xref: /freebsd/sys/vm/vm_fault.c (revision cff67bc43df14d492ccc08ec92fddceadd069953)
1 /*-
2  * SPDX-License-Identifier: (BSD-4-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * Copyright (c) 1994 John S. Dyson
7  * All rights reserved.
8  * Copyright (c) 1994 David Greenman
9  * All rights reserved.
10  *
11  *
12  * This code is derived from software contributed to Berkeley by
13  * The Mach Operating System project at Carnegie-Mellon University.
14  *
15  * Redistribution and use in source and binary forms, with or without
16  * modification, are permitted provided that the following conditions
17  * are met:
18  * 1. Redistributions of source code must retain the above copyright
19  *    notice, this list of conditions and the following disclaimer.
20  * 2. Redistributions in binary form must reproduce the above copyright
21  *    notice, this list of conditions and the following disclaimer in the
22  *    documentation and/or other materials provided with the distribution.
23  * 3. All advertising materials mentioning features or use of this software
24  *    must display the following acknowledgement:
25  *	This product includes software developed by the University of
26  *	California, Berkeley and its contributors.
27  * 4. Neither the name of the University nor the names of its contributors
28  *    may be used to endorse or promote products derived from this software
29  *    without specific prior written permission.
30  *
31  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
32  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
35  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41  * SUCH DAMAGE.
42  *
43  *
44  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
45  * All rights reserved.
46  *
47  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
48  *
49  * Permission to use, copy, modify and distribute this software and
50  * its documentation is hereby granted, provided that both the copyright
51  * notice and this permission notice appear in all copies of the
52  * software, derivative works or modified versions, and any portions
53  * thereof, and that both notices appear in supporting documentation.
54  *
55  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
56  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
57  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
58  *
59  * Carnegie Mellon requests users of this software to return to
60  *
61  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
62  *  School of Computer Science
63  *  Carnegie Mellon University
64  *  Pittsburgh PA 15213-3890
65  *
66  * any improvements or extensions that they make and grant Carnegie the
67  * rights to redistribute these changes.
68  */
69 
70 /*
71  *	Page fault handling module.
72  */
73 
74 #include "opt_ktrace.h"
75 #include "opt_vm.h"
76 
77 #include <sys/systm.h>
78 #include <sys/kernel.h>
79 #include <sys/lock.h>
80 #include <sys/mman.h>
81 #include <sys/mutex.h>
82 #include <sys/pctrie.h>
83 #include <sys/proc.h>
84 #include <sys/racct.h>
85 #include <sys/refcount.h>
86 #include <sys/resourcevar.h>
87 #include <sys/rwlock.h>
88 #include <sys/sched.h>
89 #include <sys/sf_buf.h>
90 #include <sys/signalvar.h>
91 #include <sys/sysctl.h>
92 #include <sys/sysent.h>
93 #include <sys/vmmeter.h>
94 #include <sys/vnode.h>
95 #ifdef KTRACE
96 #include <sys/ktrace.h>
97 #endif
98 
99 #include <vm/vm.h>
100 #include <vm/vm_param.h>
101 #include <vm/pmap.h>
102 #include <vm/vm_map.h>
103 #include <vm/vm_object.h>
104 #include <vm/vm_page.h>
105 #include <vm/vm_pageout.h>
106 #include <vm/vm_kern.h>
107 #include <vm/vm_pager.h>
108 #include <vm/vm_radix.h>
109 #include <vm/vm_extern.h>
110 #include <vm/vm_reserv.h>
111 
112 #define PFBAK 4
113 #define PFFOR 4
114 
115 #define	VM_FAULT_READ_DEFAULT	(1 + VM_FAULT_READ_AHEAD_INIT)
116 
117 #define	VM_FAULT_DONTNEED_MIN	1048576
118 
119 struct faultstate {
120 	/* Fault parameters. */
121 	vm_offset_t	vaddr;
122 	vm_page_t	*m_hold;
123 	vm_prot_t	fault_type;
124 	vm_prot_t	prot;
125 	int		fault_flags;
126 	boolean_t	wired;
127 
128 	/* Control state. */
129 	struct timeval	oom_start_time;
130 	bool		oom_started;
131 	int		nera;
132 	bool		can_read_lock;
133 
134 	/* Page reference for cow. */
135 	vm_page_t m_cow;
136 
137 	/* Current object. */
138 	vm_object_t	object;
139 	vm_pindex_t	pindex;
140 	vm_page_t	m;
141 	bool		m_needs_zeroing;
142 
143 	/* Top-level map object. */
144 	vm_object_t	first_object;
145 	vm_pindex_t	first_pindex;
146 	vm_page_t	first_m;
147 
148 	/* Map state. */
149 	vm_map_t	map;
150 	vm_map_entry_t	entry;
151 	int		map_generation;
152 	bool		lookup_still_valid;
153 
154 	/* Vnode if locked. */
155 	struct vnode	*vp;
156 };
157 
158 /*
159  * Return codes for internal fault routines.
160  */
161 enum fault_status {
162 	FAULT_SUCCESS = 10000,	/* Return success to user. */
163 	FAULT_FAILURE,		/* Return failure to user. */
164 	FAULT_CONTINUE,		/* Continue faulting. */
165 	FAULT_RESTART,		/* Restart fault. */
166 	FAULT_OUT_OF_BOUNDS,	/* Invalid address for pager. */
167 	FAULT_HARD,		/* Performed I/O. */
168 	FAULT_SOFT,		/* Found valid page. */
169 	FAULT_PROTECTION_FAILURE, /* Invalid access. */
170 };
171 
172 enum fault_next_status {
173 	FAULT_NEXT_GOTOBJ = 1,
174 	FAULT_NEXT_NOOBJ,
175 	FAULT_NEXT_RESTART,
176 };
177 
178 static void vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr,
179 	    int ahead);
180 static void vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
181 	    int backward, int forward, bool obj_locked);
182 
183 static int vm_pfault_oom_attempts = 3;
184 SYSCTL_INT(_vm, OID_AUTO, pfault_oom_attempts, CTLFLAG_RWTUN,
185     &vm_pfault_oom_attempts, 0,
186     "Number of page allocation attempts in page fault handler before it "
187     "triggers OOM handling");
188 
189 static int vm_pfault_oom_wait = 10;
190 SYSCTL_INT(_vm, OID_AUTO, pfault_oom_wait, CTLFLAG_RWTUN,
191     &vm_pfault_oom_wait, 0,
192     "Number of seconds to wait for free pages before retrying "
193     "the page fault handler");
194 
195 static inline void
vm_fault_page_release(vm_page_t * mp)196 vm_fault_page_release(vm_page_t *mp)
197 {
198 	vm_page_t m;
199 
200 	m = *mp;
201 	if (m != NULL) {
202 		/*
203 		 * We are likely to loop around again and attempt to busy
204 		 * this page.  Deactivating it leaves it available for
205 		 * pageout while optimizing fault restarts.
206 		 */
207 		vm_page_deactivate(m);
208 		if (vm_page_xbusied(m))
209 			vm_page_xunbusy(m);
210 		else
211 			vm_page_sunbusy(m);
212 		*mp = NULL;
213 	}
214 }
215 
216 static inline void
vm_fault_page_free(vm_page_t * mp)217 vm_fault_page_free(vm_page_t *mp)
218 {
219 	vm_page_t m;
220 
221 	m = *mp;
222 	if (m != NULL) {
223 		VM_OBJECT_ASSERT_WLOCKED(m->object);
224 		if (!vm_page_wired(m))
225 			vm_page_free(m);
226 		else
227 			vm_page_xunbusy(m);
228 		*mp = NULL;
229 	}
230 }
231 
232 /*
233  * Return true if a vm_pager_get_pages() call is needed in order to check
234  * whether the pager might have a particular page, false if it can be determined
235  * immediately that the pager can not have a copy.  For swap objects, this can
236  * be checked quickly.
237  */
238 static inline bool
vm_fault_object_needs_getpages(vm_object_t object)239 vm_fault_object_needs_getpages(vm_object_t object)
240 {
241 	VM_OBJECT_ASSERT_LOCKED(object);
242 
243 	return ((object->flags & OBJ_SWAP) == 0 ||
244 	    !pctrie_is_empty(&object->un_pager.swp.swp_blks));
245 }
246 
247 static inline void
vm_fault_unlock_map(struct faultstate * fs)248 vm_fault_unlock_map(struct faultstate *fs)
249 {
250 
251 	if (fs->lookup_still_valid) {
252 		vm_map_lookup_done(fs->map, fs->entry);
253 		fs->lookup_still_valid = false;
254 	}
255 }
256 
257 static void
vm_fault_unlock_vp(struct faultstate * fs)258 vm_fault_unlock_vp(struct faultstate *fs)
259 {
260 
261 	if (fs->vp != NULL) {
262 		vput(fs->vp);
263 		fs->vp = NULL;
264 	}
265 }
266 
267 static bool
vm_fault_might_be_cow(struct faultstate * fs)268 vm_fault_might_be_cow(struct faultstate *fs)
269 {
270 	return (fs->object != fs->first_object);
271 }
272 
273 static void
vm_fault_deallocate(struct faultstate * fs)274 vm_fault_deallocate(struct faultstate *fs)
275 {
276 
277 	fs->m_needs_zeroing = true;
278 	vm_fault_page_release(&fs->m_cow);
279 	vm_fault_page_release(&fs->m);
280 	vm_object_pip_wakeup(fs->object);
281 	if (vm_fault_might_be_cow(fs)) {
282 		VM_OBJECT_WLOCK(fs->first_object);
283 		vm_fault_page_free(&fs->first_m);
284 		VM_OBJECT_WUNLOCK(fs->first_object);
285 		vm_object_pip_wakeup(fs->first_object);
286 	}
287 	vm_object_deallocate(fs->first_object);
288 	vm_fault_unlock_map(fs);
289 	vm_fault_unlock_vp(fs);
290 }
291 
292 static void
vm_fault_unlock_and_deallocate(struct faultstate * fs)293 vm_fault_unlock_and_deallocate(struct faultstate *fs)
294 {
295 
296 	VM_OBJECT_UNLOCK(fs->object);
297 	vm_fault_deallocate(fs);
298 }
299 
300 static void
vm_fault_dirty(struct faultstate * fs,vm_page_t m)301 vm_fault_dirty(struct faultstate *fs, vm_page_t m)
302 {
303 	bool need_dirty;
304 
305 	if (((fs->prot & VM_PROT_WRITE) == 0 &&
306 	    (fs->fault_flags & VM_FAULT_DIRTY) == 0) ||
307 	    (m->oflags & VPO_UNMANAGED) != 0)
308 		return;
309 
310 	VM_PAGE_OBJECT_BUSY_ASSERT(m);
311 
312 	need_dirty = ((fs->fault_type & VM_PROT_WRITE) != 0 &&
313 	    (fs->fault_flags & VM_FAULT_WIRE) == 0) ||
314 	    (fs->fault_flags & VM_FAULT_DIRTY) != 0;
315 
316 	vm_object_set_writeable_dirty(m->object);
317 
318 	/*
319 	 * If the fault is a write, we know that this page is being
320 	 * written NOW so dirty it explicitly to save on
321 	 * pmap_is_modified() calls later.
322 	 *
323 	 * Also, since the page is now dirty, we can possibly tell
324 	 * the pager to release any swap backing the page.
325 	 */
326 	if (need_dirty && vm_page_set_dirty(m) == 0) {
327 		/*
328 		 * If this is a NOSYNC mmap we do not want to set PGA_NOSYNC
329 		 * if the page is already dirty to prevent data written with
330 		 * the expectation of being synced from not being synced.
331 		 * Likewise if this entry does not request NOSYNC then make
332 		 * sure the page isn't marked NOSYNC.  Applications sharing
333 		 * data should use the same flags to avoid ping ponging.
334 		 */
335 		if ((fs->entry->eflags & MAP_ENTRY_NOSYNC) != 0)
336 			vm_page_aflag_set(m, PGA_NOSYNC);
337 		else
338 			vm_page_aflag_clear(m, PGA_NOSYNC);
339 	}
340 
341 }
342 
343 static bool
vm_fault_is_read(const struct faultstate * fs)344 vm_fault_is_read(const struct faultstate *fs)
345 {
346 	return ((fs->prot & VM_PROT_WRITE) == 0 &&
347 	    (fs->fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) == 0);
348 }
349 
350 /*
351  * Unlocks fs.first_object and fs.map on success.
352  */
353 static enum fault_status
vm_fault_soft_fast(struct faultstate * fs)354 vm_fault_soft_fast(struct faultstate *fs)
355 {
356 	vm_page_t m, m_map;
357 #if VM_NRESERVLEVEL > 0
358 	vm_page_t m_super;
359 	int flags;
360 #endif
361 	int psind;
362 	vm_offset_t vaddr;
363 
364 	MPASS(fs->vp == NULL);
365 
366 	/*
367 	 * If we fail, vast majority of the time it is because the page is not
368 	 * there to begin with. Opportunistically perform the lookup and
369 	 * subsequent checks without the object lock, revalidate later.
