1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * NVM Express device driver
4 * Copyright (c) 2011-2014, Intel Corporation.
5 */
6
7 #include <linux/async.h>
8 #include <linux/blkdev.h>
9 #include <linux/blk-mq.h>
10 #include <linux/blk-integrity.h>
11 #include <linux/compat.h>
12 #include <linux/delay.h>
13 #include <linux/errno.h>
14 #include <linux/hdreg.h>
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/backing-dev.h>
18 #include <linux/slab.h>
19 #include <linux/types.h>
20 #include <linux/pr.h>
21 #include <linux/ptrace.h>
22 #include <linux/nvme_ioctl.h>
23 #include <linux/pm_qos.h>
24 #include <linux/ratelimit.h>
25 #include <linux/unaligned.h>
26
27 #include "nvme.h"
28 #include "fabrics.h"
29 #include <linux/nvme-auth.h>
30
31 #define CREATE_TRACE_POINTS
32 #include "trace.h"
33
34 #define NVME_MINORS (1U << MINORBITS)
35
36 struct nvme_ns_info {
37 struct nvme_ns_ids ids;
38 u32 nsid;
39 __le32 anagrpid;
40 u8 pi_offset;
41 bool is_shared;
42 bool is_readonly;
43 bool is_ready;
44 bool is_removed;
45 bool is_rotational;
46 bool no_vwc;
47 };
48
49 unsigned int admin_timeout = 60;
50 module_param(admin_timeout, uint, 0644);
51 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
52 EXPORT_SYMBOL_GPL(admin_timeout);
53
54 unsigned int nvme_io_timeout = 30;
55 module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
56 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
57 EXPORT_SYMBOL_GPL(nvme_io_timeout);
58
59 static unsigned char shutdown_timeout = 5;
60 module_param(shutdown_timeout, byte, 0644);
61 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
62
63 static u8 nvme_max_retries = 5;
64 module_param_named(max_retries, nvme_max_retries, byte, 0644);
65 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
66
67 static unsigned long default_ps_max_latency_us = 100000;
68 module_param(default_ps_max_latency_us, ulong, 0644);
69 MODULE_PARM_DESC(default_ps_max_latency_us,
70 "max power saving latency for new devices; use PM QOS to change per device");
71
72 static bool force_apst;
73 module_param(force_apst, bool, 0644);
74 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
75
76 static unsigned long apst_primary_timeout_ms = 100;
77 module_param(apst_primary_timeout_ms, ulong, 0644);
78 MODULE_PARM_DESC(apst_primary_timeout_ms,
79 "primary APST timeout in ms");
80
81 static unsigned long apst_secondary_timeout_ms = 2000;
82 module_param(apst_secondary_timeout_ms, ulong, 0644);
83 MODULE_PARM_DESC(apst_secondary_timeout_ms,
84 "secondary APST timeout in ms");
85
86 static unsigned long apst_primary_latency_tol_us = 15000;
87 module_param(apst_primary_latency_tol_us, ulong, 0644);
88 MODULE_PARM_DESC(apst_primary_latency_tol_us,
89 "primary APST latency tolerance in us");
90
91 static unsigned long apst_secondary_latency_tol_us = 100000;
92 module_param(apst_secondary_latency_tol_us, ulong, 0644);
93 MODULE_PARM_DESC(apst_secondary_latency_tol_us,
94 "secondary APST latency tolerance in us");
95
96 /*
97 * Older kernels didn't enable protection information if it was at an offset.
98 * Newer kernels do, so it breaks reads on the upgrade if such formats were
99 * used in prior kernels since the metadata written did not contain a valid
100 * checksum.
101 */
102 static bool disable_pi_offsets = false;
103 module_param(disable_pi_offsets, bool, 0444);
104 MODULE_PARM_DESC(disable_pi_offsets,
105 "disable protection information if it has an offset");
106
107 /*
108 * nvme_wq - hosts nvme related works that are not reset or delete
109 * nvme_reset_wq - hosts nvme reset works
110 * nvme_delete_wq - hosts nvme delete works
111 *
112 * nvme_wq will host works such as scan, aen handling, fw activation,
113 * keep-alive, periodic reconnects etc. nvme_reset_wq
114 * runs reset works which also flush works hosted on nvme_wq for
115 * serialization purposes. nvme_delete_wq host controller deletion
116 * works which flush reset works for serialization.
117 */
118 struct workqueue_struct *nvme_wq;
119 EXPORT_SYMBOL_GPL(nvme_wq);
120
121 struct workqueue_struct *nvme_reset_wq;
122 EXPORT_SYMBOL_GPL(nvme_reset_wq);
123
124 struct workqueue_struct *nvme_delete_wq;
125 EXPORT_SYMBOL_GPL(nvme_delete_wq);
126
127 static LIST_HEAD(nvme_subsystems);
128 DEFINE_MUTEX(nvme_subsystems_lock);
129
130 static DEFINE_IDA(nvme_instance_ida);
131 static dev_t nvme_ctrl_base_chr_devt;
132 static int nvme_class_uevent(const struct device *dev, struct kobj_uevent_env *env);
133 static const struct class nvme_class = {
134 .name = "nvme",
135 .dev_uevent = nvme_class_uevent,
136 };
137
138 static const struct class nvme_subsys_class = {
139 .name = "nvme-subsystem",
140 };
141
142 static DEFINE_IDA(nvme_ns_chr_minor_ida);
143 static dev_t nvme_ns_chr_devt;
144 static const struct class nvme_ns_chr_class = {
145 .name = "nvme-generic",
146 };
147
148 static void nvme_put_subsystem(struct nvme_subsystem *subsys);
149 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
150 unsigned nsid);
151 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl,
152 struct nvme_command *cmd);
153
nvme_queue_scan(struct nvme_ctrl * ctrl)154 void nvme_queue_scan(struct nvme_ctrl *ctrl)
155 {
156 /*
157 * Only new queue scan work when admin and IO queues are both alive
158 */
159 if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE && ctrl->tagset)
160 queue_work(nvme_wq, &ctrl->scan_work);
161 }
162
163 /*
164 * Use this function to proceed with scheduling reset_work for a controller
165 * that had previously been set to the resetting state. This is intended for
166 * code paths that can't be interrupted by other reset attempts. A hot removal
167 * may prevent this from succeeding.
168 */
nvme_try_sched_reset(struct nvme_ctrl * ctrl)169 int nvme_try_sched_reset(struct nvme_ctrl *ctrl)
170 {
171 if (nvme_ctrl_state(ctrl) != NVME_CTRL_RESETTING)
172 return -EBUSY;
173 if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
174 return -EBUSY;
175 return 0;
176 }
177 EXPORT_SYMBOL_GPL(nvme_try_sched_reset);
178
nvme_failfast_work(struct work_struct * work)179 static void nvme_failfast_work(struct work_struct *work)
180 {
181 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
182 struct nvme_ctrl, failfast_work);
183
184 if (nvme_ctrl_state(ctrl) != NVME_CTRL_CONNECTING)
185 return;
186
187 set_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
188 dev_info(ctrl->device, "failfast expired\n");
189 nvme_kick_requeue_lists(ctrl);
190 }
191
nvme_start_failfast_work(struct nvme_ctrl * ctrl)192 static inline void nvme_start_failfast_work(struct nvme_ctrl *ctrl)
193 {
194 if (!ctrl->opts || ctrl->opts->fast_io_fail_tmo == -1)
195 return;
196
197 schedule_delayed_work(&ctrl->failfast_work,
198 ctrl->opts->fast_io_fail_tmo * HZ);
199 }
200
nvme_stop_failfast_work(struct nvme_ctrl * ctrl)201 static inline void nvme_stop_failfast_work(struct nvme_ctrl *ctrl)
202 {
203 if (!ctrl->opts)
204 return;
205
206 cancel_delayed_work_sync(&ctrl->failfast_work);
207 clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
208 }
209
210
nvme_reset_ctrl(struct nvme_ctrl * ctrl)211 int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
212 {
213 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
214 return -EBUSY;
215 if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
216 return -EBUSY;
217 return 0;
218 }
219 EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
220
nvme_reset_ctrl_sync(struct nvme_ctrl * ctrl)221 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
222 {
223 int ret;
224
225 ret = nvme_reset_ctrl(ctrl);
226 if (!ret) {
227 flush_work(&ctrl->reset_work);
228 if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE)
229 ret = -ENETRESET;
230 }
231
232 return ret;
233 }
234
nvme_do_delete_ctrl(struct nvme_ctrl * ctrl)235 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl)
236 {
237 dev_info(ctrl->device,
238 "Removing ctrl: NQN \"%s\"\n", nvmf_ctrl_subsysnqn(ctrl));
239
240 flush_work(&ctrl->reset_work);
241 nvme_stop_ctrl(ctrl);
242 nvme_remove_namespaces(ctrl);
243 ctrl->ops->delete_ctrl(ctrl);
244 nvme_uninit_ctrl(ctrl);
245 }
246
nvme_delete_ctrl_work(struct work_struct * work)247 static void nvme_delete_ctrl_work(struct work_struct *work)
248 {
249 struct nvme_ctrl *ctrl =
250 container_of(work, struct nvme_ctrl, delete_work);
251
252 nvme_do_delete_ctrl(ctrl);
253 }
254
nvme_delete_ctrl(struct nvme_ctrl * ctrl)255 int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
256 {
257 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
258 return -EBUSY;
259 if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
260 return -EBUSY;
261 return 0;
262 }
263 EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
264
nvme_delete_ctrl_sync(struct nvme_ctrl * ctrl)265 void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
266 {
267 /*
268 * Keep a reference until nvme_do_delete_ctrl() complete,
269 * since ->delete_ctrl can free the controller.
270 */
271 nvme_get_ctrl(ctrl);
272 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
273 nvme_do_delete_ctrl(ctrl);
274 nvme_put_ctrl(ctrl);
275 }
276
nvme_error_status(u16 status)277 static blk_status_t nvme_error_status(u16 status)
278 {
279 switch (status & NVME_SCT_SC_MASK) {
280 case NVME_SC_SUCCESS:
281 return BLK_STS_OK;
282 case NVME_SC_CAP_EXCEEDED:
283 return BLK_STS_NOSPC;
284 case NVME_SC_LBA_RANGE:
285 case NVME_SC_CMD_INTERRUPTED:
286 case NVME_SC_NS_NOT_READY:
287 return BLK_STS_TARGET;
288 case NVME_SC_BAD_ATTRIBUTES:
289 case NVME_SC_ONCS_NOT_SUPPORTED:
290 case NVME_SC_INVALID_OPCODE:
291 case NVME_SC_INVALID_FIELD:
292 case NVME_SC_INVALID_NS:
293 return BLK_STS_NOTSUPP;
294 case NVME_SC_WRITE_FAULT:
295 case NVME_SC_READ_ERROR:
296 case NVME_SC_UNWRITTEN_BLOCK:
297 case NVME_SC_ACCESS_DENIED:
298 case NVME_SC_READ_ONLY:
299 case NVME_SC_COMPARE_FAILED:
300 return BLK_STS_MEDIUM;
301 case NVME_SC_GUARD_CHECK:
302 case NVME_SC_APPTAG_CHECK:
303 case NVME_SC_REFTAG_CHECK:
304 case NVME_SC_INVALID_PI:
305 return BLK_STS_PROTECTION;
306 case NVME_SC_RESERVATION_CONFLICT:
307 return BLK_STS_RESV_CONFLICT;
308 case NVME_SC_HOST_PATH_ERROR:
309 return BLK_STS_TRANSPORT;
310 case NVME_SC_ZONE_TOO_MANY_ACTIVE:
311 return BLK_STS_ZONE_ACTIVE_RESOURCE;
312 case NVME_SC_ZONE_TOO_MANY_OPEN:
313 return BLK_STS_ZONE_OPEN_RESOURCE;
314 default:
315 return BLK_STS_IOERR;
316 }
317 }
318
nvme_retry_req(struct request * req)319 static void nvme_retry_req(struct request *req)
320 {
321 unsigned long delay = 0;
322 u16 crd;
323
324 /* The mask and shift result must be <= 3 */
325 crd = (nvme_req(req)->status & NVME_STATUS_CRD) >> 11;
326 if (crd)
327 delay = nvme_req(req)->ctrl->crdt[crd - 1] * 100;
328
329 nvme_req(req)->retries++;
330 blk_mq_requeue_request(req, false);
331 blk_mq_delay_kick_requeue_list(req->q, delay);
332 }
333
nvme_log_error(struct request * req)334 static void nvme_log_error(struct request *req)
335 {
336 struct nvme_ns *ns = req->q->queuedata;
337 struct nvme_request *nr = nvme_req(req);
338
339 if (ns) {
340 pr_err_ratelimited("%s: %s(0x%x) @ LBA %llu, %u blocks, %s (sct 0x%x / sc 0x%x) %s%s\n",
341 ns->disk ? ns->disk->disk_name : "?",
342 nvme_get_opcode_str(nr->cmd->common.opcode),
343 nr->cmd->common.opcode,
344 nvme_sect_to_lba(ns->head, blk_rq_pos(req)),
345 blk_rq_bytes(req) >> ns->head->lba_shift,
346 nvme_get_error_status_str(nr->status),
347 NVME_SCT(nr->status), /* Status Code Type */
348 nr->status & NVME_SC_MASK, /* Status Code */
349 nr->status & NVME_STATUS_MORE ? "MORE " : "",
350 nr->status & NVME_STATUS_DNR ? "DNR " : "");
351 return;
352 }
353
354 pr_err_ratelimited("%s: %s(0x%x), %s (sct 0x%x / sc 0x%x) %s%s\n",
355 dev_name(nr->ctrl->device),
356 nvme_get_admin_opcode_str(nr->cmd->common.opcode),
357 nr->cmd->common.opcode,
358 nvme_get_error_status_str(nr->status),
359 NVME_SCT(nr->status), /* Status Code Type */
360 nr->status & NVME_SC_MASK, /* Status Code */
361 nr->status & NVME_STATUS_MORE ? "MORE " : "",
362 nr->status & NVME_STATUS_DNR ? "DNR " : "");
363 }
364
nvme_log_err_passthru(struct request * req)365 static void nvme_log_err_passthru(struct request *req)
366 {
367 struct nvme_ns *ns = req->q->queuedata;
368 struct nvme_request *nr = nvme_req(req);
369
370 pr_err_ratelimited("%s: %s(0x%x), %s (sct 0x%x / sc 0x%x) %s%s"
371 "cdw10=0x%x cdw11=0x%x cdw12=0x%x cdw13=0x%x cdw14=0x%x cdw15=0x%x\n",
372 ns ? ns->disk->disk_name : dev_name(nr->ctrl->device),
373 ns ? nvme_get_opcode_str(nr->cmd->common.opcode) :
374 nvme_get_admin_opcode_str(nr->cmd->common.opcode),
375 nr->cmd->common.opcode,
376 nvme_get_error_status_str(nr->status),
377 NVME_SCT(nr->status), /* Status Code Type */
378 nr->status & NVME_SC_MASK, /* Status Code */
379 nr->status & NVME_STATUS_MORE ? "MORE " : "",
380 nr->status & NVME_STATUS_DNR ? "DNR " : "",
381 nr->cmd->common.cdw10,
382 nr->cmd->common.cdw11,
383 nr->cmd->common.cdw12,
384 nr->cmd->common.cdw13,
385 nr->cmd->common.cdw14,
386 nr->cmd->common.cdw14);
387 }
388
389 enum nvme_disposition {
390 COMPLETE,
391 RETRY,
392 FAILOVER,
393 AUTHENTICATE,
394 };
395
nvme_decide_disposition(struct request * req)396 static inline enum nvme_disposition nvme_decide_disposition(struct request *req)
397 {
398 if (likely(nvme_req(req)->status == 0))
399 return COMPLETE;
400
401 if (blk_noretry_request(req) ||
402 (nvme_req(req)->status & NVME_STATUS_DNR) ||
403 nvme_req(req)->retries >= nvme_max_retries)
404 return COMPLETE;
405
406 if ((nvme_req(req)->status & NVME_SCT_SC_MASK) == NVME_SC_AUTH_REQUIRED)
407 return AUTHENTICATE;
408
409 if (req->cmd_flags & REQ_NVME_MPATH) {
410 if (nvme_is_path_error(nvme_req(req)->status) ||
411 blk_queue_dying(req->q))
412 return FAILOVER;
413 } else {
414 if (blk_queue_dying(req->q))
415 return COMPLETE;
416 }
417
418 return RETRY;
419 }
420
nvme_end_req_zoned(struct request * req)421 static inline void nvme_end_req_zoned(struct request *req)
422 {
423 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
424 req_op(req) == REQ_OP_ZONE_APPEND) {
425 struct nvme_ns *ns = req->q->queuedata;
426
427 req->__sector = nvme_lba_to_sect(ns->head,
428 le64_to_cpu(nvme_req(req)->result.u64));
429 }
430 }
431
__nvme_end_req(struct request * req)432 static inline void __nvme_end_req(struct request *req)
433 {
434 nvme_end_req_zoned(req);
435 nvme_trace_bio_complete(req);
436 if (req->cmd_flags & REQ_NVME_MPATH)
437 nvme_mpath_end_request(req);
438 }
439
nvme_end_req(struct request * req)440 void nvme_end_req(struct request *req)
441 {
442 blk_status_t status = nvme_error_status(nvme_req(req)->status);
443
444 if (unlikely(nvme_req(req)->status && !(req->rq_flags & RQF_QUIET))) {
445 if (blk_rq_is_passthrough(req))
446 nvme_log_err_passthru(req);
447 else
448 nvme_log_error(req);
449 }
450 __nvme_end_req(req);
451 blk_mq_end_request(req, status);
452 }
453
nvme_complete_rq(struct request * req)454 void nvme_complete_rq(struct request *req)
455 {
456 struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
457
458 trace_nvme_complete_rq(req);
459 nvme_cleanup_cmd(req);
460
461 /*
462 * Completions of long-running commands should not be able to
463 * defer sending of periodic keep alives, since the controller
464 * may have completed processing such commands a long time ago
465 * (arbitrarily close to command submission time).
466 * req->deadline - req->timeout is the command submission time
467 * in jiffies.
468 */
469 if (ctrl->kas &&
470 req->deadline - req->timeout >= ctrl->ka_last_check_time)
471 ctrl->comp_seen = true;
472
473 switch (nvme_decide_disposition(req)) {
474 case COMPLETE:
475 nvme_end_req(req);
476 return;
477 case RETRY:
478 nvme_retry_req(req);
479 return;
480 case FAILOVER:
481 nvme_failover_req(req);
482 return;
483 case AUTHENTICATE:
484 #ifdef CONFIG_NVME_HOST_AUTH
485 queue_work(nvme_wq, &ctrl->dhchap_auth_work);
486 nvme_retry_req(req);
487 #else
488 nvme_end_req(req);
489 #endif
490 return;
491 }
492 }
493 EXPORT_SYMBOL_GPL(nvme_complete_rq);
494
nvme_complete_batch_req(struct request * req)495 void nvme_complete_batch_req(struct request *req)
496 {
497 trace_nvme_complete_rq(req);
498 nvme_cleanup_cmd(req);
499 __nvme_end_req(req);
500 }
501 EXPORT_SYMBOL_GPL(nvme_complete_batch_req);
502
503 /*
504 * Called to unwind from ->queue_rq on a failed command submission so that the
505 * multipathing code gets called to potentially failover to another path.
506 * The caller needs to unwind all transport specific resource allocations and
507 * must return propagate the return value.
508 */
nvme_host_path_error(struct request * req)509 blk_status_t nvme_host_path_error(struct request *req)
510 {
511 nvme_req(req)->status = NVME_SC_HOST_PATH_ERROR;
512 blk_mq_set_request_complete(req);
513 nvme_complete_rq(req);
514 return BLK_STS_OK;
515 }
516 EXPORT_SYMBOL_GPL(nvme_host_path_error);
517
nvme_cancel_request(struct request * req,void * data)518 bool nvme_cancel_request(struct request *req, void *data)
519 {
520 dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
521 "Cancelling I/O %d", req->tag);
522
523 /* don't abort one completed or idle request */
524 if (blk_mq_rq_state(req) != MQ_RQ_IN_FLIGHT)
525 return true;
526
527 nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD;
528 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
529 blk_mq_complete_request(req);
530 return true;
531 }
532 EXPORT_SYMBOL_GPL(nvme_cancel_request);
533
nvme_cancel_tagset(struct nvme_ctrl * ctrl)534 void nvme_cancel_tagset(struct nvme_ctrl *ctrl)
535 {
536 if (ctrl->tagset) {
537 blk_mq_tagset_busy_iter(ctrl->tagset,
538 nvme_cancel_request, ctrl);
539 blk_mq_tagset_wait_completed_request(ctrl->tagset);
540 }
541 }
542 EXPORT_SYMBOL_GPL(nvme_cancel_tagset);
543
nvme_cancel_admin_tagset(struct nvme_ctrl * ctrl)544 void nvme_cancel_admin_tagset(struct nvme_ctrl *ctrl)
545 {
546 if (ctrl->admin_tagset) {
547 blk_mq_tagset_busy_iter(ctrl->admin_tagset,
548 nvme_cancel_request, ctrl);
549 blk_mq_tagset_wait_completed_request(ctrl->admin_tagset);
550 }
551 }
552 EXPORT_SYMBOL_GPL(nvme_cancel_admin_tagset);
553
nvme_change_ctrl_state(struct nvme_ctrl * ctrl,enum nvme_ctrl_state new_state)554 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
555 enum nvme_ctrl_state new_state)
556 {
557 enum nvme_ctrl_state old_state;
558 unsigned long flags;
559 bool changed = false;
560
561 spin_lock_irqsave(&ctrl->lock, flags);
562
563 old_state = nvme_ctrl_state(ctrl);
564 switch (new_state) {
565 case NVME_CTRL_LIVE:
566 switch (old_state) {
567 case NVME_CTRL_CONNECTING:
568 changed = true;
569 fallthrough;
570 default:
571 break;
572 }
573 break;
574 case NVME_CTRL_RESETTING:
575 switch (old_state) {
576 case NVME_CTRL_NEW:
577 case NVME_CTRL_LIVE:
578 changed = true;
579 fallthrough;
580 default:
581 break;
582 }
583 break;
584 case NVME_CTRL_CONNECTING:
585 switch (old_state) {
586 case NVME_CTRL_NEW:
587 case NVME_CTRL_RESETTING:
588 changed = true;
589 fallthrough;
590 default:
591 break;
592 }
593 break;
594 case NVME_CTRL_DELETING:
595 switch (old_state) {
596 case NVME_CTRL_LIVE:
597 case NVME_CTRL_RESETTING:
598 case NVME_CTRL_CONNECTING:
599 changed = true;
600 fallthrough;
601 default:
602 break;
603 }
604 break;
605 case NVME_CTRL_DELETING_NOIO:
606 switch (old_state) {
607 case NVME_CTRL_DELETING:
608 case NVME_CTRL_DEAD:
609 changed = true;
610 fallthrough;
611 default:
612 break;
613 }
614 break;
615 case NVME_CTRL_DEAD:
616 switch (old_state) {
617 case NVME_CTRL_DELETING:
618 changed = true;
619 fallthrough;
620 default:
621 break;
622 }
623 break;
624 default:
625 break;
626 }
627
628 if (changed) {
629 WRITE_ONCE(ctrl->state, new_state);
630 wake_up_all(&ctrl->state_wq);
631 }
632
633 spin_unlock_irqrestore(&ctrl->lock, flags);
634 if (!changed)
635 return false;
636
637 if (new_state == NVME_CTRL_LIVE) {
638 if (old_state == NVME_CTRL_CONNECTING)
639 nvme_stop_failfast_work(ctrl);
640 nvme_kick_requeue_lists(ctrl);
641 } else if (new_state == NVME_CTRL_CONNECTING &&
642 old_state == NVME_CTRL_RESETTING) {
643 nvme_start_failfast_work(ctrl);
644 }
645 return changed;
646 }
647 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
648
649 /*
650 * Waits for the controller state to be resetting, or returns false if it is
651 * not possible to ever transition to that state.
