1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Applied Micro X-Gene SoC DMA engine Driver
4 *
5 * Copyright (c) 2015, Applied Micro Circuits Corporation
6 * Authors: Rameshwar Prasad Sahu <rsahu@apm.com>
7 * Loc Ho <lho@apm.com>
8 *
9 * NOTE: PM support is currently not available.
10 */
11
12 #include <linux/acpi.h>
13 #include <linux/clk.h>
14 #include <linux/delay.h>
15 #include <linux/dma-mapping.h>
16 #include <linux/dmaengine.h>
17 #include <linux/dmapool.h>
18 #include <linux/interrupt.h>
19 #include <linux/io.h>
20 #include <linux/irq.h>
21 #include <linux/mod_devicetable.h>
22 #include <linux/module.h>
23 #include <linux/platform_device.h>
24
25 #include "dmaengine.h"
26
27 /* X-Gene DMA ring csr registers and bit definations */
28 #define XGENE_DMA_RING_CONFIG 0x04
29 #define XGENE_DMA_RING_ENABLE BIT(31)
30 #define XGENE_DMA_RING_ID 0x08
31 #define XGENE_DMA_RING_ID_SETUP(v) ((v) | BIT(31))
32 #define XGENE_DMA_RING_ID_BUF 0x0C
33 #define XGENE_DMA_RING_ID_BUF_SETUP(v) (((v) << 9) | BIT(21))
34 #define XGENE_DMA_RING_THRESLD0_SET1 0x30
35 #define XGENE_DMA_RING_THRESLD0_SET1_VAL 0X64
36 #define XGENE_DMA_RING_THRESLD1_SET1 0x34
37 #define XGENE_DMA_RING_THRESLD1_SET1_VAL 0xC8
38 #define XGENE_DMA_RING_HYSTERESIS 0x68
39 #define XGENE_DMA_RING_HYSTERESIS_VAL 0xFFFFFFFF
40 #define XGENE_DMA_RING_STATE 0x6C
41 #define XGENE_DMA_RING_STATE_WR_BASE 0x70
42 #define XGENE_DMA_RING_NE_INT_MODE 0x017C
43 #define XGENE_DMA_RING_NE_INT_MODE_SET(m, v) \
44 ((m) = ((m) & ~BIT(31 - (v))) | BIT(31 - (v)))
45 #define XGENE_DMA_RING_NE_INT_MODE_RESET(m, v) \
46 ((m) &= (~BIT(31 - (v))))
47 #define XGENE_DMA_RING_CLKEN 0xC208
48 #define XGENE_DMA_RING_SRST 0xC200
49 #define XGENE_DMA_RING_MEM_RAM_SHUTDOWN 0xD070
50 #define XGENE_DMA_RING_BLK_MEM_RDY 0xD074
51 #define XGENE_DMA_RING_BLK_MEM_RDY_VAL 0xFFFFFFFF
52 #define XGENE_DMA_RING_ID_GET(owner, num) (((owner) << 6) | (num))
53 #define XGENE_DMA_RING_DST_ID(v) ((1 << 10) | (v))
54 #define XGENE_DMA_RING_CMD_OFFSET 0x2C
55 #define XGENE_DMA_RING_CMD_BASE_OFFSET(v) ((v) << 6)
56 #define XGENE_DMA_RING_COHERENT_SET(m) \
57 (((u32 *)(m))[2] |= BIT(4))
58 #define XGENE_DMA_RING_ADDRL_SET(m, v) \
59 (((u32 *)(m))[2] |= (((v) >> 8) << 5))
60 #define XGENE_DMA_RING_ADDRH_SET(m, v) \
61 (((u32 *)(m))[3] |= ((v) >> 35))
62 #define XGENE_DMA_RING_ACCEPTLERR_SET(m) \
63 (((u32 *)(m))[3] |= BIT(19))
64 #define XGENE_DMA_RING_SIZE_SET(m, v) \
65 (((u32 *)(m))[3] |= ((v) << 23))
66 #define XGENE_DMA_RING_RECOMBBUF_SET(m) \
67 (((u32 *)(m))[3] |= BIT(27))
68 #define XGENE_DMA_RING_RECOMTIMEOUTL_SET(m) \
69 (((u32 *)(m))[3] |= (0x7 << 28))
70 #define XGENE_DMA_RING_RECOMTIMEOUTH_SET(m) \
71 (((u32 *)(m))[4] |= 0x3)
72 #define XGENE_DMA_RING_SELTHRSH_SET(m) \
73 (((u32 *)(m))[4] |= BIT(3))
74 #define XGENE_DMA_RING_TYPE_SET(m, v) \
75 (((u32 *)(m))[4] |= ((v) << 19))
76
77 /* X-Gene DMA device csr registers and bit definitions */
78 #define XGENE_DMA_IPBRR 0x0
79 #define XGENE_DMA_DEV_ID_RD(v) ((v) & 0x00000FFF)
80 #define XGENE_DMA_BUS_ID_RD(v) (((v) >> 12) & 3)
81 #define XGENE_DMA_REV_NO_RD(v) (((v) >> 14) & 3)
82 #define XGENE_DMA_GCR 0x10
83 #define XGENE_DMA_CH_SETUP(v) \
84 ((v) = ((v) & ~0x000FFFFF) | 0x000AAFFF)
85 #define XGENE_DMA_ENABLE(v) ((v) |= BIT(31))
86 #define XGENE_DMA_DISABLE(v) ((v) &= ~BIT(31))
87 #define XGENE_DMA_RAID6_CONT 0x14
88 #define XGENE_DMA_RAID6_MULTI_CTRL(v) ((v) << 24)
89 #define XGENE_DMA_INT 0x70
90 #define XGENE_DMA_INT_MASK 0x74
91 #define XGENE_DMA_INT_ALL_MASK 0xFFFFFFFF
92 #define XGENE_DMA_INT_ALL_UNMASK 0x0
93 #define XGENE_DMA_INT_MASK_SHIFT 0x14
94 #define XGENE_DMA_RING_INT0_MASK 0x90A0
95 #define XGENE_DMA_RING_INT1_MASK 0x90A8
96 #define XGENE_DMA_RING_INT2_MASK 0x90B0
97 #define XGENE_DMA_RING_INT3_MASK 0x90B8
98 #define XGENE_DMA_RING_INT4_MASK 0x90C0
99 #define XGENE_DMA_CFG_RING_WQ_ASSOC 0x90E0
100 #define XGENE_DMA_ASSOC_RING_MNGR1 0xFFFFFFFF
101 #define XGENE_DMA_MEM_RAM_SHUTDOWN 0xD070
102 #define XGENE_DMA_BLK_MEM_RDY 0xD074
103 #define XGENE_DMA_BLK_MEM_RDY_VAL 0xFFFFFFFF
104 #define XGENE_DMA_RING_CMD_SM_OFFSET 0x8000
105
106 /* X-Gene SoC EFUSE csr register and bit defination */
107 #define XGENE_SOC_JTAG1_SHADOW 0x18
108 #define XGENE_DMA_PQ_DISABLE_MASK BIT(13)
109
110 /* X-Gene DMA Descriptor format */
111 #define XGENE_DMA_DESC_NV_BIT BIT_ULL(50)
112 #define XGENE_DMA_DESC_IN_BIT BIT_ULL(55)
113 #define XGENE_DMA_DESC_C_BIT BIT_ULL(63)
114 #define XGENE_DMA_DESC_DR_BIT BIT_ULL(61)
115 #define XGENE_DMA_DESC_ELERR_POS 46
116 #define XGENE_DMA_DESC_RTYPE_POS 56
117 #define XGENE_DMA_DESC_LERR_POS 60
118 #define XGENE_DMA_DESC_BUFLEN_POS 48
119 #define XGENE_DMA_DESC_HOENQ_NUM_POS 48
120 #define XGENE_DMA_DESC_ELERR_RD(m) \
121 (((m) >> XGENE_DMA_DESC_ELERR_POS) & 0x3)
122 #define XGENE_DMA_DESC_LERR_RD(m) \
123 (((m) >> XGENE_DMA_DESC_LERR_POS) & 0x7)
124 #define XGENE_DMA_DESC_STATUS(elerr, lerr) \
125 (((elerr) << 4) | (lerr))
126
127 /* X-Gene DMA descriptor empty s/w signature */
128 #define XGENE_DMA_DESC_EMPTY_SIGNATURE ~0ULL
129
130 /* X-Gene DMA configurable parameters defines */
131 #define XGENE_DMA_RING_NUM 512
132 #define XGENE_DMA_BUFNUM 0x0
133 #define XGENE_DMA_CPU_BUFNUM 0x18
134 #define XGENE_DMA_RING_OWNER_DMA 0x03
135 #define XGENE_DMA_RING_OWNER_CPU 0x0F
136 #define XGENE_DMA_RING_TYPE_REGULAR 0x01
137 #define XGENE_DMA_RING_WQ_DESC_SIZE 32 /* 32 Bytes */
138 #define XGENE_DMA_RING_NUM_CONFIG 5
139 #define XGENE_DMA_MAX_CHANNEL 4
140 #define XGENE_DMA_XOR_CHANNEL 0
141 #define XGENE_DMA_PQ_CHANNEL 1
142 #define XGENE_DMA_MAX_BYTE_CNT 0x4000 /* 16 KB */
143 #define XGENE_DMA_MAX_64B_DESC_BYTE_CNT 0x14000 /* 80 KB */
144 #define XGENE_DMA_MAX_XOR_SRC 5
145 #define XGENE_DMA_16K_BUFFER_LEN_CODE 0x0
146 #define XGENE_DMA_INVALID_LEN_CODE 0x7800000000000000ULL
147
148 /* X-Gene DMA descriptor error codes */
149 #define ERR_DESC_AXI 0x01
150 #define ERR_BAD_DESC 0x02
151 #define ERR_READ_DATA_AXI 0x03
152 #define ERR_WRITE_DATA_AXI 0x04
153 #define ERR_FBP_TIMEOUT 0x05
154 #define ERR_ECC 0x06
155 #define ERR_DIFF_SIZE 0x08
156 #define ERR_SCT_GAT_LEN 0x09
157 #define ERR_CRC_ERR 0x11
158 #define ERR_CHKSUM 0x12
159 #define ERR_DIF 0x13
160
161 /* X-Gene DMA error interrupt codes */
162 #define ERR_DIF_SIZE_INT 0x0
163 #define ERR_GS_ERR_INT 0x1
164 #define ERR_FPB_TIMEO_INT 0x2
165 #define ERR_WFIFO_OVF_INT 0x3
166 #define ERR_RFIFO_OVF_INT 0x4
167 #define ERR_WR_TIMEO_INT 0x5
168 #define ERR_RD_TIMEO_INT 0x6
169 #define ERR_WR_ERR_INT 0x7
170 #define ERR_RD_ERR_INT 0x8
171 #define ERR_BAD_DESC_INT 0x9
172 #define ERR_DESC_DST_INT 0xA
173 #define ERR_DESC_SRC_INT 0xB
174
175 /* X-Gene DMA flyby operation code */
176 #define FLYBY_2SRC_XOR 0x80
177 #define FLYBY_3SRC_XOR 0x90
178 #define FLYBY_4SRC_XOR 0xA0
179 #define FLYBY_5SRC_XOR 0xB0