370 	 *
371 	 * Note: a busy page can be mapped for read|execute access.
372 	 */
373 	m = vm_page_lookup_unlocked(fs->first_object, fs->first_pindex);
374 	if (m == NULL || !vm_page_all_valid(m) ||
375 	    ((fs->prot & VM_PROT_WRITE) != 0 && vm_page_busied(m))) {
376 		VM_OBJECT_WLOCK(fs->first_object);
377 		return (FAULT_FAILURE);
378 	}
379 
380 	vaddr = fs->vaddr;
381 
382 	VM_OBJECT_RLOCK(fs->first_object);
383 
384 	/*
385 	 * Now that we stabilized the state, revalidate the page is in the shape
386 	 * we encountered above.
387 	 */
388 
389 	if (m->object != fs->first_object || m->pindex != fs->first_pindex)
390 		goto fail;
391 
392 	vm_object_busy(fs->first_object);
393 
394 	if (!vm_page_all_valid(m) ||
395 	    ((fs->prot & VM_PROT_WRITE) != 0 && vm_page_busied(m)))
396 		goto fail_busy;
397 
398 	m_map = m;
399 	psind = 0;
400 #if VM_NRESERVLEVEL > 0
401 	if ((m->flags & PG_FICTITIOUS) == 0 &&
402 	    (m_super = vm_reserv_to_superpage(m)) != NULL) {
403 		psind = m_super->psind;
404 		KASSERT(psind > 0,
405 		    ("psind %d of m_super %p < 1", psind, m_super));
406 		flags = PS_ALL_VALID;
407 		if ((fs->prot & VM_PROT_WRITE) != 0) {
408 			/*
409 			 * Create a superpage mapping allowing write access
410 			 * only if none of the constituent pages are busy and
411 			 * all of them are already dirty (except possibly for
412 			 * the page that was faulted on).
413 			 */
414 			flags |= PS_NONE_BUSY;
415 			if ((fs->first_object->flags & OBJ_UNMANAGED) == 0)
416 				flags |= PS_ALL_DIRTY;
417 		}
418 		while (rounddown2(vaddr, pagesizes[psind]) < fs->entry->start ||
419 		    roundup2(vaddr + 1, pagesizes[psind]) > fs->entry->end ||
420 		    (vaddr & (pagesizes[psind] - 1)) !=
421 		    (VM_PAGE_TO_PHYS(m) & (pagesizes[psind] - 1)) ||
422 		    !vm_page_ps_test(m_super, psind, flags, m) ||
423 		    !pmap_ps_enabled(fs->map->pmap)) {
424 			psind--;
425 			if (psind == 0)
426 				break;
427 			m_super += rounddown2(m - m_super,
428 			    atop(pagesizes[psind]));
429 			KASSERT(m_super->psind >= psind,
430 			    ("psind %d of m_super %p < %d", m_super->psind,
431 			    m_super, psind));
432 		}
433 		if (psind > 0) {
434 			m_map = m_super;
435 			vaddr = rounddown2(vaddr, pagesizes[psind]);
436 			/* Preset the modified bit for dirty superpages. */
437 			if ((flags & PS_ALL_DIRTY) != 0)
438 				fs->fault_type |= VM_PROT_WRITE;
439 		}
440 	}
441 #endif
442 	if (pmap_enter(fs->map->pmap, vaddr, m_map, fs->prot, fs->fault_type |
443 	    PMAP_ENTER_NOSLEEP | (fs->wired ? PMAP_ENTER_WIRED : 0), psind) !=
444 	    KERN_SUCCESS)
445 		goto fail_busy;
446 	if (fs->m_hold != NULL) {
447 		(*fs->m_hold) = m;
448 		vm_page_wire(m);
449 	}
450 	if (psind == 0 && !fs->wired)
451 		vm_fault_prefault(fs, vaddr, PFBAK, PFFOR, true);
452 	VM_OBJECT_RUNLOCK(fs->first_object);
453 	vm_fault_dirty(fs, m);
454 	vm_object_unbusy(fs->first_object);
455 	vm_map_lookup_done(fs->map, fs->entry);
456 	curthread->td_ru.ru_minflt++;
457 	return (FAULT_SUCCESS);
458 fail_busy:
459 	vm_object_unbusy(fs->first_object);
460 fail:
461 	if (!VM_OBJECT_TRYUPGRADE(fs->first_object)) {
462 		VM_OBJECT_RUNLOCK(fs->first_object);
463 		VM_OBJECT_WLOCK(fs->first_object);
464 	}
465 	return (FAULT_FAILURE);
466 }
467 
468 static void
vm_fault_restore_map_lock(struct faultstate * fs)469 vm_fault_restore_map_lock(struct faultstate *fs)
470 {
471 
472 	VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
473 	MPASS(blockcount_read(&fs->first_object->paging_in_progress) > 0);
474 
475 	if (!vm_map_trylock_read(fs->map)) {
476 		VM_OBJECT_WUNLOCK(fs->first_object);
477 		vm_map_lock_read(fs->map);
478 		VM_OBJECT_WLOCK(fs->first_object);
479 	}
480 	fs->lookup_still_valid = true;
481 }
482 
483 static void
vm_fault_populate_check_page(vm_page_t m)484 vm_fault_populate_check_page(vm_page_t m)
485 {
486 
487 	/*
488 	 * Check each page to ensure that the pager is obeying the
489 	 * interface: the page must be installed in the object, fully
490 	 * valid, and exclusively busied.
491 	 */
492 	MPASS(m != NULL);
493 	MPASS(vm_page_all_valid(m));
494 	MPASS(vm_page_xbusied(m));
495 }
496 
497 static void
vm_fault_populate_cleanup(vm_object_t object,vm_pindex_t first,vm_pindex_t last)498 vm_fault_populate_cleanup(vm_object_t object, vm_pindex_t first,
499     vm_pindex_t last)
500 {
501 	struct pctrie_iter pages;
502 	vm_page_t m;
503 
504 	VM_OBJECT_ASSERT_WLOCKED(object);
505 	MPASS(first <= last);
506 	vm_page_iter_limit_init(&pages, object, last + 1);
507 	VM_RADIX_FORALL_FROM(m, &pages, first) {
508 		vm_fault_populate_check_page(m);
509 		vm_page_deactivate(m);
510 		vm_page_xunbusy(m);
511 	}
512 	KASSERT(pages.index == last, ("%s: pindex mismatch", __func__));
513 }
514 
515 static enum fault_status
vm_fault_populate(struct faultstate * fs)516 vm_fault_populate(struct faultstate *fs)
517 {
518 	vm_offset_t vaddr;
519 	vm_page_t m;
520 	vm_pindex_t map_first, map_last, pager_first, pager_last, pidx;
521 	int bdry_idx, i, npages, psind, rv;
522 	enum fault_status res;
523 
524 	MPASS(fs->object == fs->first_object);
525 	VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
526 	MPASS(blockcount_read(&fs->first_object->paging_in_progress) > 0);
527 	MPASS(fs->first_object->backing_object == NULL);
528 	MPASS(fs->lookup_still_valid);
529 
530 	pager_first = OFF_TO_IDX(fs->entry->offset);
531 	pager_last = pager_first + atop(fs->entry->end - fs->entry->start) - 1;
532 	vm_fault_unlock_map(fs);
533 	vm_fault_unlock_vp(fs);
534 
535 	res = FAULT_SUCCESS;
536 
537 	/*
538 	 * Call the pager (driver) populate() method.
539 	 *
540 	 * There is no guarantee that the method will be called again
541 	 * if the current fault is for read, and a future fault is
542 	 * for write.  Report the entry's maximum allowed protection
543 	 * to the driver.
544 	 */
545 	rv = vm_pager_populate(fs->first_object, fs->first_pindex,
546 	    fs->fault_type, fs->entry->max_protection, &pager_first,
547 	    &pager_last);
548 
549 	VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
550 	if (rv == VM_PAGER_BAD) {
551 		/*
552 		 * VM_PAGER_BAD is the backdoor for a pager to request
553 		 * normal fault handling.
554 		 */
555 		vm_fault_restore_map_lock(fs);
556 		if (fs->map->timestamp != fs->map_generation)
557 			return (FAULT_RESTART);
558 		return (FAULT_CONTINUE);
559 	}
560 	if (rv != VM_PAGER_OK)
561 		return (FAULT_FAILURE); /* AKA SIGSEGV */
562 
563 	/* Ensure that the driver is obeying the interface. */
564 	MPASS(pager_first <= pager_last);
565 	MPASS(fs->first_pindex <= pager_last);
566 	MPASS(fs->first_pindex >= pager_first);
567 	MPASS(pager_last < fs->first_object->size);
568 
569 	vm_fault_restore_map_lock(fs);
570 	bdry_idx = MAP_ENTRY_SPLIT_BOUNDARY_INDEX(fs->entry);
571 	if (fs->map->timestamp != fs->map_generation) {
572 		if (bdry_idx == 0) {
573 			vm_fault_populate_cleanup(fs->first_object, pager_first,
574 			    pager_last);
575 		} else {
576 			m = vm_page_lookup(fs->first_object, pager_first);
577 			if (m != fs->m)
578 				vm_page_xunbusy(m);
579 		}
580 		return (FAULT_RESTART);
581 	}
582 
583 	/*
584 	 * The map is unchanged after our last unlock.  Process the fault.
585 	 *
586 	 * First, the special case of largepage mappings, where
587 	 * populate only busies the first page in superpage run.
588 	 */
589 	if (bdry_idx != 0) {
590 		KASSERT(PMAP_HAS_LARGEPAGES,
591 		    ("missing pmap support for large pages"));
592 		m = vm_page_lookup(fs->first_object, pager_first);
593 		vm_fault_populate_check_page(m);
594 		VM_OBJECT_WUNLOCK(fs->first_object);
595 		vaddr = fs->entry->start + IDX_TO_OFF(pager_first) -
596 		    fs->entry->offset;
597 		/* assert alignment for entry */
598 		KASSERT((vaddr & (pagesizes[bdry_idx] - 1)) == 0,
599     ("unaligned superpage start %#jx pager_first %#jx offset %#jx vaddr %#jx",
600 		    (uintmax_t)fs->entry->start, (uintmax_t)pager_first,
601 		    (uintmax_t)fs->entry->offset, (uintmax_t)vaddr));
602 		KASSERT((VM_PAGE_TO_PHYS(m) & (pagesizes[bdry_idx] - 1)) == 0,
603 		    ("unaligned superpage m %p %#jx", m,
604 		    (uintmax_t)VM_PAGE_TO_PHYS(m)));
605 		rv = pmap_enter(fs->map->pmap, vaddr, m, fs->prot,
606 		    fs->fault_type | (fs->wired ? PMAP_ENTER_WIRED : 0) |
607 		    PMAP_ENTER_LARGEPAGE, bdry_idx);
608 		VM_OBJECT_WLOCK(fs->first_object);
609 		vm_page_xunbusy(m);
610 		if (rv != KERN_SUCCESS) {
611 			res = FAULT_FAILURE;
612 			goto out;
613 		}
614 		if ((fs->fault_flags & VM_FAULT_WIRE) != 0) {
615 			for (i = 0; i < atop(pagesizes[bdry_idx]); i++)
616 				vm_page_wire(m + i);
617 		}
618 		if (fs->m_hold != NULL) {
619 			*fs->m_hold = m + (fs->first_pindex - pager_first);
620 			vm_page_wire(*fs->m_hold);
621 		}
622 		goto out;
623 	}
624 
625 	/*
626 	 * The range [pager_first, pager_last] that is given to the
627 	 * pager is only a hint.  The pager may populate any range
628 	 * within the object that includes the requested page index.
629 	 * In case the pager expanded the range, clip it to fit into
630 	 * the map entry.
631 	 */
632 	map_first = OFF_TO_IDX(fs->entry->offset);
633 	if (map_first > pager_first) {
634 		vm_fault_populate_cleanup(fs->first_object, pager_first,
635 		    map_first - 1);
636 		pager_first = map_first;
637 	}
638 	map_last = map_first + atop(fs->entry->end - fs->entry->start) - 1;
639 	if (map_last < pager_last) {
640 		vm_fault_populate_cleanup(fs->first_object, map_last + 1,
641 		    pager_last);
642 		pager_last = map_last;
643 	}
644 	for (pidx = pager_first; pidx <= pager_last; pidx += npages) {
645 		m = vm_page_lookup(fs->first_object, pidx);
646 		vaddr = fs->entry->start + IDX_TO_OFF(pidx) - fs->entry->offset;
647 		KASSERT(m != NULL && m->pindex == pidx,
648 		    ("%s: pindex mismatch", __func__));
649 		psind = m->psind;
650 		while (psind > 0 && ((vaddr & (pagesizes[psind] - 1)) != 0 ||
651 		    pidx + OFF_TO_IDX(pagesizes[psind]) - 1 > pager_last ||
652 		    !pmap_ps_enabled(fs->map->pmap)))
653 			psind--;
654 
655 		npages = atop(pagesizes[psind]);
656 		for (i = 0; i < npages; i++) {
657 			vm_fault_populate_check_page(&m[i]);
658 			vm_fault_dirty(fs, &m[i]);
659 		}
660 		VM_OBJECT_WUNLOCK(fs->first_object);
661 		rv = pmap_enter(fs->map->pmap, vaddr, m, fs->prot, fs->fault_type |
662 		    (fs->wired ? PMAP_ENTER_WIRED : 0), psind);
663 
664 		/*
665 		 * pmap_enter() may fail for a superpage mapping if additional
666 		 * protection policies prevent the full mapping.