652 */
nvme_wait_reset(struct nvme_ctrl * ctrl)653 bool nvme_wait_reset(struct nvme_ctrl *ctrl)
654 {
655 wait_event(ctrl->state_wq,
656 nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) ||
657 nvme_state_terminal(ctrl));
658 return nvme_ctrl_state(ctrl) == NVME_CTRL_RESETTING;
659 }
660 EXPORT_SYMBOL_GPL(nvme_wait_reset);
661
nvme_free_ns_head(struct kref * ref)662 static void nvme_free_ns_head(struct kref *ref)
663 {
664 struct nvme_ns_head *head =
665 container_of(ref, struct nvme_ns_head, ref);
666
667 nvme_mpath_remove_disk(head);
668 ida_free(&head->subsys->ns_ida, head->instance);
669 cleanup_srcu_struct(&head->srcu);
670 nvme_put_subsystem(head->subsys);
671 kfree(head);
672 }
673
nvme_tryget_ns_head(struct nvme_ns_head * head)674 bool nvme_tryget_ns_head(struct nvme_ns_head *head)
675 {
676 return kref_get_unless_zero(&head->ref);
677 }
678
nvme_put_ns_head(struct nvme_ns_head * head)679 void nvme_put_ns_head(struct nvme_ns_head *head)
680 {
681 kref_put(&head->ref, nvme_free_ns_head);
682 }
683
nvme_free_ns(struct kref * kref)684 static void nvme_free_ns(struct kref *kref)
685 {
686 struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
687
688 put_disk(ns->disk);
689 nvme_put_ns_head(ns->head);
690 nvme_put_ctrl(ns->ctrl);
691 kfree(ns);
692 }
693
nvme_get_ns(struct nvme_ns * ns)694 bool nvme_get_ns(struct nvme_ns *ns)
695 {
696 return kref_get_unless_zero(&ns->kref);
697 }
698
nvme_put_ns(struct nvme_ns * ns)699 void nvme_put_ns(struct nvme_ns *ns)
700 {
701 kref_put(&ns->kref, nvme_free_ns);
702 }
703 EXPORT_SYMBOL_NS_GPL(nvme_put_ns, "NVME_TARGET_PASSTHRU");
704
nvme_clear_nvme_request(struct request * req)705 static inline void nvme_clear_nvme_request(struct request *req)
706 {
707 nvme_req(req)->status = 0;
708 nvme_req(req)->retries = 0;
709 nvme_req(req)->flags = 0;
710 req->rq_flags |= RQF_DONTPREP;
711 }
712
713 /* initialize a passthrough request */
nvme_init_request(struct request * req,struct nvme_command * cmd)714 void nvme_init_request(struct request *req, struct nvme_command *cmd)
715 {
716 struct nvme_request *nr = nvme_req(req);
717 bool logging_enabled;
718
719 if (req->q->queuedata) {
720 struct nvme_ns *ns = req->q->disk->private_data;
721
722 logging_enabled = ns->head->passthru_err_log_enabled;
723 req->timeout = NVME_IO_TIMEOUT;
724 } else { /* no queuedata implies admin queue */
725 logging_enabled = nr->ctrl->passthru_err_log_enabled;
726 req->timeout = NVME_ADMIN_TIMEOUT;
727 }
728
729 if (!logging_enabled)
730 req->rq_flags |= RQF_QUIET;
731
732 /* passthru commands should let the driver set the SGL flags */
733 cmd->common.flags &= ~NVME_CMD_SGL_ALL;
734
735 req->cmd_flags |= REQ_FAILFAST_DRIVER;
736 if (req->mq_hctx->type == HCTX_TYPE_POLL)
737 req->cmd_flags |= REQ_POLLED;
738 nvme_clear_nvme_request(req);
739 memcpy(nr->cmd, cmd, sizeof(*cmd));
740 }
741 EXPORT_SYMBOL_GPL(nvme_init_request);
742
743 /*
744 * For something we're not in a state to send to the device the default action
745 * is to busy it and retry it after the controller state is recovered. However,
746 * if the controller is deleting or if anything is marked for failfast or
747 * nvme multipath it is immediately failed.
748 *
749 * Note: commands used to initialize the controller will be marked for failfast.
750 * Note: nvme cli/ioctl commands are marked for failfast.
751 */
nvme_fail_nonready_command(struct nvme_ctrl * ctrl,struct request * rq)752 blk_status_t nvme_fail_nonready_command(struct nvme_ctrl *ctrl,
753 struct request *rq)
754 {
755 enum nvme_ctrl_state state = nvme_ctrl_state(ctrl);
756
757 if (state != NVME_CTRL_DELETING_NOIO &&
758 state != NVME_CTRL_DELETING &&
759 state != NVME_CTRL_DEAD &&
760 !test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags) &&
761 !blk_noretry_request(rq) && !(rq->cmd_flags & REQ_NVME_MPATH))
762 return BLK_STS_RESOURCE;
763 return nvme_host_path_error(rq);
764 }
765 EXPORT_SYMBOL_GPL(nvme_fail_nonready_command);
766
__nvme_check_ready(struct nvme_ctrl * ctrl,struct request * rq,bool queue_live,enum nvme_ctrl_state state)767 bool __nvme_check_ready(struct nvme_ctrl *ctrl, struct request *rq,
768 bool queue_live, enum nvme_ctrl_state state)
769 {
770 struct nvme_request *req = nvme_req(rq);
771
772 /*
773 * currently we have a problem sending passthru commands
774 * on the admin_q if the controller is not LIVE because we can't
775 * make sure that they are going out after the admin connect,
776 * controller enable and/or other commands in the initialization
777 * sequence. until the controller will be LIVE, fail with
778 * BLK_STS_RESOURCE so that they will be rescheduled.
779 */
780 if (rq->q == ctrl->admin_q && (req->flags & NVME_REQ_USERCMD))
781 return false;
782
783 if (ctrl->ops->flags & NVME_F_FABRICS) {
784 /*
785 * Only allow commands on a live queue, except for the connect
786 * command, which is require to set the queue live in the
787 * appropinquate states.
788 */
789 switch (state) {
790 case NVME_CTRL_CONNECTING:
791 if (blk_rq_is_passthrough(rq) && nvme_is_fabrics(req->cmd) &&
792 (req->cmd->fabrics.fctype == nvme_fabrics_type_connect ||
793 req->cmd->fabrics.fctype == nvme_fabrics_type_auth_send ||
794 req->cmd->fabrics.fctype == nvme_fabrics_type_auth_receive))
795 return true;
796 break;
797 default:
798 break;
799 case NVME_CTRL_DEAD:
800 return false;
801 }
802 }
803
804 return queue_live;
805 }
806 EXPORT_SYMBOL_GPL(__nvme_check_ready);
807
nvme_setup_flush(struct nvme_ns * ns,struct nvme_command * cmnd)808 static inline void nvme_setup_flush(struct nvme_ns *ns,
809 struct nvme_command *cmnd)
810 {
811 memset(cmnd, 0, sizeof(*cmnd));
812 cmnd->common.opcode = nvme_cmd_flush;
813 cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
814 }
815
nvme_setup_discard(struct nvme_ns * ns,struct request * req,struct nvme_command * cmnd)816 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
817 struct nvme_command *cmnd)
818 {
819 unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
820 struct nvme_dsm_range *range;
821 struct bio *bio;
822
823 /*
824 * Some devices do not consider the DSM 'Number of Ranges' field when
825 * determining how much data to DMA. Always allocate memory for maximum
826 * number of segments to prevent device reading beyond end of buffer.
827 */
828 static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES;
829
830 range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN);
831 if (!range) {
832 /*
833 * If we fail allocation our range, fallback to the controller
834 * discard page. If that's also busy, it's safe to return
835 * busy, as we know we can make progress once that's freed.
836 */
837 if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy))
838 return BLK_STS_RESOURCE;
839
840 range = page_address(ns->ctrl->discard_page);
841 }
842
843 if (queue_max_discard_segments(req->q) == 1) {
844 u64 slba = nvme_sect_to_lba(ns->head, blk_rq_pos(req));
845 u32 nlb = blk_rq_sectors(req) >> (ns->head->lba_shift - 9);
846
847 range[0].cattr = cpu_to_le32(0);
848 range[0].nlb = cpu_to_le32(nlb);
849 range[0].slba = cpu_to_le64(slba);
850 n = 1;
851 } else {
852 __rq_for_each_bio(bio, req) {
853 u64 slba = nvme_sect_to_lba(ns->head,
854 bio->bi_iter.bi_sector);
855 u32 nlb = bio->bi_iter.bi_size >> ns->head->lba_shift;
856
857 if (n < segments) {
858 range[n].cattr = cpu_to_le32(0);
859 range[n].nlb = cpu_to_le32(nlb);
860 range[n].slba = cpu_to_le64(slba);
861 }
862 n++;
863 }
864 }
865
866 if (WARN_ON_ONCE(n != segments)) {
867 if (virt_to_page(range) == ns->ctrl->discard_page)
868 clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
869 else
870 kfree(range);
871 return BLK_STS_IOERR;
872 }
873
874 memset(cmnd, 0, sizeof(*cmnd));
875 cmnd->dsm.opcode = nvme_cmd_dsm;
876 cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
877 cmnd->dsm.nr = cpu_to_le32(segments - 1);
878 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
879
880 bvec_set_virt(&req->special_vec, range, alloc_size);
881 req->rq_flags |= RQF_SPECIAL_PAYLOAD;
882
883 return BLK_STS_OK;
884 }
885
nvme_set_app_tag(struct request * req,struct nvme_command * cmnd)886 static void nvme_set_app_tag(struct request *req, struct nvme_command *cmnd)
887 {
888 cmnd->rw.lbat = cpu_to_le16(bio_integrity(req->bio)->app_tag);
889 cmnd->rw.lbatm = cpu_to_le16(0xffff);
890 }
891
nvme_set_ref_tag(struct nvme_ns * ns,struct nvme_command * cmnd,struct request * req)892 static void nvme_set_ref_tag(struct nvme_ns *ns, struct nvme_command *cmnd,
893 struct request *req)
894 {
895 u32 upper, lower;
896 u64 ref48;
897
898 /* both rw and write zeroes share the same reftag format */
899 switch (ns->head->guard_type) {
900 case NVME_NVM_NS_16B_GUARD:
901 cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req));
902 break;
903 case NVME_NVM_NS_64B_GUARD:
904 ref48 = ext_pi_ref_tag(req);
905 lower = lower_32_bits(ref48);
906 upper = upper_32_bits(ref48);
907
908 cmnd->rw.reftag = cpu_to_le32(lower);
909 cmnd->rw.cdw3 = cpu_to_le32(upper);
910 break;
911 default:
912 break;
913 }
914 }
915
nvme_setup_write_zeroes(struct nvme_ns * ns,struct request * req,struct nvme_command * cmnd)916 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns,
917 struct request *req, struct nvme_command *cmnd)
918 {
919 memset(cmnd, 0, sizeof(*cmnd));
920
921 if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
922 return nvme_setup_discard(ns, req, cmnd);
923
924 cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes;
925 cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id);
926 cmnd->write_zeroes.slba =
927 cpu_to_le64(nvme_sect_to_lba(ns->head, blk_rq_pos(req)));
928 cmnd->write_zeroes.length =
929 cpu_to_le16((blk_rq_bytes(req) >> ns->head->lba_shift) - 1);
930
931 if (!(req->cmd_flags & REQ_NOUNMAP) &&
932 (ns->head->features & NVME_NS_DEAC))
933 cmnd->write_zeroes.control |= cpu_to_le16(NVME_WZ_DEAC);
934
935 if (nvme_ns_has_pi(ns->head)) {
936 cmnd->write_zeroes.control |= cpu_to_le16(NVME_RW_PRINFO_PRACT);
937
938 switch (ns->head->pi_type) {
939 case NVME_NS_DPS_PI_TYPE1:
940 case NVME_NS_DPS_PI_TYPE2:
941 nvme_set_ref_tag(ns, cmnd, req);
942 break;
943 }
944 }
945
946 return BLK_STS_OK;
947 }
948
949 /*
950 * NVMe does not support a dedicated command to issue an atomic write. A write
951 * which does adhere to the device atomic limits will silently be executed
952 * non-atomically. The request issuer should ensure that the write is within
953 * the queue atomic writes limits, but just validate this in case it is not.
954 */
nvme_valid_atomic_write(struct request * req)955 static bool nvme_valid_atomic_write(struct request *req)
956 {
957 struct request_queue *q = req->q;
958 u32 boundary_bytes = queue_atomic_write_boundary_bytes(q);
959
960 if (blk_rq_bytes(req) > queue_atomic_write_unit_max_bytes(q))
961 return false;
962
963 if (boundary_bytes) {
964 u64 mask = boundary_bytes - 1, imask = ~mask;
965 u64 start = blk_rq_pos(req) << SECTOR_SHIFT;
966 u64 end = start + blk_rq_bytes(req) - 1;
967
968 /* If greater then must be crossing a boundary */
969 if (blk_rq_bytes(req) > boundary_bytes)
970 return false;
971
972 if ((start & imask) != (end & imask))
973 return false;
974 }
975
976 return true;
977 }
978
nvme_setup_rw(struct nvme_ns * ns,struct request * req,struct nvme_command * cmnd,enum nvme_opcode op)979 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
980 struct request *req, struct nvme_command *cmnd,
981 enum nvme_opcode op)
982 {
983 u16 control = 0;
984 u32 dsmgmt = 0;
985
986 if (req->cmd_flags & REQ_FUA)
987 control |= NVME_RW_FUA;
988 if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
989 control |= NVME_RW_LR;
990
991 if (req->cmd_flags & REQ_RAHEAD)
992 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
993
994 if (req->cmd_flags & REQ_ATOMIC && !nvme_valid_atomic_write(req))
995 return BLK_STS_INVAL;
996
997 cmnd->rw.opcode = op;
998 cmnd->rw.flags = 0;
999 cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
1000 cmnd->rw.cdw2 = 0;
1001 cmnd->rw.cdw3 = 0;
1002 cmnd->rw.metadata = 0;
1003 cmnd->rw.slba =
1004 cpu_to_le64(nvme_sect_to_lba(ns->head, blk_rq_pos(req)));
1005 cmnd->rw.length =
1006 cpu_to_le16((blk_rq_bytes(req) >> ns->head->lba_shift) - 1);
1007 cmnd->rw.reftag = 0;
1008 cmnd->rw.lbat = 0;
1009 cmnd->rw.lbatm = 0;
1010
1011 if (ns->head->ms) {
1012 /*
1013 * If formated with metadata, the block layer always provides a
1014 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled. Else
1015 * we enable the PRACT bit for protection information or set the
1016 * namespace capacity to zero to prevent any I/O.
1017 */
1018 if (!blk_integrity_rq(req)) {
1019 if (WARN_ON_ONCE(!nvme_ns_has_pi(ns->head)))
1020 return BLK_STS_NOTSUPP;
1021 control |= NVME_RW_PRINFO_PRACT;
1022 }
1023
1024 if (bio_integrity_flagged(req->bio, BIP_CHECK_GUARD))
1025 control |= NVME_RW_PRINFO_PRCHK_GUARD;
1026 if (bio_integrity_flagged(req->bio, BIP_CHECK_REFTAG)) {
1027 control |= NVME_RW_PRINFO_PRCHK_REF;
1028 if (op == nvme_cmd_zone_append)
1029 control |= NVME_RW_APPEND_PIREMAP;
1030 nvme_set_ref_tag(ns, cmnd, req);
1031 }
1032 if (bio_integrity_flagged(req->bio, BIP_CHECK_APPTAG)) {
1033 control |= NVME_RW_PRINFO_PRCHK_APP;
1034 nvme_set_app_tag(req, cmnd);
1035 }
1036 }
1037
1038 cmnd->rw.control = cpu_to_le16(control);
1039 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
1040 return 0;
1041 }
1042
nvme_cleanup_cmd(struct request * req)1043 void nvme_cleanup_cmd(struct request *req)
1044 {
1045 if (req->rq_flags & RQF_SPECIAL_PAYLOAD) {
1046 struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
1047
1048 if (req->special_vec.bv_page == ctrl->discard_page)
1049 clear_bit_unlock(0, &ctrl->discard_page_busy);
1050 else
1051 kfree(bvec_virt(&req->special_vec));
1052 req->rq_flags &= ~RQF_SPECIAL_PAYLOAD;
1053 }
1054 }
1055 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd);
1056
nvme_setup_cmd(struct nvme_ns * ns,struct request * req)1057 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req)
1058 {
1059 struct nvme_command *cmd = nvme_req(req)->cmd;
1060 blk_status_t ret = BLK_STS_OK;
1061
1062 if (!(req->rq_flags & RQF_DONTPREP))
1063 nvme_clear_nvme_request(req);
1064
1065 switch (req_op(req)) {
1066 case REQ_OP_DRV_IN:
1067 case REQ_OP_DRV_OUT:
1068 /* these are setup prior to execution in nvme_init_request() */
1069 break;
1070 case REQ_OP_FLUSH:
1071 nvme_setup_flush(ns, cmd);
1072 break;
1073 case REQ_OP_ZONE_RESET_ALL:
1074 case REQ_OP_ZONE_RESET:
1075 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_RESET);
1076 break;
1077 case REQ_OP_ZONE_OPEN:
1078 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_OPEN);
1079 break;
1080 case REQ_OP_ZONE_CLOSE:
1081 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_CLOSE);
1082 break;
1083 case REQ_OP_ZONE_FINISH:
1084 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_FINISH);
1085 break;
1086 case REQ_OP_WRITE_ZEROES:
1087 ret = nvme_setup_write_zeroes(ns, req, cmd);
1088 break;
1089 case REQ_OP_DISCARD:
1090 ret = nvme_setup_discard(ns, req, cmd);
1091 break;
1092 case REQ_OP_READ:
1093 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_read);
1094 break;
1095 case REQ_OP_WRITE:
1096 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_write);
1097 break;
1098 case REQ_OP_ZONE_APPEND:
1099 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_zone_append);
1100 break;
1101 default:
1102 WARN_ON_ONCE(1);
1103 return BLK_STS_IOERR;
1104 }
1105
1106 cmd->common.command_id = nvme_cid(req);
1107 trace_nvme_setup_cmd(req, cmd);
1108 return ret;
1109 }
1110 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
1111
1112 /*
1113 * Return values:
1114 * 0: success
1115 * >0: nvme controller's cqe status response
1116 * <0: kernel error in lieu of controller response
1117 */
nvme_execute_rq(struct request * rq,bool at_head)1118 int nvme_execute_rq(struct request *rq, bool at_head)
1119 {
1120 blk_status_t status;
1121
1122 status = blk_execute_rq(rq, at_head);
1123 if (nvme_req(rq)->flags & NVME_REQ_CANCELLED)
1124 return -EINTR;
1125 if (nvme_req(rq)->status)
1126 return nvme_req(rq)->status;
1127 return blk_status_to_errno(status);
1128 }
1129 EXPORT_SYMBOL_NS_GPL(nvme_execute_rq, "NVME_TARGET_PASSTHRU");
1130
1131 /*
1132 * Returns 0 on success. If the result is negative, it's a Linux error code;
1133 * if the result is positive, it's an NVM Express status code
1134 */
__nvme_submit_sync_cmd(struct request_queue * q,struct nvme_command * cmd,union nvme_result * result,void * buffer,unsigned bufflen,int qid,nvme_submit_flags_t flags)1135 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1136 union nvme_result *result, void *buffer, unsigned bufflen,
1137 int qid, nvme_submit_flags_t flags)
1138 {
1139 struct request *req;
1140 int ret;
1141 blk_mq_req_flags_t blk_flags = 0;
1142
1143 if (flags & NVME_SUBMIT_NOWAIT)
1144 blk_flags |= BLK_MQ_REQ_NOWAIT;
1145 if (flags & NVME_SUBMIT_RESERVED)
1146 blk_flags |= BLK_MQ_REQ_RESERVED;
1147 if (qid == NVME_QID_ANY)
1148 req = blk_mq_alloc_request(q, nvme_req_op(cmd), blk_flags);
1149 else
1150 req = blk_mq_alloc_request_hctx(q, nvme_req_op(cmd), blk_flags,
1151 qid - 1);
1152
1153 if (IS_ERR(req))
1154 return PTR_ERR(req);
1155 nvme_init_request(req, cmd);
1156 if (flags & NVME_SUBMIT_RETRY)
1157 req->cmd_flags &= ~REQ_FAILFAST_DRIVER;
1158
1159 if (buffer && bufflen) {
1160 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
1161 if (ret)
1162 goto out;
1163 }
1164
1165 ret = nvme_execute_rq(req, flags & NVME_SUBMIT_AT_HEAD);
1166 if (result && ret >= 0)
1167 *result = nvme_req(req)->result;
1168 out:
1169 blk_mq_free_request(req);
1170 return ret;
1171 }
1172 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
1173
nvme_submit_sync_cmd(struct request_queue * q,struct nvme_command * cmd,void * buffer,unsigned bufflen)1174 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1175 void *buffer, unsigned bufflen)
1176 {
1177 return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen,
1178 NVME_QID_ANY, 0);
1179 }
1180 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
1181
nvme_command_effects(struct nvme_ctrl * ctrl,struct nvme_ns * ns,u8 opcode)1182 u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
1183 {
1184 u32 effects = 0;
1185
1186 if (ns) {
1187 effects = le32_to_cpu(ns->head->effects->iocs[opcode]);
1188 if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC))
1189 dev_warn_once(ctrl->device,
1190 "IO command:%02x has unusual effects:%08x\n",
1191 opcode, effects);
1192
1193 /*
1194 * NVME_CMD_EFFECTS_CSE_MASK causes a freeze all I/O queues,
1195 * which would deadlock when done on an I/O command. Note that
1196 * We already warn about an unusual effect above.
1197 */
1198 effects &= ~NVME_CMD_EFFECTS_CSE_MASK;
1199 } else {
1200 effects = le32_to_cpu(ctrl->effects->acs[opcode]);
1201
1202 /* Ignore execution restrictions if any relaxation bits are set */
1203 if (effects & NVME_CMD_EFFECTS_CSER_MASK)
1204 effects &= ~NVME_CMD_EFFECTS_CSE_MASK;
1205 }
1206
1207 return effects;
1208 }
1209 EXPORT_SYMBOL_NS_GPL(nvme_command_effects, "NVME_TARGET_PASSTHRU");
1210
nvme_passthru_start(struct nvme_ctrl * ctrl,struct nvme_ns * ns,u8 opcode)1211 u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
1212 {
1213 u32 effects = nvme_command_effects(ctrl, ns, opcode);
1214
1215 /*
1216 * For simplicity, IO to all namespaces is quiesced even if the command
1217 * effects say only one namespace is affected.
1218 */
1219 if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1220 mutex_lock(&ctrl->scan_lock);
1221 mutex_lock(&ctrl->subsys->lock);
1222 nvme_mpath_start_freeze(ctrl->subsys);
1223 nvme_mpath_wait_freeze(ctrl->subsys);
1224 nvme_start_freeze(ctrl);
1225 nvme_wait_freeze(ctrl);
1226 }
1227 return effects;
1228 }
1229 EXPORT_SYMBOL_NS_GPL(nvme_passthru_start, "NVME_TARGET_PASSTHRU");
1230
nvme_passthru_end(struct nvme_ctrl * ctrl,struct nvme_ns * ns,u32 effects,struct nvme_command * cmd,int status)1231 void nvme_passthru_end(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u32 effects,
1232 struct nvme_command *cmd, int status)
1233 {
1234 if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1235 nvme_unfreeze(ctrl);
1236 nvme_mpath_unfreeze(ctrl->subsys);
1237 mutex_unlock(&ctrl->subsys->lock);
1238 mutex_unlock(&ctrl->scan_lock);
1239 }
1240 if (effects & NVME_CMD_EFFECTS_CCC) {
1241 if (!test_and_set_bit(NVME_CTRL_DIRTY_CAPABILITY,
1242 &ctrl->flags)) {
1243 dev_info(ctrl->device,
1244 "controller capabilities changed, reset may be required to take effect.\n");
1245 }
1246 }
1247 if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) {
1248 nvme_queue_scan(ctrl);
1249 flush_work(&ctrl->scan_work);
1250 }
1251 if (ns)
1252 return;
1253
1254 switch (cmd->common.opcode) {
1255 case nvme_admin_set_features:
1256 switch (le32_to_cpu(cmd->common.cdw10) & 0xFF) {
1257 case NVME_FEAT_KATO:
1258 /*
1259 * Keep alive commands interval on the host should be
1260 * updated when KATO is modified by Set Features
1261 * commands.
1262 */
1263 if (!status)
1264 nvme_update_keep_alive(ctrl, cmd);
1265 break;
1266 default:
1267 break;
1268 }
1269 break;
1270 default:
1271 break;
1272 }
1273 }
1274 EXPORT_SYMBOL_NS_GPL(nvme_passthru_end, "NVME_TARGET_PASSTHRU");
1275
1276 /*
1277 * Recommended frequency for KATO commands per NVMe 1.4 section 7.12.1:
1278 *
1279 * The host should send Keep Alive commands at half of the Keep Alive Timeout
1280 * accounting for transport roundtrip times [..].
1281 */
nvme_keep_alive_work_period(struct nvme_ctrl * ctrl)1282 static unsigned long nvme_keep_alive_work_period(struct nvme_ctrl *ctrl)
1283 {
1284 unsigned long delay = ctrl->kato * HZ / 2;
1285
1286 /*
1287 * When using Traffic Based Keep Alive, we need to run
1288 * nvme_keep_alive_work at twice the normal frequency, as one
1289 * command completion can postpone sending a keep alive command
1290 * by up to twice the delay between runs.