180
181 /* X-Gene DMA SW descriptor flags */
182 #define XGENE_DMA_FLAG_64B_DESC BIT(0)
183
184 /* Define to dump X-Gene DMA descriptor */
185 #define XGENE_DMA_DESC_DUMP(desc, m) \
186 print_hex_dump(KERN_ERR, (m), \
187 DUMP_PREFIX_ADDRESS, 16, 8, (desc), 32, 0)
188
189 #define to_dma_desc_sw(tx) \
190 container_of(tx, struct xgene_dma_desc_sw, tx)
191 #define to_dma_chan(dchan) \
192 container_of(dchan, struct xgene_dma_chan, dma_chan)
193
194 #define chan_dbg(chan, fmt, arg...) \
195 dev_dbg(chan->dev, "%s: " fmt, chan->name, ##arg)
196 #define chan_err(chan, fmt, arg...) \
197 dev_err(chan->dev, "%s: " fmt, chan->name, ##arg)
198
199 struct xgene_dma_desc_hw {
200 __le64 m0;
201 __le64 m1;
202 __le64 m2;
203 __le64 m3;
204 };
205
206 enum xgene_dma_ring_cfgsize {
207 XGENE_DMA_RING_CFG_SIZE_512B,
208 XGENE_DMA_RING_CFG_SIZE_2KB,
209 XGENE_DMA_RING_CFG_SIZE_16KB,
210 XGENE_DMA_RING_CFG_SIZE_64KB,
211 XGENE_DMA_RING_CFG_SIZE_512KB,
212 XGENE_DMA_RING_CFG_SIZE_INVALID
213 };
214
215 struct xgene_dma_ring {
216 struct xgene_dma *pdma;
217 u8 buf_num;
218 u16 id;
219 u16 num;
220 u16 head;
221 u16 owner;
222 u16 slots;
223 u16 dst_ring_num;
224 u32 size;
225 void __iomem *cmd;
226 void __iomem *cmd_base;
227 dma_addr_t desc_paddr;
228 u32 state[XGENE_DMA_RING_NUM_CONFIG];
229 enum xgene_dma_ring_cfgsize cfgsize;
230 union {
231 void *desc_vaddr;
232 struct xgene_dma_desc_hw *desc_hw;
233 };
234 };
235
236 struct xgene_dma_desc_sw {
237 struct xgene_dma_desc_hw desc1;
238 struct xgene_dma_desc_hw desc2;
239 u32 flags;
240 struct list_head node;
241 struct list_head tx_list;
242 struct dma_async_tx_descriptor tx;
243 };
244
245 /**
246 * struct xgene_dma_chan - internal representation of an X-Gene DMA channel
247 * @dma_chan: dmaengine channel object member
248 * @pdma: X-Gene DMA device structure reference
249 * @dev: struct device reference for dma mapping api
250 * @id: raw id of this channel
251 * @rx_irq: channel IRQ
252 * @name: name of X-Gene DMA channel
253 * @lock: serializes enqueue/dequeue operations to the descriptor pool
254 * @pending: number of transaction request pushed to DMA controller for
255 * execution, but still waiting for completion,
256 * @max_outstanding: max number of outstanding request we can push to channel
257 * @ld_pending: descriptors which are queued to run, but have not yet been
258 * submitted to the hardware for execution
259 * @ld_running: descriptors which are currently being executing by the hardware
260 * @ld_completed: descriptors which have finished execution by the hardware.
261 * These descriptors have already had their cleanup actions run. They
262 * are waiting for the ACK bit to be set by the async tx API.
263 * @desc_pool: descriptor pool for DMA operations
264 * @tasklet: bottom half where all completed descriptors cleans
265 * @tx_ring: transmit ring descriptor that we use to prepare actual
266 * descriptors for further executions
267 * @rx_ring: receive ring descriptor that we use to get completed DMA
268 * descriptors during cleanup time
269 */
270 struct xgene_dma_chan {
271 struct dma_chan dma_chan;
272 struct xgene_dma *pdma;
273 struct device *dev;
274 int id;
275 int rx_irq;
276 char name[10];
277 spinlock_t lock;
278 int pending;
279 int max_outstanding;
280 struct list_head ld_pending;
281 struct list_head ld_running;
282 struct list_head ld_completed;
283 struct dma_pool *desc_pool;
284 struct tasklet_struct tasklet;
285 struct xgene_dma_ring tx_ring;
286 struct xgene_dma_ring rx_ring;
287 };
288
289 /**
290 * struct xgene_dma - internal representation of an X-Gene DMA device
291 * @dev: reference to this device's struct device
292 * @clk: reference to this device's clock
293 * @err_irq: DMA error irq number
294 * @ring_num: start id number for DMA ring
295 * @csr_dma: base for DMA register access
296 * @csr_ring: base for DMA ring register access
297 * @csr_ring_cmd: base for DMA ring command register access
298 * @csr_efuse: base for efuse register access
299 * @dma_dev: embedded struct dma_device
300 * @chan: reference to X-Gene DMA channels
301 */
302 struct xgene_dma {
303 struct device *dev;
304 struct clk *clk;
305 int err_irq;
306 int ring_num;
307 void __iomem *csr_dma;
308 void __iomem *csr_ring;
309 void __iomem *csr_ring_cmd;
310 void __iomem *csr_efuse;
311 struct dma_device dma_dev[XGENE_DMA_MAX_CHANNEL];
312 struct xgene_dma_chan chan[XGENE_DMA_MAX_CHANNEL];
313 };
314
315 static const char * const xgene_dma_desc_err[] = {
316 [ERR_DESC_AXI] = "AXI error when reading src/dst link list",
317 [ERR_BAD_DESC] = "ERR or El_ERR fields not set to zero in desc",
318 [ERR_READ_DATA_AXI] = "AXI error when reading data",
319 [ERR_WRITE_DATA_AXI] = "AXI error when writing data",
320 [ERR_FBP_TIMEOUT] = "Timeout on bufpool fetch",
321 [ERR_ECC] = "ECC double bit error",
322 [ERR_DIFF_SIZE] = "Bufpool too small to hold all the DIF result",
323 [ERR_SCT_GAT_LEN] = "Gather and scatter data length not same",
324 [ERR_CRC_ERR] = "CRC error",
325 [ERR_CHKSUM] = "Checksum error",
326 [ERR_DIF] = "DIF error",
327 };
328
329 static const char * const xgene_dma_err[] = {
330 [ERR_DIF_SIZE_INT] = "DIF size error",
331 [ERR_GS_ERR_INT] = "Gather scatter not same size error",
332 [ERR_FPB_TIMEO_INT] = "Free pool time out error",
333 [ERR_WFIFO_OVF_INT] = "Write FIFO over flow error",
334 [ERR_RFIFO_OVF_INT] = "Read FIFO over flow error",
335 [ERR_WR_TIMEO_INT] = "Write time out error",
336 [ERR_RD_TIMEO_INT] = "Read time out error",
337 [ERR_WR_ERR_INT] = "HBF bus write error",
338 [ERR_RD_ERR_INT] = "HBF bus read error",
339 [ERR_BAD_DESC_INT] = "Ring descriptor HE0 not set error",
340 [ERR_DESC_DST_INT] = "HFB reading dst link address error",
341 [ERR_DESC_SRC_INT] = "HFB reading src link address error",
342 };
343
is_pq_enabled(struct xgene_dma * pdma)344 static bool is_pq_enabled(struct xgene_dma *pdma)
345 {
346 u32 val;
347
348 val = ioread32(pdma->csr_efuse + XGENE_SOC_JTAG1_SHADOW);
349 return !(val & XGENE_DMA_PQ_DISABLE_MASK);
350 }
351
xgene_dma_encode_len(size_t len)352 static u64 xgene_dma_encode_len(size_t len)
353 {
354 return (len < XGENE_DMA_MAX_BYTE_CNT) ?
355 ((u64)len << XGENE_DMA_DESC_BUFLEN_POS) :
356 XGENE_DMA_16K_BUFFER_LEN_CODE;
357 }
358
xgene_dma_encode_xor_flyby(u32 src_cnt)359 static u8 xgene_dma_encode_xor_flyby(u32 src_cnt)
360 {
361 static u8 flyby_type[] = {
362 FLYBY_2SRC_XOR, /* Dummy */
363 FLYBY_2SRC_XOR, /* Dummy */
364 FLYBY_2SRC_XOR,
365 FLYBY_3SRC_XOR,
366 FLYBY_4SRC_XOR,
367 FLYBY_5SRC_XOR
368 };
369
370 return flyby_type[src_cnt];
371 }
372
xgene_dma_set_src_buffer(__le64 * ext8,size_t * len,dma_addr_t * paddr)373 static void xgene_dma_set_src_buffer(__le64 *ext8, size_t *len,
374 dma_addr_t *paddr)
375 {
376 size_t nbytes = (*len < XGENE_DMA_MAX_BYTE_CNT) ?
