xref: /linux/arch/x86/kernel/alternative.c (revision 5c00eca95a9a20e662bd290c3ef3f2e07dfa9baa)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #define pr_fmt(fmt) "SMP alternatives: " fmt
3 
4 #include <linux/mmu_context.h>
5 #include <linux/perf_event.h>
6 #include <linux/vmalloc.h>
7 #include <linux/memory.h>
8 #include <linux/execmem.h>
9 
10 #include <asm/text-patching.h>
11 #include <asm/insn.h>
12 #include <asm/ibt.h>
13 #include <asm/set_memory.h>
14 #include <asm/nmi.h>
15 
16 int __read_mostly alternatives_patched;
17 
18 EXPORT_SYMBOL_GPL(alternatives_patched);
19 
20 #define MAX_PATCH_LEN (255-1)
21 
22 #define DA_ALL		(~0)
23 #define DA_ALT		0x01
24 #define DA_RET		0x02
25 #define DA_RETPOLINE	0x04
26 #define DA_ENDBR	0x08
27 #define DA_SMP		0x10
28 
29 static unsigned int debug_alternative;
30 
debug_alt(char * str)31 static int __init debug_alt(char *str)
32 {
33 	if (str && *str == '=')
34 		str++;
35 
36 	if (!str || kstrtouint(str, 0, &debug_alternative))
37 		debug_alternative = DA_ALL;
38 
39 	return 1;
40 }
41 __setup("debug-alternative", debug_alt);
42 
43 static int noreplace_smp;
44 
setup_noreplace_smp(char * str)45 static int __init setup_noreplace_smp(char *str)
46 {
47 	noreplace_smp = 1;
48 	return 1;
49 }
50 __setup("noreplace-smp", setup_noreplace_smp);
51 
52 #define DPRINTK(type, fmt, args...)					\
53 do {									\
54 	if (debug_alternative & DA_##type)				\
55 		printk(KERN_DEBUG pr_fmt(fmt) "\n", ##args);		\
56 } while (0)
57 
58 #define DUMP_BYTES(type, buf, len, fmt, args...)			\
59 do {									\
60 	if (unlikely(debug_alternative & DA_##type)) {			\
61 		int j;							\
62 									\
63 		if (!(len))						\
64 			break;						\
65 									\
66 		printk(KERN_DEBUG pr_fmt(fmt), ##args);			\
67 		for (j = 0; j < (len) - 1; j++)				\
68 			printk(KERN_CONT "%02hhx ", buf[j]);		\
69 		printk(KERN_CONT "%02hhx\n", buf[j]);			\
70 	}								\
71 } while (0)
72 
73 static const unsigned char x86nops[] =
74 {
75 	BYTES_NOP1,
76 	BYTES_NOP2,
77 	BYTES_NOP3,
78 	BYTES_NOP4,
79 	BYTES_NOP5,
80 	BYTES_NOP6,
81 	BYTES_NOP7,
82 	BYTES_NOP8,
83 #ifdef CONFIG_64BIT
84 	BYTES_NOP9,
85 	BYTES_NOP10,
86 	BYTES_NOP11,
87 #endif
88 };
89 
90 const unsigned char * const x86_nops[ASM_NOP_MAX+1] =
91 {
92 	NULL,
93 	x86nops,
94 	x86nops + 1,
95 	x86nops + 1 + 2,
96 	x86nops + 1 + 2 + 3,
97 	x86nops + 1 + 2 + 3 + 4,
98 	x86nops + 1 + 2 + 3 + 4 + 5,
99 	x86nops + 1 + 2 + 3 + 4 + 5 + 6,
100 	x86nops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
101 #ifdef CONFIG_64BIT
102 	x86nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8,
103 	x86nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9,
104 	x86nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10,
105 #endif
106 };
107 
108 #ifdef CONFIG_FINEIBT
109 static bool cfi_paranoid __ro_after_init;
110 #endif
111 
112 #ifdef CONFIG_MITIGATION_ITS
113 
114 #ifdef CONFIG_MODULES
115 static struct module *its_mod;
116 #endif
117 static void *its_page;
118 static unsigned int its_offset;
119 struct its_array its_pages;
120 
__its_alloc(struct its_array * pages)121 static void *__its_alloc(struct its_array *pages)
122 {
123 	void *page __free(execmem) = execmem_alloc(EXECMEM_MODULE_TEXT, PAGE_SIZE);
124 	if (!page)
125 		return NULL;
126 
127 	void *tmp = krealloc(pages->pages, (pages->num+1) * sizeof(void *),
128 			     GFP_KERNEL);
129 	if (!tmp)
130 		return NULL;
131 
132 	pages->pages = tmp;
133 	pages->pages[pages->num++] = page;
134 
135 	return no_free_ptr(page);
136 }
137 
138 /* Initialize a thunk with the "jmp *reg; int3" instructions. */
its_init_thunk(void * thunk,int reg)139 static void *its_init_thunk(void *thunk, int reg)
140 {
141 	u8 *bytes = thunk;
142 	int offset = 0;
143 	int i = 0;
144 
145 #ifdef CONFIG_FINEIBT
146 	if (cfi_paranoid) {
147 		/*
148 		 * When ITS uses indirect branch thunk the fineibt_paranoid
149 		 * caller sequence doesn't fit in the caller site. So put the
150 		 * remaining part of the sequence (<ea> + JNE) into the ITS
151 		 * thunk.