1291 */
1292 if (ctrl->ctratt & NVME_CTRL_ATTR_TBKAS)
1293 delay /= 2;
1294 return delay;
1295 }
1296
nvme_queue_keep_alive_work(struct nvme_ctrl * ctrl)1297 static void nvme_queue_keep_alive_work(struct nvme_ctrl *ctrl)
1298 {
1299 unsigned long now = jiffies;
1300 unsigned long delay = nvme_keep_alive_work_period(ctrl);
1301 unsigned long ka_next_check_tm = ctrl->ka_last_check_time + delay;
1302
1303 if (time_after(now, ka_next_check_tm))
1304 delay = 0;
1305 else
1306 delay = ka_next_check_tm - now;
1307
1308 queue_delayed_work(nvme_wq, &ctrl->ka_work, delay);
1309 }
1310
nvme_keep_alive_end_io(struct request * rq,blk_status_t status)1311 static enum rq_end_io_ret nvme_keep_alive_end_io(struct request *rq,
1312 blk_status_t status)
1313 {
1314 struct nvme_ctrl *ctrl = rq->end_io_data;
1315 unsigned long rtt = jiffies - (rq->deadline - rq->timeout);
1316 unsigned long delay = nvme_keep_alive_work_period(ctrl);
1317 enum nvme_ctrl_state state = nvme_ctrl_state(ctrl);
1318
1319 /*
1320 * Subtract off the keepalive RTT so nvme_keep_alive_work runs
1321 * at the desired frequency.
1322 */
1323 if (rtt <= delay) {
1324 delay -= rtt;
1325 } else {
1326 dev_warn(ctrl->device, "long keepalive RTT (%u ms)\n",
1327 jiffies_to_msecs(rtt));
1328 delay = 0;
1329 }
1330
1331 blk_mq_free_request(rq);
1332
1333 if (status) {
1334 dev_err(ctrl->device,
1335 "failed nvme_keep_alive_end_io error=%d\n",
1336 status);
1337 return RQ_END_IO_NONE;
1338 }
1339
1340 ctrl->ka_last_check_time = jiffies;
1341 ctrl->comp_seen = false;
1342 if (state == NVME_CTRL_LIVE || state == NVME_CTRL_CONNECTING)
1343 queue_delayed_work(nvme_wq, &ctrl->ka_work, delay);
1344 return RQ_END_IO_NONE;
1345 }
1346
nvme_keep_alive_work(struct work_struct * work)1347 static void nvme_keep_alive_work(struct work_struct *work)
1348 {
1349 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
1350 struct nvme_ctrl, ka_work);
1351 bool comp_seen = ctrl->comp_seen;
1352 struct request *rq;
1353
1354 ctrl->ka_last_check_time = jiffies;
1355
1356 if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) {
1357 dev_dbg(ctrl->device,
1358 "reschedule traffic based keep-alive timer\n");
1359 ctrl->comp_seen = false;
1360 nvme_queue_keep_alive_work(ctrl);
1361 return;
1362 }
1363
1364 rq = blk_mq_alloc_request(ctrl->admin_q, nvme_req_op(&ctrl->ka_cmd),
1365 BLK_MQ_REQ_RESERVED | BLK_MQ_REQ_NOWAIT);
1366 if (IS_ERR(rq)) {
1367 /* allocation failure, reset the controller */
1368 dev_err(ctrl->device, "keep-alive failed: %ld\n", PTR_ERR(rq));
1369 nvme_reset_ctrl(ctrl);
1370 return;
1371 }
1372 nvme_init_request(rq, &ctrl->ka_cmd);
1373
1374 rq->timeout = ctrl->kato * HZ;
1375 rq->end_io = nvme_keep_alive_end_io;
1376 rq->end_io_data = ctrl;
1377 blk_execute_rq_nowait(rq, false);
1378 }
1379
nvme_start_keep_alive(struct nvme_ctrl * ctrl)1380 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
1381 {
1382 if (unlikely(ctrl->kato == 0))
1383 return;
1384
1385 nvme_queue_keep_alive_work(ctrl);
1386 }
1387
nvme_stop_keep_alive(struct nvme_ctrl * ctrl)1388 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
1389 {
1390 if (unlikely(ctrl->kato == 0))
1391 return;
1392
1393 cancel_delayed_work_sync(&ctrl->ka_work);
1394 }
1395 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
1396
nvme_update_keep_alive(struct nvme_ctrl * ctrl,struct nvme_command * cmd)1397 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl,
1398 struct nvme_command *cmd)
1399 {
1400 unsigned int new_kato =
1401 DIV_ROUND_UP(le32_to_cpu(cmd->common.cdw11), 1000);
1402
1403 dev_info(ctrl->device,
1404 "keep alive interval updated from %u ms to %u ms\n",
1405 ctrl->kato * 1000 / 2, new_kato * 1000 / 2);
1406
1407 nvme_stop_keep_alive(ctrl);
1408 ctrl->kato = new_kato;
1409 nvme_start_keep_alive(ctrl);
1410 }
1411
nvme_id_cns_ok(struct nvme_ctrl * ctrl,u8 cns)1412 static bool nvme_id_cns_ok(struct nvme_ctrl *ctrl, u8 cns)
1413 {
1414 /*
1415 * The CNS field occupies a full byte starting with NVMe 1.2
1416 */
1417 if (ctrl->vs >= NVME_VS(1, 2, 0))
1418 return true;
1419
1420 /*
1421 * NVMe 1.1 expanded the CNS value to two bits, which means values
1422 * larger than that could get truncated and treated as an incorrect
1423 * value.
1424 *
1425 * Qemu implemented 1.0 behavior for controllers claiming 1.1
1426 * compliance, so they need to be quirked here.
1427 */
1428 if (ctrl->vs >= NVME_VS(1, 1, 0) &&
1429 !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS))
1430 return cns <= 3;
1431
1432 /*
1433 * NVMe 1.0 used a single bit for the CNS value.
1434 */
1435 return cns <= 1;
1436 }
1437
nvme_identify_ctrl(struct nvme_ctrl * dev,struct nvme_id_ctrl ** id)1438 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
1439 {
1440 struct nvme_command c = { };
1441 int error;
1442
1443 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1444 c.identify.opcode = nvme_admin_identify;
1445 c.identify.cns = NVME_ID_CNS_CTRL;
1446
1447 *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
1448 if (!*id)
1449 return -ENOMEM;
1450
1451 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1452 sizeof(struct nvme_id_ctrl));
1453 if (error) {
1454 kfree(*id);
1455 *id = NULL;
1456 }
1457 return error;
1458 }
1459
nvme_process_ns_desc(struct nvme_ctrl * ctrl,struct nvme_ns_ids * ids,struct nvme_ns_id_desc * cur,bool * csi_seen)1460 static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids,
1461 struct nvme_ns_id_desc *cur, bool *csi_seen)
1462 {
1463 const char *warn_str = "ctrl returned bogus length:";
1464 void *data = cur;
1465
1466 switch (cur->nidt) {
1467 case NVME_NIDT_EUI64:
1468 if (cur->nidl != NVME_NIDT_EUI64_LEN) {
1469 dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n",
1470 warn_str, cur->nidl);
1471 return -1;
1472 }
1473 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1474 return NVME_NIDT_EUI64_LEN;
1475 memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN);
1476 return NVME_NIDT_EUI64_LEN;
1477 case NVME_NIDT_NGUID:
1478 if (cur->nidl != NVME_NIDT_NGUID_LEN) {
1479 dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n",
1480 warn_str, cur->nidl);
1481 return -1;
1482 }
1483 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1484 return NVME_NIDT_NGUID_LEN;
1485 memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN);
1486 return NVME_NIDT_NGUID_LEN;
1487 case NVME_NIDT_UUID:
1488 if (cur->nidl != NVME_NIDT_UUID_LEN) {
1489 dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n",
1490 warn_str, cur->nidl);
1491 return -1;
1492 }
1493 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1494 return NVME_NIDT_UUID_LEN;
1495 uuid_copy(&ids->uuid, data + sizeof(*cur));
1496 return NVME_NIDT_UUID_LEN;
1497 case NVME_NIDT_CSI:
1498 if (cur->nidl != NVME_NIDT_CSI_LEN) {
1499 dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n",
1500 warn_str, cur->nidl);
1501 return -1;
1502 }
1503 memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN);
1504 *csi_seen = true;
1505 return NVME_NIDT_CSI_LEN;
1506 default:
1507 /* Skip unknown types */
1508 return cur->nidl;
1509 }
1510 }
1511
nvme_identify_ns_descs(struct nvme_ctrl * ctrl,struct nvme_ns_info * info)1512 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl,
1513 struct nvme_ns_info *info)
1514 {
1515 struct nvme_command c = { };
1516 bool csi_seen = false;
1517 int status, pos, len;
1518 void *data;
1519
1520 if (ctrl->vs < NVME_VS(1, 3, 0) && !nvme_multi_css(ctrl))
1521 return 0;
1522 if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST)
1523 return 0;
1524
1525 c.identify.opcode = nvme_admin_identify;
1526 c.identify.nsid = cpu_to_le32(info->nsid);
1527 c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
1528
1529 data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
1530 if (!data)
1531 return -ENOMEM;
1532
1533 status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
1534 NVME_IDENTIFY_DATA_SIZE);
1535 if (status) {
1536 dev_warn(ctrl->device,
1537 "Identify Descriptors failed (nsid=%u, status=0x%x)\n",
1538 info->nsid, status);
1539 goto free_data;
1540 }
1541
1542 for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
1543 struct nvme_ns_id_desc *cur = data + pos;
1544
1545 if (cur->nidl == 0)
1546 break;
1547
1548 len = nvme_process_ns_desc(ctrl, &info->ids, cur, &csi_seen);
1549 if (len < 0)
1550 break;
1551
1552 len += sizeof(*cur);
1553 }
1554
1555 if (nvme_multi_css(ctrl) && !csi_seen) {
1556 dev_warn(ctrl->device, "Command set not reported for nsid:%d\n",
1557 info->nsid);
1558 status = -EINVAL;
1559 }
1560
1561 free_data:
1562 kfree(data);
1563 return status;
1564 }
1565
nvme_identify_ns(struct nvme_ctrl * ctrl,unsigned nsid,struct nvme_id_ns ** id)1566 int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid,
1567 struct nvme_id_ns **id)
1568 {
1569 struct nvme_command c = { };
1570 int error;
1571
1572 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1573 c.identify.opcode = nvme_admin_identify;
1574 c.identify.nsid = cpu_to_le32(nsid);
1575 c.identify.cns = NVME_ID_CNS_NS;
1576
1577 *id = kmalloc(sizeof(**id), GFP_KERNEL);
1578 if (!*id)
1579 return -ENOMEM;
1580
1581 error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id));
1582 if (error) {
1583 dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error);
1584 kfree(*id);
1585 *id = NULL;
1586 }
1587 return error;
1588 }
1589
nvme_ns_info_from_identify(struct nvme_ctrl * ctrl,struct nvme_ns_info * info)1590 static int nvme_ns_info_from_identify(struct nvme_ctrl *ctrl,
1591 struct nvme_ns_info *info)
1592 {
1593 struct nvme_ns_ids *ids = &info->ids;
1594 struct nvme_id_ns *id;
1595 int ret;
1596
1597 ret = nvme_identify_ns(ctrl, info->nsid, &id);
1598 if (ret)
1599 return ret;
1600
1601 if (id->ncap == 0) {
1602 /* namespace not allocated or attached */
1603 info->is_removed = true;
1604 ret = -ENODEV;
1605 goto error;
1606 }
1607
1608 info->anagrpid = id->anagrpid;
1609 info->is_shared = id->nmic & NVME_NS_NMIC_SHARED;
1610 info->is_readonly = id->nsattr & NVME_NS_ATTR_RO;
1611 info->is_ready = true;
1612 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) {
1613 dev_info(ctrl->device,
1614 "Ignoring bogus Namespace Identifiers\n");
1615 } else {
1616 if (ctrl->vs >= NVME_VS(1, 1, 0) &&
1617 !memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
1618 memcpy(ids->eui64, id->eui64, sizeof(ids->eui64));
1619 if (ctrl->vs >= NVME_VS(1, 2, 0) &&
1620 !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
1621 memcpy(ids->nguid, id->nguid, sizeof(ids->nguid));
1622 }
1623
1624 error:
1625 kfree(id);
1626 return ret;
1627 }
1628
nvme_ns_info_from_id_cs_indep(struct nvme_ctrl * ctrl,struct nvme_ns_info * info)1629 static int nvme_ns_info_from_id_cs_indep(struct nvme_ctrl *ctrl,
1630 struct nvme_ns_info *info)
1631 {
1632 struct nvme_id_ns_cs_indep *id;
1633 struct nvme_command c = {
1634 .identify.opcode = nvme_admin_identify,
1635 .identify.nsid = cpu_to_le32(info->nsid),
1636 .identify.cns = NVME_ID_CNS_NS_CS_INDEP,
1637 };
1638 int ret;
1639
1640 id = kmalloc(sizeof(*id), GFP_KERNEL);
1641 if (!id)
1642 return -ENOMEM;
1643
1644 ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
1645 if (!ret) {
1646 info->anagrpid = id->anagrpid;
1647 info->is_shared = id->nmic & NVME_NS_NMIC_SHARED;
1648 info->is_readonly = id->nsattr & NVME_NS_ATTR_RO;
1649 info->is_ready = id->nstat & NVME_NSTAT_NRDY;
1650 info->is_rotational = id->nsfeat & NVME_NS_ROTATIONAL;
1651 info->no_vwc = id->nsfeat & NVME_NS_VWC_NOT_PRESENT;
1652 }
1653 kfree(id);
1654 return ret;
1655 }
1656
nvme_features(struct nvme_ctrl * dev,u8 op,unsigned int fid,unsigned int dword11,void * buffer,size_t buflen,u32 * result)1657 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid,
1658 unsigned int dword11, void *buffer, size_t buflen, u32 *result)
1659 {
1660 union nvme_result res = { 0 };
1661 struct nvme_command c = { };
1662 int ret;
1663
1664 c.features.opcode = op;
1665 c.features.fid = cpu_to_le32(fid);
1666 c.features.dword11 = cpu_to_le32(dword11);
1667
1668 ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
1669 buffer, buflen, NVME_QID_ANY, 0);
1670 if (ret >= 0 && result)
1671 *result = le32_to_cpu(res.u32);
1672 return ret;
1673 }
1674
nvme_set_features(struct nvme_ctrl * dev,unsigned int fid,unsigned int dword11,void * buffer,size_t buflen,u32 * result)1675 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid,
1676 unsigned int dword11, void *buffer, size_t buflen,
1677 u32 *result)
1678 {
1679 return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer,
1680 buflen, result);
1681 }
1682 EXPORT_SYMBOL_GPL(nvme_set_features);
1683
nvme_get_features(struct nvme_ctrl * dev,unsigned int fid,unsigned int dword11,void * buffer,size_t buflen,u32 * result)1684 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid,
1685 unsigned int dword11, void *buffer, size_t buflen,
1686 u32 *result)
1687 {
1688 return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer,
1689 buflen, result);
1690 }
1691 EXPORT_SYMBOL_GPL(nvme_get_features);
1692
nvme_set_queue_count(struct nvme_ctrl * ctrl,int * count)1693 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
1694 {
1695 u32 q_count = (*count - 1) | ((*count - 1) << 16);
1696 u32 result;
1697 int status, nr_io_queues;
1698
1699 status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
1700 &result);
1701
1702 /*
1703 * It's either a kernel error or the host observed a connection
1704 * lost. In either case it's not possible communicate with the
1705 * controller and thus enter the error code path.
1706 */
1707 if (status < 0 || status == NVME_SC_HOST_PATH_ERROR)
1708 return status;
1709
1710 /*
1711 * Degraded controllers might return an error when setting the queue
1712 * count. We still want to be able to bring them online and offer
1713 * access to the admin queue, as that might be only way to fix them up.
1714 */
1715 if (status > 0) {
1716 dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
1717 *count = 0;
1718 } else {
1719 nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1720 *count = min(*count, nr_io_queues);
1721 }
1722
1723 return 0;
1724 }
1725 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
1726
1727 #define NVME_AEN_SUPPORTED \
1728 (NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \
1729 NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE)
1730
nvme_enable_aen(struct nvme_ctrl * ctrl)1731 static void nvme_enable_aen(struct nvme_ctrl *ctrl)
1732 {
1733 u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED;
1734 int status;
1735
1736 if (!supported_aens)
1737 return;
1738
1739 status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens,
1740 NULL, 0, &result);
1741 if (status)
1742 dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n",
1743 supported_aens);
1744
1745 queue_work(nvme_wq, &ctrl->async_event_work);
1746 }
1747
nvme_ns_open(struct nvme_ns * ns)1748 static int nvme_ns_open(struct nvme_ns *ns)
1749 {
1750
1751 /* should never be called due to GENHD_FL_HIDDEN */
1752 if (WARN_ON_ONCE(nvme_ns_head_multipath(ns->head)))
1753 goto fail;
1754 if (!nvme_get_ns(ns))
1755 goto fail;
1756 if (!try_module_get(ns->ctrl->ops->module))
1757 goto fail_put_ns;
1758
1759 return 0;
1760
1761 fail_put_ns:
1762 nvme_put_ns(ns);
1763 fail:
1764 return -ENXIO;
1765 }
1766
nvme_ns_release(struct nvme_ns * ns)1767 static void nvme_ns_release(struct nvme_ns *ns)
1768 {
1769
1770 module_put(ns->ctrl->ops->module);
1771 nvme_put_ns(ns);
1772 }
1773
nvme_open(struct gendisk * disk,blk_mode_t mode)1774 static int nvme_open(struct gendisk *disk, blk_mode_t mode)
1775 {
1776 return nvme_ns_open(disk->private_data);
1777 }
1778
nvme_release(struct gendisk * disk)1779 static void nvme_release(struct gendisk *disk)
1780 {
1781 nvme_ns_release(disk->private_data);
1782 }
1783
nvme_getgeo(struct block_device * bdev,struct hd_geometry * geo)1784 int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1785 {
1786 /* some standard values */
1787 geo->heads = 1 << 6;
1788 geo->sectors = 1 << 5;
1789 geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1790 return 0;
1791 }
1792
nvme_init_integrity(struct nvme_ns_head * head,struct queue_limits * lim,struct nvme_ns_info * info)1793 static bool nvme_init_integrity(struct nvme_ns_head *head,
1794 struct queue_limits *lim, struct nvme_ns_info *info)
1795 {
1796 struct blk_integrity *bi = &lim->integrity;
1797
1798 memset(bi, 0, sizeof(*bi));
1799
1800 if (!head->ms)
1801 return true;
1802
1803 /*
1804 * PI can always be supported as we can ask the controller to simply
1805 * insert/strip it, which is not possible for other kinds of metadata.
1806 */
1807 if (!IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) ||
1808 !(head->features & NVME_NS_METADATA_SUPPORTED))
1809 return nvme_ns_has_pi(head);
1810
1811 switch (head->pi_type) {
1812 case NVME_NS_DPS_PI_TYPE3:
1813 switch (head->guard_type) {
1814 case NVME_NVM_NS_16B_GUARD:
1815 bi->csum_type = BLK_INTEGRITY_CSUM_CRC;
1816 bi->tag_size = sizeof(u16) + sizeof(u32);
1817 bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1818 break;
1819 case NVME_NVM_NS_64B_GUARD:
1820 bi->csum_type = BLK_INTEGRITY_CSUM_CRC64;
1821 bi->tag_size = sizeof(u16) + 6;
1822 bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1823 break;
1824 default:
1825 break;
1826 }
1827 break;
1828 case NVME_NS_DPS_PI_TYPE1:
1829 case NVME_NS_DPS_PI_TYPE2:
1830 switch (head->guard_type) {
1831 case NVME_NVM_NS_16B_GUARD:
1832 bi->csum_type = BLK_INTEGRITY_CSUM_CRC;
1833 bi->tag_size = sizeof(u16);
1834 bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE |
1835 BLK_INTEGRITY_REF_TAG;
1836 break;
1837 case NVME_NVM_NS_64B_GUARD:
1838 bi->csum_type = BLK_INTEGRITY_CSUM_CRC64;
1839 bi->tag_size = sizeof(u16);
1840 bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE |
1841 BLK_INTEGRITY_REF_TAG;
1842 break;
1843 default:
1844 break;
1845 }
1846 break;
1847 default:
1848 break;
1849 }
1850
1851 bi->tuple_size = head->ms;
1852 bi->pi_offset = info->pi_offset;
1853 return true;
1854 }
1855
nvme_config_discard(struct nvme_ns * ns,struct queue_limits * lim)1856 static void nvme_config_discard(struct nvme_ns *ns, struct queue_limits *lim)
1857 {
1858 struct nvme_ctrl *ctrl = ns->ctrl;
1859
1860 if (ctrl->dmrsl && ctrl->dmrsl <= nvme_sect_to_lba(ns->head, UINT_MAX))
1861 lim->max_hw_discard_sectors =
1862 nvme_lba_to_sect(ns->head, ctrl->dmrsl);
1863 else if (ctrl->oncs & NVME_CTRL_ONCS_DSM)
1864 lim->max_hw_discard_sectors = UINT_MAX;
1865 else
1866 lim->max_hw_discard_sectors = 0;
1867
1868 lim->discard_granularity = lim->logical_block_size;
1869
1870 if (ctrl->dmrl)
1871 lim->max_discard_segments = ctrl->dmrl;
1872 else
1873 lim->max_discard_segments = NVME_DSM_MAX_RANGES;
1874 }
1875
nvme_ns_ids_equal(struct nvme_ns_ids * a,struct nvme_ns_ids * b)1876 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1877 {
1878 return uuid_equal(&a->uuid, &b->uuid) &&
1879 memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
1880 memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0 &&
1881 a->csi == b->csi;
1882 }
1883
nvme_identify_ns_nvm(struct nvme_ctrl * ctrl,unsigned int nsid,struct nvme_id_ns_nvm ** nvmp)1884 static int nvme_identify_ns_nvm(struct nvme_ctrl *ctrl, unsigned int nsid,
1885 struct nvme_id_ns_nvm **nvmp)
1886 {
1887 struct nvme_command c = {
1888 .identify.opcode = nvme_admin_identify,
1889 .identify.nsid = cpu_to_le32(nsid),
1890 .identify.cns = NVME_ID_CNS_CS_NS,
1891 .identify.csi = NVME_CSI_NVM,
1892 };
1893 struct nvme_id_ns_nvm *nvm;
1894 int ret;
1895
1896 nvm = kzalloc(sizeof(*nvm), GFP_KERNEL);
1897 if (!nvm)
1898 return -ENOMEM;
1899
1900 ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, nvm, sizeof(*nvm));
1901 if (ret)
1902 kfree(nvm);
1903 else
1904 *nvmp = nvm;
1905 return ret;
1906 }
1907
nvme_configure_pi_elbas(struct nvme_ns_head * head,struct nvme_id_ns * id,struct nvme_id_ns_nvm * nvm)1908 static void nvme_configure_pi_elbas(struct nvme_ns_head *head,
1909 struct nvme_id_ns *id, struct nvme_id_ns_nvm *nvm)
1910 {
1911 u32 elbaf = le32_to_cpu(nvm->elbaf[nvme_lbaf_index(id->flbas)]);
1912 u8 guard_type;
1913
1914 /* no support for storage tag formats right now */
1915 if (nvme_elbaf_sts(elbaf))
1916 return;
1917
1918 guard_type = nvme_elbaf_guard_type(elbaf);
1919 if ((nvm->pic & NVME_ID_NS_NVM_QPIFS) &&
1920 guard_type == NVME_NVM_NS_QTYPE_GUARD)
1921 guard_type = nvme_elbaf_qualified_guard_type(elbaf);
1922
1923 head->guard_type = guard_type;
1924 switch (head->guard_type) {
1925 case NVME_NVM_NS_64B_GUARD:
1926 head->pi_size = sizeof(struct crc64_pi_tuple);
1927 break;
1928 case NVME_NVM_NS_16B_GUARD:
1929 head->pi_size = sizeof(struct t10_pi_tuple);
1930 break;
1931 default:
1932 break;
1933 }
1934 }
1935
nvme_configure_metadata(struct nvme_ctrl * ctrl,struct nvme_ns_head * head,struct nvme_id_ns * id,struct nvme_id_ns_nvm * nvm,struct nvme_ns_info * info)1936 static void nvme_configure_metadata(struct nvme_ctrl *ctrl,
1937 struct nvme_ns_head *head, struct nvme_id_ns *id,
1938 struct nvme_id_ns_nvm *nvm, struct nvme_ns_info *info)
1939 {
1940 head->features &= ~(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS);
1941 head->pi_type = 0;
1942 head->pi_size = 0;
1943 head->ms = le16_to_cpu(id->lbaf[nvme_lbaf_index(id->flbas)].ms);
1944 if (!head->ms || !(ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
1945 return;
1946
1947 if (nvm && (ctrl->ctratt & NVME_CTRL_ATTR_ELBAS)) {
1948 nvme_configure_pi_elbas(head, id, nvm);
1949 } else {
1950 head->pi_size = sizeof(struct t10_pi_tuple);
1951 head->guard_type = NVME_NVM_NS_16B_GUARD;
1952 }
1953
1954 if (head->pi_size && head->ms >= head->pi_size)
1955 head->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
1956 if (!(id->dps & NVME_NS_DPS_PI_FIRST)) {
1957 if (disable_pi_offsets)
1958 head->pi_type = 0;
1959 else
1960 info->pi_offset = head->ms - head->pi_size;
1961 }
1962
1963 if (ctrl->ops->flags & NVME_F_FABRICS) {
1964 /*
1965 * The NVMe over Fabrics specification only supports metadata as
1966 * part of the extended data LBA. We rely on HCA/HBA support to
1967 * remap the separate metadata buffer from the block layer.