377 *len : XGENE_DMA_MAX_BYTE_CNT;
378
379 *ext8 |= cpu_to_le64(*paddr);
380 *ext8 |= cpu_to_le64(xgene_dma_encode_len(nbytes));
381 *len -= nbytes;
382 *paddr += nbytes;
383 }
384
xgene_dma_lookup_ext8(struct xgene_dma_desc_hw * desc,int idx)385 static __le64 *xgene_dma_lookup_ext8(struct xgene_dma_desc_hw *desc, int idx)
386 {
387 switch (idx) {
388 case 0:
389 return &desc->m1;
390 case 1:
391 return &desc->m0;
392 case 2:
393 return &desc->m3;
394 case 3:
395 return &desc->m2;
396 default:
397 pr_err("Invalid dma descriptor index\n");
398 }
399
400 return NULL;
401 }
402
xgene_dma_init_desc(struct xgene_dma_desc_hw * desc,u16 dst_ring_num)403 static void xgene_dma_init_desc(struct xgene_dma_desc_hw *desc,
404 u16 dst_ring_num)
405 {
406 desc->m0 |= cpu_to_le64(XGENE_DMA_DESC_IN_BIT);
407 desc->m0 |= cpu_to_le64((u64)XGENE_DMA_RING_OWNER_DMA <<
408 XGENE_DMA_DESC_RTYPE_POS);
409 desc->m1 |= cpu_to_le64(XGENE_DMA_DESC_C_BIT);
410 desc->m3 |= cpu_to_le64((u64)dst_ring_num <<
411 XGENE_DMA_DESC_HOENQ_NUM_POS);
412 }
413
xgene_dma_prep_xor_desc(struct xgene_dma_chan * chan,struct xgene_dma_desc_sw * desc_sw,dma_addr_t * dst,dma_addr_t * src,u32 src_cnt,size_t * nbytes,const u8 * scf)414 static void xgene_dma_prep_xor_desc(struct xgene_dma_chan *chan,
415 struct xgene_dma_desc_sw *desc_sw,
416 dma_addr_t *dst, dma_addr_t *src,
417 u32 src_cnt, size_t *nbytes,
418 const u8 *scf)
419 {
420 struct xgene_dma_desc_hw *desc1, *desc2;
421 size_t len = *nbytes;
422 int i;
423
424 desc1 = &desc_sw->desc1;
425 desc2 = &desc_sw->desc2;
426
427 /* Initialize DMA descriptor */
428 xgene_dma_init_desc(desc1, chan->tx_ring.dst_ring_num);
429
430 /* Set destination address */
431 desc1->m2 |= cpu_to_le64(XGENE_DMA_DESC_DR_BIT);
432 desc1->m3 |= cpu_to_le64(*dst);
433
434 /* We have multiple source addresses, so need to set NV bit*/
435 desc1->m0 |= cpu_to_le64(XGENE_DMA_DESC_NV_BIT);
436
437 /* Set flyby opcode */
438 desc1->m2 |= cpu_to_le64(xgene_dma_encode_xor_flyby(src_cnt));
439
440 /* Set 1st to 5th source addresses */
441 for (i = 0; i < src_cnt; i++) {
442 len = *nbytes;
443 xgene_dma_set_src_buffer((i == 0) ? &desc1->m1 :
444 xgene_dma_lookup_ext8(desc2, i - 1),
445 &len, &src[i]);
446 desc1->m2 |= cpu_to_le64((scf[i] << ((i + 1) * 8)));
447 }
448
449 /* Update meta data */
450 *nbytes = len;
451 *dst += XGENE_DMA_MAX_BYTE_CNT;
452
453 /* We need always 64B descriptor to perform xor or pq operations */
454 desc_sw->flags |= XGENE_DMA_FLAG_64B_DESC;
455 }
456
xgene_dma_tx_submit(struct dma_async_tx_descriptor * tx)457 static dma_cookie_t xgene_dma_tx_submit(struct dma_async_tx_descriptor *tx)
458 {
459 struct xgene_dma_desc_sw *desc;
460 struct xgene_dma_chan *chan;
461 dma_cookie_t cookie;
462
463 if (unlikely(!tx))
464 return -EINVAL;
465
466 chan = to_dma_chan(tx->chan);
467 desc = to_dma_desc_sw(tx);
468
469 spin_lock_bh(&chan->lock);
470
471 cookie = dma_cookie_assign(tx);
472
473 /* Add this transaction list onto the tail of the pending queue */
474 list_splice_tail_init(&desc->tx_list, &chan->ld_pending);
475
476 spin_unlock_bh(&chan->lock);
477
478 return cookie;
479 }
480
xgene_dma_clean_descriptor(struct xgene_dma_chan * chan,struct xgene_dma_desc_sw * desc)481 static void xgene_dma_clean_descriptor(struct xgene_dma_chan *chan,
482 struct xgene_dma_desc_sw *desc)
483 {
484 list_del(&desc->node);
485 chan_dbg(chan, "LD %p free\n", desc);
486 dma_pool_free(chan->desc_pool, desc, desc->tx.phys);
487 }
488
xgene_dma_alloc_descriptor(struct xgene_dma_chan * chan)489 static struct xgene_dma_desc_sw *xgene_dma_alloc_descriptor(
490 struct xgene_dma_chan *chan)
491 {
492 struct xgene_dma_desc_sw *desc;
493 dma_addr_t phys;
494
495 desc = dma_pool_zalloc(chan->desc_pool, GFP_NOWAIT, &phys);
496 if (!desc) {
497 chan_err(chan, "Failed to allocate LDs\n");
498 return NULL;
499 }
500
501 INIT_LIST_HEAD(&desc->tx_list);
502 desc->tx.phys = phys;
503 desc->tx.tx_submit = xgene_dma_tx_submit;
504 dma_async_tx_descriptor_init(&desc->tx, &chan->dma_chan);
505
506 chan_dbg(chan, "LD %p allocated\n", desc);
507
508 return desc;
509 }
510
511 /**
512 * xgene_dma_clean_completed_descriptor - free all descriptors which
513 * has been completed and acked
514 * @chan: X-Gene DMA channel
515 *
516 * This function is used on all completed and acked descriptors.
517 */
xgene_dma_clean_completed_descriptor(struct xgene_dma_chan * chan)518 static void xgene_dma_clean_completed_descriptor(struct xgene_dma_chan *chan)
519 {
520 struct xgene_dma_desc_sw *desc, *_desc;
521
522 /* Run the callback for each descriptor, in order */
523 list_for_each_entry_safe(desc, _desc, &chan->ld_completed, node) {
524 if (async_tx_test_ack(&desc->tx))
525 xgene_dma_clean_descriptor(chan, desc);
526 }
527 }
528
529 /**
530 * xgene_dma_run_tx_complete_actions - cleanup a single link descriptor
531 * @chan: X-Gene DMA channel
532 * @desc: descriptor to cleanup and free
533 *
534 * This function is used on a descriptor which has been executed by the DMA
535 * controller. It will run any callbacks, submit any dependencies.
536 */
xgene_dma_run_tx_complete_actions(struct xgene_dma_chan * chan,struct xgene_dma_desc_sw * desc)537 static void xgene_dma_run_tx_complete_actions(struct xgene_dma_chan *chan,
538 struct xgene_dma_desc_sw *desc)
539 {
540 struct dma_async_tx_descriptor *tx = &desc->tx;
541
542 /*
543 * If this is not the last transaction in the group,
544 * then no need to complete cookie and run any callback as
545 * this is not the tx_descriptor which had been sent to caller
546 * of this DMA request
547 */
548
549 if (tx->cookie == 0)
550 return;
551
552 dma_cookie_complete(tx);
553 dma_descriptor_unmap(tx);
554
555 /* Run the link descriptor callback function */
556 dmaengine_desc_get_callback_invoke(tx, NULL);
557
558 /* Run any dependencies */
559 dma_run_dependencies(tx);
560 }
561
562 /**
563 * xgene_dma_clean_running_descriptor - move the completed descriptor from
564 * ld_running to ld_completed
565 * @chan: X-Gene DMA channel
566 * @desc: the descriptor which is completed
567 *
568 * Free the descriptor directly if acked by async_tx api,
569 * else move it to queue ld_completed.
570 */
xgene_dma_clean_running_descriptor(struct xgene_dma_chan * chan,struct xgene_dma_desc_sw * desc)571 static void xgene_dma_clean_running_descriptor(struct xgene_dma_chan *chan,
572 struct xgene_dma_desc_sw *desc)
573 {
574 /* Remove from the list of running transactions */
575 list_del(&desc->node);
576
577 /*
578 * the client is allowed to attach dependent operations
579 * until 'ack' is set
580 */
581 if (!async_tx_test_ack(&desc->tx)) {
582 /*
583 * Move this descriptor to the list of descriptors which is
584 * completed, but still awaiting the 'ack' bit to be set.
585 */
586 list_add_tail(&desc->node, &chan->ld_completed);
587 return;
588 }
589
590 chan_dbg(chan, "LD %p free\n", desc);
591 dma_pool_free(chan->desc_pool, desc, desc->tx.phys);
592 }
593
xgene_chan_xfer_request(struct xgene_dma_chan * chan,struct xgene_dma_desc_sw * desc_sw)594 static void xgene_chan_xfer_request(struct xgene_dma_chan *chan,
595 struct xgene_dma_desc_sw *desc_sw)
596 {
597 struct xgene_dma_ring *ring = &chan->tx_ring;
598 struct xgene_dma_desc_hw *desc_hw;
599
600 /* Get hw descriptor from DMA tx ring */
601 desc_hw = &ring->desc_hw[ring->head];
602
603 /*
604 * Increment the head count to point next
605 * descriptor for next time
606 */
607 if (++ring->head == ring->slots)
608 ring->head = 0;
609
610 /* Copy prepared sw descriptor data to hw descriptor */
611 memcpy(desc_hw, &desc_sw->desc1, sizeof(*desc_hw));
612
613 /*
614 * Check if we have prepared 64B descriptor,
615 * in this case we need one more hw descriptor
616 */
617 if (desc_sw->flags & XGENE_DMA_FLAG_64B_DESC) {
618 desc_hw = &ring->desc_hw[ring->head];
619
620 if (++ring->head == ring->slots)
621 ring->head = 0;
622
623 memcpy(desc_hw, &desc_sw->desc2, sizeof(*desc_hw));
624 }
625
626 /* Increment the pending transaction count */
627 chan->pending += ((desc_sw->flags &
628 XGENE_DMA_FLAG_64B_DESC) ? 2 : 1);
629
630 /* Notify the hw that we have descriptor ready for execution */
631 iowrite32((desc_sw->flags & XGENE_DMA_FLAG_64B_DESC) ?
