1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Re-map IO memory to kernel address space so that we can access it.
4 * This is needed for high PCI addresses that aren't mapped in the
5 * 640k-1MB IO memory area on PC's
6 *
7 * (C) Copyright 1995 1996 Linus Torvalds
8 */
9
10 #include <linux/memblock.h>
11 #include <linux/init.h>
12 #include <linux/io.h>
13 #include <linux/ioport.h>
14 #include <linux/ioremap.h>
15 #include <linux/slab.h>
16 #include <linux/vmalloc.h>
17 #include <linux/mmiotrace.h>
18 #include <linux/cc_platform.h>
19 #include <linux/efi.h>
20 #include <linux/pgtable.h>
21 #include <linux/kmsan.h>
22
23 #include <asm/set_memory.h>
24 #include <asm/e820/api.h>
25 #include <asm/efi.h>
26 #include <asm/fixmap.h>
27 #include <asm/tlbflush.h>
28 #include <asm/pgalloc.h>
29 #include <asm/memtype.h>
30 #include <asm/setup.h>
31
32 #include "physaddr.h"
33
34 /*
35 * Descriptor controlling ioremap() behavior.
36 */
37 struct ioremap_desc {
38 unsigned int flags;
39 };
40
41 /*
42 * Fix up the linear direct mapping of the kernel to avoid cache attribute
43 * conflicts.
44 */
ioremap_change_attr(unsigned long vaddr,unsigned long size,enum page_cache_mode pcm)45 int ioremap_change_attr(unsigned long vaddr, unsigned long size,
46 enum page_cache_mode pcm)
47 {
48 unsigned long nrpages = size >> PAGE_SHIFT;
49 int err;
50
51 switch (pcm) {
52 case _PAGE_CACHE_MODE_UC:
53 default:
54 err = _set_memory_uc(vaddr, nrpages);
55 break;
56 case _PAGE_CACHE_MODE_WC:
57 err = _set_memory_wc(vaddr, nrpages);
58 break;
59 case _PAGE_CACHE_MODE_WT:
60 err = _set_memory_wt(vaddr, nrpages);
61 break;
62 case _PAGE_CACHE_MODE_WB:
63 err = _set_memory_wb(vaddr, nrpages);
64 break;
65 }
66
67 return err;
68 }
69
70 /* Does the range (or a subset of) contain normal RAM? */
__ioremap_check_ram(struct resource * res)71 static unsigned int __ioremap_check_ram(struct resource *res)
72 {
73 unsigned long start_pfn, stop_pfn;
74 unsigned long i;
75
76 if ((res->flags & IORESOURCE_SYSTEM_RAM) != IORESOURCE_SYSTEM_RAM)
77 return 0;
78
79 start_pfn = (res->start + PAGE_SIZE - 1) >> PAGE_SHIFT;
80 stop_pfn = (res->end + 1) >> PAGE_SHIFT;
81 if (stop_pfn > start_pfn) {
82 for (i = 0; i < (stop_pfn - start_pfn); ++i)
83 if (pfn_valid(start_pfn + i) &&
84 !PageReserved(pfn_to_page(start_pfn + i)))
85 return IORES_MAP_SYSTEM_RAM;
86 }
87
88 return 0;
89 }
90
91 /*
92 * In a SEV guest, NONE and RESERVED should not be mapped encrypted because
93 * there the whole memory is already encrypted.
94 */
__ioremap_check_encrypted(struct resource * res)95 static unsigned int __ioremap_check_encrypted(struct resource *res)
96 {
97 if (!cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT))
98 return 0;
99
100 switch (res->desc) {
101 case IORES_DESC_NONE:
102 case IORES_DESC_RESERVED:
103 break;
104 default:
105 return IORES_MAP_ENCRYPTED;
106 }
107
108 return 0;
109 }
110
111 /*
112 * The EFI runtime services data area is not covered by walk_mem_res(), but must
113 * be mapped encrypted when SEV is active.