667 		 * For example, this will happen on amd64 if the entire
668 		 * address range does not share the same userspace protection
669 		 * key.  Revert to single-page mappings if this happens.
670 		 */
671 		MPASS(rv == KERN_SUCCESS ||
672 		    (psind > 0 && rv == KERN_PROTECTION_FAILURE));
673 		if (__predict_false(psind > 0 &&
674 		    rv == KERN_PROTECTION_FAILURE)) {
675 			MPASS(!fs->wired);
676 			for (i = 0; i < npages; i++) {
677 				rv = pmap_enter(fs->map->pmap, vaddr + ptoa(i),
678 				    &m[i], fs->prot, fs->fault_type, 0);
679 				MPASS(rv == KERN_SUCCESS);
680 			}
681 		}
682 
683 		VM_OBJECT_WLOCK(fs->first_object);
684 		for (i = 0; i < npages; i++) {
685 			if ((fs->fault_flags & VM_FAULT_WIRE) != 0 &&
686 			    m[i].pindex == fs->first_pindex)
687 				vm_page_wire(&m[i]);
688 			else
689 				vm_page_activate(&m[i]);
690 			if (fs->m_hold != NULL &&
691 			    m[i].pindex == fs->first_pindex) {
692 				(*fs->m_hold) = &m[i];
693 				vm_page_wire(&m[i]);
694 			}
695 			vm_page_xunbusy(&m[i]);
696 		}
697 	}
698 out:
699 	curthread->td_ru.ru_majflt++;
700 	return (res);
701 }
702 
703 static int prot_fault_translation;
704 SYSCTL_INT(_machdep, OID_AUTO, prot_fault_translation, CTLFLAG_RWTUN,
705     &prot_fault_translation, 0,
706     "Control signal to deliver on protection fault");
707 
708 /* compat definition to keep common code for signal translation */
709 #define	UCODE_PAGEFLT	12
710 #ifdef T_PAGEFLT
711 _Static_assert(UCODE_PAGEFLT == T_PAGEFLT, "T_PAGEFLT");
712 #endif
713 
714 /*
715  * vm_fault_trap:
716  *
717  * Helper for the page fault trap handlers, wrapping vm_fault().
718  * Issues ktrace(2) tracepoints for the faults.
719  *
720  * If a fault cannot be handled successfully by satisfying the
721  * required mapping, and the faulted instruction cannot be restarted,
722  * the signal number and si_code values are returned for trapsignal()
723  * to deliver.
724  *
725  * Returns Mach error codes, but callers should only check for
726  * KERN_SUCCESS.
727  */
728 int
vm_fault_trap(vm_map_t map,vm_offset_t vaddr,vm_prot_t fault_type,int fault_flags,int * signo,int * ucode)729 vm_fault_trap(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
730     int fault_flags, int *signo, int *ucode)
731 {
732 	int result;
733 
734 	MPASS(signo == NULL || ucode != NULL);
735 #ifdef KTRACE
736 	if (map != kernel_map && KTRPOINT(curthread, KTR_FAULT))
737 		ktrfault(vaddr, fault_type);
738 #endif
739 	result = vm_fault(map, trunc_page(vaddr), fault_type, fault_flags,
740 	    NULL);
741 	KASSERT(result == KERN_SUCCESS || result == KERN_FAILURE ||
742 	    result == KERN_INVALID_ADDRESS ||
743 	    result == KERN_RESOURCE_SHORTAGE ||
744 	    result == KERN_PROTECTION_FAILURE ||
745 	    result == KERN_OUT_OF_BOUNDS,
746 	    ("Unexpected Mach error %d from vm_fault()", result));
747 #ifdef KTRACE
748 	if (map != kernel_map && KTRPOINT(curthread, KTR_FAULTEND))
749 		ktrfaultend(result);
750 #endif
751 	if (result != KERN_SUCCESS && signo != NULL) {
752 		switch (result) {
753 		case KERN_FAILURE:
754 		case KERN_INVALID_ADDRESS:
755 			*signo = SIGSEGV;
756 			*ucode = SEGV_MAPERR;
757 			break;
758 		case KERN_RESOURCE_SHORTAGE:
759 			*signo = SIGBUS;
760 			*ucode = BUS_OOMERR;
761 			break;
762 		case KERN_OUT_OF_BOUNDS:
763 			*signo = SIGBUS;
764 			*ucode = BUS_OBJERR;
765 			break;
766 		case KERN_PROTECTION_FAILURE:
767 			if (prot_fault_translation == 0) {
768 				/*
769 				 * Autodetect.  This check also covers
770 				 * the images without the ABI-tag ELF
771 				 * note.
772 				 */
773 				if (SV_CURPROC_ABI() == SV_ABI_FREEBSD &&
774 				    curproc->p_osrel >= P_OSREL_SIGSEGV) {
775 					*signo = SIGSEGV;
776 					*ucode = SEGV_ACCERR;
777 				} else {
778 					*signo = SIGBUS;
779 					*ucode = UCODE_PAGEFLT;
780 				}
781 			} else if (prot_fault_translation == 1) {
782 				/* Always compat mode. */
783 				*signo = SIGBUS;
784 				*ucode = UCODE_PAGEFLT;
785 			} else {
786 				/* Always SIGSEGV mode. */
787 				*signo = SIGSEGV;
788 				*ucode = SEGV_ACCERR;
789 			}
790 			break;
791 		default:
792 			KASSERT(0, ("Unexpected Mach error %d from vm_fault()",
793 			    result));
794 			break;
795 		}
796 	}
797 	return (result);
798 }
799 
800 static bool
vm_fault_object_ensure_wlocked(struct faultstate * fs)801 vm_fault_object_ensure_wlocked(struct faultstate *fs)
802 {
803 	if (fs->object == fs->first_object)
804 		VM_OBJECT_ASSERT_WLOCKED(fs->object);
805 
806 	if (!fs->can_read_lock)  {
807 		VM_OBJECT_ASSERT_WLOCKED(fs->object);
808 		return (true);
809 	}
810 
811 	if (VM_OBJECT_WOWNED(fs->object))
812 		return (true);
813 
814 	if (VM_OBJECT_TRYUPGRADE(fs->object))
815 		return (true);
816 
817 	return (false);
818 }
819 
820 static enum fault_status
vm_fault_lock_vnode(struct faultstate * fs,bool objlocked)821 vm_fault_lock_vnode(struct faultstate *fs, bool objlocked)
822 {
823 	struct vnode *vp;
824 	int error, locked;
825 
826 	if (fs->object->type != OBJT_VNODE)
827 		return (FAULT_CONTINUE);
828 	vp = fs->object->handle;
829 	if (vp == fs->vp) {
830 		ASSERT_VOP_LOCKED(vp, "saved vnode is not locked");
831 		return (FAULT_CONTINUE);
832 	}
833 
834 	/*
835 	 * Perform an unlock in case the desired vnode changed while
836 	 * the map was unlocked during a retry.
837 	 */
838 	vm_fault_unlock_vp(fs);
839 
840 	locked = VOP_ISLOCKED(vp);
841 	if (locked != LK_EXCLUSIVE)
842 		locked = LK_SHARED;
843 
844 	/*
845 	 * We must not sleep acquiring the vnode lock while we have
846 	 * the page exclusive busied or the object's
847 	 * paging-in-progress count incremented.  Otherwise, we could
848 	 * deadlock.
849 	 */
850 	error = vget(vp, locked | LK_CANRECURSE | LK_NOWAIT);
851 	if (error == 0) {
852 		fs->vp = vp;
853 		return (FAULT_CONTINUE);
854 	}
855 
856 	vhold(vp);
857 	if (objlocked)
858 		vm_fault_unlock_and_deallocate(fs);
859 	else
860 		vm_fault_deallocate(fs);
861 	error = vget(vp, locked | LK_RETRY | LK_CANRECURSE);
862 	vdrop(vp);
863 	fs->vp = vp;
864 	KASSERT(error == 0, ("vm_fault: vget failed %d", error));
865 	return (FAULT_RESTART);
866 }
867 
868 /*
869  * Calculate the desired readahead.  Handle drop-behind.
870  *
871  * Returns the number of readahead blocks to pass to the pager.
872  */
873 static int
vm_fault_readahead(struct faultstate * fs)874 vm_fault_readahead(struct faultstate *fs)
875 {
876 	int era, nera;
877 	u_char behavior;
878 
879 	KASSERT(fs->lookup_still_valid, ("map unlocked"));
880 	era = fs->entry->read_ahead;
881 	behavior = vm_map_entry_behavior(fs->entry);
882 	if (behavior == MAP_ENTRY_BEHAV_RANDOM) {
883 		nera = 0;
884 	} else if (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL) {
885 		nera = VM_FAULT_READ_AHEAD_MAX;
886 		if (fs->vaddr == fs->entry->next_read)
887 			vm_fault_dontneed(fs, fs->vaddr, nera);
888 	} else if (fs->vaddr == fs->entry->next_read) {
889 		/*
890 		 * This is a sequential fault.  Arithmetically
891 		 * increase the requested number of pages in
892 		 * the read-ahead window.  The requested
893 		 * number of pages is "# of sequential faults
894 		 * x (read ahead min + 1) + read ahead min"
895 		 */
896 		nera = VM_FAULT_READ_AHEAD_MIN;
897 		if (era > 0) {
898 			nera += era + 1;
899 			if (nera > VM_FAULT_READ_AHEAD_MAX)
900 				nera = VM_FAULT_READ_AHEAD_MAX;
901 		}
902 		if (era == VM_FAULT_READ_AHEAD_MAX)
903 			vm_fault_dontneed(fs, fs->vaddr, nera);
904 	} else {
905 		/*
906 		 * This is a non-sequential fault.
907 		 */
908 		nera = 0;
909 	}
910 	if (era != nera) {
911 		/*
912 		 * A read lock on the map suffices to update
913 		 * the read ahead count safely.
914 		 */
915 		fs->entry->read_ahead = nera;
916 	}
917 
918 	return (nera);
919 }
920 
921 static int
vm_fault_lookup(struct faultstate * fs)922 vm_fault_lookup(struct faultstate *fs)
923 {
924 	int result;
925 
926 	KASSERT(!fs->lookup_still_valid,
927 	   ("vm_fault_lookup: Map already locked."));
928 	result = vm_map_lookup(&fs->map, fs->vaddr, fs->fault_type |
929 	    VM_PROT_FAULT_LOOKUP, &fs->entry, &fs->first_object,
930 	    &fs->first_pindex, &fs->prot, &fs->wired);
931 	if (result != KERN_SUCCESS) {
932 		vm_fault_unlock_vp(fs);
933 		return (result);
934 	}
935 
936 	fs->map_generation = fs->map->timestamp;
937 
938 	if (fs->entry->eflags & MAP_ENTRY_NOFAULT) {
939 		panic("%s: fault on nofault entry, addr: %#lx",
940 		    __func__, (u_long)fs->vaddr);
941 	}
942 
943 	if (fs->entry->eflags & MAP_ENTRY_IN_TRANSITION &&
944 	    fs->entry->wiring_thread != curthread) {
945 		vm_map_unlock_read(fs->map);
946 		vm_map_lock(fs->map);
947 		if (vm_map_lookup_entry(fs->map, fs->vaddr, &fs->entry) &&
948 		    (fs->entry->eflags & MAP_ENTRY_IN_TRANSITION)) {
949 			vm_fault_unlock_vp(fs);
950 			fs->entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
951 			vm_map_unlock_and_wait(fs->map, 0);
952 		} else
953 			vm_map_unlock(fs->map);
954 		return (KERN_RESOURCE_SHORTAGE);
955 	}
956 
957 	MPASS((fs->entry->eflags & MAP_ENTRY_GUARD) == 0);
958 
959 	if (fs->wired)
960 		fs->fault_type = fs->prot | (fs->fault_type & VM_PROT_COPY);
961 	else
962 		KASSERT((fs->fault_flags & VM_FAULT_WIRE) == 0,
963 		    ("!fs->wired && VM_FAULT_WIRE"));
964 	fs->lookup_still_valid = true;
965 
966 	return (KERN_SUCCESS);
967 }
968 
969 static int
vm_fault_relookup(struct faultstate * fs)970 vm_fault_relookup(struct faultstate *fs)
971 {
972 	vm_object_t retry_object;
973 	vm_pindex_t retry_pindex;
974 	vm_prot_t retry_prot;
975 	int result;
976 
977 	if (!vm_map_trylock_read(fs->map))
978 		return (KERN_RESTART);
979 
980 	fs->lookup_still_valid = true;
981 	if (fs->map->timestamp == fs->map_generation)
982 		return (KERN_SUCCESS);
983 
984 	result = vm_map_lookup_locked(&fs->map, fs->vaddr, fs->fault_type,
985 	    &fs->entry, &retry_object, &retry_pindex, &retry_prot,
986 	    &fs->wired);
987 	if (result != KERN_SUCCESS) {
988 		/*
989 		 * If retry of map lookup would have blocked then
990 		 * retry fault from start.