1968 */
1969 if (WARN_ON_ONCE(!(id->flbas & NVME_NS_FLBAS_META_EXT)))
1970 return;
1971
1972 head->features |= NVME_NS_EXT_LBAS;
1973
1974 /*
1975 * The current fabrics transport drivers support namespace
1976 * metadata formats only if nvme_ns_has_pi() returns true.
1977 * Suppress support for all other formats so the namespace will
1978 * have a 0 capacity and not be usable through the block stack.
1979 *
1980 * Note, this check will need to be modified if any drivers
1981 * gain the ability to use other metadata formats.
1982 */
1983 if (ctrl->max_integrity_segments && nvme_ns_has_pi(head))
1984 head->features |= NVME_NS_METADATA_SUPPORTED;
1985 } else {
1986 /*
1987 * For PCIe controllers, we can't easily remap the separate
1988 * metadata buffer from the block layer and thus require a
1989 * separate metadata buffer for block layer metadata/PI support.
1990 * We allow extended LBAs for the passthrough interface, though.
1991 */
1992 if (id->flbas & NVME_NS_FLBAS_META_EXT)
1993 head->features |= NVME_NS_EXT_LBAS;
1994 else
1995 head->features |= NVME_NS_METADATA_SUPPORTED;
1996 }
1997 }
1998
1999
nvme_update_atomic_write_disk_info(struct nvme_ns * ns,struct nvme_id_ns * id,struct queue_limits * lim,u32 bs,u32 atomic_bs)2000 static void nvme_update_atomic_write_disk_info(struct nvme_ns *ns,
2001 struct nvme_id_ns *id, struct queue_limits *lim,
2002 u32 bs, u32 atomic_bs)
2003 {
2004 unsigned int boundary = 0;
2005
2006 if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf) {
2007 if (le16_to_cpu(id->nabspf))
2008 boundary = (le16_to_cpu(id->nabspf) + 1) * bs;
2009 }
2010 lim->atomic_write_hw_max = atomic_bs;
2011 lim->atomic_write_hw_boundary = boundary;
2012 lim->atomic_write_hw_unit_min = bs;
2013 lim->atomic_write_hw_unit_max = rounddown_pow_of_two(atomic_bs);
2014 lim->features |= BLK_FEAT_ATOMIC_WRITES;
2015 }
2016
nvme_max_drv_segments(struct nvme_ctrl * ctrl)2017 static u32 nvme_max_drv_segments(struct nvme_ctrl *ctrl)
2018 {
2019 return ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> SECTOR_SHIFT) + 1;
2020 }
2021
nvme_set_ctrl_limits(struct nvme_ctrl * ctrl,struct queue_limits * lim)2022 static void nvme_set_ctrl_limits(struct nvme_ctrl *ctrl,
2023 struct queue_limits *lim)
2024 {
2025 lim->max_hw_sectors = ctrl->max_hw_sectors;
2026 lim->max_segments = min_t(u32, USHRT_MAX,
2027 min_not_zero(nvme_max_drv_segments(ctrl), ctrl->max_segments));
2028 lim->max_integrity_segments = ctrl->max_integrity_segments;
2029 lim->virt_boundary_mask = NVME_CTRL_PAGE_SIZE - 1;
2030 lim->max_segment_size = UINT_MAX;
2031 lim->dma_alignment = 3;
2032 }
2033
nvme_update_disk_info(struct nvme_ns * ns,struct nvme_id_ns * id,struct queue_limits * lim)2034 static bool nvme_update_disk_info(struct nvme_ns *ns, struct nvme_id_ns *id,
2035 struct queue_limits *lim)
2036 {
2037 struct nvme_ns_head *head = ns->head;
2038 u32 bs = 1U << head->lba_shift;
2039 u32 atomic_bs, phys_bs, io_opt = 0;
2040 bool valid = true;
2041
2042 /*
2043 * The block layer can't support LBA sizes larger than the page size
2044 * or smaller than a sector size yet, so catch this early and don't
2045 * allow block I/O.
2046 */
2047 if (blk_validate_block_size(bs)) {
2048 bs = (1 << 9);
2049 valid = false;
2050 }
2051
2052 atomic_bs = phys_bs = bs;
2053 if (id->nabo == 0) {
2054 /*
2055 * Bit 1 indicates whether NAWUPF is defined for this namespace
2056 * and whether it should be used instead of AWUPF. If NAWUPF ==
2057 * 0 then AWUPF must be used instead.
2058 */
2059 if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf)
2060 atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs;
2061 else
2062 atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs;
2063
2064 nvme_update_atomic_write_disk_info(ns, id, lim, bs, atomic_bs);
2065 }
2066
2067 if (id->nsfeat & NVME_NS_FEAT_IO_OPT) {
2068 /* NPWG = Namespace Preferred Write Granularity */
2069 phys_bs = bs * (1 + le16_to_cpu(id->npwg));
2070 /* NOWS = Namespace Optimal Write Size */
2071 if (id->nows)
2072 io_opt = bs * (1 + le16_to_cpu(id->nows));
2073 }
2074
2075 /*
2076 * Linux filesystems assume writing a single physical block is
2077 * an atomic operation. Hence limit the physical block size to the
2078 * value of the Atomic Write Unit Power Fail parameter.
2079 */
2080 lim->logical_block_size = bs;
2081 lim->physical_block_size = min(phys_bs, atomic_bs);
2082 lim->io_min = phys_bs;
2083 lim->io_opt = io_opt;
2084 if ((ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES) &&
2085 (ns->ctrl->oncs & NVME_CTRL_ONCS_DSM))
2086 lim->max_write_zeroes_sectors = UINT_MAX;
2087 else
2088 lim->max_write_zeroes_sectors = ns->ctrl->max_zeroes_sectors;
2089 return valid;
2090 }
2091
nvme_ns_is_readonly(struct nvme_ns * ns,struct nvme_ns_info * info)2092 static bool nvme_ns_is_readonly(struct nvme_ns *ns, struct nvme_ns_info *info)
2093 {
2094 return info->is_readonly || test_bit(NVME_NS_FORCE_RO, &ns->flags);
2095 }
2096
nvme_first_scan(struct gendisk * disk)2097 static inline bool nvme_first_scan(struct gendisk *disk)
2098 {
2099 /* nvme_alloc_ns() scans the disk prior to adding it */
2100 return !disk_live(disk);
2101 }
2102
nvme_set_chunk_sectors(struct nvme_ns * ns,struct nvme_id_ns * id,struct queue_limits * lim)2103 static void nvme_set_chunk_sectors(struct nvme_ns *ns, struct nvme_id_ns *id,
2104 struct queue_limits *lim)
2105 {
2106 struct nvme_ctrl *ctrl = ns->ctrl;
2107 u32 iob;
2108
2109 if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
2110 is_power_of_2(ctrl->max_hw_sectors))
2111 iob = ctrl->max_hw_sectors;
2112 else
2113 iob = nvme_lba_to_sect(ns->head, le16_to_cpu(id->noiob));
2114
2115 if (!iob)
2116 return;
2117
2118 if (!is_power_of_2(iob)) {
2119 if (nvme_first_scan(ns->disk))
2120 pr_warn("%s: ignoring unaligned IO boundary:%u\n",
2121 ns->disk->disk_name, iob);
2122 return;
2123 }
2124
2125 if (blk_queue_is_zoned(ns->disk->queue)) {
2126 if (nvme_first_scan(ns->disk))
2127 pr_warn("%s: ignoring zoned namespace IO boundary\n",
2128 ns->disk->disk_name);
2129 return;
2130 }
2131
2132 lim->chunk_sectors = iob;
2133 }
2134
nvme_update_ns_info_generic(struct nvme_ns * ns,struct nvme_ns_info * info)2135 static int nvme_update_ns_info_generic(struct nvme_ns *ns,
2136 struct nvme_ns_info *info)
2137 {
2138 struct queue_limits lim;
2139 unsigned int memflags;
2140 int ret;
2141
2142 lim = queue_limits_start_update(ns->disk->queue);
2143 nvme_set_ctrl_limits(ns->ctrl, &lim);
2144
2145 memflags = blk_mq_freeze_queue(ns->disk->queue);
2146 ret = queue_limits_commit_update(ns->disk->queue, &lim);
2147 set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info));
2148 blk_mq_unfreeze_queue(ns->disk->queue, memflags);
2149
2150 /* Hide the block-interface for these devices */
2151 if (!ret)
2152 ret = -ENODEV;
2153 return ret;
2154 }
2155
nvme_update_ns_info_block(struct nvme_ns * ns,struct nvme_ns_info * info)2156 static int nvme_update_ns_info_block(struct nvme_ns *ns,
2157 struct nvme_ns_info *info)
2158 {
2159 struct queue_limits lim;
2160 struct nvme_id_ns_nvm *nvm = NULL;
2161 struct nvme_zone_info zi = {};
2162 struct nvme_id_ns *id;
2163 unsigned int memflags;
2164 sector_t capacity;
2165 unsigned lbaf;
2166 int ret;
2167
2168 ret = nvme_identify_ns(ns->ctrl, info->nsid, &id);
2169 if (ret)
2170 return ret;
2171
2172 if (id->ncap == 0) {
2173 /* namespace not allocated or attached */
2174 info->is_removed = true;
2175 ret = -ENXIO;
2176 goto out;
2177 }
2178 lbaf = nvme_lbaf_index(id->flbas);
2179
2180 if (ns->ctrl->ctratt & NVME_CTRL_ATTR_ELBAS) {
2181 ret = nvme_identify_ns_nvm(ns->ctrl, info->nsid, &nvm);
2182 if (ret < 0)
2183 goto out;
2184 }
2185
2186 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
2187 ns->head->ids.csi == NVME_CSI_ZNS) {
2188 ret = nvme_query_zone_info(ns, lbaf, &zi);
2189 if (ret < 0)
2190 goto out;
2191 }
2192
2193 lim = queue_limits_start_update(ns->disk->queue);
2194
2195 memflags = blk_mq_freeze_queue(ns->disk->queue);
2196 ns->head->lba_shift = id->lbaf[lbaf].ds;
2197 ns->head->nuse = le64_to_cpu(id->nuse);
2198 capacity = nvme_lba_to_sect(ns->head, le64_to_cpu(id->nsze));
2199 nvme_set_ctrl_limits(ns->ctrl, &lim);
2200 nvme_configure_metadata(ns->ctrl, ns->head, id, nvm, info);
2201 nvme_set_chunk_sectors(ns, id, &lim);
2202 if (!nvme_update_disk_info(ns, id, &lim))
2203 capacity = 0;
2204 nvme_config_discard(ns, &lim);
2205 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
2206 ns->head->ids.csi == NVME_CSI_ZNS)
2207 nvme_update_zone_info(ns, &lim, &zi);
2208
2209 if ((ns->ctrl->vwc & NVME_CTRL_VWC_PRESENT) && !info->no_vwc)
2210 lim.features |= BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA;
2211 else
2212 lim.features &= ~(BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA);
2213
2214 if (info->is_rotational)
2215 lim.features |= BLK_FEAT_ROTATIONAL;
2216
2217 /*
2218 * Register a metadata profile for PI, or the plain non-integrity NVMe
2219 * metadata masquerading as Type 0 if supported, otherwise reject block
2220 * I/O to namespaces with metadata except when the namespace supports
2221 * PI, as it can strip/insert in that case.
2222 */
2223 if (!nvme_init_integrity(ns->head, &lim, info))
2224 capacity = 0;
2225
2226 ret = queue_limits_commit_update(ns->disk->queue, &lim);
2227 if (ret) {
2228 blk_mq_unfreeze_queue(ns->disk->queue, memflags);
2229 goto out;
2230 }
2231
2232 set_capacity_and_notify(ns->disk, capacity);
2233
2234 /*
2235 * Only set the DEAC bit if the device guarantees that reads from
2236 * deallocated data return zeroes. While the DEAC bit does not
2237 * require that, it must be a no-op if reads from deallocated data
2238 * do not return zeroes.
2239 */
2240 if ((id->dlfeat & 0x7) == 0x1 && (id->dlfeat & (1 << 3)))
2241 ns->head->features |= NVME_NS_DEAC;
2242 set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info));
2243 set_bit(NVME_NS_READY, &ns->flags);
2244 blk_mq_unfreeze_queue(ns->disk->queue, memflags);
2245
2246 if (blk_queue_is_zoned(ns->queue)) {
2247 ret = blk_revalidate_disk_zones(ns->disk);
2248 if (ret && !nvme_first_scan(ns->disk))
2249 goto out;
2250 }
2251
2252 ret = 0;
2253 out:
2254 kfree(nvm);
2255 kfree(id);
2256 return ret;
2257 }
2258
nvme_update_ns_info(struct nvme_ns * ns,struct nvme_ns_info * info)2259 static int nvme_update_ns_info(struct nvme_ns *ns, struct nvme_ns_info *info)
2260 {
2261 bool unsupported = false;
2262 int ret;
2263
2264 switch (info->ids.csi) {
2265 case NVME_CSI_ZNS:
2266 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) {
2267 dev_info(ns->ctrl->device,
2268 "block device for nsid %u not supported without CONFIG_BLK_DEV_ZONED\n",
2269 info->nsid);
2270 ret = nvme_update_ns_info_generic(ns, info);
2271 break;
2272 }
2273 ret = nvme_update_ns_info_block(ns, info);
2274 break;
2275 case NVME_CSI_NVM:
2276 ret = nvme_update_ns_info_block(ns, info);
2277 break;
2278 default:
2279 dev_info(ns->ctrl->device,
2280 "block device for nsid %u not supported (csi %u)\n",
2281 info->nsid, info->ids.csi);
2282 ret = nvme_update_ns_info_generic(ns, info);
2283 break;
2284 }
2285
2286 /*
2287 * If probing fails due an unsupported feature, hide the block device,
2288 * but still allow other access.
2289 */
2290 if (ret == -ENODEV) {
2291 ns->disk->flags |= GENHD_FL_HIDDEN;
2292 set_bit(NVME_NS_READY, &ns->flags);
2293 unsupported = true;
2294 ret = 0;
2295 }
2296
2297 if (!ret && nvme_ns_head_multipath(ns->head)) {
2298 struct queue_limits *ns_lim = &ns->disk->queue->limits;
2299 struct queue_limits lim;
2300 unsigned int memflags;
2301
2302 lim = queue_limits_start_update(ns->head->disk->queue);
2303 memflags = blk_mq_freeze_queue(ns->head->disk->queue);
2304 /*
2305 * queue_limits mixes values that are the hardware limitations
2306 * for bio splitting with what is the device configuration.
2307 *
2308 * For NVMe the device configuration can change after e.g. a
2309 * Format command, and we really want to pick up the new format
2310 * value here. But we must still stack the queue limits to the
2311 * least common denominator for multipathing to split the bios
2312 * properly.
2313 *
2314 * To work around this, we explicitly set the device
2315 * configuration to those that we just queried, but only stack
2316 * the splitting limits in to make sure we still obey possibly
2317 * lower limitations of other controllers.
2318 */
2319 lim.logical_block_size = ns_lim->logical_block_size;
2320 lim.physical_block_size = ns_lim->physical_block_size;
2321 lim.io_min = ns_lim->io_min;
2322 lim.io_opt = ns_lim->io_opt;
2323 queue_limits_stack_bdev(&lim, ns->disk->part0, 0,
2324 ns->head->disk->disk_name);
2325 if (unsupported)
2326 ns->head->disk->flags |= GENHD_FL_HIDDEN;
2327 else
2328 nvme_init_integrity(ns->head, &lim, info);
2329 ret = queue_limits_commit_update(ns->head->disk->queue, &lim);
2330
2331 set_capacity_and_notify(ns->head->disk, get_capacity(ns->disk));
2332 set_disk_ro(ns->head->disk, nvme_ns_is_readonly(ns, info));
2333 nvme_mpath_revalidate_paths(ns);
2334
2335 blk_mq_unfreeze_queue(ns->head->disk->queue, memflags);
2336 }
2337
2338 return ret;
2339 }
2340
nvme_ns_get_unique_id(struct nvme_ns * ns,u8 id[16],enum blk_unique_id type)2341 int nvme_ns_get_unique_id(struct nvme_ns *ns, u8 id[16],
2342 enum blk_unique_id type)
2343 {
2344 struct nvme_ns_ids *ids = &ns->head->ids;
2345
2346 if (type != BLK_UID_EUI64)
2347 return -EINVAL;
2348
2349 if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) {
2350 memcpy(id, &ids->nguid, sizeof(ids->nguid));
2351 return sizeof(ids->nguid);
2352 }
2353 if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) {
2354 memcpy(id, &ids->eui64, sizeof(ids->eui64));
2355 return sizeof(ids->eui64);
2356 }
2357
2358 return -EINVAL;
2359 }
2360
nvme_get_unique_id(struct gendisk * disk,u8 id[16],enum blk_unique_id type)2361 static int nvme_get_unique_id(struct gendisk *disk, u8 id[16],
2362 enum blk_unique_id type)
2363 {
2364 return nvme_ns_get_unique_id(disk->private_data, id, type);
2365 }
2366
2367 #ifdef CONFIG_BLK_SED_OPAL
nvme_sec_submit(void * data,u16 spsp,u8 secp,void * buffer,size_t len,bool send)2368 static int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
2369 bool send)
2370 {
2371 struct nvme_ctrl *ctrl = data;
2372 struct nvme_command cmd = { };
2373
2374 if (send)
2375 cmd.common.opcode = nvme_admin_security_send;
2376 else
2377 cmd.common.opcode = nvme_admin_security_recv;
2378 cmd.common.nsid = 0;
2379 cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
2380 cmd.common.cdw11 = cpu_to_le32(len);
2381
2382 return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len,
2383 NVME_QID_ANY, NVME_SUBMIT_AT_HEAD);
2384 }
2385
nvme_configure_opal(struct nvme_ctrl * ctrl,bool was_suspended)2386 static void nvme_configure_opal(struct nvme_ctrl *ctrl, bool was_suspended)
2387 {
2388 if (ctrl->oacs & NVME_CTRL_OACS_SEC_SUPP) {
2389 if (!ctrl->opal_dev)
2390 ctrl->opal_dev = init_opal_dev(ctrl, &nvme_sec_submit);
2391 else if (was_suspended)
2392 opal_unlock_from_suspend(ctrl->opal_dev);
2393 } else {
2394 free_opal_dev(ctrl->opal_dev);
2395 ctrl->opal_dev = NULL;
2396 }
2397 }
2398 #else
nvme_configure_opal(struct nvme_ctrl * ctrl,bool was_suspended)2399 static void nvme_configure_opal(struct nvme_ctrl *ctrl, bool was_suspended)
2400 {
2401 }
2402 #endif /* CONFIG_BLK_SED_OPAL */
2403
2404 #ifdef CONFIG_BLK_DEV_ZONED
nvme_report_zones(struct gendisk * disk,sector_t sector,unsigned int nr_zones,report_zones_cb cb,void * data)2405 static int nvme_report_zones(struct gendisk *disk, sector_t sector,
2406 unsigned int nr_zones, report_zones_cb cb, void *data)
2407 {
2408 return nvme_ns_report_zones(disk->private_data, sector, nr_zones, cb,
2409 data);
2410 }
2411 #else
2412 #define nvme_report_zones NULL
2413 #endif /* CONFIG_BLK_DEV_ZONED */
2414
2415 const struct block_device_operations nvme_bdev_ops = {
2416 .owner = THIS_MODULE,
2417 .ioctl = nvme_ioctl,
2418 .compat_ioctl = blkdev_compat_ptr_ioctl,
2419 .open = nvme_open,
2420 .release = nvme_release,
2421 .getgeo = nvme_getgeo,
2422 .get_unique_id = nvme_get_unique_id,
2423 .report_zones = nvme_report_zones,
2424 .pr_ops = &nvme_pr_ops,
2425 };
2426
nvme_wait_ready(struct nvme_ctrl * ctrl,u32 mask,u32 val,u32 timeout,const char * op)2427 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u32 mask, u32 val,
2428 u32 timeout, const char *op)
2429 {
2430 unsigned long timeout_jiffies = jiffies + timeout * HZ;
2431 u32 csts;
2432 int ret;
2433
2434 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2435 if (csts == ~0)
2436 return -ENODEV;
2437 if ((csts & mask) == val)
2438 break;
2439
2440 usleep_range(1000, 2000);
2441 if (fatal_signal_pending(current))
2442 return -EINTR;
2443 if (time_after(jiffies, timeout_jiffies)) {
2444 dev_err(ctrl->device,
2445 "Device not ready; aborting %s, CSTS=0x%x\n",
2446 op, csts);
2447 return -ENODEV;
2448 }
2449 }
2450
2451 return ret;
2452 }
2453
nvme_disable_ctrl(struct nvme_ctrl * ctrl,bool shutdown)2454 int nvme_disable_ctrl(struct nvme_ctrl *ctrl, bool shutdown)
2455 {
2456 int ret;
2457
2458 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2459 if (shutdown)
2460 ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
2461 else
2462 ctrl->ctrl_config &= ~NVME_CC_ENABLE;
2463
2464 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2465 if (ret)
2466 return ret;
2467
2468 if (shutdown) {
2469 return nvme_wait_ready(ctrl, NVME_CSTS_SHST_MASK,
2470 NVME_CSTS_SHST_CMPLT,
2471 ctrl->shutdown_timeout, "shutdown");
2472 }
2473 if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
2474 msleep(NVME_QUIRK_DELAY_AMOUNT);
2475 return nvme_wait_ready(ctrl, NVME_CSTS_RDY, 0,
2476 (NVME_CAP_TIMEOUT(ctrl->cap) + 1) / 2, "reset");
2477 }
2478 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
2479
nvme_enable_ctrl(struct nvme_ctrl * ctrl)2480 int nvme_enable_ctrl(struct nvme_ctrl *ctrl)
2481 {
2482 unsigned dev_page_min;
2483 u32 timeout;
2484 int ret;
2485
2486 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2487 if (ret) {
2488 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2489 return ret;
2490 }
2491 dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2492
2493 if (NVME_CTRL_PAGE_SHIFT < dev_page_min) {
2494 dev_err(ctrl->device,
2495 "Minimum device page size %u too large for host (%u)\n",
2496 1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT);
2497 return -ENODEV;
2498 }
2499
2500 if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI)
2501 ctrl->ctrl_config = NVME_CC_CSS_CSI;
2502 else
2503 ctrl->ctrl_config = NVME_CC_CSS_NVM;
2504
2505 /*
2506 * Setting CRIME results in CSTS.RDY before the media is ready. This
2507 * makes it possible for media related commands to return the error
2508 * NVME_SC_ADMIN_COMMAND_MEDIA_NOT_READY. Until the driver is
2509 * restructured to handle retries, disable CC.CRIME.
2510 */
2511 ctrl->ctrl_config &= ~NVME_CC_CRIME;
2512
2513 ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
2514 ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
2515 ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
2516 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2517 if (ret)
2518 return ret;
2519
2520 /* CAP value may change after initial CC write */
2521 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2522 if (ret)
2523 return ret;
2524
2525 timeout = NVME_CAP_TIMEOUT(ctrl->cap);
2526 if (ctrl->cap & NVME_CAP_CRMS_CRWMS) {
2527 u32 crto, ready_timeout;
2528
2529 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CRTO, &crto);
2530 if (ret) {
2531 dev_err(ctrl->device, "Reading CRTO failed (%d)\n",
2532 ret);
2533 return ret;
2534 }
2535
2536 /*
2537 * CRTO should always be greater or equal to CAP.TO, but some
2538 * devices are known to get this wrong. Use the larger of the
2539 * two values.
2540 */
2541 ready_timeout = NVME_CRTO_CRWMT(crto);
2542
2543 if (ready_timeout < timeout)
2544 dev_warn_once(ctrl->device, "bad crto:%x cap:%llx\n",
2545 crto, ctrl->cap);
2546 else
2547 timeout = ready_timeout;
2548 }
2549
2550 ctrl->ctrl_config |= NVME_CC_ENABLE;
2551 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2552 if (ret)
2553 return ret;
2554 return nvme_wait_ready(ctrl, NVME_CSTS_RDY, NVME_CSTS_RDY,
2555 (timeout + 1) / 2, "initialisation");
2556 }
2557 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
2558
nvme_configure_timestamp(struct nvme_ctrl * ctrl)2559 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
2560 {
2561 __le64 ts;
2562 int ret;
2563
2564 if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
2565 return 0;
2566
2567 ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
2568 ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
2569 NULL);
2570 if (ret)
2571 dev_warn_once(ctrl->device,
2572 "could not set timestamp (%d)\n", ret);
2573 return ret;
2574 }
2575
nvme_configure_host_options(struct nvme_ctrl * ctrl)2576 static int nvme_configure_host_options(struct nvme_ctrl *ctrl)
2577 {
2578 struct nvme_feat_host_behavior *host;
2579 u8 acre = 0, lbafee = 0;
2580 int ret;
2581
2582 /* Don't bother enabling the feature if retry delay is not reported */
2583 if (ctrl->crdt[0])
2584 acre = NVME_ENABLE_ACRE;
2585 if (ctrl->ctratt & NVME_CTRL_ATTR_ELBAS)
2586 lbafee = NVME_ENABLE_LBAFEE;
2587
2588 if (!acre && !lbafee)
2589 return 0;
2590
2591 host = kzalloc(sizeof(*host), GFP_KERNEL);
2592 if (!host)
2593 return 0;
2594
2595 host->acre = acre;
2596 host->lbafee = lbafee;
2597 ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0,
2598 host, sizeof(*host), NULL);
2599 kfree(host);
2600 return ret;
2601 }
2602
2603 /*
2604 * The function checks whether the given total (exlat + enlat) latency of
2605 * a power state allows the latter to be used as an APST transition target.