152 		 */
153 		bytes[i++] = 0xea; /* invalid instruction */
154 		bytes[i++] = 0x75; /* JNE */
155 		bytes[i++] = 0xfd;
156 
157 		offset = 1;
158 	}
159 #endif
160 
161 	if (reg >= 8) {
162 		bytes[i++] = 0x41; /* REX.B prefix */
163 		reg -= 8;
164 	}
165 	bytes[i++] = 0xff;
166 	bytes[i++] = 0xe0 + reg; /* jmp *reg */
167 	bytes[i++] = 0xcc;
168 
169 	return thunk + offset;
170 }
171 
its_pages_protect(struct its_array * pages)172 static void its_pages_protect(struct its_array *pages)
173 {
174 	for (int i = 0; i < pages->num; i++) {
175 		void *page = pages->pages[i];
176 		execmem_restore_rox(page, PAGE_SIZE);
177 	}
178 }
179 
its_fini_core(void)180 static void its_fini_core(void)
181 {
182 	if (IS_ENABLED(CONFIG_STRICT_KERNEL_RWX))
183 		its_pages_protect(&its_pages);
184 	kfree(its_pages.pages);
185 }
186 
187 #ifdef CONFIG_MODULES
its_init_mod(struct module * mod)188 void its_init_mod(struct module *mod)
189 {
190 	if (!cpu_feature_enabled(X86_FEATURE_INDIRECT_THUNK_ITS))
191 		return;
192 
193 	mutex_lock(&text_mutex);
194 	its_mod = mod;
195 	its_page = NULL;
196 }
197 
its_fini_mod(struct module * mod)198 void its_fini_mod(struct module *mod)
199 {
200 	if (!cpu_feature_enabled(X86_FEATURE_INDIRECT_THUNK_ITS))
201 		return;
202 
203 	WARN_ON_ONCE(its_mod != mod);
204 
205 	its_mod = NULL;
206 	its_page = NULL;
207 	mutex_unlock(&text_mutex);
208 
209 	if (IS_ENABLED(CONFIG_STRICT_MODULE_RWX))
210 		its_pages_protect(&mod->arch.its_pages);
211 }
212 
its_free_mod(struct module * mod)213 void its_free_mod(struct module *mod)
214 {
215 	if (!cpu_feature_enabled(X86_FEATURE_INDIRECT_THUNK_ITS))
216 		return;
217 
218 	for (int i = 0; i < mod->arch.its_pages.num; i++) {
219 		void *page = mod->arch.its_pages.pages[i];
220 		execmem_free(page);
221 	}
222 	kfree(mod->arch.its_pages.pages);
223 }
224 #endif /* CONFIG_MODULES */
225 
its_alloc(void)226 static void *its_alloc(void)
227 {
228 	struct its_array *pages = &its_pages;
229 	void *page;
230 
231 #ifdef CONFIG_MODULES
232 	if (its_mod)
233 		pages = &its_mod->arch.its_pages;
234 #endif
235 
236 	page = __its_alloc(pages);
237 	if (!page)
238 		return NULL;
239 
240 	execmem_make_temp_rw(page, PAGE_SIZE);
241 	if (pages == &its_pages)
242 		set_memory_x((unsigned long)page, 1);
243 
244 	return page;
245 }
246 
its_allocate_thunk(int reg)247 static void *its_allocate_thunk(int reg)
248 {
249 	int size = 3 + (reg / 8);
250 	void *thunk;
251 
252 #ifdef CONFIG_FINEIBT
253 	/*
254 	 * The ITS thunk contains an indirect jump and an int3 instruction so
255 	 * its size is 3 or 4 bytes depending on the register used. If CFI
256 	 * paranoid is used then 3 extra bytes are added in the ITS thunk to
257 	 * complete the fineibt_paranoid caller sequence.
258 	 */
259 	if (cfi_paranoid)
260 		size += 3;
261 #endif
262 
263 	if (!its_page || (its_offset + size - 1) >= PAGE_SIZE) {
264 		its_page = its_alloc();
265 		if (!its_page) {
266 			pr_err("ITS page allocation failed\n");
267 			return NULL;
268 		}
269 		memset(its_page, INT3_INSN_OPCODE, PAGE_SIZE);
270 		its_offset = 32;
271 	}
272 
273 	/*
274 	 * If the indirect branch instruction will be in the lower half
275 	 * of a cacheline, then update the offset to reach the upper half.
276 	 */
277 	if ((its_offset + size - 1) % 64 < 32)
278 		its_offset = ((its_offset - 1) | 0x3F) + 33;
279 
280 	thunk = its_page + its_offset;
281 	its_offset += size;
282 
283 	return its_init_thunk(thunk, reg);
284 }
285 
its_static_thunk(int reg)286 u8 *its_static_thunk(int reg)
287 {
288 	u8 *thunk = __x86_indirect_its_thunk_array[reg];
289 
290 #ifdef CONFIG_FINEIBT
291 	/* Paranoid thunk starts 2 bytes before */
292 	if (cfi_paranoid)
293 		return thunk - 2;
294 #endif
295 	return thunk;
296 }
297 
298 #else
its_fini_core(void)299 static inline void its_fini_core(void) {}
300 #endif /* CONFIG_MITIGATION_ITS */
301 
302 /*
303  * Nomenclature for variable names to simplify and clarify this code and ease
304  * any potential staring at it:
305  *
306  * @instr: source address of the original instructions in the kernel text as
307  * generated by the compiler.
308  *
309  * @buf: temporary buffer on which the patching operates. This buffer is
310  * eventually text-poked into the kernel image.
311  *
312  * @replacement/@repl: pointer to the opcodes which are replacing @instr, located
313  * in the .altinstr_replacement section.
314  */
315 
316 /*
317  * Fill the buffer with a single effective instruction of size @len.
318  *
319  * In order not to issue an ORC stack depth tracking CFI entry (Call Frame Info)
320  * for every single-byte NOP, try to generate the maximally available NOP of
321  * size <= ASM_NOP_MAX such that only a single CFI entry is generated (vs one for
322  * each single-byte NOPs). If @len to fill out is > ASM_NOP_MAX, pad with INT3 and
323  * *jump* over instead of executing long and daft NOPs.
324  */
add_nop(u8 * buf,unsigned int len)325 static void add_nop(u8 *buf, unsigned int len)
326 {
327 	u8 *target = buf + len;
328 
329 	if (!len)
330 		return;
331 
332 	if (len <= ASM_NOP_MAX) {
333 		memcpy(buf, x86_nops[len], len);
334 		return;
335 	}
336 
337 	if (len < 128) {
338 		__text_gen_insn(buf, JMP8_INSN_OPCODE, buf, target, JMP8_INSN_SIZE);
339 		buf += JMP8_INSN_SIZE;
340 	} else {
341 		__text_gen_insn(buf, JMP32_INSN_OPCODE, buf, target, JMP32_INSN_SIZE);
342 		buf += JMP32_INSN_SIZE;
343 	}
344 
345 	for (;buf < target; buf++)
346 		*buf = INT3_INSN_OPCODE;
347 }
348 
349 /*
350  * Matches NOP and NOPL, not any of the other possible NOPs.