114 */
__ioremap_check_other(resource_size_t addr,struct ioremap_desc * desc)115 static void __ioremap_check_other(resource_size_t addr, struct ioremap_desc *desc)
116 {
117 if (!cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT))
118 return;
119
120 if (x86_platform.hyper.is_private_mmio(addr)) {
121 desc->flags |= IORES_MAP_ENCRYPTED;
122 return;
123 }
124
125 if (!IS_ENABLED(CONFIG_EFI))
126 return;
127
128 if (efi_mem_type(addr) == EFI_RUNTIME_SERVICES_DATA ||
129 (efi_mem_type(addr) == EFI_BOOT_SERVICES_DATA &&
130 efi_mem_attributes(addr) & EFI_MEMORY_RUNTIME))
131 desc->flags |= IORES_MAP_ENCRYPTED;
132 }
133
__ioremap_collect_map_flags(struct resource * res,void * arg)134 static int __ioremap_collect_map_flags(struct resource *res, void *arg)
135 {
136 struct ioremap_desc *desc = arg;
137
138 if (!(desc->flags & IORES_MAP_SYSTEM_RAM))
139 desc->flags |= __ioremap_check_ram(res);
140
141 if (!(desc->flags & IORES_MAP_ENCRYPTED))
142 desc->flags |= __ioremap_check_encrypted(res);
143
144 return ((desc->flags & (IORES_MAP_SYSTEM_RAM | IORES_MAP_ENCRYPTED)) ==
145 (IORES_MAP_SYSTEM_RAM | IORES_MAP_ENCRYPTED));
146 }
147
148 /*
149 * To avoid multiple resource walks, this function walks resources marked as
150 * IORESOURCE_MEM and IORESOURCE_BUSY and looking for system RAM and/or a
151 * resource described not as IORES_DESC_NONE (e.g. IORES_DESC_ACPI_TABLES).
152 *
153 * After that, deal with misc other ranges in __ioremap_check_other() which do
154 * not fall into the above category.
155 */
__ioremap_check_mem(resource_size_t addr,unsigned long size,struct ioremap_desc * desc)156 static void __ioremap_check_mem(resource_size_t addr, unsigned long size,
157 struct ioremap_desc *desc)
158 {
159 u64 start, end;
160
161 start = (u64)addr;
162 end = start + size - 1;
163 memset(desc, 0, sizeof(struct ioremap_desc));
164
165 walk_mem_res(start, end, desc, __ioremap_collect_map_flags);
166
167 __ioremap_check_other(addr, desc);
168 }
169
170 /*
171 * Remap an arbitrary physical address space into the kernel virtual
172 * address space. It transparently creates kernel huge I/O mapping when
173 * the physical address is aligned by a huge page size (1GB or 2MB) and
174 * the requested size is at least the huge page size.
175 *
176 * NOTE: MTRRs can override PAT memory types with a 4KB granularity.
177 * Therefore, the mapping code falls back to use a smaller page toward 4KB
178 * when a mapping range is covered by non-WB type of MTRRs.
179 *
180 * NOTE! We need to allow non-page-aligned mappings too: we will obviously
181 * have to convert them into an offset in a page-aligned mapping, but the
182 * caller shouldn't need to know that small detail.
183 */
184 static void __iomem *
__ioremap_caller(resource_size_t phys_addr,unsigned long size,enum page_cache_mode pcm,void * caller,bool encrypted)185 __ioremap_caller(resource_size_t phys_addr, unsigned long size,
186 enum page_cache_mode pcm, void *caller, bool encrypted)
187 {
188 unsigned long offset, vaddr;
189 resource_size_t last_addr;
190 const resource_size_t unaligned_phys_addr = phys_addr;
191 const unsigned long unaligned_size = size;
192 struct ioremap_desc io_desc;
193 struct vm_struct *area;
194 enum page_cache_mode new_pcm;
195 pgprot_t prot;
196 int retval;
197 void __iomem *ret_addr;
198
199 /* Don't allow wraparound or zero size */
200 last_addr = phys_addr + size - 1;
201 if (!size || last_addr < phys_addr)
202 return NULL;
203
204 if (!phys_addr_valid(phys_addr)) {
205 printk(KERN_WARNING "ioremap: invalid physical address %llx\n",
206 (unsigned long long)phys_addr);
207 WARN_ON_ONCE(1);
208 return NULL;
209 }
210
211 __ioremap_check_mem(phys_addr, size, &io_desc);
212
213 /*
214 * Don't allow anybody to remap normal RAM that we're using..
215 */
216 if (io_desc.flags & IORES_MAP_SYSTEM_RAM) {
217 WARN_ONCE(1, "ioremap on RAM at %pa - %pa\n",
218 &phys_addr, &last_addr);
219 return NULL;
220 }
221
222 /*
223 * Mappings have to be page-aligned
224 */
225 offset = phys_addr & ~PAGE_MASK;
226 phys_addr &= PAGE_MASK;
227 size = PAGE_ALIGN(last_addr+1) - phys_addr;
228
229 /*
230 * Mask out any bits not part of the actual physical
231 * address, like memory encryption bits.
