */
1263 	if (host->ops->card_busy && host->ops->card_busy(host))
1264 		err = -EAGAIN;
1265 
1266 power_cycle:
1267 	if (err) {
1268 		pr_debug("%s: Signal voltage switch failed, "
1269 			"power cycling card\n", mmc_hostname(host));
1270 		mmc_power_cycle(host, ocr);
1271 	}
1272 
1273 	return err;
1274 }
1275 
1276 /*
1277  * Select timing parameters for host.
1278  */
mmc_set_timing(struct mmc_host * host,unsigned int timing)1279 void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1280 {
1281 	host->ios.timing = timing;
1282 	mmc_set_ios(host);
1283 }
1284 
1285 /*
1286  * Select appropriate driver type for host.
1287  */
mmc_set_driver_type(struct mmc_host * host,unsigned int drv_type)1288 void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1289 {
1290 	host->ios.drv_type = drv_type;
1291 	mmc_set_ios(host);
1292 }
1293 
mmc_select_drive_strength(struct mmc_card * card,unsigned int max_dtr,int card_drv_type,int * drv_type)1294 int mmc_select_drive_strength(struct mmc_card *card, unsigned int max_dtr,
1295 			      int card_drv_type, int *drv_type)
1296 {
1297 	struct mmc_host *host = card->host;
1298 	int host_drv_type = SD_DRIVER_TYPE_B;
1299 
1300 	*drv_type = 0;
1301 
1302 	if (!host->ops->select_drive_strength)
1303 		return 0;
1304 
1305 	/* Use SD definition of driver strength for hosts */
1306 	if (host->caps & MMC_CAP_DRIVER_TYPE_A)
1307 		host_drv_type |= SD_DRIVER_TYPE_A;
1308 
1309 	if (host->caps & MMC_CAP_DRIVER_TYPE_C)
1310 		host_drv_type |= SD_DRIVER_TYPE_C;
1311 
1312 	if (host->caps & MMC_CAP_DRIVER_TYPE_D)
1313 		host_drv_type |= SD_DRIVER_TYPE_D;
1314 
1315 	/*
1316 	 * The drive strength that the hardware can support
1317 	 * depends on the board design.  Pass the appropriate
1318 	 * information and let the hardware specific code
1319 	 * return what is possible given the options
1320 	 */
1321 	return host->ops->select_drive_strength(card, max_dtr,
1322 						host_drv_type,
1323 						card_drv_type,
1324 						drv_type);
1325 }
1326 
1327 /*
1328  * Apply power to the MMC stack.  This is a two-stage process.
1329  * First, we enable power to the card without the clock running.
1330  * We then wait a bit for the power to stabilise.  Finally,
1331  * enable the bus drivers and clock to the card.
1332  *
1333  * We must _NOT_ enable the clock prior to power stablising.
1334  *
1335  * If a host does all the power sequencing itself, ignore the
1336  * initial MMC_POWER_UP stage.
1337  */
mmc_power_up(struct mmc_host * host,u32 ocr)1338 void mmc_power_up(struct mmc_host *host, u32 ocr)
1339 {
1340 	if (host->ios.power_mode == MMC_POWER_ON)
1341 		return;
1342 
1343 	mmc_pwrseq_pre_power_on(host);
1344 
1345 	host->ios.vdd = fls(ocr) - 1;
1346 	host->ios.power_mode = MMC_POWER_UP;
1347 	/* Set initial state and call mmc_set_ios */
1348 	mmc_set_initial_state(host);
1349 
1350 	mmc_set_initial_signal_voltage(host);
1351 
1352 	/*
1353 	 * This delay should be sufficient to allow the power supply
1354 	 * to reach the minimum voltage.
1355 	 */
1356 	mmc_delay(host->ios.power_delay_ms);
1357 
1358 	mmc_pwrseq_post_power_on(host);
1359 
1360 	host->ios.clock = host->f_init;
1361 
1362 	host->ios.power_mode = MMC_POWER_ON;
1363 	mmc_set_ios(host);
1364 
1365 	/*
1366 	 * This delay must be at least 74 clock sizes, or 1 ms, or the
1367 	 * time required to reach a stable voltage.
1368 	 */
1369 	mmc_delay(host->ios.power_delay_ms);
1370 }
1371 
mmc_power_off(struct mmc_host * host)1372 void mmc_power_off(struct mmc_host *host)
1373 {
1374 	if (host->ios.power_mode == MMC_POWER_OFF)
1375 		return;
1376 
1377 	mmc_pwrseq_power_off(host);
1378 
1379 	host->ios.clock = 0;
1380 	host->ios.vdd = 0;
1381 
1382 	host->ios.power_mode = MMC_POWER_OFF;
1383 	/* Set initial state and call mmc_set_ios */
1384 	mmc_set_initial_state(host);
1385 
1386 	/*
1387 	 * Some configurations, such as the 802.11 SDIO card in the OLPC
1388 	 * XO-1.5, require a short delay after poweroff before the card
1389 	 * can be successfully turned on again.
1390 	 */
1391 	mmc_delay(1);
1392 }
1393 
mmc_power_cycle(struct mmc_host * host,u32 ocr)1394 void mmc_power_cycle(struct mmc_host *host, u32 ocr)
1395 {
1396 	mmc_power_off(host);
1397 	/* Wait at least 1 ms according to SD spec */
1398 	mmc_delay(1);
1399 	mmc_power_up(host, ocr);
1400 }
1401 
1402 /*
1403  * Assign a mmc bus handler to a host. Only one bus handler may control a
1404  * host at any given time.