351  */
insn_is_nop(struct insn * insn)352 static bool insn_is_nop(struct insn *insn)
353 {
354 	/* Anything NOP, but no REP NOP */
355 	if (insn->opcode.bytes[0] == 0x90 &&
356 	    (!insn->prefixes.nbytes || insn->prefixes.bytes[0] != 0xF3))
357 		return true;
358 
359 	/* NOPL */
360 	if (insn->opcode.bytes[0] == 0x0F && insn->opcode.bytes[1] == 0x1F)
361 		return true;
362 
363 	/* TODO: more nops */
364 
365 	return false;
366 }
367 
368 /*
369  * Find the offset of the first non-NOP instruction starting at @offset
370  * but no further than @len.
371  */
skip_nops(u8 * buf,int offset,int len)372 static int skip_nops(u8 *buf, int offset, int len)
373 {
374 	struct insn insn;
375 
376 	for (; offset < len; offset += insn.length) {
377 		if (insn_decode_kernel(&insn, &buf[offset]))
378 			break;
379 
380 		if (!insn_is_nop(&insn))
381 			break;
382 	}
383 
384 	return offset;
385 }
386 
387 /*
388  * "noinline" to cause control flow change and thus invalidate I$ and
389  * cause refetch after modification.
390  */
optimize_nops(const u8 * const instr,u8 * buf,size_t len)391 static void noinline optimize_nops(const u8 * const instr, u8 *buf, size_t len)
392 {
393 	for (int next, i = 0; i < len; i = next) {
394 		struct insn insn;
395 
396 		if (insn_decode_kernel(&insn, &buf[i]))
397 			return;
398 
399 		next = i + insn.length;
400 
401 		if (insn_is_nop(&insn)) {
402 			int nop = i;
403 
404 			/* Has the NOP already been optimized? */
405 			if (i + insn.length == len)
406 				return;
407 
408 			next = skip_nops(buf, next, len);
409 
410 			add_nop(buf + nop, next - nop);
411 			DUMP_BYTES(ALT, buf, len, "%px: [%d:%d) optimized NOPs: ", instr, nop, next);
412 		}
413 	}
414 }
415 
416 /*
417  * In this context, "source" is where the instructions are placed in the
418  * section .altinstr_replacement, for example during kernel build by the
419  * toolchain.
420  * "Destination" is where the instructions are being patched in by this
421  * machinery.
422  *
423  * The source offset is:
424  *
425  *   src_imm = target - src_next_ip                  (1)
426  *
427  * and the target offset is:
428  *
429  *   dst_imm = target - dst_next_ip                  (2)
430  *
431  * so rework (1) as an expression for target like:
432  *
433  *   target = src_imm + src_next_ip                  (1a)
434  *
435  * and substitute in (2) to get:
436  *
437  *   dst_imm = (src_imm + src_next_ip) - dst_next_ip (3)
438  *
439  * Now, since the instruction stream is 'identical' at src and dst (it
440  * is being copied after all) it can be stated that:
441  *
442  *   src_next_ip = src + ip_offset
443  *   dst_next_ip = dst + ip_offset                   (4)
444  *
445  * Substitute (4) in (3) and observe ip_offset being cancelled out to
446  * obtain:
447  *
448  *   dst_imm = src_imm + (src + ip_offset) - (dst + ip_offset)
449  *           = src_imm + src - dst + ip_offset - ip_offset
450  *           = src_imm + src - dst                   (5)
451  *
452  * IOW, only the relative displacement of the code block matters.
453  */
454 
455 #define apply_reloc_n(n_, p_, d_)				\
456 	do {							\
457 		s32 v = *(s##n_ *)(p_);				\
458 		v += (d_);					\
459 		BUG_ON((v >> 31) != (v >> (n_-1)));		\
460 		*(s##n_ *)(p_) = (s##n_)v;			\
461 	} while (0)
462 
463 
464 static __always_inline
apply_reloc(int n,void * ptr,uintptr_t diff)465 void apply_reloc(int n, void *ptr, uintptr_t diff)
466 {
467 	switch (n) {
468 	case 1: apply_reloc_n(8, ptr, diff); break;
469 	case 2: apply_reloc_n(16, ptr, diff); break;
470 	case 4: apply_reloc_n(32, ptr, diff); break;
471 	default: BUG();
472 	}
473 }
474 
475 static __always_inline
need_reloc(unsigned long offset,u8 * src,size_t src_len)476 bool need_reloc(unsigned long offset, u8 *src, size_t src_len)
477 {
478 	u8 *target = src + offset;
479 	/*
480 	 * If the target is inside the patched block, it's relative to the
481 	 * block itself and does not need relocation.
482 	 */
483 	return (target < src || target > src + src_len);
484 }
485 
__apply_relocation(u8 * buf,const u8 * const instr,size_t instrlen,u8 * repl,size_t repl_len)486 static void __apply_relocation(u8 *buf, const u8 * const instr, size_t instrlen, u8 *repl, size_t repl_len)
487 {
488 	for (int next, i = 0; i < instrlen; i = next) {
489 		struct insn insn;
490 
491 		if (WARN_ON_ONCE(insn_decode_kernel(&insn, &buf[i])))
492 			return;
493 
494 		next = i + insn.length;
495 
496 		switch (insn.opcode.bytes[0]) {
497 		case 0x0f:
498 			if (insn.opcode.bytes[1] < 0x80 ||
499 			    insn.opcode.bytes[1] > 0x8f)
500 				break;
501 
502 			fallthrough;	/* Jcc.d32 */
503 		case 0x70 ... 0x7f:	/* Jcc.d8 */
504 		case JMP8_INSN_OPCODE:
505 		case JMP32_INSN_OPCODE:
506 		case CALL_INSN_OPCODE:
507 			if (need_reloc(next + insn.immediate.value, repl, repl_len)) {
508 				apply_reloc(insn.immediate.nbytes,
509 					    buf + i + insn_offset_immediate(&insn),
510 					    repl - instr);
511 			}
512 
513 			/*
514 			 * Where possible, convert JMP.d32 into JMP.d8.