2606 * It does so by comparing the latency to the primary and secondary latency
2607 * tolerances defined by module params. If there's a match, the corresponding
2608 * timeout value is returned and the matching tolerance index (1 or 2) is
2609 * reported.
2610 */
nvme_apst_get_transition_time(u64 total_latency,u64 * transition_time,unsigned * last_index)2611 static bool nvme_apst_get_transition_time(u64 total_latency,
2612 u64 *transition_time, unsigned *last_index)
2613 {
2614 if (total_latency <= apst_primary_latency_tol_us) {
2615 if (*last_index == 1)
2616 return false;
2617 *last_index = 1;
2618 *transition_time = apst_primary_timeout_ms;
2619 return true;
2620 }
2621 if (apst_secondary_timeout_ms &&
2622 total_latency <= apst_secondary_latency_tol_us) {
2623 if (*last_index <= 2)
2624 return false;
2625 *last_index = 2;
2626 *transition_time = apst_secondary_timeout_ms;
2627 return true;
2628 }
2629 return false;
2630 }
2631
2632 /*
2633 * APST (Autonomous Power State Transition) lets us program a table of power
2634 * state transitions that the controller will perform automatically.
2635 *
2636 * Depending on module params, one of the two supported techniques will be used:
2637 *
2638 * - If the parameters provide explicit timeouts and tolerances, they will be
2639 * used to build a table with up to 2 non-operational states to transition to.
2640 * The default parameter values were selected based on the values used by
2641 * Microsoft's and Intel's NVMe drivers. Yet, since we don't implement dynamic
2642 * regeneration of the APST table in the event of switching between external
2643 * and battery power, the timeouts and tolerances reflect a compromise
2644 * between values used by Microsoft for AC and battery scenarios.
2645 * - If not, we'll configure the table with a simple heuristic: we are willing
2646 * to spend at most 2% of the time transitioning between power states.
2647 * Therefore, when running in any given state, we will enter the next
2648 * lower-power non-operational state after waiting 50 * (enlat + exlat)
2649 * microseconds, as long as that state's exit latency is under the requested
2650 * maximum latency.
2651 *
2652 * We will not autonomously enter any non-operational state for which the total
2653 * latency exceeds ps_max_latency_us.
2654 *
2655 * Users can set ps_max_latency_us to zero to turn off APST.
2656 */
nvme_configure_apst(struct nvme_ctrl * ctrl)2657 static int nvme_configure_apst(struct nvme_ctrl *ctrl)
2658 {
2659 struct nvme_feat_auto_pst *table;
2660 unsigned apste = 0;
2661 u64 max_lat_us = 0;
2662 __le64 target = 0;
2663 int max_ps = -1;
2664 int state;
2665 int ret;
2666 unsigned last_lt_index = UINT_MAX;
2667
2668 /*
2669 * If APST isn't supported or if we haven't been initialized yet,
2670 * then don't do anything.
2671 */
2672 if (!ctrl->apsta)
2673 return 0;
2674
2675 if (ctrl->npss > 31) {
2676 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
2677 return 0;
2678 }
2679
2680 table = kzalloc(sizeof(*table), GFP_KERNEL);
2681 if (!table)
2682 return 0;
2683
2684 if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
2685 /* Turn off APST. */
2686 dev_dbg(ctrl->device, "APST disabled\n");
2687 goto done;
2688 }
2689
2690 /*
2691 * Walk through all states from lowest- to highest-power.
2692 * According to the spec, lower-numbered states use more power. NPSS,
2693 * despite the name, is the index of the lowest-power state, not the
2694 * number of states.
2695 */
2696 for (state = (int)ctrl->npss; state >= 0; state--) {
2697 u64 total_latency_us, exit_latency_us, transition_ms;
2698
2699 if (target)
2700 table->entries[state] = target;
2701
2702 /*
2703 * Don't allow transitions to the deepest state if it's quirked
2704 * off.
2705 */
2706 if (state == ctrl->npss &&
2707 (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
2708 continue;
2709
2710 /*
2711 * Is this state a useful non-operational state for higher-power
2712 * states to autonomously transition to?
2713 */
2714 if (!(ctrl->psd[state].flags & NVME_PS_FLAGS_NON_OP_STATE))
2715 continue;
2716
2717 exit_latency_us = (u64)le32_to_cpu(ctrl->psd[state].exit_lat);
2718 if (exit_latency_us > ctrl->ps_max_latency_us)
2719 continue;
2720
2721 total_latency_us = exit_latency_us +
2722 le32_to_cpu(ctrl->psd[state].entry_lat);
2723
2724 /*
2725 * This state is good. It can be used as the APST idle target
2726 * for higher power states.
2727 */
2728 if (apst_primary_timeout_ms && apst_primary_latency_tol_us) {
2729 if (!nvme_apst_get_transition_time(total_latency_us,
2730 &transition_ms, &last_lt_index))
2731 continue;
2732 } else {
2733 transition_ms = total_latency_us + 19;
2734 do_div(transition_ms, 20);
2735 if (transition_ms > (1 << 24) - 1)
2736 transition_ms = (1 << 24) - 1;
2737 }
2738
2739 target = cpu_to_le64((state << 3) | (transition_ms << 8));
2740 if (max_ps == -1)
2741 max_ps = state;
2742 if (total_latency_us > max_lat_us)
2743 max_lat_us = total_latency_us;
2744 }
2745
2746 if (max_ps == -1)
2747 dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
2748 else
2749 dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
2750 max_ps, max_lat_us, (int)sizeof(*table), table);
2751 apste = 1;
2752
2753 done:
2754 ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
2755 table, sizeof(*table), NULL);
2756 if (ret)
2757 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
2758 kfree(table);
2759 return ret;
2760 }
2761
nvme_set_latency_tolerance(struct device * dev,s32 val)2762 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
2763 {
2764 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2765 u64 latency;
2766
2767 switch (val) {
2768 case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
2769 case PM_QOS_LATENCY_ANY:
2770 latency = U64_MAX;
2771 break;
2772
2773 default:
2774 latency = val;
2775 }
2776
2777 if (ctrl->ps_max_latency_us != latency) {
2778 ctrl->ps_max_latency_us = latency;
2779 if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE)
2780 nvme_configure_apst(ctrl);
2781 }
2782 }
2783
2784 struct nvme_core_quirk_entry {
2785 /*
2786 * NVMe model and firmware strings are padded with spaces. For
2787 * simplicity, strings in the quirk table are padded with NULLs
2788 * instead.
2789 */
2790 u16 vid;
2791 const char *mn;
2792 const char *fr;
2793 unsigned long quirks;
2794 };
2795
2796 static const struct nvme_core_quirk_entry core_quirks[] = {
2797 {
2798 /*
2799 * This Toshiba device seems to die using any APST states. See:
2800 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
2801 */
2802 .vid = 0x1179,
2803 .mn = "THNSF5256GPUK TOSHIBA",
2804 .quirks = NVME_QUIRK_NO_APST,
2805 },
2806 {
2807 /*
2808 * This LiteON CL1-3D*-Q11 firmware version has a race
2809 * condition associated with actions related to suspend to idle
2810 * LiteON has resolved the problem in future firmware
2811 */
2812 .vid = 0x14a4,
2813 .fr = "22301111",
2814 .quirks = NVME_QUIRK_SIMPLE_SUSPEND,
2815 },
2816 {
2817 /*
2818 * This Kioxia CD6-V Series / HPE PE8030 device times out and
2819 * aborts I/O during any load, but more easily reproducible
2820 * with discards (fstrim).
2821 *
2822 * The device is left in a state where it is also not possible
2823 * to use "nvme set-feature" to disable APST, but booting with
2824 * nvme_core.default_ps_max_latency=0 works.
2825 */
2826 .vid = 0x1e0f,
2827 .mn = "KCD6XVUL6T40",
2828 .quirks = NVME_QUIRK_NO_APST,
2829 },
2830 {
2831 /*
2832 * The external Samsung X5 SSD fails initialization without a
2833 * delay before checking if it is ready and has a whole set of
2834 * other problems. To make this even more interesting, it
2835 * shares the PCI ID with internal Samsung 970 Evo Plus that
2836 * does not need or want these quirks.
2837 */
2838 .vid = 0x144d,
2839 .mn = "Samsung Portable SSD X5",
2840 .quirks = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
2841 NVME_QUIRK_NO_DEEPEST_PS |
2842 NVME_QUIRK_IGNORE_DEV_SUBNQN,
2843 }
2844 };
2845
2846 /* match is null-terminated but idstr is space-padded. */
string_matches(const char * idstr,const char * match,size_t len)2847 static bool string_matches(const char *idstr, const char *match, size_t len)
2848 {
2849 size_t matchlen;
2850
2851 if (!match)
2852 return true;
2853
2854 matchlen = strlen(match);
2855 WARN_ON_ONCE(matchlen > len);
2856
2857 if (memcmp(idstr, match, matchlen))
2858 return false;
2859
2860 for (; matchlen < len; matchlen++)
2861 if (idstr[matchlen] != ' ')
2862 return false;
2863
2864 return true;
2865 }
2866
quirk_matches(const struct nvme_id_ctrl * id,const struct nvme_core_quirk_entry * q)2867 static bool quirk_matches(const struct nvme_id_ctrl *id,
2868 const struct nvme_core_quirk_entry *q)
2869 {
2870 return q->vid == le16_to_cpu(id->vid) &&
2871 string_matches(id->mn, q->mn, sizeof(id->mn)) &&
2872 string_matches(id->fr, q->fr, sizeof(id->fr));
2873 }
2874
nvme_init_subnqn(struct nvme_subsystem * subsys,struct nvme_ctrl * ctrl,struct nvme_id_ctrl * id)2875 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
2876 struct nvme_id_ctrl *id)
2877 {
2878 size_t nqnlen;
2879 int off;
2880
2881 if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) {
2882 nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
2883 if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
2884 strscpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
2885 return;
2886 }
2887
2888 if (ctrl->vs >= NVME_VS(1, 2, 1))
2889 dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
2890 }
2891
2892 /*
2893 * Generate a "fake" NQN similar to the one in Section 4.5 of the NVMe
2894 * Base Specification 2.0. It is slightly different from the format
2895 * specified there due to historic reasons, and we can't change it now.
2896 */
2897 off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
2898 "nqn.2014.08.org.nvmexpress:%04x%04x",
2899 le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
2900 memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
2901 off += sizeof(id->sn);
2902 memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
2903 off += sizeof(id->mn);
2904 memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
2905 }
2906
nvme_release_subsystem(struct device * dev)2907 static void nvme_release_subsystem(struct device *dev)
2908 {
2909 struct nvme_subsystem *subsys =
2910 container_of(dev, struct nvme_subsystem, dev);
2911
2912 if (subsys->instance >= 0)
2913 ida_free(&nvme_instance_ida, subsys->instance);
2914 kfree(subsys);
2915 }
2916
nvme_destroy_subsystem(struct kref * ref)2917 static void nvme_destroy_subsystem(struct kref *ref)
2918 {
2919 struct nvme_subsystem *subsys =
2920 container_of(ref, struct nvme_subsystem, ref);
2921
2922 mutex_lock(&nvme_subsystems_lock);
2923 list_del(&subsys->entry);
2924 mutex_unlock(&nvme_subsystems_lock);
2925
2926 ida_destroy(&subsys->ns_ida);
2927 device_del(&subsys->dev);
2928 put_device(&subsys->dev);
2929 }
2930
nvme_put_subsystem(struct nvme_subsystem * subsys)2931 static void nvme_put_subsystem(struct nvme_subsystem *subsys)
2932 {
2933 kref_put(&subsys->ref, nvme_destroy_subsystem);
2934 }
2935
__nvme_find_get_subsystem(const char * subsysnqn)2936 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
2937 {
2938 struct nvme_subsystem *subsys;
2939
2940 lockdep_assert_held(&nvme_subsystems_lock);
2941
2942 /*
2943 * Fail matches for discovery subsystems. This results
2944 * in each discovery controller bound to a unique subsystem.
2945 * This avoids issues with validating controller values
2946 * that can only be true when there is a single unique subsystem.
2947 * There may be multiple and completely independent entities
2948 * that provide discovery controllers.
2949 */
2950 if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME))
2951 return NULL;
2952
2953 list_for_each_entry(subsys, &nvme_subsystems, entry) {
2954 if (strcmp(subsys->subnqn, subsysnqn))
2955 continue;
2956 if (!kref_get_unless_zero(&subsys->ref))
2957 continue;
2958 return subsys;
2959 }
2960
2961 return NULL;
2962 }
2963
nvme_discovery_ctrl(struct nvme_ctrl * ctrl)2964 static inline bool nvme_discovery_ctrl(struct nvme_ctrl *ctrl)
2965 {
2966 return ctrl->opts && ctrl->opts->discovery_nqn;
2967 }
2968
nvme_validate_cntlid(struct nvme_subsystem * subsys,struct nvme_ctrl * ctrl,struct nvme_id_ctrl * id)2969 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys,
2970 struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2971 {
2972 struct nvme_ctrl *tmp;
2973
2974 lockdep_assert_held(&nvme_subsystems_lock);
2975
2976 list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) {
2977 if (nvme_state_terminal(tmp))
2978 continue;
2979
2980 if (tmp->cntlid == ctrl->cntlid) {
2981 dev_err(ctrl->device,
2982 "Duplicate cntlid %u with %s, subsys %s, rejecting\n",
2983 ctrl->cntlid, dev_name(tmp->device),
2984 subsys->subnqn);
2985 return false;
2986 }
2987
2988 if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) ||
2989 nvme_discovery_ctrl(ctrl))
2990 continue;
2991
2992 dev_err(ctrl->device,
2993 "Subsystem does not support multiple controllers\n");
2994 return false;
2995 }
2996
2997 return true;
2998 }
2999
nvme_init_subsystem(struct nvme_ctrl * ctrl,struct nvme_id_ctrl * id)3000 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
3001 {
3002 struct nvme_subsystem *subsys, *found;
3003 int ret;
3004
3005 subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
3006 if (!subsys)
3007 return -ENOMEM;
3008
3009 subsys->instance = -1;
3010 mutex_init(&subsys->lock);
3011 kref_init(&subsys->ref);
3012 INIT_LIST_HEAD(&subsys->ctrls);
3013 INIT_LIST_HEAD(&subsys->nsheads);
3014 nvme_init_subnqn(subsys, ctrl, id);
3015 memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
3016 memcpy(subsys->model, id->mn, sizeof(subsys->model));
3017 subsys->vendor_id = le16_to_cpu(id->vid);
3018 subsys->cmic = id->cmic;
3019
3020 /* Versions prior to 1.4 don't necessarily report a valid type */
3021 if (id->cntrltype == NVME_CTRL_DISC ||
3022 !strcmp(subsys->subnqn, NVME_DISC_SUBSYS_NAME))
3023 subsys->subtype = NVME_NQN_DISC;
3024 else
3025 subsys->subtype = NVME_NQN_NVME;
3026
3027 if (nvme_discovery_ctrl(ctrl) && subsys->subtype != NVME_NQN_DISC) {
3028 dev_err(ctrl->device,
3029 "Subsystem %s is not a discovery controller",
3030 subsys->subnqn);
3031 kfree(subsys);
3032 return -EINVAL;
3033 }
3034 subsys->awupf = le16_to_cpu(id->awupf);
3035 nvme_mpath_default_iopolicy(subsys);
3036
3037 subsys->dev.class = &nvme_subsys_class;
3038 subsys->dev.release = nvme_release_subsystem;
3039 subsys->dev.groups = nvme_subsys_attrs_groups;
3040 dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance);
3041 device_initialize(&subsys->dev);
3042
3043 mutex_lock(&nvme_subsystems_lock);
3044 found = __nvme_find_get_subsystem(subsys->subnqn);
3045 if (found) {
3046 put_device(&subsys->dev);
3047 subsys = found;
3048
3049 if (!nvme_validate_cntlid(subsys, ctrl, id)) {
3050 ret = -EINVAL;
3051 goto out_put_subsystem;
3052 }
3053 } else {
3054 ret = device_add(&subsys->dev);
3055 if (ret) {
3056 dev_err(ctrl->device,
3057 "failed to register subsystem device.\n");
3058 put_device(&subsys->dev);
3059 goto out_unlock;
3060 }
3061 ida_init(&subsys->ns_ida);
3062 list_add_tail(&subsys->entry, &nvme_subsystems);
3063 }
3064
3065 ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
3066 dev_name(ctrl->device));
3067 if (ret) {
3068 dev_err(ctrl->device,
3069 "failed to create sysfs link from subsystem.\n");
3070 goto out_put_subsystem;
3071 }
3072
3073 if (!found)
3074 subsys->instance = ctrl->instance;
3075 ctrl->subsys = subsys;
3076 list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
3077 mutex_unlock(&nvme_subsystems_lock);
3078 return 0;
3079
3080 out_put_subsystem:
3081 nvme_put_subsystem(subsys);
3082 out_unlock:
3083 mutex_unlock(&nvme_subsystems_lock);
3084 return ret;
3085 }
3086
nvme_get_log(struct nvme_ctrl * ctrl,u32 nsid,u8 log_page,u8 lsp,u8 csi,void * log,size_t size,u64 offset)3087 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi,
3088 void *log, size_t size, u64 offset)
3089 {
3090 struct nvme_command c = { };
3091 u32 dwlen = nvme_bytes_to_numd(size);
3092
3093 c.get_log_page.opcode = nvme_admin_get_log_page;
3094 c.get_log_page.nsid = cpu_to_le32(nsid);
3095 c.get_log_page.lid = log_page;
3096 c.get_log_page.lsp = lsp;
3097 c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
3098 c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
3099 c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
3100 c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
3101 c.get_log_page.csi = csi;
3102
3103 return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
3104 }
3105
nvme_get_effects_log(struct nvme_ctrl * ctrl,u8 csi,struct nvme_effects_log ** log)3106 static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi,
3107 struct nvme_effects_log **log)
3108 {
3109 struct nvme_effects_log *old, *cel = xa_load(&ctrl->cels, csi);
3110 int ret;
3111
3112 if (cel)
3113 goto out;
3114
3115 cel = kzalloc(sizeof(*cel), GFP_KERNEL);
3116 if (!cel)
3117 return -ENOMEM;
3118
3119 ret = nvme_get_log(ctrl, 0x00, NVME_LOG_CMD_EFFECTS, 0, csi,
3120 cel, sizeof(*cel), 0);
3121 if (ret) {
3122 kfree(cel);
3123 return ret;
3124 }
3125
3126 old = xa_store(&ctrl->cels, csi, cel, GFP_KERNEL);
3127 if (xa_is_err(old)) {
3128 kfree(cel);
3129 return xa_err(old);
3130 }
3131 out:
3132 *log = cel;
3133 return 0;
3134 }
3135
nvme_mps_to_sectors(struct nvme_ctrl * ctrl,u32 units)3136 static inline u32 nvme_mps_to_sectors(struct nvme_ctrl *ctrl, u32 units)
3137 {
3138 u32 page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12, val;
3139
3140 if (check_shl_overflow(1U, units + page_shift - 9, &val))
3141 return UINT_MAX;
3142 return val;
3143 }
3144
nvme_init_non_mdts_limits(struct nvme_ctrl * ctrl)3145 static int nvme_init_non_mdts_limits(struct nvme_ctrl *ctrl)
3146 {
3147 struct nvme_command c = { };
3148 struct nvme_id_ctrl_nvm *id;
3149 int ret;
3150
3151 /*
3152 * Even though NVMe spec explicitly states that MDTS is not applicable
3153 * to the write-zeroes, we are cautious and limit the size to the
3154 * controllers max_hw_sectors value, which is based on the MDTS field
3155 * and possibly other limiting factors.
3156 */
3157 if ((ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) &&
3158 !(ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES))
3159 ctrl->max_zeroes_sectors = ctrl->max_hw_sectors;
3160 else
3161 ctrl->max_zeroes_sectors = 0;
3162
3163 if (ctrl->subsys->subtype != NVME_NQN_NVME ||
3164 !nvme_id_cns_ok(ctrl, NVME_ID_CNS_CS_CTRL) ||
3165 test_bit(NVME_CTRL_SKIP_ID_CNS_CS, &ctrl->flags))
3166 return 0;
3167
3168 id = kzalloc(sizeof(*id), GFP_KERNEL);
3169 if (!id)
3170 return -ENOMEM;
3171
3172 c.identify.opcode = nvme_admin_identify;
3173 c.identify.cns = NVME_ID_CNS_CS_CTRL;
3174 c.identify.csi = NVME_CSI_NVM;
3175
3176 ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
3177 if (ret)
3178 goto free_data;
3179
3180 ctrl->dmrl = id->dmrl;
3181 ctrl->dmrsl = le32_to_cpu(id->dmrsl);
3182 if (id->wzsl)
3183 ctrl->max_zeroes_sectors = nvme_mps_to_sectors(ctrl, id->wzsl);
3184
3185 free_data:
3186 if (ret > 0)
3187 set_bit(NVME_CTRL_SKIP_ID_CNS_CS, &ctrl->flags);
3188 kfree(id);
3189 return ret;
3190 }
3191
nvme_init_effects_log(struct nvme_ctrl * ctrl,u8 csi,struct nvme_effects_log ** log)3192 static int nvme_init_effects_log(struct nvme_ctrl *ctrl,
3193 u8 csi, struct nvme_effects_log **log)
3194 {
3195 struct nvme_effects_log *effects, *old;
3196
3197 effects = kzalloc(sizeof(*effects), GFP_KERNEL);
3198 if (!effects)
3199 return -ENOMEM;
3200
3201 old = xa_store(&ctrl->cels, csi, effects, GFP_KERNEL);
3202 if (xa_is_err(old)) {
3203 kfree(effects);
3204 return xa_err(old);
3205 }
3206
3207 *log = effects;
3208 return 0;
3209 }
3210
nvme_init_known_nvm_effects(struct nvme_ctrl * ctrl)3211 static void nvme_init_known_nvm_effects(struct nvme_ctrl *ctrl)
3212 {
3213 struct nvme_effects_log *log = ctrl->effects;
3214
3215 log->acs[nvme_admin_format_nvm] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC |
3216 NVME_CMD_EFFECTS_NCC |
3217 NVME_CMD_EFFECTS_CSE_MASK);
3218 log->acs[nvme_admin_sanitize_nvm] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC |
3219 NVME_CMD_EFFECTS_CSE_MASK);
3220
3221 /*
3222 * The spec says the result of a security receive command depends on
3223 * the previous security send command. As such, many vendors log this
3224 * command as one to submitted only when no other commands to the same
3225 * namespace are outstanding. The intention is to tell the host to
3226 * prevent mixing security send and receive.
3227 *
3228 * This driver can only enforce such exclusive access against IO
3229 * queues, though. We are not readily able to enforce such a rule for
3230 * two commands to the admin queue, which is the only queue that
3231 * matters for this command.
3232 *
3233 * Rather than blindly freezing the IO queues for this effect that
3234 * doesn't even apply to IO, mask it off.