632 2 : 1, ring->cmd);
633 }
634
635 /**
636 * xgene_chan_xfer_ld_pending - push any pending transactions to hw
637 * @chan : X-Gene DMA channel
638 *
639 * LOCKING: must hold chan->lock
640 */
xgene_chan_xfer_ld_pending(struct xgene_dma_chan * chan)641 static void xgene_chan_xfer_ld_pending(struct xgene_dma_chan *chan)
642 {
643 struct xgene_dma_desc_sw *desc_sw, *_desc_sw;
644
645 /*
646 * If the list of pending descriptors is empty, then we
647 * don't need to do any work at all
648 */
649 if (list_empty(&chan->ld_pending)) {
650 chan_dbg(chan, "No pending LDs\n");
651 return;
652 }
653
654 /*
655 * Move elements from the queue of pending transactions onto the list
656 * of running transactions and push it to hw for further executions
657 */
658 list_for_each_entry_safe(desc_sw, _desc_sw, &chan->ld_pending, node) {
659 /*
660 * Check if have pushed max number of transactions to hw
661 * as capable, so let's stop here and will push remaining
662 * elements from pening ld queue after completing some
663 * descriptors that we have already pushed
664 */
665 if (chan->pending >= chan->max_outstanding)
666 return;
667
668 xgene_chan_xfer_request(chan, desc_sw);
669
670 /*
671 * Delete this element from ld pending queue and append it to
672 * ld running queue
673 */
674 list_move_tail(&desc_sw->node, &chan->ld_running);
675 }
676 }
677
678 /**
679 * xgene_dma_cleanup_descriptors - cleanup link descriptors which are completed
680 * and move them to ld_completed to free until flag 'ack' is set
681 * @chan: X-Gene DMA channel
682 *
683 * This function is used on descriptors which have been executed by the DMA
684 * controller. It will run any callbacks, submit any dependencies, then
685 * free these descriptors if flag 'ack' is set.
686 */
xgene_dma_cleanup_descriptors(struct xgene_dma_chan * chan)687 static void xgene_dma_cleanup_descriptors(struct xgene_dma_chan *chan)
688 {
689 struct xgene_dma_ring *ring = &chan->rx_ring;
690 struct xgene_dma_desc_sw *desc_sw, *_desc_sw;
691 struct xgene_dma_desc_hw *desc_hw;
692 struct list_head ld_completed;
693 u8 status;
694
695 INIT_LIST_HEAD(&ld_completed);
696
697 spin_lock(&chan->lock);
698
699 /* Clean already completed and acked descriptors */
700 xgene_dma_clean_completed_descriptor(chan);
701
702 /* Move all completed descriptors to ld completed queue, in order */
703 list_for_each_entry_safe(desc_sw, _desc_sw, &chan->ld_running, node) {
704 /* Get subsequent hw descriptor from DMA rx ring */
705 desc_hw = &ring->desc_hw[ring->head];
706
707 /* Check if this descriptor has been completed */
708 if (unlikely(le64_to_cpu(desc_hw->m0) ==
709 XGENE_DMA_DESC_EMPTY_SIGNATURE))
710 break;
711
712 if (++ring->head == ring->slots)
713 ring->head = 0;
714
715 /* Check if we have any error with DMA transactions */
716 status = XGENE_DMA_DESC_STATUS(
717 XGENE_DMA_DESC_ELERR_RD(le64_to_cpu(
718 desc_hw->m0)),
719 XGENE_DMA_DESC_LERR_RD(le64_to_cpu(
720 desc_hw->m0)));
721 if (status) {
722 /* Print the DMA error type */
723 chan_err(chan, "%s\n", xgene_dma_desc_err[status]);
724
725 /*
726 * We have DMA transactions error here. Dump DMA Tx
727 * and Rx descriptors for this request */
728 XGENE_DMA_DESC_DUMP(&desc_sw->desc1,
729 "X-Gene DMA TX DESC1: ");
730
731 if (desc_sw->flags & XGENE_DMA_FLAG_64B_DESC)
732 XGENE_DMA_DESC_DUMP(&desc_sw->desc2,
733 "X-Gene DMA TX DESC2: ");
734
735 XGENE_DMA_DESC_DUMP(desc_hw,
736 "X-Gene DMA RX ERR DESC: ");
737 }
738
739 /* Notify the hw about this completed descriptor */
740 iowrite32(-1, ring->cmd);
741
742 /* Mark this hw descriptor as processed */
743 desc_hw->m0 = cpu_to_le64(XGENE_DMA_DESC_EMPTY_SIGNATURE);
744
745 /*
746 * Decrement the pending transaction count
747 * as we have processed one
748 */
749 chan->pending -= ((desc_sw->flags &
750 XGENE_DMA_FLAG_64B_DESC) ? 2 : 1);
751
752 /*
753 * Delete this node from ld running queue and append it to
754 * ld completed queue for further processing
755 */
756 list_move_tail(&desc_sw->node, &ld_completed);
757 }
758
759 /*
760 * Start any pending transactions automatically
761 * In the ideal case, we keep the DMA controller busy while we go
762 * ahead and free the descriptors below.
763 */
764 xgene_chan_xfer_ld_pending(chan);
765
766 spin_unlock(&chan->lock);
767
768 /* Run the callback for each descriptor, in order */
769 list_for_each_entry_safe(desc_sw, _desc_sw, &ld_completed, node) {
770 xgene_dma_run_tx_complete_actions(chan, desc_sw);
771 xgene_dma_clean_running_descriptor(chan, desc_sw);
772 }
773 }
774
xgene_dma_alloc_chan_resources(struct dma_chan * dchan)775 static int xgene_dma_alloc_chan_resources(struct dma_chan *dchan)
776 {
777 struct xgene_dma_chan *chan = to_dma_chan(dchan);
778
779 /* Has this channel already been allocated? */
780 if (chan->desc_pool)
781 return 1;
782
783 chan->desc_pool = dma_pool_create(chan->name, chan->dev,
784 sizeof(struct xgene_dma_desc_sw),
785 0, 0);
786 if (!chan->desc_pool) {
787 chan_err(chan, "Failed to allocate descriptor pool\n");
788 return -ENOMEM;
789 }
790
791 chan_dbg(chan, "Allocate descriptor pool\n");
792
793 return 1;
794 }
795
796 /**
797 * xgene_dma_free_desc_list - Free all descriptors in a queue
798 * @chan: X-Gene DMA channel
799 * @list: the list to free
800 *
801 * LOCKING: must hold chan->lock
802 */
xgene_dma_free_desc_list(struct xgene_dma_chan * chan,struct list_head * list)803 static void xgene_dma_free_desc_list(struct xgene_dma_chan *chan,
804 struct list_head *list)
805 {
806 struct xgene_dma_desc_sw *desc, *_desc;
807
808 list_for_each_entry_safe(desc, _desc, list, node)
809 xgene_dma_clean_descriptor(chan, desc);
810 }
811
xgene_dma_free_chan_resources(struct dma_chan * dchan)812 static void xgene_dma_free_chan_resources(struct dma_chan *dchan)
813 {
814 struct xgene_dma_chan *chan = to_dma_chan(dchan);
815
816 chan_dbg(chan, "Free all resources\n");
817
818 if (!chan->desc_pool)
819 return;
820
821 /* Process all running descriptor */
822 xgene_dma_cleanup_descriptors(chan);
823
824 spin_lock_bh(&chan->lock);
825
826 /* Clean all link descriptor queues */
827 xgene_dma_free_desc_list(chan, &chan->ld_pending);
828 xgene_dma_free_desc_list(chan, &chan->ld_running);
829 xgene_dma_free_desc_list(chan, &chan->ld_completed);
830
831 spin_unlock_bh(&chan->lock);
832
833 /* Delete this channel DMA pool */
834 dma_pool_destroy(chan->desc_pool);
835 chan->desc_pool = NULL;
836 }
837
xgene_dma_prep_xor(struct dma_chan * dchan,dma_addr_t dst,dma_addr_t * src,u32 src_cnt,size_t len,unsigned long flags)838 static struct dma_async_tx_descriptor *xgene_dma_prep_xor(
839 struct dma_chan *dchan, dma_addr_t dst, dma_addr_t *src,
840 u32 src_cnt, size_t len, unsigned long flags)
841 {
842 struct xgene_dma_desc_sw *first = NULL, *new;
843 struct xgene_dma_chan *chan;
844 static u8 multi[XGENE_DMA_MAX_XOR_SRC] = {
845 0x01, 0x01, 0x01, 0x01, 0x01};
846
847 if (unlikely(!dchan || !len))