232 */
233 phys_addr &= PHYSICAL_PAGE_MASK;
234
235 retval = memtype_reserve(phys_addr, (u64)phys_addr + size,
236 pcm, &new_pcm);
237 if (retval) {
238 printk(KERN_ERR "ioremap memtype_reserve failed %d\n", retval);
239 return NULL;
240 }
241
242 if (pcm != new_pcm) {
243 if (!is_new_memtype_allowed(phys_addr, size, pcm, new_pcm)) {
244 printk(KERN_ERR
245 "ioremap error for 0x%llx-0x%llx, requested 0x%x, got 0x%x\n",
246 (unsigned long long)phys_addr,
247 (unsigned long long)(phys_addr + size),
248 pcm, new_pcm);
249 goto err_free_memtype;
250 }
251 pcm = new_pcm;
252 }
253
254 /*
255 * If the page being mapped is in memory and SEV is active then
256 * make sure the memory encryption attribute is enabled in the
257 * resulting mapping.
258 * In TDX guests, memory is marked private by default. If encryption
259 * is not requested (using encrypted), explicitly set decrypt
260 * attribute in all IOREMAPPED memory.
261 */
262 prot = PAGE_KERNEL_IO;
263 if ((io_desc.flags & IORES_MAP_ENCRYPTED) || encrypted)
264 prot = pgprot_encrypted(prot);
265 else
266 prot = pgprot_decrypted(prot);
267
268 switch (pcm) {
269 case _PAGE_CACHE_MODE_UC:
270 default:
271 prot = __pgprot(pgprot_val(prot) |
272 cachemode2protval(_PAGE_CACHE_MODE_UC));
273 break;
274 case _PAGE_CACHE_MODE_UC_MINUS:
275 prot = __pgprot(pgprot_val(prot) |
276 cachemode2protval(_PAGE_CACHE_MODE_UC_MINUS));
277 break;
278 case _PAGE_CACHE_MODE_WC:
279 prot = __pgprot(pgprot_val(prot) |
280 cachemode2protval(_PAGE_CACHE_MODE_WC));
281 break;
282 case _PAGE_CACHE_MODE_WT:
283 prot = __pgprot(pgprot_val(prot) |
284 cachemode2protval(_PAGE_CACHE_MODE_WT));
285 break;
286 case _PAGE_CACHE_MODE_WB:
287 break;
288 }
289
290 /*
291 * Ok, go for it..
292 */
293 area = get_vm_area_caller(size, VM_IOREMAP, caller);
294 if (!area)
295 goto err_free_memtype;
296 area->phys_addr = phys_addr;
297 vaddr = (unsigned long) area->addr;
298
299 if (memtype_kernel_map_sync(phys_addr, size, pcm))
300 goto err_free_area;
301
302 if (ioremap_page_range(vaddr, vaddr + size, phys_addr, prot))
303 goto err_free_area;
304
305 ret_addr = (void __iomem *) (vaddr + offset);
306 mmiotrace_ioremap(unaligned_phys_addr, unaligned_size, ret_addr);
307
308 /*
309 * Check if the request spans more than any BAR in the iomem resource
310 * tree.
311 */
312 if (iomem_map_sanity_check(unaligned_phys_addr, unaligned_size))
313 pr_warn("caller %pS mapping multiple BARs\n", caller);
314
315 return ret_addr;
316 err_free_area:
317 free_vm_area(area);
318 err_free_memtype:
319 memtype_free(phys_addr, phys_addr + size);
320 return NULL;
321 }
322
323 /**
324 * ioremap - map bus memory into CPU space
325 * @phys_addr: bus address of the memory
326 * @size: size of the resource to map
327 *
328 * ioremap performs a platform specific sequence of operations to
329 * make bus memory CPU accessible via the readb/readw/readl/writeb/
330 * writew/writel functions and the other mmio helpers. The returned
331 * address is not guaranteed to be usable directly as a virtual
332 * address.
333 *
334 * This version of ioremap ensures that the memory is marked uncachable
335 * on the CPU as well as honouring existing caching rules from things like
336 * the PCI bus. Note that there are other caches and buffers on many
337 * busses. In particular driver authors should read up on PCI writes
338 *
339 * It's useful if some control registers are in such an area and
340 * write combining or read caching is not desirable:
341 *
342 * Must be freed with iounmap.