1405  */
mmc_attach_bus(struct mmc_host * host,const struct mmc_bus_ops * ops)1406 void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1407 {
1408 	host->bus_ops = ops;
1409 }
1410 
1411 /*
1412  * Remove the current bus handler from a host.
1413  */
mmc_detach_bus(struct mmc_host * host)1414 void mmc_detach_bus(struct mmc_host *host)
1415 {
1416 	host->bus_ops = NULL;
1417 }
1418 
_mmc_detect_change(struct mmc_host * host,unsigned long delay,bool cd_irq)1419 void _mmc_detect_change(struct mmc_host *host, unsigned long delay, bool cd_irq)
1420 {
1421 	/*
1422 	 * Prevent system sleep for 5s to allow user space to consume the
1423 	 * corresponding uevent. This is especially useful, when CD irq is used
1424 	 * as a system wakeup, but doesn't hurt in other cases.
1425 	 */
1426 	if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL))
1427 		__pm_wakeup_event(host->ws, 5000);
1428 
1429 	host->detect_change = 1;
1430 	mmc_schedule_delayed_work(&host->detect, delay);
1431 }
1432 
1433 /**
1434  *	mmc_detect_change - process change of state on a MMC socket
1435  *	@host: host which changed state.
1436  *	@delay: optional delay to wait before detection (jiffies)
1437  *
1438  *	MMC drivers should call this when they detect a card has been
1439  *	inserted or removed. The MMC layer will confirm that any
1440  *	present card is still functional, and initialize any newly
1441  *	inserted.
1442  */
mmc_detect_change(struct mmc_host * host,unsigned long delay)1443 void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1444 {
1445 	_mmc_detect_change(host, delay, true);
1446 }
1447 EXPORT_SYMBOL(mmc_detect_change);
1448 
mmc_init_erase(struct mmc_card * card)1449 void mmc_init_erase(struct mmc_card *card)
1450 {
1451 	unsigned int sz;
1452 
1453 	if (is_power_of_2(card->erase_size))
1454 		card->erase_shift = ffs(card->erase_size) - 1;
1455 	else
1456 		card->erase_shift = 0;
1457 
1458 	/*
1459 	 * It is possible to erase an arbitrarily large area of an SD or MMC
1460 	 * card.  That is not desirable because it can take a long time
1461 	 * (minutes) potentially delaying more important I/O, and also the
1462 	 * timeout calculations become increasingly hugely over-estimated.
1463 	 * Consequently, 'pref_erase' is defined as a guide to limit erases
1464 	 * to that size and alignment.
1465 	 *
1466 	 * For SD cards that define Allocation Unit size, limit erases to one
1467 	 * Allocation Unit at a time.
1468 	 * For MMC, have a stab at ai good value and for modern cards it will
1469 	 * end up being 4MiB. Note that if the value is too small, it can end
1470 	 * up taking longer to erase. Also note, erase_size is already set to
1471 	 * High Capacity Erase Size if available when this function is called.
1472 	 */
1473 	if (mmc_card_sd(card) && card->ssr.au) {
1474 		card->pref_erase = card->ssr.au;
1475 		card->erase_shift = ffs(card->ssr.au) - 1;
1476 	} else if (card->erase_size) {
1477 		sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1478 		if (sz < 128)
1479 			card->pref_erase = 512 * 1024 / 512;
1480 		else if (sz < 512)
1481 			card->pref_erase = 1024 * 1024 / 512;
1482 		else if (sz < 1024)
1483 			card->pref_erase = 2 * 1024 * 1024 / 512;
1484 		else
1485 			card->pref_erase = 4 * 1024 * 1024 / 512;
1486 		if (card->pref_erase < card->erase_size)
1487 			card->pref_erase = card->erase_size;
1488 		else {
1489 			sz = card->pref_erase % card->erase_size;
1490 			if (sz)
1491 				card->pref_erase += card->erase_size - sz;
1492 		}
1493 	} else
1494 		card->pref_erase = 0;
1495 }
1496 
is_trim_arg(unsigned int arg)1497 static bool is_trim_arg(unsigned int arg)
1498 {
1499 	return (arg & MMC_TRIM_OR_DISCARD_ARGS) && arg != MMC_DISCARD_ARG;
1500 }
1501 
mmc_mmc_erase_timeout(struct mmc_card * card,unsigned int arg,unsigned int qty)1502 static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1503 				          unsigned int arg, unsigned int qty)
1504 {
1505 	unsigned int erase_timeout;
1506 
1507 	if (arg == MMC_DISCARD_ARG ||
1508 	    (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
1509 		erase_timeout = card->ext_csd.trim_timeout;
1510 	} else if (card->ext_csd.erase_group_def & 1) {
1511 		/* High Capacity Erase Group Size uses HC timeouts */
1512 		if (arg == MMC_TRIM_ARG)
1513 			erase_timeout = card->ext_csd.trim_timeout;
1514 		else
1515 			erase_timeout = card->ext_csd.hc_erase_timeout;
1516 	} else {
1517 		/* CSD Erase Group Size uses write timeout */
1518 		unsigned int mult = (10 << card->csd.r2w_factor);
1519 		unsigned int timeout_clks = card->csd.taac_clks * mult;
1520 		unsigned int timeout_us;
1521 
1522 		/* Avoid overflow: e.g. taac_ns=80000000 mult=1280 */
1523 		if (card->csd.taac_ns < 1000000)
1524 			timeout_us = (card->csd.taac_ns * mult) / 1000;
1525 		else
1526 			timeout_us = (card->csd.taac_ns / 1000) * mult;
1527 
1528 		/*
1529 		 * ios.clock is only a target.  The real clock rate might be
1530 		 * less but not that much less, so fudge it by multiplying by 2.