515 			 */
516 			if (insn.opcode.bytes[0] == JMP32_INSN_OPCODE) {
517 				s32 imm = insn.immediate.value;
518 				imm += repl - instr;
519 				imm += JMP32_INSN_SIZE - JMP8_INSN_SIZE;
520 				if ((imm >> 31) == (imm >> 7)) {
521 					buf[i+0] = JMP8_INSN_OPCODE;
522 					buf[i+1] = (s8)imm;
523 
524 					memset(&buf[i+2], INT3_INSN_OPCODE, insn.length - 2);
525 				}
526 			}
527 			break;
528 		}
529 
530 		if (insn_rip_relative(&insn)) {
531 			if (need_reloc(next + insn.displacement.value, repl, repl_len)) {
532 				apply_reloc(insn.displacement.nbytes,
533 					    buf + i + insn_offset_displacement(&insn),
534 					    repl - instr);
535 			}
536 		}
537 	}
538 }
539 
text_poke_apply_relocation(u8 * buf,const u8 * const instr,size_t instrlen,u8 * repl,size_t repl_len)540 void text_poke_apply_relocation(u8 *buf, const u8 * const instr, size_t instrlen, u8 *repl, size_t repl_len)
541 {
542 	__apply_relocation(buf, instr, instrlen, repl, repl_len);
543 	optimize_nops(instr, buf, instrlen);
544 }
545 
546 /* Low-level backend functions usable from alternative code replacements. */
547 DEFINE_ASM_FUNC(nop_func, "", .entry.text);
548 EXPORT_SYMBOL_GPL(nop_func);
549 
BUG_func(void)550 noinstr void BUG_func(void)
551 {
552 	BUG();
553 }
554 EXPORT_SYMBOL(BUG_func);
555 
556 #define CALL_RIP_REL_OPCODE	0xff
557 #define CALL_RIP_REL_MODRM	0x15
558 
559 /*
560  * Rewrite the "call BUG_func" replacement to point to the target of the
561  * indirect pv_ops call "call *disp(%ip)".
562  */
alt_replace_call(u8 * instr,u8 * insn_buff,struct alt_instr * a)563 static int alt_replace_call(u8 *instr, u8 *insn_buff, struct alt_instr *a)
564 {
565 	void *target, *bug = &BUG_func;
566 	s32 disp;
567 
568 	if (a->replacementlen != 5 || insn_buff[0] != CALL_INSN_OPCODE) {
569 		pr_err("ALT_FLAG_DIRECT_CALL set for a non-call replacement instruction\n");
570 		BUG();
571 	}
572 
573 	if (a->instrlen != 6 ||
574 	    instr[0] != CALL_RIP_REL_OPCODE ||
575 	    instr[1] != CALL_RIP_REL_MODRM) {
576 		pr_err("ALT_FLAG_DIRECT_CALL set for unrecognized indirect call\n");
577 		BUG();
578 	}
579 
580 	/* Skip CALL_RIP_REL_OPCODE and CALL_RIP_REL_MODRM */
581 	disp = *(s32 *)(instr + 2);
582 #ifdef CONFIG_X86_64
583 	/* ff 15 00 00 00 00   call   *0x0(%rip) */
584 	/* target address is stored at "next instruction + disp". */
585 	target = *(void **)(instr + a->instrlen + disp);
586 #else
587 	/* ff 15 00 00 00 00   call   *0x0 */
588 	/* target address is stored at disp. */
589 	target = *(void **)disp;
590 #endif
591 	if (!target)
592 		target = bug;
593 
594 	/* (BUG_func - .) + (target - BUG_func) := target - . */
595 	*(s32 *)(insn_buff + 1) += target - bug;
596 
597 	if (target == &nop_func)
598 		return 0;
599 
600 	return 5;
601 }
602 
instr_va(struct alt_instr * i)603 static inline u8 * instr_va(struct alt_instr *i)
604 {
605 	return (u8 *)&i->instr_offset + i->instr_offset;
606 }
607 
608 /*
609  * Replace instructions with better alternatives for this CPU type. This runs
610  * before SMP is initialized to avoid SMP problems with self modifying code.
611  * This implies that asymmetric systems where APs have less capabilities than
612  * the boot processor are not handled. Tough. Make sure you disable such
613  * features by hand.
614  *
615  * Marked "noinline" to cause control flow change and thus insn cache
616  * to refetch changed I$ lines.
617  */
apply_alternatives(struct alt_instr * start,struct alt_instr * end)618 void __init_or_module noinline apply_alternatives(struct alt_instr *start,
619 						  struct alt_instr *end)
620 {
621 	u8 insn_buff[MAX_PATCH_LEN];
622 	u8 *instr, *replacement;
623 	struct alt_instr *a, *b;
624 
625 	DPRINTK(ALT, "alt table %px, -> %px", start, end);
626 
627 	/*
628 	 * KASAN_SHADOW_START is defined using
629 	 * cpu_feature_enabled(X86_FEATURE_LA57) and is therefore patched here.
630 	 * During the process, KASAN becomes confused seeing partial LA57
631 	 * conversion and triggers a false-positive out-of-bound report.
632 	 *
633 	 * Disable KASAN until the patching is complete.
634 	 */
635 	kasan_disable_current();
636 
637 	/*
638 	 * The scan order should be from start to end. A later scanned
639 	 * alternative code can overwrite previously scanned alternative code.
640 	 * Some kernel functions (e.g. memcpy, memset, etc) use this order to
641 	 * patch code.
642 	 *
643 	 * So be careful if you want to change the scan order to any other
644 	 * order.
645 	 */
646 	for (a = start; a < end; a++) {
647 		int insn_buff_sz = 0;
648 
649 		/*
650 		 * In case of nested ALTERNATIVE()s the outer alternative might
651 		 * add more padding. To ensure consistent patching find the max
652 		 * padding for all alt_instr entries for this site (nested
653 		 * alternatives result in consecutive entries).
654 		 */
655 		for (b = a+1; b < end && instr_va(b) == instr_va(a); b++) {
656 			u8 len = max(a->instrlen, b->instrlen);
657 			a->instrlen = b->instrlen = len;
658 		}
659 
660 		instr = instr_va(a);
661 		replacement = (u8 *)&a->repl_offset + a->repl_offset;
662 		BUG_ON(a->instrlen > sizeof(insn_buff));
663 		BUG_ON(a->cpuid >= (NCAPINTS + NBUGINTS) * 32);
664 
665 		/*
666 		 * Patch if either:
667 		 * - feature is present
668 		 * - feature not present but ALT_FLAG_NOT is set to mean,
669 		 *   patch if feature is *NOT* present.