991 		 */
992 		if (result == KERN_FAILURE)
993 			return (KERN_RESTART);
994 		return (result);
995 	}
996 	if (retry_object != fs->first_object ||
997 	    retry_pindex != fs->first_pindex)
998 		return (KERN_RESTART);
999 
1000 	/*
1001 	 * Check whether the protection has changed or the object has
1002 	 * been copied while we left the map unlocked. Changing from
1003 	 * read to write permission is OK - we leave the page
1004 	 * write-protected, and catch the write fault. Changing from
1005 	 * write to read permission means that we can't mark the page
1006 	 * write-enabled after all.
1007 	 */
1008 	fs->prot &= retry_prot;
1009 	fs->fault_type &= retry_prot;
1010 	if (fs->prot == 0)
1011 		return (KERN_RESTART);
1012 
1013 	/* Reassert because wired may have changed. */
1014 	KASSERT(fs->wired || (fs->fault_flags & VM_FAULT_WIRE) == 0,
1015 	    ("!wired && VM_FAULT_WIRE"));
1016 
1017 	return (KERN_SUCCESS);
1018 }
1019 
1020 static bool
vm_fault_can_cow_rename(struct faultstate * fs)1021 vm_fault_can_cow_rename(struct faultstate *fs)
1022 {
1023 	return (
1024 	    /* Only one shadow object and no other refs. */
1025 	    fs->object->shadow_count == 1 && fs->object->ref_count == 1 &&
1026 	    /* No other ways to look the object up. */
1027 	    fs->object->handle == NULL && (fs->object->flags & OBJ_ANON) != 0);
1028 }
1029 
1030 static void
vm_fault_cow(struct faultstate * fs)1031 vm_fault_cow(struct faultstate *fs)
1032 {
1033 	bool is_first_object_locked, rename_cow;
1034 
1035 	KASSERT(vm_fault_might_be_cow(fs),
1036 	    ("source and target COW objects are identical"));
1037 
1038 	/*
1039 	 * This allows pages to be virtually copied from a backing_object
1040 	 * into the first_object, where the backing object has no other
1041 	 * refs to it, and cannot gain any more refs.  Instead of a bcopy,
1042 	 * we just move the page from the backing object to the first
1043 	 * object.  Note that we must mark the page dirty in the first
1044 	 * object so that it will go out to swap when needed.
1045 	 */
1046 	is_first_object_locked = false;
1047 	rename_cow = false;
1048 
1049 	if (vm_fault_can_cow_rename(fs) && vm_page_xbusied(fs->m)) {
1050 		/*
1051 		 * Check that we don't chase down the shadow chain and
1052 		 * we can acquire locks.  Recheck the conditions for
1053 		 * rename after the shadow chain is stable after the
1054 		 * object locking.
1055 		 */
1056 		is_first_object_locked = VM_OBJECT_TRYWLOCK(fs->first_object);
1057 		if (is_first_object_locked &&
1058 		    fs->object == fs->first_object->backing_object) {
1059 			if (VM_OBJECT_TRYWLOCK(fs->object)) {
1060 				rename_cow = vm_fault_can_cow_rename(fs);
1061 				if (!rename_cow)
1062 					VM_OBJECT_WUNLOCK(fs->object);
1063 			}
1064 		}
1065 	}
1066 
1067 	if (rename_cow) {
1068 		vm_page_assert_xbusied(fs->m);
1069 
1070 		/*
1071 		 * Remove but keep xbusy for replace.  fs->m is moved into
1072 		 * fs->first_object and left busy while fs->first_m is
1073 		 * conditionally freed.
1074 		 */
1075 		vm_page_remove_xbusy(fs->m);
1076 		vm_page_replace(fs->m, fs->first_object, fs->first_pindex,
1077 		    fs->first_m);
1078 		vm_page_dirty(fs->m);
1079 #if VM_NRESERVLEVEL > 0
1080 		/*
1081 		 * Rename the reservation.
1082 		 */
1083 		vm_reserv_rename(fs->m, fs->first_object, fs->object,
1084 		    OFF_TO_IDX(fs->first_object->backing_object_offset));
1085 #endif
1086 		VM_OBJECT_WUNLOCK(fs->object);
1087 		VM_OBJECT_WUNLOCK(fs->first_object);
1088 		fs->first_m = fs->m;
1089 		fs->m = NULL;
1090 		VM_CNT_INC(v_cow_optim);
1091 	} else {
1092 		if (is_first_object_locked)
1093 			VM_OBJECT_WUNLOCK(fs->first_object);
1094 		/*
1095 		 * Oh, well, lets copy it.
1096 		 */
1097 		pmap_copy_page(fs->m, fs->first_m);
1098 		if (fs->wired && (fs->fault_flags & VM_FAULT_WIRE) == 0) {
1099 			vm_page_wire(fs->first_m);
1100 			vm_page_unwire(fs->m, PQ_INACTIVE);
1101 		}
1102 		/*
1103 		 * Save the COW page to be released after pmap_enter is
1104 		 * complete.  The new copy will be marked valid when we're ready
1105 		 * to map it.
1106 		 */
1107 		fs->m_cow = fs->m;
1108 		fs->m = NULL;
1109 
1110 		/*
1111 		 * Typically, the shadow object is either private to this
1112 		 * address space (OBJ_ONEMAPPING) or its pages are read only.
1113 		 * In the highly unusual case where the pages of a shadow object
1114 		 * are read/write shared between this and other address spaces,
1115 		 * we need to ensure that any pmap-level mappings to the
1116 		 * original, copy-on-write page from the backing object are
1117 		 * removed from those other address spaces.
1118 		 *
1119 		 * The flag check is racy, but this is tolerable: if
1120 		 * OBJ_ONEMAPPING is cleared after the check, the busy state
1121 		 * ensures that new mappings of m_cow can't be created.
1122 		 * pmap_enter() will replace an existing mapping in the current
1123 		 * address space.  If OBJ_ONEMAPPING is set after the check,
1124 		 * removing mappings will at worse trigger some unnecessary page
1125 		 * faults.
1126 		 *
1127 		 * In the fs->m shared busy case, the xbusy state of
1128 		 * fs->first_m prevents new mappings of fs->m from
1129 		 * being created because a parallel fault on this
1130 		 * shadow chain should wait for xbusy on fs->first_m.
1131 		 */
1132 		if ((fs->first_object->flags & OBJ_ONEMAPPING) == 0)
1133 			pmap_remove_all(fs->m_cow);
1134 	}
1135 
1136 	vm_object_pip_wakeup(fs->object);
1137 
1138 	/*
1139 	 * Only use the new page below...
1140 	 */
1141 	fs->object = fs->first_object;
1142 	fs->pindex = fs->first_pindex;
1143 	fs->m = fs->first_m;
1144 	VM_CNT_INC(v_cow_faults);
1145 	curthread->td_cow++;
1146 }
1147 
1148 static enum fault_next_status
vm_fault_next(struct faultstate * fs)1149 vm_fault_next(struct faultstate *fs)
1150 {
1151 	vm_object_t next_object;
1152 
1153 	if (fs->object == fs->first_object || !fs->can_read_lock)
1154 		VM_OBJECT_ASSERT_WLOCKED(fs->object);
1155 	else
1156 		VM_OBJECT_ASSERT_LOCKED(fs->object);
1157 
1158 	/*
1159 	 * The requested page does not exist at this object/
1160 	 * offset.  Remove the invalid page from the object,
1161 	 * waking up anyone waiting for it, and continue on to
1162 	 * the next object.  However, if this is the top-level
1163 	 * object, we must leave the busy page in place to
1164 	 * prevent another process from rushing past us, and
1165 	 * inserting the page in that object at the same time
1166 	 * that we are.
1167 	 */
1168 	if (fs->object == fs->first_object) {
1169 		fs->first_m = fs->m;
1170 		fs->m = NULL;
1171 	} else if (fs->m != NULL) {
1172 		if (!vm_fault_object_ensure_wlocked(fs)) {
1173 			fs->can_read_lock = false;
1174 			vm_fault_unlock_and_deallocate(fs);
1175 			return (FAULT_NEXT_RESTART);
1176 		}
1177 		vm_fault_page_free(&fs->m);
1178 	}
1179 
1180 	/*
1181 	 * Move on to the next object.  Lock the next object before
1182 	 * unlocking the current one.
1183 	 */
1184 	next_object = fs->object->backing_object;
1185 	if (next_object == NULL)
1186 		return (FAULT_NEXT_NOOBJ);
1187 	MPASS(fs->first_m != NULL);
1188 	KASSERT(fs->object != next_object, ("object loop %p", next_object));
1189 	if (fs->can_read_lock)
1190 		VM_OBJECT_RLOCK(next_object);
1191 	else
1192 		VM_OBJECT_WLOCK(next_object);
1193 	vm_object_pip_add(next_object, 1);
1194 	if (fs->object != fs->first_object)
1195 		vm_object_pip_wakeup(fs->object);
1196 	fs->pindex += OFF_TO_IDX(fs->object->backing_object_offset);
1197 	VM_OBJECT_UNLOCK(fs->object);
1198 	fs->object = next_object;
1199 
1200 	return (FAULT_NEXT_GOTOBJ);
1201 }
1202 
1203 static void
vm_fault_zerofill(struct faultstate * fs)1204 vm_fault_zerofill(struct faultstate *fs)
1205 {
1206 
1207 	/*
1208 	 * If there's no object left, fill the page in the top
1209 	 * object with zeros.
1210 	 */
1211 	if (vm_fault_might_be_cow(fs)) {
1212 		vm_object_pip_wakeup(fs->object);
1213 		fs->object = fs->first_object;
1214 		fs->pindex = fs->first_pindex;
1215 	}
1216 	MPASS(fs->first_m != NULL);
1217 	MPASS(fs->m == NULL);
1218 	fs->m = fs->first_m;
1219 	fs->first_m = NULL;
1220 
1221 	/*
1222 	 * Zero the page if necessary and mark it valid.
1223 	 */
1224 	if (fs->m_needs_zeroing) {
1225 		pmap_zero_page(fs->m);
1226 	} else {
1227 #ifdef INVARIANTS
1228 		if (vm_check_pg_zero) {
1229 			struct sf_buf *sf;
1230 			unsigned long *p;
1231 			int i;
1232 
1233 			sched_pin();
1234 			sf = sf_buf_alloc(fs->m, SFB_CPUPRIVATE);
1235 			p = (unsigned long *)sf_buf_kva(sf);
1236 			for (i = 0; i < PAGE_SIZE / sizeof(*p); i++, p++) {
1237 				KASSERT(*p == 0,
1238 				    ("zerocheck failed page %p PG_ZERO %d %jx",
1239 				    fs->m, i, (uintmax_t)*p));
1240 			}
1241 			sf_buf_free(sf);
1242 			sched_unpin();
1243 		}
1244 #endif
1245 		VM_CNT_INC(v_ozfod);
1246 	}
1247 	VM_CNT_INC(v_zfod);
1248 	vm_page_valid(fs->m);
1249 }
1250 
1251 /*
1252  * Initiate page fault after timeout.  Returns true if caller should
1253  * do vm_waitpfault() after the call.
1254  */
1255 static bool
vm_fault_allocate_oom(struct faultstate * fs)1256 vm_fault_allocate_oom(struct faultstate *fs)
1257 {
1258 	struct timeval now;
1259 
1260 	vm_fault_unlock_and_deallocate(fs);
1261 	if (vm_pfault_oom_attempts < 0)
1262 		return (true);
1263 	if (!fs->oom_started) {
1264 		fs->oom_started = true;
1265 		getmicrotime(&fs->oom_start_time);
1266 		return (true);
1267 	}
1268 
1269 	getmicrotime(&now);
1270 	timevalsub(&now, &fs->oom_start_time);
1271 	if (now.tv_sec < vm_pfault_oom_attempts * vm_pfault_oom_wait)
1272 		return (true);
1273 
1274 	if (bootverbose)
1275 		printf(
1276 	    "proc %d (%s) failed to alloc page on fault, starting OOM\n",
1277 		    curproc->p_pid, curproc->p_comm);
1278 	vm_pageout_oom(VM_OOM_MEM_PF);
1279 	fs->oom_started = false;
1280 	return (false);
1281 }
1282 
1283 /*
1284  * Allocate a page directly or via the object populate method.