3235 */
3236 log->acs[nvme_admin_security_recv] &= cpu_to_le32(~NVME_CMD_EFFECTS_CSE_MASK);
3237
3238 log->iocs[nvme_cmd_write] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC);
3239 log->iocs[nvme_cmd_write_zeroes] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC);
3240 log->iocs[nvme_cmd_write_uncor] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC);
3241 }
3242
nvme_init_effects(struct nvme_ctrl * ctrl,struct nvme_id_ctrl * id)3243 static int nvme_init_effects(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
3244 {
3245 int ret = 0;
3246
3247 if (ctrl->effects)
3248 return 0;
3249
3250 if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
3251 ret = nvme_get_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects);
3252 if (ret < 0)
3253 return ret;
3254 }
3255
3256 if (!ctrl->effects) {
3257 ret = nvme_init_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects);
3258 if (ret < 0)
3259 return ret;
3260 }
3261
3262 nvme_init_known_nvm_effects(ctrl);
3263 return 0;
3264 }
3265
nvme_check_ctrl_fabric_info(struct nvme_ctrl * ctrl,struct nvme_id_ctrl * id)3266 static int nvme_check_ctrl_fabric_info(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
3267 {
3268 /*
3269 * In fabrics we need to verify the cntlid matches the
3270 * admin connect
3271 */
3272 if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
3273 dev_err(ctrl->device,
3274 "Mismatching cntlid: Connect %u vs Identify %u, rejecting\n",
3275 ctrl->cntlid, le16_to_cpu(id->cntlid));
3276 return -EINVAL;
3277 }
3278
3279 if (!nvme_discovery_ctrl(ctrl) && !ctrl->kas) {
3280 dev_err(ctrl->device,
3281 "keep-alive support is mandatory for fabrics\n");
3282 return -EINVAL;
3283 }
3284
3285 if (!nvme_discovery_ctrl(ctrl) && ctrl->ioccsz < 4) {
3286 dev_err(ctrl->device,
3287 "I/O queue command capsule supported size %d < 4\n",
3288 ctrl->ioccsz);
3289 return -EINVAL;
3290 }
3291
3292 if (!nvme_discovery_ctrl(ctrl) && ctrl->iorcsz < 1) {
3293 dev_err(ctrl->device,
3294 "I/O queue response capsule supported size %d < 1\n",
3295 ctrl->iorcsz);
3296 return -EINVAL;
3297 }
3298
3299 if (!ctrl->maxcmd) {
3300 dev_warn(ctrl->device,
3301 "Firmware bug: maximum outstanding commands is 0\n");
3302 ctrl->maxcmd = ctrl->sqsize + 1;
3303 }
3304
3305 return 0;
3306 }
3307
nvme_init_identify(struct nvme_ctrl * ctrl)3308 static int nvme_init_identify(struct nvme_ctrl *ctrl)
3309 {
3310 struct queue_limits lim;
3311 struct nvme_id_ctrl *id;
3312 u32 max_hw_sectors;
3313 bool prev_apst_enabled;
3314 int ret;
3315
3316 ret = nvme_identify_ctrl(ctrl, &id);
3317 if (ret) {
3318 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
3319 return -EIO;
3320 }
3321
3322 if (!(ctrl->ops->flags & NVME_F_FABRICS))
3323 ctrl->cntlid = le16_to_cpu(id->cntlid);
3324
3325 if (!ctrl->identified) {
3326 unsigned int i;
3327
3328 /*
3329 * Check for quirks. Quirk can depend on firmware version,
3330 * so, in principle, the set of quirks present can change
3331 * across a reset. As a possible future enhancement, we
3332 * could re-scan for quirks every time we reinitialize
3333 * the device, but we'd have to make sure that the driver
3334 * behaves intelligently if the quirks change.
3335 */
3336 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
3337 if (quirk_matches(id, &core_quirks[i]))
3338 ctrl->quirks |= core_quirks[i].quirks;
3339 }
3340
3341 ret = nvme_init_subsystem(ctrl, id);
3342 if (ret)
3343 goto out_free;
3344
3345 ret = nvme_init_effects(ctrl, id);
3346 if (ret)
3347 goto out_free;
3348 }
3349 memcpy(ctrl->subsys->firmware_rev, id->fr,
3350 sizeof(ctrl->subsys->firmware_rev));
3351
3352 if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
3353 dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
3354 ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
3355 }
3356
3357 ctrl->crdt[0] = le16_to_cpu(id->crdt1);
3358 ctrl->crdt[1] = le16_to_cpu(id->crdt2);
3359 ctrl->crdt[2] = le16_to_cpu(id->crdt3);
3360
3361 ctrl->oacs = le16_to_cpu(id->oacs);
3362 ctrl->oncs = le16_to_cpu(id->oncs);
3363 ctrl->mtfa = le16_to_cpu(id->mtfa);
3364 ctrl->oaes = le32_to_cpu(id->oaes);
3365 ctrl->wctemp = le16_to_cpu(id->wctemp);
3366 ctrl->cctemp = le16_to_cpu(id->cctemp);
3367
3368 atomic_set(&ctrl->abort_limit, id->acl + 1);
3369 ctrl->vwc = id->vwc;
3370 if (id->mdts)
3371 max_hw_sectors = nvme_mps_to_sectors(ctrl, id->mdts);
3372 else
3373 max_hw_sectors = UINT_MAX;
3374 ctrl->max_hw_sectors =
3375 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
3376
3377 lim = queue_limits_start_update(ctrl->admin_q);
3378 nvme_set_ctrl_limits(ctrl, &lim);
3379 ret = queue_limits_commit_update(ctrl->admin_q, &lim);
3380 if (ret)
3381 goto out_free;
3382
3383 ctrl->sgls = le32_to_cpu(id->sgls);
3384 ctrl->kas = le16_to_cpu(id->kas);
3385 ctrl->max_namespaces = le32_to_cpu(id->mnan);
3386 ctrl->ctratt = le32_to_cpu(id->ctratt);
3387
3388 ctrl->cntrltype = id->cntrltype;
3389 ctrl->dctype = id->dctype;
3390
3391 if (id->rtd3e) {
3392 /* us -> s */
3393 u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC;
3394
3395 ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
3396 shutdown_timeout, 60);
3397
3398 if (ctrl->shutdown_timeout != shutdown_timeout)
3399 dev_info(ctrl->device,
3400 "D3 entry latency set to %u seconds\n",
3401 ctrl->shutdown_timeout);
3402 } else
3403 ctrl->shutdown_timeout = shutdown_timeout;
3404
3405 ctrl->npss = id->npss;
3406 ctrl->apsta = id->apsta;
3407 prev_apst_enabled = ctrl->apst_enabled;
3408 if (ctrl->quirks & NVME_QUIRK_NO_APST) {
3409 if (force_apst && id->apsta) {
3410 dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
3411 ctrl->apst_enabled = true;
3412 } else {
3413 ctrl->apst_enabled = false;
3414 }
3415 } else {
3416 ctrl->apst_enabled = id->apsta;
3417 }
3418 memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
3419
3420 if (ctrl->ops->flags & NVME_F_FABRICS) {
3421 ctrl->icdoff = le16_to_cpu(id->icdoff);
3422 ctrl->ioccsz = le32_to_cpu(id->ioccsz);
3423 ctrl->iorcsz = le32_to_cpu(id->iorcsz);
3424 ctrl->maxcmd = le16_to_cpu(id->maxcmd);
3425
3426 ret = nvme_check_ctrl_fabric_info(ctrl, id);
3427 if (ret)
3428 goto out_free;
3429 } else {
3430 ctrl->hmpre = le32_to_cpu(id->hmpre);
3431 ctrl->hmmin = le32_to_cpu(id->hmmin);
3432 ctrl->hmminds = le32_to_cpu(id->hmminds);
3433 ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
3434 }
3435
3436 ret = nvme_mpath_init_identify(ctrl, id);
3437 if (ret < 0)
3438 goto out_free;
3439
3440 if (ctrl->apst_enabled && !prev_apst_enabled)
3441 dev_pm_qos_expose_latency_tolerance(ctrl->device);
3442 else if (!ctrl->apst_enabled && prev_apst_enabled)
3443 dev_pm_qos_hide_latency_tolerance(ctrl->device);
3444
3445 out_free:
3446 kfree(id);
3447 return ret;
3448 }
3449
3450 /*
3451 * Initialize the cached copies of the Identify data and various controller
3452 * register in our nvme_ctrl structure. This should be called as soon as
3453 * the admin queue is fully up and running.
3454 */
nvme_init_ctrl_finish(struct nvme_ctrl * ctrl,bool was_suspended)3455 int nvme_init_ctrl_finish(struct nvme_ctrl *ctrl, bool was_suspended)
3456 {
3457 int ret;
3458
3459 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
3460 if (ret) {
3461 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
3462 return ret;
3463 }
3464
3465 ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize);
3466
3467 if (ctrl->vs >= NVME_VS(1, 1, 0))
3468 ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap);
3469
3470 ret = nvme_init_identify(ctrl);
3471 if (ret)
3472 return ret;
3473
3474 ret = nvme_configure_apst(ctrl);
3475 if (ret < 0)
3476 return ret;
3477
3478 ret = nvme_configure_timestamp(ctrl);
3479 if (ret < 0)
3480 return ret;
3481
3482 ret = nvme_configure_host_options(ctrl);
3483 if (ret < 0)
3484 return ret;
3485
3486 nvme_configure_opal(ctrl, was_suspended);
3487
3488 if (!ctrl->identified && !nvme_discovery_ctrl(ctrl)) {
3489 /*
3490 * Do not return errors unless we are in a controller reset,
3491 * the controller works perfectly fine without hwmon.
3492 */
3493 ret = nvme_hwmon_init(ctrl);
3494 if (ret == -EINTR)
3495 return ret;
3496 }
3497
3498 clear_bit(NVME_CTRL_DIRTY_CAPABILITY, &ctrl->flags);
3499 ctrl->identified = true;
3500
3501 nvme_start_keep_alive(ctrl);
3502
3503 return 0;
3504 }
3505 EXPORT_SYMBOL_GPL(nvme_init_ctrl_finish);
3506
nvme_dev_open(struct inode * inode,struct file * file)3507 static int nvme_dev_open(struct inode *inode, struct file *file)
3508 {
3509 struct nvme_ctrl *ctrl =
3510 container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3511
3512 switch (nvme_ctrl_state(ctrl)) {
3513 case NVME_CTRL_LIVE:
3514 break;
3515 default:
3516 return -EWOULDBLOCK;
3517 }
3518
3519 nvme_get_ctrl(ctrl);
3520 if (!try_module_get(ctrl->ops->module)) {
3521 nvme_put_ctrl(ctrl);
3522 return -EINVAL;
3523 }
3524
3525 file->private_data = ctrl;
3526 return 0;
3527 }
3528
nvme_dev_release(struct inode * inode,struct file * file)3529 static int nvme_dev_release(struct inode *inode, struct file *file)
3530 {
3531 struct nvme_ctrl *ctrl =
3532 container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3533
3534 module_put(ctrl->ops->module);
3535 nvme_put_ctrl(ctrl);
3536 return 0;
3537 }
3538
3539 static const struct file_operations nvme_dev_fops = {
3540 .owner = THIS_MODULE,
3541 .open = nvme_dev_open,
3542 .release = nvme_dev_release,
3543 .unlocked_ioctl = nvme_dev_ioctl,
3544 .compat_ioctl = compat_ptr_ioctl,
3545 .uring_cmd = nvme_dev_uring_cmd,
3546 };
3547
nvme_find_ns_head(struct nvme_ctrl * ctrl,unsigned nsid)3548 static struct nvme_ns_head *nvme_find_ns_head(struct nvme_ctrl *ctrl,
3549 unsigned nsid)
3550 {
3551 struct nvme_ns_head *h;
3552
3553 lockdep_assert_held(&ctrl->subsys->lock);
3554
3555 list_for_each_entry(h, &ctrl->subsys->nsheads, entry) {
3556 /*
3557 * Private namespaces can share NSIDs under some conditions.
3558 * In that case we can't use the same ns_head for namespaces
3559 * with the same NSID.
3560 */
3561 if (h->ns_id != nsid || !nvme_is_unique_nsid(ctrl, h))
3562 continue;
3563 if (!list_empty(&h->list) && nvme_tryget_ns_head(h))
3564 return h;
3565 }
3566
3567 return NULL;
3568 }
3569
nvme_subsys_check_duplicate_ids(struct nvme_subsystem * subsys,struct nvme_ns_ids * ids)3570 static int nvme_subsys_check_duplicate_ids(struct nvme_subsystem *subsys,
3571 struct nvme_ns_ids *ids)
3572 {
3573 bool has_uuid = !uuid_is_null(&ids->uuid);
3574 bool has_nguid = memchr_inv(ids->nguid, 0, sizeof(ids->nguid));
3575 bool has_eui64 = memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
3576 struct nvme_ns_head *h;
3577
3578 lockdep_assert_held(&subsys->lock);
3579
3580 list_for_each_entry(h, &subsys->nsheads, entry) {
3581 if (has_uuid && uuid_equal(&ids->uuid, &h->ids.uuid))
3582 return -EINVAL;
3583 if (has_nguid &&
3584 memcmp(&ids->nguid, &h->ids.nguid, sizeof(ids->nguid)) == 0)
3585 return -EINVAL;
3586 if (has_eui64 &&
3587 memcmp(&ids->eui64, &h->ids.eui64, sizeof(ids->eui64)) == 0)
3588 return -EINVAL;
3589 }
3590
3591 return 0;
3592 }
3593
nvme_cdev_rel(struct device * dev)3594 static void nvme_cdev_rel(struct device *dev)
3595 {
3596 ida_free(&nvme_ns_chr_minor_ida, MINOR(dev->devt));
3597 }
3598
nvme_cdev_del(struct cdev * cdev,struct device * cdev_device)3599 void nvme_cdev_del(struct cdev *cdev, struct device *cdev_device)
3600 {
3601 cdev_device_del(cdev, cdev_device);
3602 put_device(cdev_device);
3603 }
3604
nvme_cdev_add(struct cdev * cdev,struct device * cdev_device,const struct file_operations * fops,struct module * owner)3605 int nvme_cdev_add(struct cdev *cdev, struct device *cdev_device,
3606 const struct file_operations *fops, struct module *owner)
3607 {
3608 int minor, ret;
3609
3610 minor = ida_alloc(&nvme_ns_chr_minor_ida, GFP_KERNEL);
3611 if (minor < 0)
3612 return minor;
3613 cdev_device->devt = MKDEV(MAJOR(nvme_ns_chr_devt), minor);
3614 cdev_device->class = &nvme_ns_chr_class;
3615 cdev_device->release = nvme_cdev_rel;
3616 device_initialize(cdev_device);
3617 cdev_init(cdev, fops);
3618 cdev->owner = owner;
3619 ret = cdev_device_add(cdev, cdev_device);
3620 if (ret)
3621 put_device(cdev_device);
3622
3623 return ret;
3624 }
3625
nvme_ns_chr_open(struct inode * inode,struct file * file)3626 static int nvme_ns_chr_open(struct inode *inode, struct file *file)
3627 {
3628 return nvme_ns_open(container_of(inode->i_cdev, struct nvme_ns, cdev));
3629 }
3630
nvme_ns_chr_release(struct inode * inode,struct file * file)3631 static int nvme_ns_chr_release(struct inode *inode, struct file *file)
3632 {
3633 nvme_ns_release(container_of(inode->i_cdev, struct nvme_ns, cdev));
3634 return 0;
3635 }
3636
3637 static const struct file_operations nvme_ns_chr_fops = {
3638 .owner = THIS_MODULE,
3639 .open = nvme_ns_chr_open,
3640 .release = nvme_ns_chr_release,
3641 .unlocked_ioctl = nvme_ns_chr_ioctl,
3642 .compat_ioctl = compat_ptr_ioctl,
3643 .uring_cmd = nvme_ns_chr_uring_cmd,
3644 .uring_cmd_iopoll = nvme_ns_chr_uring_cmd_iopoll,
3645 };
3646
nvme_add_ns_cdev(struct nvme_ns * ns)3647 static int nvme_add_ns_cdev(struct nvme_ns *ns)
3648 {
3649 int ret;
3650
3651 ns->cdev_device.parent = ns->ctrl->device;
3652 ret = dev_set_name(&ns->cdev_device, "ng%dn%d",
3653 ns->ctrl->instance, ns->head->instance);
3654 if (ret)
3655 return ret;
3656
3657 return nvme_cdev_add(&ns->cdev, &ns->cdev_device, &nvme_ns_chr_fops,
3658 ns->ctrl->ops->module);
3659 }
3660
nvme_alloc_ns_head(struct nvme_ctrl * ctrl,struct nvme_ns_info * info)3661 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
3662 struct nvme_ns_info *info)
3663 {
3664 struct nvme_ns_head *head;
3665 size_t size = sizeof(*head);
3666 int ret = -ENOMEM;
3667
3668 #ifdef CONFIG_NVME_MULTIPATH
3669 size += num_possible_nodes() * sizeof(struct nvme_ns *);
3670 #endif
3671
3672 head = kzalloc(size, GFP_KERNEL);
3673 if (!head)
3674 goto out;
3675 ret = ida_alloc_min(&ctrl->subsys->ns_ida, 1, GFP_KERNEL);
3676 if (ret < 0)
3677 goto out_free_head;
3678 head->instance = ret;
3679 INIT_LIST_HEAD(&head->list);
3680 ret = init_srcu_struct(&head->srcu);
3681 if (ret)
3682 goto out_ida_remove;
3683 head->subsys = ctrl->subsys;
3684 head->ns_id = info->nsid;
3685 head->ids = info->ids;
3686 head->shared = info->is_shared;
3687 head->rotational = info->is_rotational;
3688 ratelimit_state_init(&head->rs_nuse, 5 * HZ, 1);
3689 ratelimit_set_flags(&head->rs_nuse, RATELIMIT_MSG_ON_RELEASE);
3690 kref_init(&head->ref);
3691
3692 if (head->ids.csi) {
3693 ret = nvme_get_effects_log(ctrl, head->ids.csi, &head->effects);
3694 if (ret)
3695 goto out_cleanup_srcu;
3696 } else
3697 head->effects = ctrl->effects;
3698
3699 ret = nvme_mpath_alloc_disk(ctrl, head);
3700 if (ret)
3701 goto out_cleanup_srcu;
3702
3703 list_add_tail(&head->entry, &ctrl->subsys->nsheads);
3704
3705 kref_get(&ctrl->subsys->ref);
3706
3707 return head;
3708 out_cleanup_srcu:
3709 cleanup_srcu_struct(&head->srcu);
3710 out_ida_remove:
3711 ida_free(&ctrl->subsys->ns_ida, head->instance);
3712 out_free_head:
3713 kfree(head);
3714 out:
3715 if (ret > 0)
3716 ret = blk_status_to_errno(nvme_error_status(ret));
3717 return ERR_PTR(ret);
3718 }
3719
nvme_global_check_duplicate_ids(struct nvme_subsystem * this,struct nvme_ns_ids * ids)3720 static int nvme_global_check_duplicate_ids(struct nvme_subsystem *this,
3721 struct nvme_ns_ids *ids)
3722 {
3723 struct nvme_subsystem *s;
3724 int ret = 0;
3725
3726 /*
3727 * Note that this check is racy as we try to avoid holding the global
3728 * lock over the whole ns_head creation. But it is only intended as
3729 * a sanity check anyway.
3730 */
3731 mutex_lock(&nvme_subsystems_lock);
3732 list_for_each_entry(s, &nvme_subsystems, entry) {
3733 if (s == this)
3734 continue;
3735 mutex_lock(&s->lock);
3736 ret = nvme_subsys_check_duplicate_ids(s, ids);
3737 mutex_unlock(&s->lock);
3738 if (ret)
3739 break;
3740 }
3741 mutex_unlock(&nvme_subsystems_lock);
3742
3743 return ret;
3744 }
3745
nvme_init_ns_head(struct nvme_ns * ns,struct nvme_ns_info * info)3746 static int nvme_init_ns_head(struct nvme_ns *ns, struct nvme_ns_info *info)
3747 {
3748 struct nvme_ctrl *ctrl = ns->ctrl;
3749 struct nvme_ns_head *head = NULL;
3750 int ret;
3751
3752 ret = nvme_global_check_duplicate_ids(ctrl->subsys, &info->ids);
3753 if (ret) {
3754 /*
3755 * We've found two different namespaces on two different
3756 * subsystems that report the same ID. This is pretty nasty
3757 * for anything that actually requires unique device
3758 * identification. In the kernel we need this for multipathing,
3759 * and in user space the /dev/disk/by-id/ links rely on it.
3760 *
3761 * If the device also claims to be multi-path capable back off
3762 * here now and refuse the probe the second device as this is a
3763 * recipe for data corruption. If not this is probably a
3764 * cheap consumer device if on the PCIe bus, so let the user
3765 * proceed and use the shiny toy, but warn that with changing
3766 * probing order (which due to our async probing could just be
3767 * device taking longer to startup) the other device could show
3768 * up at any time.
3769 */
3770 nvme_print_device_info(ctrl);
3771 if ((ns->ctrl->ops->flags & NVME_F_FABRICS) || /* !PCIe */
3772 ((ns->ctrl->subsys->cmic & NVME_CTRL_CMIC_MULTI_CTRL) &&
3773 info->is_shared)) {
3774 dev_err(ctrl->device,
3775 "ignoring nsid %d because of duplicate IDs\n",
3776 info->nsid);
3777 return ret;
3778 }
3779
3780 dev_err(ctrl->device,
3781 "clearing duplicate IDs for nsid %d\n", info->nsid);
3782 dev_err(ctrl->device,
3783 "use of /dev/disk/by-id/ may cause data corruption\n");
3784 memset(&info->ids.nguid, 0, sizeof(info->ids.nguid));
3785 memset(&info->ids.uuid, 0, sizeof(info->ids.uuid));
3786 memset(&info->ids.eui64, 0, sizeof(info->ids.eui64));
3787 ctrl->quirks |= NVME_QUIRK_BOGUS_NID;
3788 }
3789
3790 mutex_lock(&ctrl->subsys->lock);
3791 head = nvme_find_ns_head(ctrl, info->nsid);
3792 if (!head) {
3793 ret = nvme_subsys_check_duplicate_ids(ctrl->subsys, &info->ids);
3794 if (ret) {
3795 dev_err(ctrl->device,
3796 "duplicate IDs in subsystem for nsid %d\n",
3797 info->nsid);
3798 goto out_unlock;
3799 }
3800 head = nvme_alloc_ns_head(ctrl, info);
3801 if (IS_ERR(head)) {
3802 ret = PTR_ERR(head);
3803 goto out_unlock;
3804 }
3805 } else {
3806 ret = -EINVAL;
3807 if (!info->is_shared || !head->shared) {
3808 dev_err(ctrl->device,
3809 "Duplicate unshared namespace %d\n",
3810 info->nsid);
3811 goto out_put_ns_head;
3812 }
3813 if (!nvme_ns_ids_equal(&head->ids, &info->ids)) {
3814 dev_err(ctrl->device,
3815 "IDs don't match for shared namespace %d\n",
3816 info->nsid);
3817 goto out_put_ns_head;
3818 }
3819
3820 if (!multipath) {
3821 dev_warn(ctrl->device,
3822 "Found shared namespace %d, but multipathing not supported.\n",
3823 info->nsid);
3824 dev_warn_once(ctrl->device,
3825 "Support for shared namespaces without CONFIG_NVME_MULTIPATH is deprecated and will be removed in Linux 6.0.\n");
3826 }
3827 }
3828
3829 list_add_tail_rcu(&ns->siblings, &head->list);
3830 ns->head = head;
3831 mutex_unlock(&ctrl->subsys->lock);
3832 return 0;
3833
3834 out_put_ns_head:
3835 nvme_put_ns_head(head);
3836 out_unlock:
3837 mutex_unlock(&ctrl->subsys->lock);
3838 return ret;
3839 }
3840
nvme_find_get_ns(struct nvme_ctrl * ctrl,unsigned nsid)3841 struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3842 {
3843 struct nvme_ns *ns, *ret = NULL;
3844 int srcu_idx;
3845
3846 srcu_idx = srcu_read_lock(&ctrl->srcu);
3847 list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
3848 srcu_read_lock_held(&ctrl->srcu)) {
3849 if (ns->head->ns_id == nsid) {
3850 if (!nvme_get_ns(ns))
3851 continue;
3852 ret = ns;
3853 break;
3854 }
3855 if (ns->head->ns_id > nsid)
3856 break;
3857 }
3858 srcu_read_unlock(&ctrl->srcu, srcu_idx);
3859 return ret;
3860 }
3861 EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, "NVME_TARGET_PASSTHRU");
3862
3863 /*
3864 * Add the namespace to the controller list while keeping the list ordered.
3865 */
nvme_ns_add_to_ctrl_list(struct nvme_ns * ns)3866 static void nvme_ns_add_to_ctrl_list(struct nvme_ns *ns)
3867 {
3868 struct nvme_ns *tmp;
3869
3870 list_for_each_entry_reverse(tmp, &ns->ctrl->namespaces, list) {
3871 if (tmp->head->ns_id < ns->head->ns_id) {
3872 list_add_rcu(&ns->list, &tmp->list);
3873 return;
3874 }
3875 }
3876 list_add(&ns->list, &ns->ctrl->namespaces);
3877 }
3878
nvme_alloc_ns(struct nvme_ctrl * ctrl,struct nvme_ns_info * info)3879 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, struct nvme_ns_info *info)
3880 {
3881 struct queue_limits lim = { };
3882 struct nvme_ns *ns;
3883 struct gendisk *disk;
3884 int node = ctrl->numa_node;
3885
3886 ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
3887 if (!ns)
3888 return;
3889
3890 if (ctrl->opts && ctrl->opts->data_digest)
3891 lim.features |= BLK_FEAT_STABLE_WRITES;
3892 if (ctrl->ops->supports_pci_p2pdma &&
3893 ctrl->ops->supports_pci_p2pdma(ctrl))
3894 lim.features |= BLK_FEAT_PCI_P2PDMA;
3895
3896 disk = blk_mq_alloc_disk(ctrl->tagset, &lim, ns);
3897 if (IS_ERR(disk))
3898 goto out_free_ns;
3899 disk->fops = &nvme_bdev_ops;
3900 disk->private_data = ns;
3901
3902 ns->disk = disk;
3903 ns->queue = disk->queue;
3904 ns->ctrl = ctrl;
3905 kref_init(&ns->kref);
3906
3907 if (nvme_init_ns_head(ns, info))
3908 goto out_cleanup_disk;
3909
3910 /*
3911 * If multipathing is enabled, the device name for all disks and not
3912 * just those that represent shared namespaces needs to be based on the
3913 * subsystem instance. Using the controller instance for private
3914 * namespaces could lead to naming collisions between shared and private
3915 * namespaces if they don't use a common numbering scheme.