1531 		 */
1532 		timeout_clks <<= 1;
1533 		timeout_us += (timeout_clks * 1000) /
1534 			      (card->host->ios.clock / 1000);
1535 
1536 		erase_timeout = timeout_us / 1000;
1537 
1538 		/*
1539 		 * Theoretically, the calculation could underflow so round up
1540 		 * to 1ms in that case.
1541 		 */
1542 		if (!erase_timeout)
1543 			erase_timeout = 1;
1544 	}
1545 
1546 	/* Multiplier for secure operations */
1547 	if (arg & MMC_SECURE_ARGS) {
1548 		if (arg == MMC_SECURE_ERASE_ARG)
1549 			erase_timeout *= card->ext_csd.sec_erase_mult;
1550 		else
1551 			erase_timeout *= card->ext_csd.sec_trim_mult;
1552 	}
1553 
1554 	erase_timeout *= qty;
1555 
1556 	/*
1557 	 * Ensure at least a 1 second timeout for SPI as per
1558 	 * 'mmc_set_data_timeout()'
1559 	 */
1560 	if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1561 		erase_timeout = 1000;
1562 
1563 	return erase_timeout;
1564 }
1565 
mmc_sd_erase_timeout(struct mmc_card * card,unsigned int arg,unsigned int qty)1566 static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
1567 					 unsigned int arg,
1568 					 unsigned int qty)
1569 {
1570 	unsigned int erase_timeout;
1571 
1572 	/* for DISCARD none of the below calculation applies.
1573 	 * the busy timeout is 250msec per discard command.
1574 	 */
1575 	if (arg == SD_DISCARD_ARG)
1576 		return SD_DISCARD_TIMEOUT_MS;
1577 
1578 	if (card->ssr.erase_timeout) {
1579 		/* Erase timeout specified in SD Status Register (SSR) */
1580 		erase_timeout = card->ssr.erase_timeout * qty +
1581 				card->ssr.erase_offset;
1582 	} else {
1583 		/*
1584 		 * Erase timeout not specified in SD Status Register (SSR) so
1585 		 * use 250ms per write block.
1586 		 */
1587 		erase_timeout = 250 * qty;
1588 	}
1589 
1590 	/* Must not be less than 1 second */
1591 	if (erase_timeout < 1000)
1592 		erase_timeout = 1000;
1593 
1594 	return erase_timeout;
1595 }
1596 
mmc_erase_timeout(struct mmc_card * card,unsigned int arg,unsigned int qty)1597 static unsigned int mmc_erase_timeout(struct mmc_card *card,
1598 				      unsigned int arg,
1599 				      unsigned int qty)
1600 {
1601 	if (mmc_card_sd(card))
1602 		return mmc_sd_erase_timeout(card, arg, qty);
1603 	else
1604 		return mmc_mmc_erase_timeout(card, arg, qty);
1605 }
1606 
mmc_do_erase(struct mmc_card * card,sector_t from,sector_t to,unsigned int arg)1607 static int mmc_do_erase(struct mmc_card *card, sector_t from,
1608 			sector_t to, unsigned int arg)
1609 {
1610 	struct mmc_command cmd = {};
1611 	unsigned int qty = 0, busy_timeout = 0;
1612 	bool use_r1b_resp;
1613 	int err;
1614 
1615 	mmc_retune_hold(card->host);
1616 
1617 	/*
1618 	 * qty is used to calculate the erase timeout which depends on how many
1619 	 * erase groups (or allocation units in SD terminology) are affected.
1620 	 * We count erasing part of an erase group as one erase group.
1621 	 * For SD, the allocation units are always a power of 2.  For MMC, the
1622 	 * erase group size is almost certainly also power of 2, but it does not
1623 	 * seem to insist on that in the JEDEC standard, so we fall back to
1624 	 * division in that case.  SD may not specify an allocation unit size,
1625 	 * in which case the timeout is based on the number of write blocks.
1626 	 *
1627 	 * Note that the timeout for secure trim 2 will only be correct if the
1628 	 * number of erase groups specified is the same as the total of all
1629 	 * preceding secure trim 1 commands.  Since the power may have been
1630 	 * lost since the secure trim 1 commands occurred, it is generally
1631 	 * impossible to calculate the secure trim 2 timeout correctly.