670 		 */
671 		if (!boot_cpu_has(a->cpuid) == !(a->flags & ALT_FLAG_NOT)) {
672 			memcpy(insn_buff, instr, a->instrlen);
673 			optimize_nops(instr, insn_buff, a->instrlen);
674 			text_poke_early(instr, insn_buff, a->instrlen);
675 			continue;
676 		}
677 
678 		DPRINTK(ALT, "feat: %d*32+%d, old: (%pS (%px) len: %d), repl: (%px, len: %d) flags: 0x%x",
679 			a->cpuid >> 5,
680 			a->cpuid & 0x1f,
681 			instr, instr, a->instrlen,
682 			replacement, a->replacementlen, a->flags);
683 
684 		memcpy(insn_buff, replacement, a->replacementlen);
685 		insn_buff_sz = a->replacementlen;
686 
687 		if (a->flags & ALT_FLAG_DIRECT_CALL) {
688 			insn_buff_sz = alt_replace_call(instr, insn_buff, a);
689 			if (insn_buff_sz < 0)
690 				continue;
691 		}
692 
693 		for (; insn_buff_sz < a->instrlen; insn_buff_sz++)
694 			insn_buff[insn_buff_sz] = 0x90;
695 
696 		text_poke_apply_relocation(insn_buff, instr, a->instrlen, replacement, a->replacementlen);
697 
698 		DUMP_BYTES(ALT, instr, a->instrlen, "%px:   old_insn: ", instr);
699 		DUMP_BYTES(ALT, replacement, a->replacementlen, "%px:   rpl_insn: ", replacement);
700 		DUMP_BYTES(ALT, insn_buff, insn_buff_sz, "%px: final_insn: ", instr);
701 
702 		text_poke_early(instr, insn_buff, insn_buff_sz);
703 	}
704 
705 	kasan_enable_current();
706 }
707 
is_jcc32(struct insn * insn)708 static inline bool is_jcc32(struct insn *insn)
709 {
710 	/* Jcc.d32 second opcode byte is in the range: 0x80-0x8f */
711 	return insn->opcode.bytes[0] == 0x0f && (insn->opcode.bytes[1] & 0xf0) == 0x80;
712 }
713 
714 #if defined(CONFIG_MITIGATION_RETPOLINE) && defined(CONFIG_OBJTOOL)
715 
716 /*
717  * CALL/JMP *%\reg
718  */
emit_indirect(int op,int reg,u8 * bytes)719 static int emit_indirect(int op, int reg, u8 *bytes)
720 {
721 	int i = 0;
722 	u8 modrm;
723 
724 	switch (op) {
725 	case CALL_INSN_OPCODE:
726 		modrm = 0x10; /* Reg = 2; CALL r/m */
727 		break;
728 
729 	case JMP32_INSN_OPCODE:
730 		modrm = 0x20; /* Reg = 4; JMP r/m */
731 		break;
732 
733 	default:
734 		WARN_ON_ONCE(1);
735 		return -1;
736 	}
737 
738 	if (reg >= 8) {
739 		bytes[i++] = 0x41; /* REX.B prefix */
740 		reg -= 8;
741 	}
742 
743 	modrm |= 0xc0; /* Mod = 3 */
744 	modrm += reg;
745 
746 	bytes[i++] = 0xff; /* opcode */
747 	bytes[i++] = modrm;
748 
749 	return i;
750 }
751 
__emit_trampoline(void * addr,struct insn * insn,u8 * bytes,void * call_dest,void * jmp_dest)752 static int __emit_trampoline(void *addr, struct insn *insn, u8 *bytes,
753 			     void *call_dest, void *jmp_dest)
754 {
755 	u8 op = insn->opcode.bytes[0];
756 	int i = 0;
757 
758 	/*
759 	 * Clang does 'weird' Jcc __x86_indirect_thunk_r11 conditional
760 	 * tail-calls. Deal with them.
761 	 */
762 	if (is_jcc32(insn)) {
763 		bytes[i++] = op;
764 		op = insn->opcode.bytes[1];
765 		goto clang_jcc;
766 	}
767 
768 	if (insn->length == 6)
769 		bytes[i++] = 0x2e; /* CS-prefix */
770 
771 	switch (op) {
772 	case CALL_INSN_OPCODE:
773 		__text_gen_insn(bytes+i, op, addr+i,
774 				call_dest,
775 				CALL_INSN_SIZE);
776 		i += CALL_INSN_SIZE;
777 		break;
778 
779 	case JMP32_INSN_OPCODE:
780 clang_jcc:
781 		__text_gen_insn(bytes+i, op, addr+i,
782 				jmp_dest,
783 				JMP32_INSN_SIZE);
784 		i += JMP32_INSN_SIZE;
785 		break;
786 
787 	default:
788 		WARN(1, "%pS %px %*ph\n", addr, addr, 6, addr);
789 		return -1;
790 	}
791 
792 	WARN_ON_ONCE(i != insn->length);
793 
794 	return i;
795 }
796 
emit_call_track_retpoline(void * addr,struct insn * insn,int reg,u8 * bytes)797 static int emit_call_track_retpoline(void *addr, struct insn *insn, int reg, u8 *bytes)
798 {
799 	return __emit_trampoline(addr, insn, bytes,
800 				 __x86_indirect_call_thunk_array[reg],
801 				 __x86_indirect_jump_thunk_array[reg]);
802 }
803 
804 #ifdef CONFIG_MITIGATION_ITS
emit_its_trampoline(void * addr,struct insn * insn,int reg,u8 * bytes)805 static int emit_its_trampoline(void *addr, struct insn *insn, int reg, u8 *bytes)
806 {
807 	u8 *thunk = __x86_indirect_its_thunk_array[reg];
808 	u8 *tmp = its_allocate_thunk(reg);
809 
810 	if (tmp)
811 		thunk = tmp;
812 
813 	return __emit_trampoline(addr, insn, bytes, thunk, thunk);
814 }
815 
816 /* Check if an indirect branch is at ITS-unsafe address */
cpu_wants_indirect_its_thunk_at(unsigned long addr,int reg)817 static bool cpu_wants_indirect_its_thunk_at(unsigned long addr, int reg)
818 {
819 	if (!cpu_feature_enabled(X86_FEATURE_INDIRECT_THUNK_ITS))
820 		return false;
821 
822 	/* Indirect branch opcode is 2 or 3 bytes depending on reg */
823 	addr += 1 + reg / 8;
824 
825 	/* Lower-half of the cacheline? */
826 	return !(addr & 0x20);
827 }
828 #else /* CONFIG_MITIGATION_ITS */
829 
830 #ifdef CONFIG_FINEIBT
cpu_wants_indirect_its_thunk_at(unsigned long addr,int reg)831 static bool cpu_wants_indirect_its_thunk_at(unsigned long addr, int reg)
832 {
833 	return false;
834 }
835 #endif
836 
837 #endif /* CONFIG_MITIGATION_ITS */
838 
839 /*
840  * Rewrite the compiler generated retpoline thunk calls.
