xref: /linux/drivers/nvme/host/core.c (revision 8a61cb6e150ea907b580a1b5e705decb0a3ffc86)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6 
7 #include <linux/async.h>
8 #include <linux/blkdev.h>
9 #include <linux/blk-mq.h>
10 #include <linux/blk-integrity.h>
11 #include <linux/compat.h>
12 #include <linux/delay.h>
13 #include <linux/errno.h>
14 #include <linux/hdreg.h>
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/backing-dev.h>
18 #include <linux/slab.h>
19 #include <linux/types.h>
20 #include <linux/pr.h>
21 #include <linux/ptrace.h>
22 #include <linux/nvme_ioctl.h>
23 #include <linux/pm_qos.h>
24 #include <linux/ratelimit.h>
25 #include <linux/unaligned.h>
26 
27 #include "nvme.h"
28 #include "fabrics.h"
29 #include <linux/nvme-auth.h>
30 
31 #define CREATE_TRACE_POINTS
32 #include "trace.h"
33 
34 #define NVME_MINORS		(1U << MINORBITS)
35 
36 struct nvme_ns_info {
37 	struct nvme_ns_ids ids;
38 	u32 nsid;
39 	__le32 anagrpid;
40 	u8 pi_offset;
41 	bool is_shared;
42 	bool is_readonly;
43 	bool is_ready;
44 	bool is_removed;
45 	bool is_rotational;
46 	bool no_vwc;
47 };
48 
49 unsigned int admin_timeout = 60;
50 module_param(admin_timeout, uint, 0644);
51 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
52 EXPORT_SYMBOL_GPL(admin_timeout);
53 
54 unsigned int nvme_io_timeout = 30;
55 module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
56 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
57 EXPORT_SYMBOL_GPL(nvme_io_timeout);
58 
59 static unsigned char shutdown_timeout = 5;
60 module_param(shutdown_timeout, byte, 0644);
61 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
62 
63 static u8 nvme_max_retries = 5;
64 module_param_named(max_retries, nvme_max_retries, byte, 0644);
65 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
66 
67 static unsigned long default_ps_max_latency_us = 100000;
68 module_param(default_ps_max_latency_us, ulong, 0644);
69 MODULE_PARM_DESC(default_ps_max_latency_us,
70 		 "max power saving latency for new devices; use PM QOS to change per device");
71 
72 static bool force_apst;
73 module_param(force_apst, bool, 0644);
74 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
75 
76 static unsigned long apst_primary_timeout_ms = 100;
77 module_param(apst_primary_timeout_ms, ulong, 0644);
78 MODULE_PARM_DESC(apst_primary_timeout_ms,
79 	"primary APST timeout in ms");
80 
81 static unsigned long apst_secondary_timeout_ms = 2000;
82 module_param(apst_secondary_timeout_ms, ulong, 0644);
83 MODULE_PARM_DESC(apst_secondary_timeout_ms,
84 	"secondary APST timeout in ms");
85 
86 static unsigned long apst_primary_latency_tol_us = 15000;
87 module_param(apst_primary_latency_tol_us, ulong, 0644);
88 MODULE_PARM_DESC(apst_primary_latency_tol_us,
89 	"primary APST latency tolerance in us");
90 
91 static unsigned long apst_secondary_latency_tol_us = 100000;
92 module_param(apst_secondary_latency_tol_us, ulong, 0644);
93 MODULE_PARM_DESC(apst_secondary_latency_tol_us,
94 	"secondary APST latency tolerance in us");
95 
96 /*
97  * Older kernels didn't enable protection information if it was at an offset.
98  * Newer kernels do, so it breaks reads on the upgrade if such formats were
99  * used in prior kernels since the metadata written did not contain a valid
100  * checksum.
101  */
102 static bool disable_pi_offsets = false;
103 module_param(disable_pi_offsets, bool, 0444);
104 MODULE_PARM_DESC(disable_pi_offsets,
105 	"disable protection information if it has an offset");
106 
107 /*
108  * nvme_wq - hosts nvme related works that are not reset or delete
109  * nvme_reset_wq - hosts nvme reset works
110  * nvme_delete_wq - hosts nvme delete works
111  *
112  * nvme_wq will host works such as scan, aen handling, fw activation,
113  * keep-alive, periodic reconnects etc. nvme_reset_wq
114  * runs reset works which also flush works hosted on nvme_wq for
115  * serialization purposes. nvme_delete_wq host controller deletion
116  * works which flush reset works for serialization.
117  */
118 struct workqueue_struct *nvme_wq;
119 EXPORT_SYMBOL_GPL(nvme_wq);
120 
121 struct workqueue_struct *nvme_reset_wq;
122 EXPORT_SYMBOL_GPL(nvme_reset_wq);
123 
124 struct workqueue_struct *nvme_delete_wq;
125 EXPORT_SYMBOL_GPL(nvme_delete_wq);
126 
127 static LIST_HEAD(nvme_subsystems);
128 DEFINE_MUTEX(nvme_subsystems_lock);
129 
130 static DEFINE_IDA(nvme_instance_ida);
131 static dev_t nvme_ctrl_base_chr_devt;
132 static int nvme_class_uevent(const struct device *dev, struct kobj_uevent_env *env);
133 static const struct class nvme_class = {
134 	.name = "nvme",
135 	.dev_uevent = nvme_class_uevent,
136 };
137 
138 static const struct class nvme_subsys_class = {
139 	.name = "nvme-subsystem",
140 };
141 
142 static DEFINE_IDA(nvme_ns_chr_minor_ida);
143 static dev_t nvme_ns_chr_devt;
144 static const struct class nvme_ns_chr_class = {
145 	.name = "nvme-generic",
146 };
147 
148 static void nvme_put_subsystem(struct nvme_subsystem *subsys);
149 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
150 					   unsigned nsid);
151 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl,
152 				   struct nvme_command *cmd);
153 
nvme_queue_scan(struct nvme_ctrl * ctrl)154 void nvme_queue_scan(struct nvme_ctrl *ctrl)
155 {
156 	/*
157 	 * Only new queue scan work when admin and IO queues are both alive
158 	 */
159 	if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE && ctrl->tagset)
160 		queue_work(nvme_wq, &ctrl->scan_work);
161 }
162 
163 /*
164  * Use this function to proceed with scheduling reset_work for a controller
165  * that had previously been set to the resetting state. This is intended for
166  * code paths that can't be interrupted by other reset attempts. A hot removal
167  * may prevent this from succeeding.
168  */
nvme_try_sched_reset(struct nvme_ctrl * ctrl)169 int nvme_try_sched_reset(struct nvme_ctrl *ctrl)
170 {
171 	if (nvme_ctrl_state(ctrl) != NVME_CTRL_RESETTING)
172 		return -EBUSY;
173 	if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
174 		return -EBUSY;
175 	return 0;
176 }
177 EXPORT_SYMBOL_GPL(nvme_try_sched_reset);
178 
nvme_failfast_work(struct work_struct * work)179 static void nvme_failfast_work(struct work_struct *work)
180 {
181 	struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
182 			struct nvme_ctrl, failfast_work);
183 
184 	if (nvme_ctrl_state(ctrl) != NVME_CTRL_CONNECTING)
185 		return;
186 
187 	set_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
188 	dev_info(ctrl->device, "failfast expired\n");
189 	nvme_kick_requeue_lists(ctrl);
190 }
191 
nvme_start_failfast_work(struct nvme_ctrl * ctrl)192 static inline void nvme_start_failfast_work(struct nvme_ctrl *ctrl)
193 {
194 	if (!ctrl->opts || ctrl->opts->fast_io_fail_tmo == -1)
195 		return;
196 
197 	schedule_delayed_work(&ctrl->failfast_work,
198 			      ctrl->opts->fast_io_fail_tmo * HZ);
199 }
200 
nvme_stop_failfast_work(struct nvme_ctrl * ctrl)201 static inline void nvme_stop_failfast_work(struct nvme_ctrl *ctrl)
202 {
203 	if (!ctrl->opts)
204 		return;
205 
206 	cancel_delayed_work_sync(&ctrl->failfast_work);
207 	clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
208 }
209 
210 
nvme_reset_ctrl(struct nvme_ctrl * ctrl)211 int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
212 {
213 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
214 		return -EBUSY;
215 	if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
216 		return -EBUSY;
217 	return 0;
218 }
219 EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
220 
nvme_reset_ctrl_sync(struct nvme_ctrl * ctrl)221 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
222 {
223 	int ret;
224 
225 	ret = nvme_reset_ctrl(ctrl);
226 	if (!ret) {
227 		flush_work(&ctrl->reset_work);
228 		if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE)
229 			ret = -ENETRESET;
230 	}
231 
232 	return ret;
233 }
234 
nvme_do_delete_ctrl(struct nvme_ctrl * ctrl)235 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl)
236 {
237 	dev_info(ctrl->device,
238 		 "Removing ctrl: NQN \"%s\"\n", nvmf_ctrl_subsysnqn(ctrl));
239 
240 	flush_work(&ctrl->reset_work);
241 	nvme_stop_ctrl(ctrl);
242 	nvme_remove_namespaces(ctrl);
243 	ctrl->ops->delete_ctrl(ctrl);
244 	nvme_uninit_ctrl(ctrl);
245 }
246 
nvme_delete_ctrl_work(struct work_struct * work)247 static void nvme_delete_ctrl_work(struct work_struct *work)
248 {
249 	struct nvme_ctrl *ctrl =
250 		container_of(work, struct nvme_ctrl, delete_work);
251 
252 	nvme_do_delete_ctrl(ctrl);
253 }
254 
nvme_delete_ctrl(struct nvme_ctrl * ctrl)255 int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
256 {
257 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
258 		return -EBUSY;
259 	if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
260 		return -EBUSY;
261 	return 0;
262 }
263 EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
264 
nvme_delete_ctrl_sync(struct nvme_ctrl * ctrl)265 void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
266 {
267 	/*
268 	 * Keep a reference until nvme_do_delete_ctrl() complete,
269 	 * since ->delete_ctrl can free the controller.
270 	 */
271 	nvme_get_ctrl(ctrl);
272 	if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
273 		nvme_do_delete_ctrl(ctrl);
274 	nvme_put_ctrl(ctrl);
275 }
276 
nvme_error_status(u16 status)277 static blk_status_t nvme_error_status(u16 status)
278 {
279 	switch (status & NVME_SCT_SC_MASK) {
280 	case NVME_SC_SUCCESS:
281 		return BLK_STS_OK;
282 	case NVME_SC_CAP_EXCEEDED:
283 		return BLK_STS_NOSPC;
284 	case NVME_SC_LBA_RANGE:
285 	case NVME_SC_CMD_INTERRUPTED:
286 	case NVME_SC_NS_NOT_READY:
287 		return BLK_STS_TARGET;
288 	case NVME_SC_BAD_ATTRIBUTES:
289 	case NVME_SC_ONCS_NOT_SUPPORTED:
290 	case NVME_SC_INVALID_OPCODE:
291 	case NVME_SC_INVALID_FIELD:
292 	case NVME_SC_INVALID_NS:
293 		return BLK_STS_NOTSUPP;
294 	case NVME_SC_WRITE_FAULT:
295 	case NVME_SC_READ_ERROR:
296 	case NVME_SC_UNWRITTEN_BLOCK:
297 	case NVME_SC_ACCESS_DENIED:
298 	case NVME_SC_READ_ONLY:
299 	case NVME_SC_COMPARE_FAILED:
300 		return BLK_STS_MEDIUM;
301 	case NVME_SC_GUARD_CHECK:
302 	case NVME_SC_APPTAG_CHECK:
303 	case NVME_SC_REFTAG_CHECK:
304 	case NVME_SC_INVALID_PI:
305 		return BLK_STS_PROTECTION;
306 	case NVME_SC_RESERVATION_CONFLICT:
307 		return BLK_STS_RESV_CONFLICT;
308 	case NVME_SC_HOST_PATH_ERROR:
309 		return BLK_STS_TRANSPORT;
310 	case NVME_SC_ZONE_TOO_MANY_ACTIVE:
311 		return BLK_STS_ZONE_ACTIVE_RESOURCE;
312 	case NVME_SC_ZONE_TOO_MANY_OPEN:
313 		return BLK_STS_ZONE_OPEN_RESOURCE;
314 	default:
315 		return BLK_STS_IOERR;
316 	}
317 }
318 
nvme_retry_req(struct request * req)319 static void nvme_retry_req(struct request *req)
320 {
321 	unsigned long delay = 0;
322 	u16 crd;
323 
324 	/* The mask and shift result must be <= 3 */
325 	crd = (nvme_req(req)->status & NVME_STATUS_CRD) >> 11;
326 	if (crd)
327 		delay = nvme_req(req)->ctrl->crdt[crd - 1] * 100;
328 
329 	nvme_req(req)->retries++;
330 	blk_mq_requeue_request(req, false);
331 	blk_mq_delay_kick_requeue_list(req->q, delay);
332 }
333 
nvme_log_error(struct request * req)334 static void nvme_log_error(struct request *req)
335 {
336 	struct nvme_ns *ns = req->q->queuedata;
337 	struct nvme_request *nr = nvme_req(req);
338 
339 	if (ns) {
340 		pr_err_ratelimited("%s: %s(0x%x) @ LBA %llu, %u blocks, %s (sct 0x%x / sc 0x%x) %s%s\n",
341 		       ns->disk ? ns->disk->disk_name : "?",
342 		       nvme_get_opcode_str(nr->cmd->common.opcode),
343 		       nr->cmd->common.opcode,
344 		       nvme_sect_to_lba(ns->head, blk_rq_pos(req)),
345 		       blk_rq_bytes(req) >> ns->head->lba_shift,
346 		       nvme_get_error_status_str(nr->status),
347 		       NVME_SCT(nr->status),		/* Status Code Type */
348 		       nr->status & NVME_SC_MASK,	/* Status Code */
349 		       nr->status & NVME_STATUS_MORE ? "MORE " : "",
350 		       nr->status & NVME_STATUS_DNR  ? "DNR "  : "");
351 		return;
352 	}
353 
354 	pr_err_ratelimited("%s: %s(0x%x), %s (sct 0x%x / sc 0x%x) %s%s\n",
355 			   dev_name(nr->ctrl->device),
356 			   nvme_get_admin_opcode_str(nr->cmd->common.opcode),
357 			   nr->cmd->common.opcode,
358 			   nvme_get_error_status_str(nr->status),
359 			   NVME_SCT(nr->status),	/* Status Code Type */
360 			   nr->status & NVME_SC_MASK,	/* Status Code */
361 			   nr->status & NVME_STATUS_MORE ? "MORE " : "",
362 			   nr->status & NVME_STATUS_DNR  ? "DNR "  : "");
363 }
364 
nvme_log_err_passthru(struct request * req)365 static void nvme_log_err_passthru(struct request *req)
366 {
367 	struct nvme_ns *ns = req->q->queuedata;
368 	struct nvme_request *nr = nvme_req(req);
369 
370 	pr_err_ratelimited("%s: %s(0x%x), %s (sct 0x%x / sc 0x%x) %s%s"
371 		"cdw10=0x%x cdw11=0x%x cdw12=0x%x cdw13=0x%x cdw14=0x%x cdw15=0x%x\n",
372 		ns ? ns->disk->disk_name : dev_name(nr->ctrl->device),
373 		ns ? nvme_get_opcode_str(nr->cmd->common.opcode) :
374 		     nvme_get_admin_opcode_str(nr->cmd->common.opcode),
375 		nr->cmd->common.opcode,
376 		nvme_get_error_status_str(nr->status),
377 		NVME_SCT(nr->status),		/* Status Code Type */
378 		nr->status & NVME_SC_MASK,	/* Status Code */
379 		nr->status & NVME_STATUS_MORE ? "MORE " : "",
380 		nr->status & NVME_STATUS_DNR  ? "DNR "  : "",
381 		nr->cmd->common.cdw10,
382 		nr->cmd->common.cdw11,
383 		nr->cmd->common.cdw12,
384 		nr->cmd->common.cdw13,
385 		nr->cmd->common.cdw14,
386 		nr->cmd->common.cdw14);
387 }
388 
389 enum nvme_disposition {
390 	COMPLETE,
391 	RETRY,
392 	FAILOVER,
393 	AUTHENTICATE,
394 };
395 
nvme_decide_disposition(struct request * req)396 static inline enum nvme_disposition nvme_decide_disposition(struct request *req)
397 {
398 	if (likely(nvme_req(req)->status == 0))
399 		return COMPLETE;
400 
401 	if (blk_noretry_request(req) ||
402 	    (nvme_req(req)->status & NVME_STATUS_DNR) ||
403 	    nvme_req(req)->retries >= nvme_max_retries)
404 		return COMPLETE;
405 
406 	if ((nvme_req(req)->status & NVME_SCT_SC_MASK) == NVME_SC_AUTH_REQUIRED)
407 		return AUTHENTICATE;
408 
409 	if (req->cmd_flags & REQ_NVME_MPATH) {
410 		if (nvme_is_path_error(nvme_req(req)->status) ||
411 		    blk_queue_dying(req->q))
412 			return FAILOVER;
413 	} else {
414 		if (blk_queue_dying(req->q))
415 			return COMPLETE;
416 	}
417 
418 	return RETRY;
419 }
420 
nvme_end_req_zoned(struct request * req)421 static inline void nvme_end_req_zoned(struct request *req)
422 {
423 	if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
424 	    req_op(req) == REQ_OP_ZONE_APPEND) {
425 		struct nvme_ns *ns = req->q->queuedata;
426 
427 		req->__sector = nvme_lba_to_sect(ns->head,
428 			le64_to_cpu(nvme_req(req)->result.u64));
429 	}
430 }
431 
__nvme_end_req(struct request * req)432 static inline void __nvme_end_req(struct request *req)
433 {
434 	nvme_end_req_zoned(req);
435 	nvme_trace_bio_complete(req);
436 	if (req->cmd_flags & REQ_NVME_MPATH)
437 		nvme_mpath_end_request(req);
438 }
439 
nvme_end_req(struct request * req)440 void nvme_end_req(struct request *req)
441 {
442 	blk_status_t status = nvme_error_status(nvme_req(req)->status);
443 
444 	if (unlikely(nvme_req(req)->status && !(req->rq_flags & RQF_QUIET))) {
445 		if (blk_rq_is_passthrough(req))
446 			nvme_log_err_passthru(req);
447 		else
448 			nvme_log_error(req);
449 	}
450 	__nvme_end_req(req);
451 	blk_mq_end_request(req, status);
452 }
453 
nvme_complete_rq(struct request * req)454 void nvme_complete_rq(struct request *req)
455 {
456 	struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
457 
458 	trace_nvme_complete_rq(req);
459 	nvme_cleanup_cmd(req);
460 
461 	/*
462 	 * Completions of long-running commands should not be able to
463 	 * defer sending of periodic keep alives, since the controller
464 	 * may have completed processing such commands a long time ago
465 	 * (arbitrarily close to command submission time).
466 	 * req->deadline - req->timeout is the command submission time
467 	 * in jiffies.
468 	 */
469 	if (ctrl->kas &&
470 	    req->deadline - req->timeout >= ctrl->ka_last_check_time)
471 		ctrl->comp_seen = true;
472 
473 	switch (nvme_decide_disposition(req)) {
474 	case COMPLETE:
475 		nvme_end_req(req);
476 		return;
477 	case RETRY:
478 		nvme_retry_req(req);
479 		return;
480 	case FAILOVER:
481 		nvme_failover_req(req);
482 		return;
483 	case AUTHENTICATE:
484 #ifdef CONFIG_NVME_HOST_AUTH
485 		queue_work(nvme_wq, &ctrl->dhchap_auth_work);
486 		nvme_retry_req(req);
487 #else
488 		nvme_end_req(req);
489 #endif
490 		return;
491 	}
492 }
493 EXPORT_SYMBOL_GPL(nvme_complete_rq);
494 
nvme_complete_batch_req(struct request * req)495 void nvme_complete_batch_req(struct request *req)
496 {
497 	trace_nvme_complete_rq(req);
498 	nvme_cleanup_cmd(req);
499 	__nvme_end_req(req);
500 }
501 EXPORT_SYMBOL_GPL(nvme_complete_batch_req);
502 
503 /*
504  * Called to unwind from ->queue_rq on a failed command submission so that the
505  * multipathing code gets called to potentially failover to another path.
506  * The caller needs to unwind all transport specific resource allocations and
507  * must return propagate the return value.
508  */
nvme_host_path_error(struct request * req)509 blk_status_t nvme_host_path_error(struct request *req)
510 {
511 	nvme_req(req)->status = NVME_SC_HOST_PATH_ERROR;
512 	blk_mq_set_request_complete(req);
513 	nvme_complete_rq(req);
514 	return BLK_STS_OK;
515 }
516 EXPORT_SYMBOL_GPL(nvme_host_path_error);
517 
nvme_cancel_request(struct request * req,void * data)518 bool nvme_cancel_request(struct request *req, void *data)
519 {
520 	dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
521 				"Cancelling I/O %d", req->tag);
522 
523 	/* don't abort one completed or idle request */
524 	if (blk_mq_rq_state(req) != MQ_RQ_IN_FLIGHT)
525 		return true;
526 
527 	nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD;
528 	nvme_req(req)->flags |= NVME_REQ_CANCELLED;
529 	blk_mq_complete_request(req);
530 	return true;
531 }
532 EXPORT_SYMBOL_GPL(nvme_cancel_request);
533 
nvme_cancel_tagset(struct nvme_ctrl * ctrl)534 void nvme_cancel_tagset(struct nvme_ctrl *ctrl)
535 {
536 	if (ctrl->tagset) {
537 		blk_mq_tagset_busy_iter(ctrl->tagset,
538 				nvme_cancel_request, ctrl);
539 		blk_mq_tagset_wait_completed_request(ctrl->tagset);
540 	}
541 }
542 EXPORT_SYMBOL_GPL(nvme_cancel_tagset);
543 
nvme_cancel_admin_tagset(struct nvme_ctrl * ctrl)544 void nvme_cancel_admin_tagset(struct nvme_ctrl *ctrl)
545 {
546 	if (ctrl->admin_tagset) {
547 		blk_mq_tagset_busy_iter(ctrl->admin_tagset,
548 				nvme_cancel_request, ctrl);
549 		blk_mq_tagset_wait_completed_request(ctrl->admin_tagset);
550 	}
551 }
552 EXPORT_SYMBOL_GPL(nvme_cancel_admin_tagset);
553 
nvme_change_ctrl_state(struct nvme_ctrl * ctrl,enum nvme_ctrl_state new_state)554 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
555 		enum nvme_ctrl_state new_state)
556 {
557 	enum nvme_ctrl_state old_state;
558 	unsigned long flags;
559 	bool changed = false;
560 
561 	spin_lock_irqsave(&ctrl->lock, flags);
562 
563 	old_state = nvme_ctrl_state(ctrl);
564 	switch (new_state) {
565 	case NVME_CTRL_LIVE:
566 		switch (old_state) {
567 		case NVME_CTRL_CONNECTING:
568 			changed = true;
569 			fallthrough;
570 		default:
571 			break;
572 		}
573 		break;
574 	case NVME_CTRL_RESETTING:
575 		switch (old_state) {
576 		case NVME_CTRL_NEW:
577 		case NVME_CTRL_LIVE:
578 			changed = true;
579 			fallthrough;
580 		default:
581 			break;
582 		}
583 		break;
584 	case NVME_CTRL_CONNECTING:
585 		switch (old_state) {
586 		case NVME_CTRL_NEW:
587 		case NVME_CTRL_RESETTING:
588 			changed = true;
589 			fallthrough;
590 		default:
591 			break;
592 		}
593 		break;
594 	case NVME_CTRL_DELETING:
595 		switch (old_state) {
596 		case NVME_CTRL_LIVE:
597 		case NVME_CTRL_RESETTING:
598 		case NVME_CTRL_CONNECTING:
599 			changed = true;
600 			fallthrough;
601 		default:
602 			break;
603 		}
604 		break;
605 	case NVME_CTRL_DELETING_NOIO:
606 		switch (old_state) {
607 		case NVME_CTRL_DELETING:
608 		case NVME_CTRL_DEAD:
609 			changed = true;
610 			fallthrough;
611 		default:
612 			break;
613 		}
614 		break;
615 	case NVME_CTRL_DEAD:
616 		switch (old_state) {
617 		case NVME_CTRL_DELETING:
618 			changed = true;
619 			fallthrough;
620 		default:
621 			break;
622 		}
623 		break;
624 	default:
625 		break;
626 	}
627 
628 	if (changed) {
629 		WRITE_ONCE(ctrl->state, new_state);
630 		wake_up_all(&ctrl->state_wq);
631 	}
632 
633 	spin_unlock_irqrestore(&ctrl->lock, flags);
634 	if (!changed)
635 		return false;
636 
637 	if (new_state == NVME_CTRL_LIVE) {
638 		if (old_state == NVME_CTRL_CONNECTING)
639 			nvme_stop_failfast_work(ctrl);
640 		nvme_kick_requeue_lists(ctrl);
641 	} else if (new_state == NVME_CTRL_CONNECTING &&
642 		old_state == NVME_CTRL_RESETTING) {
643 		nvme_start_failfast_work(ctrl);
644 	}
645 	return changed;
646 }
647 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
648 
649 /*
650  * Waits for the controller state to be resetting, or returns false if it is
651  * not possible to ever transition to that state.