1285  */
1286 static enum fault_status
vm_fault_allocate(struct faultstate * fs,struct pctrie_iter * pages)1287 vm_fault_allocate(struct faultstate *fs, struct pctrie_iter *pages)
1288 {
1289 	struct domainset *dset;
1290 	enum fault_status res;
1291 
1292 	if ((fs->object->flags & OBJ_SIZEVNLOCK) != 0) {
1293 		res = vm_fault_lock_vnode(fs, true);
1294 		MPASS(res == FAULT_CONTINUE || res == FAULT_RESTART);
1295 		if (res == FAULT_RESTART)
1296 			return (res);
1297 	}
1298 
1299 	if (fs->pindex >= fs->object->size) {
1300 		vm_fault_unlock_and_deallocate(fs);
1301 		return (FAULT_OUT_OF_BOUNDS);
1302 	}
1303 
1304 	if (fs->object == fs->first_object &&
1305 	    (fs->first_object->flags & OBJ_POPULATE) != 0 &&
1306 	    fs->first_object->shadow_count == 0) {
1307 		res = vm_fault_populate(fs);
1308 		switch (res) {
1309 		case FAULT_SUCCESS:
1310 		case FAULT_FAILURE:
1311 		case FAULT_RESTART:
1312 			vm_fault_unlock_and_deallocate(fs);
1313 			return (res);
1314 		case FAULT_CONTINUE:
1315 			pctrie_iter_reset(pages);
1316 			/*
1317 			 * Pager's populate() method
1318 			 * returned VM_PAGER_BAD.
1319 			 */
1320 			break;
1321 		default:
1322 			panic("inconsistent return codes");
1323 		}
1324 	}
1325 
1326 	/*
1327 	 * Allocate a new page for this object/offset pair.
1328 	 *
1329 	 * If the process has a fatal signal pending, prioritize the allocation
1330 	 * with the expectation that the process will exit shortly and free some
1331 	 * pages.  In particular, the signal may have been posted by the page
1332 	 * daemon in an attempt to resolve an out-of-memory condition.
1333 	 *
1334 	 * The unlocked read of the p_flag is harmless.  At worst, the P_KILLED
1335 	 * might be not observed here, and allocation fails, causing a restart
1336 	 * and new reading of the p_flag.
1337 	 */
1338 	dset = fs->object->domain.dr_policy;
1339 	if (dset == NULL)
1340 		dset = curthread->td_domain.dr_policy;
1341 	if (!vm_page_count_severe_set(&dset->ds_mask) || P_KILLED(curproc)) {
1342 #if VM_NRESERVLEVEL > 0
1343 		vm_object_color(fs->object, atop(fs->vaddr) - fs->pindex);
1344 #endif
1345 		if (!vm_pager_can_alloc_page(fs->object, fs->pindex)) {
1346 			vm_fault_unlock_and_deallocate(fs);
1347 			return (FAULT_FAILURE);
1348 		}
1349 		fs->m = vm_page_alloc_iter(fs->object, fs->pindex,
1350 		    P_KILLED(curproc) ? VM_ALLOC_SYSTEM : 0, pages);
1351 	}
1352 	if (fs->m == NULL) {
1353 		if (vm_fault_allocate_oom(fs))
1354 			vm_waitpfault(dset, vm_pfault_oom_wait * hz);
1355 		return (FAULT_RESTART);
1356 	}
1357 	fs->m_needs_zeroing = (fs->m->flags & PG_ZERO) == 0;
1358 	fs->oom_started = false;
1359 
1360 	return (FAULT_CONTINUE);
1361 }
1362 
1363 /*
1364  * Call the pager to retrieve the page if there is a chance
1365  * that the pager has it, and potentially retrieve additional
1366  * pages at the same time.
1367  */
1368 static enum fault_status
vm_fault_getpages(struct faultstate * fs,int * behindp,int * aheadp)1369 vm_fault_getpages(struct faultstate *fs, int *behindp, int *aheadp)
1370 {
1371 	vm_offset_t e_end, e_start;
1372 	int ahead, behind, cluster_offset, rv;
1373 	enum fault_status status;
1374 	u_char behavior;
1375 
1376 	/*
1377 	 * Prepare for unlocking the map.  Save the map
1378 	 * entry's start and end addresses, which are used to
1379 	 * optimize the size of the pager operation below.
1380 	 * Even if the map entry's addresses change after
1381 	 * unlocking the map, using the saved addresses is
1382 	 * safe.
1383 	 */
1384 	e_start = fs->entry->start;
1385 	e_end = fs->entry->end;
1386 	behavior = vm_map_entry_behavior(fs->entry);
1387 
1388 	/*
1389 	 * If the pager for the current object might have
1390 	 * the page, then determine the number of additional
1391 	 * pages to read and potentially reprioritize
1392 	 * previously read pages for earlier reclamation.
1393 	 * These operations should only be performed once per
1394 	 * page fault.  Even if the current pager doesn't
1395 	 * have the page, the number of additional pages to
1396 	 * read will apply to subsequent objects in the
1397 	 * shadow chain.
1398 	 */
1399 	if (fs->nera == -1 && !P_KILLED(curproc))
1400 		fs->nera = vm_fault_readahead(fs);
1401 
1402 	/*
1403 	 * Release the map lock before locking the vnode or
1404 	 * sleeping in the pager.  (If the current object has
1405 	 * a shadow, then an earlier iteration of this loop
1406 	 * may have already unlocked the map.)
1407 	 */
1408 	vm_fault_unlock_map(fs);
1409 
1410 	status = vm_fault_lock_vnode(fs, false);
1411 	MPASS(status == FAULT_CONTINUE || status == FAULT_RESTART);
1412 	if (status == FAULT_RESTART)
1413 		return (status);
1414 	KASSERT(fs->vp == NULL || !vm_map_is_system(fs->map),
1415 	    ("vm_fault: vnode-backed object mapped by system map"));
1416 
1417 	/*
1418 	 * Page in the requested page and hint the pager,
1419 	 * that it may bring up surrounding pages.
1420 	 */
1421 	if (fs->nera == -1 || behavior == MAP_ENTRY_BEHAV_RANDOM ||
1422 	    P_KILLED(curproc)) {
1423 		behind = 0;
1424 		ahead = 0;
1425 	} else {
1426 		/* Is this a sequential fault? */
1427 		if (fs->nera > 0) {
1428 			behind = 0;
1429 			ahead = fs->nera;
1430 		} else {
1431 			/*
1432 			 * Request a cluster of pages that is
1433 			 * aligned to a VM_FAULT_READ_DEFAULT
1434 			 * page offset boundary within the
1435 			 * object.  Alignment to a page offset
1436 			 * boundary is more likely to coincide
1437 			 * with the underlying file system
1438 			 * block than alignment to a virtual
1439 			 * address boundary.
1440 			 */
1441 			cluster_offset = fs->pindex % VM_FAULT_READ_DEFAULT;
1442 			behind = ulmin(cluster_offset,
1443 			    atop(fs->vaddr - e_start));
1444 			ahead = VM_FAULT_READ_DEFAULT - 1 - cluster_offset;
1445 		}
1446 		ahead = ulmin(ahead, atop(e_end - fs->vaddr) - 1);
1447 	}
1448 	*behindp = behind;
1449 	*aheadp = ahead;
1450 	rv = vm_pager_get_pages(fs->object, &fs->m, 1, behindp, aheadp);
1451 	if (rv == VM_PAGER_OK)
1452 		return (FAULT_HARD);
1453 	if (rv == VM_PAGER_ERROR)
1454 		printf("vm_fault: pager read error, pid %d (%s)\n",
1455 		    curproc->p_pid, curproc->p_comm);
1456 	/*
1457 	 * If an I/O error occurred or the requested page was
1458 	 * outside the range of the pager, clean up and return
1459 	 * an error.
1460 	 */
1461 	if (rv == VM_PAGER_ERROR || rv == VM_PAGER_BAD) {
1462 		VM_OBJECT_WLOCK(fs->object);
1463 		vm_fault_page_free(&fs->m);
1464 		vm_fault_unlock_and_deallocate(fs);
1465 		return (FAULT_OUT_OF_BOUNDS);
1466 	}
1467 	KASSERT(rv == VM_PAGER_FAIL,
1468 	    ("%s: unexpected pager error %d", __func__, rv));
1469 	return (FAULT_CONTINUE);
1470 }
1471 
1472 /*
1473  * Wait/Retry if the page is busy.  We have to do this if the page is
1474  * either exclusive or shared busy because the vm_pager may be using
1475  * read busy for pageouts (and even pageins if it is the vnode pager),
1476  * and we could end up trying to pagein and pageout the same page
1477  * simultaneously.
1478  *
1479  * We allow the busy case on a read fault if the page is valid.  We
1480  * cannot under any circumstances mess around with a shared busied
1481  * page except, perhaps, to pmap it.  This is controlled by the
1482  * VM_ALLOC_SBUSY bit in the allocflags argument.
1483  */
1484 static void
vm_fault_busy_sleep(struct faultstate * fs,int allocflags)1485 vm_fault_busy_sleep(struct faultstate *fs, int allocflags)
1486 {
1487 	/*
1488 	 * Reference the page before unlocking and
1489 	 * sleeping so that the page daemon is less
1490 	 * likely to reclaim it.
1491 	 */
1492 	vm_page_aflag_set(fs->m, PGA_REFERENCED);
1493 	if (vm_fault_might_be_cow(fs)) {
1494 		vm_fault_page_release(&fs->first_m);
1495 		vm_object_pip_wakeup(fs->first_object);
1496 	}
1497 	vm_object_pip_wakeup(fs->object);
1498 	vm_fault_unlock_map(fs);
1499 	if (!vm_page_busy_sleep(fs->m, "vmpfw", allocflags))
1500 		VM_OBJECT_UNLOCK(fs->object);
1501 	VM_CNT_INC(v_intrans);
1502 	vm_object_deallocate(fs->first_object);
1503 }
1504 
1505 /*
1506  * Handle page lookup, populate, allocate, page-in for the current
1507  * object.
1508  *
1509  * The object is locked on entry and will remain locked with a return
1510  * code of FAULT_CONTINUE so that fault may follow the shadow chain.
1511  * Otherwise, the object will be unlocked upon return.
1512  */
1513 static enum fault_status
vm_fault_object(struct faultstate * fs,int * behindp,int * aheadp)1514 vm_fault_object(struct faultstate *fs, int *behindp, int *aheadp)
1515 {
1516 	struct pctrie_iter pages;
1517 	enum fault_status res;
1518 	bool dead;
1519 
1520 	if (fs->object == fs->first_object || !fs->can_read_lock)
1521 		VM_OBJECT_ASSERT_WLOCKED(fs->object);
1522 	else
1523 		VM_OBJECT_ASSERT_LOCKED(fs->object);
1524 
1525 	/*
1526 	 * If the object is marked for imminent termination, we retry
1527 	 * here, since the collapse pass has raced with us.  Otherwise,
1528 	 * if we see terminally dead object, return fail.
1529 	 */
1530 	if ((fs->object->flags & OBJ_DEAD) != 0) {
1531 		dead = fs->object->type == OBJT_DEAD;
1532 		vm_fault_unlock_and_deallocate(fs);
1533 		if (dead)
1534 			return (FAULT_PROTECTION_FAILURE);
1535 		pause("vmf_de", 1);
1536 		return (FAULT_RESTART);
1537 	}
1538 
1539 	/*
1540 	 * See if the page is resident.
1541 	 */
1542 	vm_page_iter_init(&pages, fs->object);
1543 	fs->m = vm_radix_iter_lookup(&pages, fs->pindex);
1544 	if (fs->m != NULL) {
1545 		/*
1546 		 * If the found page is valid, will be either shadowed
1547 		 * or mapped read-only, and will not be renamed for
1548 		 * COW, then busy it in shared mode.  This allows
1549 		 * other faults needing this page to proceed in
1550 		 * parallel.
1551 		 *
1552 		 * Unlocked check for validity, rechecked after busy
1553 		 * is obtained.
1554 		 */
1555 		if (vm_page_all_valid(fs->m) &&
1556 		    /*
1557 		     * No write permissions for the new fs->m mapping,
1558 		     * or the first object has only one mapping, so
1559 		     * other writeable COW mappings of fs->m cannot
1560 		     * appear under us.
1561 		     */
1562 		    (vm_fault_is_read(fs) || vm_fault_might_be_cow(fs)) &&
1563 		    /*
1564 		     * fs->m cannot be renamed from object to
1565 		     * first_object.  These conditions will be
1566 		     * re-checked with proper synchronization in
1567 		     * vm_fault_cow().
1568 		     */
1569 		    (!vm_fault_can_cow_rename(fs) ||
1570 		    fs->object != fs->first_object->backing_object)) {
1571 			if (!vm_page_trysbusy(fs->m)) {
1572 				vm_fault_busy_sleep(fs, VM_ALLOC_SBUSY);
1573 				return (FAULT_RESTART);
1574 			}
1575 
1576 			/*
1577 			 * Now make sure that racily checked
1578 			 * conditions are still valid.