1632 	 */
1633 	if (card->erase_shift)
1634 		qty += ((to >> card->erase_shift) -
1635 			(from >> card->erase_shift)) + 1;
1636 	else if (mmc_card_sd(card))
1637 		qty += to - from + 1;
1638 	else
1639 		qty += (mmc_sector_div(to, card->erase_size) -
1640 			mmc_sector_div(from, card->erase_size)) + 1;
1641 
1642 	if (!mmc_card_blockaddr(card)) {
1643 		from <<= 9;
1644 		to <<= 9;
1645 	}
1646 
1647 	if (mmc_card_sd(card))
1648 		cmd.opcode = SD_ERASE_WR_BLK_START;
1649 	else
1650 		cmd.opcode = MMC_ERASE_GROUP_START;
1651 	cmd.arg = from;
1652 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1653 
1654 	if (mmc_card_ult_capacity(card)) {
1655 		cmd.ext_addr = from >> 32;
1656 		cmd.has_ext_addr = true;
1657 	}
1658 
1659 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1660 	if (err) {
1661 		pr_err("mmc_erase: group start error %d, "
1662 		       "status %#x\n", err, cmd.resp[0]);
1663 		err = -EIO;
1664 		goto out;
1665 	}
1666 
1667 	memset(&cmd, 0, sizeof(struct mmc_command));
1668 	if (mmc_card_sd(card))
1669 		cmd.opcode = SD_ERASE_WR_BLK_END;
1670 	else
1671 		cmd.opcode = MMC_ERASE_GROUP_END;
1672 	cmd.arg = to;
1673 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1674 
1675 	if (mmc_card_ult_capacity(card)) {
1676 		cmd.ext_addr = to >> 32;
1677 		cmd.has_ext_addr = true;
1678 	}
1679 
1680 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1681 	if (err) {
1682 		pr_err("mmc_erase: group end error %d, status %#x\n",
1683 		       err, cmd.resp[0]);
1684 		err = -EIO;
1685 		goto out;
1686 	}
1687 
1688 	memset(&cmd, 0, sizeof(struct mmc_command));
1689 	cmd.opcode = MMC_ERASE;
1690 	cmd.arg = arg;
1691 	busy_timeout = mmc_erase_timeout(card, arg, qty);
1692 	use_r1b_resp = mmc_prepare_busy_cmd(card->host, &cmd, busy_timeout);
1693 
1694 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1695 	if (err) {
1696 		pr_err("mmc_erase: erase error %d, status %#x\n",
1697 		       err, cmd.resp[0]);
1698 		err = -EIO;
1699 		goto out;
1700 	}
1701 
1702 	if (mmc_host_is_spi(card->host))
1703 		goto out;
1704 
1705 	/*
1706 	 * In case of when R1B + MMC_CAP_WAIT_WHILE_BUSY is used, the polling
1707 	 * shall be avoided.
1708 	 */
1709 	if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp)
1710 		goto out;
1711 
1712 	/* Let's poll to find out when the erase operation completes. */
1713 	err = mmc_poll_for_busy(card, busy_timeout, false, MMC_BUSY_ERASE);
1714 
1715 out:
1716 	mmc_retune_release(card->host);
1717 	return err;
1718 }
1719 
mmc_align_erase_size(struct mmc_card * card,sector_t * from,sector_t * to,unsigned int nr)1720 static unsigned int mmc_align_erase_size(struct mmc_card *card,
1721 					 sector_t *from,
1722 					 sector_t *to,
1723 					 unsigned int nr)
1724 {
1725 	sector_t from_new = *from;
1726 	unsigned int nr_new = nr, rem;
1727 
1728 	/*
1729 	 * When the 'card->erase_size' is power of 2, we can use round_up/down()
1730 	 * to align the erase size efficiently.
1731 	 */
1732 	if (is_power_of_2(card->erase_size)) {
1733 		sector_t temp = from_new;
1734 
1735 		from_new = round_up(temp, card->erase_size);
1736 		rem = from_new - temp;
1737 
1738 		if (nr_new > rem)
1739 			nr_new -= rem;
1740 		else
1741 			return 0;
1742 
1743 		nr_new = round_down(nr_new, card->erase_size);
1744 	} else {
1745 		rem = mmc_sector_mod(from_new, card->erase_size);
1746 		if (rem) {
1747 			rem = card->erase_size - rem;
1748 			from_new += rem;
1749 			if (nr_new > rem)
1750 				nr_new -= rem;
1751 			else
1752 				return 0;
1753 		}
1754 
1755 		rem = nr_new % card->erase_size;
1756 		if (rem)
1757 			nr_new -= rem;
1758 	}
1759 
1760 	if (nr_new == 0)
1761 		return 0;
1762 
1763 	*to = from_new + nr_new;
1764 	*from = from_new;
1765 
1766 	return nr_new;
1767 }
1768 
1769 /**
1770  * mmc_erase - erase sectors.
1771  * @card: card to erase
1772  * @from: first sector to erase
1773  * @nr: number of sectors to erase
1774  * @arg: erase command argument
1775  *
1776  * Caller must claim host before calling this function.
1777  */
mmc_erase(struct mmc_card * card,sector_t from,unsigned int nr,unsigned int arg)1778 int mmc_erase(struct mmc_card *card, sector_t from, unsigned int nr,
1779 	      unsigned int arg)
1780 {
1781 	unsigned int rem;
1782 	sector_t to = from + nr;
1783 
1784 	int err;
1785 
1786 	if (!(card->csd.cmdclass & CCC_ERASE))
1787 		return -EOPNOTSUPP;
1788 
1789 	if (!card->erase_size)
1790 		return -EOPNOTSUPP;
1791 
1792 	if (mmc_card_sd(card) && arg != SD_ERASE_ARG && arg != SD_DISCARD_ARG)
1793 		return -EOPNOTSUPP;
1794 
1795 	if (mmc_card_mmc(card) && (arg & MMC_SECURE_ARGS) &&
1796 	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
1797 		return -EOPNOTSUPP;
1798 
1799 	if (mmc_card_mmc(card) && is_trim_arg(arg) &&
1800 	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
1801 		return -EOPNOTSUPP;
1802 
1803 	if (arg == MMC_SECURE_ERASE_ARG) {
1804 		if (mmc_sector_mod(from, card->erase_size) || nr % card->erase_size)
1805 			return -EINVAL;
1806 	}
1807 
1808 	if (arg == MMC_ERASE_ARG)
1809 		nr = mmc_align_erase_size(card, &from, &to, nr);
1810 
1811 	if (nr == 0)
1812 		return 0;
1813 
1814 	if (to <= from)
1815 		return -EINVAL;
1816 
1817 	/* 'from' and 'to' are inclusive */
1818 	to -= 1;
1819 
1820 	/*
1821 	 * Special case where only one erase-group fits in the timeout budget:
1822 	 * If the region crosses an erase-group boundary on this particular
1823 	 * case, we will be trimming more than one erase-group which, does not
1824 	 * fit in the timeout budget of the controller, so we need to split it
1825 	 * and call mmc_do_erase() twice if necessary. This special case is
1826 	 * identified by the card->eg_boundary flag.