652  */
nvme_wait_reset(struct nvme_ctrl * ctrl)653 bool nvme_wait_reset(struct nvme_ctrl *ctrl)
654 {
655 	wait_event(ctrl->state_wq,
656 		   nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) ||
657 		   nvme_state_terminal(ctrl));
658 	return nvme_ctrl_state(ctrl) == NVME_CTRL_RESETTING;
659 }
660 EXPORT_SYMBOL_GPL(nvme_wait_reset);
661 
nvme_free_ns_head(struct kref * ref)662 static void nvme_free_ns_head(struct kref *ref)
663 {
664 	struct nvme_ns_head *head =
665 		container_of(ref, struct nvme_ns_head, ref);
666 
667 	nvme_mpath_remove_disk(head);
668 	ida_free(&head->subsys->ns_ida, head->instance);
669 	cleanup_srcu_struct(&head->srcu);
670 	nvme_put_subsystem(head->subsys);
671 	kfree(head);
672 }
673 
nvme_tryget_ns_head(struct nvme_ns_head * head)674 bool nvme_tryget_ns_head(struct nvme_ns_head *head)
675 {
676 	return kref_get_unless_zero(&head->ref);
677 }
678 
nvme_put_ns_head(struct nvme_ns_head * head)679 void nvme_put_ns_head(struct nvme_ns_head *head)
680 {
681 	kref_put(&head->ref, nvme_free_ns_head);
682 }
683 
nvme_free_ns(struct kref * kref)684 static void nvme_free_ns(struct kref *kref)
685 {
686 	struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
687 
688 	put_disk(ns->disk);
689 	nvme_put_ns_head(ns->head);
690 	nvme_put_ctrl(ns->ctrl);
691 	kfree(ns);
692 }
693 
nvme_get_ns(struct nvme_ns * ns)694 bool nvme_get_ns(struct nvme_ns *ns)
695 {
696 	return kref_get_unless_zero(&ns->kref);
697 }
698 
nvme_put_ns(struct nvme_ns * ns)699 void nvme_put_ns(struct nvme_ns *ns)
700 {
701 	kref_put(&ns->kref, nvme_free_ns);
702 }
703 EXPORT_SYMBOL_NS_GPL(nvme_put_ns, "NVME_TARGET_PASSTHRU");
704 
nvme_clear_nvme_request(struct request * req)705 static inline void nvme_clear_nvme_request(struct request *req)
706 {
707 	nvme_req(req)->status = 0;
708 	nvme_req(req)->retries = 0;
709 	nvme_req(req)->flags = 0;
710 	req->rq_flags |= RQF_DONTPREP;
711 }
712 
713 /* initialize a passthrough request */
nvme_init_request(struct request * req,struct nvme_command * cmd)714 void nvme_init_request(struct request *req, struct nvme_command *cmd)
715 {
716 	struct nvme_request *nr = nvme_req(req);
717 	bool logging_enabled;
718 
719 	if (req->q->queuedata) {
720 		struct nvme_ns *ns = req->q->disk->private_data;
721 
722 		logging_enabled = ns->head->passthru_err_log_enabled;
723 		req->timeout = NVME_IO_TIMEOUT;
724 	} else { /* no queuedata implies admin queue */
725 		logging_enabled = nr->ctrl->passthru_err_log_enabled;
726 		req->timeout = NVME_ADMIN_TIMEOUT;
727 	}
728 
729 	if (!logging_enabled)
730 		req->rq_flags |= RQF_QUIET;
731 
732 	/* passthru commands should let the driver set the SGL flags */
733 	cmd->common.flags &= ~NVME_CMD_SGL_ALL;
734 
735 	req->cmd_flags |= REQ_FAILFAST_DRIVER;
736 	if (req->mq_hctx->type == HCTX_TYPE_POLL)
737 		req->cmd_flags |= REQ_POLLED;
738 	nvme_clear_nvme_request(req);
739 	memcpy(nr->cmd, cmd, sizeof(*cmd));
740 }
741 EXPORT_SYMBOL_GPL(nvme_init_request);
742 
743 /*
744  * For something we're not in a state to send to the device the default action
745  * is to busy it and retry it after the controller state is recovered.  However,
746  * if the controller is deleting or if anything is marked for failfast or
747  * nvme multipath it is immediately failed.
748  *
749  * Note: commands used to initialize the controller will be marked for failfast.
750  * Note: nvme cli/ioctl commands are marked for failfast.
751  */
nvme_fail_nonready_command(struct nvme_ctrl * ctrl,struct request * rq)752 blk_status_t nvme_fail_nonready_command(struct nvme_ctrl *ctrl,
753 		struct request *rq)
754 {
755 	enum nvme_ctrl_state state = nvme_ctrl_state(ctrl);
756 
757 	if (state != NVME_CTRL_DELETING_NOIO &&
758 	    state != NVME_CTRL_DELETING &&
759 	    state != NVME_CTRL_DEAD &&
760 	    !test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags) &&
761 	    !blk_noretry_request(rq) && !(rq->cmd_flags & REQ_NVME_MPATH))
762 		return BLK_STS_RESOURCE;
763 	return nvme_host_path_error(rq);
764 }
765 EXPORT_SYMBOL_GPL(nvme_fail_nonready_command);
766 
__nvme_check_ready(struct nvme_ctrl * ctrl,struct request * rq,bool queue_live,enum nvme_ctrl_state state)767 bool __nvme_check_ready(struct nvme_ctrl *ctrl, struct request *rq,
768 		bool queue_live, enum nvme_ctrl_state state)
769 {
770 	struct nvme_request *req = nvme_req(rq);
771 
772 	/*
773 	 * currently we have a problem sending passthru commands
774 	 * on the admin_q if the controller is not LIVE because we can't
775 	 * make sure that they are going out after the admin connect,
776 	 * controller enable and/or other commands in the initialization
777 	 * sequence. until the controller will be LIVE, fail with
778 	 * BLK_STS_RESOURCE so that they will be rescheduled.
779 	 */
780 	if (rq->q == ctrl->admin_q && (req->flags & NVME_REQ_USERCMD))
781 		return false;
782 
783 	if (ctrl->ops->flags & NVME_F_FABRICS) {
784 		/*
785 		 * Only allow commands on a live queue, except for the connect
786 		 * command, which is require to set the queue live in the
787 		 * appropinquate states.
788 		 */
789 		switch (state) {
790 		case NVME_CTRL_CONNECTING:
791 			if (blk_rq_is_passthrough(rq) && nvme_is_fabrics(req->cmd) &&
792 			    (req->cmd->fabrics.fctype == nvme_fabrics_type_connect ||
793 			     req->cmd->fabrics.fctype == nvme_fabrics_type_auth_send ||
794 			     req->cmd->fabrics.fctype == nvme_fabrics_type_auth_receive))
795 				return true;
796 			break;
797 		default:
798 			break;
799 		case NVME_CTRL_DEAD:
800 			return false;
801 		}
802 	}
803 
804 	return queue_live;
805 }
806 EXPORT_SYMBOL_GPL(__nvme_check_ready);
807 
nvme_setup_flush(struct nvme_ns * ns,struct nvme_command * cmnd)808 static inline void nvme_setup_flush(struct nvme_ns *ns,
809 		struct nvme_command *cmnd)
810 {
811 	memset(cmnd, 0, sizeof(*cmnd));
812 	cmnd->common.opcode = nvme_cmd_flush;
813 	cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
814 }
815 
nvme_setup_discard(struct nvme_ns * ns,struct request * req,struct nvme_command * cmnd)816 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
817 		struct nvme_command *cmnd)
818 {
819 	unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
820 	struct nvme_dsm_range *range;
821 	struct bio *bio;
822 
823 	/*
824 	 * Some devices do not consider the DSM 'Number of Ranges' field when
825 	 * determining how much data to DMA. Always allocate memory for maximum
826 	 * number of segments to prevent device reading beyond end of buffer.
827 	 */
828 	static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES;
829 
830 	range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN);
831 	if (!range) {
832 		/*
833 		 * If we fail allocation our range, fallback to the controller
834 		 * discard page. If that's also busy, it's safe to return
835 		 * busy, as we know we can make progress once that's freed.
836 		 */
837 		if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy))
838 			return BLK_STS_RESOURCE;
839 
840 		range = page_address(ns->ctrl->discard_page);
841 	}
842 
843 	if (queue_max_discard_segments(req->q) == 1) {
844 		u64 slba = nvme_sect_to_lba(ns->head, blk_rq_pos(req));
845 		u32 nlb = blk_rq_sectors(req) >> (ns->head->lba_shift - 9);
846 
847 		range[0].cattr = cpu_to_le32(0);
848 		range[0].nlb = cpu_to_le32(nlb);
849 		range[0].slba = cpu_to_le64(slba);
850 		n = 1;
851 	} else {
852 		__rq_for_each_bio(bio, req) {
853 			u64 slba = nvme_sect_to_lba(ns->head,
854 						    bio->bi_iter.bi_sector);
855 			u32 nlb = bio->bi_iter.bi_size >> ns->head->lba_shift;
856 
857 			if (n < segments) {
858 				range[n].cattr = cpu_to_le32(0);
859 				range[n].nlb = cpu_to_le32(nlb);
860 				range[n].slba = cpu_to_le64(slba);
861 			}
862 			n++;
863 		}
864 	}
865 
866 	if (WARN_ON_ONCE(n != segments)) {
867 		if (virt_to_page(range) == ns->ctrl->discard_page)
868 			clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
869 		else
870 			kfree(range);
871 		return BLK_STS_IOERR;
872 	}
873 
874 	memset(cmnd, 0, sizeof(*cmnd));
875 	cmnd->dsm.opcode = nvme_cmd_dsm;
876 	cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
877 	cmnd->dsm.nr = cpu_to_le32(segments - 1);
878 	cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
879 
880 	bvec_set_virt(&req->special_vec, range, alloc_size);
881 	req->rq_flags |= RQF_SPECIAL_PAYLOAD;
882 
883 	return BLK_STS_OK;
884 }
885 
nvme_set_app_tag(struct request * req,struct nvme_command * cmnd)886 static void nvme_set_app_tag(struct request *req, struct nvme_command *cmnd)
887 {
888 	cmnd->rw.lbat = cpu_to_le16(bio_integrity(req->bio)->app_tag);
889 	cmnd->rw.lbatm = cpu_to_le16(0xffff);
890 }
891 
nvme_set_ref_tag(struct nvme_ns * ns,struct nvme_command * cmnd,struct request * req)892 static void nvme_set_ref_tag(struct nvme_ns *ns, struct nvme_command *cmnd,
893 			      struct request *req)
894 {
895 	u32 upper, lower;
896 	u64 ref48;
897 
898 	/* both rw and write zeroes share the same reftag format */
899 	switch (ns->head->guard_type) {
900 	case NVME_NVM_NS_16B_GUARD:
901 		cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req));
902 		break;
903 	case NVME_NVM_NS_64B_GUARD:
904 		ref48 = ext_pi_ref_tag(req);
905 		lower = lower_32_bits(ref48);
906 		upper = upper_32_bits(ref48);
907 
908 		cmnd->rw.reftag = cpu_to_le32(lower);
909 		cmnd->rw.cdw3 = cpu_to_le32(upper);
910 		break;
911 	default:
912 		break;
913 	}
914 }
915 
nvme_setup_write_zeroes(struct nvme_ns * ns,struct request * req,struct nvme_command * cmnd)916 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns,
917 		struct request *req, struct nvme_command *cmnd)
918 {
919 	memset(cmnd, 0, sizeof(*cmnd));
920 
921 	if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
922 		return nvme_setup_discard(ns, req, cmnd);
923 
924 	cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes;
925 	cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id);
926 	cmnd->write_zeroes.slba =
927 		cpu_to_le64(nvme_sect_to_lba(ns->head, blk_rq_pos(req)));
928 	cmnd->write_zeroes.length =
929 		cpu_to_le16((blk_rq_bytes(req) >> ns->head->lba_shift) - 1);
930 
931 	if (!(req->cmd_flags & REQ_NOUNMAP) &&
932 	    (ns->head->features & NVME_NS_DEAC))
933 		cmnd->write_zeroes.control |= cpu_to_le16(NVME_WZ_DEAC);
934 
935 	if (nvme_ns_has_pi(ns->head)) {
936 		cmnd->write_zeroes.control |= cpu_to_le16(NVME_RW_PRINFO_PRACT);
937 
938 		switch (ns->head->pi_type) {
939 		case NVME_NS_DPS_PI_TYPE1:
940 		case NVME_NS_DPS_PI_TYPE2:
941 			nvme_set_ref_tag(ns, cmnd, req);
942 			break;
943 		}
944 	}
945 
946 	return BLK_STS_OK;
947 }
948 
949 /*
950  * NVMe does not support a dedicated command to issue an atomic write. A write
951  * which does adhere to the device atomic limits will silently be executed
952  * non-atomically. The request issuer should ensure that the write is within
953  * the queue atomic writes limits, but just validate this in case it is not.
954  */
nvme_valid_atomic_write(struct request * req)955 static bool nvme_valid_atomic_write(struct request *req)
956 {
957 	struct request_queue *q = req->q;
958 	u32 boundary_bytes = queue_atomic_write_boundary_bytes(q);
959 
960 	if (blk_rq_bytes(req) > queue_atomic_write_unit_max_bytes(q))
961 		return false;
962 
963 	if (boundary_bytes) {
964 		u64 mask = boundary_bytes - 1, imask = ~mask;
965 		u64 start = blk_rq_pos(req) << SECTOR_SHIFT;
966 		u64 end = start + blk_rq_bytes(req) - 1;
967 
968 		/* If greater then must be crossing a boundary */
969 		if (blk_rq_bytes(req) > boundary_bytes)
970 			return false;
971 
972 		if ((start & imask) != (end & imask))
973 			return false;
974 	}
975 
976 	return true;
977 }
978 
nvme_setup_rw(struct nvme_ns * ns,struct request * req,struct nvme_command * cmnd,enum nvme_opcode op)979 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
980 		struct request *req, struct nvme_command *cmnd,
981 		enum nvme_opcode op)
982 {
983 	u16 control = 0;
984 	u32 dsmgmt = 0;
985 
986 	if (req->cmd_flags & REQ_FUA)
987 		control |= NVME_RW_FUA;
988 	if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
989 		control |= NVME_RW_LR;
990 
991 	if (req->cmd_flags & REQ_RAHEAD)
992 		dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
993 
994 	if (req->cmd_flags & REQ_ATOMIC && !nvme_valid_atomic_write(req))
995 		return BLK_STS_INVAL;
996 
997 	cmnd->rw.opcode = op;
998 	cmnd->rw.flags = 0;
999 	cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
1000 	cmnd->rw.cdw2 = 0;
1001 	cmnd->rw.cdw3 = 0;
1002 	cmnd->rw.metadata = 0;
1003 	cmnd->rw.slba =
1004 		cpu_to_le64(nvme_sect_to_lba(ns->head, blk_rq_pos(req)));
1005 	cmnd->rw.length =
1006 		cpu_to_le16((blk_rq_bytes(req) >> ns->head->lba_shift) - 1);
1007 	cmnd->rw.reftag = 0;
1008 	cmnd->rw.lbat = 0;
1009 	cmnd->rw.lbatm = 0;
1010 
1011 	if (ns->head->ms) {
1012 		/*
1013 		 * If formated with metadata, the block layer always provides a
1014 		 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled.  Else
1015 		 * we enable the PRACT bit for protection information or set the
1016 		 * namespace capacity to zero to prevent any I/O.
1017 		 */
1018 		if (!blk_integrity_rq(req)) {
1019 			if (WARN_ON_ONCE(!nvme_ns_has_pi(ns->head)))
1020 				return BLK_STS_NOTSUPP;
1021 			control |= NVME_RW_PRINFO_PRACT;
1022 		}
1023 
1024 		if (bio_integrity_flagged(req->bio, BIP_CHECK_GUARD))
1025 			control |= NVME_RW_PRINFO_PRCHK_GUARD;
1026 		if (bio_integrity_flagged(req->bio, BIP_CHECK_REFTAG)) {
1027 			control |= NVME_RW_PRINFO_PRCHK_REF;
1028 			if (op == nvme_cmd_zone_append)
1029 				control |= NVME_RW_APPEND_PIREMAP;
1030 			nvme_set_ref_tag(ns, cmnd, req);
1031 		}
1032 		if (bio_integrity_flagged(req->bio, BIP_CHECK_APPTAG)) {
1033 			control |= NVME_RW_PRINFO_PRCHK_APP;
1034 			nvme_set_app_tag(req, cmnd);
1035 		}
1036 	}
1037 
1038 	cmnd->rw.control = cpu_to_le16(control);
1039 	cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
1040 	return 0;
1041 }
1042 
nvme_cleanup_cmd(struct request * req)1043 void nvme_cleanup_cmd(struct request *req)
1044 {
1045 	if (req->rq_flags & RQF_SPECIAL_PAYLOAD) {
1046 		struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
1047 
1048 		if (req->special_vec.bv_page == ctrl->discard_page)
1049 			clear_bit_unlock(0, &ctrl->discard_page_busy);
1050 		else
1051 			kfree(bvec_virt(&req->special_vec));
1052 		req->rq_flags &= ~RQF_SPECIAL_PAYLOAD;
1053 	}
1054 }
1055 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd);
1056 
nvme_setup_cmd(struct nvme_ns * ns,struct request * req)1057 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req)
1058 {
1059 	struct nvme_command *cmd = nvme_req(req)->cmd;
1060 	blk_status_t ret = BLK_STS_OK;
1061 
1062 	if (!(req->rq_flags & RQF_DONTPREP))
1063 		nvme_clear_nvme_request(req);
1064 
1065 	switch (req_op(req)) {
1066 	case REQ_OP_DRV_IN:
1067 	case REQ_OP_DRV_OUT:
1068 		/* these are setup prior to execution in nvme_init_request() */
1069 		break;
1070 	case REQ_OP_FLUSH:
1071 		nvme_setup_flush(ns, cmd);
1072 		break;
1073 	case REQ_OP_ZONE_RESET_ALL:
1074 	case REQ_OP_ZONE_RESET:
1075 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_RESET);
1076 		break;
1077 	case REQ_OP_ZONE_OPEN:
1078 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_OPEN);
1079 		break;
1080 	case REQ_OP_ZONE_CLOSE:
1081 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_CLOSE);
1082 		break;
1083 	case REQ_OP_ZONE_FINISH:
1084 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_FINISH);
1085 		break;
1086 	case REQ_OP_WRITE_ZEROES:
1087 		ret = nvme_setup_write_zeroes(ns, req, cmd);
1088 		break;
1089 	case REQ_OP_DISCARD:
1090 		ret = nvme_setup_discard(ns, req, cmd);
1091 		break;
1092 	case REQ_OP_READ:
1093 		ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_read);
1094 		break;
1095 	case REQ_OP_WRITE:
1096 		ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_write);
1097 		break;
1098 	case REQ_OP_ZONE_APPEND:
1099 		ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_zone_append);
1100 		break;
1101 	default:
1102 		WARN_ON_ONCE(1);
1103 		return BLK_STS_IOERR;
1104 	}
1105 
1106 	cmd->common.command_id = nvme_cid(req);
1107 	trace_nvme_setup_cmd(req, cmd);
1108 	return ret;
1109 }
1110 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
1111 
1112 /*
1113  * Return values:
1114  * 0:  success
1115  * >0: nvme controller's cqe status response
1116  * <0: kernel error in lieu of controller response
1117  */
nvme_execute_rq(struct request * rq,bool at_head)1118 int nvme_execute_rq(struct request *rq, bool at_head)
1119 {
1120 	blk_status_t status;
1121 
1122 	status = blk_execute_rq(rq, at_head);
1123 	if (nvme_req(rq)->flags & NVME_REQ_CANCELLED)
1124 		return -EINTR;
1125 	if (nvme_req(rq)->status)
1126 		return nvme_req(rq)->status;
1127 	return blk_status_to_errno(status);
1128 }
1129 EXPORT_SYMBOL_NS_GPL(nvme_execute_rq, "NVME_TARGET_PASSTHRU");
1130 
1131 /*
1132  * Returns 0 on success.  If the result is negative, it's a Linux error code;
1133  * if the result is positive, it's an NVM Express status code
1134  */
__nvme_submit_sync_cmd(struct request_queue * q,struct nvme_command * cmd,union nvme_result * result,void * buffer,unsigned bufflen,int qid,nvme_submit_flags_t flags)1135 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1136 		union nvme_result *result, void *buffer, unsigned bufflen,
1137 		int qid, nvme_submit_flags_t flags)
1138 {
1139 	struct request *req;
1140 	int ret;
1141 	blk_mq_req_flags_t blk_flags = 0;
1142 
1143 	if (flags & NVME_SUBMIT_NOWAIT)
1144 		blk_flags |= BLK_MQ_REQ_NOWAIT;
1145 	if (flags & NVME_SUBMIT_RESERVED)
1146 		blk_flags |= BLK_MQ_REQ_RESERVED;
1147 	if (qid == NVME_QID_ANY)
1148 		req = blk_mq_alloc_request(q, nvme_req_op(cmd), blk_flags);
1149 	else
1150 		req = blk_mq_alloc_request_hctx(q, nvme_req_op(cmd), blk_flags,
1151 						qid - 1);
1152 
1153 	if (IS_ERR(req))
1154 		return PTR_ERR(req);
1155 	nvme_init_request(req, cmd);
1156 	if (flags & NVME_SUBMIT_RETRY)
1157 		req->cmd_flags &= ~REQ_FAILFAST_DRIVER;
1158 
1159 	if (buffer && bufflen) {
1160 		ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
1161 		if (ret)
1162 			goto out;
1163 	}
1164 
1165 	ret = nvme_execute_rq(req, flags & NVME_SUBMIT_AT_HEAD);
1166 	if (result && ret >= 0)
1167 		*result = nvme_req(req)->result;
1168  out:
1169 	blk_mq_free_request(req);
1170 	return ret;
1171 }
1172 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
1173 
nvme_submit_sync_cmd(struct request_queue * q,struct nvme_command * cmd,void * buffer,unsigned bufflen)1174 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1175 		void *buffer, unsigned bufflen)
1176 {
1177 	return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen,
1178 			NVME_QID_ANY, 0);
1179 }
1180 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
1181 
nvme_command_effects(struct nvme_ctrl * ctrl,struct nvme_ns * ns,u8 opcode)1182 u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
1183 {
1184 	u32 effects = 0;
1185 
1186 	if (ns) {
1187 		effects = le32_to_cpu(ns->head->effects->iocs[opcode]);
1188 		if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC))
1189 			dev_warn_once(ctrl->device,
1190 				"IO command:%02x has unusual effects:%08x\n",
1191 				opcode, effects);
1192 
1193 		/*
1194 		 * NVME_CMD_EFFECTS_CSE_MASK causes a freeze all I/O queues,
1195 		 * which would deadlock when done on an I/O command.  Note that
1196 		 * We already warn about an unusual effect above.
1197 		 */
1198 		effects &= ~NVME_CMD_EFFECTS_CSE_MASK;
1199 	} else {
1200 		effects = le32_to_cpu(ctrl->effects->acs[opcode]);
1201 
1202 		/* Ignore execution restrictions if any relaxation bits are set */
1203 		if (effects & NVME_CMD_EFFECTS_CSER_MASK)
1204 			effects &= ~NVME_CMD_EFFECTS_CSE_MASK;
1205 	}
1206 
1207 	return effects;
1208 }
1209 EXPORT_SYMBOL_NS_GPL(nvme_command_effects, "NVME_TARGET_PASSTHRU");
1210 
nvme_passthru_start(struct nvme_ctrl * ctrl,struct nvme_ns * ns,u8 opcode)1211 u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
1212 {
1213 	u32 effects = nvme_command_effects(ctrl, ns, opcode);
1214 
1215 	/*
1216 	 * For simplicity, IO to all namespaces is quiesced even if the command
1217 	 * effects say only one namespace is affected.
1218 	 */
1219 	if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1220 		mutex_lock(&ctrl->scan_lock);
1221 		mutex_lock(&ctrl->subsys->lock);
1222 		nvme_mpath_start_freeze(ctrl->subsys);
1223 		nvme_mpath_wait_freeze(ctrl->subsys);
1224 		nvme_start_freeze(ctrl);
1225 		nvme_wait_freeze(ctrl);
1226 	}
1227 	return effects;
1228 }
1229 EXPORT_SYMBOL_NS_GPL(nvme_passthru_start, "NVME_TARGET_PASSTHRU");
1230 
nvme_passthru_end(struct nvme_ctrl * ctrl,struct nvme_ns * ns,u32 effects,struct nvme_command * cmd,int status)1231 void nvme_passthru_end(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u32 effects,
1232 		       struct nvme_command *cmd, int status)
1233 {
1234 	if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1235 		nvme_unfreeze(ctrl);
1236 		nvme_mpath_unfreeze(ctrl->subsys);
1237 		mutex_unlock(&ctrl->subsys->lock);
1238 		mutex_unlock(&ctrl->scan_lock);
1239 	}
1240 	if (effects & NVME_CMD_EFFECTS_CCC) {
1241 		if (!test_and_set_bit(NVME_CTRL_DIRTY_CAPABILITY,
1242 				      &ctrl->flags)) {
1243 			dev_info(ctrl->device,
1244 "controller capabilities changed, reset may be required to take effect.\n");
1245 		}
1246 	}
1247 	if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) {
1248 		nvme_queue_scan(ctrl);
1249 		flush_work(&ctrl->scan_work);
1250 	}
1251 	if (ns)
1252 		return;
1253 
1254 	switch (cmd->common.opcode) {
1255 	case nvme_admin_set_features:
1256 		switch (le32_to_cpu(cmd->common.cdw10) & 0xFF) {
1257 		case NVME_FEAT_KATO:
1258 			/*
1259 			 * Keep alive commands interval on the host should be
1260 			 * updated when KATO is modified by Set Features
1261 			 * commands.
1262 			 */
1263 			if (!status)
1264 				nvme_update_keep_alive(ctrl, cmd);
1265 			break;
1266 		default:
1267 			break;
1268 		}
1269 		break;
1270 	default:
1271 		break;
1272 	}
1273 }
1274 EXPORT_SYMBOL_NS_GPL(nvme_passthru_end, "NVME_TARGET_PASSTHRU");
1275 
1276 /*
1277  * Recommended frequency for KATO commands per NVMe 1.4 section 7.12.1:
1278  *
1279  *   The host should send Keep Alive commands at half of the Keep Alive Timeout
1280  *   accounting for transport roundtrip times [..].
1281  */
nvme_keep_alive_work_period(struct nvme_ctrl * ctrl)1282 static unsigned long nvme_keep_alive_work_period(struct nvme_ctrl *ctrl)
1283 {
1284 	unsigned long delay = ctrl->kato * HZ / 2;
1285 
1286 	/*
1287 	 * When using Traffic Based Keep Alive, we need to run
1288 	 * nvme_keep_alive_work at twice the normal frequency, as one
1289 	 * command completion can postpone sending a keep alive command
1290 	 * by up to twice the delay between runs.
1291 	 */
1292 	if (ctrl->ctratt & NVME_CTRL_ATTR_TBKAS)
1293 		delay /= 2;
1294 	return delay;
1295 }
1296 
nvme_queue_keep_alive_work(struct nvme_ctrl * ctrl)1297 static void nvme_queue_keep_alive_work(struct nvme_ctrl *ctrl)
1298 {
1299 	unsigned long now = jiffies;
1300 	unsigned long delay = nvme_keep_alive_work_period(ctrl);
1301 	unsigned long ka_next_check_tm = ctrl->ka_last_check_time + delay;
1302 
1303 	if (time_after(now, ka_next_check_tm))
1304 		delay = 0;
1305 	else
1306 		delay = ka_next_check_tm - now;
1307 
1308 	queue_delayed_work(nvme_wq, &ctrl->ka_work, delay);
1309 }
1310 
nvme_keep_alive_end_io(struct request * rq,blk_status_t status)1311 static enum rq_end_io_ret nvme_keep_alive_end_io(struct request *rq,
1312 						 blk_status_t status)
1313 {
1314 	struct nvme_ctrl *ctrl = rq->end_io_data;
1315 	unsigned long rtt = jiffies - (rq->deadline - rq->timeout);
1316 	unsigned long delay = nvme_keep_alive_work_period(ctrl);
1317 	enum nvme_ctrl_state state = nvme_ctrl_state(ctrl);
1318 
1319 	/*
1320 	 * Subtract off the keepalive RTT so nvme_keep_alive_work runs
1321 	 * at the desired frequency.