841  *
842  * For spectre_v2=off (!X86_FEATURE_RETPOLINE), rewrite them into immediate
843  * indirect instructions, avoiding the extra indirection.
844  *
845  * For example, convert:
846  *
847  *   CALL __x86_indirect_thunk_\reg
848  *
849  * into:
850  *
851  *   CALL *%\reg
852  *
853  * It also tries to inline spectre_v2=retpoline,lfence when size permits.
854  */
patch_retpoline(void * addr,struct insn * insn,u8 * bytes)855 static int patch_retpoline(void *addr, struct insn *insn, u8 *bytes)
856 {
857 	retpoline_thunk_t *target;
858 	int reg, ret, i = 0;
859 	u8 op, cc;
860 
861 	target = addr + insn->length + insn->immediate.value;
862 	reg = target - __x86_indirect_thunk_array;
863 
864 	if (WARN_ON_ONCE(reg & ~0xf))
865 		return -1;
866 
867 	/* If anyone ever does: CALL/JMP *%rsp, we're in deep trouble. */
868 	BUG_ON(reg == 4);
869 
870 	if (cpu_feature_enabled(X86_FEATURE_RETPOLINE) &&
871 	    !cpu_feature_enabled(X86_FEATURE_RETPOLINE_LFENCE)) {
872 		if (cpu_feature_enabled(X86_FEATURE_CALL_DEPTH))
873 			return emit_call_track_retpoline(addr, insn, reg, bytes);
874 
875 		return -1;
876 	}
877 
878 	op = insn->opcode.bytes[0];
879 
880 	/*
881 	 * Convert:
882 	 *
883 	 *   Jcc.d32 __x86_indirect_thunk_\reg
884 	 *
885 	 * into:
886 	 *
887 	 *   Jncc.d8 1f
888 	 *   [ LFENCE ]
889 	 *   JMP *%\reg
890 	 *   [ NOP ]
891 	 * 1:
892 	 */
893 	if (is_jcc32(insn)) {
894 		cc = insn->opcode.bytes[1] & 0xf;
895 		cc ^= 1; /* invert condition */
896 
897 		bytes[i++] = 0x70 + cc;        /* Jcc.d8 */
898 		bytes[i++] = insn->length - 2; /* sizeof(Jcc.d8) == 2 */
899 
900 		/* Continue as if: JMP.d32 __x86_indirect_thunk_\reg */
901 		op = JMP32_INSN_OPCODE;
902 	}
903 
904 	/*
905 	 * For RETPOLINE_LFENCE: prepend the indirect CALL/JMP with an LFENCE.
906 	 */
907 	if (cpu_feature_enabled(X86_FEATURE_RETPOLINE_LFENCE)) {
908 		bytes[i++] = 0x0f;
909 		bytes[i++] = 0xae;
910 		bytes[i++] = 0xe8; /* LFENCE */
911 	}
912 
913 #ifdef CONFIG_MITIGATION_ITS
914 	/*
915 	 * Check if the address of last byte of emitted-indirect is in
916 	 * lower-half of the cacheline. Such branches need ITS mitigation.
917 	 */
918 	if (cpu_wants_indirect_its_thunk_at((unsigned long)addr + i, reg))
919 		return emit_its_trampoline(addr, insn, reg, bytes);
920 #endif
921 
922 	ret = emit_indirect(op, reg, bytes + i);
923 	if (ret < 0)
924 		return ret;
925 	i += ret;
926 
927 	/*
928 	 * The compiler is supposed to EMIT an INT3 after every unconditional
929 	 * JMP instruction due to AMD BTC. However, if the compiler is too old
930 	 * or MITIGATION_SLS isn't enabled, we still need an INT3 after
931 	 * indirect JMPs even on Intel.
932 	 */
933 	if (op == JMP32_INSN_OPCODE && i < insn->length)
934 		bytes[i++] = INT3_INSN_OPCODE;
935 
936 	for (; i < insn->length;)
937 		bytes[i++] = BYTES_NOP1;
938 
939 	return i;
940 }
941 
942 /*
943  * Generated by 'objtool --retpoline'.