3916 *
3917 * If multipathing is not enabled, disk names must use the controller
3918 * instance as shared namespaces will show up as multiple block
3919 * devices.
3920 */
3921 if (nvme_ns_head_multipath(ns->head)) {
3922 sprintf(disk->disk_name, "nvme%dc%dn%d", ctrl->subsys->instance,
3923 ctrl->instance, ns->head->instance);
3924 disk->flags |= GENHD_FL_HIDDEN;
3925 } else if (multipath) {
3926 sprintf(disk->disk_name, "nvme%dn%d", ctrl->subsys->instance,
3927 ns->head->instance);
3928 } else {
3929 sprintf(disk->disk_name, "nvme%dn%d", ctrl->instance,
3930 ns->head->instance);
3931 }
3932
3933 if (nvme_update_ns_info(ns, info))
3934 goto out_unlink_ns;
3935
3936 mutex_lock(&ctrl->namespaces_lock);
3937 /*
3938 * Ensure that no namespaces are added to the ctrl list after the queues
3939 * are frozen, thereby avoiding a deadlock between scan and reset.
3940 */
3941 if (test_bit(NVME_CTRL_FROZEN, &ctrl->flags)) {
3942 mutex_unlock(&ctrl->namespaces_lock);
3943 goto out_unlink_ns;
3944 }
3945 nvme_ns_add_to_ctrl_list(ns);
3946 mutex_unlock(&ctrl->namespaces_lock);
3947 synchronize_srcu(&ctrl->srcu);
3948 nvme_get_ctrl(ctrl);
3949
3950 if (device_add_disk(ctrl->device, ns->disk, nvme_ns_attr_groups))
3951 goto out_cleanup_ns_from_list;
3952
3953 if (!nvme_ns_head_multipath(ns->head))
3954 nvme_add_ns_cdev(ns);
3955
3956 nvme_mpath_add_disk(ns, info->anagrpid);
3957 nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name);
3958
3959 /*
3960 * Set ns->disk->device->driver_data to ns so we can access
3961 * ns->head->passthru_err_log_enabled in
3962 * nvme_io_passthru_err_log_enabled_[store | show]().
3963 */
3964 dev_set_drvdata(disk_to_dev(ns->disk), ns);
3965
3966 return;
3967
3968 out_cleanup_ns_from_list:
3969 nvme_put_ctrl(ctrl);
3970 mutex_lock(&ctrl->namespaces_lock);
3971 list_del_rcu(&ns->list);
3972 mutex_unlock(&ctrl->namespaces_lock);
3973 synchronize_srcu(&ctrl->srcu);
3974 out_unlink_ns:
3975 mutex_lock(&ctrl->subsys->lock);
3976 list_del_rcu(&ns->siblings);
3977 if (list_empty(&ns->head->list))
3978 list_del_init(&ns->head->entry);
3979 mutex_unlock(&ctrl->subsys->lock);
3980 nvme_put_ns_head(ns->head);
3981 out_cleanup_disk:
3982 put_disk(disk);
3983 out_free_ns:
3984 kfree(ns);
3985 }
3986
nvme_ns_remove(struct nvme_ns * ns)3987 static void nvme_ns_remove(struct nvme_ns *ns)
3988 {
3989 bool last_path = false;
3990
3991 if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
3992 return;
3993
3994 clear_bit(NVME_NS_READY, &ns->flags);
3995 set_capacity(ns->disk, 0);
3996 nvme_fault_inject_fini(&ns->fault_inject);
3997
3998 /*
3999 * Ensure that !NVME_NS_READY is seen by other threads to prevent
4000 * this ns going back into current_path.
4001 */
4002 synchronize_srcu(&ns->head->srcu);
4003
4004 /* wait for concurrent submissions */
4005 if (nvme_mpath_clear_current_path(ns))
4006 synchronize_srcu(&ns->head->srcu);
4007
4008 mutex_lock(&ns->ctrl->subsys->lock);
4009 list_del_rcu(&ns->siblings);
4010 if (list_empty(&ns->head->list)) {
4011 list_del_init(&ns->head->entry);
4012 last_path = true;
4013 }
4014 mutex_unlock(&ns->ctrl->subsys->lock);
4015
4016 /* guarantee not available in head->list */
4017 synchronize_srcu(&ns->head->srcu);
4018
4019 if (!nvme_ns_head_multipath(ns->head))
4020 nvme_cdev_del(&ns->cdev, &ns->cdev_device);
4021 del_gendisk(ns->disk);
4022
4023 mutex_lock(&ns->ctrl->namespaces_lock);
4024 list_del_rcu(&ns->list);
4025 mutex_unlock(&ns->ctrl->namespaces_lock);
4026 synchronize_srcu(&ns->ctrl->srcu);
4027
4028 if (last_path)
4029 nvme_mpath_shutdown_disk(ns->head);
4030 nvme_put_ns(ns);
4031 }
4032
nvme_ns_remove_by_nsid(struct nvme_ctrl * ctrl,u32 nsid)4033 static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid)
4034 {
4035 struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid);
4036
4037 if (ns) {
4038 nvme_ns_remove(ns);
4039 nvme_put_ns(ns);
4040 }
4041 }
4042
nvme_validate_ns(struct nvme_ns * ns,struct nvme_ns_info * info)4043 static void nvme_validate_ns(struct nvme_ns *ns, struct nvme_ns_info *info)
4044 {
4045 int ret = NVME_SC_INVALID_NS | NVME_STATUS_DNR;
4046
4047 if (!nvme_ns_ids_equal(&ns->head->ids, &info->ids)) {
4048 dev_err(ns->ctrl->device,
4049 "identifiers changed for nsid %d\n", ns->head->ns_id);
4050 goto out;
4051 }
4052
4053 ret = nvme_update_ns_info(ns, info);
4054 out:
4055 /*
4056 * Only remove the namespace if we got a fatal error back from the
4057 * device, otherwise ignore the error and just move on.
4058 *
4059 * TODO: we should probably schedule a delayed retry here.
4060 */
4061 if (ret > 0 && (ret & NVME_STATUS_DNR))
4062 nvme_ns_remove(ns);
4063 }
4064
nvme_scan_ns(struct nvme_ctrl * ctrl,unsigned nsid)4065 static void nvme_scan_ns(struct nvme_ctrl *ctrl, unsigned nsid)
4066 {
4067 struct nvme_ns_info info = { .nsid = nsid };
4068 struct nvme_ns *ns;
4069 int ret = 1;
4070
4071 if (nvme_identify_ns_descs(ctrl, &info))
4072 return;
4073
4074 if (info.ids.csi != NVME_CSI_NVM && !nvme_multi_css(ctrl)) {
4075 dev_warn(ctrl->device,
4076 "command set not reported for nsid: %d\n", nsid);
4077 return;
4078 }
4079
4080 /*
4081 * If available try to use the Command Set Idependent Identify Namespace
4082 * data structure to find all the generic information that is needed to
4083 * set up a namespace. If not fall back to the legacy version.
4084 */
4085 if ((ctrl->cap & NVME_CAP_CRMS_CRIMS) ||
4086 (info.ids.csi != NVME_CSI_NVM && info.ids.csi != NVME_CSI_ZNS) ||
4087 ctrl->vs >= NVME_VS(2, 0, 0))
4088 ret = nvme_ns_info_from_id_cs_indep(ctrl, &info);
4089 if (ret > 0)
4090 ret = nvme_ns_info_from_identify(ctrl, &info);
4091
4092 if (info.is_removed)
4093 nvme_ns_remove_by_nsid(ctrl, nsid);
4094
4095 /*
4096 * Ignore the namespace if it is not ready. We will get an AEN once it
4097 * becomes ready and restart the scan.
4098 */
4099 if (ret || !info.is_ready)
4100 return;
4101
4102 ns = nvme_find_get_ns(ctrl, nsid);
4103 if (ns) {
4104 nvme_validate_ns(ns, &info);
4105 nvme_put_ns(ns);
4106 } else {
4107 nvme_alloc_ns(ctrl, &info);
4108 }
4109 }
4110
4111 /**
4112 * struct async_scan_info - keeps track of controller & NSIDs to scan
4113 * @ctrl: Controller on which namespaces are being scanned
4114 * @next_nsid: Index of next NSID to scan in ns_list
4115 * @ns_list: Pointer to list of NSIDs to scan
4116 *
4117 * Note: There is a single async_scan_info structure shared by all instances
4118 * of nvme_scan_ns_async() scanning a given controller, so the atomic
4119 * operations on next_nsid are critical to ensure each instance scans a unique
4120 * NSID.
4121 */
4122 struct async_scan_info {
4123 struct nvme_ctrl *ctrl;
4124 atomic_t next_nsid;
4125 __le32 *ns_list;
4126 };
4127
nvme_scan_ns_async(void * data,async_cookie_t cookie)4128 static void nvme_scan_ns_async(void *data, async_cookie_t cookie)
4129 {
4130 struct async_scan_info *scan_info = data;
4131 int idx;
4132 u32 nsid;
4133
4134 idx = (u32)atomic_fetch_inc(&scan_info->next_nsid);
4135 nsid = le32_to_cpu(scan_info->ns_list[idx]);
4136
4137 nvme_scan_ns(scan_info->ctrl, nsid);
4138 }
4139
nvme_remove_invalid_namespaces(struct nvme_ctrl * ctrl,unsigned nsid)4140 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
4141 unsigned nsid)
4142 {
4143 struct nvme_ns *ns, *next;
4144 LIST_HEAD(rm_list);
4145
4146 mutex_lock(&ctrl->namespaces_lock);
4147 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
4148 if (ns->head->ns_id > nsid) {
4149 list_del_rcu(&ns->list);
4150 synchronize_srcu(&ctrl->srcu);
4151 list_add_tail_rcu(&ns->list, &rm_list);
4152 }
4153 }
4154 mutex_unlock(&ctrl->namespaces_lock);
4155
4156 list_for_each_entry_safe(ns, next, &rm_list, list)
4157 nvme_ns_remove(ns);
4158 }
4159
nvme_scan_ns_list(struct nvme_ctrl * ctrl)4160 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl)
4161 {
4162 const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32);
4163 __le32 *ns_list;
4164 u32 prev = 0;
4165 int ret = 0, i;
4166 ASYNC_DOMAIN(domain);
4167 struct async_scan_info scan_info;
4168
4169 ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
4170 if (!ns_list)
4171 return -ENOMEM;
4172
4173 scan_info.ctrl = ctrl;
4174 scan_info.ns_list = ns_list;
4175 for (;;) {
4176 struct nvme_command cmd = {
4177 .identify.opcode = nvme_admin_identify,
4178 .identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST,
4179 .identify.nsid = cpu_to_le32(prev),
4180 };
4181
4182 ret = nvme_submit_sync_cmd(ctrl->admin_q, &cmd, ns_list,
4183 NVME_IDENTIFY_DATA_SIZE);
4184 if (ret) {
4185 dev_warn(ctrl->device,
4186 "Identify NS List failed (status=0x%x)\n", ret);
4187 goto free;
4188 }
4189
4190 atomic_set(&scan_info.next_nsid, 0);
4191 for (i = 0; i < nr_entries; i++) {
4192 u32 nsid = le32_to_cpu(ns_list[i]);
4193
4194 if (!nsid) /* end of the list? */
4195 goto out;
4196 async_schedule_domain(nvme_scan_ns_async, &scan_info,
4197 &domain);
4198 while (++prev < nsid)
4199 nvme_ns_remove_by_nsid(ctrl, prev);
4200 }
4201 async_synchronize_full_domain(&domain);
4202 }
4203 out:
4204 nvme_remove_invalid_namespaces(ctrl, prev);
4205 free:
4206 async_synchronize_full_domain(&domain);
4207 kfree(ns_list);
4208 return ret;
4209 }
4210
nvme_scan_ns_sequential(struct nvme_ctrl * ctrl)4211 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl)
4212 {
4213 struct nvme_id_ctrl *id;
4214 u32 nn, i;
4215
4216 if (nvme_identify_ctrl(ctrl, &id))
4217 return;
4218 nn = le32_to_cpu(id->nn);
4219 kfree(id);
4220
4221 for (i = 1; i <= nn; i++)
4222 nvme_scan_ns(ctrl, i);
4223
4224 nvme_remove_invalid_namespaces(ctrl, nn);
4225 }
4226
nvme_clear_changed_ns_log(struct nvme_ctrl * ctrl)4227 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl)
4228 {
4229 size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32);
4230 __le32 *log;
4231 int error;
4232
4233 log = kzalloc(log_size, GFP_KERNEL);
4234 if (!log)
4235 return;
4236
4237 /*
4238 * We need to read the log to clear the AEN, but we don't want to rely
4239 * on it for the changed namespace information as userspace could have
4240 * raced with us in reading the log page, which could cause us to miss
4241 * updates.
4242 */
4243 error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0,
4244 NVME_CSI_NVM, log, log_size, 0);
4245 if (error)
4246 dev_warn(ctrl->device,
4247 "reading changed ns log failed: %d\n", error);
4248
4249 kfree(log);
4250 }
4251
nvme_scan_work(struct work_struct * work)4252 static void nvme_scan_work(struct work_struct *work)
4253 {
4254 struct nvme_ctrl *ctrl =
4255 container_of(work, struct nvme_ctrl, scan_work);
4256 int ret;
4257
4258 /* No tagset on a live ctrl means IO queues could not created */
4259 if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE || !ctrl->tagset)
4260 return;
4261
4262 /*
4263 * Identify controller limits can change at controller reset due to
4264 * new firmware download, even though it is not common we cannot ignore
4265 * such scenario. Controller's non-mdts limits are reported in the unit
4266 * of logical blocks that is dependent on the format of attached
4267 * namespace. Hence re-read the limits at the time of ns allocation.
4268 */
4269 ret = nvme_init_non_mdts_limits(ctrl);
4270 if (ret < 0) {
4271 dev_warn(ctrl->device,
4272 "reading non-mdts-limits failed: %d\n", ret);
4273 return;
4274 }
4275
4276 if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) {
4277 dev_info(ctrl->device, "rescanning namespaces.\n");
4278 nvme_clear_changed_ns_log(ctrl);
4279 }
4280
4281 mutex_lock(&ctrl->scan_lock);
4282 if (!nvme_id_cns_ok(ctrl, NVME_ID_CNS_NS_ACTIVE_LIST)) {
4283 nvme_scan_ns_sequential(ctrl);
4284 } else {
4285 /*
4286 * Fall back to sequential scan if DNR is set to handle broken
4287 * devices which should support Identify NS List (as per the VS
4288 * they report) but don't actually support it.
4289 */
4290 ret = nvme_scan_ns_list(ctrl);
4291 if (ret > 0 && ret & NVME_STATUS_DNR)
4292 nvme_scan_ns_sequential(ctrl);
4293 }
4294 mutex_unlock(&ctrl->scan_lock);
4295 }
4296
4297 /*
4298 * This function iterates the namespace list unlocked to allow recovery from
4299 * controller failure. It is up to the caller to ensure the namespace list is
4300 * not modified by scan work while this function is executing.
4301 */
nvme_remove_namespaces(struct nvme_ctrl * ctrl)4302 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
4303 {
4304 struct nvme_ns *ns, *next;
4305 LIST_HEAD(ns_list);
4306
4307 /*
4308 * make sure to requeue I/O to all namespaces as these
4309 * might result from the scan itself and must complete
4310 * for the scan_work to make progress
4311 */
4312 nvme_mpath_clear_ctrl_paths(ctrl);
4313
4314 /*
4315 * Unquiesce io queues so any pending IO won't hang, especially
4316 * those submitted from scan work
4317 */
4318 nvme_unquiesce_io_queues(ctrl);
4319
4320 /* prevent racing with ns scanning */
4321 flush_work(&ctrl->scan_work);
4322
4323 /*
4324 * The dead states indicates the controller was not gracefully
4325 * disconnected. In that case, we won't be able to flush any data while
4326 * removing the namespaces' disks; fail all the queues now to avoid
4327 * potentially having to clean up the failed sync later.
4328 */
4329 if (nvme_ctrl_state(ctrl) == NVME_CTRL_DEAD)
4330 nvme_mark_namespaces_dead(ctrl);
4331
4332 /* this is a no-op when called from the controller reset handler */
4333 nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO);
4334
4335 mutex_lock(&ctrl->namespaces_lock);
4336 list_splice_init_rcu(&ctrl->namespaces, &ns_list, synchronize_rcu);
4337 mutex_unlock(&ctrl->namespaces_lock);
4338 synchronize_srcu(&ctrl->srcu);
4339
4340 list_for_each_entry_safe(ns, next, &ns_list, list)
4341 nvme_ns_remove(ns);
4342 }
4343 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
4344
nvme_class_uevent(const struct device * dev,struct kobj_uevent_env * env)4345 static int nvme_class_uevent(const struct device *dev, struct kobj_uevent_env *env)
4346 {
4347 const struct nvme_ctrl *ctrl =
4348 container_of(dev, struct nvme_ctrl, ctrl_device);
4349 struct nvmf_ctrl_options *opts = ctrl->opts;
4350 int ret;
4351
4352 ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name);
4353 if (ret)
4354 return ret;
4355
4356 if (opts) {
4357 ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr);
4358 if (ret)
4359 return ret;
4360
4361 ret = add_uevent_var(env, "NVME_TRSVCID=%s",
4362 opts->trsvcid ?: "none");
4363 if (ret)
4364 return ret;
4365
4366 ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s",
4367 opts->host_traddr ?: "none");
4368 if (ret)
4369 return ret;
4370
4371 ret = add_uevent_var(env, "NVME_HOST_IFACE=%s",
4372 opts->host_iface ?: "none");
4373 }
4374 return ret;
4375 }
4376
nvme_change_uevent(struct nvme_ctrl * ctrl,char * envdata)4377 static void nvme_change_uevent(struct nvme_ctrl *ctrl, char *envdata)
4378 {
4379 char *envp[2] = { envdata, NULL };
4380
4381 kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4382 }
4383
nvme_aen_uevent(struct nvme_ctrl * ctrl)4384 static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
4385 {
4386 char *envp[2] = { NULL, NULL };
4387 u32 aen_result = ctrl->aen_result;
4388
4389 ctrl->aen_result = 0;
4390 if (!aen_result)
4391 return;
4392
4393 envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
4394 if (!envp[0])
4395 return;
4396 kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4397 kfree(envp[0]);
4398 }
4399
nvme_async_event_work(struct work_struct * work)4400 static void nvme_async_event_work(struct work_struct *work)
4401 {
4402 struct nvme_ctrl *ctrl =
4403 container_of(work, struct nvme_ctrl, async_event_work);
4404
4405 nvme_aen_uevent(ctrl);
4406
4407 /*
4408 * The transport drivers must guarantee AER submission here is safe by
4409 * flushing ctrl async_event_work after changing the controller state
4410 * from LIVE and before freeing the admin queue.
4411 */
4412 if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE)
4413 ctrl->ops->submit_async_event(ctrl);
4414 }
4415
nvme_ctrl_pp_status(struct nvme_ctrl * ctrl)4416 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
4417 {
4418
4419 u32 csts;
4420
4421 if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
4422 return false;
4423
4424 if (csts == ~0)
4425 return false;
4426
4427 return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
4428 }
4429
nvme_get_fw_slot_info(struct nvme_ctrl * ctrl)4430 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
4431 {
4432 struct nvme_fw_slot_info_log *log;
4433 u8 next_fw_slot, cur_fw_slot;
4434
4435 log = kmalloc(sizeof(*log), GFP_KERNEL);
4436 if (!log)
4437 return;
4438
4439 if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, NVME_CSI_NVM,
4440 log, sizeof(*log), 0)) {
4441 dev_warn(ctrl->device, "Get FW SLOT INFO log error\n");
4442 goto out_free_log;
4443 }
4444
4445 cur_fw_slot = log->afi & 0x7;
4446 next_fw_slot = (log->afi & 0x70) >> 4;
4447 if (!cur_fw_slot || (next_fw_slot && (cur_fw_slot != next_fw_slot))) {
4448 dev_info(ctrl->device,
4449 "Firmware is activated after next Controller Level Reset\n");
4450 goto out_free_log;
4451 }
4452
4453 memcpy(ctrl->subsys->firmware_rev, &log->frs[cur_fw_slot - 1],
4454 sizeof(ctrl->subsys->firmware_rev));
4455
4456 out_free_log:
4457 kfree(log);
4458 }
4459
nvme_fw_act_work(struct work_struct * work)4460 static void nvme_fw_act_work(struct work_struct *work)
4461 {
4462 struct nvme_ctrl *ctrl = container_of(work,
4463 struct nvme_ctrl, fw_act_work);
4464 unsigned long fw_act_timeout;
4465
4466 nvme_auth_stop(ctrl);
4467
4468 if (ctrl->mtfa)
4469 fw_act_timeout = jiffies +
4470 msecs_to_jiffies(ctrl->mtfa * 100);
4471 else
4472 fw_act_timeout = jiffies +
4473 msecs_to_jiffies(admin_timeout * 1000);
4474
4475 nvme_quiesce_io_queues(ctrl);
4476 while (nvme_ctrl_pp_status(ctrl)) {
4477 if (time_after(jiffies, fw_act_timeout)) {
4478 dev_warn(ctrl->device,
4479 "Fw activation timeout, reset controller\n");
4480 nvme_try_sched_reset(ctrl);
4481 return;
4482 }
4483 msleep(100);
4484 }
4485
4486 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE))
4487 return;
4488
4489 nvme_unquiesce_io_queues(ctrl);
4490 /* read FW slot information to clear the AER */
4491 nvme_get_fw_slot_info(ctrl);
4492
4493 queue_work(nvme_wq, &ctrl->async_event_work);
4494 }
4495
nvme_aer_type(u32 result)4496 static u32 nvme_aer_type(u32 result)
4497 {
4498 return result & 0x7;
4499 }
4500
nvme_aer_subtype(u32 result)4501 static u32 nvme_aer_subtype(u32 result)
4502 {
4503 return (result & 0xff00) >> 8;
4504 }
4505
nvme_handle_aen_notice(struct nvme_ctrl * ctrl,u32 result)4506 static bool nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result)
4507 {
4508 u32 aer_notice_type = nvme_aer_subtype(result);
4509 bool requeue = true;
4510
4511 switch (aer_notice_type) {
4512 case NVME_AER_NOTICE_NS_CHANGED:
4513 set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events);
4514 nvme_queue_scan(ctrl);
4515 break;
4516 case NVME_AER_NOTICE_FW_ACT_STARTING:
4517 /*
4518 * We are (ab)using the RESETTING state to prevent subsequent
4519 * recovery actions from interfering with the controller's
4520 * firmware activation.
4521 */
4522 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) {
4523 requeue = false;
4524 queue_work(nvme_wq, &ctrl->fw_act_work);
4525 }
4526 break;
4527 #ifdef CONFIG_NVME_MULTIPATH
4528 case NVME_AER_NOTICE_ANA:
4529 if (!ctrl->ana_log_buf)
4530 break;
4531 queue_work(nvme_wq, &ctrl->ana_work);
4532 break;
4533 #endif
4534 case NVME_AER_NOTICE_DISC_CHANGED:
4535 ctrl->aen_result = result;
4536 break;
4537 default:
4538 dev_warn(ctrl->device, "async event result %08x\n", result);
4539 }
4540 return requeue;
4541 }
4542
nvme_handle_aer_persistent_error(struct nvme_ctrl * ctrl)4543 static void nvme_handle_aer_persistent_error(struct nvme_ctrl *ctrl)
4544 {
4545 dev_warn(ctrl->device,
4546 "resetting controller due to persistent internal error\n");
4547 nvme_reset_ctrl(ctrl);
4548 }
4549
nvme_complete_async_event(struct nvme_ctrl * ctrl,__le16 status,volatile union nvme_result * res)4550 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
4551 volatile union nvme_result *res)
4552 {
4553 u32 result = le32_to_cpu(res->u32);
4554 u32 aer_type = nvme_aer_type(result);
4555 u32 aer_subtype = nvme_aer_subtype(result);
4556 bool requeue = true;
4557
4558 if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
4559 return;
4560
4561 trace_nvme_async_event(ctrl, result);
4562 switch (aer_type) {
4563 case NVME_AER_NOTICE:
4564 requeue = nvme_handle_aen_notice(ctrl, result);
4565 break;
4566 case NVME_AER_ERROR:
4567 /*
4568 * For a persistent internal error, don't run async_event_work
4569 * to submit a new AER. The controller reset will do it.