848 return NULL;
849
850 chan = to_dma_chan(dchan);
851
852 do {
853 /* Allocate the link descriptor from DMA pool */
854 new = xgene_dma_alloc_descriptor(chan);
855 if (!new)
856 goto fail;
857
858 /* Prepare xor DMA descriptor */
859 xgene_dma_prep_xor_desc(chan, new, &dst, src,
860 src_cnt, &len, multi);
861
862 if (!first)
863 first = new;
864
865 new->tx.cookie = 0;
866 async_tx_ack(&new->tx);
867
868 /* Insert the link descriptor to the LD ring */
869 list_add_tail(&new->node, &first->tx_list);
870 } while (len);
871
872 new->tx.flags = flags; /* client is in control of this ack */
873 new->tx.cookie = -EBUSY;
874 list_splice(&first->tx_list, &new->tx_list);
875
876 return &new->tx;
877
878 fail:
879 if (!first)
880 return NULL;
881
882 xgene_dma_free_desc_list(chan, &first->tx_list);
883 return NULL;
884 }
885
xgene_dma_prep_pq(struct dma_chan * dchan,dma_addr_t * dst,dma_addr_t * src,u32 src_cnt,const u8 * scf,size_t len,unsigned long flags)886 static struct dma_async_tx_descriptor *xgene_dma_prep_pq(
887 struct dma_chan *dchan, dma_addr_t *dst, dma_addr_t *src,
888 u32 src_cnt, const u8 *scf, size_t len, unsigned long flags)
889 {
890 struct xgene_dma_desc_sw *first = NULL, *new;
891 struct xgene_dma_chan *chan;
892 size_t _len = len;
893 dma_addr_t _src[XGENE_DMA_MAX_XOR_SRC];
894 static u8 multi[XGENE_DMA_MAX_XOR_SRC] = {0x01, 0x01, 0x01, 0x01, 0x01};
895
896 if (unlikely(!dchan || !len))
897 return NULL;
898
899 chan = to_dma_chan(dchan);
900
901 /*
902 * Save source addresses on local variable, may be we have to
903 * prepare two descriptor to generate P and Q if both enabled
904 * in the flags by client
905 */
906 memcpy(_src, src, sizeof(*src) * src_cnt);
907
908 if (flags & DMA_PREP_PQ_DISABLE_P)
909 len = 0;
910
911 if (flags & DMA_PREP_PQ_DISABLE_Q)
912 _len = 0;
913
914 do {
915 /* Allocate the link descriptor from DMA pool */
916 new = xgene_dma_alloc_descriptor(chan);
917 if (!new)
918 goto fail;
919
920 if (!first)
921 first = new;
922
923 new->tx.cookie = 0;
924 async_tx_ack(&new->tx);
925
926 /* Insert the link descriptor to the LD ring */
927 list_add_tail(&new->node, &first->tx_list);
928
929 /*
930 * Prepare DMA descriptor to generate P,
931 * if DMA_PREP_PQ_DISABLE_P flag is not set
932 */
933 if (len) {
934 xgene_dma_prep_xor_desc(chan, new, &dst[0], src,
935 src_cnt, &len, multi);
936 continue;
937 }
938
939 /*
940 * Prepare DMA descriptor to generate Q,
941 * if DMA_PREP_PQ_DISABLE_Q flag is not set
942 */
943 if (_len) {
944 xgene_dma_prep_xor_desc(chan, new, &dst[1], _src,
945 src_cnt, &_len, scf);
946 }
947 } while (len || _len);
948
949 new->tx.flags = flags; /* client is in control of this ack */
950 new->tx.cookie = -EBUSY;
951 list_splice(&first->tx_list, &new->tx_list);
952
953 return &new->tx;
954
955 fail:
956 if (!first)
957 return NULL;
958
959 xgene_dma_free_desc_list(chan, &first->tx_list);
960 return NULL;
961 }
962
xgene_dma_issue_pending(struct dma_chan * dchan)963 static void xgene_dma_issue_pending(struct dma_chan *dchan)
964 {
965 struct xgene_dma_chan *chan = to_dma_chan(dchan);
966
967 spin_lock_bh(&chan->lock);
968 xgene_chan_xfer_ld_pending(chan);
969 spin_unlock_bh(&chan->lock);
970 }
971
xgene_dma_tx_status(struct dma_chan * dchan,dma_cookie_t cookie,struct dma_tx_state * txstate)972 static enum dma_status xgene_dma_tx_status(struct dma_chan *dchan,
973 dma_cookie_t cookie,
974 struct dma_tx_state *txstate)
975 {
976 return dma_cookie_status(dchan, cookie, txstate);
977 }
978
xgene_dma_tasklet_cb(struct tasklet_struct * t)979 static void xgene_dma_tasklet_cb(struct tasklet_struct *t)
980 {
981 struct xgene_dma_chan *chan = from_tasklet(chan, t, tasklet);
982
983 /* Run all cleanup for descriptors which have been completed */
984 xgene_dma_cleanup_descriptors(chan);
985
986 /* Re-enable DMA channel IRQ */
987 enable_irq(chan->rx_irq);
988 }
989
xgene_dma_chan_ring_isr(int irq,void * id)990 static irqreturn_t xgene_dma_chan_ring_isr(int irq, void *id)
991 {
992 struct xgene_dma_chan *chan = (struct xgene_dma_chan *)id;
993
994 BUG_ON(!chan);
995
996 /*
997 * Disable DMA channel IRQ until we process completed
998 * descriptors
999 */
1000 disable_irq_nosync(chan->rx_irq);
1001
1002 /*
1003 * Schedule the tasklet to handle all cleanup of the current
1004 * transaction. It will start a new transaction if there is
1005 * one pending.
1006 */
1007 tasklet_schedule(&chan->tasklet);
1008
1009 return IRQ_HANDLED;
1010 }
1011
xgene_dma_err_isr(int irq,void * id)1012 static irqreturn_t xgene_dma_err_isr(int irq, void *id)
1013 {
1014 struct xgene_dma *pdma = (struct xgene_dma *)id;
1015 unsigned long int_mask;
1016 u32 val, i;
1017
1018 val = ioread32(pdma->csr_dma + XGENE_DMA_INT);
1019
1020 /* Clear DMA interrupts */
1021 iowrite32(val, pdma->csr_dma + XGENE_DMA_INT);
1022
1023 /* Print DMA error info */
1024 int_mask = val >> XGENE_DMA_INT_MASK_SHIFT;
1025 for_each_set_bit(i, &int_mask, ARRAY_SIZE(xgene_dma_err))
1026 dev_err(pdma->dev,
1027 "Interrupt status 0x%08X %s\n", val, xgene_dma_err[i]);
1028
1029 return IRQ_HANDLED;
1030 }
1031
xgene_dma_wr_ring_state(struct xgene_dma_ring * ring)1032 static void xgene_dma_wr_ring_state(struct xgene_dma_ring *ring)
1033 {
1034 int i;
1035
1036 iowrite32(ring->num, ring->pdma->csr_ring + XGENE_DMA_RING_STATE);
1037
1038 for (i = 0; i < XGENE_DMA_RING_NUM_CONFIG; i++)
1039 iowrite32(ring->state[i], ring->pdma->csr_ring +
1040 XGENE_DMA_RING_STATE_WR_BASE + (i * 4));
1041 }
1042
xgene_dma_clr_ring_state(struct xgene_dma_ring * ring)1043 static void xgene_dma_clr_ring_state(struct xgene_dma_ring *ring)
1044 {
1045 memset(ring->state, 0, sizeof(u32) * XGENE_DMA_RING_NUM_CONFIG);
1046 xgene_dma_wr_ring_state(ring);
1047 }
1048
xgene_dma_setup_ring(struct xgene_dma_ring * ring)1049 static void xgene_dma_setup_ring(struct xgene_dma_ring *ring)
1050 {
1051 void *ring_cfg = ring->state;
1052 u64 addr = ring->desc_paddr;
1053 u32 i, val;
1054
1055 ring->slots = ring->size / XGENE_DMA_RING_WQ_DESC_SIZE;
1056
1057 /* Clear DMA ring state */
1058 xgene_dma_clr_ring_state(ring);
1059
1060 /* Set DMA ring type */
1061 XGENE_DMA_RING_TYPE_SET(ring_cfg, XGENE_DMA_RING_TYPE_REGULAR);
1062
1063 if (ring->owner == XGENE_DMA_RING_OWNER_DMA) {
1064 /* Set recombination buffer and timeout */
1065 XGENE_DMA_RING_RECOMBBUF_SET(ring_cfg);
1066 XGENE_DMA_RING_RECOMTIMEOUTL_SET(ring_cfg);
1067 XGENE_DMA_RING_RECOMTIMEOUTH_SET(ring_cfg);
1068 }
1069
1070 /* Initialize DMA ring state */
1071 XGENE_DMA_RING_SELTHRSH_SET(ring_cfg);
1072 XGENE_DMA_RING_ACCEPTLERR_SET(ring_cfg);
1073 XGENE_DMA_RING_COHERENT_SET(ring_cfg);
1074 XGENE_DMA_RING_ADDRL_SET(ring_cfg, addr);
1075 XGENE_DMA_RING_ADDRH_SET(ring_cfg, addr);
1076 XGENE_DMA_RING_SIZE_SET(ring_cfg, ring->cfgsize);
1077
1078 /* Write DMA ring configurations */
1079 xgene_dma_wr_ring_state(ring);
1080
1081 /* Set DMA ring id */
1082 iowrite32(XGENE_DMA_RING_ID_SETUP(ring->id),