343 */
ioremap(resource_size_t phys_addr,unsigned long size)344 void __iomem *ioremap(resource_size_t phys_addr, unsigned long size)
345 {
346 /*
347 * Ideally, this should be:
348 * pat_enabled() ? _PAGE_CACHE_MODE_UC : _PAGE_CACHE_MODE_UC_MINUS;
349 *
350 * Till we fix all X drivers to use ioremap_wc(), we will use
351 * UC MINUS. Drivers that are certain they need or can already
352 * be converted over to strong UC can use ioremap_uc().
353 */
354 enum page_cache_mode pcm = _PAGE_CACHE_MODE_UC_MINUS;
355
356 return __ioremap_caller(phys_addr, size, pcm,
357 __builtin_return_address(0), false);
358 }
359 EXPORT_SYMBOL(ioremap);
360
361 /**
362 * ioremap_uc - map bus memory into CPU space as strongly uncachable
363 * @phys_addr: bus address of the memory
364 * @size: size of the resource to map
365 *
366 * ioremap_uc performs a platform specific sequence of operations to
367 * make bus memory CPU accessible via the readb/readw/readl/writeb/
368 * writew/writel functions and the other mmio helpers. The returned
369 * address is not guaranteed to be usable directly as a virtual
370 * address.
371 *
372 * This version of ioremap ensures that the memory is marked with a strong
373 * preference as completely uncachable on the CPU when possible. For non-PAT
374 * systems this ends up setting page-attribute flags PCD=1, PWT=1. For PAT
375 * systems this will set the PAT entry for the pages as strong UC. This call
376 * will honor existing caching rules from things like the PCI bus. Note that
377 * there are other caches and buffers on many busses. In particular driver
378 * authors should read up on PCI writes.
379 *
380 * It's useful if some control registers are in such an area and
381 * write combining or read caching is not desirable:
382 *
383 * Must be freed with iounmap.
384 */
ioremap_uc(resource_size_t phys_addr,unsigned long size)385 void __iomem *ioremap_uc(resource_size_t phys_addr, unsigned long size)
386 {
387 enum page_cache_mode pcm = _PAGE_CACHE_MODE_UC;
388
389 return __ioremap_caller(phys_addr, size, pcm,
390 __builtin_return_address(0), false);
391 }
392 EXPORT_SYMBOL_GPL(ioremap_uc);
393
394 /**
395 * ioremap_wc - map memory into CPU space write combined
396 * @phys_addr: bus address of the memory
397 * @size: size of the resource to map
398 *
399 * This version of ioremap ensures that the memory is marked write combining.
400 * Write combining allows faster writes to some hardware devices.
401 *
402 * Must be freed with iounmap.
403 */
ioremap_wc(resource_size_t phys_addr,unsigned long size)404 void __iomem *ioremap_wc(resource_size_t phys_addr, unsigned long size)
405 {
406 return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WC,
407 __builtin_return_address(0), false);
408 }
409 EXPORT_SYMBOL(ioremap_wc);
410
411 /**
412 * ioremap_wt - map memory into CPU space write through
413 * @phys_addr: bus address of the memory
414 * @size: size of the resource to map
415 *
416 * This version of ioremap ensures that the memory is marked write through.
417 * Write through stores data into memory while keeping the cache up-to-date.
418 *
419 * Must be freed with iounmap.
420 */
ioremap_wt(resource_size_t phys_addr,unsigned long size)421 void __iomem *ioremap_wt(resource_size_t phys_addr, unsigned long size)
422 {
423 return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WT,
424 __builtin_return_address(0), false);
425 }
426 EXPORT_SYMBOL(ioremap_wt);
427
ioremap_encrypted(resource_size_t phys_addr,unsigned long size)428 void __iomem *ioremap_encrypted(resource_size_t phys_addr, unsigned long size)
429 {
430 return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WB,
431 __builtin_return_address(0), true);
432 }
433 EXPORT_SYMBOL(ioremap_encrypted);
434
ioremap_cache(resource_size_t phys_addr,unsigned long size)435 void __iomem *ioremap_cache(resource_size_t phys_addr, unsigned long size)
436 {
437 return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WB,
438 __builtin_return_address(0), false);
439 }
440 EXPORT_SYMBOL(ioremap_cache);
441
ioremap_prot(resource_size_t phys_addr,unsigned long size,unsigned long prot_val)442 void __iomem *ioremap_prot(resource_size_t phys_addr, unsigned long size,
443 unsigned long prot_val)
444 {
445 return __ioremap_caller(phys_addr, size,
446 pgprot2cachemode(__pgprot(prot_val)),
447 __builtin_return_address(0), false);
448 }
449 EXPORT_SYMBOL(ioremap_prot);
450
451 /**
452 * iounmap - Free a IO remapping
453 * @addr: virtual address from ioremap_*
454 *
455 * Caller must ensure there is only one unmapping for the same pointer.