1579 			 */
1580 			if (__predict_true(vm_page_all_valid(fs->m) &&
1581 			    (vm_fault_is_read(fs) ||
1582 			    vm_fault_might_be_cow(fs)))) {
1583 				VM_OBJECT_UNLOCK(fs->object);
1584 				return (FAULT_SOFT);
1585 			}
1586 
1587 			vm_page_sunbusy(fs->m);
1588 		}
1589 
1590 		if (!vm_page_tryxbusy(fs->m)) {
1591 			vm_fault_busy_sleep(fs, 0);
1592 			return (FAULT_RESTART);
1593 		}
1594 
1595 		/*
1596 		 * The page is marked busy for other processes and the
1597 		 * pagedaemon.  If it is still completely valid we are
1598 		 * done.
1599 		 */
1600 		if (vm_page_all_valid(fs->m)) {
1601 			VM_OBJECT_UNLOCK(fs->object);
1602 			return (FAULT_SOFT);
1603 		}
1604 	}
1605 
1606 	/*
1607 	 * Page is not resident.  If the pager might contain the page
1608 	 * or this is the beginning of the search, allocate a new
1609 	 * page.
1610 	 */
1611 	if (fs->m == NULL && (vm_fault_object_needs_getpages(fs->object) ||
1612 	    fs->object == fs->first_object)) {
1613 		if (!vm_fault_object_ensure_wlocked(fs)) {
1614 			fs->can_read_lock = false;
1615 			vm_fault_unlock_and_deallocate(fs);
1616 			return (FAULT_RESTART);
1617 		}
1618 		res = vm_fault_allocate(fs, &pages);
1619 		if (res != FAULT_CONTINUE)
1620 			return (res);
1621 	}
1622 
1623 	/*
1624 	 * Check to see if the pager can possibly satisfy this fault.
1625 	 * If not, skip to the next object without dropping the lock to
1626 	 * preserve atomicity of shadow faults.
1627 	 */
1628 	if (vm_fault_object_needs_getpages(fs->object)) {
1629 		/*
1630 		 * At this point, we have either allocated a new page
1631 		 * or found an existing page that is only partially
1632 		 * valid.
1633 		 *
1634 		 * We hold a reference on the current object and the
1635 		 * page is exclusive busied.  The exclusive busy
1636 		 * prevents simultaneous faults and collapses while
1637 		 * the object lock is dropped.
1638 		 */
1639 		VM_OBJECT_UNLOCK(fs->object);
1640 		res = vm_fault_getpages(fs, behindp, aheadp);
1641 		if (res == FAULT_CONTINUE)
1642 			VM_OBJECT_WLOCK(fs->object);
1643 	} else {
1644 		res = FAULT_CONTINUE;
1645 	}
1646 	return (res);
1647 }
1648 
1649 /*
1650  * vm_fault:
1651  *
1652  * Handle a page fault occurring at the given address, requiring the
1653  * given permissions, in the map specified.  If successful, the page
1654  * is inserted into the associated physical map, and optionally
1655  * referenced and returned in *m_hold.
1656  *
1657  * The given address should be truncated to the proper page address.
1658  *
1659  * KERN_SUCCESS is returned if the page fault is handled; otherwise, a
1660  * Mach error specifying why the fault is fatal is returned.
1661  *
1662  * The map in question must be alive, either being the map for current
1663  * process, or the owner process hold count incremented to prevent
1664  * exit().
1665  *
1666  * If the thread private TDP_NOFAULTING flag is set, any fault results
1667  * in immediate protection failure.  Otherwise the fault is processed,
1668  * and caller may hold no locks.
1669  */
1670 int
vm_fault(vm_map_t map,vm_offset_t vaddr,vm_prot_t fault_type,int fault_flags,vm_page_t * m_hold)1671 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
1672     int fault_flags, vm_page_t *m_hold)
1673 {
1674 	struct pctrie_iter pages;
1675 	struct faultstate fs;
1676 	int ahead, behind, faultcount, rv;
1677 	enum fault_status res;
1678 	enum fault_next_status res_next;
1679 	bool hardfault;
1680 
1681 	VM_CNT_INC(v_vm_faults);
1682 
1683 	if ((curthread->td_pflags & TDP_NOFAULTING) != 0)
1684 		return (KERN_PROTECTION_FAILURE);
1685 
1686 	fs.vp = NULL;
1687 	fs.vaddr = vaddr;
1688 	fs.m_hold = m_hold;
1689 	fs.fault_flags = fault_flags;
1690 	fs.map = map;
1691 	fs.lookup_still_valid = false;
1692 	fs.m_needs_zeroing = true;
1693 	fs.oom_started = false;
1694 	fs.nera = -1;
1695 	fs.can_read_lock = true;
1696 	faultcount = 0;
1697 	hardfault = false;
1698 
1699 RetryFault:
1700 	fs.fault_type = fault_type;
1701 
1702 	/*
1703 	 * Find the backing store object and offset into it to begin the
1704 	 * search.
1705 	 */
1706 	rv = vm_fault_lookup(&fs);
1707 	if (rv != KERN_SUCCESS) {
1708 		if (rv == KERN_RESOURCE_SHORTAGE)
1709 			goto RetryFault;
1710 		return (rv);
1711 	}
1712 
1713 	/*
1714 	 * Try to avoid lock contention on the top-level object through
1715 	 * special-case handling of some types of page faults, specifically,
1716 	 * those that are mapping an existing page from the top-level object.
1717 	 * Under this condition, a read lock on the object suffices, allowing
1718 	 * multiple page faults of a similar type to run in parallel.
1719 	 */
1720 	if (fs.vp == NULL /* avoid locked vnode leak */ &&
1721 	    (fs.entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK) == 0 &&
1722 	    (fs.fault_flags & (VM_FAULT_WIRE | VM_FAULT_DIRTY)) == 0) {
1723 		res = vm_fault_soft_fast(&fs);
1724 		if (res == FAULT_SUCCESS) {
1725 			VM_OBJECT_ASSERT_UNLOCKED(fs.first_object);
1726 			return (KERN_SUCCESS);
1727 		}
1728 		VM_OBJECT_ASSERT_WLOCKED(fs.first_object);
1729 	} else {
1730 		vm_page_iter_init(&pages, fs.first_object);
1731 		VM_OBJECT_WLOCK(fs.first_object);
1732 	}
1733 
1734 	/*
1735 	 * Make a reference to this object to prevent its disposal while we
1736 	 * are messing with it.  Once we have the reference, the map is free
1737 	 * to be diddled.  Since objects reference their shadows (and copies),
1738 	 * they will stay around as well.
1739 	 *
1740 	 * Bump the paging-in-progress count to prevent size changes (e.g.
1741 	 * truncation operations) during I/O.
1742 	 */
1743 	vm_object_reference_locked(fs.first_object);
1744 	vm_object_pip_add(fs.first_object, 1);
1745 
1746 	fs.m_cow = fs.m = fs.first_m = NULL;
1747 
1748 	/*
1749 	 * Search for the page at object/offset.
1750 	 */
1751 	fs.object = fs.first_object;
1752 	fs.pindex = fs.first_pindex;
1753 
1754 	if ((fs.entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK) != 0) {
1755 		res = vm_fault_allocate(&fs, &pages);
1756 		switch (res) {
1757 		case FAULT_RESTART:
1758 			goto RetryFault;
1759 		case FAULT_SUCCESS:
1760 			return (KERN_SUCCESS);
1761 		case FAULT_FAILURE:
1762 			return (KERN_FAILURE);
1763 		case FAULT_OUT_OF_BOUNDS:
1764 			return (KERN_OUT_OF_BOUNDS);
1765 		case FAULT_CONTINUE:
1766 			break;
1767 		default:
1768 			panic("vm_fault: Unhandled status %d", res);
1769 		}
1770 	}
1771 
1772 	while (TRUE) {
1773 		KASSERT(fs.m == NULL,
1774 		    ("page still set %p at loop start", fs.m));
1775 
1776 		res = vm_fault_object(&fs, &behind, &ahead);
1777 		switch (res) {
1778 		case FAULT_SOFT:
1779 			goto found;
1780 		case FAULT_HARD:
1781 			faultcount = behind + 1 + ahead;
1782 			hardfault = true;
1783 			goto found;
1784 		case FAULT_RESTART:
1785 			goto RetryFault;
1786 		case FAULT_SUCCESS:
1787 			return (KERN_SUCCESS);
1788 		case FAULT_FAILURE:
1789 			return (KERN_FAILURE);
1790 		case FAULT_OUT_OF_BOUNDS:
1791 			return (KERN_OUT_OF_BOUNDS);
1792 		case FAULT_PROTECTION_FAILURE:
1793 			return (KERN_PROTECTION_FAILURE);
1794 		case FAULT_CONTINUE:
1795 			break;
1796 		default:
1797 			panic("vm_fault: Unhandled status %d", res);
1798 		}
1799 
1800 		/*
1801 		 * The page was not found in the current object.  Try to
1802 		 * traverse into a backing object or zero fill if none is
1803 		 * found.
1804 		 */
1805 		res_next = vm_fault_next(&fs);
1806 		if (res_next == FAULT_NEXT_RESTART)
1807 			goto RetryFault;
1808 		else if (res_next == FAULT_NEXT_GOTOBJ)
1809 			continue;
1810 		MPASS(res_next == FAULT_NEXT_NOOBJ);
1811 		if ((fs.fault_flags & VM_FAULT_NOFILL) != 0) {
1812 			if (fs.first_object == fs.object)
1813 				vm_fault_page_free(&fs.first_m);
1814 			vm_fault_unlock_and_deallocate(&fs);
1815 			return (KERN_OUT_OF_BOUNDS);
1816 		}
1817 		VM_OBJECT_UNLOCK(fs.object);
1818 		vm_fault_zerofill(&fs);
1819 		/* Don't try to prefault neighboring pages. */
1820 		faultcount = 1;
1821 		break;
1822 	}
1823 
1824 found:
1825 	/*
1826 	 * A valid page has been found and busied.  The object lock
1827 	 * must no longer be held if the page was busied.
1828 	 *
1829 	 * Regardless of the busy state of fs.m, fs.first_m is always
1830 	 * exclusively busied after the first iteration of the loop
1831 	 * calling vm_fault_object().  This is an ordering point for
1832 	 * the parallel faults occuring in on the same page.
1833 	 */
1834 	vm_page_assert_busied(fs.m);
1835 	VM_OBJECT_ASSERT_UNLOCKED(fs.object);
1836 
1837 	/*
1838 	 * If the page is being written, but isn't already owned by the
1839 	 * top-level object, we have to copy it into a new page owned by the
1840 	 * top-level object.
1841 	 */
1842 	if (vm_fault_might_be_cow(&fs)) {
1843 		/*
1844 		 * We only really need to copy if we want to write it.
1845 		 */
1846 		if ((fs.fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
1847 			vm_fault_cow(&fs);
1848 			/*
1849 			 * We only try to prefault read-only mappings to the
1850 			 * neighboring pages when this copy-on-write fault is
1851 			 * a hard fault.  In other cases, trying to prefault
1852 			 * is typically wasted effort.
1853 			 */
1854 			if (faultcount == 0)
1855 				faultcount = 1;
1856 
1857 		} else {
1858 			fs.prot &= ~VM_PROT_WRITE;
1859 		}
1860 	}
1861 
1862 	/*
1863 	 * We must verify that the maps have not changed since our last
1864 	 * lookup.
1865 	 */
1866 	if (!fs.lookup_still_valid) {
1867 		rv = vm_fault_relookup(&fs);
1868 		if (rv != KERN_SUCCESS) {
1869 			vm_fault_deallocate(&fs);
1870 			if (rv == KERN_RESTART)
1871 				goto RetryFault;
1872 			return (rv);
1873 		}
1874 	}
1875 	VM_OBJECT_ASSERT_UNLOCKED(fs.object);
1876 
1877 	/*
1878 	 * If the page was filled by a pager, save the virtual address that
1879 	 * should be faulted on next under a sequential access pattern to the
1880 	 * map entry.  A read lock on the map suffices to update this address
1881 	 * safely.
1882 	 */
1883 	if (hardfault)
1884 		fs.entry->next_read = vaddr + ptoa(ahead) + PAGE_SIZE;
1885 
1886 	/*
1887 	 * If the page to be mapped was copied from a backing object, we defer
1888 	 * marking it valid until here, where the fault handler is guaranteed to
1889 	 * succeed.  Otherwise we can end up with a shadowed, mapped page in the
1890 	 * backing object, which violates an invariant of vm_object_collapse()
1891 	 * that shadowed pages are not mapped.
1892 	 */
1893 	if (fs.m_cow != NULL) {
1894 		KASSERT(vm_page_none_valid(fs.m),
1895 		    ("vm_fault: page %p is already valid", fs.m_cow));
1896 		vm_page_valid(fs.m);
1897 	}
1898 
1899 	/*
1900 	 * Page must be completely valid or it is not fit to
1901 	 * map into user space.  vm_pager_get_pages() ensures this.