944  */
apply_retpolines(s32 * start,s32 * end)945 void __init_or_module noinline apply_retpolines(s32 *start, s32 *end)
946 {
947 	s32 *s;
948 
949 	for (s = start; s < end; s++) {
950 		void *addr = (void *)s + *s;
951 		struct insn insn;
952 		int len, ret;
953 		u8 bytes[16];
954 		u8 op1, op2;
955 		u8 *dest;
956 
957 		ret = insn_decode_kernel(&insn, addr);
958 		if (WARN_ON_ONCE(ret < 0))
959 			continue;
960 
961 		op1 = insn.opcode.bytes[0];
962 		op2 = insn.opcode.bytes[1];
963 
964 		switch (op1) {
965 		case 0x70 ... 0x7f:	/* Jcc.d8 */
966 			/* See cfi_paranoid. */
967 			WARN_ON_ONCE(cfi_mode != CFI_FINEIBT);
968 			continue;
969 
970 		case CALL_INSN_OPCODE:
971 		case JMP32_INSN_OPCODE:
972 			/* Check for cfi_paranoid + ITS */
973 			dest = addr + insn.length + insn.immediate.value;
974 			if (dest[-1] == 0xea && (dest[0] & 0xf0) == 0x70) {
975 				WARN_ON_ONCE(cfi_mode != CFI_FINEIBT);
976 				continue;
977 			}
978 			break;
979 
980 		case 0x0f: /* escape */
981 			if (op2 >= 0x80 && op2 <= 0x8f)
982 				break;
983 			fallthrough;
984 		default:
985 			WARN_ON_ONCE(1);
986 			continue;
987 		}
988 
989 		DPRINTK(RETPOLINE, "retpoline at: %pS (%px) len: %d to: %pS",
990 			addr, addr, insn.length,
991 			addr + insn.length + insn.immediate.value);
992 
993 		len = patch_retpoline(addr, &insn, bytes);
994 		if (len == insn.length) {
995 			optimize_nops(addr, bytes, len);
996 			DUMP_BYTES(RETPOLINE, ((u8*)addr),  len, "%px: orig: ", addr);
997 			DUMP_BYTES(RETPOLINE, ((u8*)bytes), len, "%px: repl: ", addr);
998 			text_poke_early(addr, bytes, len);
999 		}
1000 	}
1001 }
1002 
1003 #ifdef CONFIG_MITIGATION_RETHUNK
1004 
cpu_wants_rethunk(void)1005 bool cpu_wants_rethunk(void)
1006 {
1007 	return cpu_feature_enabled(X86_FEATURE_RETHUNK);
1008 }
1009 
cpu_wants_rethunk_at(void * addr)1010 bool cpu_wants_rethunk_at(void *addr)
1011 {
1012 	if (!cpu_feature_enabled(X86_FEATURE_RETHUNK))
1013 		return false;
1014 	if (x86_return_thunk != its_return_thunk)
1015 		return true;
1016 
1017 	return !((unsigned long)addr & 0x20);
1018 }
1019 
1020 /*
1021  * Rewrite the compiler generated return thunk tail-calls.
1022  *
1023  * For example, convert:
1024  *
1025  *   JMP __x86_return_thunk
1026  *
1027  * into:
1028  *
1029  *   RET
1030  */
patch_return(void * addr,struct insn * insn,u8 * bytes)1031 static int patch_return(void *addr, struct insn *insn, u8 *bytes)
1032 {
1033 	int i = 0;
1034 
1035 	/* Patch the custom return thunks... */
1036 	if (cpu_wants_rethunk_at(addr)) {
1037 		i = JMP32_INSN_SIZE;
1038 		__text_gen_insn(bytes, JMP32_INSN_OPCODE, addr, x86_return_thunk, i);
1039 	} else {
1040 		/* ... or patch them out if not needed. */
1041 		bytes[i++] = RET_INSN_OPCODE;
1042 	}
1043 
1044 	for (; i < insn->length;)
1045 		bytes[i++] = INT3_INSN_OPCODE;
1046 	return i;
1047 }
1048 
apply_returns(s32 * start,s32 * end)1049 void __init_or_module noinline apply_returns(s32 *start, s32 *end)
1050 {
1051 	s32 *s;
1052 
1053 	if (cpu_wants_rethunk())
1054 		static_call_force_reinit();
1055 
1056 	for (s = start; s < end; s++) {
1057 		void *dest = NULL, *addr = (void *)s + *s;
1058 		struct insn insn;
1059 		int len, ret;
1060 		u8 bytes[16];
1061 		u8 op;
1062 
1063 		ret = insn_decode_kernel(&insn, addr);
1064 		if (WARN_ON_ONCE(ret < 0))
1065 			continue;
1066 
1067 		op = insn.opcode.bytes[0];
1068 		if (op == JMP32_INSN_OPCODE)
1069 			dest = addr + insn.length + insn.immediate.value;
1070 
1071 		if (__static_call_fixup(addr, op, dest) ||
1072 		    WARN_ONCE(dest != &__x86_return_thunk,
1073 			      "missing return thunk: %pS-%pS: %*ph",
1074 			      addr, dest, 5, addr))
1075 			continue;
1076 
1077 		DPRINTK(RET, "return thunk at: %pS (%px) len: %d to: %pS",
1078 			addr, addr, insn.length,
1079 			addr + insn.length + insn.immediate.value);
1080 
1081 		len = patch_return(addr, &insn, bytes);
1082 		if (len == insn.length) {
1083 			DUMP_BYTES(RET, ((u8*)addr),  len, "%px: orig: ", addr);
1084 			DUMP_BYTES(RET, ((u8*)bytes), len, "%px: repl: ", addr);
1085 			text_poke_early(addr, bytes, len);
1086 		}
1087 	}
1088 }
1089 #else /* !CONFIG_MITIGATION_RETHUNK: */
apply_returns(s32 * start,s32 * end)1090 void __init_or_module noinline apply_returns(s32 *start, s32 *end) { }
1091 #endif /* !CONFIG_MITIGATION_RETHUNK */
1092 
1093 #else /* !CONFIG_MITIGATION_RETPOLINE || !CONFIG_OBJTOOL */
1094 
apply_retpolines(s32 * start,s32 * end)1095 void __init_or_module noinline apply_retpolines(s32 *start, s32 *end) { }
apply_returns(s32 * start,s32 * end)1096 void __init_or_module noinline apply_returns(s32 *start, s32 *end) { }
1097 
1098 #endif /* !CONFIG_MITIGATION_RETPOLINE || !CONFIG_OBJTOOL */
1099 
1100 #ifdef CONFIG_X86_KERNEL_IBT
1101 
is_endbr(u32 * val)1102 __noendbr bool is_endbr(u32 *val)
1103 {
1104 	u32 endbr;
1105 
1106 	__get_kernel_nofault(&endbr, val, u32, Efault);
1107 	return __is_endbr(endbr);
1108 
1109 Efault:
1110 	return false;
1111 }
1112 
1113 #ifdef CONFIG_FINEIBT
1114 
exact_endbr(u32 * val)1115 static __noendbr bool exact_endbr(u32 *val)
1116 {
1117 	u32 endbr;
1118 
1119 	__get_kernel_nofault(&endbr, val, u32, Efault);
1120 	return endbr == gen_endbr();
1121 
1122 Efault:
1123 	return false;
1124 }
1125 
1126 #endif
1127 
1128 static void poison_cfi(void *addr);
1129 
poison_endbr(void * addr)1130 static void __init_or_module poison_endbr(void *addr)
1131 {
1132 	u32 poison = gen_endbr_poison();
1133 
1134 	if (WARN_ON_ONCE(!is_endbr(addr)))
1135 		return;
1136 
1137 	DPRINTK(ENDBR, "ENDBR at: %pS (%px)", addr, addr);
1138 
1139 	/*
1140 	 * When we have IBT, the lack of ENDBR will trigger #CP
1141 	 */
1142 	DUMP_BYTES(ENDBR, ((u8*)addr), 4, "%px: orig: ", addr);
1143 	DUMP_BYTES(ENDBR, ((u8*)&poison), 4, "%px: repl: ", addr);
1144 	text_poke_early(addr, &poison, 4);
1145 }
1146 
1147 /*
1148  * Generated by: objtool --ibt
1149  *
1150  * Seal the functions for indirect calls by clobbering the ENDBR instructions
1151  * and the kCFI hash value.