456 */
iounmap(volatile void __iomem * addr)457 void iounmap(volatile void __iomem *addr)
458 {
459 struct vm_struct *p, *o;
460
461 if (WARN_ON_ONCE(!is_ioremap_addr((void __force *)addr)))
462 return;
463
464 /*
465 * The PCI/ISA range special-casing was removed from __ioremap()
466 * so this check, in theory, can be removed. However, there are
467 * cases where iounmap() is called for addresses not obtained via
468 * ioremap() (vga16fb for example). Add a warning so that these
469 * cases can be caught and fixed.
470 */
471 if ((void __force *)addr >= phys_to_virt(ISA_START_ADDRESS) &&
472 (void __force *)addr < phys_to_virt(ISA_END_ADDRESS)) {
473 WARN(1, "iounmap() called for ISA range not obtained using ioremap()\n");
474 return;
475 }
476
477 mmiotrace_iounmap(addr);
478
479 addr = (volatile void __iomem *)
480 (PAGE_MASK & (unsigned long __force)addr);
481
482 /* Use the vm area unlocked, assuming the caller
483 ensures there isn't another iounmap for the same address
484 in parallel. Reuse of the virtual address is prevented by
485 leaving it in the global lists until we're done with it.
486 cpa takes care of the direct mappings. */
487 p = find_vm_area((void __force *)addr);
488
489 if (!p) {
490 printk(KERN_ERR "iounmap: bad address %p\n", addr);
491 dump_stack();
492 return;
493 }
494
495 kmsan_iounmap_page_range((unsigned long)addr,
496 (unsigned long)addr + get_vm_area_size(p));
497 memtype_free(p->phys_addr, p->phys_addr + get_vm_area_size(p));
498
499 /* Finally remove it */
500 o = remove_vm_area((void __force *)addr);
501 BUG_ON(p != o || o == NULL);
502 kfree(p);
503 }
504 EXPORT_SYMBOL(iounmap);
505
506 /*
507 * Convert a physical pointer to a virtual kernel pointer for /dev/mem
508 * access
509 */
xlate_dev_mem_ptr(phys_addr_t phys)510 void *xlate_dev_mem_ptr(phys_addr_t phys)
511 {
512 unsigned long start = phys & PAGE_MASK;
513 unsigned long offset = phys & ~PAGE_MASK;
514 void *vaddr;
515
516 /* memremap() maps if RAM, otherwise falls back to ioremap() */
517 vaddr = memremap(start, PAGE_SIZE, MEMREMAP_WB);
518
519 /* Only add the offset on success and return NULL if memremap() failed */
520 if (vaddr)
521 vaddr += offset;
522
523 return vaddr;
524 }
525
unxlate_dev_mem_ptr(phys_addr_t phys,void * addr)526 void unxlate_dev_mem_ptr(phys_addr_t phys, void *addr)
527 {
528 memunmap((void *)((unsigned long)addr & PAGE_MASK));
529 }
530
531 #ifdef CONFIG_AMD_MEM_ENCRYPT
532 /*
533 * Examine the physical address to determine if it is an area of memory
534 * that should be mapped decrypted. If the memory is not part of the
535 * kernel usable area it was accessed and created decrypted, so these
536 * areas should be mapped decrypted. And since the encryption key can
537 * change across reboots, persistent memory should also be mapped
538 * decrypted.
539 *
540 * If SEV is active, that implies that BIOS/UEFI also ran encrypted so
541 * only persistent memory should be mapped decrypted.
542 */
memremap_should_map_decrypted(resource_size_t phys_addr,unsigned long size)543 static bool memremap_should_map_decrypted(resource_size_t phys_addr,
544 unsigned long size)
545 {
546 int is_pmem;
547
548 /*
549 * Check if the address is part of a persistent memory region.
550 * This check covers areas added by E820, EFI and ACPI.
551 */
552 is_pmem = region_intersects(phys_addr, size, IORESOURCE_MEM,
553 IORES_DESC_PERSISTENT_MEMORY);
554 if (is_pmem != REGION_DISJOINT)
555 return true;
556
557 /*
558 * Check if the non-volatile attribute is set for an EFI
559 * reserved area.