1902 	 */
1903 	vm_page_assert_busied(fs.m);
1904 	KASSERT(vm_page_all_valid(fs.m),
1905 	    ("vm_fault: page %p partially invalid", fs.m));
1906 
1907 	vm_fault_dirty(&fs, fs.m);
1908 
1909 	/*
1910 	 * Put this page into the physical map.  We had to do the unlock above
1911 	 * because pmap_enter() may sleep.  We don't put the page
1912 	 * back on the active queue until later so that the pageout daemon
1913 	 * won't find it (yet).
1914 	 */
1915 	pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot,
1916 	    fs.fault_type | (fs.wired ? PMAP_ENTER_WIRED : 0), 0);
1917 	if (faultcount != 1 && (fs.fault_flags & VM_FAULT_WIRE) == 0 &&
1918 	    fs.wired == 0)
1919 		vm_fault_prefault(&fs, vaddr,
1920 		    faultcount > 0 ? behind : PFBAK,
1921 		    faultcount > 0 ? ahead : PFFOR, false);
1922 
1923 	/*
1924 	 * If the page is not wired down, then put it where the pageout daemon
1925 	 * can find it.
1926 	 */
1927 	if ((fs.fault_flags & VM_FAULT_WIRE) != 0)
1928 		vm_page_wire(fs.m);
1929 	else
1930 		vm_page_activate(fs.m);
1931 	if (fs.m_hold != NULL) {
1932 		(*fs.m_hold) = fs.m;
1933 		vm_page_wire(fs.m);
1934 	}
1935 
1936 	KASSERT(fs.first_object == fs.object || vm_page_xbusied(fs.first_m),
1937 	    ("first_m must be xbusy"));
1938 	if (vm_page_xbusied(fs.m))
1939 		vm_page_xunbusy(fs.m);
1940 	else
1941 		vm_page_sunbusy(fs.m);
1942 	fs.m = NULL;
1943 
1944 	/*
1945 	 * Unlock everything, and return
1946 	 */
1947 	vm_fault_deallocate(&fs);
1948 	if (hardfault) {
1949 		VM_CNT_INC(v_io_faults);
1950 		curthread->td_ru.ru_majflt++;
1951 #ifdef RACCT
1952 		if (racct_enable && fs.object->type == OBJT_VNODE) {
1953 			PROC_LOCK(curproc);
1954 			if ((fs.fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
1955 				racct_add_force(curproc, RACCT_WRITEBPS,
1956 				    PAGE_SIZE + behind * PAGE_SIZE);
1957 				racct_add_force(curproc, RACCT_WRITEIOPS, 1);
1958 			} else {
1959 				racct_add_force(curproc, RACCT_READBPS,
1960 				    PAGE_SIZE + ahead * PAGE_SIZE);
1961 				racct_add_force(curproc, RACCT_READIOPS, 1);
1962 			}
1963 			PROC_UNLOCK(curproc);
1964 		}
1965 #endif
1966 	} else
1967 		curthread->td_ru.ru_minflt++;
1968 
1969 	return (KERN_SUCCESS);
1970 }
1971 
1972 /*
1973  * Speed up the reclamation of pages that precede the faulting pindex within
1974  * the first object of the shadow chain.  Essentially, perform the equivalent
1975  * to madvise(..., MADV_DONTNEED) on a large cluster of pages that precedes
1976  * the faulting pindex by the cluster size when the pages read by vm_fault()
1977  * cross a cluster-size boundary.  The cluster size is the greater of the
1978  * smallest superpage size and VM_FAULT_DONTNEED_MIN.
1979  *
1980  * When "fs->first_object" is a shadow object, the pages in the backing object
1981  * that precede the faulting pindex are deactivated by vm_fault().  So, this
1982  * function must only be concerned with pages in the first object.
1983  */
1984 static void
vm_fault_dontneed(const struct faultstate * fs,vm_offset_t vaddr,int ahead)1985 vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr, int ahead)
1986 {
1987 	struct pctrie_iter pages;
1988 	vm_map_entry_t entry;
1989 	vm_object_t first_object;
1990 	vm_offset_t end, start;
1991 	vm_page_t m;
1992 	vm_size_t size;
1993 
1994 	VM_OBJECT_ASSERT_UNLOCKED(fs->object);
1995 	first_object = fs->first_object;
1996 	/* Neither fictitious nor unmanaged pages can be reclaimed. */
1997 	if ((first_object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0) {
1998 		VM_OBJECT_RLOCK(first_object);
1999 		size = VM_FAULT_DONTNEED_MIN;
2000 		if (MAXPAGESIZES > 1 && size < pagesizes[1])
2001 			size = pagesizes[1];
2002 		end = rounddown2(vaddr, size);
2003 		if (vaddr - end >= size - PAGE_SIZE - ptoa(ahead) &&
2004 		    (entry = fs->entry)->start < end) {
2005 			if (end - entry->start < size)
2006 				start = entry->start;
2007 			else
2008 				start = end - size;
2009 			pmap_advise(fs->map->pmap, start, end, MADV_DONTNEED);
2010 			vm_page_iter_limit_init(&pages, first_object,
2011 			    OFF_TO_IDX(entry->offset) +
2012 			    atop(end - entry->start));
2013 			VM_RADIX_FOREACH_FROM(m, &pages,
2014 			    OFF_TO_IDX(entry->offset) +
2015 			    atop(start - entry->start)) {
2016 				if (!vm_page_all_valid(m) ||
2017 				    vm_page_busied(m))
2018 					continue;
2019 
2020 				/*
2021 				 * Don't clear PGA_REFERENCED, since it would
2022 				 * likely represent a reference by a different
2023 				 * process.
2024 				 *
2025 				 * Typically, at this point, prefetched pages
2026 				 * are still in the inactive queue.  Only
2027 				 * pages that triggered page faults are in the
2028 				 * active queue.  The test for whether the page
2029 				 * is in the inactive queue is racy; in the
2030 				 * worst case we will requeue the page
2031 				 * unnecessarily.
2032 				 */
2033 				if (!vm_page_inactive(m))
2034 					vm_page_deactivate(m);
2035 			}
2036 		}
2037 		VM_OBJECT_RUNLOCK(first_object);
2038 	}
2039 }
2040 
2041 /*
2042  * vm_fault_prefault provides a quick way of clustering
2043  * pagefaults into a processes address space.  It is a "cousin"
2044  * of vm_map_pmap_enter, except it runs at page fault time instead
2045  * of mmap time.
2046  */
2047 static void
vm_fault_prefault(const struct faultstate * fs,vm_offset_t addra,int backward,int forward,bool obj_locked)2048 vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
2049     int backward, int forward, bool obj_locked)
2050 {
2051 	pmap_t pmap;
2052 	vm_map_entry_t entry;
2053 	vm_object_t backing_object, lobject;
2054 	vm_offset_t addr, starta;
2055 	vm_pindex_t pindex;
2056 	vm_page_t m;
2057 	vm_prot_t prot;
2058 	int i;
2059 
2060 	pmap = fs->map->pmap;
2061 	if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))
2062 		return;
2063 
2064 	entry = fs->entry;
2065 
2066 	if (addra < backward * PAGE_SIZE) {
2067 		starta = entry->start;
2068 	} else {
2069 		starta = addra - backward * PAGE_SIZE;
2070 		if (starta < entry->start)
2071 			starta = entry->start;
2072 	}
2073 	prot = entry->protection;
2074 
2075 	/*
2076 	 * If pmap_enter() has enabled write access on a nearby mapping, then
2077 	 * don't attempt promotion, because it will fail.
2078 	 */
2079 	if ((fs->prot & VM_PROT_WRITE) != 0)
2080 		prot |= VM_PROT_NO_PROMOTE;
2081 
2082 	/*
2083 	 * Generate the sequence of virtual addresses that are candidates for
2084 	 * prefaulting in an outward spiral from the faulting virtual address,
2085 	 * "addra".  Specifically, the sequence is "addra - PAGE_SIZE", "addra
2086 	 * + PAGE_SIZE", "addra - 2 * PAGE_SIZE", "addra + 2 * PAGE_SIZE", ...
2087 	 * If the candidate address doesn't have a backing physical page, then
2088 	 * the loop immediately terminates.
2089 	 */
2090 	for (i = 0; i < 2 * imax(backward, forward); i++) {
2091 		addr = addra + ((i >> 1) + 1) * ((i & 1) == 0 ? -PAGE_SIZE :
2092 		    PAGE_SIZE);
2093 		if (addr > addra + forward * PAGE_SIZE)
2094 			addr = 0;
2095 
2096 		if (addr < starta || addr >= entry->end)
2097 			continue;
2098 
2099 		if (!pmap_is_prefaultable(pmap, addr))
2100 			continue;
2101 
2102 		pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
2103 		lobject = entry->object.vm_object;
2104 		if (!obj_locked)
2105 			VM_OBJECT_RLOCK(lobject);
2106 		while ((m = vm_page_lookup(lobject, pindex)) == NULL &&
2107 		    !vm_fault_object_needs_getpages(lobject) &&
2108 		    (backing_object = lobject->backing_object) != NULL) {
2109 			KASSERT((lobject->backing_object_offset & PAGE_MASK) ==
2110 			    0, ("vm_fault_prefault: unaligned object offset"));
2111 			pindex += lobject->backing_object_offset >> PAGE_SHIFT;
2112 			VM_OBJECT_RLOCK(backing_object);
2113 			if (!obj_locked || lobject != entry->object.vm_object)
2114 				VM_OBJECT_RUNLOCK(lobject);
2115 			lobject = backing_object;
2116 		}
2117 		if (m == NULL) {
2118 			if (!obj_locked || lobject != entry->object.vm_object)
2119 				VM_OBJECT_RUNLOCK(lobject);
2120 			break;
2121 		}
2122 		if (vm_page_all_valid(m) &&
2123 		    (m->flags & PG_FICTITIOUS) == 0)
2124 			pmap_enter_quick(pmap, addr, m, prot);
2125 		if (!obj_locked || lobject != entry->object.vm_object)
2126 			VM_OBJECT_RUNLOCK(lobject);
2127 	}
2128 }
2129 
2130 /*
2131  * Hold each of the physical pages that are mapped by the specified
2132  * range of virtual addresses, ["addr", "addr" + "len"), if those
2133  * mappings are valid and allow the specified types of access, "prot".
2134  * If all of the implied pages are successfully held, then the number
2135  * of held pages is assigned to *ppages_count, together with pointers
2136  * to those pages in the array "ma". The returned value is zero.
2137  *
2138  * However, if any of the pages cannot be held, an error is returned,
2139  * and no pages are held.
2140  * Error values:
2141  *   ENOMEM - the range is not valid
2142  *   EINVAL - the provided vm_page array is too small to hold all pages
2143  *   EAGAIN - a page was not mapped, and the thread is in nofaulting mode
2144  *   EFAULT - a page with requested permissions cannot be mapped
2145  *            (more detailed result from vm_fault() is lost)
2146  */
2147 int
vm_fault_hold_pages(vm_map_t map,vm_offset_t addr,vm_size_t len,vm_prot_t prot,vm_page_t * ma,int max_count,int * ppages_count)2148 vm_fault_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len,
2149     vm_prot_t prot, vm_page_t *ma, int max_count, int *ppages_count)
2150 {
2151 	vm_offset_t end, va;
2152 	vm_page_t *mp;
2153 	int count, error;
2154 	boolean_t pmap_failed;
2155 
2156 	if (len == 0) {
2157 		*ppages_count = 0;
2158 		return (0);
2159 	}
2160 	end = round_page(addr + len);
2161 	addr = trunc_page(addr);
2162 
2163 	if (!vm_map_range_valid(map, addr, end))
2164 		return (ENOMEM);
2165 
2166 	if (atop(end - addr) > max_count)
2167 		return (EINVAL);
2168 	count = atop(end - addr);
2169 
2170 	/*
2171 	 * Most likely, the physical pages are resident in the pmap, so it is
2172 	 * faster to try pmap_extract_and_hold() first.
2173 	 */
2174 	pmap_failed = FALSE;
2175 	for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) {
2176 		*mp = pmap_extract_and_hold(map->pmap, va, prot);
2177 		if (*mp == NULL)
2178 			pmap_failed = TRUE;
2179 		else if ((prot & VM_PROT_WRITE) != 0 &&
2180 		    (*mp)->dirty != VM_PAGE_BITS_ALL) {
2181 			/*
2182 			 * Explicitly dirty the physical page.  Otherwise, the
2183 			 * caller's changes may go unnoticed because they are
2184 			 * performed through an unmanaged mapping or by a DMA
2185 			 * operation.
2186 			 *
2187 			 * The object lock is not held here.
2188 			 * See vm_page_clear_dirty_mask().
2189 			 */
2190 			vm_page_dirty(*mp);
2191 		}
2192 	}
2193 	if (pmap_failed) {
2194 		/*
2195 		 * One or more pages could not be held by the pmap.  Either no
2196 		 * page was mapped at the specified virtual address or that
2197 		 * mapping had insufficient permissions.  Attempt to fault in
2198 		 * and hold these pages.