1083 ring->pdma->csr_ring + XGENE_DMA_RING_ID);
1084
1085 /* Set DMA ring buffer */
1086 iowrite32(XGENE_DMA_RING_ID_BUF_SETUP(ring->num),
1087 ring->pdma->csr_ring + XGENE_DMA_RING_ID_BUF);
1088
1089 if (ring->owner != XGENE_DMA_RING_OWNER_CPU)
1090 return;
1091
1092 /* Set empty signature to DMA Rx ring descriptors */
1093 for (i = 0; i < ring->slots; i++) {
1094 struct xgene_dma_desc_hw *desc;
1095
1096 desc = &ring->desc_hw[i];
1097 desc->m0 = cpu_to_le64(XGENE_DMA_DESC_EMPTY_SIGNATURE);
1098 }
1099
1100 /* Enable DMA Rx ring interrupt */
1101 val = ioread32(ring->pdma->csr_ring + XGENE_DMA_RING_NE_INT_MODE);
1102 XGENE_DMA_RING_NE_INT_MODE_SET(val, ring->buf_num);
1103 iowrite32(val, ring->pdma->csr_ring + XGENE_DMA_RING_NE_INT_MODE);
1104 }
1105
xgene_dma_clear_ring(struct xgene_dma_ring * ring)1106 static void xgene_dma_clear_ring(struct xgene_dma_ring *ring)
1107 {
1108 u32 ring_id, val;
1109
1110 if (ring->owner == XGENE_DMA_RING_OWNER_CPU) {
1111 /* Disable DMA Rx ring interrupt */
1112 val = ioread32(ring->pdma->csr_ring +
1113 XGENE_DMA_RING_NE_INT_MODE);
1114 XGENE_DMA_RING_NE_INT_MODE_RESET(val, ring->buf_num);
1115 iowrite32(val, ring->pdma->csr_ring +
1116 XGENE_DMA_RING_NE_INT_MODE);
1117 }
1118
1119 /* Clear DMA ring state */
1120 ring_id = XGENE_DMA_RING_ID_SETUP(ring->id);
1121 iowrite32(ring_id, ring->pdma->csr_ring + XGENE_DMA_RING_ID);
1122
1123 iowrite32(0, ring->pdma->csr_ring + XGENE_DMA_RING_ID_BUF);
1124 xgene_dma_clr_ring_state(ring);
1125 }
1126
xgene_dma_set_ring_cmd(struct xgene_dma_ring * ring)1127 static void xgene_dma_set_ring_cmd(struct xgene_dma_ring *ring)
1128 {
1129 ring->cmd_base = ring->pdma->csr_ring_cmd +
1130 XGENE_DMA_RING_CMD_BASE_OFFSET((ring->num -
1131 XGENE_DMA_RING_NUM));
1132
1133 ring->cmd = ring->cmd_base + XGENE_DMA_RING_CMD_OFFSET;
1134 }
1135
xgene_dma_get_ring_size(struct xgene_dma_chan * chan,enum xgene_dma_ring_cfgsize cfgsize)1136 static int xgene_dma_get_ring_size(struct xgene_dma_chan *chan,
1137 enum xgene_dma_ring_cfgsize cfgsize)
1138 {
1139 int size;
1140
1141 switch (cfgsize) {
1142 case XGENE_DMA_RING_CFG_SIZE_512B:
1143 size = 0x200;
1144 break;
1145 case XGENE_DMA_RING_CFG_SIZE_2KB:
1146 size = 0x800;
1147 break;
1148 case XGENE_DMA_RING_CFG_SIZE_16KB:
1149 size = 0x4000;
1150 break;
1151 case XGENE_DMA_RING_CFG_SIZE_64KB:
1152 size = 0x10000;
1153 break;
1154 case XGENE_DMA_RING_CFG_SIZE_512KB:
1155 size = 0x80000;
1156 break;
1157 default:
1158 chan_err(chan, "Unsupported cfg ring size %d\n", cfgsize);
1159 return -EINVAL;
1160 }
1161
1162 return size;
1163 }
1164
xgene_dma_delete_ring_one(struct xgene_dma_ring * ring)1165 static void xgene_dma_delete_ring_one(struct xgene_dma_ring *ring)
1166 {
1167 /* Clear DMA ring configurations */
1168 xgene_dma_clear_ring(ring);
1169
1170 /* De-allocate DMA ring descriptor */
1171 if (ring->desc_vaddr) {
1172 dma_free_coherent(ring->pdma->dev, ring->size,
1173 ring->desc_vaddr, ring->desc_paddr);
1174 ring->desc_vaddr = NULL;
1175 }
1176 }
1177
xgene_dma_delete_chan_rings(struct xgene_dma_chan * chan)1178 static void xgene_dma_delete_chan_rings(struct xgene_dma_chan *chan)
1179 {
1180 xgene_dma_delete_ring_one(&chan->rx_ring);
1181 xgene_dma_delete_ring_one(&chan->tx_ring);
1182 }
1183
xgene_dma_create_ring_one(struct xgene_dma_chan * chan,struct xgene_dma_ring * ring,enum xgene_dma_ring_cfgsize cfgsize)1184 static int xgene_dma_create_ring_one(struct xgene_dma_chan *chan,
1185 struct xgene_dma_ring *ring,
1186 enum xgene_dma_ring_cfgsize cfgsize)
1187 {
1188 int ret;
1189
1190 /* Setup DMA ring descriptor variables */
1191 ring->pdma = chan->pdma;
1192 ring->cfgsize = cfgsize;
1193 ring->num = chan->pdma->ring_num++;
1194 ring->id = XGENE_DMA_RING_ID_GET(ring->owner, ring->buf_num);
1195
1196 ret = xgene_dma_get_ring_size(chan, cfgsize);
1197 if (ret <= 0)
1198 return ret;
1199 ring->size = ret;
1200
1201 /* Allocate memory for DMA ring descriptor */
1202 ring->desc_vaddr = dma_alloc_coherent(chan->dev, ring->size,
1203 &ring->desc_paddr, GFP_KERNEL);
1204 if (!ring->desc_vaddr) {
1205 chan_err(chan, "Failed to allocate ring desc\n");
1206 return -ENOMEM;
1207 }
1208
1209 /* Configure and enable DMA ring */
1210 xgene_dma_set_ring_cmd(ring);
1211 xgene_dma_setup_ring(ring);
1212
1213 return 0;
1214 }
1215
xgene_dma_create_chan_rings(struct xgene_dma_chan * chan)1216 static int xgene_dma_create_chan_rings(struct xgene_dma_chan *chan)
1217 {
1218 struct xgene_dma_ring *rx_ring = &chan->rx_ring;
1219 struct xgene_dma_ring *tx_ring = &chan->tx_ring;
1220 int ret;
1221
1222 /* Create DMA Rx ring descriptor */
1223 rx_ring->owner = XGENE_DMA_RING_OWNER_CPU;
1224 rx_ring->buf_num = XGENE_DMA_CPU_BUFNUM + chan->id;
1225
1226 ret = xgene_dma_create_ring_one(chan, rx_ring,
1227 XGENE_DMA_RING_CFG_SIZE_64KB);
1228 if (ret)
1229 return ret;
1230
1231 chan_dbg(chan, "Rx ring id 0x%X num %d desc 0x%p\n",
1232 rx_ring->id, rx_ring->num, rx_ring->desc_vaddr);
1233
1234 /* Create DMA Tx ring descriptor */
1235 tx_ring->owner = XGENE_DMA_RING_OWNER_DMA;
1236 tx_ring->buf_num = XGENE_DMA_BUFNUM + chan->id;
1237
1238 ret = xgene_dma_create_ring_one(chan, tx_ring,
1239 XGENE_DMA_RING_CFG_SIZE_64KB);
1240 if (ret) {
1241 xgene_dma_delete_ring_one(rx_ring);
1242 return ret;
1243 }
1244
1245 tx_ring->dst_ring_num = XGENE_DMA_RING_DST_ID(rx_ring->num);
1246
1247 chan_dbg(chan,
1248 "Tx ring id 0x%X num %d desc 0x%p\n",
1249 tx_ring->id, tx_ring->num, tx_ring->desc_vaddr);
1250
1251 /* Set the max outstanding request possible to this channel */
1252 chan->max_outstanding = tx_ring->slots;
1253
1254 return ret;
1255 }
1256
xgene_dma_init_rings(struct xgene_dma * pdma)1257 static int xgene_dma_init_rings(struct xgene_dma *pdma)
1258 {
1259 int ret, i, j;
1260
1261 for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++) {
1262 ret = xgene_dma_create_chan_rings(&pdma->chan[i]);
1263 if (ret) {
1264 for (j = 0; j < i; j++)
1265 xgene_dma_delete_chan_rings(&pdma->chan[j]);
1266 return ret;
1267 }
1268 }
1269
1270 return ret;
1271 }
1272
xgene_dma_enable(struct xgene_dma * pdma)1273 static void xgene_dma_enable(struct xgene_dma *pdma)
1274 {
1275 u32 val;
1276
1277 /* Configure and enable DMA engine */
1278 val = ioread32(pdma->csr_dma + XGENE_DMA_GCR);
1279 XGENE_DMA_CH_SETUP(val);
1280 XGENE_DMA_ENABLE(val);
1281 iowrite32(val, pdma->csr_dma + XGENE_DMA_GCR);
1282 }
1283
xgene_dma_disable(struct xgene_dma * pdma)1284 static void xgene_dma_disable(struct xgene_dma *pdma)
1285 {
1286 u32 val;
1287
1288 val = ioread32(pdma->csr_dma + XGENE_DMA_GCR);
1289 XGENE_DMA_DISABLE(val);
1290 iowrite32(val, pdma->csr_dma + XGENE_DMA_GCR);
1291 }
1292
xgene_dma_mask_interrupts(struct xgene_dma * pdma)1293 static void xgene_dma_mask_interrupts(struct xgene_dma *pdma)
1294 {
1295 /*
1296 * Mask DMA ring overflow, underflow and
1297 * AXI write/read error interrupts
1298 */