1827 	 */
1828 	rem = card->erase_size - mmc_sector_mod(from, card->erase_size);
1829 	if ((arg & MMC_TRIM_OR_DISCARD_ARGS) && card->eg_boundary && nr > rem) {
1830 		err = mmc_do_erase(card, from, from + rem - 1, arg);
1831 		from += rem;
1832 		if ((err) || (to <= from))
1833 			return err;
1834 	}
1835 
1836 	return mmc_do_erase(card, from, to, arg);
1837 }
1838 EXPORT_SYMBOL(mmc_erase);
1839 
mmc_can_erase(struct mmc_card * card)1840 int mmc_can_erase(struct mmc_card *card)
1841 {
1842 	if (card->csd.cmdclass & CCC_ERASE && card->erase_size)
1843 		return 1;
1844 	return 0;
1845 }
1846 EXPORT_SYMBOL(mmc_can_erase);
1847 
mmc_can_trim(struct mmc_card * card)1848 int mmc_can_trim(struct mmc_card *card)
1849 {
1850 	if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN) &&
1851 	    (!(card->quirks & MMC_QUIRK_TRIM_BROKEN)))
1852 		return 1;
1853 	return 0;
1854 }
1855 EXPORT_SYMBOL(mmc_can_trim);
1856 
mmc_can_discard(struct mmc_card * card)1857 int mmc_can_discard(struct mmc_card *card)
1858 {
1859 	/*
1860 	 * As there's no way to detect the discard support bit at v4.5
1861 	 * use the s/w feature support filed.
1862 	 */
1863 	if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
1864 		return 1;
1865 	return 0;
1866 }
1867 EXPORT_SYMBOL(mmc_can_discard);
1868 
mmc_can_sanitize(struct mmc_card * card)1869 int mmc_can_sanitize(struct mmc_card *card)
1870 {
1871 	if (!mmc_can_trim(card) && !mmc_can_erase(card))
1872 		return 0;
1873 	if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
1874 		return 1;
1875 	return 0;
1876 }
1877 
mmc_can_secure_erase_trim(struct mmc_card * card)1878 int mmc_can_secure_erase_trim(struct mmc_card *card)
1879 {
1880 	if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) &&
1881 	    !(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN))
1882 		return 1;
1883 	return 0;
1884 }
1885 EXPORT_SYMBOL(mmc_can_secure_erase_trim);
1886 
mmc_erase_group_aligned(struct mmc_card * card,sector_t from,unsigned int nr)1887 int mmc_erase_group_aligned(struct mmc_card *card, sector_t from,
1888 			    unsigned int nr)
1889 {
1890 	if (!card->erase_size)
1891 		return 0;
1892 	if (mmc_sector_mod(from, card->erase_size) || nr % card->erase_size)
1893 		return 0;
1894 	return 1;
1895 }
1896 EXPORT_SYMBOL(mmc_erase_group_aligned);
1897 
mmc_do_calc_max_discard(struct mmc_card * card,unsigned int arg)1898 static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
1899 					    unsigned int arg)
1900 {
1901 	struct mmc_host *host = card->host;
1902 	unsigned int max_discard, x, y, qty = 0, max_qty, min_qty, timeout;
1903 	unsigned int last_timeout = 0;
1904 	unsigned int max_busy_timeout = host->max_busy_timeout ?
1905 			host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS;
1906 
1907 	if (card->erase_shift) {
1908 		max_qty = UINT_MAX >> card->erase_shift;
1909 		min_qty = card->pref_erase >> card->erase_shift;
1910 	} else if (mmc_card_sd(card)) {
1911 		max_qty = UINT_MAX;
1912 		min_qty = card->pref_erase;
1913 	} else {
1914 		max_qty = UINT_MAX / card->erase_size;
1915 		min_qty = card->pref_erase / card->erase_size;
1916 	}
1917 
1918 	/*
1919 	 * We should not only use 'host->max_busy_timeout' as the limitation
1920 	 * when deciding the max discard sectors. We should set a balance value
1921 	 * to improve the erase speed, and it can not get too long timeout at
1922 	 * the same time.
1923 	 *
1924 	 * Here we set 'card->pref_erase' as the minimal discard sectors no
1925 	 * matter what size of 'host->max_busy_timeout', but if the
1926 	 * 'host->max_busy_timeout' is large enough for more discard sectors,
1927 	 * then we can continue to increase the max discard sectors until we
1928 	 * get a balance value. In cases when the 'host->max_busy_timeout'
1929 	 * isn't specified, use the default max erase timeout.
1930 	 */
1931 	do {
1932 		y = 0;
1933 		for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
1934 			timeout = mmc_erase_timeout(card, arg, qty + x);
1935 
1936 			if (qty + x > min_qty && timeout > max_busy_timeout)
1937 				break;
1938 
1939 			if (timeout < last_timeout)
1940 				break;
1941 			last_timeout = timeout;
1942 			y = x;
1943 		}
1944 		qty += y;
1945 	} while (y);
1946 
1947 	if (!qty)
1948 		return 0;
1949 
1950 	/*
1951 	 * When specifying a sector range to trim, chances are we might cross
1952 	 * an erase-group boundary even if the amount of sectors is less than
1953 	 * one erase-group.
1954 	 * If we can only fit one erase-group in the controller timeout budget,
1955 	 * we have to care that erase-group boundaries are not crossed by a
1956 	 * single trim operation. We flag that special case with "eg_boundary".