2199 		 *
2200 		 * If vm_fault_disable_pagefaults() was called,
2201 		 * i.e., TDP_NOFAULTING is set, we must not sleep nor
2202 		 * acquire MD VM locks, which means we must not call
2203 		 * vm_fault().  Some (out of tree) callers mark
2204 		 * too wide a code area with vm_fault_disable_pagefaults()
2205 		 * already, use the VM_PROT_QUICK_NOFAULT flag to request
2206 		 * the proper behaviour explicitly.
2207 		 */
2208 		if ((prot & VM_PROT_QUICK_NOFAULT) != 0 &&
2209 		    (curthread->td_pflags & TDP_NOFAULTING) != 0) {
2210 			error = EAGAIN;
2211 			goto fail;
2212 		}
2213 		for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) {
2214 			if (*mp == NULL && vm_fault(map, va, prot,
2215 			    VM_FAULT_NORMAL, mp) != KERN_SUCCESS) {
2216 				error = EFAULT;
2217 				goto fail;
2218 			}
2219 		}
2220 	}
2221 	*ppages_count = count;
2222 	return (0);
2223 fail:
2224 	for (mp = ma; mp < ma + count; mp++)
2225 		if (*mp != NULL)
2226 			vm_page_unwire(*mp, PQ_INACTIVE);
2227 	return (error);
2228 }
2229 
2230  /*
2231  * Hold each of the physical pages that are mapped by the specified range of
2232  * virtual addresses, ["addr", "addr" + "len"), if those mappings are valid
2233  * and allow the specified types of access, "prot".  If all of the implied
2234  * pages are successfully held, then the number of held pages is returned
2235  * together with pointers to those pages in the array "ma".  However, if any
2236  * of the pages cannot be held, -1 is returned.
2237  */
2238 int
vm_fault_quick_hold_pages(vm_map_t map,vm_offset_t addr,vm_size_t len,vm_prot_t prot,vm_page_t * ma,int max_count)2239 vm_fault_quick_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len,
2240     vm_prot_t prot, vm_page_t *ma, int max_count)
2241 {
2242 	int error, pages_count;
2243 
2244 	error = vm_fault_hold_pages(map, addr, len, prot, ma,
2245 	    max_count, &pages_count);
2246 	if (error != 0) {
2247 		if (error == EINVAL)
2248 			panic("vm_fault_quick_hold_pages: count > max_count");
2249 		return (-1);
2250 	}
2251 	return (pages_count);
2252 }
2253 
2254 /*
2255  *	Routine:
2256  *		vm_fault_copy_entry
2257  *	Function:
2258  *		Create new object backing dst_entry with private copy of all
2259  *		underlying pages. When src_entry is equal to dst_entry, function
2260  *		implements COW for wired-down map entry. Otherwise, it forks
2261  *		wired entry into dst_map.
2262  *
2263  *	In/out conditions:
2264  *		The source and destination maps must be locked for write.
2265  *		The source map entry must be wired down (or be a sharing map
2266  *		entry corresponding to a main map entry that is wired down).
2267  */
2268 void
vm_fault_copy_entry(vm_map_t dst_map,vm_map_t src_map __unused,vm_map_entry_t dst_entry,vm_map_entry_t src_entry,vm_ooffset_t * fork_charge)2269 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map __unused,
2270     vm_map_entry_t dst_entry, vm_map_entry_t src_entry,
2271     vm_ooffset_t *fork_charge)
2272 {
2273 	struct pctrie_iter pages;
2274 	vm_object_t backing_object, dst_object, object, src_object;
2275 	vm_pindex_t dst_pindex, pindex, src_pindex;
2276 	vm_prot_t access, prot;
2277 	vm_offset_t vaddr;
2278 	vm_page_t dst_m;
2279 	vm_page_t src_m;
2280 	bool upgrade;
2281 
2282 	upgrade = src_entry == dst_entry;
2283 	KASSERT(upgrade || dst_entry->object.vm_object == NULL,
2284 	    ("vm_fault_copy_entry: vm_object not NULL"));
2285 
2286 	/*
2287 	 * If not an upgrade, then enter the mappings in the pmap as
2288 	 * read and/or execute accesses.  Otherwise, enter them as
2289 	 * write accesses.
2290 	 *
2291 	 * A writeable large page mapping is only created if all of
2292 	 * the constituent small page mappings are modified. Marking
2293 	 * PTEs as modified on inception allows promotion to happen
2294 	 * without taking potentially large number of soft faults.
2295 	 */
2296 	access = prot = dst_entry->protection;
2297 	if (!upgrade)
2298 		access &= ~VM_PROT_WRITE;
2299 
2300 	src_object = src_entry->object.vm_object;
2301 	src_pindex = OFF_TO_IDX(src_entry->offset);
2302 
2303 	if (upgrade && (dst_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
2304 		dst_object = src_object;
2305 		vm_object_reference(dst_object);
2306 	} else {
2307 		/*
2308 		 * Create the top-level object for the destination entry.
2309 		 * Doesn't actually shadow anything - we copy the pages
2310 		 * directly.
2311 		 */
2312 		dst_object = vm_object_allocate_anon(atop(dst_entry->end -
2313 		    dst_entry->start), NULL, NULL, 0);
2314 #if VM_NRESERVLEVEL > 0
2315 		dst_object->flags |= OBJ_COLORED;
2316 		dst_object->pg_color = atop(dst_entry->start);
2317 #endif
2318 		dst_object->domain = src_object->domain;
2319 		dst_object->charge = dst_entry->end - dst_entry->start;
2320 
2321 		dst_entry->object.vm_object = dst_object;
2322 		dst_entry->offset = 0;
2323 		dst_entry->eflags &= ~MAP_ENTRY_VN_EXEC;
2324 	}
2325 
2326 	VM_OBJECT_WLOCK(dst_object);
2327 	if (fork_charge != NULL) {
2328 		KASSERT(dst_entry->cred == NULL,
2329 		    ("vm_fault_copy_entry: leaked swp charge"));
2330 		dst_object->cred = curthread->td_ucred;
2331 		crhold(dst_object->cred);
2332 		*fork_charge += dst_object->charge;
2333 	} else if ((dst_object->flags & OBJ_SWAP) != 0 &&
2334 	    dst_object->cred == NULL) {
2335 		KASSERT(dst_entry->cred != NULL, ("no cred for entry %p",
2336 		    dst_entry));
2337 		dst_object->cred = dst_entry->cred;
2338 		dst_entry->cred = NULL;
2339 	}
2340 
2341 	/*
2342 	 * Loop through all of the virtual pages within the entry's
2343 	 * range, copying each page from the source object to the
2344 	 * destination object.  Since the source is wired, those pages
2345 	 * must exist.  In contrast, the destination is pageable.
2346 	 * Since the destination object doesn't share any backing storage
2347 	 * with the source object, all of its pages must be dirtied,
2348 	 * regardless of whether they can be written.
2349 	 */
2350 	vm_page_iter_init(&pages, dst_object);
2351 	for (vaddr = dst_entry->start, dst_pindex = 0;
2352 	    vaddr < dst_entry->end;
2353 	    vaddr += PAGE_SIZE, dst_pindex++) {
2354 again:
2355 		/*
2356 		 * Find the page in the source object, and copy it in.
2357 		 * Because the source is wired down, the page will be
2358 		 * in memory.
2359 		 */
2360 		if (src_object != dst_object)
2361 			VM_OBJECT_RLOCK(src_object);
2362 		object = src_object;
2363 		pindex = src_pindex + dst_pindex;
2364 		while ((src_m = vm_page_lookup(object, pindex)) == NULL &&
2365 		    (backing_object = object->backing_object) != NULL) {
2366 			/*
2367 			 * Unless the source mapping is read-only or
2368 			 * it is presently being upgraded from
2369 			 * read-only, the first object in the shadow
2370 			 * chain should provide all of the pages.  In
2371 			 * other words, this loop body should never be
2372 			 * executed when the source mapping is already
2373 			 * read/write.
2374 			 */
2375 			KASSERT((src_entry->protection & VM_PROT_WRITE) == 0 ||
2376 			    upgrade,
2377 			    ("vm_fault_copy_entry: main object missing page"));
2378 
2379 			VM_OBJECT_RLOCK(backing_object);
2380 			pindex += OFF_TO_IDX(object->backing_object_offset);
2381 			if (object != dst_object)
2382 				VM_OBJECT_RUNLOCK(object);
2383 			object = backing_object;
2384 		}
2385 		KASSERT(src_m != NULL, ("vm_fault_copy_entry: page missing"));
2386 
2387 		if (object != dst_object) {
2388 			/*
2389 			 * Allocate a page in the destination object.
2390 			 */
2391 			pindex = (src_object == dst_object ? src_pindex : 0) +
2392 			    dst_pindex;
2393 			dst_m = vm_page_alloc_iter(dst_object, pindex,
2394 			    VM_ALLOC_NORMAL, &pages);
2395 			if (dst_m == NULL) {
2396 				VM_OBJECT_WUNLOCK(dst_object);
2397 				VM_OBJECT_RUNLOCK(object);
2398 				vm_wait(dst_object);
2399 				VM_OBJECT_WLOCK(dst_object);
2400 				pctrie_iter_reset(&pages);
2401 				goto again;
2402 			}
2403 
2404 			/*
2405 			 * See the comment in vm_fault_cow().
2406 			 */
2407 			if (src_object == dst_object &&
2408 			    (object->flags & OBJ_ONEMAPPING) == 0)
2409 				pmap_remove_all(src_m);
2410 			pmap_copy_page(src_m, dst_m);
2411 
2412 			/*
2413 			 * The object lock does not guarantee that "src_m" will
2414 			 * transition from invalid to valid, but it does ensure
2415 			 * that "src_m" will not transition from valid to
2416 			 * invalid.
2417 			 */
2418 			dst_m->dirty = dst_m->valid = src_m->valid;
2419 			VM_OBJECT_RUNLOCK(object);
2420 		} else {
2421 			dst_m = src_m;
2422 			if (vm_page_busy_acquire(
2423 			    dst_m, VM_ALLOC_WAITFAIL) == 0) {
2424 				pctrie_iter_reset(&pages);
2425 				goto again;
2426 			}
2427 			if (dst_m->pindex >= dst_object->size) {
2428 				/*
2429 				 * We are upgrading.  Index can occur
2430 				 * out of bounds if the object type is
2431 				 * vnode and the file was truncated.
2432 				 */
2433 				vm_page_xunbusy(dst_m);
2434 				break;
2435 			}
2436 		}
2437 
2438 		/*
2439 		 * Enter it in the pmap. If a wired, copy-on-write
2440 		 * mapping is being replaced by a write-enabled
2441 		 * mapping, then wire that new mapping.
2442 		 *
2443 		 * The page can be invalid if the user called
2444 		 * msync(MS_INVALIDATE) or truncated the backing vnode
2445 		 * or shared memory object.  In this case, do not
2446 		 * insert it into pmap, but still do the copy so that
2447 		 * all copies of the wired map entry have similar
2448 		 * backing pages.
2449 		 */
2450 		if (vm_page_all_valid(dst_m)) {
2451 			VM_OBJECT_WUNLOCK(dst_object);
2452 			pmap_enter(dst_map->pmap, vaddr, dst_m, prot,
2453 			    access | (upgrade ? PMAP_ENTER_WIRED : 0), 0);
2454 			VM_OBJECT_WLOCK(dst_object);
2455 		}
2456 
2457 		/*
2458 		 * Mark it no longer busy, and put it on the active list.
2459 		 */
2460 		if (upgrade) {
2461 			if (src_m != dst_m) {
2462 				vm_page_unwire(src_m, PQ_INACTIVE);
2463 				vm_page_wire(dst_m);
2464 			} else {
2465 				KASSERT(vm_page_wired(dst_m),
2466 				    ("dst_m %p is not wired", dst_m));
2467 			}
2468 		} else {
2469 			vm_page_activate(dst_m);
2470 		}
2471 		vm_page_xunbusy(dst_m);
2472 	}
2473 	VM_OBJECT_WUNLOCK(dst_object);
2474 	if (upgrade) {
2475 		dst_entry->eflags &= ~(MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY);
2476 		vm_object_deallocate(src_object);
2477 	}
2478 }
2479 
2480 /*
2481  * Block entry into the machine-independent layer's page fault handler by
2482  * the calling thread.  Subsequent calls to vm_fault() by that thread will
2483  * return KERN_PROTECTION_FAILURE.  Enable machine-dependent handling of
2484  * spurious page faults.
2485  */
2486 int
vm_fault_disable_pagefaults(void)2487 vm_fault_disable_pagefaults(void)
2488 {
2489 
2490 	return (curthread_pflags_set(TDP_NOFAULTING | TDP_RESETSPUR));
2491 }
2492 
2493 void
vm_fault_enable_pagefaults(int save)2494 vm_fault_enable_pagefaults(int save)
2495 {
2496 
2497 	curthread_pflags_restore(save);
2498 }
2499