1322 	 */
1323 	if (rtt <= delay) {
1324 		delay -= rtt;
1325 	} else {
1326 		dev_warn(ctrl->device, "long keepalive RTT (%u ms)\n",
1327 			 jiffies_to_msecs(rtt));
1328 		delay = 0;
1329 	}
1330 
1331 	blk_mq_free_request(rq);
1332 
1333 	if (status) {
1334 		dev_err(ctrl->device,
1335 			"failed nvme_keep_alive_end_io error=%d\n",
1336 				status);
1337 		return RQ_END_IO_NONE;
1338 	}
1339 
1340 	ctrl->ka_last_check_time = jiffies;
1341 	ctrl->comp_seen = false;
1342 	if (state == NVME_CTRL_LIVE || state == NVME_CTRL_CONNECTING)
1343 		queue_delayed_work(nvme_wq, &ctrl->ka_work, delay);
1344 	return RQ_END_IO_NONE;
1345 }
1346 
nvme_keep_alive_work(struct work_struct * work)1347 static void nvme_keep_alive_work(struct work_struct *work)
1348 {
1349 	struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
1350 			struct nvme_ctrl, ka_work);
1351 	bool comp_seen = ctrl->comp_seen;
1352 	struct request *rq;
1353 
1354 	ctrl->ka_last_check_time = jiffies;
1355 
1356 	if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) {
1357 		dev_dbg(ctrl->device,
1358 			"reschedule traffic based keep-alive timer\n");
1359 		ctrl->comp_seen = false;
1360 		nvme_queue_keep_alive_work(ctrl);
1361 		return;
1362 	}
1363 
1364 	rq = blk_mq_alloc_request(ctrl->admin_q, nvme_req_op(&ctrl->ka_cmd),
1365 				  BLK_MQ_REQ_RESERVED | BLK_MQ_REQ_NOWAIT);
1366 	if (IS_ERR(rq)) {
1367 		/* allocation failure, reset the controller */
1368 		dev_err(ctrl->device, "keep-alive failed: %ld\n", PTR_ERR(rq));
1369 		nvme_reset_ctrl(ctrl);
1370 		return;
1371 	}
1372 	nvme_init_request(rq, &ctrl->ka_cmd);
1373 
1374 	rq->timeout = ctrl->kato * HZ;
1375 	rq->end_io = nvme_keep_alive_end_io;
1376 	rq->end_io_data = ctrl;
1377 	blk_execute_rq_nowait(rq, false);
1378 }
1379 
nvme_start_keep_alive(struct nvme_ctrl * ctrl)1380 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
1381 {
1382 	if (unlikely(ctrl->kato == 0))
1383 		return;
1384 
1385 	nvme_queue_keep_alive_work(ctrl);
1386 }
1387 
nvme_stop_keep_alive(struct nvme_ctrl * ctrl)1388 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
1389 {
1390 	if (unlikely(ctrl->kato == 0))
1391 		return;
1392 
1393 	cancel_delayed_work_sync(&ctrl->ka_work);
1394 }
1395 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
1396 
nvme_update_keep_alive(struct nvme_ctrl * ctrl,struct nvme_command * cmd)1397 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl,
1398 				   struct nvme_command *cmd)
1399 {
1400 	unsigned int new_kato =
1401 		DIV_ROUND_UP(le32_to_cpu(cmd->common.cdw11), 1000);
1402 
1403 	dev_info(ctrl->device,
1404 		 "keep alive interval updated from %u ms to %u ms\n",
1405 		 ctrl->kato * 1000 / 2, new_kato * 1000 / 2);
1406 
1407 	nvme_stop_keep_alive(ctrl);
1408 	ctrl->kato = new_kato;
1409 	nvme_start_keep_alive(ctrl);
1410 }
1411 
nvme_id_cns_ok(struct nvme_ctrl * ctrl,u8 cns)1412 static bool nvme_id_cns_ok(struct nvme_ctrl *ctrl, u8 cns)
1413 {
1414 	/*
1415 	 * The CNS field occupies a full byte starting with NVMe 1.2
1416 	 */
1417 	if (ctrl->vs >= NVME_VS(1, 2, 0))
1418 		return true;
1419 
1420 	/*
1421 	 * NVMe 1.1 expanded the CNS value to two bits, which means values
1422 	 * larger than that could get truncated and treated as an incorrect
1423 	 * value.
1424 	 *
1425 	 * Qemu implemented 1.0 behavior for controllers claiming 1.1
1426 	 * compliance, so they need to be quirked here.
1427 	 */
1428 	if (ctrl->vs >= NVME_VS(1, 1, 0) &&
1429 	    !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS))
1430 		return cns <= 3;
1431 
1432 	/*
1433 	 * NVMe 1.0 used a single bit for the CNS value.
1434 	 */
1435 	return cns <= 1;
1436 }
1437 
nvme_identify_ctrl(struct nvme_ctrl * dev,struct nvme_id_ctrl ** id)1438 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
1439 {
1440 	struct nvme_command c = { };
1441 	int error;
1442 
1443 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1444 	c.identify.opcode = nvme_admin_identify;
1445 	c.identify.cns = NVME_ID_CNS_CTRL;
1446 
1447 	*id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
1448 	if (!*id)
1449 		return -ENOMEM;
1450 
1451 	error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1452 			sizeof(struct nvme_id_ctrl));
1453 	if (error) {
1454 		kfree(*id);
1455 		*id = NULL;
1456 	}
1457 	return error;
1458 }
1459 
nvme_process_ns_desc(struct nvme_ctrl * ctrl,struct nvme_ns_ids * ids,struct nvme_ns_id_desc * cur,bool * csi_seen)1460 static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids,
1461 		struct nvme_ns_id_desc *cur, bool *csi_seen)
1462 {
1463 	const char *warn_str = "ctrl returned bogus length:";
1464 	void *data = cur;
1465 
1466 	switch (cur->nidt) {
1467 	case NVME_NIDT_EUI64:
1468 		if (cur->nidl != NVME_NIDT_EUI64_LEN) {
1469 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n",
1470 				 warn_str, cur->nidl);
1471 			return -1;
1472 		}
1473 		if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1474 			return NVME_NIDT_EUI64_LEN;
1475 		memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN);
1476 		return NVME_NIDT_EUI64_LEN;
1477 	case NVME_NIDT_NGUID:
1478 		if (cur->nidl != NVME_NIDT_NGUID_LEN) {
1479 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n",
1480 				 warn_str, cur->nidl);
1481 			return -1;
1482 		}
1483 		if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1484 			return NVME_NIDT_NGUID_LEN;
1485 		memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN);
1486 		return NVME_NIDT_NGUID_LEN;
1487 	case NVME_NIDT_UUID:
1488 		if (cur->nidl != NVME_NIDT_UUID_LEN) {
1489 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n",
1490 				 warn_str, cur->nidl);
1491 			return -1;
1492 		}
1493 		if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1494 			return NVME_NIDT_UUID_LEN;
1495 		uuid_copy(&ids->uuid, data + sizeof(*cur));
1496 		return NVME_NIDT_UUID_LEN;
1497 	case NVME_NIDT_CSI:
1498 		if (cur->nidl != NVME_NIDT_CSI_LEN) {
1499 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n",
1500 				 warn_str, cur->nidl);
1501 			return -1;
1502 		}
1503 		memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN);
1504 		*csi_seen = true;
1505 		return NVME_NIDT_CSI_LEN;
1506 	default:
1507 		/* Skip unknown types */
1508 		return cur->nidl;
1509 	}
1510 }
1511 
nvme_identify_ns_descs(struct nvme_ctrl * ctrl,struct nvme_ns_info * info)1512 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl,
1513 		struct nvme_ns_info *info)
1514 {
1515 	struct nvme_command c = { };
1516 	bool csi_seen = false;
1517 	int status, pos, len;
1518 	void *data;
1519 
1520 	if (ctrl->vs < NVME_VS(1, 3, 0) && !nvme_multi_css(ctrl))
1521 		return 0;
1522 	if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST)
1523 		return 0;
1524 
1525 	c.identify.opcode = nvme_admin_identify;
1526 	c.identify.nsid = cpu_to_le32(info->nsid);
1527 	c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
1528 
1529 	data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
1530 	if (!data)
1531 		return -ENOMEM;
1532 
1533 	status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
1534 				      NVME_IDENTIFY_DATA_SIZE);
1535 	if (status) {
1536 		dev_warn(ctrl->device,
1537 			"Identify Descriptors failed (nsid=%u, status=0x%x)\n",
1538 			info->nsid, status);
1539 		goto free_data;
1540 	}
1541 
1542 	for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
1543 		struct nvme_ns_id_desc *cur = data + pos;
1544 
1545 		if (cur->nidl == 0)
1546 			break;
1547 
1548 		len = nvme_process_ns_desc(ctrl, &info->ids, cur, &csi_seen);
1549 		if (len < 0)
1550 			break;
1551 
1552 		len += sizeof(*cur);
1553 	}
1554 
1555 	if (nvme_multi_css(ctrl) && !csi_seen) {
1556 		dev_warn(ctrl->device, "Command set not reported for nsid:%d\n",
1557 			 info->nsid);
1558 		status = -EINVAL;
1559 	}
1560 
1561 free_data:
1562 	kfree(data);
1563 	return status;
1564 }
1565 
nvme_identify_ns(struct nvme_ctrl * ctrl,unsigned nsid,struct nvme_id_ns ** id)1566 int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid,
1567 			struct nvme_id_ns **id)
1568 {
1569 	struct nvme_command c = { };
1570 	int error;
1571 
1572 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1573 	c.identify.opcode = nvme_admin_identify;
1574 	c.identify.nsid = cpu_to_le32(nsid);
1575 	c.identify.cns = NVME_ID_CNS_NS;
1576 
1577 	*id = kmalloc(sizeof(**id), GFP_KERNEL);
1578 	if (!*id)
1579 		return -ENOMEM;
1580 
1581 	error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id));
1582 	if (error) {
1583 		dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error);
1584 		kfree(*id);
1585 		*id = NULL;
1586 	}
1587 	return error;
1588 }
1589 
nvme_ns_info_from_identify(struct nvme_ctrl * ctrl,struct nvme_ns_info * info)1590 static int nvme_ns_info_from_identify(struct nvme_ctrl *ctrl,
1591 		struct nvme_ns_info *info)
1592 {
1593 	struct nvme_ns_ids *ids = &info->ids;
1594 	struct nvme_id_ns *id;
1595 	int ret;
1596 
1597 	ret = nvme_identify_ns(ctrl, info->nsid, &id);
1598 	if (ret)
1599 		return ret;
1600 
1601 	if (id->ncap == 0) {
1602 		/* namespace not allocated or attached */
1603 		info->is_removed = true;
1604 		ret = -ENODEV;
1605 		goto error;
1606 	}
1607 
1608 	info->anagrpid = id->anagrpid;
1609 	info->is_shared = id->nmic & NVME_NS_NMIC_SHARED;
1610 	info->is_readonly = id->nsattr & NVME_NS_ATTR_RO;
1611 	info->is_ready = true;
1612 	if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) {
1613 		dev_info(ctrl->device,
1614 			 "Ignoring bogus Namespace Identifiers\n");
1615 	} else {
1616 		if (ctrl->vs >= NVME_VS(1, 1, 0) &&
1617 		    !memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
1618 			memcpy(ids->eui64, id->eui64, sizeof(ids->eui64));
1619 		if (ctrl->vs >= NVME_VS(1, 2, 0) &&
1620 		    !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
1621 			memcpy(ids->nguid, id->nguid, sizeof(ids->nguid));
1622 	}
1623 
1624 error:
1625 	kfree(id);
1626 	return ret;
1627 }
1628 
nvme_ns_info_from_id_cs_indep(struct nvme_ctrl * ctrl,struct nvme_ns_info * info)1629 static int nvme_ns_info_from_id_cs_indep(struct nvme_ctrl *ctrl,
1630 		struct nvme_ns_info *info)
1631 {
1632 	struct nvme_id_ns_cs_indep *id;
1633 	struct nvme_command c = {
1634 		.identify.opcode	= nvme_admin_identify,
1635 		.identify.nsid		= cpu_to_le32(info->nsid),
1636 		.identify.cns		= NVME_ID_CNS_NS_CS_INDEP,
1637 	};
1638 	int ret;
1639 
1640 	id = kmalloc(sizeof(*id), GFP_KERNEL);
1641 	if (!id)
1642 		return -ENOMEM;
1643 
1644 	ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
1645 	if (!ret) {
1646 		info->anagrpid = id->anagrpid;
1647 		info->is_shared = id->nmic & NVME_NS_NMIC_SHARED;
1648 		info->is_readonly = id->nsattr & NVME_NS_ATTR_RO;
1649 		info->is_ready = id->nstat & NVME_NSTAT_NRDY;
1650 		info->is_rotational = id->nsfeat & NVME_NS_ROTATIONAL;
1651 		info->no_vwc = id->nsfeat & NVME_NS_VWC_NOT_PRESENT;
1652 	}
1653 	kfree(id);
1654 	return ret;
1655 }
1656 
nvme_features(struct nvme_ctrl * dev,u8 op,unsigned int fid,unsigned int dword11,void * buffer,size_t buflen,u32 * result)1657 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid,
1658 		unsigned int dword11, void *buffer, size_t buflen, u32 *result)
1659 {
1660 	union nvme_result res = { 0 };
1661 	struct nvme_command c = { };
1662 	int ret;
1663 
1664 	c.features.opcode = op;
1665 	c.features.fid = cpu_to_le32(fid);
1666 	c.features.dword11 = cpu_to_le32(dword11);
1667 
1668 	ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
1669 			buffer, buflen, NVME_QID_ANY, 0);
1670 	if (ret >= 0 && result)
1671 		*result = le32_to_cpu(res.u32);
1672 	return ret;
1673 }
1674 
nvme_set_features(struct nvme_ctrl * dev,unsigned int fid,unsigned int dword11,void * buffer,size_t buflen,u32 * result)1675 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid,
1676 		      unsigned int dword11, void *buffer, size_t buflen,
1677 		      u32 *result)
1678 {
1679 	return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer,
1680 			     buflen, result);
1681 }
1682 EXPORT_SYMBOL_GPL(nvme_set_features);
1683 
nvme_get_features(struct nvme_ctrl * dev,unsigned int fid,unsigned int dword11,void * buffer,size_t buflen,u32 * result)1684 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid,
1685 		      unsigned int dword11, void *buffer, size_t buflen,
1686 		      u32 *result)
1687 {
1688 	return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer,
1689 			     buflen, result);
1690 }
1691 EXPORT_SYMBOL_GPL(nvme_get_features);
1692 
nvme_set_queue_count(struct nvme_ctrl * ctrl,int * count)1693 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
1694 {
1695 	u32 q_count = (*count - 1) | ((*count - 1) << 16);
1696 	u32 result;
1697 	int status, nr_io_queues;
1698 
1699 	status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
1700 			&result);
1701 
1702 	/*
1703 	 * It's either a kernel error or the host observed a connection
1704 	 * lost. In either case it's not possible communicate with the
1705 	 * controller and thus enter the error code path.
1706 	 */
1707 	if (status < 0 || status == NVME_SC_HOST_PATH_ERROR)
1708 		return status;
1709 
1710 	/*
1711 	 * Degraded controllers might return an error when setting the queue
1712 	 * count.  We still want to be able to bring them online and offer
1713 	 * access to the admin queue, as that might be only way to fix them up.
1714 	 */
1715 	if (status > 0) {
1716 		dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
1717 		*count = 0;
1718 	} else {
1719 		nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1720 		*count = min(*count, nr_io_queues);
1721 	}
1722 
1723 	return 0;
1724 }
1725 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
1726 
1727 #define NVME_AEN_SUPPORTED \
1728 	(NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \
1729 	 NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE)
1730 
nvme_enable_aen(struct nvme_ctrl * ctrl)1731 static void nvme_enable_aen(struct nvme_ctrl *ctrl)
1732 {
1733 	u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED;
1734 	int status;
1735 
1736 	if (!supported_aens)
1737 		return;
1738 
1739 	status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens,
1740 			NULL, 0, &result);
1741 	if (status)
1742 		dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n",
1743 			 supported_aens);
1744 
1745 	queue_work(nvme_wq, &ctrl->async_event_work);
1746 }
1747 
nvme_ns_open(struct nvme_ns * ns)1748 static int nvme_ns_open(struct nvme_ns *ns)
1749 {
1750 
1751 	/* should never be called due to GENHD_FL_HIDDEN */
1752 	if (WARN_ON_ONCE(nvme_ns_head_multipath(ns->head)))
1753 		goto fail;
1754 	if (!nvme_get_ns(ns))
1755 		goto fail;
1756 	if (!try_module_get(ns->ctrl->ops->module))
1757 		goto fail_put_ns;
1758 
1759 	return 0;
1760 
1761 fail_put_ns:
1762 	nvme_put_ns(ns);
1763 fail:
1764 	return -ENXIO;
1765 }
1766 
nvme_ns_release(struct nvme_ns * ns)1767 static void nvme_ns_release(struct nvme_ns *ns)
1768 {
1769 
1770 	module_put(ns->ctrl->ops->module);
1771 	nvme_put_ns(ns);
1772 }
1773 
nvme_open(struct gendisk * disk,blk_mode_t mode)1774 static int nvme_open(struct gendisk *disk, blk_mode_t mode)
1775 {
1776 	return nvme_ns_open(disk->private_data);
1777 }
1778 
nvme_release(struct gendisk * disk)1779 static void nvme_release(struct gendisk *disk)
1780 {
1781 	nvme_ns_release(disk->private_data);
1782 }
1783 
nvme_getgeo(struct block_device * bdev,struct hd_geometry * geo)1784 int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1785 {
1786 	/* some standard values */
1787 	geo->heads = 1 << 6;
1788 	geo->sectors = 1 << 5;
1789 	geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1790 	return 0;
1791 }
1792 
nvme_init_integrity(struct nvme_ns_head * head,struct queue_limits * lim,struct nvme_ns_info * info)1793 static bool nvme_init_integrity(struct nvme_ns_head *head,
1794 		struct queue_limits *lim, struct nvme_ns_info *info)
1795 {
1796 	struct blk_integrity *bi = &lim->integrity;
1797 
1798 	memset(bi, 0, sizeof(*bi));
1799 
1800 	if (!head->ms)
1801 		return true;
1802 
1803 	/*
1804 	 * PI can always be supported as we can ask the controller to simply
1805 	 * insert/strip it, which is not possible for other kinds of metadata.
1806 	 */
1807 	if (!IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) ||
1808 	    !(head->features & NVME_NS_METADATA_SUPPORTED))
1809 		return nvme_ns_has_pi(head);
1810 
1811 	switch (head->pi_type) {
1812 	case NVME_NS_DPS_PI_TYPE3:
1813 		switch (head->guard_type) {
1814 		case NVME_NVM_NS_16B_GUARD:
1815 			bi->csum_type = BLK_INTEGRITY_CSUM_CRC;
1816 			bi->tag_size = sizeof(u16) + sizeof(u32);
1817 			bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1818 			break;
1819 		case NVME_NVM_NS_64B_GUARD:
1820 			bi->csum_type = BLK_INTEGRITY_CSUM_CRC64;
1821 			bi->tag_size = sizeof(u16) + 6;
1822 			bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1823 			break;
1824 		default:
1825 			break;
1826 		}
1827 		break;
1828 	case NVME_NS_DPS_PI_TYPE1:
1829 	case NVME_NS_DPS_PI_TYPE2:
1830 		switch (head->guard_type) {
1831 		case NVME_NVM_NS_16B_GUARD:
1832 			bi->csum_type = BLK_INTEGRITY_CSUM_CRC;
1833 			bi->tag_size = sizeof(u16);
1834 			bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE |
1835 				     BLK_INTEGRITY_REF_TAG;
1836 			break;
1837 		case NVME_NVM_NS_64B_GUARD:
1838 			bi->csum_type = BLK_INTEGRITY_CSUM_CRC64;
1839 			bi->tag_size = sizeof(u16);
1840 			bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE |
1841 				     BLK_INTEGRITY_REF_TAG;
1842 			break;
1843 		default:
1844 			break;
1845 		}
1846 		break;
1847 	default:
1848 		break;
1849 	}
1850 
1851 	bi->tuple_size = head->ms;
1852 	bi->pi_offset = info->pi_offset;
1853 	return true;
1854 }
1855 
nvme_config_discard(struct nvme_ns * ns,struct queue_limits * lim)1856 static void nvme_config_discard(struct nvme_ns *ns, struct queue_limits *lim)
1857 {
1858 	struct nvme_ctrl *ctrl = ns->ctrl;
1859 
1860 	if (ctrl->dmrsl && ctrl->dmrsl <= nvme_sect_to_lba(ns->head, UINT_MAX))
1861 		lim->max_hw_discard_sectors =
1862 			nvme_lba_to_sect(ns->head, ctrl->dmrsl);
1863 	else if (ctrl->oncs & NVME_CTRL_ONCS_DSM)
1864 		lim->max_hw_discard_sectors = UINT_MAX;
1865 	else
1866 		lim->max_hw_discard_sectors = 0;
1867 
1868 	lim->discard_granularity = lim->logical_block_size;
1869 
1870 	if (ctrl->dmrl)
1871 		lim->max_discard_segments = ctrl->dmrl;
1872 	else
1873 		lim->max_discard_segments = NVME_DSM_MAX_RANGES;
1874 }
1875 
nvme_ns_ids_equal(struct nvme_ns_ids * a,struct nvme_ns_ids * b)1876 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1877 {
1878 	return uuid_equal(&a->uuid, &b->uuid) &&
1879 		memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
1880 		memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0 &&
1881 		a->csi == b->csi;
1882 }
1883 
nvme_identify_ns_nvm(struct nvme_ctrl * ctrl,unsigned int nsid,struct nvme_id_ns_nvm ** nvmp)1884 static int nvme_identify_ns_nvm(struct nvme_ctrl *ctrl, unsigned int nsid,
1885 		struct nvme_id_ns_nvm **nvmp)
1886 {
1887 	struct nvme_command c = {
1888 		.identify.opcode	= nvme_admin_identify,
1889 		.identify.nsid		= cpu_to_le32(nsid),
1890 		.identify.cns		= NVME_ID_CNS_CS_NS,
1891 		.identify.csi		= NVME_CSI_NVM,
1892 	};
1893 	struct nvme_id_ns_nvm *nvm;
1894 	int ret;
1895 
1896 	nvm = kzalloc(sizeof(*nvm), GFP_KERNEL);
1897 	if (!nvm)
1898 		return -ENOMEM;
1899 
1900 	ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, nvm, sizeof(*nvm));
1901 	if (ret)
1902 		kfree(nvm);
1903 	else
1904 		*nvmp = nvm;
1905 	return ret;
1906 }
1907 
nvme_configure_pi_elbas(struct nvme_ns_head * head,struct nvme_id_ns * id,struct nvme_id_ns_nvm * nvm)1908 static void nvme_configure_pi_elbas(struct nvme_ns_head *head,
1909 		struct nvme_id_ns *id, struct nvme_id_ns_nvm *nvm)
1910 {
1911 	u32 elbaf = le32_to_cpu(nvm->elbaf[nvme_lbaf_index(id->flbas)]);
1912 	u8 guard_type;
1913 
1914 	/* no support for storage tag formats right now */
1915 	if (nvme_elbaf_sts(elbaf))
1916 		return;
1917 
1918 	guard_type = nvme_elbaf_guard_type(elbaf);
1919 	if ((nvm->pic & NVME_ID_NS_NVM_QPIFS) &&
1920 	     guard_type == NVME_NVM_NS_QTYPE_GUARD)
1921 		guard_type = nvme_elbaf_qualified_guard_type(elbaf);
1922 
1923 	head->guard_type = guard_type;
1924 	switch (head->guard_type) {
1925 	case NVME_NVM_NS_64B_GUARD:
1926 		head->pi_size = sizeof(struct crc64_pi_tuple);
1927 		break;
1928 	case NVME_NVM_NS_16B_GUARD:
1929 		head->pi_size = sizeof(struct t10_pi_tuple);
1930 		break;
1931 	default:
1932 		break;
1933 	}
1934 }
1935 
nvme_configure_metadata(struct nvme_ctrl * ctrl,struct nvme_ns_head * head,struct nvme_id_ns * id,struct nvme_id_ns_nvm * nvm,struct nvme_ns_info * info)1936 static void nvme_configure_metadata(struct nvme_ctrl *ctrl,
1937 		struct nvme_ns_head *head, struct nvme_id_ns *id,
1938 		struct nvme_id_ns_nvm *nvm, struct nvme_ns_info *info)
1939 {
1940 	head->features &= ~(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS);
1941 	head->pi_type = 0;
1942 	head->pi_size = 0;
1943 	head->ms = le16_to_cpu(id->lbaf[nvme_lbaf_index(id->flbas)].ms);
1944 	if (!head->ms || !(ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
1945 		return;
1946 
1947 	if (nvm && (ctrl->ctratt & NVME_CTRL_ATTR_ELBAS)) {
1948 		nvme_configure_pi_elbas(head, id, nvm);
1949 	} else {
1950 		head->pi_size = sizeof(struct t10_pi_tuple);
1951 		head->guard_type = NVME_NVM_NS_16B_GUARD;
1952 	}
1953 
1954 	if (head->pi_size && head->ms >= head->pi_size)
1955 		head->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
1956 	if (!(id->dps & NVME_NS_DPS_PI_FIRST)) {
1957 		if (disable_pi_offsets)
1958 			head->pi_type = 0;
1959 		else
1960 			info->pi_offset = head->ms - head->pi_size;
1961 	}
1962 
1963 	if (ctrl->ops->flags & NVME_F_FABRICS) {
1964 		/*
1965 		 * The NVMe over Fabrics specification only supports metadata as
1966 		 * part of the extended data LBA.  We rely on HCA/HBA support to
1967 		 * remap the separate metadata buffer from the block layer.