1299 iowrite32(XGENE_DMA_INT_ALL_MASK,
1300 pdma->csr_dma + XGENE_DMA_RING_INT0_MASK);
1301 iowrite32(XGENE_DMA_INT_ALL_MASK,
1302 pdma->csr_dma + XGENE_DMA_RING_INT1_MASK);
1303 iowrite32(XGENE_DMA_INT_ALL_MASK,
1304 pdma->csr_dma + XGENE_DMA_RING_INT2_MASK);
1305 iowrite32(XGENE_DMA_INT_ALL_MASK,
1306 pdma->csr_dma + XGENE_DMA_RING_INT3_MASK);
1307 iowrite32(XGENE_DMA_INT_ALL_MASK,
1308 pdma->csr_dma + XGENE_DMA_RING_INT4_MASK);
1309
1310 /* Mask DMA error interrupts */
1311 iowrite32(XGENE_DMA_INT_ALL_MASK, pdma->csr_dma + XGENE_DMA_INT_MASK);
1312 }
1313
xgene_dma_unmask_interrupts(struct xgene_dma * pdma)1314 static void xgene_dma_unmask_interrupts(struct xgene_dma *pdma)
1315 {
1316 /*
1317 * Unmask DMA ring overflow, underflow and
1318 * AXI write/read error interrupts
1319 */
1320 iowrite32(XGENE_DMA_INT_ALL_UNMASK,
1321 pdma->csr_dma + XGENE_DMA_RING_INT0_MASK);
1322 iowrite32(XGENE_DMA_INT_ALL_UNMASK,
1323 pdma->csr_dma + XGENE_DMA_RING_INT1_MASK);
1324 iowrite32(XGENE_DMA_INT_ALL_UNMASK,
1325 pdma->csr_dma + XGENE_DMA_RING_INT2_MASK);
1326 iowrite32(XGENE_DMA_INT_ALL_UNMASK,
1327 pdma->csr_dma + XGENE_DMA_RING_INT3_MASK);
1328 iowrite32(XGENE_DMA_INT_ALL_UNMASK,
1329 pdma->csr_dma + XGENE_DMA_RING_INT4_MASK);
1330
1331 /* Unmask DMA error interrupts */
1332 iowrite32(XGENE_DMA_INT_ALL_UNMASK,
1333 pdma->csr_dma + XGENE_DMA_INT_MASK);
1334 }
1335
xgene_dma_init_hw(struct xgene_dma * pdma)1336 static void xgene_dma_init_hw(struct xgene_dma *pdma)
1337 {
1338 u32 val;
1339
1340 /* Associate DMA ring to corresponding ring HW */
1341 iowrite32(XGENE_DMA_ASSOC_RING_MNGR1,
1342 pdma->csr_dma + XGENE_DMA_CFG_RING_WQ_ASSOC);
1343
1344 /* Configure RAID6 polynomial control setting */
1345 if (is_pq_enabled(pdma))
1346 iowrite32(XGENE_DMA_RAID6_MULTI_CTRL(0x1D),
1347 pdma->csr_dma + XGENE_DMA_RAID6_CONT);
1348 else
1349 dev_info(pdma->dev, "PQ is disabled in HW\n");
1350
1351 xgene_dma_enable(pdma);
1352 xgene_dma_unmask_interrupts(pdma);
1353
1354 /* Get DMA id and version info */
1355 val = ioread32(pdma->csr_dma + XGENE_DMA_IPBRR);
1356
1357 /* DMA device info */
1358 dev_info(pdma->dev,
1359 "X-Gene DMA v%d.%02d.%02d driver registered %d channels",
1360 XGENE_DMA_REV_NO_RD(val), XGENE_DMA_BUS_ID_RD(val),
1361 XGENE_DMA_DEV_ID_RD(val), XGENE_DMA_MAX_CHANNEL);
1362 }
1363
xgene_dma_init_ring_mngr(struct xgene_dma * pdma)1364 static int xgene_dma_init_ring_mngr(struct xgene_dma *pdma)
1365 {
1366 if (ioread32(pdma->csr_ring + XGENE_DMA_RING_CLKEN) &&
1367 (!ioread32(pdma->csr_ring + XGENE_DMA_RING_SRST)))
1368 return 0;
1369
1370 iowrite32(0x3, pdma->csr_ring + XGENE_DMA_RING_CLKEN);
1371 iowrite32(0x0, pdma->csr_ring + XGENE_DMA_RING_SRST);
1372
1373 /* Bring up memory */
1374 iowrite32(0x0, pdma->csr_ring + XGENE_DMA_RING_MEM_RAM_SHUTDOWN);
1375
1376 /* Force a barrier */
1377 ioread32(pdma->csr_ring + XGENE_DMA_RING_MEM_RAM_SHUTDOWN);
1378
1379 /* reset may take up to 1ms */
1380 usleep_range(1000, 1100);
1381
1382 if (ioread32(pdma->csr_ring + XGENE_DMA_RING_BLK_MEM_RDY)
1383 != XGENE_DMA_RING_BLK_MEM_RDY_VAL) {
1384 dev_err(pdma->dev,
1385 "Failed to release ring mngr memory from shutdown\n");
1386 return -ENODEV;
1387 }
1388
1389 /* program threshold set 1 and all hysteresis */
1390 iowrite32(XGENE_DMA_RING_THRESLD0_SET1_VAL,
1391 pdma->csr_ring + XGENE_DMA_RING_THRESLD0_SET1);
1392 iowrite32(XGENE_DMA_RING_THRESLD1_SET1_VAL,
1393 pdma->csr_ring + XGENE_DMA_RING_THRESLD1_SET1);
1394 iowrite32(XGENE_DMA_RING_HYSTERESIS_VAL,
1395 pdma->csr_ring + XGENE_DMA_RING_HYSTERESIS);
1396
1397 /* Enable QPcore and assign error queue */
1398 iowrite32(XGENE_DMA_RING_ENABLE,
1399 pdma->csr_ring + XGENE_DMA_RING_CONFIG);
1400
1401 return 0;
1402 }
1403
xgene_dma_init_mem(struct xgene_dma * pdma)1404 static int xgene_dma_init_mem(struct xgene_dma *pdma)
1405 {
1406 int ret;
1407
1408 ret = xgene_dma_init_ring_mngr(pdma);
1409 if (ret)
1410 return ret;
1411
1412 /* Bring up memory */
1413 iowrite32(0x0, pdma->csr_dma + XGENE_DMA_MEM_RAM_SHUTDOWN);
1414
1415 /* Force a barrier */
1416 ioread32(pdma->csr_dma + XGENE_DMA_MEM_RAM_SHUTDOWN);
1417
1418 /* reset may take up to 1ms */
1419 usleep_range(1000, 1100);
1420
1421 if (ioread32(pdma->csr_dma + XGENE_DMA_BLK_MEM_RDY)
1422 != XGENE_DMA_BLK_MEM_RDY_VAL) {
1423 dev_err(pdma->dev,
1424 "Failed to release DMA memory from shutdown\n");
1425 return -ENODEV;
1426 }
1427
1428 return 0;
1429 }
1430
xgene_dma_request_irqs(struct xgene_dma * pdma)1431 static int xgene_dma_request_irqs(struct xgene_dma *pdma)
1432 {
1433 struct xgene_dma_chan *chan;
1434 int ret, i, j;
1435
1436 /* Register DMA error irq */
1437 ret = devm_request_irq(pdma->dev, pdma->err_irq, xgene_dma_err_isr,
1438 0, "dma_error", pdma);
1439 if (ret) {
1440 dev_err(pdma->dev,
1441 "Failed to register error IRQ %d\n", pdma->err_irq);
1442 return ret;
1443 }
1444
1445 /* Register DMA channel rx irq */
1446 for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++) {
1447 chan = &pdma->chan[i];
1448 irq_set_status_flags(chan->rx_irq, IRQ_DISABLE_UNLAZY);
1449 ret = devm_request_irq(chan->dev, chan->rx_irq,
1450 xgene_dma_chan_ring_isr,
1451 0, chan->name, chan);
1452 if (ret) {
1453 chan_err(chan, "Failed to register Rx IRQ %d\n",
1454 chan->rx_irq);
1455 devm_free_irq(pdma->dev, pdma->err_irq, pdma);
1456
1457 for (j = 0; j < i; j++) {
1458 chan = &pdma->chan[i];
1459 irq_clear_status_flags(chan->rx_irq, IRQ_DISABLE_UNLAZY);
1460 devm_free_irq(chan->dev, chan->rx_irq, chan);
1461 }
1462
1463 return ret;
1464 }
1465 }
1466
1467 return 0;
1468 }
1469
xgene_dma_free_irqs(struct xgene_dma * pdma)1470 static void xgene_dma_free_irqs(struct xgene_dma *pdma)
1471 {
1472 struct xgene_dma_chan *chan;
1473 int i;
1474
1475 /* Free DMA device error irq */
1476 devm_free_irq(pdma->dev, pdma->err_irq, pdma);
1477
1478 for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++) {
1479 chan = &pdma->chan[i];
1480 irq_clear_status_flags(chan->rx_irq, IRQ_DISABLE_UNLAZY);
1481 devm_free_irq(chan->dev, chan->rx_irq, chan);
1482 }
1483 }
1484
xgene_dma_set_caps(struct xgene_dma_chan * chan,struct dma_device * dma_dev)1485 static void xgene_dma_set_caps(struct xgene_dma_chan *chan,
1486 struct dma_device *dma_dev)
1487 {
1488 /* Initialize DMA device capability mask */
1489 dma_cap_zero(dma_dev->cap_mask);
1490
1491 /* Set DMA device capability */
1492
1493 /* Basically here, the X-Gene SoC DMA engine channel 0 supports XOR
1494 * and channel 1 supports XOR, PQ both. First thing here is we have
1495 * mechanism in hw to enable/disable PQ/XOR supports on channel 1,
1496 * we can make sure this by reading SoC Efuse register.
1497 * Second thing, we have hw errata that if we run channel 0 and
1498 * channel 1 simultaneously with executing XOR and PQ request,
1499 * suddenly DMA engine hangs, So here we enable XOR on channel 0 only
1500 * if XOR and PQ supports on channel 1 is disabled.