1957 	 * In all other cases we can just decrement qty and pretend that we
1958 	 * always touch (qty + 1) erase-groups as a simple optimization.
1959 	 */
1960 	if (qty == 1)
1961 		card->eg_boundary = 1;
1962 	else
1963 		qty--;
1964 
1965 	/* Convert qty to sectors */
1966 	if (card->erase_shift)
1967 		max_discard = qty << card->erase_shift;
1968 	else if (mmc_card_sd(card))
1969 		max_discard = qty + 1;
1970 	else
1971 		max_discard = qty * card->erase_size;
1972 
1973 	return max_discard;
1974 }
1975 
mmc_calc_max_discard(struct mmc_card * card)1976 unsigned int mmc_calc_max_discard(struct mmc_card *card)
1977 {
1978 	struct mmc_host *host = card->host;
1979 	unsigned int max_discard, max_trim;
1980 
1981 	/*
1982 	 * Without erase_group_def set, MMC erase timeout depends on clock
1983 	 * frequence which can change.  In that case, the best choice is
1984 	 * just the preferred erase size.
1985 	 */
1986 	if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
1987 		return card->pref_erase;
1988 
1989 	max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
1990 	if (mmc_can_trim(card)) {
1991 		max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
1992 		if (max_trim < max_discard || max_discard == 0)
1993 			max_discard = max_trim;
1994 	} else if (max_discard < card->erase_size) {
1995 		max_discard = 0;
1996 	}
1997 	pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
1998 		mmc_hostname(host), max_discard, host->max_busy_timeout ?
1999 		host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS);
2000 	return max_discard;
2001 }
2002 EXPORT_SYMBOL(mmc_calc_max_discard);
2003 
mmc_card_is_blockaddr(struct mmc_card * card)2004 bool mmc_card_is_blockaddr(struct mmc_card *card)
2005 {
2006 	return card ? mmc_card_blockaddr(card) : false;
2007 }
2008 EXPORT_SYMBOL(mmc_card_is_blockaddr);
2009 
mmc_set_blocklen(struct mmc_card * card,unsigned int blocklen)2010 int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
2011 {
2012 	struct mmc_command cmd = {};
2013 
2014 	if (mmc_card_blockaddr(card) || mmc_card_ddr52(card) ||
2015 	    mmc_card_hs400(card) || mmc_card_hs400es(card))
2016 		return 0;
2017 
2018 	cmd.opcode = MMC_SET_BLOCKLEN;
2019 	cmd.arg = blocklen;
2020 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2021 	return mmc_wait_for_cmd(card->host, &cmd, 5);
2022 }
2023 EXPORT_SYMBOL(mmc_set_blocklen);
2024 
mmc_hw_reset_for_init(struct mmc_host * host)2025 static void mmc_hw_reset_for_init(struct mmc_host *host)
2026 {
2027 	mmc_pwrseq_reset(host);
2028 
2029 	if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->card_hw_reset)
2030 		return;
2031 	host->ops->card_hw_reset(host);
2032 }
2033 
2034 /**
2035  * mmc_hw_reset - reset the card in hardware
2036  * @card: card to be reset
2037  *
2038  * Hard reset the card. This function is only for upper layers, like the
2039  * block layer or card drivers. You cannot use it in host drivers (struct
2040  * mmc_card might be gone then).
2041  *
2042  * Return: 0 on success, -errno on failure
2043  */
mmc_hw_reset(struct mmc_card * card)2044 int mmc_hw_reset(struct mmc_card *card)
2045 {
2046 	struct mmc_host *host = card->host;
2047 	int ret;
2048 
2049 	ret = host->bus_ops->hw_reset(host);
2050 	if (ret < 0)
2051 		pr_warn("%s: tried to HW reset card, got error %d\n",
2052 			mmc_hostname(host), ret);
2053 
2054 	return ret;
2055 }
2056 EXPORT_SYMBOL(mmc_hw_reset);
2057 
mmc_sw_reset(struct mmc_card * card)2058 int mmc_sw_reset(struct mmc_card *card)
2059 {
2060 	struct mmc_host *host = card->host;
2061 	int ret;
2062 
2063 	if (!host->bus_ops->sw_reset)
2064 		return -EOPNOTSUPP;
2065 
2066 	ret = host->bus_ops->sw_reset(host);
2067 	if (ret)
2068 		pr_warn("%s: tried to SW reset card, got error %d\n",
2069 			mmc_hostname(host), ret);
2070 
2071 	return ret;
2072 }
2073 EXPORT_SYMBOL(mmc_sw_reset);
2074 
mmc_rescan_try_freq(struct mmc_host * host,unsigned freq)2075 static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
2076 {
2077 	host->f_init = freq;
2078 
2079 	pr_debug("%s: %s: trying to init card at %u Hz\n",
2080 		mmc_hostname(host), __func__, host->f_init);
2081 
2082 	mmc_power_up(host, host->ocr_avail);
2083 
2084 	/*
2085 	 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2086 	 * do a hardware reset if possible.
2087 	 */
2088 	mmc_hw_reset_for_init(host);
2089 
2090 	/*
2091 	 * sdio_reset sends CMD52 to reset card.  Since we do not know
2092 	 * if the card is being re-initialized, just send it.  CMD52
2093 	 * should be ignored by SD/eMMC cards.