1968 		 */
1969 		if (WARN_ON_ONCE(!(id->flbas & NVME_NS_FLBAS_META_EXT)))
1970 			return;
1971 
1972 		head->features |= NVME_NS_EXT_LBAS;
1973 
1974 		/*
1975 		 * The current fabrics transport drivers support namespace
1976 		 * metadata formats only if nvme_ns_has_pi() returns true.
1977 		 * Suppress support for all other formats so the namespace will
1978 		 * have a 0 capacity and not be usable through the block stack.
1979 		 *
1980 		 * Note, this check will need to be modified if any drivers
1981 		 * gain the ability to use other metadata formats.
1982 		 */
1983 		if (ctrl->max_integrity_segments && nvme_ns_has_pi(head))
1984 			head->features |= NVME_NS_METADATA_SUPPORTED;
1985 	} else {
1986 		/*
1987 		 * For PCIe controllers, we can't easily remap the separate
1988 		 * metadata buffer from the block layer and thus require a
1989 		 * separate metadata buffer for block layer metadata/PI support.
1990 		 * We allow extended LBAs for the passthrough interface, though.
1991 		 */
1992 		if (id->flbas & NVME_NS_FLBAS_META_EXT)
1993 			head->features |= NVME_NS_EXT_LBAS;
1994 		else
1995 			head->features |= NVME_NS_METADATA_SUPPORTED;
1996 	}
1997 }
1998 
1999 
nvme_update_atomic_write_disk_info(struct nvme_ns * ns,struct nvme_id_ns * id,struct queue_limits * lim,u32 bs,u32 atomic_bs)2000 static void nvme_update_atomic_write_disk_info(struct nvme_ns *ns,
2001 			struct nvme_id_ns *id, struct queue_limits *lim,
2002 			u32 bs, u32 atomic_bs)
2003 {
2004 	unsigned int boundary = 0;
2005 
2006 	if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf) {
2007 		if (le16_to_cpu(id->nabspf))
2008 			boundary = (le16_to_cpu(id->nabspf) + 1) * bs;
2009 	}
2010 	lim->atomic_write_hw_max = atomic_bs;
2011 	lim->atomic_write_hw_boundary = boundary;
2012 	lim->atomic_write_hw_unit_min = bs;
2013 	lim->atomic_write_hw_unit_max = rounddown_pow_of_two(atomic_bs);
2014 	lim->features |= BLK_FEAT_ATOMIC_WRITES;
2015 }
2016 
nvme_max_drv_segments(struct nvme_ctrl * ctrl)2017 static u32 nvme_max_drv_segments(struct nvme_ctrl *ctrl)
2018 {
2019 	return ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> SECTOR_SHIFT) + 1;
2020 }
2021 
nvme_set_ctrl_limits(struct nvme_ctrl * ctrl,struct queue_limits * lim)2022 static void nvme_set_ctrl_limits(struct nvme_ctrl *ctrl,
2023 		struct queue_limits *lim)
2024 {
2025 	lim->max_hw_sectors = ctrl->max_hw_sectors;
2026 	lim->max_segments = min_t(u32, USHRT_MAX,
2027 		min_not_zero(nvme_max_drv_segments(ctrl), ctrl->max_segments));
2028 	lim->max_integrity_segments = ctrl->max_integrity_segments;
2029 	lim->virt_boundary_mask = NVME_CTRL_PAGE_SIZE - 1;
2030 	lim->max_segment_size = UINT_MAX;
2031 	lim->dma_alignment = 3;
2032 }
2033 
nvme_update_disk_info(struct nvme_ns * ns,struct nvme_id_ns * id,struct queue_limits * lim)2034 static bool nvme_update_disk_info(struct nvme_ns *ns, struct nvme_id_ns *id,
2035 		struct queue_limits *lim)
2036 {
2037 	struct nvme_ns_head *head = ns->head;
2038 	u32 bs = 1U << head->lba_shift;
2039 	u32 atomic_bs, phys_bs, io_opt = 0;
2040 	bool valid = true;
2041 
2042 	/*
2043 	 * The block layer can't support LBA sizes larger than the page size
2044 	 * or smaller than a sector size yet, so catch this early and don't
2045 	 * allow block I/O.
2046 	 */
2047 	if (blk_validate_block_size(bs)) {
2048 		bs = (1 << 9);
2049 		valid = false;
2050 	}
2051 
2052 	atomic_bs = phys_bs = bs;
2053 	if (id->nabo == 0) {
2054 		/*
2055 		 * Bit 1 indicates whether NAWUPF is defined for this namespace
2056 		 * and whether it should be used instead of AWUPF. If NAWUPF ==
2057 		 * 0 then AWUPF must be used instead.
2058 		 */
2059 		if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf)
2060 			atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs;
2061 		else
2062 			atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs;
2063 
2064 		nvme_update_atomic_write_disk_info(ns, id, lim, bs, atomic_bs);
2065 	}
2066 
2067 	if (id->nsfeat & NVME_NS_FEAT_IO_OPT) {
2068 		/* NPWG = Namespace Preferred Write Granularity */
2069 		phys_bs = bs * (1 + le16_to_cpu(id->npwg));
2070 		/* NOWS = Namespace Optimal Write Size */
2071 		if (id->nows)
2072 			io_opt = bs * (1 + le16_to_cpu(id->nows));
2073 	}
2074 
2075 	/*
2076 	 * Linux filesystems assume writing a single physical block is
2077 	 * an atomic operation. Hence limit the physical block size to the
2078 	 * value of the Atomic Write Unit Power Fail parameter.
2079 	 */
2080 	lim->logical_block_size = bs;
2081 	lim->physical_block_size = min(phys_bs, atomic_bs);
2082 	lim->io_min = phys_bs;
2083 	lim->io_opt = io_opt;
2084 	if ((ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES) &&
2085 	    (ns->ctrl->oncs & NVME_CTRL_ONCS_DSM))
2086 		lim->max_write_zeroes_sectors = UINT_MAX;
2087 	else
2088 		lim->max_write_zeroes_sectors = ns->ctrl->max_zeroes_sectors;
2089 	return valid;
2090 }
2091 
nvme_ns_is_readonly(struct nvme_ns * ns,struct nvme_ns_info * info)2092 static bool nvme_ns_is_readonly(struct nvme_ns *ns, struct nvme_ns_info *info)
2093 {
2094 	return info->is_readonly || test_bit(NVME_NS_FORCE_RO, &ns->flags);
2095 }
2096 
nvme_first_scan(struct gendisk * disk)2097 static inline bool nvme_first_scan(struct gendisk *disk)
2098 {
2099 	/* nvme_alloc_ns() scans the disk prior to adding it */
2100 	return !disk_live(disk);
2101 }
2102 
nvme_set_chunk_sectors(struct nvme_ns * ns,struct nvme_id_ns * id,struct queue_limits * lim)2103 static void nvme_set_chunk_sectors(struct nvme_ns *ns, struct nvme_id_ns *id,
2104 		struct queue_limits *lim)
2105 {
2106 	struct nvme_ctrl *ctrl = ns->ctrl;
2107 	u32 iob;
2108 
2109 	if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
2110 	    is_power_of_2(ctrl->max_hw_sectors))
2111 		iob = ctrl->max_hw_sectors;
2112 	else
2113 		iob = nvme_lba_to_sect(ns->head, le16_to_cpu(id->noiob));
2114 
2115 	if (!iob)
2116 		return;
2117 
2118 	if (!is_power_of_2(iob)) {
2119 		if (nvme_first_scan(ns->disk))
2120 			pr_warn("%s: ignoring unaligned IO boundary:%u\n",
2121 				ns->disk->disk_name, iob);
2122 		return;
2123 	}
2124 
2125 	if (blk_queue_is_zoned(ns->disk->queue)) {
2126 		if (nvme_first_scan(ns->disk))
2127 			pr_warn("%s: ignoring zoned namespace IO boundary\n",
2128 				ns->disk->disk_name);
2129 		return;
2130 	}
2131 
2132 	lim->chunk_sectors = iob;
2133 }
2134 
nvme_update_ns_info_generic(struct nvme_ns * ns,struct nvme_ns_info * info)2135 static int nvme_update_ns_info_generic(struct nvme_ns *ns,
2136 		struct nvme_ns_info *info)
2137 {
2138 	struct queue_limits lim;
2139 	unsigned int memflags;
2140 	int ret;
2141 
2142 	lim = queue_limits_start_update(ns->disk->queue);
2143 	nvme_set_ctrl_limits(ns->ctrl, &lim);
2144 
2145 	memflags = blk_mq_freeze_queue(ns->disk->queue);
2146 	ret = queue_limits_commit_update(ns->disk->queue, &lim);
2147 	set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info));
2148 	blk_mq_unfreeze_queue(ns->disk->queue, memflags);
2149 
2150 	/* Hide the block-interface for these devices */
2151 	if (!ret)
2152 		ret = -ENODEV;
2153 	return ret;
2154 }
2155 
nvme_update_ns_info_block(struct nvme_ns * ns,struct nvme_ns_info * info)2156 static int nvme_update_ns_info_block(struct nvme_ns *ns,
2157 		struct nvme_ns_info *info)
2158 {
2159 	struct queue_limits lim;
2160 	struct nvme_id_ns_nvm *nvm = NULL;
2161 	struct nvme_zone_info zi = {};
2162 	struct nvme_id_ns *id;
2163 	unsigned int memflags;
2164 	sector_t capacity;
2165 	unsigned lbaf;
2166 	int ret;
2167 
2168 	ret = nvme_identify_ns(ns->ctrl, info->nsid, &id);
2169 	if (ret)
2170 		return ret;
2171 
2172 	if (id->ncap == 0) {
2173 		/* namespace not allocated or attached */
2174 		info->is_removed = true;
2175 		ret = -ENXIO;
2176 		goto out;
2177 	}
2178 	lbaf = nvme_lbaf_index(id->flbas);
2179 
2180 	if (ns->ctrl->ctratt & NVME_CTRL_ATTR_ELBAS) {
2181 		ret = nvme_identify_ns_nvm(ns->ctrl, info->nsid, &nvm);
2182 		if (ret < 0)
2183 			goto out;
2184 	}
2185 
2186 	if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
2187 	    ns->head->ids.csi == NVME_CSI_ZNS) {
2188 		ret = nvme_query_zone_info(ns, lbaf, &zi);
2189 		if (ret < 0)
2190 			goto out;
2191 	}
2192 
2193 	lim = queue_limits_start_update(ns->disk->queue);
2194 
2195 	memflags = blk_mq_freeze_queue(ns->disk->queue);
2196 	ns->head->lba_shift = id->lbaf[lbaf].ds;
2197 	ns->head->nuse = le64_to_cpu(id->nuse);
2198 	capacity = nvme_lba_to_sect(ns->head, le64_to_cpu(id->nsze));
2199 	nvme_set_ctrl_limits(ns->ctrl, &lim);
2200 	nvme_configure_metadata(ns->ctrl, ns->head, id, nvm, info);
2201 	nvme_set_chunk_sectors(ns, id, &lim);
2202 	if (!nvme_update_disk_info(ns, id, &lim))
2203 		capacity = 0;
2204 	nvme_config_discard(ns, &lim);
2205 	if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
2206 	    ns->head->ids.csi == NVME_CSI_ZNS)
2207 		nvme_update_zone_info(ns, &lim, &zi);
2208 
2209 	if ((ns->ctrl->vwc & NVME_CTRL_VWC_PRESENT) && !info->no_vwc)
2210 		lim.features |= BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA;
2211 	else
2212 		lim.features &= ~(BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA);
2213 
2214 	if (info->is_rotational)
2215 		lim.features |= BLK_FEAT_ROTATIONAL;
2216 
2217 	/*
2218 	 * Register a metadata profile for PI, or the plain non-integrity NVMe
2219 	 * metadata masquerading as Type 0 if supported, otherwise reject block
2220 	 * I/O to namespaces with metadata except when the namespace supports
2221 	 * PI, as it can strip/insert in that case.
2222 	 */
2223 	if (!nvme_init_integrity(ns->head, &lim, info))
2224 		capacity = 0;
2225 
2226 	ret = queue_limits_commit_update(ns->disk->queue, &lim);
2227 	if (ret) {
2228 		blk_mq_unfreeze_queue(ns->disk->queue, memflags);
2229 		goto out;
2230 	}
2231 
2232 	set_capacity_and_notify(ns->disk, capacity);
2233 
2234 	/*
2235 	 * Only set the DEAC bit if the device guarantees that reads from
2236 	 * deallocated data return zeroes.  While the DEAC bit does not
2237 	 * require that, it must be a no-op if reads from deallocated data
2238 	 * do not return zeroes.
2239 	 */
2240 	if ((id->dlfeat & 0x7) == 0x1 && (id->dlfeat & (1 << 3)))
2241 		ns->head->features |= NVME_NS_DEAC;
2242 	set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info));
2243 	set_bit(NVME_NS_READY, &ns->flags);
2244 	blk_mq_unfreeze_queue(ns->disk->queue, memflags);
2245 
2246 	if (blk_queue_is_zoned(ns->queue)) {
2247 		ret = blk_revalidate_disk_zones(ns->disk);
2248 		if (ret && !nvme_first_scan(ns->disk))
2249 			goto out;
2250 	}
2251 
2252 	ret = 0;
2253 out:
2254 	kfree(nvm);
2255 	kfree(id);
2256 	return ret;
2257 }
2258 
nvme_update_ns_info(struct nvme_ns * ns,struct nvme_ns_info * info)2259 static int nvme_update_ns_info(struct nvme_ns *ns, struct nvme_ns_info *info)
2260 {
2261 	bool unsupported = false;
2262 	int ret;
2263 
2264 	switch (info->ids.csi) {
2265 	case NVME_CSI_ZNS:
2266 		if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) {
2267 			dev_info(ns->ctrl->device,
2268 	"block device for nsid %u not supported without CONFIG_BLK_DEV_ZONED\n",
2269 				info->nsid);
2270 			ret = nvme_update_ns_info_generic(ns, info);
2271 			break;
2272 		}
2273 		ret = nvme_update_ns_info_block(ns, info);
2274 		break;
2275 	case NVME_CSI_NVM:
2276 		ret = nvme_update_ns_info_block(ns, info);
2277 		break;
2278 	default:
2279 		dev_info(ns->ctrl->device,
2280 			"block device for nsid %u not supported (csi %u)\n",
2281 			info->nsid, info->ids.csi);
2282 		ret = nvme_update_ns_info_generic(ns, info);
2283 		break;
2284 	}
2285 
2286 	/*
2287 	 * If probing fails due an unsupported feature, hide the block device,
2288 	 * but still allow other access.
2289 	 */
2290 	if (ret == -ENODEV) {
2291 		ns->disk->flags |= GENHD_FL_HIDDEN;
2292 		set_bit(NVME_NS_READY, &ns->flags);
2293 		unsupported = true;
2294 		ret = 0;
2295 	}
2296 
2297 	if (!ret && nvme_ns_head_multipath(ns->head)) {
2298 		struct queue_limits *ns_lim = &ns->disk->queue->limits;
2299 		struct queue_limits lim;
2300 		unsigned int memflags;
2301 
2302 		lim = queue_limits_start_update(ns->head->disk->queue);
2303 		memflags = blk_mq_freeze_queue(ns->head->disk->queue);
2304 		/*
2305 		 * queue_limits mixes values that are the hardware limitations
2306 		 * for bio splitting with what is the device configuration.
2307 		 *
2308 		 * For NVMe the device configuration can change after e.g. a
2309 		 * Format command, and we really want to pick up the new format
2310 		 * value here.  But we must still stack the queue limits to the
2311 		 * least common denominator for multipathing to split the bios
2312 		 * properly.
2313 		 *
2314 		 * To work around this, we explicitly set the device
2315 		 * configuration to those that we just queried, but only stack
2316 		 * the splitting limits in to make sure we still obey possibly
2317 		 * lower limitations of other controllers.
2318 		 */
2319 		lim.logical_block_size = ns_lim->logical_block_size;
2320 		lim.physical_block_size = ns_lim->physical_block_size;
2321 		lim.io_min = ns_lim->io_min;
2322 		lim.io_opt = ns_lim->io_opt;
2323 		queue_limits_stack_bdev(&lim, ns->disk->part0, 0,
2324 					ns->head->disk->disk_name);
2325 		if (unsupported)
2326 			ns->head->disk->flags |= GENHD_FL_HIDDEN;
2327 		else
2328 			nvme_init_integrity(ns->head, &lim, info);
2329 		ret = queue_limits_commit_update(ns->head->disk->queue, &lim);
2330 
2331 		set_capacity_and_notify(ns->head->disk, get_capacity(ns->disk));
2332 		set_disk_ro(ns->head->disk, nvme_ns_is_readonly(ns, info));
2333 		nvme_mpath_revalidate_paths(ns);
2334 
2335 		blk_mq_unfreeze_queue(ns->head->disk->queue, memflags);
2336 	}
2337 
2338 	return ret;
2339 }
2340 
nvme_ns_get_unique_id(struct nvme_ns * ns,u8 id[16],enum blk_unique_id type)2341 int nvme_ns_get_unique_id(struct nvme_ns *ns, u8 id[16],
2342 		enum blk_unique_id type)
2343 {
2344 	struct nvme_ns_ids *ids = &ns->head->ids;
2345 
2346 	if (type != BLK_UID_EUI64)
2347 		return -EINVAL;
2348 
2349 	if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) {
2350 		memcpy(id, &ids->nguid, sizeof(ids->nguid));
2351 		return sizeof(ids->nguid);
2352 	}
2353 	if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) {
2354 		memcpy(id, &ids->eui64, sizeof(ids->eui64));
2355 		return sizeof(ids->eui64);
2356 	}
2357 
2358 	return -EINVAL;
2359 }
2360 
nvme_get_unique_id(struct gendisk * disk,u8 id[16],enum blk_unique_id type)2361 static int nvme_get_unique_id(struct gendisk *disk, u8 id[16],
2362 		enum blk_unique_id type)
2363 {
2364 	return nvme_ns_get_unique_id(disk->private_data, id, type);
2365 }
2366 
2367 #ifdef CONFIG_BLK_SED_OPAL
nvme_sec_submit(void * data,u16 spsp,u8 secp,void * buffer,size_t len,bool send)2368 static int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
2369 		bool send)
2370 {
2371 	struct nvme_ctrl *ctrl = data;
2372 	struct nvme_command cmd = { };
2373 
2374 	if (send)
2375 		cmd.common.opcode = nvme_admin_security_send;
2376 	else
2377 		cmd.common.opcode = nvme_admin_security_recv;
2378 	cmd.common.nsid = 0;
2379 	cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
2380 	cmd.common.cdw11 = cpu_to_le32(len);
2381 
2382 	return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len,
2383 			NVME_QID_ANY, NVME_SUBMIT_AT_HEAD);
2384 }
2385 
nvme_configure_opal(struct nvme_ctrl * ctrl,bool was_suspended)2386 static void nvme_configure_opal(struct nvme_ctrl *ctrl, bool was_suspended)
2387 {
2388 	if (ctrl->oacs & NVME_CTRL_OACS_SEC_SUPP) {
2389 		if (!ctrl->opal_dev)
2390 			ctrl->opal_dev = init_opal_dev(ctrl, &nvme_sec_submit);
2391 		else if (was_suspended)
2392 			opal_unlock_from_suspend(ctrl->opal_dev);
2393 	} else {
2394 		free_opal_dev(ctrl->opal_dev);
2395 		ctrl->opal_dev = NULL;
2396 	}
2397 }
2398 #else
nvme_configure_opal(struct nvme_ctrl * ctrl,bool was_suspended)2399 static void nvme_configure_opal(struct nvme_ctrl *ctrl, bool was_suspended)
2400 {
2401 }
2402 #endif /* CONFIG_BLK_SED_OPAL */
2403 
2404 #ifdef CONFIG_BLK_DEV_ZONED
nvme_report_zones(struct gendisk * disk,sector_t sector,unsigned int nr_zones,report_zones_cb cb,void * data)2405 static int nvme_report_zones(struct gendisk *disk, sector_t sector,
2406 		unsigned int nr_zones, report_zones_cb cb, void *data)
2407 {
2408 	return nvme_ns_report_zones(disk->private_data, sector, nr_zones, cb,
2409 			data);
2410 }
2411 #else
2412 #define nvme_report_zones	NULL
2413 #endif /* CONFIG_BLK_DEV_ZONED */
2414 
2415 const struct block_device_operations nvme_bdev_ops = {
2416 	.owner		= THIS_MODULE,
2417 	.ioctl		= nvme_ioctl,
2418 	.compat_ioctl	= blkdev_compat_ptr_ioctl,
2419 	.open		= nvme_open,
2420 	.release	= nvme_release,
2421 	.getgeo		= nvme_getgeo,
2422 	.get_unique_id	= nvme_get_unique_id,
2423 	.report_zones	= nvme_report_zones,
2424 	.pr_ops		= &nvme_pr_ops,
2425 };
2426 
nvme_wait_ready(struct nvme_ctrl * ctrl,u32 mask,u32 val,u32 timeout,const char * op)2427 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u32 mask, u32 val,
2428 		u32 timeout, const char *op)
2429 {
2430 	unsigned long timeout_jiffies = jiffies + timeout * HZ;
2431 	u32 csts;
2432 	int ret;
2433 
2434 	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2435 		if (csts == ~0)
2436 			return -ENODEV;
2437 		if ((csts & mask) == val)
2438 			break;
2439 
2440 		usleep_range(1000, 2000);
2441 		if (fatal_signal_pending(current))
2442 			return -EINTR;
2443 		if (time_after(jiffies, timeout_jiffies)) {
2444 			dev_err(ctrl->device,
2445 				"Device not ready; aborting %s, CSTS=0x%x\n",
2446 				op, csts);
2447 			return -ENODEV;
2448 		}
2449 	}
2450 
2451 	return ret;
2452 }
2453 
nvme_disable_ctrl(struct nvme_ctrl * ctrl,bool shutdown)2454 int nvme_disable_ctrl(struct nvme_ctrl *ctrl, bool shutdown)
2455 {
2456 	int ret;
2457 
2458 	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2459 	if (shutdown)
2460 		ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
2461 	else
2462 		ctrl->ctrl_config &= ~NVME_CC_ENABLE;
2463 
2464 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2465 	if (ret)
2466 		return ret;
2467 
2468 	if (shutdown) {
2469 		return nvme_wait_ready(ctrl, NVME_CSTS_SHST_MASK,
2470 				       NVME_CSTS_SHST_CMPLT,
2471 				       ctrl->shutdown_timeout, "shutdown");
2472 	}
2473 	if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
2474 		msleep(NVME_QUIRK_DELAY_AMOUNT);
2475 	return nvme_wait_ready(ctrl, NVME_CSTS_RDY, 0,
2476 			       (NVME_CAP_TIMEOUT(ctrl->cap) + 1) / 2, "reset");
2477 }
2478 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
2479 
nvme_enable_ctrl(struct nvme_ctrl * ctrl)2480 int nvme_enable_ctrl(struct nvme_ctrl *ctrl)
2481 {
2482 	unsigned dev_page_min;
2483 	u32 timeout;
2484 	int ret;
2485 
2486 	ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2487 	if (ret) {
2488 		dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2489 		return ret;
2490 	}
2491 	dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2492 
2493 	if (NVME_CTRL_PAGE_SHIFT < dev_page_min) {
2494 		dev_err(ctrl->device,
2495 			"Minimum device page size %u too large for host (%u)\n",
2496 			1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT);
2497 		return -ENODEV;
2498 	}
2499 
2500 	if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI)
2501 		ctrl->ctrl_config = NVME_CC_CSS_CSI;
2502 	else
2503 		ctrl->ctrl_config = NVME_CC_CSS_NVM;
2504 
2505 	/*
2506 	 * Setting CRIME results in CSTS.RDY before the media is ready. This
2507 	 * makes it possible for media related commands to return the error
2508 	 * NVME_SC_ADMIN_COMMAND_MEDIA_NOT_READY. Until the driver is
2509 	 * restructured to handle retries, disable CC.CRIME.
2510 	 */
2511 	ctrl->ctrl_config &= ~NVME_CC_CRIME;
2512 
2513 	ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
2514 	ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
2515 	ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
2516 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2517 	if (ret)
2518 		return ret;
2519 
2520 	/* CAP value may change after initial CC write */
2521 	ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2522 	if (ret)
2523 		return ret;
2524 
2525 	timeout = NVME_CAP_TIMEOUT(ctrl->cap);
2526 	if (ctrl->cap & NVME_CAP_CRMS_CRWMS) {
2527 		u32 crto, ready_timeout;
2528 
2529 		ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CRTO, &crto);
2530 		if (ret) {
2531 			dev_err(ctrl->device, "Reading CRTO failed (%d)\n",
2532 				ret);
2533 			return ret;
2534 		}
2535 
2536 		/*
2537 		 * CRTO should always be greater or equal to CAP.TO, but some
2538 		 * devices are known to get this wrong. Use the larger of the
2539 		 * two values.
2540 		 */
2541 		ready_timeout = NVME_CRTO_CRWMT(crto);
2542 
2543 		if (ready_timeout < timeout)
2544 			dev_warn_once(ctrl->device, "bad crto:%x cap:%llx\n",
2545 				      crto, ctrl->cap);
2546 		else
2547 			timeout = ready_timeout;
2548 	}
2549 
2550 	ctrl->ctrl_config |= NVME_CC_ENABLE;
2551 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2552 	if (ret)
2553 		return ret;
2554 	return nvme_wait_ready(ctrl, NVME_CSTS_RDY, NVME_CSTS_RDY,
2555 			       (timeout + 1) / 2, "initialisation");
2556 }
2557 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
2558 
nvme_configure_timestamp(struct nvme_ctrl * ctrl)2559 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
2560 {
2561 	__le64 ts;
2562 	int ret;
2563 
2564 	if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
2565 		return 0;
2566 
2567 	ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
2568 	ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
2569 			NULL);
2570 	if (ret)
2571 		dev_warn_once(ctrl->device,
2572 			"could not set timestamp (%d)\n", ret);
2573 	return ret;
2574 }
2575 
nvme_configure_host_options(struct nvme_ctrl * ctrl)2576 static int nvme_configure_host_options(struct nvme_ctrl *ctrl)
2577 {
2578 	struct nvme_feat_host_behavior *host;
2579 	u8 acre = 0, lbafee = 0;
2580 	int ret;
2581 
2582 	/* Don't bother enabling the feature if retry delay is not reported */
2583 	if (ctrl->crdt[0])
2584 		acre = NVME_ENABLE_ACRE;
2585 	if (ctrl->ctratt & NVME_CTRL_ATTR_ELBAS)
2586 		lbafee = NVME_ENABLE_LBAFEE;
2587 
2588 	if (!acre && !lbafee)
2589 		return 0;
2590 
2591 	host = kzalloc(sizeof(*host), GFP_KERNEL);
2592 	if (!host)
2593 		return 0;
2594 
2595 	host->acre = acre;
2596 	host->lbafee = lbafee;
2597 	ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0,
2598 				host, sizeof(*host), NULL);
2599 	kfree(host);
2600 	return ret;
2601 }
2602 
2603 /*
2604  * The function checks whether the given total (exlat + enlat) latency of
2605  * a power state allows the latter to be used as an APST transition target.