560 */
561 if (efi_enabled(EFI_BOOT)) {
562 switch (efi_mem_type(phys_addr)) {
563 case EFI_RESERVED_TYPE:
564 if (efi_mem_attributes(phys_addr) & EFI_MEMORY_NV)
565 return true;
566 break;
567 default:
568 break;
569 }
570 }
571
572 /* Check if the address is outside kernel usable area */
573 switch (e820__get_entry_type(phys_addr, phys_addr + size - 1)) {
574 case E820_TYPE_RESERVED:
575 case E820_TYPE_ACPI:
576 case E820_TYPE_NVS:
577 case E820_TYPE_UNUSABLE:
578 /* For SEV, these areas are encrypted */
579 if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT))
580 break;
581 fallthrough;
582
583 case E820_TYPE_PRAM:
584 return true;
585 default:
586 break;
587 }
588
589 return false;
590 }
591
592 /*
593 * Examine the physical address to determine if it is EFI data. Check
594 * it against the boot params structure and EFI tables and memory types.
595 */
memremap_is_efi_data(resource_size_t phys_addr,unsigned long size)596 static bool memremap_is_efi_data(resource_size_t phys_addr,
597 unsigned long size)
598 {
599 u64 paddr;
600
601 /* Check if the address is part of EFI boot/runtime data */
602 if (!efi_enabled(EFI_BOOT))
603 return false;
604
605 paddr = boot_params.efi_info.efi_memmap_hi;
606 paddr <<= 32;
607 paddr |= boot_params.efi_info.efi_memmap;
608 if (phys_addr == paddr)
609 return true;
610
611 paddr = boot_params.efi_info.efi_systab_hi;
612 paddr <<= 32;
613 paddr |= boot_params.efi_info.efi_systab;
614 if (phys_addr == paddr)
615 return true;
616
617 if (efi_is_table_address(phys_addr))
618 return true;
619
620 switch (efi_mem_type(phys_addr)) {
621 case EFI_BOOT_SERVICES_DATA:
622 case EFI_RUNTIME_SERVICES_DATA:
623 return true;
624 default:
625 break;
626 }
627
628 return false;
629 }
630
631 /*
632 * Examine the physical address to determine if it is boot data by checking
633 * it against the boot params setup_data chain.
634 */
memremap_is_setup_data(resource_size_t phys_addr,unsigned long size)635 static bool memremap_is_setup_data(resource_size_t phys_addr,
636 unsigned long size)
637 {
638 struct setup_indirect *indirect;
639 struct setup_data *data;
640 u64 paddr, paddr_next;
641
642 paddr = boot_params.hdr.setup_data;
643 while (paddr) {
644 unsigned int len;
645
646 if (phys_addr == paddr)
647 return true;
648
649 data = memremap(paddr, sizeof(*data),
650 MEMREMAP_WB | MEMREMAP_DEC);
651 if (!data) {
652 pr_warn("failed to memremap setup_data entry\n");
653 return false;
654 }
655
656 paddr_next = data->next;
657 len = data->len;
658
659 if ((phys_addr > paddr) &&
660 (phys_addr < (paddr + sizeof(struct setup_data) + len))) {
661 memunmap(data);
662 return true;
663 }
664
665 if (data->type == SETUP_INDIRECT) {
666 memunmap(data);
667 data = memremap(paddr, sizeof(*data) + len,
668 MEMREMAP_WB | MEMREMAP_DEC);
669 if (!data) {
670 pr_warn("failed to memremap indirect setup_data\n");
671 return false;
672 }
673
674 indirect = (struct setup_indirect *)data->data;
675
676 if (indirect->type != SETUP_INDIRECT) {
677 paddr = indirect->addr;
678 len = indirect->len;
679 }
680 }
681
682 memunmap(data);
683
684 if ((phys_addr > paddr) && (phys_addr < (paddr + len)))
685 return true;
686
687 paddr = paddr_next;
688 }
689
690 return false;
691 }
692
693 /*
694 * Examine the physical address to determine if it is boot data by checking
695 * it against the boot params setup_data chain (early boot version).