4570 */
4571 if (aer_subtype == NVME_AER_ERROR_PERSIST_INT_ERR) {
4572 nvme_handle_aer_persistent_error(ctrl);
4573 return;
4574 }
4575 fallthrough;
4576 case NVME_AER_SMART:
4577 case NVME_AER_CSS:
4578 case NVME_AER_VS:
4579 ctrl->aen_result = result;
4580 break;
4581 default:
4582 break;
4583 }
4584
4585 if (requeue)
4586 queue_work(nvme_wq, &ctrl->async_event_work);
4587 }
4588 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
4589
nvme_alloc_admin_tag_set(struct nvme_ctrl * ctrl,struct blk_mq_tag_set * set,const struct blk_mq_ops * ops,unsigned int cmd_size)4590 int nvme_alloc_admin_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set,
4591 const struct blk_mq_ops *ops, unsigned int cmd_size)
4592 {
4593 struct queue_limits lim = {};
4594 int ret;
4595
4596 memset(set, 0, sizeof(*set));
4597 set->ops = ops;
4598 set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
4599 if (ctrl->ops->flags & NVME_F_FABRICS)
4600 /* Reserved for fabric connect and keep alive */
4601 set->reserved_tags = 2;
4602 set->numa_node = ctrl->numa_node;
4603 if (ctrl->ops->flags & NVME_F_BLOCKING)
4604 set->flags |= BLK_MQ_F_BLOCKING;
4605 set->cmd_size = cmd_size;
4606 set->driver_data = ctrl;
4607 set->nr_hw_queues = 1;
4608 set->timeout = NVME_ADMIN_TIMEOUT;
4609 ret = blk_mq_alloc_tag_set(set);
4610 if (ret)
4611 return ret;
4612
4613 ctrl->admin_q = blk_mq_alloc_queue(set, &lim, NULL);
4614 if (IS_ERR(ctrl->admin_q)) {
4615 ret = PTR_ERR(ctrl->admin_q);
4616 goto out_free_tagset;
4617 }
4618
4619 if (ctrl->ops->flags & NVME_F_FABRICS) {
4620 ctrl->fabrics_q = blk_mq_alloc_queue(set, NULL, NULL);
4621 if (IS_ERR(ctrl->fabrics_q)) {
4622 ret = PTR_ERR(ctrl->fabrics_q);
4623 goto out_cleanup_admin_q;
4624 }
4625 }
4626
4627 ctrl->admin_tagset = set;
4628 return 0;
4629
4630 out_cleanup_admin_q:
4631 blk_mq_destroy_queue(ctrl->admin_q);
4632 blk_put_queue(ctrl->admin_q);
4633 out_free_tagset:
4634 blk_mq_free_tag_set(set);
4635 ctrl->admin_q = NULL;
4636 ctrl->fabrics_q = NULL;
4637 return ret;
4638 }
4639 EXPORT_SYMBOL_GPL(nvme_alloc_admin_tag_set);
4640
nvme_remove_admin_tag_set(struct nvme_ctrl * ctrl)4641 void nvme_remove_admin_tag_set(struct nvme_ctrl *ctrl)
4642 {
4643 /*
4644 * As we're about to destroy the queue and free tagset
4645 * we can not have keep-alive work running.
4646 */
4647 nvme_stop_keep_alive(ctrl);
4648 blk_mq_destroy_queue(ctrl->admin_q);
4649 blk_put_queue(ctrl->admin_q);
4650 if (ctrl->ops->flags & NVME_F_FABRICS) {
4651 blk_mq_destroy_queue(ctrl->fabrics_q);
4652 blk_put_queue(ctrl->fabrics_q);
4653 }
4654 blk_mq_free_tag_set(ctrl->admin_tagset);
4655 }
4656 EXPORT_SYMBOL_GPL(nvme_remove_admin_tag_set);
4657
nvme_alloc_io_tag_set(struct nvme_ctrl * ctrl,struct blk_mq_tag_set * set,const struct blk_mq_ops * ops,unsigned int nr_maps,unsigned int cmd_size)4658 int nvme_alloc_io_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set,
4659 const struct blk_mq_ops *ops, unsigned int nr_maps,
4660 unsigned int cmd_size)
4661 {
4662 int ret;
4663
4664 memset(set, 0, sizeof(*set));
4665 set->ops = ops;
4666 set->queue_depth = min_t(unsigned, ctrl->sqsize, BLK_MQ_MAX_DEPTH - 1);
4667 /*
4668 * Some Apple controllers requires tags to be unique across admin and
4669 * the (only) I/O queue, so reserve the first 32 tags of the I/O queue.
4670 */
4671 if (ctrl->quirks & NVME_QUIRK_SHARED_TAGS)
4672 set->reserved_tags = NVME_AQ_DEPTH;
4673 else if (ctrl->ops->flags & NVME_F_FABRICS)
4674 /* Reserved for fabric connect */
4675 set->reserved_tags = 1;
4676 set->numa_node = ctrl->numa_node;
4677 if (ctrl->ops->flags & NVME_F_BLOCKING)
4678 set->flags |= BLK_MQ_F_BLOCKING;
4679 set->cmd_size = cmd_size;
4680 set->driver_data = ctrl;
4681 set->nr_hw_queues = ctrl->queue_count - 1;
4682 set->timeout = NVME_IO_TIMEOUT;
4683 set->nr_maps = nr_maps;
4684 ret = blk_mq_alloc_tag_set(set);
4685 if (ret)
4686 return ret;
4687
4688 if (ctrl->ops->flags & NVME_F_FABRICS) {
4689 struct queue_limits lim = {
4690 .features = BLK_FEAT_SKIP_TAGSET_QUIESCE,
4691 };
4692
4693 ctrl->connect_q = blk_mq_alloc_queue(set, &lim, NULL);
4694 if (IS_ERR(ctrl->connect_q)) {
4695 ret = PTR_ERR(ctrl->connect_q);
4696 goto out_free_tag_set;
4697 }
4698 }
4699
4700 ctrl->tagset = set;
4701 return 0;
4702
4703 out_free_tag_set:
4704 blk_mq_free_tag_set(set);
4705 ctrl->connect_q = NULL;
4706 return ret;
4707 }
4708 EXPORT_SYMBOL_GPL(nvme_alloc_io_tag_set);
4709
nvme_remove_io_tag_set(struct nvme_ctrl * ctrl)4710 void nvme_remove_io_tag_set(struct nvme_ctrl *ctrl)
4711 {
4712 if (ctrl->ops->flags & NVME_F_FABRICS) {
4713 blk_mq_destroy_queue(ctrl->connect_q);
4714 blk_put_queue(ctrl->connect_q);
4715 }
4716 blk_mq_free_tag_set(ctrl->tagset);
4717 }
4718 EXPORT_SYMBOL_GPL(nvme_remove_io_tag_set);
4719
nvme_stop_ctrl(struct nvme_ctrl * ctrl)4720 void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
4721 {
4722 nvme_mpath_stop(ctrl);
4723 nvme_auth_stop(ctrl);
4724 nvme_stop_failfast_work(ctrl);
4725 flush_work(&ctrl->async_event_work);
4726 cancel_work_sync(&ctrl->fw_act_work);
4727 if (ctrl->ops->stop_ctrl)
4728 ctrl->ops->stop_ctrl(ctrl);
4729 }
4730 EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
4731
nvme_start_ctrl(struct nvme_ctrl * ctrl)4732 void nvme_start_ctrl(struct nvme_ctrl *ctrl)
4733 {
4734 nvme_enable_aen(ctrl);
4735
4736 /*
4737 * persistent discovery controllers need to send indication to userspace
4738 * to re-read the discovery log page to learn about possible changes
4739 * that were missed. We identify persistent discovery controllers by
4740 * checking that they started once before, hence are reconnecting back.
4741 */
4742 if (test_bit(NVME_CTRL_STARTED_ONCE, &ctrl->flags) &&
4743 nvme_discovery_ctrl(ctrl))
4744 nvme_change_uevent(ctrl, "NVME_EVENT=rediscover");
4745
4746 if (ctrl->queue_count > 1) {
4747 nvme_queue_scan(ctrl);
4748 nvme_unquiesce_io_queues(ctrl);
4749 nvme_mpath_update(ctrl);
4750 }
4751
4752 nvme_change_uevent(ctrl, "NVME_EVENT=connected");
4753 set_bit(NVME_CTRL_STARTED_ONCE, &ctrl->flags);
4754 }
4755 EXPORT_SYMBOL_GPL(nvme_start_ctrl);
4756
nvme_uninit_ctrl(struct nvme_ctrl * ctrl)4757 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
4758 {
4759 nvme_stop_keep_alive(ctrl);
4760 nvme_hwmon_exit(ctrl);
4761 nvme_fault_inject_fini(&ctrl->fault_inject);
4762 dev_pm_qos_hide_latency_tolerance(ctrl->device);
4763 cdev_device_del(&ctrl->cdev, ctrl->device);
4764 nvme_put_ctrl(ctrl);
4765 }
4766 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
4767
nvme_free_cels(struct nvme_ctrl * ctrl)4768 static void nvme_free_cels(struct nvme_ctrl *ctrl)
4769 {
4770 struct nvme_effects_log *cel;
4771 unsigned long i;
4772
4773 xa_for_each(&ctrl->cels, i, cel) {
4774 xa_erase(&ctrl->cels, i);
4775 kfree(cel);
4776 }
4777
4778 xa_destroy(&ctrl->cels);
4779 }
4780
nvme_free_ctrl(struct device * dev)4781 static void nvme_free_ctrl(struct device *dev)
4782 {
4783 struct nvme_ctrl *ctrl =
4784 container_of(dev, struct nvme_ctrl, ctrl_device);
4785 struct nvme_subsystem *subsys = ctrl->subsys;
4786
4787 if (!subsys || ctrl->instance != subsys->instance)
4788 ida_free(&nvme_instance_ida, ctrl->instance);
4789 nvme_free_cels(ctrl);
4790 nvme_mpath_uninit(ctrl);
4791 cleanup_srcu_struct(&ctrl->srcu);
4792 nvme_auth_stop(ctrl);
4793 nvme_auth_free(ctrl);
4794 __free_page(ctrl->discard_page);
4795 free_opal_dev(ctrl->opal_dev);
4796
4797 if (subsys) {
4798 mutex_lock(&nvme_subsystems_lock);
4799 list_del(&ctrl->subsys_entry);
4800 sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
4801 mutex_unlock(&nvme_subsystems_lock);
4802 }
4803
4804 ctrl->ops->free_ctrl(ctrl);
4805
4806 if (subsys)
4807 nvme_put_subsystem(subsys);
4808 }
4809
4810 /*
4811 * Initialize a NVMe controller structures. This needs to be called during
4812 * earliest initialization so that we have the initialized structured around
4813 * during probing.
4814 *
4815 * On success, the caller must use the nvme_put_ctrl() to release this when
4816 * needed, which also invokes the ops->free_ctrl() callback.
4817 */
nvme_init_ctrl(struct nvme_ctrl * ctrl,struct device * dev,const struct nvme_ctrl_ops * ops,unsigned long quirks)4818 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
4819 const struct nvme_ctrl_ops *ops, unsigned long quirks)
4820 {
4821 int ret;
4822
4823 WRITE_ONCE(ctrl->state, NVME_CTRL_NEW);
4824 ctrl->passthru_err_log_enabled = false;
4825 clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
4826 spin_lock_init(&ctrl->lock);
4827 mutex_init(&ctrl->namespaces_lock);
4828
4829 ret = init_srcu_struct(&ctrl->srcu);
4830 if (ret)
4831 return ret;
4832
4833 mutex_init(&ctrl->scan_lock);
4834 INIT_LIST_HEAD(&ctrl->namespaces);
4835 xa_init(&ctrl->cels);
4836 ctrl->dev = dev;
4837 ctrl->ops = ops;
4838 ctrl->quirks = quirks;
4839 ctrl->numa_node = NUMA_NO_NODE;
4840 INIT_WORK(&ctrl->scan_work, nvme_scan_work);
4841 INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
4842 INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
4843 INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
4844 init_waitqueue_head(&ctrl->state_wq);
4845
4846 INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
4847 INIT_DELAYED_WORK(&ctrl->failfast_work, nvme_failfast_work);
4848 memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
4849 ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
4850 ctrl->ka_last_check_time = jiffies;
4851
4852 BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) >
4853 PAGE_SIZE);
4854 ctrl->discard_page = alloc_page(GFP_KERNEL);
4855 if (!ctrl->discard_page) {
4856 ret = -ENOMEM;
4857 goto out;
4858 }
4859
4860 ret = ida_alloc(&nvme_instance_ida, GFP_KERNEL);
4861 if (ret < 0)
4862 goto out;
4863 ctrl->instance = ret;
4864
4865 ret = nvme_auth_init_ctrl(ctrl);
4866 if (ret)
4867 goto out_release_instance;
4868
4869 nvme_mpath_init_ctrl(ctrl);
4870
4871 device_initialize(&ctrl->ctrl_device);
4872 ctrl->device = &ctrl->ctrl_device;
4873 ctrl->device->devt = MKDEV(MAJOR(nvme_ctrl_base_chr_devt),
4874 ctrl->instance);
4875 ctrl->device->class = &nvme_class;
4876 ctrl->device->parent = ctrl->dev;
4877 if (ops->dev_attr_groups)
4878 ctrl->device->groups = ops->dev_attr_groups;
4879 else
4880 ctrl->device->groups = nvme_dev_attr_groups;
4881 ctrl->device->release = nvme_free_ctrl;
4882 dev_set_drvdata(ctrl->device, ctrl);
4883
4884 return ret;
4885
4886 out_release_instance:
4887 ida_free(&nvme_instance_ida, ctrl->instance);
4888 out:
4889 if (ctrl->discard_page)
4890 __free_page(ctrl->discard_page);
4891 cleanup_srcu_struct(&ctrl->srcu);
4892 return ret;
4893 }
4894 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
4895
4896 /*
4897 * On success, returns with an elevated controller reference and caller must
4898 * use nvme_uninit_ctrl() to properly free resources associated with the ctrl.
4899 */
nvme_add_ctrl(struct nvme_ctrl * ctrl)4900 int nvme_add_ctrl(struct nvme_ctrl *ctrl)
4901 {
4902 int ret;
4903
4904 ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
4905 if (ret)
4906 return ret;
4907
4908 cdev_init(&ctrl->cdev, &nvme_dev_fops);
4909 ctrl->cdev.owner = ctrl->ops->module;
4910 ret = cdev_device_add(&ctrl->cdev, ctrl->device);
4911 if (ret)
4912 return ret;
4913
4914 /*
4915 * Initialize latency tolerance controls. The sysfs files won't
4916 * be visible to userspace unless the device actually supports APST.
4917 */
4918 ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
4919 dev_pm_qos_update_user_latency_tolerance(ctrl->device,
4920 min(default_ps_max_latency_us, (unsigned long)S32_MAX));
4921
4922 nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device));
4923 nvme_get_ctrl(ctrl);
4924
4925 return 0;
4926 }
4927 EXPORT_SYMBOL_GPL(nvme_add_ctrl);
4928
4929 /* let I/O to all namespaces fail in preparation for surprise removal */
nvme_mark_namespaces_dead(struct nvme_ctrl * ctrl)4930 void nvme_mark_namespaces_dead(struct nvme_ctrl *ctrl)
4931 {
4932 struct nvme_ns *ns;
4933 int srcu_idx;
4934
4935 srcu_idx = srcu_read_lock(&ctrl->srcu);
4936 list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
4937 srcu_read_lock_held(&ctrl->srcu))
4938 blk_mark_disk_dead(ns->disk);
4939 srcu_read_unlock(&ctrl->srcu, srcu_idx);
4940 }
4941 EXPORT_SYMBOL_GPL(nvme_mark_namespaces_dead);
4942
nvme_unfreeze(struct nvme_ctrl * ctrl)4943 void nvme_unfreeze(struct nvme_ctrl *ctrl)
4944 {
4945 struct nvme_ns *ns;
4946 int srcu_idx;
4947
4948 srcu_idx = srcu_read_lock(&ctrl->srcu);
4949 list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
4950 srcu_read_lock_held(&ctrl->srcu))
4951 blk_mq_unfreeze_queue_non_owner(ns->queue);
4952 srcu_read_unlock(&ctrl->srcu, srcu_idx);
4953 clear_bit(NVME_CTRL_FROZEN, &ctrl->flags);
4954 }
4955 EXPORT_SYMBOL_GPL(nvme_unfreeze);
4956
nvme_wait_freeze_timeout(struct nvme_ctrl * ctrl,long timeout)4957 int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
4958 {
4959 struct nvme_ns *ns;
4960 int srcu_idx;
4961
4962 srcu_idx = srcu_read_lock(&ctrl->srcu);
4963 list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
4964 srcu_read_lock_held(&ctrl->srcu)) {
4965 timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
4966 if (timeout <= 0)
4967 break;
4968 }
4969 srcu_read_unlock(&ctrl->srcu, srcu_idx);
4970 return timeout;
4971 }
4972 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
4973
nvme_wait_freeze(struct nvme_ctrl * ctrl)4974 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
4975 {
4976 struct nvme_ns *ns;
4977 int srcu_idx;
4978
4979 srcu_idx = srcu_read_lock(&ctrl->srcu);
4980 list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
4981 srcu_read_lock_held(&ctrl->srcu))
4982 blk_mq_freeze_queue_wait(ns->queue);
4983 srcu_read_unlock(&ctrl->srcu, srcu_idx);
4984 }
4985 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
4986
nvme_start_freeze(struct nvme_ctrl * ctrl)4987 void nvme_start_freeze(struct nvme_ctrl *ctrl)
4988 {
4989 struct nvme_ns *ns;
4990 int srcu_idx;
4991
4992 set_bit(NVME_CTRL_FROZEN, &ctrl->flags);
4993 srcu_idx = srcu_read_lock(&ctrl->srcu);
4994 list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
4995 srcu_read_lock_held(&ctrl->srcu))
4996 /*
4997 * Typical non_owner use case is from pci driver, in which
4998 * start_freeze is called from timeout work function, but
4999 * unfreeze is done in reset work context
5000 */
5001 blk_freeze_queue_start_non_owner(ns->queue);
5002 srcu_read_unlock(&ctrl->srcu, srcu_idx);
5003 }
5004 EXPORT_SYMBOL_GPL(nvme_start_freeze);
5005
nvme_quiesce_io_queues(struct nvme_ctrl * ctrl)5006 void nvme_quiesce_io_queues(struct nvme_ctrl *ctrl)
5007 {
5008 if (!ctrl->tagset)
5009 return;
5010 if (!test_and_set_bit(NVME_CTRL_STOPPED, &ctrl->flags))
5011 blk_mq_quiesce_tagset(ctrl->tagset);
5012 else
5013 blk_mq_wait_quiesce_done(ctrl->tagset);
5014 }
5015 EXPORT_SYMBOL_GPL(nvme_quiesce_io_queues);
5016
nvme_unquiesce_io_queues(struct nvme_ctrl * ctrl)5017 void nvme_unquiesce_io_queues(struct nvme_ctrl *ctrl)
5018 {
5019 if (!ctrl->tagset)
5020 return;
5021 if (test_and_clear_bit(NVME_CTRL_STOPPED, &ctrl->flags))
5022 blk_mq_unquiesce_tagset(ctrl->tagset);
5023 }
5024 EXPORT_SYMBOL_GPL(nvme_unquiesce_io_queues);
5025
nvme_quiesce_admin_queue(struct nvme_ctrl * ctrl)5026 void nvme_quiesce_admin_queue(struct nvme_ctrl *ctrl)
5027 {
5028 if (!test_and_set_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags))
5029 blk_mq_quiesce_queue(ctrl->admin_q);
5030 else
5031 blk_mq_wait_quiesce_done(ctrl->admin_q->tag_set);
5032 }
5033 EXPORT_SYMBOL_GPL(nvme_quiesce_admin_queue);
5034
nvme_unquiesce_admin_queue(struct nvme_ctrl * ctrl)5035 void nvme_unquiesce_admin_queue(struct nvme_ctrl *ctrl)
5036 {
5037 if (test_and_clear_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags))
5038 blk_mq_unquiesce_queue(ctrl->admin_q);
5039 }
5040 EXPORT_SYMBOL_GPL(nvme_unquiesce_admin_queue);
5041
nvme_sync_io_queues(struct nvme_ctrl * ctrl)5042 void nvme_sync_io_queues(struct nvme_ctrl *ctrl)
5043 {
5044 struct nvme_ns *ns;
5045 int srcu_idx;
5046
5047 srcu_idx = srcu_read_lock(&ctrl->srcu);
5048 list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
5049 srcu_read_lock_held(&ctrl->srcu))
5050 blk_sync_queue(ns->queue);
5051 srcu_read_unlock(&ctrl->srcu, srcu_idx);
5052 }
5053 EXPORT_SYMBOL_GPL(nvme_sync_io_queues);
5054
nvme_sync_queues(struct nvme_ctrl * ctrl)5055 void nvme_sync_queues(struct nvme_ctrl *ctrl)
5056 {
5057 nvme_sync_io_queues(ctrl);
5058 if (ctrl->admin_q)
5059 blk_sync_queue(ctrl->admin_q);
5060 }
5061 EXPORT_SYMBOL_GPL(nvme_sync_queues);
5062
nvme_ctrl_from_file(struct file * file)5063 struct nvme_ctrl *nvme_ctrl_from_file(struct file *file)
5064 {
5065 if (file->f_op != &nvme_dev_fops)
5066 return NULL;
5067 return file->private_data;
5068 }
5069 EXPORT_SYMBOL_NS_GPL(nvme_ctrl_from_file, "NVME_TARGET_PASSTHRU");
5070
5071 /*
5072 * Check we didn't inadvertently grow the command structure sizes:
5073 */
_nvme_check_size(void)5074 static inline void _nvme_check_size(void)
5075 {
5076 BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64);
5077 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
5078 BUILD_BUG_ON(sizeof(struct nvme_identify) != 64);
5079 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
5080 BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64);
5081 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
5082 BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64);
5083 BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64);
5084 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
5085 BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64);
5086 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
5087 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
5088 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
5089 BUILD_BUG_ON(sizeof(struct nvme_id_ns_cs_indep) !=
5090 NVME_IDENTIFY_DATA_SIZE);
5091 BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE);
5092 BUILD_BUG_ON(sizeof(struct nvme_id_ns_nvm) != NVME_IDENTIFY_DATA_SIZE);
5093 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE);
5094 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_nvm) != NVME_IDENTIFY_DATA_SIZE);
5095 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
5096 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
5097 BUILD_BUG_ON(sizeof(struct nvme_endurance_group_log) != 512);
5098 BUILD_BUG_ON(sizeof(struct nvme_rotational_media_log) != 512);
5099 BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
5100 BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64);
5101 BUILD_BUG_ON(sizeof(struct nvme_feat_host_behavior) != 512);
5102 }
5103
5104
nvme_core_init(void)5105 static int __init nvme_core_init(void)
5106 {
5107 unsigned int wq_flags = WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS;
5108 int result = -ENOMEM;
5109
5110 _nvme_check_size();
5111
5112 nvme_wq = alloc_workqueue("nvme-wq", wq_flags, 0);
5113 if (!nvme_wq)
5114 goto out;
5115
5116 nvme_reset_wq = alloc_workqueue("nvme-reset-wq", wq_flags, 0);
5117 if (!nvme_reset_wq)
5118 goto destroy_wq;
5119
5120 nvme_delete_wq = alloc_workqueue("nvme-delete-wq", wq_flags, 0);
5121 if (!nvme_delete_wq)
5122 goto destroy_reset_wq;
5123
5124 result = alloc_chrdev_region(&nvme_ctrl_base_chr_devt, 0,
5125 NVME_MINORS, "nvme");
5126 if (result < 0)
5127 goto destroy_delete_wq;
5128
5129 result = class_register(&nvme_class);
5130 if (result)
5131 goto unregister_chrdev;
5132
5133 result = class_register(&nvme_subsys_class);
5134 if (result)
5135 goto destroy_class;
5136
5137 result = alloc_chrdev_region(&nvme_ns_chr_devt, 0, NVME_MINORS,
5138 "nvme-generic");
5139 if (result < 0)
5140 goto destroy_subsys_class;
5141
5142 result = class_register(&nvme_ns_chr_class);
5143 if (result)
5144 goto unregister_generic_ns;
5145
5146 result = nvme_init_auth();
5147 if (result)
5148 goto destroy_ns_chr;
5149 return 0;
5150
5151 destroy_ns_chr:
5152 class_unregister(&nvme_ns_chr_class);
5153 unregister_generic_ns:
5154 unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
5155 destroy_subsys_class:
5156 class_unregister(&nvme_subsys_class);
5157 destroy_class:
5158 class_unregister(&nvme_class);
5159 unregister_chrdev:
5160 unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
5161 destroy_delete_wq:
5162 destroy_workqueue(nvme_delete_wq);
5163 destroy_reset_wq:
5164 destroy_workqueue(nvme_reset_wq);
5165 destroy_wq:
5166 destroy_workqueue(nvme_wq);
5167 out:
5168 return result;
5169 }
5170
nvme_core_exit(void)5171 static void __exit nvme_core_exit(void)
5172 {
5173 nvme_exit_auth();
5174 class_unregister(&nvme_ns_chr_class);
5175 class_unregister(&nvme_subsys_class);
5176 class_unregister(&nvme_class);
5177 unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
5178 unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
5179 destroy_workqueue(nvme_delete_wq);
5180 destroy_workqueue(nvme_reset_wq);
5181 destroy_workqueue(nvme_wq);
5182 ida_destroy(&nvme_ns_chr_minor_ida);
5183 ida_destroy(&nvme_instance_ida);
5184 }
5185
5186 MODULE_LICENSE("GPL");
5187 MODULE_VERSION("1.0");
5188 MODULE_DESCRIPTION("NVMe host core framework");
5189 module_init(nvme_core_init);
5190 module_exit(nvme_core_exit);
5191