2606  * It does so by comparing the latency to the primary and secondary latency
2607  * tolerances defined by module params. If there's a match, the corresponding
2608  * timeout value is returned and the matching tolerance index (1 or 2) is
2609  * reported.
2610  */
nvme_apst_get_transition_time(u64 total_latency,u64 * transition_time,unsigned * last_index)2611 static bool nvme_apst_get_transition_time(u64 total_latency,
2612 		u64 *transition_time, unsigned *last_index)
2613 {
2614 	if (total_latency <= apst_primary_latency_tol_us) {
2615 		if (*last_index == 1)
2616 			return false;
2617 		*last_index = 1;
2618 		*transition_time = apst_primary_timeout_ms;
2619 		return true;
2620 	}
2621 	if (apst_secondary_timeout_ms &&
2622 		total_latency <= apst_secondary_latency_tol_us) {
2623 		if (*last_index <= 2)
2624 			return false;
2625 		*last_index = 2;
2626 		*transition_time = apst_secondary_timeout_ms;
2627 		return true;
2628 	}
2629 	return false;
2630 }
2631 
2632 /*
2633  * APST (Autonomous Power State Transition) lets us program a table of power
2634  * state transitions that the controller will perform automatically.
2635  *
2636  * Depending on module params, one of the two supported techniques will be used:
2637  *
2638  * - If the parameters provide explicit timeouts and tolerances, they will be
2639  *   used to build a table with up to 2 non-operational states to transition to.
2640  *   The default parameter values were selected based on the values used by
2641  *   Microsoft's and Intel's NVMe drivers. Yet, since we don't implement dynamic
2642  *   regeneration of the APST table in the event of switching between external
2643  *   and battery power, the timeouts and tolerances reflect a compromise
2644  *   between values used by Microsoft for AC and battery scenarios.
2645  * - If not, we'll configure the table with a simple heuristic: we are willing
2646  *   to spend at most 2% of the time transitioning between power states.
2647  *   Therefore, when running in any given state, we will enter the next
2648  *   lower-power non-operational state after waiting 50 * (enlat + exlat)
2649  *   microseconds, as long as that state's exit latency is under the requested
2650  *   maximum latency.
2651  *
2652  * We will not autonomously enter any non-operational state for which the total
2653  * latency exceeds ps_max_latency_us.
2654  *
2655  * Users can set ps_max_latency_us to zero to turn off APST.
2656  */
nvme_configure_apst(struct nvme_ctrl * ctrl)2657 static int nvme_configure_apst(struct nvme_ctrl *ctrl)
2658 {
2659 	struct nvme_feat_auto_pst *table;
2660 	unsigned apste = 0;
2661 	u64 max_lat_us = 0;
2662 	__le64 target = 0;
2663 	int max_ps = -1;
2664 	int state;
2665 	int ret;
2666 	unsigned last_lt_index = UINT_MAX;
2667 
2668 	/*
2669 	 * If APST isn't supported or if we haven't been initialized yet,
2670 	 * then don't do anything.
2671 	 */
2672 	if (!ctrl->apsta)
2673 		return 0;
2674 
2675 	if (ctrl->npss > 31) {
2676 		dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
2677 		return 0;
2678 	}
2679 
2680 	table = kzalloc(sizeof(*table), GFP_KERNEL);
2681 	if (!table)
2682 		return 0;
2683 
2684 	if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
2685 		/* Turn off APST. */
2686 		dev_dbg(ctrl->device, "APST disabled\n");
2687 		goto done;
2688 	}
2689 
2690 	/*
2691 	 * Walk through all states from lowest- to highest-power.
2692 	 * According to the spec, lower-numbered states use more power.  NPSS,
2693 	 * despite the name, is the index of the lowest-power state, not the
2694 	 * number of states.
2695 	 */
2696 	for (state = (int)ctrl->npss; state >= 0; state--) {
2697 		u64 total_latency_us, exit_latency_us, transition_ms;
2698 
2699 		if (target)
2700 			table->entries[state] = target;
2701 
2702 		/*
2703 		 * Don't allow transitions to the deepest state if it's quirked
2704 		 * off.
2705 		 */
2706 		if (state == ctrl->npss &&
2707 		    (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
2708 			continue;
2709 
2710 		/*
2711 		 * Is this state a useful non-operational state for higher-power
2712 		 * states to autonomously transition to?
2713 		 */
2714 		if (!(ctrl->psd[state].flags & NVME_PS_FLAGS_NON_OP_STATE))
2715 			continue;
2716 
2717 		exit_latency_us = (u64)le32_to_cpu(ctrl->psd[state].exit_lat);
2718 		if (exit_latency_us > ctrl->ps_max_latency_us)
2719 			continue;
2720 
2721 		total_latency_us = exit_latency_us +
2722 			le32_to_cpu(ctrl->psd[state].entry_lat);
2723 
2724 		/*
2725 		 * This state is good. It can be used as the APST idle target
2726 		 * for higher power states.
2727 		 */
2728 		if (apst_primary_timeout_ms && apst_primary_latency_tol_us) {
2729 			if (!nvme_apst_get_transition_time(total_latency_us,
2730 					&transition_ms, &last_lt_index))
2731 				continue;
2732 		} else {
2733 			transition_ms = total_latency_us + 19;
2734 			do_div(transition_ms, 20);
2735 			if (transition_ms > (1 << 24) - 1)
2736 				transition_ms = (1 << 24) - 1;
2737 		}
2738 
2739 		target = cpu_to_le64((state << 3) | (transition_ms << 8));
2740 		if (max_ps == -1)
2741 			max_ps = state;
2742 		if (total_latency_us > max_lat_us)
2743 			max_lat_us = total_latency_us;
2744 	}
2745 
2746 	if (max_ps == -1)
2747 		dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
2748 	else
2749 		dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
2750 			max_ps, max_lat_us, (int)sizeof(*table), table);
2751 	apste = 1;
2752 
2753 done:
2754 	ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
2755 				table, sizeof(*table), NULL);
2756 	if (ret)
2757 		dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
2758 	kfree(table);
2759 	return ret;
2760 }
2761 
nvme_set_latency_tolerance(struct device * dev,s32 val)2762 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
2763 {
2764 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2765 	u64 latency;
2766 
2767 	switch (val) {
2768 	case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
2769 	case PM_QOS_LATENCY_ANY:
2770 		latency = U64_MAX;
2771 		break;
2772 
2773 	default:
2774 		latency = val;
2775 	}
2776 
2777 	if (ctrl->ps_max_latency_us != latency) {
2778 		ctrl->ps_max_latency_us = latency;
2779 		if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE)
2780 			nvme_configure_apst(ctrl);
2781 	}
2782 }
2783 
2784 struct nvme_core_quirk_entry {
2785 	/*
2786 	 * NVMe model and firmware strings are padded with spaces.  For
2787 	 * simplicity, strings in the quirk table are padded with NULLs
2788 	 * instead.
2789 	 */
2790 	u16 vid;
2791 	const char *mn;
2792 	const char *fr;
2793 	unsigned long quirks;
2794 };
2795 
2796 static const struct nvme_core_quirk_entry core_quirks[] = {
2797 	{
2798 		/*
2799 		 * This Toshiba device seems to die using any APST states.  See:
2800 		 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
2801 		 */
2802 		.vid = 0x1179,
2803 		.mn = "THNSF5256GPUK TOSHIBA",
2804 		.quirks = NVME_QUIRK_NO_APST,
2805 	},
2806 	{
2807 		/*
2808 		 * This LiteON CL1-3D*-Q11 firmware version has a race
2809 		 * condition associated with actions related to suspend to idle
2810 		 * LiteON has resolved the problem in future firmware
2811 		 */
2812 		.vid = 0x14a4,
2813 		.fr = "22301111",
2814 		.quirks = NVME_QUIRK_SIMPLE_SUSPEND,
2815 	},
2816 	{
2817 		/*
2818 		 * This Kioxia CD6-V Series / HPE PE8030 device times out and
2819 		 * aborts I/O during any load, but more easily reproducible
2820 		 * with discards (fstrim).
2821 		 *
2822 		 * The device is left in a state where it is also not possible
2823 		 * to use "nvme set-feature" to disable APST, but booting with
2824 		 * nvme_core.default_ps_max_latency=0 works.
2825 		 */
2826 		.vid = 0x1e0f,
2827 		.mn = "KCD6XVUL6T40",
2828 		.quirks = NVME_QUIRK_NO_APST,
2829 	},
2830 	{
2831 		/*
2832 		 * The external Samsung X5 SSD fails initialization without a
2833 		 * delay before checking if it is ready and has a whole set of
2834 		 * other problems.  To make this even more interesting, it
2835 		 * shares the PCI ID with internal Samsung 970 Evo Plus that
2836 		 * does not need or want these quirks.
2837 		 */
2838 		.vid = 0x144d,
2839 		.mn = "Samsung Portable SSD X5",
2840 		.quirks = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
2841 			  NVME_QUIRK_NO_DEEPEST_PS |
2842 			  NVME_QUIRK_IGNORE_DEV_SUBNQN,
2843 	}
2844 };
2845 
2846 /* match is null-terminated but idstr is space-padded. */
string_matches(const char * idstr,const char * match,size_t len)2847 static bool string_matches(const char *idstr, const char *match, size_t len)
2848 {
2849 	size_t matchlen;
2850 
2851 	if (!match)
2852 		return true;
2853 
2854 	matchlen = strlen(match);
2855 	WARN_ON_ONCE(matchlen > len);
2856 
2857 	if (memcmp(idstr, match, matchlen))
2858 		return false;
2859 
2860 	for (; matchlen < len; matchlen++)
2861 		if (idstr[matchlen] != ' ')
2862 			return false;
2863 
2864 	return true;
2865 }
2866 
quirk_matches(const struct nvme_id_ctrl * id,const struct nvme_core_quirk_entry * q)2867 static bool quirk_matches(const struct nvme_id_ctrl *id,
2868 			  const struct nvme_core_quirk_entry *q)
2869 {
2870 	return q->vid == le16_to_cpu(id->vid) &&
2871 		string_matches(id->mn, q->mn, sizeof(id->mn)) &&
2872 		string_matches(id->fr, q->fr, sizeof(id->fr));
2873 }
2874 
nvme_init_subnqn(struct nvme_subsystem * subsys,struct nvme_ctrl * ctrl,struct nvme_id_ctrl * id)2875 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
2876 		struct nvme_id_ctrl *id)
2877 {
2878 	size_t nqnlen;
2879 	int off;
2880 
2881 	if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) {
2882 		nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
2883 		if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
2884 			strscpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
2885 			return;
2886 		}
2887 
2888 		if (ctrl->vs >= NVME_VS(1, 2, 1))
2889 			dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
2890 	}
2891 
2892 	/*
2893 	 * Generate a "fake" NQN similar to the one in Section 4.5 of the NVMe
2894 	 * Base Specification 2.0.  It is slightly different from the format
2895 	 * specified there due to historic reasons, and we can't change it now.
2896 	 */
2897 	off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
2898 			"nqn.2014.08.org.nvmexpress:%04x%04x",
2899 			le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
2900 	memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
2901 	off += sizeof(id->sn);
2902 	memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
2903 	off += sizeof(id->mn);
2904 	memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
2905 }
2906 
nvme_release_subsystem(struct device * dev)2907 static void nvme_release_subsystem(struct device *dev)
2908 {
2909 	struct nvme_subsystem *subsys =
2910 		container_of(dev, struct nvme_subsystem, dev);
2911 
2912 	if (subsys->instance >= 0)
2913 		ida_free(&nvme_instance_ida, subsys->instance);
2914 	kfree(subsys);
2915 }
2916 
nvme_destroy_subsystem(struct kref * ref)2917 static void nvme_destroy_subsystem(struct kref *ref)
2918 {
2919 	struct nvme_subsystem *subsys =
2920 			container_of(ref, struct nvme_subsystem, ref);
2921 
2922 	mutex_lock(&nvme_subsystems_lock);
2923 	list_del(&subsys->entry);
2924 	mutex_unlock(&nvme_subsystems_lock);
2925 
2926 	ida_destroy(&subsys->ns_ida);
2927 	device_del(&subsys->dev);
2928 	put_device(&subsys->dev);
2929 }
2930 
nvme_put_subsystem(struct nvme_subsystem * subsys)2931 static void nvme_put_subsystem(struct nvme_subsystem *subsys)
2932 {
2933 	kref_put(&subsys->ref, nvme_destroy_subsystem);
2934 }
2935 
__nvme_find_get_subsystem(const char * subsysnqn)2936 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
2937 {
2938 	struct nvme_subsystem *subsys;
2939 
2940 	lockdep_assert_held(&nvme_subsystems_lock);
2941 
2942 	/*
2943 	 * Fail matches for discovery subsystems. This results
2944 	 * in each discovery controller bound to a unique subsystem.
2945 	 * This avoids issues with validating controller values
2946 	 * that can only be true when there is a single unique subsystem.
2947 	 * There may be multiple and completely independent entities
2948 	 * that provide discovery controllers.
2949 	 */
2950 	if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME))
2951 		return NULL;
2952 
2953 	list_for_each_entry(subsys, &nvme_subsystems, entry) {
2954 		if (strcmp(subsys->subnqn, subsysnqn))
2955 			continue;
2956 		if (!kref_get_unless_zero(&subsys->ref))
2957 			continue;
2958 		return subsys;
2959 	}
2960 
2961 	return NULL;
2962 }
2963 
nvme_discovery_ctrl(struct nvme_ctrl * ctrl)2964 static inline bool nvme_discovery_ctrl(struct nvme_ctrl *ctrl)
2965 {
2966 	return ctrl->opts && ctrl->opts->discovery_nqn;
2967 }
2968 
nvme_validate_cntlid(struct nvme_subsystem * subsys,struct nvme_ctrl * ctrl,struct nvme_id_ctrl * id)2969 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys,
2970 		struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2971 {
2972 	struct nvme_ctrl *tmp;
2973 
2974 	lockdep_assert_held(&nvme_subsystems_lock);
2975 
2976 	list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) {
2977 		if (nvme_state_terminal(tmp))
2978 			continue;
2979 
2980 		if (tmp->cntlid == ctrl->cntlid) {
2981 			dev_err(ctrl->device,
2982 				"Duplicate cntlid %u with %s, subsys %s, rejecting\n",
2983 				ctrl->cntlid, dev_name(tmp->device),
2984 				subsys->subnqn);
2985 			return false;
2986 		}
2987 
2988 		if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) ||
2989 		    nvme_discovery_ctrl(ctrl))
2990 			continue;
2991 
2992 		dev_err(ctrl->device,
2993 			"Subsystem does not support multiple controllers\n");
2994 		return false;
2995 	}
2996 
2997 	return true;
2998 }
2999 
nvme_init_subsystem(struct nvme_ctrl * ctrl,struct nvme_id_ctrl * id)3000 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
3001 {
3002 	struct nvme_subsystem *subsys, *found;
3003 	int ret;
3004 
3005 	subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
3006 	if (!subsys)
3007 		return -ENOMEM;
3008 
3009 	subsys->instance = -1;
3010 	mutex_init(&subsys->lock);
3011 	kref_init(&subsys->ref);
3012 	INIT_LIST_HEAD(&subsys->ctrls);
3013 	INIT_LIST_HEAD(&subsys->nsheads);
3014 	nvme_init_subnqn(subsys, ctrl, id);
3015 	memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
3016 	memcpy(subsys->model, id->mn, sizeof(subsys->model));
3017 	subsys->vendor_id = le16_to_cpu(id->vid);
3018 	subsys->cmic = id->cmic;
3019 
3020 	/* Versions prior to 1.4 don't necessarily report a valid type */
3021 	if (id->cntrltype == NVME_CTRL_DISC ||
3022 	    !strcmp(subsys->subnqn, NVME_DISC_SUBSYS_NAME))
3023 		subsys->subtype = NVME_NQN_DISC;
3024 	else
3025 		subsys->subtype = NVME_NQN_NVME;
3026 
3027 	if (nvme_discovery_ctrl(ctrl) && subsys->subtype != NVME_NQN_DISC) {
3028 		dev_err(ctrl->device,
3029 			"Subsystem %s is not a discovery controller",
3030 			subsys->subnqn);
3031 		kfree(subsys);
3032 		return -EINVAL;
3033 	}
3034 	subsys->awupf = le16_to_cpu(id->awupf);
3035 	nvme_mpath_default_iopolicy(subsys);
3036 
3037 	subsys->dev.class = &nvme_subsys_class;
3038 	subsys->dev.release = nvme_release_subsystem;
3039 	subsys->dev.groups = nvme_subsys_attrs_groups;
3040 	dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance);
3041 	device_initialize(&subsys->dev);
3042 
3043 	mutex_lock(&nvme_subsystems_lock);
3044 	found = __nvme_find_get_subsystem(subsys->subnqn);
3045 	if (found) {
3046 		put_device(&subsys->dev);
3047 		subsys = found;
3048 
3049 		if (!nvme_validate_cntlid(subsys, ctrl, id)) {
3050 			ret = -EINVAL;
3051 			goto out_put_subsystem;
3052 		}
3053 	} else {
3054 		ret = device_add(&subsys->dev);
3055 		if (ret) {
3056 			dev_err(ctrl->device,
3057 				"failed to register subsystem device.\n");
3058 			put_device(&subsys->dev);
3059 			goto out_unlock;
3060 		}
3061 		ida_init(&subsys->ns_ida);
3062 		list_add_tail(&subsys->entry, &nvme_subsystems);
3063 	}
3064 
3065 	ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
3066 				dev_name(ctrl->device));
3067 	if (ret) {
3068 		dev_err(ctrl->device,
3069 			"failed to create sysfs link from subsystem.\n");
3070 		goto out_put_subsystem;
3071 	}
3072 
3073 	if (!found)
3074 		subsys->instance = ctrl->instance;
3075 	ctrl->subsys = subsys;
3076 	list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
3077 	mutex_unlock(&nvme_subsystems_lock);
3078 	return 0;
3079 
3080 out_put_subsystem:
3081 	nvme_put_subsystem(subsys);
3082 out_unlock:
3083 	mutex_unlock(&nvme_subsystems_lock);
3084 	return ret;
3085 }
3086 
nvme_get_log(struct nvme_ctrl * ctrl,u32 nsid,u8 log_page,u8 lsp,u8 csi,void * log,size_t size,u64 offset)3087 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi,
3088 		void *log, size_t size, u64 offset)
3089 {
3090 	struct nvme_command c = { };
3091 	u32 dwlen = nvme_bytes_to_numd(size);
3092 
3093 	c.get_log_page.opcode = nvme_admin_get_log_page;
3094 	c.get_log_page.nsid = cpu_to_le32(nsid);
3095 	c.get_log_page.lid = log_page;
3096 	c.get_log_page.lsp = lsp;
3097 	c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
3098 	c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
3099 	c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
3100 	c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
3101 	c.get_log_page.csi = csi;
3102 
3103 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
3104 }
3105 
nvme_get_effects_log(struct nvme_ctrl * ctrl,u8 csi,struct nvme_effects_log ** log)3106 static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi,
3107 				struct nvme_effects_log **log)
3108 {
3109 	struct nvme_effects_log *old, *cel = xa_load(&ctrl->cels, csi);
3110 	int ret;
3111 
3112 	if (cel)
3113 		goto out;
3114 
3115 	cel = kzalloc(sizeof(*cel), GFP_KERNEL);
3116 	if (!cel)
3117 		return -ENOMEM;
3118 
3119 	ret = nvme_get_log(ctrl, 0x00, NVME_LOG_CMD_EFFECTS, 0, csi,
3120 			cel, sizeof(*cel), 0);
3121 	if (ret) {
3122 		kfree(cel);
3123 		return ret;
3124 	}
3125 
3126 	old = xa_store(&ctrl->cels, csi, cel, GFP_KERNEL);
3127 	if (xa_is_err(old)) {
3128 		kfree(cel);
3129 		return xa_err(old);
3130 	}
3131 out:
3132 	*log = cel;
3133 	return 0;
3134 }
3135 
nvme_mps_to_sectors(struct nvme_ctrl * ctrl,u32 units)3136 static inline u32 nvme_mps_to_sectors(struct nvme_ctrl *ctrl, u32 units)
3137 {
3138 	u32 page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12, val;
3139 
3140 	if (check_shl_overflow(1U, units + page_shift - 9, &val))
3141 		return UINT_MAX;
3142 	return val;
3143 }
3144 
nvme_init_non_mdts_limits(struct nvme_ctrl * ctrl)3145 static int nvme_init_non_mdts_limits(struct nvme_ctrl *ctrl)
3146 {
3147 	struct nvme_command c = { };
3148 	struct nvme_id_ctrl_nvm *id;
3149 	int ret;
3150 
3151 	/*
3152 	 * Even though NVMe spec explicitly states that MDTS is not applicable
3153 	 * to the write-zeroes, we are cautious and limit the size to the
3154 	 * controllers max_hw_sectors value, which is based on the MDTS field
3155 	 * and possibly other limiting factors.
3156 	 */
3157 	if ((ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) &&
3158 	    !(ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES))
3159 		ctrl->max_zeroes_sectors = ctrl->max_hw_sectors;
3160 	else
3161 		ctrl->max_zeroes_sectors = 0;
3162 
3163 	if (ctrl->subsys->subtype != NVME_NQN_NVME ||
3164 	    !nvme_id_cns_ok(ctrl, NVME_ID_CNS_CS_CTRL) ||
3165 	    test_bit(NVME_CTRL_SKIP_ID_CNS_CS, &ctrl->flags))
3166 		return 0;
3167 
3168 	id = kzalloc(sizeof(*id), GFP_KERNEL);
3169 	if (!id)
3170 		return -ENOMEM;
3171 
3172 	c.identify.opcode = nvme_admin_identify;
3173 	c.identify.cns = NVME_ID_CNS_CS_CTRL;
3174 	c.identify.csi = NVME_CSI_NVM;
3175 
3176 	ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
3177 	if (ret)
3178 		goto free_data;
3179 
3180 	ctrl->dmrl = id->dmrl;
3181 	ctrl->dmrsl = le32_to_cpu(id->dmrsl);
3182 	if (id->wzsl)
3183 		ctrl->max_zeroes_sectors = nvme_mps_to_sectors(ctrl, id->wzsl);
3184 
3185 free_data:
3186 	if (ret > 0)
3187 		set_bit(NVME_CTRL_SKIP_ID_CNS_CS, &ctrl->flags);
3188 	kfree(id);
3189 	return ret;
3190 }
3191 
nvme_init_effects_log(struct nvme_ctrl * ctrl,u8 csi,struct nvme_effects_log ** log)3192 static int nvme_init_effects_log(struct nvme_ctrl *ctrl,
3193 		u8 csi, struct nvme_effects_log **log)
3194 {
3195 	struct nvme_effects_log *effects, *old;
3196 
3197 	effects = kzalloc(sizeof(*effects), GFP_KERNEL);
3198 	if (!effects)
3199 		return -ENOMEM;
3200 
3201 	old = xa_store(&ctrl->cels, csi, effects, GFP_KERNEL);
3202 	if (xa_is_err(old)) {
3203 		kfree(effects);
3204 		return xa_err(old);
3205 	}
3206 
3207 	*log = effects;
3208 	return 0;
3209 }
3210 
nvme_init_known_nvm_effects(struct nvme_ctrl * ctrl)3211 static void nvme_init_known_nvm_effects(struct nvme_ctrl *ctrl)
3212 {
3213 	struct nvme_effects_log	*log = ctrl->effects;
3214 
3215 	log->acs[nvme_admin_format_nvm] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC |
3216 						NVME_CMD_EFFECTS_NCC |
3217 						NVME_CMD_EFFECTS_CSE_MASK);
3218 	log->acs[nvme_admin_sanitize_nvm] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC |
3219 						NVME_CMD_EFFECTS_CSE_MASK);
3220 
3221 	/*
3222 	 * The spec says the result of a security receive command depends on
3223 	 * the previous security send command. As such, many vendors log this
3224 	 * command as one to submitted only when no other commands to the same
3225 	 * namespace are outstanding. The intention is to tell the host to
3226 	 * prevent mixing security send and receive.
3227 	 *
3228 	 * This driver can only enforce such exclusive access against IO
3229 	 * queues, though. We are not readily able to enforce such a rule for
3230 	 * two commands to the admin queue, which is the only queue that
3231 	 * matters for this command.
3232 	 *
3233 	 * Rather than blindly freezing the IO queues for this effect that
3234 	 * doesn't even apply to IO, mask it off.