696 */
early_memremap_is_setup_data(resource_size_t phys_addr,unsigned long size)697 static bool __init early_memremap_is_setup_data(resource_size_t phys_addr,
698 unsigned long size)
699 {
700 struct setup_indirect *indirect;
701 struct setup_data *data;
702 u64 paddr, paddr_next;
703
704 paddr = boot_params.hdr.setup_data;
705 while (paddr) {
706 unsigned int len, size;
707
708 if (phys_addr == paddr)
709 return true;
710
711 data = early_memremap_decrypted(paddr, sizeof(*data));
712 if (!data) {
713 pr_warn("failed to early memremap setup_data entry\n");
714 return false;
715 }
716
717 size = sizeof(*data);
718
719 paddr_next = data->next;
720 len = data->len;
721
722 if ((phys_addr > paddr) &&
723 (phys_addr < (paddr + sizeof(struct setup_data) + len))) {
724 early_memunmap(data, sizeof(*data));
725 return true;
726 }
727
728 if (data->type == SETUP_INDIRECT) {
729 size += len;
730 early_memunmap(data, sizeof(*data));
731 data = early_memremap_decrypted(paddr, size);
732 if (!data) {
733 pr_warn("failed to early memremap indirect setup_data\n");
734 return false;
735 }
736
737 indirect = (struct setup_indirect *)data->data;
738
739 if (indirect->type != SETUP_INDIRECT) {
740 paddr = indirect->addr;
741 len = indirect->len;
742 }
743 }
744
745 early_memunmap(data, size);
746
747 if ((phys_addr > paddr) && (phys_addr < (paddr + len)))
748 return true;
749
750 paddr = paddr_next;
751 }
752
753 return false;
754 }
755
756 /*
757 * Architecture function to determine if RAM remap is allowed. By default, a
758 * RAM remap will map the data as encrypted. Determine if a RAM remap should
759 * not be done so that the data will be mapped decrypted.
760 */
arch_memremap_can_ram_remap(resource_size_t phys_addr,unsigned long size,unsigned long flags)761 bool arch_memremap_can_ram_remap(resource_size_t phys_addr, unsigned long size,
762 unsigned long flags)
763 {
764 if (!cc_platform_has(CC_ATTR_MEM_ENCRYPT))
765 return true;
766
767 if (flags & MEMREMAP_ENC)
768 return true;
769
770 if (flags & MEMREMAP_DEC)
771 return false;
772
773 if (cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT)) {
774 if (memremap_is_setup_data(phys_addr, size) ||
775 memremap_is_efi_data(phys_addr, size))
776 return false;
777 }
778
779 return !memremap_should_map_decrypted(phys_addr, size);
780 }
781
782 /*
783 * Architecture override of __weak function to adjust the protection attributes
784 * used when remapping memory. By default, early_memremap() will map the data
785 * as encrypted. Determine if an encrypted mapping should not be done and set
786 * the appropriate protection attributes.
787 */
early_memremap_pgprot_adjust(resource_size_t phys_addr,unsigned long size,pgprot_t prot)788 pgprot_t __init early_memremap_pgprot_adjust(resource_size_t phys_addr,
789 unsigned long size,
790 pgprot_t prot)
791 {
792 bool encrypted_prot;
793
794 if (!cc_platform_has(CC_ATTR_MEM_ENCRYPT))
795 return prot;
796
797 encrypted_prot = true;
798
799 if (cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT)) {
800 if (early_memremap_is_setup_data(phys_addr, size) ||
801 memremap_is_efi_data(phys_addr, size))
802 encrypted_prot = false;
803 }
804
805 if (encrypted_prot && memremap_should_map_decrypted(phys_addr, size))
806 encrypted_prot = false;
807
808 return encrypted_prot ? pgprot_encrypted(prot)
809 : pgprot_decrypted(prot);
810 }
811
phys_mem_access_encrypted(unsigned long phys_addr,unsigned long size)812 bool phys_mem_access_encrypted(unsigned long phys_addr, unsigned long size)
813 {
814 return arch_memremap_can_ram_remap(phys_addr, size, 0);
815 }
816
817 /* Remap memory with encryption */
early_memremap_encrypted(resource_size_t phys_addr,unsigned long size)818 void __init *early_memremap_encrypted(resource_size_t phys_addr,
819 unsigned long size)
820 {
821 return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_ENC);
822 }
823
824 /*