1501 */
1502 if ((chan->id == XGENE_DMA_PQ_CHANNEL) &&
1503 is_pq_enabled(chan->pdma)) {
1504 dma_cap_set(DMA_PQ, dma_dev->cap_mask);
1505 dma_cap_set(DMA_XOR, dma_dev->cap_mask);
1506 } else if ((chan->id == XGENE_DMA_XOR_CHANNEL) &&
1507 !is_pq_enabled(chan->pdma)) {
1508 dma_cap_set(DMA_XOR, dma_dev->cap_mask);
1509 }
1510
1511 /* Set base and prep routines */
1512 dma_dev->dev = chan->dev;
1513 dma_dev->device_alloc_chan_resources = xgene_dma_alloc_chan_resources;
1514 dma_dev->device_free_chan_resources = xgene_dma_free_chan_resources;
1515 dma_dev->device_issue_pending = xgene_dma_issue_pending;
1516 dma_dev->device_tx_status = xgene_dma_tx_status;
1517
1518 if (dma_has_cap(DMA_XOR, dma_dev->cap_mask)) {
1519 dma_dev->device_prep_dma_xor = xgene_dma_prep_xor;
1520 dma_dev->max_xor = XGENE_DMA_MAX_XOR_SRC;
1521 dma_dev->xor_align = DMAENGINE_ALIGN_64_BYTES;
1522 }
1523
1524 if (dma_has_cap(DMA_PQ, dma_dev->cap_mask)) {
1525 dma_dev->device_prep_dma_pq = xgene_dma_prep_pq;
1526 dma_dev->max_pq = XGENE_DMA_MAX_XOR_SRC;
1527 dma_dev->pq_align = DMAENGINE_ALIGN_64_BYTES;
1528 }
1529 }
1530
xgene_dma_async_register(struct xgene_dma * pdma,int id)1531 static int xgene_dma_async_register(struct xgene_dma *pdma, int id)
1532 {
1533 struct xgene_dma_chan *chan = &pdma->chan[id];
1534 struct dma_device *dma_dev = &pdma->dma_dev[id];
1535 int ret;
1536
1537 chan->dma_chan.device = dma_dev;
1538
1539 spin_lock_init(&chan->lock);
1540 INIT_LIST_HEAD(&chan->ld_pending);
1541 INIT_LIST_HEAD(&chan->ld_running);
1542 INIT_LIST_HEAD(&chan->ld_completed);
1543 tasklet_setup(&chan->tasklet, xgene_dma_tasklet_cb);
1544
1545 chan->pending = 0;
1546 chan->desc_pool = NULL;
1547 dma_cookie_init(&chan->dma_chan);
1548
1549 /* Setup dma device capabilities and prep routines */
1550 xgene_dma_set_caps(chan, dma_dev);
1551
1552 /* Initialize DMA device list head */
1553 INIT_LIST_HEAD(&dma_dev->channels);
1554 list_add_tail(&chan->dma_chan.device_node, &dma_dev->channels);
1555
1556 /* Register with Linux async DMA framework*/
1557 ret = dma_async_device_register(dma_dev);
1558 if (ret) {
1559 chan_err(chan, "Failed to register async device %d", ret);
1560 tasklet_kill(&chan->tasklet);
1561
1562 return ret;
1563 }
1564
1565 /* DMA capability info */
1566 dev_info(pdma->dev,
1567 "%s: CAPABILITY ( %s%s)\n", dma_chan_name(&chan->dma_chan),
1568 dma_has_cap(DMA_XOR, dma_dev->cap_mask) ? "XOR " : "",
1569 dma_has_cap(DMA_PQ, dma_dev->cap_mask) ? "PQ " : "");
1570
1571 return 0;
1572 }
1573
xgene_dma_init_async(struct xgene_dma * pdma)1574 static int xgene_dma_init_async(struct xgene_dma *pdma)
1575 {
1576 int ret, i, j;
1577
1578 for (i = 0; i < XGENE_DMA_MAX_CHANNEL ; i++) {
1579 ret = xgene_dma_async_register(pdma, i);
1580 if (ret) {
1581 for (j = 0; j < i; j++) {
1582 dma_async_device_unregister(&pdma->dma_dev[j]);
1583 tasklet_kill(&pdma->chan[j].tasklet);
1584 }
1585
1586 return ret;
1587 }
1588 }
1589
1590 return ret;
1591 }
1592
xgene_dma_async_unregister(struct xgene_dma * pdma)1593 static void xgene_dma_async_unregister(struct xgene_dma *pdma)
1594 {
1595 int i;
1596
1597 for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++)
1598 dma_async_device_unregister(&pdma->dma_dev[i]);
1599 }
1600
xgene_dma_init_channels(struct xgene_dma * pdma)1601 static void xgene_dma_init_channels(struct xgene_dma *pdma)
1602 {
1603 struct xgene_dma_chan *chan;
1604 int i;
1605
1606 pdma->ring_num = XGENE_DMA_RING_NUM;
1607
1608 for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++) {
1609 chan = &pdma->chan[i];
1610 chan->dev = pdma->dev;
1611 chan->pdma = pdma;
1612 chan->id = i;
1613 snprintf(chan->name, sizeof(chan->name), "dmachan%d", chan->id);
1614 }
1615 }
1616
xgene_dma_get_resources(struct platform_device * pdev,struct xgene_dma * pdma)1617 static int xgene_dma_get_resources(struct platform_device *pdev,
1618 struct xgene_dma *pdma)
1619 {
1620 struct resource *res;
1621 int irq, i;
1622
1623 /* Get DMA csr region */
1624 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1625 if (!res) {
1626 dev_err(&pdev->dev, "Failed to get csr region\n");
1627 return -ENXIO;
1628 }
1629
1630 pdma->csr_dma = devm_ioremap(&pdev->dev, res->start,
1631 resource_size(res));
1632 if (!pdma->csr_dma) {
1633 dev_err(&pdev->dev, "Failed to ioremap csr region");
1634 return -ENOMEM;
1635 }
1636
1637 /* Get DMA ring csr region */
1638 res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1639 if (!res) {
1640 dev_err(&pdev->dev, "Failed to get ring csr region\n");
1641 return -ENXIO;
1642 }
1643
1644 pdma->csr_ring = devm_ioremap(&pdev->dev, res->start,
1645 resource_size(res));
1646 if (!pdma->csr_ring) {
1647 dev_err(&pdev->dev, "Failed to ioremap ring csr region");
1648 return -ENOMEM;
1649 }
1650
1651 /* Get DMA ring cmd csr region */
1652 res = platform_get_resource(pdev, IORESOURCE_MEM, 2);
1653 if (!res) {
1654 dev_err(&pdev->dev, "Failed to get ring cmd csr region\n");
1655 return -ENXIO;
1656 }
1657
1658 pdma->csr_ring_cmd = devm_ioremap(&pdev->dev, res->start,
1659 resource_size(res));
1660 if (!pdma->csr_ring_cmd) {
1661 dev_err(&pdev->dev, "Failed to ioremap ring cmd csr region");
1662 return -ENOMEM;
1663 }
1664
1665 pdma->csr_ring_cmd += XGENE_DMA_RING_CMD_SM_OFFSET;
1666
1667 /* Get efuse csr region */
1668 res = platform_get_resource(pdev, IORESOURCE_MEM, 3);
1669 if (!res) {
1670 dev_err(&pdev->dev, "Failed to get efuse csr region\n");
1671 return -ENXIO;
1672 }
1673
1674 pdma->csr_efuse = devm_ioremap(&pdev->dev, res->start,
1675 resource_size(res));
1676 if (!pdma->csr_efuse) {
1677 dev_err(&pdev->dev, "Failed to ioremap efuse csr region");
1678 return -ENOMEM;
1679 }
1680
1681 /* Get DMA error interrupt */
1682 irq = platform_get_irq(pdev, 0);
1683 if (irq <= 0)
1684 return -ENXIO;
1685
1686 pdma->err_irq = irq;
1687
1688 /* Get DMA Rx ring descriptor interrupts for all DMA channels */
1689 for (i = 1; i <= XGENE_DMA_MAX_CHANNEL; i++) {
1690 irq = platform_get_irq(pdev, i);
1691 if (irq <= 0)
1692 return -ENXIO;
1693
1694 pdma->chan[i - 1].rx_irq = irq;
1695 }
1696
1697 return 0;
1698 }
1699
xgene_dma_probe(struct platform_device * pdev)1700 static int xgene_dma_probe(struct platform_device *pdev)
1701 {
1702 struct xgene_dma *pdma;
1703 int ret, i;
1704
1705 pdma = devm_kzalloc(&pdev->dev, sizeof(*pdma), GFP_KERNEL);
1706 if (!pdma)
1707 return -ENOMEM;
1708
1709 pdma->dev = &pdev->dev;
1710 platform_set_drvdata(pdev, pdma);
1711
1712 ret = xgene_dma_get_resources(pdev, pdma);
1713 if (ret)
1714 return ret;
1715
1716 pdma->clk = devm_clk_get(&pdev->dev, NULL);
1717 if (IS_ERR(pdma->clk) && !ACPI_COMPANION(&pdev->dev)) {
1718 dev_err(&pdev->dev, "Failed to get clk\n");
1719 return PTR_ERR(pdma->clk);
1720 }
1721
1722 /* Enable clk before accessing registers */
1723 if (!IS_ERR(pdma->clk)) {
1724 ret = clk_prepare_enable(pdma->clk);
1725 if (ret) {
1726 dev_err(&pdev->dev, "Failed to enable clk %d\n", ret);
1727 return ret;
1728 }
1729 }
1730
1731 /* Remove DMA RAM out of shutdown */
1732 ret = xgene_dma_init_mem(pdma);
1733 if (ret)
1734 goto err_clk_enable;
1735
1736 ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(42));
1737 if (ret) {
1738 dev_err(&pdev->dev, "No usable DMA configuration\n");
1739 goto err_dma_mask;
1740 }
1741
1742 /* Initialize DMA channels software state */
1743 xgene_dma_init_channels(pdma);
1744
1745 /* Configure DMA rings */
1746 ret = xgene_dma_init_rings(pdma);
1747 if (ret)
1748 goto err_clk_enable;
1749
1750 ret = xgene_dma_request_irqs(pdma);
1751 if (ret)
1752 goto err_request_irq;
1753
1754 /* Configure and enable DMA engine */
1755 xgene_dma_init_hw(pdma);
1756
1757 /* Register DMA device with linux async framework */
1758 ret = xgene_dma_init_async(pdma);
1759 if (ret)
1760 goto err_async_init;
1761
1762 return 0;
1763
1764 err_async_init:
1765 xgene_dma_free_irqs(pdma);
1766
1767 err_request_irq:
1768 for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++)
1769 xgene_dma_delete_chan_rings(&pdma->chan[i]);
1770
1771 err_dma_mask:
1772 err_clk_enable:
1773 if (!IS_ERR(pdma->clk))
1774 clk_disable_unprepare(pdma->clk);
1775
1776 return ret;
1777 }
1778
xgene_dma_remove(struct platform_device * pdev)1779 static void xgene_dma_remove(struct platform_device *pdev)
1780 {
1781 struct xgene_dma *pdma = platform_get_drvdata(pdev);
1782 struct xgene_dma_chan *chan;
1783 int i;
1784
1785 xgene_dma_async_unregister(pdma);
1786
1787 /* Mask interrupts and disable DMA engine */
1788 xgene_dma_mask_interrupts(pdma);
1789 xgene_dma_disable(pdma);
1790 xgene_dma_free_irqs(pdma);
1791
1792 for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++) {
1793 chan = &pdma->chan[i];
1794 tasklet_kill(&chan->tasklet);
1795 xgene_dma_delete_chan_rings(chan);
1796 }
1797
1798 if (!IS_ERR(pdma->clk))
1799 clk_disable_unprepare(pdma->clk);
1800 }
1801
1802 #ifdef CONFIG_ACPI
1803 static const struct acpi_device_id xgene_dma_acpi_match_ptr[] = {
1804 {"APMC0D43", 0},
1805 {},
1806 };
1807 MODULE_DEVICE_TABLE(acpi, xgene_dma_acpi_match_ptr);
1808 #endif
1809
1810 static const struct of_device_id xgene_dma_of_match_ptr[] = {
1811 {.compatible = "apm,xgene-storm-dma",},
1812 {},
1813 };
1814 MODULE_DEVICE_TABLE(of, xgene_dma_of_match_ptr);
1815
1816 static struct platform_driver xgene_dma_driver = {
1817 .probe = xgene_dma_probe,
1818 .remove_new = xgene_dma_remove,
1819 .driver = {
1820 .name = "X-Gene-DMA",
1821 .of_match_table = xgene_dma_of_match_ptr,
1822 .acpi_match_table = ACPI_PTR(xgene_dma_acpi_match_ptr),
1823 },
1824 };
1825
1826 module_platform_driver(xgene_dma_driver);
1827
1828 MODULE_DESCRIPTION("APM X-Gene SoC DMA driver");
1829 MODULE_AUTHOR("Rameshwar Prasad Sahu <rsahu@apm.com>");
1830 MODULE_AUTHOR("Loc Ho <lho@apm.com>");
1831 MODULE_LICENSE("GPL");
1832 MODULE_VERSION("1.0");
1833