3235 	 */
3236 	log->acs[nvme_admin_security_recv] &= cpu_to_le32(~NVME_CMD_EFFECTS_CSE_MASK);
3237 
3238 	log->iocs[nvme_cmd_write] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC);
3239 	log->iocs[nvme_cmd_write_zeroes] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC);
3240 	log->iocs[nvme_cmd_write_uncor] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC);
3241 }
3242 
nvme_init_effects(struct nvme_ctrl * ctrl,struct nvme_id_ctrl * id)3243 static int nvme_init_effects(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
3244 {
3245 	int ret = 0;
3246 
3247 	if (ctrl->effects)
3248 		return 0;
3249 
3250 	if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
3251 		ret = nvme_get_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects);
3252 		if (ret < 0)
3253 			return ret;
3254 	}
3255 
3256 	if (!ctrl->effects) {
3257 		ret = nvme_init_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects);
3258 		if (ret < 0)
3259 			return ret;
3260 	}
3261 
3262 	nvme_init_known_nvm_effects(ctrl);
3263 	return 0;
3264 }
3265 
nvme_check_ctrl_fabric_info(struct nvme_ctrl * ctrl,struct nvme_id_ctrl * id)3266 static int nvme_check_ctrl_fabric_info(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
3267 {
3268 	/*
3269 	 * In fabrics we need to verify the cntlid matches the
3270 	 * admin connect
3271 	 */
3272 	if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
3273 		dev_err(ctrl->device,
3274 			"Mismatching cntlid: Connect %u vs Identify %u, rejecting\n",
3275 			ctrl->cntlid, le16_to_cpu(id->cntlid));
3276 		return -EINVAL;
3277 	}
3278 
3279 	if (!nvme_discovery_ctrl(ctrl) && !ctrl->kas) {
3280 		dev_err(ctrl->device,
3281 			"keep-alive support is mandatory for fabrics\n");
3282 		return -EINVAL;
3283 	}
3284 
3285 	if (!nvme_discovery_ctrl(ctrl) && ctrl->ioccsz < 4) {
3286 		dev_err(ctrl->device,
3287 			"I/O queue command capsule supported size %d < 4\n",
3288 			ctrl->ioccsz);
3289 		return -EINVAL;
3290 	}
3291 
3292 	if (!nvme_discovery_ctrl(ctrl) && ctrl->iorcsz < 1) {
3293 		dev_err(ctrl->device,
3294 			"I/O queue response capsule supported size %d < 1\n",
3295 			ctrl->iorcsz);
3296 		return -EINVAL;
3297 	}
3298 
3299 	if (!ctrl->maxcmd) {
3300 		dev_warn(ctrl->device,
3301 			"Firmware bug: maximum outstanding commands is 0\n");
3302 		ctrl->maxcmd = ctrl->sqsize + 1;
3303 	}
3304 
3305 	return 0;
3306 }
3307 
nvme_init_identify(struct nvme_ctrl * ctrl)3308 static int nvme_init_identify(struct nvme_ctrl *ctrl)
3309 {
3310 	struct queue_limits lim;
3311 	struct nvme_id_ctrl *id;
3312 	u32 max_hw_sectors;
3313 	bool prev_apst_enabled;
3314 	int ret;
3315 
3316 	ret = nvme_identify_ctrl(ctrl, &id);
3317 	if (ret) {
3318 		dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
3319 		return -EIO;
3320 	}
3321 
3322 	if (!(ctrl->ops->flags & NVME_F_FABRICS))
3323 		ctrl->cntlid = le16_to_cpu(id->cntlid);
3324 
3325 	if (!ctrl->identified) {
3326 		unsigned int i;
3327 
3328 		/*
3329 		 * Check for quirks.  Quirk can depend on firmware version,
3330 		 * so, in principle, the set of quirks present can change
3331 		 * across a reset.  As a possible future enhancement, we
3332 		 * could re-scan for quirks every time we reinitialize
3333 		 * the device, but we'd have to make sure that the driver
3334 		 * behaves intelligently if the quirks change.
3335 		 */
3336 		for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
3337 			if (quirk_matches(id, &core_quirks[i]))
3338 				ctrl->quirks |= core_quirks[i].quirks;
3339 		}
3340 
3341 		ret = nvme_init_subsystem(ctrl, id);
3342 		if (ret)
3343 			goto out_free;
3344 
3345 		ret = nvme_init_effects(ctrl, id);
3346 		if (ret)
3347 			goto out_free;
3348 	}
3349 	memcpy(ctrl->subsys->firmware_rev, id->fr,
3350 	       sizeof(ctrl->subsys->firmware_rev));
3351 
3352 	if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
3353 		dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
3354 		ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
3355 	}
3356 
3357 	ctrl->crdt[0] = le16_to_cpu(id->crdt1);
3358 	ctrl->crdt[1] = le16_to_cpu(id->crdt2);
3359 	ctrl->crdt[2] = le16_to_cpu(id->crdt3);
3360 
3361 	ctrl->oacs = le16_to_cpu(id->oacs);
3362 	ctrl->oncs = le16_to_cpu(id->oncs);
3363 	ctrl->mtfa = le16_to_cpu(id->mtfa);
3364 	ctrl->oaes = le32_to_cpu(id->oaes);
3365 	ctrl->wctemp = le16_to_cpu(id->wctemp);
3366 	ctrl->cctemp = le16_to_cpu(id->cctemp);
3367 
3368 	atomic_set(&ctrl->abort_limit, id->acl + 1);
3369 	ctrl->vwc = id->vwc;
3370 	if (id->mdts)
3371 		max_hw_sectors = nvme_mps_to_sectors(ctrl, id->mdts);
3372 	else
3373 		max_hw_sectors = UINT_MAX;
3374 	ctrl->max_hw_sectors =
3375 		min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
3376 
3377 	lim = queue_limits_start_update(ctrl->admin_q);
3378 	nvme_set_ctrl_limits(ctrl, &lim);
3379 	ret = queue_limits_commit_update(ctrl->admin_q, &lim);
3380 	if (ret)
3381 		goto out_free;
3382 
3383 	ctrl->sgls = le32_to_cpu(id->sgls);
3384 	ctrl->kas = le16_to_cpu(id->kas);
3385 	ctrl->max_namespaces = le32_to_cpu(id->mnan);
3386 	ctrl->ctratt = le32_to_cpu(id->ctratt);
3387 
3388 	ctrl->cntrltype = id->cntrltype;
3389 	ctrl->dctype = id->dctype;
3390 
3391 	if (id->rtd3e) {
3392 		/* us -> s */
3393 		u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC;
3394 
3395 		ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
3396 						 shutdown_timeout, 60);
3397 
3398 		if (ctrl->shutdown_timeout != shutdown_timeout)
3399 			dev_info(ctrl->device,
3400 				 "D3 entry latency set to %u seconds\n",
3401 				 ctrl->shutdown_timeout);
3402 	} else
3403 		ctrl->shutdown_timeout = shutdown_timeout;
3404 
3405 	ctrl->npss = id->npss;
3406 	ctrl->apsta = id->apsta;
3407 	prev_apst_enabled = ctrl->apst_enabled;
3408 	if (ctrl->quirks & NVME_QUIRK_NO_APST) {
3409 		if (force_apst && id->apsta) {
3410 			dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
3411 			ctrl->apst_enabled = true;
3412 		} else {
3413 			ctrl->apst_enabled = false;
3414 		}
3415 	} else {
3416 		ctrl->apst_enabled = id->apsta;
3417 	}
3418 	memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
3419 
3420 	if (ctrl->ops->flags & NVME_F_FABRICS) {
3421 		ctrl->icdoff = le16_to_cpu(id->icdoff);
3422 		ctrl->ioccsz = le32_to_cpu(id->ioccsz);
3423 		ctrl->iorcsz = le32_to_cpu(id->iorcsz);
3424 		ctrl->maxcmd = le16_to_cpu(id->maxcmd);
3425 
3426 		ret = nvme_check_ctrl_fabric_info(ctrl, id);
3427 		if (ret)
3428 			goto out_free;
3429 	} else {
3430 		ctrl->hmpre = le32_to_cpu(id->hmpre);
3431 		ctrl->hmmin = le32_to_cpu(id->hmmin);
3432 		ctrl->hmminds = le32_to_cpu(id->hmminds);
3433 		ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
3434 	}
3435 
3436 	ret = nvme_mpath_init_identify(ctrl, id);
3437 	if (ret < 0)
3438 		goto out_free;
3439 
3440 	if (ctrl->apst_enabled && !prev_apst_enabled)
3441 		dev_pm_qos_expose_latency_tolerance(ctrl->device);
3442 	else if (!ctrl->apst_enabled && prev_apst_enabled)
3443 		dev_pm_qos_hide_latency_tolerance(ctrl->device);
3444 
3445 out_free:
3446 	kfree(id);
3447 	return ret;
3448 }
3449 
3450 /*
3451  * Initialize the cached copies of the Identify data and various controller
3452  * register in our nvme_ctrl structure.  This should be called as soon as
3453  * the admin queue is fully up and running.
3454  */
nvme_init_ctrl_finish(struct nvme_ctrl * ctrl,bool was_suspended)3455 int nvme_init_ctrl_finish(struct nvme_ctrl *ctrl, bool was_suspended)
3456 {
3457 	int ret;
3458 
3459 	ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
3460 	if (ret) {
3461 		dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
3462 		return ret;
3463 	}
3464 
3465 	ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize);
3466 
3467 	if (ctrl->vs >= NVME_VS(1, 1, 0))
3468 		ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap);
3469 
3470 	ret = nvme_init_identify(ctrl);
3471 	if (ret)
3472 		return ret;
3473 
3474 	ret = nvme_configure_apst(ctrl);
3475 	if (ret < 0)
3476 		return ret;
3477 
3478 	ret = nvme_configure_timestamp(ctrl);
3479 	if (ret < 0)
3480 		return ret;
3481 
3482 	ret = nvme_configure_host_options(ctrl);
3483 	if (ret < 0)
3484 		return ret;
3485 
3486 	nvme_configure_opal(ctrl, was_suspended);
3487 
3488 	if (!ctrl->identified && !nvme_discovery_ctrl(ctrl)) {
3489 		/*
3490 		 * Do not return errors unless we are in a controller reset,
3491 		 * the controller works perfectly fine without hwmon.
3492 		 */
3493 		ret = nvme_hwmon_init(ctrl);
3494 		if (ret == -EINTR)
3495 			return ret;
3496 	}
3497 
3498 	clear_bit(NVME_CTRL_DIRTY_CAPABILITY, &ctrl->flags);
3499 	ctrl->identified = true;
3500 
3501 	nvme_start_keep_alive(ctrl);
3502 
3503 	return 0;
3504 }
3505 EXPORT_SYMBOL_GPL(nvme_init_ctrl_finish);
3506 
nvme_dev_open(struct inode * inode,struct file * file)3507 static int nvme_dev_open(struct inode *inode, struct file *file)
3508 {
3509 	struct nvme_ctrl *ctrl =
3510 		container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3511 
3512 	switch (nvme_ctrl_state(ctrl)) {
3513 	case NVME_CTRL_LIVE:
3514 		break;
3515 	default:
3516 		return -EWOULDBLOCK;
3517 	}
3518 
3519 	nvme_get_ctrl(ctrl);
3520 	if (!try_module_get(ctrl->ops->module)) {
3521 		nvme_put_ctrl(ctrl);
3522 		return -EINVAL;
3523 	}
3524 
3525 	file->private_data = ctrl;
3526 	return 0;
3527 }
3528 
nvme_dev_release(struct inode * inode,struct file * file)3529 static int nvme_dev_release(struct inode *inode, struct file *file)
3530 {
3531 	struct nvme_ctrl *ctrl =
3532 		container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3533 
3534 	module_put(ctrl->ops->module);
3535 	nvme_put_ctrl(ctrl);
3536 	return 0;
3537 }
3538 
3539 static const struct file_operations nvme_dev_fops = {
3540 	.owner		= THIS_MODULE,
3541 	.open		= nvme_dev_open,
3542 	.release	= nvme_dev_release,
3543 	.unlocked_ioctl	= nvme_dev_ioctl,
3544 	.compat_ioctl	= compat_ptr_ioctl,
3545 	.uring_cmd	= nvme_dev_uring_cmd,
3546 };
3547 
nvme_find_ns_head(struct nvme_ctrl * ctrl,unsigned nsid)3548 static struct nvme_ns_head *nvme_find_ns_head(struct nvme_ctrl *ctrl,
3549 		unsigned nsid)
3550 {
3551 	struct nvme_ns_head *h;
3552 
3553 	lockdep_assert_held(&ctrl->subsys->lock);
3554 
3555 	list_for_each_entry(h, &ctrl->subsys->nsheads, entry) {
3556 		/*
3557 		 * Private namespaces can share NSIDs under some conditions.
3558 		 * In that case we can't use the same ns_head for namespaces
3559 		 * with the same NSID.
3560 		 */
3561 		if (h->ns_id != nsid || !nvme_is_unique_nsid(ctrl, h))
3562 			continue;
3563 		if (!list_empty(&h->list) && nvme_tryget_ns_head(h))
3564 			return h;
3565 	}
3566 
3567 	return NULL;
3568 }
3569 
nvme_subsys_check_duplicate_ids(struct nvme_subsystem * subsys,struct nvme_ns_ids * ids)3570 static int nvme_subsys_check_duplicate_ids(struct nvme_subsystem *subsys,
3571 		struct nvme_ns_ids *ids)
3572 {
3573 	bool has_uuid = !uuid_is_null(&ids->uuid);
3574 	bool has_nguid = memchr_inv(ids->nguid, 0, sizeof(ids->nguid));
3575 	bool has_eui64 = memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
3576 	struct nvme_ns_head *h;
3577 
3578 	lockdep_assert_held(&subsys->lock);
3579 
3580 	list_for_each_entry(h, &subsys->nsheads, entry) {
3581 		if (has_uuid && uuid_equal(&ids->uuid, &h->ids.uuid))
3582 			return -EINVAL;
3583 		if (has_nguid &&
3584 		    memcmp(&ids->nguid, &h->ids.nguid, sizeof(ids->nguid)) == 0)
3585 			return -EINVAL;
3586 		if (has_eui64 &&
3587 		    memcmp(&ids->eui64, &h->ids.eui64, sizeof(ids->eui64)) == 0)
3588 			return -EINVAL;
3589 	}
3590 
3591 	return 0;
3592 }
3593 
nvme_cdev_rel(struct device * dev)3594 static void nvme_cdev_rel(struct device *dev)
3595 {
3596 	ida_free(&nvme_ns_chr_minor_ida, MINOR(dev->devt));
3597 }
3598 
nvme_cdev_del(struct cdev * cdev,struct device * cdev_device)3599 void nvme_cdev_del(struct cdev *cdev, struct device *cdev_device)
3600 {
3601 	cdev_device_del(cdev, cdev_device);
3602 	put_device(cdev_device);
3603 }
3604 
nvme_cdev_add(struct cdev * cdev,struct device * cdev_device,const struct file_operations * fops,struct module * owner)3605 int nvme_cdev_add(struct cdev *cdev, struct device *cdev_device,
3606 		const struct file_operations *fops, struct module *owner)
3607 {
3608 	int minor, ret;
3609 
3610 	minor = ida_alloc(&nvme_ns_chr_minor_ida, GFP_KERNEL);
3611 	if (minor < 0)
3612 		return minor;
3613 	cdev_device->devt = MKDEV(MAJOR(nvme_ns_chr_devt), minor);
3614 	cdev_device->class = &nvme_ns_chr_class;
3615 	cdev_device->release = nvme_cdev_rel;
3616 	device_initialize(cdev_device);
3617 	cdev_init(cdev, fops);
3618 	cdev->owner = owner;
3619 	ret = cdev_device_add(cdev, cdev_device);
3620 	if (ret)
3621 		put_device(cdev_device);
3622 
3623 	return ret;
3624 }
3625 
nvme_ns_chr_open(struct inode * inode,struct file * file)3626 static int nvme_ns_chr_open(struct inode *inode, struct file *file)
3627 {
3628 	return nvme_ns_open(container_of(inode->i_cdev, struct nvme_ns, cdev));
3629 }
3630 
nvme_ns_chr_release(struct inode * inode,struct file * file)3631 static int nvme_ns_chr_release(struct inode *inode, struct file *file)
3632 {
3633 	nvme_ns_release(container_of(inode->i_cdev, struct nvme_ns, cdev));
3634 	return 0;
3635 }
3636 
3637 static const struct file_operations nvme_ns_chr_fops = {
3638 	.owner		= THIS_MODULE,
3639 	.open		= nvme_ns_chr_open,
3640 	.release	= nvme_ns_chr_release,
3641 	.unlocked_ioctl	= nvme_ns_chr_ioctl,
3642 	.compat_ioctl	= compat_ptr_ioctl,
3643 	.uring_cmd	= nvme_ns_chr_uring_cmd,
3644 	.uring_cmd_iopoll = nvme_ns_chr_uring_cmd_iopoll,
3645 };
3646 
nvme_add_ns_cdev(struct nvme_ns * ns)3647 static int nvme_add_ns_cdev(struct nvme_ns *ns)
3648 {
3649 	int ret;
3650 
3651 	ns->cdev_device.parent = ns->ctrl->device;
3652 	ret = dev_set_name(&ns->cdev_device, "ng%dn%d",
3653 			   ns->ctrl->instance, ns->head->instance);
3654 	if (ret)
3655 		return ret;
3656 
3657 	return nvme_cdev_add(&ns->cdev, &ns->cdev_device, &nvme_ns_chr_fops,
3658 			     ns->ctrl->ops->module);
3659 }
3660 
nvme_alloc_ns_head(struct nvme_ctrl * ctrl,struct nvme_ns_info * info)3661 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
3662 		struct nvme_ns_info *info)
3663 {
3664 	struct nvme_ns_head *head;
3665 	size_t size = sizeof(*head);
3666 	int ret = -ENOMEM;
3667 
3668 #ifdef CONFIG_NVME_MULTIPATH
3669 	size += num_possible_nodes() * sizeof(struct nvme_ns *);
3670 #endif
3671 
3672 	head = kzalloc(size, GFP_KERNEL);
3673 	if (!head)
3674 		goto out;
3675 	ret = ida_alloc_min(&ctrl->subsys->ns_ida, 1, GFP_KERNEL);
3676 	if (ret < 0)
3677 		goto out_free_head;
3678 	head->instance = ret;
3679 	INIT_LIST_HEAD(&head->list);
3680 	ret = init_srcu_struct(&head->srcu);
3681 	if (ret)
3682 		goto out_ida_remove;
3683 	head->subsys = ctrl->subsys;
3684 	head->ns_id = info->nsid;
3685 	head->ids = info->ids;
3686 	head->shared = info->is_shared;
3687 	head->rotational = info->is_rotational;
3688 	ratelimit_state_init(&head->rs_nuse, 5 * HZ, 1);
3689 	ratelimit_set_flags(&head->rs_nuse, RATELIMIT_MSG_ON_RELEASE);
3690 	kref_init(&head->ref);
3691 
3692 	if (head->ids.csi) {
3693 		ret = nvme_get_effects_log(ctrl, head->ids.csi, &head->effects);
3694 		if (ret)
3695 			goto out_cleanup_srcu;
3696 	} else
3697 		head->effects = ctrl->effects;
3698 
3699 	ret = nvme_mpath_alloc_disk(ctrl, head);
3700 	if (ret)
3701 		goto out_cleanup_srcu;
3702 
3703 	list_add_tail(&head->entry, &ctrl->subsys->nsheads);
3704 
3705 	kref_get(&ctrl->subsys->ref);
3706 
3707 	return head;
3708 out_cleanup_srcu:
3709 	cleanup_srcu_struct(&head->srcu);
3710 out_ida_remove:
3711 	ida_free(&ctrl->subsys->ns_ida, head->instance);
3712 out_free_head:
3713 	kfree(head);
3714 out:
3715 	if (ret > 0)
3716 		ret = blk_status_to_errno(nvme_error_status(ret));
3717 	return ERR_PTR(ret);
3718 }
3719 
nvme_global_check_duplicate_ids(struct nvme_subsystem * this,struct nvme_ns_ids * ids)3720 static int nvme_global_check_duplicate_ids(struct nvme_subsystem *this,
3721 		struct nvme_ns_ids *ids)
3722 {
3723 	struct nvme_subsystem *s;
3724 	int ret = 0;
3725 
3726 	/*
3727 	 * Note that this check is racy as we try to avoid holding the global
3728 	 * lock over the whole ns_head creation.  But it is only intended as
3729 	 * a sanity check anyway.
3730 	 */
3731 	mutex_lock(&nvme_subsystems_lock);
3732 	list_for_each_entry(s, &nvme_subsystems, entry) {
3733 		if (s == this)
3734 			continue;
3735 		mutex_lock(&s->lock);
3736 		ret = nvme_subsys_check_duplicate_ids(s, ids);
3737 		mutex_unlock(&s->lock);
3738 		if (ret)
3739 			break;
3740 	}
3741 	mutex_unlock(&nvme_subsystems_lock);
3742 
3743 	return ret;
3744 }
3745 
nvme_init_ns_head(struct nvme_ns * ns,struct nvme_ns_info * info)3746 static int nvme_init_ns_head(struct nvme_ns *ns, struct nvme_ns_info *info)
3747 {
3748 	struct nvme_ctrl *ctrl = ns->ctrl;
3749 	struct nvme_ns_head *head = NULL;
3750 	int ret;
3751 
3752 	ret = nvme_global_check_duplicate_ids(ctrl->subsys, &info->ids);
3753 	if (ret) {
3754 		/*
3755 		 * We've found two different namespaces on two different
3756 		 * subsystems that report the same ID.  This is pretty nasty
3757 		 * for anything that actually requires unique device
3758 		 * identification.  In the kernel we need this for multipathing,
3759 		 * and in user space the /dev/disk/by-id/ links rely on it.
3760 		 *
3761 		 * If the device also claims to be multi-path capable back off
3762 		 * here now and refuse the probe the second device as this is a
3763 		 * recipe for data corruption.  If not this is probably a
3764 		 * cheap consumer device if on the PCIe bus, so let the user
3765 		 * proceed and use the shiny toy, but warn that with changing
3766 		 * probing order (which due to our async probing could just be
3767 		 * device taking longer to startup) the other device could show
3768 		 * up at any time.
3769 		 */
3770 		nvme_print_device_info(ctrl);
3771 		if ((ns->ctrl->ops->flags & NVME_F_FABRICS) || /* !PCIe */
3772 		    ((ns->ctrl->subsys->cmic & NVME_CTRL_CMIC_MULTI_CTRL) &&
3773 		     info->is_shared)) {
3774 			dev_err(ctrl->device,
3775 				"ignoring nsid %d because of duplicate IDs\n",
3776 				info->nsid);
3777 			return ret;
3778 		}
3779 
3780 		dev_err(ctrl->device,
3781 			"clearing duplicate IDs for nsid %d\n", info->nsid);
3782 		dev_err(ctrl->device,
3783 			"use of /dev/disk/by-id/ may cause data corruption\n");
3784 		memset(&info->ids.nguid, 0, sizeof(info->ids.nguid));
3785 		memset(&info->ids.uuid, 0, sizeof(info->ids.uuid));
3786 		memset(&info->ids.eui64, 0, sizeof(info->ids.eui64));
3787 		ctrl->quirks |= NVME_QUIRK_BOGUS_NID;
3788 	}
3789 
3790 	mutex_lock(&ctrl->subsys->lock);
3791 	head = nvme_find_ns_head(ctrl, info->nsid);
3792 	if (!head) {
3793 		ret = nvme_subsys_check_duplicate_ids(ctrl->subsys, &info->ids);
3794 		if (ret) {
3795 			dev_err(ctrl->device,
3796 				"duplicate IDs in subsystem for nsid %d\n",
3797 				info->nsid);
3798 			goto out_unlock;
3799 		}
3800 		head = nvme_alloc_ns_head(ctrl, info);
3801 		if (IS_ERR(head)) {
3802 			ret = PTR_ERR(head);
3803 			goto out_unlock;
3804 		}
3805 	} else {
3806 		ret = -EINVAL;
3807 		if (!info->is_shared || !head->shared) {
3808 			dev_err(ctrl->device,
3809 				"Duplicate unshared namespace %d\n",
3810 				info->nsid);
3811 			goto out_put_ns_head;
3812 		}
3813 		if (!nvme_ns_ids_equal(&head->ids, &info->ids)) {
3814 			dev_err(ctrl->device,
3815 				"IDs don't match for shared namespace %d\n",
3816 					info->nsid);
3817 			goto out_put_ns_head;
3818 		}
3819 
3820 		if (!multipath) {
3821 			dev_warn(ctrl->device,
3822 				"Found shared namespace %d, but multipathing not supported.\n",
3823 				info->nsid);
3824 			dev_warn_once(ctrl->device,
3825 				"Support for shared namespaces without CONFIG_NVME_MULTIPATH is deprecated and will be removed in Linux 6.0.\n");
3826 		}
3827 	}
3828 
3829 	list_add_tail_rcu(&ns->siblings, &head->list);
3830 	ns->head = head;
3831 	mutex_unlock(&ctrl->subsys->lock);
3832 	return 0;
3833 
3834 out_put_ns_head:
3835 	nvme_put_ns_head(head);
3836 out_unlock:
3837 	mutex_unlock(&ctrl->subsys->lock);
3838 	return ret;
3839 }
3840 
nvme_find_get_ns(struct nvme_ctrl * ctrl,unsigned nsid)3841 struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3842 {
3843 	struct nvme_ns *ns, *ret = NULL;
3844 	int srcu_idx;
3845 
3846 	srcu_idx = srcu_read_lock(&ctrl->srcu);
3847 	list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
3848 				 srcu_read_lock_held(&ctrl->srcu)) {
3849 		if (ns->head->ns_id == nsid) {
3850 			if (!nvme_get_ns(ns))
3851 				continue;
3852 			ret = ns;
3853 			break;
3854 		}
3855 		if (ns->head->ns_id > nsid)
3856 			break;
3857 	}
3858 	srcu_read_unlock(&ctrl->srcu, srcu_idx);
3859 	return ret;
3860 }
3861 EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, "NVME_TARGET_PASSTHRU");
3862 
3863 /*
3864  * Add the namespace to the controller list while keeping the list ordered.
3865  */
nvme_ns_add_to_ctrl_list(struct nvme_ns * ns)3866 static void nvme_ns_add_to_ctrl_list(struct nvme_ns *ns)
3867 {
3868 	struct nvme_ns *tmp;
3869 
3870 	list_for_each_entry_reverse(tmp, &ns->ctrl->namespaces, list) {
3871 		if (tmp->head->ns_id < ns->head->ns_id) {
3872 			list_add_rcu(&ns->list, &tmp->list);
3873 			return;
3874 		}
3875 	}
3876 	list_add(&ns->list, &ns->ctrl->namespaces);
3877 }
3878 
nvme_alloc_ns(struct nvme_ctrl * ctrl,struct nvme_ns_info * info)3879 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, struct nvme_ns_info *info)
3880 {
3881 	struct queue_limits lim = { };
3882 	struct nvme_ns *ns;
3883 	struct gendisk *disk;
3884 	int node = ctrl->numa_node;
3885 
3886 	ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
3887 	if (!ns)
3888 		return;
3889 
3890 	if (ctrl->opts && ctrl->opts->data_digest)
3891 		lim.features |= BLK_FEAT_STABLE_WRITES;
3892 	if (ctrl->ops->supports_pci_p2pdma &&
3893 	    ctrl->ops->supports_pci_p2pdma(ctrl))
3894 		lim.features |= BLK_FEAT_PCI_P2PDMA;
3895 
3896 	disk = blk_mq_alloc_disk(ctrl->tagset, &lim, ns);
3897 	if (IS_ERR(disk))
3898 		goto out_free_ns;
3899 	disk->fops = &nvme_bdev_ops;
3900 	disk->private_data = ns;
3901 
3902 	ns->disk = disk;
3903 	ns->queue = disk->queue;
3904 	ns->ctrl = ctrl;
3905 	kref_init(&ns->kref);
3906 
3907 	if (nvme_init_ns_head(ns, info))
3908 		goto out_cleanup_disk;
3909 
3910 	/*
3911 	 * If multipathing is enabled, the device name for all disks and not
3912 	 * just those that represent shared namespaces needs to be based on the
3913 	 * subsystem instance.  Using the controller instance for private
3914 	 * namespaces could lead to naming collisions between shared and private
3915 	 * namespaces if they don't use a common numbering scheme.