825 * Remap memory with encryption and write-protected - cannot be called
826 * before pat_init() is called
827 */
early_memremap_encrypted_wp(resource_size_t phys_addr,unsigned long size)828 void __init *early_memremap_encrypted_wp(resource_size_t phys_addr,
829 unsigned long size)
830 {
831 if (!x86_has_pat_wp())
832 return NULL;
833 return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_ENC_WP);
834 }
835
836 /* Remap memory without encryption */
early_memremap_decrypted(resource_size_t phys_addr,unsigned long size)837 void __init *early_memremap_decrypted(resource_size_t phys_addr,
838 unsigned long size)
839 {
840 return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_NOENC);
841 }
842
843 /*
844 * Remap memory without encryption and write-protected - cannot be called
845 * before pat_init() is called
846 */
early_memremap_decrypted_wp(resource_size_t phys_addr,unsigned long size)847 void __init *early_memremap_decrypted_wp(resource_size_t phys_addr,
848 unsigned long size)
849 {
850 if (!x86_has_pat_wp())
851 return NULL;
852 return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_NOENC_WP);
853 }
854 #endif /* CONFIG_AMD_MEM_ENCRYPT */
855
856 static pte_t bm_pte[PAGE_SIZE/sizeof(pte_t)] __page_aligned_bss;
857
early_ioremap_pmd(unsigned long addr)858 static inline pmd_t * __init early_ioremap_pmd(unsigned long addr)
859 {
860 /* Don't assume we're using swapper_pg_dir at this point */
861 pgd_t *base = __va(read_cr3_pa());
862 pgd_t *pgd = &base[pgd_index(addr)];
863 p4d_t *p4d = p4d_offset(pgd, addr);
864 pud_t *pud = pud_offset(p4d, addr);
865 pmd_t *pmd = pmd_offset(pud, addr);
866
867 return pmd;
868 }
869
early_ioremap_pte(unsigned long addr)870 static inline pte_t * __init early_ioremap_pte(unsigned long addr)
871 {
872 return &bm_pte[pte_index(addr)];
873 }
874
is_early_ioremap_ptep(pte_t * ptep)875 bool __init is_early_ioremap_ptep(pte_t *ptep)
876 {
877 return ptep >= &bm_pte[0] && ptep < &bm_pte[PAGE_SIZE/sizeof(pte_t)];
878 }
879
early_ioremap_init(void)880 void __init early_ioremap_init(void)
881 {
882 pmd_t *pmd;
883
884 #ifdef CONFIG_X86_64
885 BUILD_BUG_ON((fix_to_virt(0) + PAGE_SIZE) & ((1 << PMD_SHIFT) - 1));
886 #else
887 WARN_ON((fix_to_virt(0) + PAGE_SIZE) & ((1 << PMD_SHIFT) - 1));
888 #endif
889
890 early_ioremap_setup();
891
892 pmd = early_ioremap_pmd(fix_to_virt(FIX_BTMAP_BEGIN));
893 memset(bm_pte, 0, sizeof(bm_pte));
894 pmd_populate_kernel(&init_mm, pmd, bm_pte);
895
896 /*
897 * The boot-ioremap range spans multiple pmds, for which
898 * we are not prepared:
899 */
900 #define __FIXADDR_TOP (-PAGE_SIZE)
901 BUILD_BUG_ON((__fix_to_virt(FIX_BTMAP_BEGIN) >> PMD_SHIFT)
902 != (__fix_to_virt(FIX_BTMAP_END) >> PMD_SHIFT));
903 #undef __FIXADDR_TOP
904 if (pmd != early_ioremap_pmd(fix_to_virt(FIX_BTMAP_END))) {
905 WARN_ON(1);
906 printk(KERN_WARNING "pmd %p != %p\n",
907 pmd, early_ioremap_pmd(fix_to_virt(FIX_BTMAP_END)));
908 printk(KERN_WARNING "fix_to_virt(FIX_BTMAP_BEGIN): %08lx\n",
909 fix_to_virt(FIX_BTMAP_BEGIN));
910 printk(KERN_WARNING "fix_to_virt(FIX_BTMAP_END): %08lx\n",
911 fix_to_virt(FIX_BTMAP_END));
912
913 printk(KERN_WARNING "FIX_BTMAP_END: %d\n", FIX_BTMAP_END);
914 printk(KERN_WARNING "FIX_BTMAP_BEGIN: %d\n",
915 FIX_BTMAP_BEGIN);
916 }
917 }
918
__early_set_fixmap(enum fixed_addresses idx,phys_addr_t phys,pgprot_t flags)919 void __init __early_set_fixmap(enum fixed_addresses idx,
920 phys_addr_t phys, pgprot_t flags)
921 {
922 unsigned long addr = __fix_to_virt(idx);
923 pte_t *pte;
924
925 if (idx >= __end_of_fixed_addresses) {
926 BUG();
927 return;
928 }
929 pte = early_ioremap_pte(addr);
930
931 /* Sanitize 'prot' against any unsupported bits: */
932 pgprot_val(flags) &= __supported_pte_mask;
933
934 if (pgprot_val(flags))
935 set_pte(pte, pfn_pte(phys >> PAGE_SHIFT, flags));
936 else
937 pte_clear(&init_mm, addr, pte);
938 flush_tlb_one_kernel(addr);
939 }
940