2094 	 * Skip it if we already know that we do not support SDIO commands
2095 	 */
2096 	if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2097 		sdio_reset(host);
2098 
2099 	mmc_go_idle(host);
2100 
2101 	if (!(host->caps2 & MMC_CAP2_NO_SD)) {
2102 		if (mmc_send_if_cond_pcie(host, host->ocr_avail))
2103 			goto out;
2104 		if (mmc_card_sd_express(host))
2105 			return 0;
2106 	}
2107 
2108 	/* Order's important: probe SDIO, then SD, then MMC */
2109 	if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2110 		if (!mmc_attach_sdio(host))
2111 			return 0;
2112 
2113 	if (!(host->caps2 & MMC_CAP2_NO_SD))
2114 		if (!mmc_attach_sd(host))
2115 			return 0;
2116 
2117 	if (!(host->caps2 & MMC_CAP2_NO_MMC))
2118 		if (!mmc_attach_mmc(host))
2119 			return 0;
2120 
2121 out:
2122 	mmc_power_off(host);
2123 	return -EIO;
2124 }
2125 
_mmc_detect_card_removed(struct mmc_host * host)2126 int _mmc_detect_card_removed(struct mmc_host *host)
2127 {
2128 	int ret;
2129 
2130 	if (!host->card || mmc_card_removed(host->card))
2131 		return 1;
2132 
2133 	ret = host->bus_ops->alive(host);
2134 
2135 	/*
2136 	 * Card detect status and alive check may be out of sync if card is
2137 	 * removed slowly, when card detect switch changes while card/slot
2138 	 * pads are still contacted in hardware (refer to "SD Card Mechanical
2139 	 * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2140 	 * detect work 200ms later for this case.
2141 	 */
2142 	if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) {
2143 		mmc_detect_change(host, msecs_to_jiffies(200));
2144 		pr_debug("%s: card removed too slowly\n", mmc_hostname(host));
2145 	}
2146 
2147 	if (ret) {
2148 		mmc_card_set_removed(host->card);
2149 		pr_debug("%s: card remove detected\n", mmc_hostname(host));
2150 	}
2151 
2152 	return ret;
2153 }
2154 
mmc_detect_card_removed(struct mmc_host * host)2155 int mmc_detect_card_removed(struct mmc_host *host)
2156 {
2157 	struct mmc_card *card = host->card;
2158 	int ret;
2159 
2160 	WARN_ON(!host->claimed);
2161 
2162 	if (!card)
2163 		return 1;
2164 
2165 	if (!mmc_card_is_removable(host))
2166 		return 0;
2167 
2168 	ret = mmc_card_removed(card);
2169 	/*
2170 	 * The card will be considered unchanged unless we have been asked to
2171 	 * detect a change or host requires polling to provide card detection.
2172 	 */
2173 	if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL))
2174 		return ret;
2175 
2176 	host->detect_change = 0;
2177 	if (!ret) {
2178 		ret = _mmc_detect_card_removed(host);
2179 		if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) {
2180 			/*
2181 			 * Schedule a detect work as soon as possible to let a
2182 			 * rescan handle the card removal.
2183 			 */
2184 			cancel_delayed_work(&host->detect);
2185 			_mmc_detect_change(host, 0, false);
2186 		}
2187 	}
2188 
2189 	return ret;
2190 }
2191 EXPORT_SYMBOL(mmc_detect_card_removed);
2192 
mmc_card_alternative_gpt_sector(struct mmc_card * card,sector_t * gpt_sector)2193 int mmc_card_alternative_gpt_sector(struct mmc_card *card, sector_t *gpt_sector)
2194 {
2195 	unsigned int boot_sectors_num;
2196 
2197 	if ((!(card->host->caps2 & MMC_CAP2_ALT_GPT_TEGRA)))
2198 		return -EOPNOTSUPP;
2199 
2200 	/* filter out unrelated cards */
2201 	if (card->ext_csd.rev < 3 ||
2202 	    !mmc_card_mmc(card) ||
2203 	    !mmc_card_is_blockaddr(card) ||
2204 	     mmc_card_is_removable(card->host))
2205 		return -ENOENT;
2206 
2207 	/*
2208 	 * eMMC storage has two special boot partitions in addition to the
2209 	 * main one.  NVIDIA's bootloader linearizes eMMC boot0->boot1->main
2210 	 * accesses, this means that the partition table addresses are shifted
2211 	 * by the size of boot partitions.  In accordance with the eMMC
2212 	 * specification, the boot partition size is calculated as follows:
2213 	 *
2214 	 *	boot partition size = 128K byte x BOOT_SIZE_MULT
2215 	 *
2216 	 * Calculate number of sectors occupied by the both boot partitions.
2217 	 */
2218 	boot_sectors_num = card->ext_csd.raw_boot_mult * SZ_128K /
2219 			   SZ_512 * MMC_NUM_BOOT_PARTITION;
2220 
2221 	/* Defined by NVIDIA and used by Android devices. */
2222 	*gpt_sector = card->ext_csd.sectors - boot_sectors_num - 1;
2223 
2224 	return 0;
2225 }
2226 EXPORT_SYMBOL(mmc_card_alternative_gpt_sector);
2227 
mmc_rescan(struct work_struct * work)2228 void mmc_rescan(struct work_struct *work)
2229 {
2230 	struct mmc_host *host =
2231 		container_of(work, struct mmc_host, detect.work);
2232 	int i;
2233 
2234 	if (host->rescan_disable)
2235 		return;
2236 
2237 	/* If there is a non-removable card registered, only scan once */
2238 	if (!mmc_card_is_removable(host) && host->rescan_entered)
2239 		return;
2240 	host->rescan_entered = 1;
2241 
2242 	if (host->trigger_card_event && host->ops->card_event) {
2243 		mmc_claim_host(host);
2244 		host->ops->card_event(host);
2245 		mmc_release_host(host);
2246 		host->trigger_card_event = false;
2247 	}
2248 
2249 	/* Verify a registered card to be functional, else remove it. */
2250 	if (host->bus_ops)
2251 		host->bus_ops->detect(host);
2252 
2253 	host->detect_change = 0;
2254 
2255 	/* if there still is a card present, stop here */
2256 	if (host->bus_ops != NULL)
2257 		goto out;
2258 
2259 	mmc_claim_host(host);
2260 	if (mmc_card_is_removable(host) && host->ops->get_cd &&
2261 			host->ops->get_cd(host) == 0) {
2262 		mmc_power_off(host);
2263 		mmc_release_host(host);
2264 		goto out;
2265 	}
2266 
2267 	/* If an SD express card is present, then leave it as is. */
2268 	if (mmc_card_sd_express(host)) {
2269 		mmc_release_host(host);
2270 		goto out;
2271 	}
2272 
2273 	/*
2274 	 * Ideally we should favor initialization of legacy SD cards and defer
2275 	 * UHS-II enumeration. However, it seems like cards doesn't reliably
2276 	 * announce their support for UHS-II in the response to the ACMD41,
2277 	 * while initializing the legacy SD interface. Therefore, let's start
2278 	 * with UHS-II for now.