3916 	 *
3917 	 * If multipathing is not enabled, disk names must use the controller
3918 	 * instance as shared namespaces will show up as multiple block
3919 	 * devices.
3920 	 */
3921 	if (nvme_ns_head_multipath(ns->head)) {
3922 		sprintf(disk->disk_name, "nvme%dc%dn%d", ctrl->subsys->instance,
3923 			ctrl->instance, ns->head->instance);
3924 		disk->flags |= GENHD_FL_HIDDEN;
3925 	} else if (multipath) {
3926 		sprintf(disk->disk_name, "nvme%dn%d", ctrl->subsys->instance,
3927 			ns->head->instance);
3928 	} else {
3929 		sprintf(disk->disk_name, "nvme%dn%d", ctrl->instance,
3930 			ns->head->instance);
3931 	}
3932 
3933 	if (nvme_update_ns_info(ns, info))
3934 		goto out_unlink_ns;
3935 
3936 	mutex_lock(&ctrl->namespaces_lock);
3937 	/*
3938 	 * Ensure that no namespaces are added to the ctrl list after the queues
3939 	 * are frozen, thereby avoiding a deadlock between scan and reset.
3940 	 */
3941 	if (test_bit(NVME_CTRL_FROZEN, &ctrl->flags)) {
3942 		mutex_unlock(&ctrl->namespaces_lock);
3943 		goto out_unlink_ns;
3944 	}
3945 	nvme_ns_add_to_ctrl_list(ns);
3946 	mutex_unlock(&ctrl->namespaces_lock);
3947 	synchronize_srcu(&ctrl->srcu);
3948 	nvme_get_ctrl(ctrl);
3949 
3950 	if (device_add_disk(ctrl->device, ns->disk, nvme_ns_attr_groups))
3951 		goto out_cleanup_ns_from_list;
3952 
3953 	if (!nvme_ns_head_multipath(ns->head))
3954 		nvme_add_ns_cdev(ns);
3955 
3956 	nvme_mpath_add_disk(ns, info->anagrpid);
3957 	nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name);
3958 
3959 	/*
3960 	 * Set ns->disk->device->driver_data to ns so we can access
3961 	 * ns->head->passthru_err_log_enabled in
3962 	 * nvme_io_passthru_err_log_enabled_[store | show]().
3963 	 */
3964 	dev_set_drvdata(disk_to_dev(ns->disk), ns);
3965 
3966 	return;
3967 
3968  out_cleanup_ns_from_list:
3969 	nvme_put_ctrl(ctrl);
3970 	mutex_lock(&ctrl->namespaces_lock);
3971 	list_del_rcu(&ns->list);
3972 	mutex_unlock(&ctrl->namespaces_lock);
3973 	synchronize_srcu(&ctrl->srcu);
3974  out_unlink_ns:
3975 	mutex_lock(&ctrl->subsys->lock);
3976 	list_del_rcu(&ns->siblings);
3977 	if (list_empty(&ns->head->list))
3978 		list_del_init(&ns->head->entry);
3979 	mutex_unlock(&ctrl->subsys->lock);
3980 	nvme_put_ns_head(ns->head);
3981  out_cleanup_disk:
3982 	put_disk(disk);
3983  out_free_ns:
3984 	kfree(ns);
3985 }
3986 
nvme_ns_remove(struct nvme_ns * ns)3987 static void nvme_ns_remove(struct nvme_ns *ns)
3988 {
3989 	bool last_path = false;
3990 
3991 	if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
3992 		return;
3993 
3994 	clear_bit(NVME_NS_READY, &ns->flags);
3995 	set_capacity(ns->disk, 0);
3996 	nvme_fault_inject_fini(&ns->fault_inject);
3997 
3998 	/*
3999 	 * Ensure that !NVME_NS_READY is seen by other threads to prevent
4000 	 * this ns going back into current_path.
4001 	 */
4002 	synchronize_srcu(&ns->head->srcu);
4003 
4004 	/* wait for concurrent submissions */
4005 	if (nvme_mpath_clear_current_path(ns))
4006 		synchronize_srcu(&ns->head->srcu);
4007 
4008 	mutex_lock(&ns->ctrl->subsys->lock);
4009 	list_del_rcu(&ns->siblings);
4010 	if (list_empty(&ns->head->list)) {
4011 		list_del_init(&ns->head->entry);
4012 		last_path = true;
4013 	}
4014 	mutex_unlock(&ns->ctrl->subsys->lock);
4015 
4016 	/* guarantee not available in head->list */
4017 	synchronize_srcu(&ns->head->srcu);
4018 
4019 	if (!nvme_ns_head_multipath(ns->head))
4020 		nvme_cdev_del(&ns->cdev, &ns->cdev_device);
4021 	del_gendisk(ns->disk);
4022 
4023 	mutex_lock(&ns->ctrl->namespaces_lock);
4024 	list_del_rcu(&ns->list);
4025 	mutex_unlock(&ns->ctrl->namespaces_lock);
4026 	synchronize_srcu(&ns->ctrl->srcu);
4027 
4028 	if (last_path)
4029 		nvme_mpath_shutdown_disk(ns->head);
4030 	nvme_put_ns(ns);
4031 }
4032 
nvme_ns_remove_by_nsid(struct nvme_ctrl * ctrl,u32 nsid)4033 static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid)
4034 {
4035 	struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid);
4036 
4037 	if (ns) {
4038 		nvme_ns_remove(ns);
4039 		nvme_put_ns(ns);
4040 	}
4041 }
4042 
nvme_validate_ns(struct nvme_ns * ns,struct nvme_ns_info * info)4043 static void nvme_validate_ns(struct nvme_ns *ns, struct nvme_ns_info *info)
4044 {
4045 	int ret = NVME_SC_INVALID_NS | NVME_STATUS_DNR;
4046 
4047 	if (!nvme_ns_ids_equal(&ns->head->ids, &info->ids)) {
4048 		dev_err(ns->ctrl->device,
4049 			"identifiers changed for nsid %d\n", ns->head->ns_id);
4050 		goto out;
4051 	}
4052 
4053 	ret = nvme_update_ns_info(ns, info);
4054 out:
4055 	/*
4056 	 * Only remove the namespace if we got a fatal error back from the
4057 	 * device, otherwise ignore the error and just move on.
4058 	 *
4059 	 * TODO: we should probably schedule a delayed retry here.
4060 	 */
4061 	if (ret > 0 && (ret & NVME_STATUS_DNR))
4062 		nvme_ns_remove(ns);
4063 }
4064 
nvme_scan_ns(struct nvme_ctrl * ctrl,unsigned nsid)4065 static void nvme_scan_ns(struct nvme_ctrl *ctrl, unsigned nsid)
4066 {
4067 	struct nvme_ns_info info = { .nsid = nsid };
4068 	struct nvme_ns *ns;
4069 	int ret = 1;
4070 
4071 	if (nvme_identify_ns_descs(ctrl, &info))
4072 		return;
4073 
4074 	if (info.ids.csi != NVME_CSI_NVM && !nvme_multi_css(ctrl)) {
4075 		dev_warn(ctrl->device,
4076 			"command set not reported for nsid: %d\n", nsid);
4077 		return;
4078 	}
4079 
4080 	/*
4081 	 * If available try to use the Command Set Idependent Identify Namespace
4082 	 * data structure to find all the generic information that is needed to
4083 	 * set up a namespace.  If not fall back to the legacy version.
4084 	 */
4085 	if ((ctrl->cap & NVME_CAP_CRMS_CRIMS) ||
4086 	    (info.ids.csi != NVME_CSI_NVM && info.ids.csi != NVME_CSI_ZNS) ||
4087 	    ctrl->vs >= NVME_VS(2, 0, 0))
4088 		ret = nvme_ns_info_from_id_cs_indep(ctrl, &info);
4089 	if (ret > 0)
4090 		ret = nvme_ns_info_from_identify(ctrl, &info);
4091 
4092 	if (info.is_removed)
4093 		nvme_ns_remove_by_nsid(ctrl, nsid);
4094 
4095 	/*
4096 	 * Ignore the namespace if it is not ready. We will get an AEN once it
4097 	 * becomes ready and restart the scan.
4098 	 */
4099 	if (ret || !info.is_ready)
4100 		return;
4101 
4102 	ns = nvme_find_get_ns(ctrl, nsid);
4103 	if (ns) {
4104 		nvme_validate_ns(ns, &info);
4105 		nvme_put_ns(ns);
4106 	} else {
4107 		nvme_alloc_ns(ctrl, &info);
4108 	}
4109 }
4110 
4111 /**
4112  * struct async_scan_info - keeps track of controller & NSIDs to scan
4113  * @ctrl:	Controller on which namespaces are being scanned
4114  * @next_nsid:	Index of next NSID to scan in ns_list
4115  * @ns_list:	Pointer to list of NSIDs to scan
4116  *
4117  * Note: There is a single async_scan_info structure shared by all instances
4118  * of nvme_scan_ns_async() scanning a given controller, so the atomic
4119  * operations on next_nsid are critical to ensure each instance scans a unique
4120  * NSID.
4121  */
4122 struct async_scan_info {
4123 	struct nvme_ctrl *ctrl;
4124 	atomic_t next_nsid;
4125 	__le32 *ns_list;
4126 };
4127 
nvme_scan_ns_async(void * data,async_cookie_t cookie)4128 static void nvme_scan_ns_async(void *data, async_cookie_t cookie)
4129 {
4130 	struct async_scan_info *scan_info = data;
4131 	int idx;
4132 	u32 nsid;
4133 
4134 	idx = (u32)atomic_fetch_inc(&scan_info->next_nsid);
4135 	nsid = le32_to_cpu(scan_info->ns_list[idx]);
4136 
4137 	nvme_scan_ns(scan_info->ctrl, nsid);
4138 }
4139 
nvme_remove_invalid_namespaces(struct nvme_ctrl * ctrl,unsigned nsid)4140 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
4141 					unsigned nsid)
4142 {
4143 	struct nvme_ns *ns, *next;
4144 	LIST_HEAD(rm_list);
4145 
4146 	mutex_lock(&ctrl->namespaces_lock);
4147 	list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
4148 		if (ns->head->ns_id > nsid) {
4149 			list_del_rcu(&ns->list);
4150 			synchronize_srcu(&ctrl->srcu);
4151 			list_add_tail_rcu(&ns->list, &rm_list);
4152 		}
4153 	}
4154 	mutex_unlock(&ctrl->namespaces_lock);
4155 
4156 	list_for_each_entry_safe(ns, next, &rm_list, list)
4157 		nvme_ns_remove(ns);
4158 }
4159 
nvme_scan_ns_list(struct nvme_ctrl * ctrl)4160 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl)
4161 {
4162 	const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32);
4163 	__le32 *ns_list;
4164 	u32 prev = 0;
4165 	int ret = 0, i;
4166 	ASYNC_DOMAIN(domain);
4167 	struct async_scan_info scan_info;
4168 
4169 	ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
4170 	if (!ns_list)
4171 		return -ENOMEM;
4172 
4173 	scan_info.ctrl = ctrl;
4174 	scan_info.ns_list = ns_list;
4175 	for (;;) {
4176 		struct nvme_command cmd = {
4177 			.identify.opcode	= nvme_admin_identify,
4178 			.identify.cns		= NVME_ID_CNS_NS_ACTIVE_LIST,
4179 			.identify.nsid		= cpu_to_le32(prev),
4180 		};
4181 
4182 		ret = nvme_submit_sync_cmd(ctrl->admin_q, &cmd, ns_list,
4183 					    NVME_IDENTIFY_DATA_SIZE);
4184 		if (ret) {
4185 			dev_warn(ctrl->device,
4186 				"Identify NS List failed (status=0x%x)\n", ret);
4187 			goto free;
4188 		}
4189 
4190 		atomic_set(&scan_info.next_nsid, 0);
4191 		for (i = 0; i < nr_entries; i++) {
4192 			u32 nsid = le32_to_cpu(ns_list[i]);
4193 
4194 			if (!nsid)	/* end of the list? */
4195 				goto out;
4196 			async_schedule_domain(nvme_scan_ns_async, &scan_info,
4197 						&domain);
4198 			while (++prev < nsid)
4199 				nvme_ns_remove_by_nsid(ctrl, prev);
4200 		}
4201 		async_synchronize_full_domain(&domain);
4202 	}
4203  out:
4204 	nvme_remove_invalid_namespaces(ctrl, prev);
4205  free:
4206 	async_synchronize_full_domain(&domain);
4207 	kfree(ns_list);
4208 	return ret;
4209 }
4210 
nvme_scan_ns_sequential(struct nvme_ctrl * ctrl)4211 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl)
4212 {
4213 	struct nvme_id_ctrl *id;
4214 	u32 nn, i;
4215 
4216 	if (nvme_identify_ctrl(ctrl, &id))
4217 		return;
4218 	nn = le32_to_cpu(id->nn);
4219 	kfree(id);
4220 
4221 	for (i = 1; i <= nn; i++)
4222 		nvme_scan_ns(ctrl, i);
4223 
4224 	nvme_remove_invalid_namespaces(ctrl, nn);
4225 }
4226 
nvme_clear_changed_ns_log(struct nvme_ctrl * ctrl)4227 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl)
4228 {
4229 	size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32);
4230 	__le32 *log;
4231 	int error;
4232 
4233 	log = kzalloc(log_size, GFP_KERNEL);
4234 	if (!log)
4235 		return;
4236 
4237 	/*
4238 	 * We need to read the log to clear the AEN, but we don't want to rely
4239 	 * on it for the changed namespace information as userspace could have
4240 	 * raced with us in reading the log page, which could cause us to miss
4241 	 * updates.
4242 	 */
4243 	error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0,
4244 			NVME_CSI_NVM, log, log_size, 0);
4245 	if (error)
4246 		dev_warn(ctrl->device,
4247 			"reading changed ns log failed: %d\n", error);
4248 
4249 	kfree(log);
4250 }
4251 
nvme_scan_work(struct work_struct * work)4252 static void nvme_scan_work(struct work_struct *work)
4253 {
4254 	struct nvme_ctrl *ctrl =
4255 		container_of(work, struct nvme_ctrl, scan_work);
4256 	int ret;
4257 
4258 	/* No tagset on a live ctrl means IO queues could not created */
4259 	if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE || !ctrl->tagset)
4260 		return;
4261 
4262 	/*
4263 	 * Identify controller limits can change at controller reset due to
4264 	 * new firmware download, even though it is not common we cannot ignore
4265 	 * such scenario. Controller's non-mdts limits are reported in the unit
4266 	 * of logical blocks that is dependent on the format of attached
4267 	 * namespace. Hence re-read the limits at the time of ns allocation.
4268 	 */
4269 	ret = nvme_init_non_mdts_limits(ctrl);
4270 	if (ret < 0) {
4271 		dev_warn(ctrl->device,
4272 			"reading non-mdts-limits failed: %d\n", ret);
4273 		return;
4274 	}
4275 
4276 	if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) {
4277 		dev_info(ctrl->device, "rescanning namespaces.\n");
4278 		nvme_clear_changed_ns_log(ctrl);
4279 	}
4280 
4281 	mutex_lock(&ctrl->scan_lock);
4282 	if (!nvme_id_cns_ok(ctrl, NVME_ID_CNS_NS_ACTIVE_LIST)) {
4283 		nvme_scan_ns_sequential(ctrl);
4284 	} else {
4285 		/*
4286 		 * Fall back to sequential scan if DNR is set to handle broken
4287 		 * devices which should support Identify NS List (as per the VS
4288 		 * they report) but don't actually support it.
4289 		 */
4290 		ret = nvme_scan_ns_list(ctrl);
4291 		if (ret > 0 && ret & NVME_STATUS_DNR)
4292 			nvme_scan_ns_sequential(ctrl);
4293 	}
4294 	mutex_unlock(&ctrl->scan_lock);
4295 }
4296 
4297 /*
4298  * This function iterates the namespace list unlocked to allow recovery from
4299  * controller failure. It is up to the caller to ensure the namespace list is
4300  * not modified by scan work while this function is executing.
4301  */
nvme_remove_namespaces(struct nvme_ctrl * ctrl)4302 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
4303 {
4304 	struct nvme_ns *ns, *next;
4305 	LIST_HEAD(ns_list);
4306 
4307 	/*
4308 	 * make sure to requeue I/O to all namespaces as these
4309 	 * might result from the scan itself and must complete
4310 	 * for the scan_work to make progress
4311 	 */
4312 	nvme_mpath_clear_ctrl_paths(ctrl);
4313 
4314 	/*
4315 	 * Unquiesce io queues so any pending IO won't hang, especially
4316 	 * those submitted from scan work
4317 	 */
4318 	nvme_unquiesce_io_queues(ctrl);
4319 
4320 	/* prevent racing with ns scanning */
4321 	flush_work(&ctrl->scan_work);
4322 
4323 	/*
4324 	 * The dead states indicates the controller was not gracefully
4325 	 * disconnected. In that case, we won't be able to flush any data while
4326 	 * removing the namespaces' disks; fail all the queues now to avoid
4327 	 * potentially having to clean up the failed sync later.
4328 	 */
4329 	if (nvme_ctrl_state(ctrl) == NVME_CTRL_DEAD)
4330 		nvme_mark_namespaces_dead(ctrl);
4331 
4332 	/* this is a no-op when called from the controller reset handler */
4333 	nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO);
4334 
4335 	mutex_lock(&ctrl->namespaces_lock);
4336 	list_splice_init_rcu(&ctrl->namespaces, &ns_list, synchronize_rcu);
4337 	mutex_unlock(&ctrl->namespaces_lock);
4338 	synchronize_srcu(&ctrl->srcu);
4339 
4340 	list_for_each_entry_safe(ns, next, &ns_list, list)
4341 		nvme_ns_remove(ns);
4342 }
4343 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
4344 
nvme_class_uevent(const struct device * dev,struct kobj_uevent_env * env)4345 static int nvme_class_uevent(const struct device *dev, struct kobj_uevent_env *env)
4346 {
4347 	const struct nvme_ctrl *ctrl =
4348 		container_of(dev, struct nvme_ctrl, ctrl_device);
4349 	struct nvmf_ctrl_options *opts = ctrl->opts;
4350 	int ret;
4351 
4352 	ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name);
4353 	if (ret)
4354 		return ret;
4355 
4356 	if (opts) {
4357 		ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr);
4358 		if (ret)
4359 			return ret;
4360 
4361 		ret = add_uevent_var(env, "NVME_TRSVCID=%s",
4362 				opts->trsvcid ?: "none");
4363 		if (ret)
4364 			return ret;
4365 
4366 		ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s",
4367 				opts->host_traddr ?: "none");
4368 		if (ret)
4369 			return ret;
4370 
4371 		ret = add_uevent_var(env, "NVME_HOST_IFACE=%s",
4372 				opts->host_iface ?: "none");
4373 	}
4374 	return ret;
4375 }
4376 
nvme_change_uevent(struct nvme_ctrl * ctrl,char * envdata)4377 static void nvme_change_uevent(struct nvme_ctrl *ctrl, char *envdata)
4378 {
4379 	char *envp[2] = { envdata, NULL };
4380 
4381 	kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4382 }
4383 
nvme_aen_uevent(struct nvme_ctrl * ctrl)4384 static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
4385 {
4386 	char *envp[2] = { NULL, NULL };
4387 	u32 aen_result = ctrl->aen_result;
4388 
4389 	ctrl->aen_result = 0;
4390 	if (!aen_result)
4391 		return;
4392 
4393 	envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
4394 	if (!envp[0])
4395 		return;
4396 	kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4397 	kfree(envp[0]);
4398 }
4399 
nvme_async_event_work(struct work_struct * work)4400 static void nvme_async_event_work(struct work_struct *work)
4401 {
4402 	struct nvme_ctrl *ctrl =
4403 		container_of(work, struct nvme_ctrl, async_event_work);
4404 
4405 	nvme_aen_uevent(ctrl);
4406 
4407 	/*
4408 	 * The transport drivers must guarantee AER submission here is safe by
4409 	 * flushing ctrl async_event_work after changing the controller state
4410 	 * from LIVE and before freeing the admin queue.
4411 	*/
4412 	if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE)
4413 		ctrl->ops->submit_async_event(ctrl);
4414 }
4415 
nvme_ctrl_pp_status(struct nvme_ctrl * ctrl)4416 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
4417 {
4418 
4419 	u32 csts;
4420 
4421 	if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
4422 		return false;
4423 
4424 	if (csts == ~0)
4425 		return false;
4426 
4427 	return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
4428 }
4429 
nvme_get_fw_slot_info(struct nvme_ctrl * ctrl)4430 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
4431 {
4432 	struct nvme_fw_slot_info_log *log;
4433 	u8 next_fw_slot, cur_fw_slot;
4434 
4435 	log = kmalloc(sizeof(*log), GFP_KERNEL);
4436 	if (!log)
4437 		return;
4438 
4439 	if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, NVME_CSI_NVM,
4440 			 log, sizeof(*log), 0)) {
4441 		dev_warn(ctrl->device, "Get FW SLOT INFO log error\n");
4442 		goto out_free_log;
4443 	}
4444 
4445 	cur_fw_slot = log->afi & 0x7;
4446 	next_fw_slot = (log->afi & 0x70) >> 4;
4447 	if (!cur_fw_slot || (next_fw_slot && (cur_fw_slot != next_fw_slot))) {
4448 		dev_info(ctrl->device,
4449 			 "Firmware is activated after next Controller Level Reset\n");
4450 		goto out_free_log;
4451 	}
4452 
4453 	memcpy(ctrl->subsys->firmware_rev, &log->frs[cur_fw_slot - 1],
4454 		sizeof(ctrl->subsys->firmware_rev));
4455 
4456 out_free_log:
4457 	kfree(log);
4458 }
4459 
nvme_fw_act_work(struct work_struct * work)4460 static void nvme_fw_act_work(struct work_struct *work)
4461 {
4462 	struct nvme_ctrl *ctrl = container_of(work,
4463 				struct nvme_ctrl, fw_act_work);
4464 	unsigned long fw_act_timeout;
4465 
4466 	nvme_auth_stop(ctrl);
4467 
4468 	if (ctrl->mtfa)
4469 		fw_act_timeout = jiffies +
4470 				msecs_to_jiffies(ctrl->mtfa * 100);
4471 	else
4472 		fw_act_timeout = jiffies +
4473 				msecs_to_jiffies(admin_timeout * 1000);
4474 
4475 	nvme_quiesce_io_queues(ctrl);
4476 	while (nvme_ctrl_pp_status(ctrl)) {
4477 		if (time_after(jiffies, fw_act_timeout)) {
4478 			dev_warn(ctrl->device,
4479 				"Fw activation timeout, reset controller\n");
4480 			nvme_try_sched_reset(ctrl);
4481 			return;
4482 		}
4483 		msleep(100);
4484 	}
4485 
4486 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE))
4487 		return;
4488 
4489 	nvme_unquiesce_io_queues(ctrl);
4490 	/* read FW slot information to clear the AER */
4491 	nvme_get_fw_slot_info(ctrl);
4492 
4493 	queue_work(nvme_wq, &ctrl->async_event_work);
4494 }
4495 
nvme_aer_type(u32 result)4496 static u32 nvme_aer_type(u32 result)
4497 {
4498 	return result & 0x7;
4499 }
4500 
nvme_aer_subtype(u32 result)4501 static u32 nvme_aer_subtype(u32 result)
4502 {
4503 	return (result & 0xff00) >> 8;
4504 }
4505 
nvme_handle_aen_notice(struct nvme_ctrl * ctrl,u32 result)4506 static bool nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result)
4507 {
4508 	u32 aer_notice_type = nvme_aer_subtype(result);
4509 	bool requeue = true;
4510 
4511 	switch (aer_notice_type) {
4512 	case NVME_AER_NOTICE_NS_CHANGED:
4513 		set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events);
4514 		nvme_queue_scan(ctrl);
4515 		break;
4516 	case NVME_AER_NOTICE_FW_ACT_STARTING:
4517 		/*
4518 		 * We are (ab)using the RESETTING state to prevent subsequent
4519 		 * recovery actions from interfering with the controller's
4520 		 * firmware activation.
4521 		 */
4522 		if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) {
4523 			requeue = false;
4524 			queue_work(nvme_wq, &ctrl->fw_act_work);
4525 		}
4526 		break;
4527 #ifdef CONFIG_NVME_MULTIPATH
4528 	case NVME_AER_NOTICE_ANA:
4529 		if (!ctrl->ana_log_buf)
4530 			break;
4531 		queue_work(nvme_wq, &ctrl->ana_work);
4532 		break;
4533 #endif
4534 	case NVME_AER_NOTICE_DISC_CHANGED:
4535 		ctrl->aen_result = result;
4536 		break;
4537 	default:
4538 		dev_warn(ctrl->device, "async event result %08x\n", result);
4539 	}
4540 	return requeue;
4541 }
4542 
nvme_handle_aer_persistent_error(struct nvme_ctrl * ctrl)4543 static void nvme_handle_aer_persistent_error(struct nvme_ctrl *ctrl)
4544 {
4545 	dev_warn(ctrl->device,
4546 		"resetting controller due to persistent internal error\n");
4547 	nvme_reset_ctrl(ctrl);
4548 }
4549 
nvme_complete_async_event(struct nvme_ctrl * ctrl,__le16 status,volatile union nvme_result * res)4550 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
4551 		volatile union nvme_result *res)
4552 {
4553 	u32 result = le32_to_cpu(res->u32);
4554 	u32 aer_type = nvme_aer_type(result);
4555 	u32 aer_subtype = nvme_aer_subtype(result);
4556 	bool requeue = true;
4557 
4558 	if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
4559 		return;
4560 
4561 	trace_nvme_async_event(ctrl, result);
4562 	switch (aer_type) {
4563 	case NVME_AER_NOTICE:
4564 		requeue = nvme_handle_aen_notice(ctrl, result);
4565 		break;
4566 	case NVME_AER_ERROR:
4567 		/*
4568 		 * For a persistent internal error, don't run async_event_work
4569 		 * to submit a new AER. The controller reset will do it.
4570 		 */
4571 		if (aer_subtype == NVME_AER_ERROR_PERSIST_INT_ERR) {
4572 			nvme_handle_aer_persistent_error(ctrl);
4573 			return;
4574 		}
4575 		fallthrough;
4576 	case NVME_AER_SMART:
4577 	case NVME_AER_CSS:
4578 	case NVME_AER_VS:
4579 		ctrl->aen_result = result;
4580 		break;
4581 	default:
4582 		break;
4583 	}
4584 
4585 	if (requeue)
4586 		queue_work(nvme_wq, &ctrl->async_event_work);
4587 }
4588 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
4589 
nvme_alloc_admin_tag_set(struct nvme_ctrl * ctrl,struct blk_mq_tag_set * set,const struct blk_mq_ops * ops,unsigned int cmd_size)4590 int nvme_alloc_admin_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set,
4591 		const struct blk_mq_ops *ops, unsigned int cmd_size)
4592 {
4593 	struct queue_limits lim = {};
4594 	int ret;
4595 
4596 	memset(set, 0, sizeof(*set));
4597 	set->ops = ops;
4598 	set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
4599 	if (ctrl->ops->flags & NVME_F_FABRICS)
4600 		/* Reserved for fabric connect and keep alive */
4601 		set->reserved_tags = 2;
4602 	set->numa_node = ctrl->numa_node;
4603 	if (ctrl->ops->flags & NVME_F_BLOCKING)
4604 		set->flags |= BLK_MQ_F_BLOCKING;
4605 	set->cmd_size = cmd_size;
4606 	set->driver_data = ctrl;
4607 	set->nr_hw_queues = 1;
4608 	set->timeout = NVME_ADMIN_TIMEOUT;
4609 	ret = blk_mq_alloc_tag_set(set);
4610 	if (ret)
4611 		return ret;
4612 
4613 	ctrl->admin_q = blk_mq_alloc_queue(set, &lim, NULL);
4614 	if (IS_ERR(ctrl->admin_q)) {
4615 		ret = PTR_ERR(ctrl->admin_q);
4616 		goto out_free_tagset;
4617 	}
4618 
4619 	if (ctrl->ops->flags & NVME_F_FABRICS) {
4620 		ctrl->fabrics_q = blk_mq_alloc_queue(set, NULL, NULL);
4621 		if (IS_ERR(ctrl->fabrics_q)) {
4622 			ret = PTR_ERR(ctrl->fabrics_q);
4623 			goto out_cleanup_admin_q;
4624 		}
4625 	}
4626 
4627 	ctrl->admin_tagset = set;
4628 	return 0;
4629 
4630 out_cleanup_admin_q:
4631 	blk_mq_destroy_queue(ctrl->admin_q);
4632 	blk_put_queue(ctrl->admin_q);
4633 out_free_tagset:
4634 	blk_mq_free_tag_set(set);
4635 	ctrl->admin_q = NULL;
4636 	ctrl->fabrics_q = NULL;
4637 	return ret;
4638 }
4639 EXPORT_SYMBOL_GPL(nvme_alloc_admin_tag_set);
4640 
nvme_remove_admin_tag_set(struct nvme_ctrl * ctrl)4641 void nvme_remove_admin_tag_set(struct nvme_ctrl *ctrl)
4642 {
4643 	/*
4644 	 * As we're about to destroy the queue and free tagset
4645 	 * we can not have keep-alive work running.
4646 	 */
4647 	nvme_stop_keep_alive(ctrl);
4648 	blk_mq_destroy_queue(ctrl->admin_q);
4649 	blk_put_queue(ctrl->admin_q);
4650 	if (ctrl->ops->flags & NVME_F_FABRICS) {
4651 		blk_mq_destroy_queue(ctrl->fabrics_q);
4652 		blk_put_queue(ctrl->fabrics_q);
4653 	}
4654 	blk_mq_free_tag_set(ctrl->admin_tagset);
4655 }
4656 EXPORT_SYMBOL_GPL(nvme_remove_admin_tag_set);
4657 
nvme_alloc_io_tag_set(struct nvme_ctrl * ctrl,struct blk_mq_tag_set * set,const struct blk_mq_ops * ops,unsigned int nr_maps,unsigned int cmd_size)4658 int nvme_alloc_io_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set,
4659 		const struct blk_mq_ops *ops, unsigned int nr_maps,
4660 		unsigned int cmd_size)
4661 {
4662 	int ret;
4663 
4664 	memset(set, 0, sizeof(*set));
4665 	set->ops = ops;
4666 	set->queue_depth = min_t(unsigned, ctrl->sqsize, BLK_MQ_MAX_DEPTH - 1);
4667 	/*
4668 	 * Some Apple controllers requires tags to be unique across admin and
4669 	 * the (only) I/O queue, so reserve the first 32 tags of the I/O queue.
4670 	 */
4671 	if (ctrl->quirks & NVME_QUIRK_SHARED_TAGS)
4672 		set->reserved_tags = NVME_AQ_DEPTH;
4673 	else if (ctrl->ops->flags & NVME_F_FABRICS)
4674 		/* Reserved for fabric connect */
4675 		set->reserved_tags = 1;
4676 	set->numa_node = ctrl->numa_node;
4677 	if (ctrl->ops->flags & NVME_F_BLOCKING)
4678 		set->flags |= BLK_MQ_F_BLOCKING;
4679 	set->cmd_size = cmd_size;
4680 	set->driver_data = ctrl;
4681 	set->nr_hw_queues = ctrl->queue_count - 1;
4682 	set->timeout = NVME_IO_TIMEOUT;
4683 	set->nr_maps = nr_maps;
4684 	ret = blk_mq_alloc_tag_set(set);
4685 	if (ret)
4686 		return ret;
4687 
4688 	if (ctrl->ops->flags & NVME_F_FABRICS) {
4689 		struct queue_limits lim = {
4690 			.features	= BLK_FEAT_SKIP_TAGSET_QUIESCE,
4691 		};
4692 
4693 		ctrl->connect_q = blk_mq_alloc_queue(set, &lim, NULL);
4694         	if (IS_ERR(ctrl->connect_q)) {
4695 			ret = PTR_ERR(ctrl->connect_q);
4696 			goto out_free_tag_set;
4697 		}
4698 	}
4699 
4700 	ctrl->tagset = set;
4701 	return 0;
4702 
4703 out_free_tag_set:
4704 	blk_mq_free_tag_set(set);
4705 	ctrl->connect_q = NULL;
4706 	return ret;
4707 }
4708 EXPORT_SYMBOL_GPL(nvme_alloc_io_tag_set);
4709 
nvme_remove_io_tag_set(struct nvme_ctrl * ctrl)4710 void nvme_remove_io_tag_set(struct nvme_ctrl *ctrl)
4711 {
4712 	if (ctrl->ops->flags & NVME_F_FABRICS) {
4713 		blk_mq_destroy_queue(ctrl->connect_q);
4714 		blk_put_queue(ctrl->connect_q);
4715 	}
4716 	blk_mq_free_tag_set(ctrl->tagset);
4717 }
4718 EXPORT_SYMBOL_GPL(nvme_remove_io_tag_set);
4719 
nvme_stop_ctrl(struct nvme_ctrl * ctrl)4720 void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
4721 {
4722 	nvme_mpath_stop(ctrl);
4723 	nvme_auth_stop(ctrl);
4724 	nvme_stop_failfast_work(ctrl);
4725 	flush_work(&ctrl->async_event_work);
4726 	cancel_work_sync(&ctrl->fw_act_work);
4727 	if (ctrl->ops->stop_ctrl)
4728 		ctrl->ops->stop_ctrl(ctrl);
4729 }
4730 EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
4731 
nvme_start_ctrl(struct nvme_ctrl * ctrl)4732 void nvme_start_ctrl(struct nvme_ctrl *ctrl)
4733 {
4734 	nvme_enable_aen(ctrl);
4735 
4736 	/*
4737 	 * persistent discovery controllers need to send indication to userspace
4738 	 * to re-read the discovery log page to learn about possible changes
4739 	 * that were missed. We identify persistent discovery controllers by
4740 	 * checking that they started once before, hence are reconnecting back.
4741 	 */
4742 	if (test_bit(NVME_CTRL_STARTED_ONCE, &ctrl->flags) &&
4743 	    nvme_discovery_ctrl(ctrl))
4744 		nvme_change_uevent(ctrl, "NVME_EVENT=rediscover");
4745 
4746 	if (ctrl->queue_count > 1) {
4747 		nvme_queue_scan(ctrl);
4748 		nvme_unquiesce_io_queues(ctrl);
4749 		nvme_mpath_update(ctrl);
4750 	}
4751 
4752 	nvme_change_uevent(ctrl, "NVME_EVENT=connected");
4753 	set_bit(NVME_CTRL_STARTED_ONCE, &ctrl->flags);
4754 }
4755 EXPORT_SYMBOL_GPL(nvme_start_ctrl);
4756 
nvme_uninit_ctrl(struct nvme_ctrl * ctrl)4757 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
4758 {
4759 	nvme_stop_keep_alive(ctrl);
4760 	nvme_hwmon_exit(ctrl);
4761 	nvme_fault_inject_fini(&ctrl->fault_inject);
4762 	dev_pm_qos_hide_latency_tolerance(ctrl->device);
4763 	cdev_device_del(&ctrl->cdev, ctrl->device);
4764 	nvme_put_ctrl(ctrl);
4765 }
4766 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
4767 
nvme_free_cels(struct nvme_ctrl * ctrl)4768 static void nvme_free_cels(struct nvme_ctrl *ctrl)
4769 {
4770 	struct nvme_effects_log	*cel;
4771 	unsigned long i;
4772 
4773 	xa_for_each(&ctrl->cels, i, cel) {
4774 		xa_erase(&ctrl->cels, i);
4775 		kfree(cel);
4776 	}
4777 
4778 	xa_destroy(&ctrl->cels);
4779 }
4780 
nvme_free_ctrl(struct device * dev)4781 static void nvme_free_ctrl(struct device *dev)
4782 {
4783 	struct nvme_ctrl *ctrl =
4784 		container_of(dev, struct nvme_ctrl, ctrl_device);
4785 	struct nvme_subsystem *subsys = ctrl->subsys;
4786 
4787 	if (!subsys || ctrl->instance != subsys->instance)
4788 		ida_free(&nvme_instance_ida, ctrl->instance);
4789 	nvme_free_cels(ctrl);
4790 	nvme_mpath_uninit(ctrl);
4791 	cleanup_srcu_struct(&ctrl->srcu);
4792 	nvme_auth_stop(ctrl);
4793 	nvme_auth_free(ctrl);
4794 	__free_page(ctrl->discard_page);
4795 	free_opal_dev(ctrl->opal_dev);
4796 
4797 	if (subsys) {
4798 		mutex_lock(&nvme_subsystems_lock);
4799 		list_del(&ctrl->subsys_entry);
4800 		sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
4801 		mutex_unlock(&nvme_subsystems_lock);
4802 	}
4803 
4804 	ctrl->ops->free_ctrl(ctrl);
4805 
4806 	if (subsys)
4807 		nvme_put_subsystem(subsys);
4808 }
4809 
4810 /*
4811  * Initialize a NVMe controller structures.  This needs to be called during
4812  * earliest initialization so that we have the initialized structured around
4813  * during probing.
4814  *
4815  * On success, the caller must use the nvme_put_ctrl() to release this when
4816  * needed, which also invokes the ops->free_ctrl() callback.
4817  */
nvme_init_ctrl(struct nvme_ctrl * ctrl,struct device * dev,const struct nvme_ctrl_ops * ops,unsigned long quirks)4818 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
4819 		const struct nvme_ctrl_ops *ops, unsigned long quirks)
4820 {
4821 	int ret;
4822 
4823 	WRITE_ONCE(ctrl->state, NVME_CTRL_NEW);
4824 	ctrl->passthru_err_log_enabled = false;
4825 	clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
4826 	spin_lock_init(&ctrl->lock);
4827 	mutex_init(&ctrl->namespaces_lock);
4828 
4829 	ret = init_srcu_struct(&ctrl->srcu);
4830 	if (ret)
4831 		return ret;
4832 
4833 	mutex_init(&ctrl->scan_lock);
4834 	INIT_LIST_HEAD(&ctrl->namespaces);
4835 	xa_init(&ctrl->cels);
4836 	ctrl->dev = dev;
4837 	ctrl->ops = ops;
4838 	ctrl->quirks = quirks;
4839 	ctrl->numa_node = NUMA_NO_NODE;
4840 	INIT_WORK(&ctrl->scan_work, nvme_scan_work);
4841 	INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
4842 	INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
4843 	INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
4844 	init_waitqueue_head(&ctrl->state_wq);
4845 
4846 	INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
4847 	INIT_DELAYED_WORK(&ctrl->failfast_work, nvme_failfast_work);
4848 	memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
4849 	ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
4850 	ctrl->ka_last_check_time = jiffies;
4851 
4852 	BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) >
4853 			PAGE_SIZE);
4854 	ctrl->discard_page = alloc_page(GFP_KERNEL);
4855 	if (!ctrl->discard_page) {
4856 		ret = -ENOMEM;
4857 		goto out;
4858 	}
4859 
4860 	ret = ida_alloc(&nvme_instance_ida, GFP_KERNEL);
4861 	if (ret < 0)
4862 		goto out;
4863 	ctrl->instance = ret;
4864 
4865 	ret = nvme_auth_init_ctrl(ctrl);
4866 	if (ret)
4867 		goto out_release_instance;
4868 
4869 	nvme_mpath_init_ctrl(ctrl);
4870 
4871 	device_initialize(&ctrl->ctrl_device);
4872 	ctrl->device = &ctrl->ctrl_device;
4873 	ctrl->device->devt = MKDEV(MAJOR(nvme_ctrl_base_chr_devt),
4874 			ctrl->instance);
4875 	ctrl->device->class = &nvme_class;
4876 	ctrl->device->parent = ctrl->dev;
4877 	if (ops->dev_attr_groups)
4878 		ctrl->device->groups = ops->dev_attr_groups;
4879 	else
4880 		ctrl->device->groups = nvme_dev_attr_groups;
4881 	ctrl->device->release = nvme_free_ctrl;
4882 	dev_set_drvdata(ctrl->device, ctrl);
4883 
4884 	return ret;
4885 
4886 out_release_instance:
4887 	ida_free(&nvme_instance_ida, ctrl->instance);
4888 out:
4889 	if (ctrl->discard_page)
4890 		__free_page(ctrl->discard_page);
4891 	cleanup_srcu_struct(&ctrl->srcu);
4892 	return ret;
4893 }
4894 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
4895 
4896 /*
4897  * On success, returns with an elevated controller reference and caller must
4898  * use nvme_uninit_ctrl() to properly free resources associated with the ctrl.
4899  */
nvme_add_ctrl(struct nvme_ctrl * ctrl)4900 int nvme_add_ctrl(struct nvme_ctrl *ctrl)
4901 {
4902 	int ret;
4903 
4904 	ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
4905 	if (ret)
4906 		return ret;
4907 
4908 	cdev_init(&ctrl->cdev, &nvme_dev_fops);
4909 	ctrl->cdev.owner = ctrl->ops->module;
4910 	ret = cdev_device_add(&ctrl->cdev, ctrl->device);
4911 	if (ret)
4912 		return ret;
4913 
4914 	/*
4915 	 * Initialize latency tolerance controls.  The sysfs files won't
4916 	 * be visible to userspace unless the device actually supports APST.
4917 	 */
4918 	ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
4919 	dev_pm_qos_update_user_latency_tolerance(ctrl->device,
4920 		min(default_ps_max_latency_us, (unsigned long)S32_MAX));
4921 
4922 	nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device));
4923 	nvme_get_ctrl(ctrl);
4924 
4925 	return 0;
4926 }
4927 EXPORT_SYMBOL_GPL(nvme_add_ctrl);
4928 
4929 /* let I/O to all namespaces fail in preparation for surprise removal */
nvme_mark_namespaces_dead(struct nvme_ctrl * ctrl)4930 void nvme_mark_namespaces_dead(struct nvme_ctrl *ctrl)
4931 {
4932 	struct nvme_ns *ns;
4933 	int srcu_idx;
4934 
4935 	srcu_idx = srcu_read_lock(&ctrl->srcu);
4936 	list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
4937 				 srcu_read_lock_held(&ctrl->srcu))
4938 		blk_mark_disk_dead(ns->disk);
4939 	srcu_read_unlock(&ctrl->srcu, srcu_idx);
4940 }
4941 EXPORT_SYMBOL_GPL(nvme_mark_namespaces_dead);
4942 
nvme_unfreeze(struct nvme_ctrl * ctrl)4943 void nvme_unfreeze(struct nvme_ctrl *ctrl)
4944 {
4945 	struct nvme_ns *ns;
4946 	int srcu_idx;
4947 
4948 	srcu_idx = srcu_read_lock(&ctrl->srcu);
4949 	list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
4950 				 srcu_read_lock_held(&ctrl->srcu))
4951 		blk_mq_unfreeze_queue_non_owner(ns->queue);
4952 	srcu_read_unlock(&ctrl->srcu, srcu_idx);
4953 	clear_bit(NVME_CTRL_FROZEN, &ctrl->flags);
4954 }
4955 EXPORT_SYMBOL_GPL(nvme_unfreeze);
4956 
nvme_wait_freeze_timeout(struct nvme_ctrl * ctrl,long timeout)4957 int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
4958 {
4959 	struct nvme_ns *ns;
4960 	int srcu_idx;
4961 
4962 	srcu_idx = srcu_read_lock(&ctrl->srcu);
4963 	list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
4964 				 srcu_read_lock_held(&ctrl->srcu)) {
4965 		timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
4966 		if (timeout <= 0)
4967 			break;
4968 	}
4969 	srcu_read_unlock(&ctrl->srcu, srcu_idx);
4970 	return timeout;
4971 }
4972 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
4973 
nvme_wait_freeze(struct nvme_ctrl * ctrl)4974 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
4975 {
4976 	struct nvme_ns *ns;
4977 	int srcu_idx;
4978 
4979 	srcu_idx = srcu_read_lock(&ctrl->srcu);
4980 	list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
4981 				 srcu_read_lock_held(&ctrl->srcu))
4982 		blk_mq_freeze_queue_wait(ns->queue);
4983 	srcu_read_unlock(&ctrl->srcu, srcu_idx);
4984 }
4985 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
4986 
nvme_start_freeze(struct nvme_ctrl * ctrl)4987 void nvme_start_freeze(struct nvme_ctrl *ctrl)
4988 {
4989 	struct nvme_ns *ns;
4990 	int srcu_idx;
4991 
4992 	set_bit(NVME_CTRL_FROZEN, &ctrl->flags);
4993 	srcu_idx = srcu_read_lock(&ctrl->srcu);
4994 	list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
4995 				 srcu_read_lock_held(&ctrl->srcu))
4996 		/*
4997 		 * Typical non_owner use case is from pci driver, in which
4998 		 * start_freeze is called from timeout work function, but
4999 		 * unfreeze is done in reset work context
5000 		 */
5001 		blk_freeze_queue_start_non_owner(ns->queue);
5002 	srcu_read_unlock(&ctrl->srcu, srcu_idx);
5003 }
5004 EXPORT_SYMBOL_GPL(nvme_start_freeze);
5005 
nvme_quiesce_io_queues(struct nvme_ctrl * ctrl)5006 void nvme_quiesce_io_queues(struct nvme_ctrl *ctrl)
5007 {
5008 	if (!ctrl->tagset)
5009 		return;
5010 	if (!test_and_set_bit(NVME_CTRL_STOPPED, &ctrl->flags))
5011 		blk_mq_quiesce_tagset(ctrl->tagset);
5012 	else
5013 		blk_mq_wait_quiesce_done(ctrl->tagset);
5014 }
5015 EXPORT_SYMBOL_GPL(nvme_quiesce_io_queues);
5016 
nvme_unquiesce_io_queues(struct nvme_ctrl * ctrl)5017 void nvme_unquiesce_io_queues(struct nvme_ctrl *ctrl)
5018 {
5019 	if (!ctrl->tagset)
5020 		return;
5021 	if (test_and_clear_bit(NVME_CTRL_STOPPED, &ctrl->flags))
5022 		blk_mq_unquiesce_tagset(ctrl->tagset);
5023 }
5024 EXPORT_SYMBOL_GPL(nvme_unquiesce_io_queues);
5025 
nvme_quiesce_admin_queue(struct nvme_ctrl * ctrl)5026 void nvme_quiesce_admin_queue(struct nvme_ctrl *ctrl)
5027 {
5028 	if (!test_and_set_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags))
5029 		blk_mq_quiesce_queue(ctrl->admin_q);
5030 	else
5031 		blk_mq_wait_quiesce_done(ctrl->admin_q->tag_set);
5032 }
5033 EXPORT_SYMBOL_GPL(nvme_quiesce_admin_queue);
5034 
nvme_unquiesce_admin_queue(struct nvme_ctrl * ctrl)5035 void nvme_unquiesce_admin_queue(struct nvme_ctrl *ctrl)
5036 {
5037 	if (test_and_clear_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags))
5038 		blk_mq_unquiesce_queue(ctrl->admin_q);
5039 }
5040 EXPORT_SYMBOL_GPL(nvme_unquiesce_admin_queue);
5041 
nvme_sync_io_queues(struct nvme_ctrl * ctrl)5042 void nvme_sync_io_queues(struct nvme_ctrl *ctrl)
5043 {
5044 	struct nvme_ns *ns;
5045 	int srcu_idx;
5046 
5047 	srcu_idx = srcu_read_lock(&ctrl->srcu);
5048 	list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
5049 				 srcu_read_lock_held(&ctrl->srcu))
5050 		blk_sync_queue(ns->queue);
5051 	srcu_read_unlock(&ctrl->srcu, srcu_idx);
5052 }
5053 EXPORT_SYMBOL_GPL(nvme_sync_io_queues);
5054 
nvme_sync_queues(struct nvme_ctrl * ctrl)5055 void nvme_sync_queues(struct nvme_ctrl *ctrl)
5056 {
5057 	nvme_sync_io_queues(ctrl);
5058 	if (ctrl->admin_q)
5059 		blk_sync_queue(ctrl->admin_q);
5060 }
5061 EXPORT_SYMBOL_GPL(nvme_sync_queues);
5062 
nvme_ctrl_from_file(struct file * file)5063 struct nvme_ctrl *nvme_ctrl_from_file(struct file *file)
5064 {
5065 	if (file->f_op != &nvme_dev_fops)
5066 		return NULL;
5067 	return file->private_data;
5068 }
5069 EXPORT_SYMBOL_NS_GPL(nvme_ctrl_from_file, "NVME_TARGET_PASSTHRU");
5070 
5071 /*
5072  * Check we didn't inadvertently grow the command structure sizes:
5073  */
_nvme_check_size(void)5074 static inline void _nvme_check_size(void)
5075 {
5076 	BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64);
5077 	BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
5078 	BUILD_BUG_ON(sizeof(struct nvme_identify) != 64);
5079 	BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
5080 	BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64);
5081 	BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
5082 	BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64);
5083 	BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64);
5084 	BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
5085 	BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64);
5086 	BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
5087 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
5088 	BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
5089 	BUILD_BUG_ON(sizeof(struct nvme_id_ns_cs_indep) !=
5090 			NVME_IDENTIFY_DATA_SIZE);
5091 	BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE);
5092 	BUILD_BUG_ON(sizeof(struct nvme_id_ns_nvm) != NVME_IDENTIFY_DATA_SIZE);
5093 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE);
5094 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_nvm) != NVME_IDENTIFY_DATA_SIZE);
5095 	BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
5096 	BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
5097 	BUILD_BUG_ON(sizeof(struct nvme_endurance_group_log) != 512);
5098 	BUILD_BUG_ON(sizeof(struct nvme_rotational_media_log) != 512);
5099 	BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
5100 	BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64);
5101 	BUILD_BUG_ON(sizeof(struct nvme_feat_host_behavior) != 512);
5102 }
5103 
5104 
nvme_core_init(void)5105 static int __init nvme_core_init(void)
5106 {
5107 	unsigned int wq_flags = WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS;
5108 	int result = -ENOMEM;
5109 
5110 	_nvme_check_size();
5111 
5112 	nvme_wq = alloc_workqueue("nvme-wq", wq_flags, 0);
5113 	if (!nvme_wq)
5114 		goto out;
5115 
5116 	nvme_reset_wq = alloc_workqueue("nvme-reset-wq", wq_flags, 0);
5117 	if (!nvme_reset_wq)
5118 		goto destroy_wq;
5119 
5120 	nvme_delete_wq = alloc_workqueue("nvme-delete-wq", wq_flags, 0);
5121 	if (!nvme_delete_wq)
5122 		goto destroy_reset_wq;
5123 
5124 	result = alloc_chrdev_region(&nvme_ctrl_base_chr_devt, 0,
5125 			NVME_MINORS, "nvme");
5126 	if (result < 0)
5127 		goto destroy_delete_wq;
5128 
5129 	result = class_register(&nvme_class);
5130 	if (result)
5131 		goto unregister_chrdev;
5132 
5133 	result = class_register(&nvme_subsys_class);
5134 	if (result)
5135 		goto destroy_class;
5136 
5137 	result = alloc_chrdev_region(&nvme_ns_chr_devt, 0, NVME_MINORS,
5138 				     "nvme-generic");
5139 	if (result < 0)
5140 		goto destroy_subsys_class;
5141 
5142 	result = class_register(&nvme_ns_chr_class);
5143 	if (result)
5144 		goto unregister_generic_ns;
5145 
5146 	result = nvme_init_auth();
5147 	if (result)
5148 		goto destroy_ns_chr;
5149 	return 0;
5150 
5151 destroy_ns_chr:
5152 	class_unregister(&nvme_ns_chr_class);
5153 unregister_generic_ns:
5154 	unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
5155 destroy_subsys_class:
5156 	class_unregister(&nvme_subsys_class);
5157 destroy_class:
5158 	class_unregister(&nvme_class);
5159 unregister_chrdev:
5160 	unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
5161 destroy_delete_wq:
5162 	destroy_workqueue(nvme_delete_wq);
5163 destroy_reset_wq:
5164 	destroy_workqueue(nvme_reset_wq);
5165 destroy_wq:
5166 	destroy_workqueue(nvme_wq);
5167 out:
5168 	return result;
5169 }
5170 
nvme_core_exit(void)5171 static void __exit nvme_core_exit(void)
5172 {
5173 	nvme_exit_auth();
5174 	class_unregister(&nvme_ns_chr_class);
5175 	class_unregister(&nvme_subsys_class);
5176 	class_unregister(&nvme_class);
5177 	unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
5178 	unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
5179 	destroy_workqueue(nvme_delete_wq);
5180 	destroy_workqueue(nvme_reset_wq);
5181 	destroy_workqueue(nvme_wq);
5182 	ida_destroy(&nvme_ns_chr_minor_ida);
5183 	ida_destroy(&nvme_instance_ida);
5184 }
5185 
5186 MODULE_LICENSE("GPL");
5187 MODULE_VERSION("1.0");
5188 MODULE_DESCRIPTION("NVMe host core framework");
5189 module_init(nvme_core_init);
5190 module_exit(nvme_core_exit);
5191