2279 	 */
2280 	if (!mmc_attach_sd_uhs2(host)) {
2281 		mmc_release_host(host);
2282 		goto out;
2283 	}
2284 
2285 	for (i = 0; i < ARRAY_SIZE(freqs); i++) {
2286 		unsigned int freq = freqs[i];
2287 		if (freq > host->f_max) {
2288 			if (i + 1 < ARRAY_SIZE(freqs))
2289 				continue;
2290 			freq = host->f_max;
2291 		}
2292 		if (!mmc_rescan_try_freq(host, max(freq, host->f_min)))
2293 			break;
2294 		if (freqs[i] <= host->f_min)
2295 			break;
2296 	}
2297 
2298 	/* A non-removable card should have been detected by now. */
2299 	if (!mmc_card_is_removable(host) && !host->bus_ops)
2300 		pr_info("%s: Failed to initialize a non-removable card",
2301 			mmc_hostname(host));
2302 
2303 	/*
2304 	 * Ignore the command timeout errors observed during
2305 	 * the card init as those are excepted.
2306 	 */
2307 	host->err_stats[MMC_ERR_CMD_TIMEOUT] = 0;
2308 	mmc_release_host(host);
2309 
2310  out:
2311 	if (host->caps & MMC_CAP_NEEDS_POLL)
2312 		mmc_schedule_delayed_work(&host->detect, HZ);
2313 }
2314 
mmc_start_host(struct mmc_host * host)2315 void mmc_start_host(struct mmc_host *host)
2316 {
2317 	bool power_up = !(host->caps2 &
2318 			 (MMC_CAP2_NO_PRESCAN_POWERUP | MMC_CAP2_SD_UHS2));
2319 
2320 	host->f_init = max(min(freqs[0], host->f_max), host->f_min);
2321 	host->rescan_disable = 0;
2322 
2323 	if (power_up) {
2324 		mmc_claim_host(host);
2325 		mmc_power_up(host, host->ocr_avail);
2326 		mmc_release_host(host);
2327 	}
2328 
2329 	mmc_gpiod_request_cd_irq(host);
2330 	_mmc_detect_change(host, 0, false);
2331 }
2332 
__mmc_stop_host(struct mmc_host * host)2333 void __mmc_stop_host(struct mmc_host *host)
2334 {
2335 	if (host->rescan_disable)
2336 		return;
2337 
2338 	if (host->slot.cd_irq >= 0) {
2339 		mmc_gpio_set_cd_wake(host, false);
2340 		disable_irq(host->slot.cd_irq);
2341 	}
2342 
2343 	host->rescan_disable = 1;
2344 	cancel_delayed_work_sync(&host->detect);
2345 }
2346 
mmc_stop_host(struct mmc_host * host)2347 void mmc_stop_host(struct mmc_host *host)
2348 {
2349 	__mmc_stop_host(host);
2350 
2351 	/* clear pm flags now and let card drivers set them as needed */
2352 	host->pm_flags = 0;
2353 
2354 	if (host->bus_ops) {
2355 		/* Calling bus_ops->remove() with a claimed host can deadlock */
2356 		host->bus_ops->remove(host);
2357 		mmc_claim_host(host);
2358 		mmc_detach_bus(host);
2359 		mmc_power_off(host);
2360 		mmc_release_host(host);
2361 		return;
2362 	}
2363 
2364 	mmc_claim_host(host);
2365 	mmc_power_off(host);
2366 	mmc_release_host(host);
2367 }
2368 
mmc_init(void)2369 static int __init mmc_init(void)
2370 {
2371 	int ret;
2372 
2373 	ret = mmc_register_bus();
2374 	if (ret)
2375 		return ret;
2376 
2377 	ret = mmc_register_host_class();
2378 	if (ret)
2379 		goto unregister_bus;
2380 
2381 	ret = sdio_register_bus();
2382 	if (ret)
2383 		goto unregister_host_class;
2384 
2385 	return 0;
2386 
2387 unregister_host_class:
2388 	mmc_unregister_host_class();
2389 unregister_bus:
2390 	mmc_unregister_bus();
2391 	return ret;
2392 }
2393 
mmc_exit(void)2394 static void __exit mmc_exit(void)
2395 {
2396 	sdio_unregister_bus();
2397 	mmc_unregister_host_class();
2398 	mmc_unregister_bus();
2399 }
2400 
2401 subsys_initcall(mmc_init);
2402 module_exit(mmc_exit);
2403 
2404 MODULE_DESCRIPTION("MMC core driver");
2405 MODULE_LICENSE("GPL");
2406