1152  */
apply_seal_endbr(s32 * start,s32 * end)1153 void __init_or_module noinline apply_seal_endbr(s32 *start, s32 *end)
1154 {
1155 	s32 *s;
1156 
1157 	for (s = start; s < end; s++) {
1158 		void *addr = (void *)s + *s;
1159 
1160 		poison_endbr(addr);
1161 		if (IS_ENABLED(CONFIG_FINEIBT))
1162 			poison_cfi(addr - 16);
1163 	}
1164 }
1165 
1166 #else /* !CONFIG_X86_KERNEL_IBT: */
1167 
apply_seal_endbr(s32 * start,s32 * end)1168 void __init_or_module apply_seal_endbr(s32 *start, s32 *end) { }
1169 
1170 #endif /* !CONFIG_X86_KERNEL_IBT */
1171 
1172 #ifdef CONFIG_CFI_AUTO_DEFAULT
1173 # define __CFI_DEFAULT CFI_AUTO
1174 #elif defined(CONFIG_CFI_CLANG)
1175 # define __CFI_DEFAULT CFI_KCFI
1176 #else
1177 # define __CFI_DEFAULT CFI_OFF
1178 #endif
1179 
1180 enum cfi_mode cfi_mode __ro_after_init = __CFI_DEFAULT;
1181 
1182 #ifdef CONFIG_FINEIBT_BHI
1183 bool cfi_bhi __ro_after_init = false;
1184 #endif
1185 
1186 #ifdef CONFIG_CFI_CLANG
1187 struct bpf_insn;
1188 
1189 /* Must match bpf_func_t / DEFINE_BPF_PROG_RUN() */
1190 extern unsigned int __bpf_prog_runX(const void *ctx,
1191 				    const struct bpf_insn *insn);
1192 
1193 KCFI_REFERENCE(__bpf_prog_runX);
1194 
1195 /* u32 __ro_after_init cfi_bpf_hash = __kcfi_typeid___bpf_prog_runX; */
1196 asm (
1197 "	.pushsection	.data..ro_after_init,\"aw\",@progbits	\n"
1198 "	.type	cfi_bpf_hash,@object				\n"
1199 "	.globl	cfi_bpf_hash					\n"
1200 "	.p2align	2, 0x0					\n"
1201 "cfi_bpf_hash:							\n"
1202 "	.long	__kcfi_typeid___bpf_prog_runX			\n"
1203 "	.size	cfi_bpf_hash, 4					\n"
1204 "	.popsection						\n"
1205 );
1206 
1207 /* Must match bpf_callback_t */
1208 extern u64 __bpf_callback_fn(u64, u64, u64, u64, u64);
1209 
1210 KCFI_REFERENCE(__bpf_callback_fn);
1211 
1212 /* u32 __ro_after_init cfi_bpf_subprog_hash = __kcfi_typeid___bpf_callback_fn; */
1213 asm (
1214 "	.pushsection	.data..ro_after_init,\"aw\",@progbits	\n"
1215 "	.type	cfi_bpf_subprog_hash,@object			\n"
1216 "	.globl	cfi_bpf_subprog_hash				\n"
1217 "	.p2align	2, 0x0					\n"
1218 "cfi_bpf_subprog_hash:						\n"
1219 "	.long	__kcfi_typeid___bpf_callback_fn			\n"
1220 "	.size	cfi_bpf_subprog_hash, 4				\n"
1221 "	.popsection						\n"
1222 );
1223 
cfi_get_func_hash(void * func)1224 u32 cfi_get_func_hash(void *func)
1225 {
1226 	u32 hash;
1227 
1228 	func -= cfi_get_offset();
1229 	switch (cfi_mode) {
1230 	case CFI_FINEIBT:
1231 		func += 7;
1232 		break;
1233 	case CFI_KCFI:
1234 		func += 1;
1235 		break;
1236 	default:
1237 		return 0;
1238 	}
1239 
1240 	if (get_kernel_nofault(hash, func))
1241 		return 0;
1242 
1243 	return hash;
1244 }
1245 
cfi_get_func_arity(void * func)1246 int cfi_get_func_arity(void *func)
1247 {
1248 	bhi_thunk *target;
1249 	s32 disp;
1250 
1251 	if (cfi_mode != CFI_FINEIBT && !cfi_bhi)
1252 		return 0;
1253 
1254 	if (get_kernel_nofault(disp, func - 4))
1255 		return 0;
1256 
1257 	target = func + disp;
1258 	return target - __bhi_args;
1259 }
1260 #endif
1261 
1262 #ifdef CONFIG_FINEIBT
1263 
1264 static bool cfi_rand __ro_after_init = true;
1265 static u32  cfi_seed __ro_after_init;
1266 
1267 /*
1268  * Re-hash the CFI hash with a boot-time seed while making sure the result is
1269  * not a valid ENDBR instruction.
1270  */
cfi_rehash(u32 hash)1271 static u32 cfi_rehash(u32 hash)
1272 {
1273 	hash ^= cfi_seed;
1274 	while (unlikely(__is_endbr(hash) || __is_endbr(-hash))) {
1275 		bool lsb = hash & 1;
1276 		hash >>= 1;
1277 		if (lsb)
1278 			hash ^= 0x80200003;
1279 	}
1280 	return hash;
1281 }
1282 
cfi_parse_cmdline(char * str)1283 static __init int cfi_parse_cmdline(char *str)
1284 {
1285 	if (!str)
1286 		return -EINVAL;
1287 
1288 	while (str) {
1289 		char *next = strchr(str, ',');
1290 		if (next) {
1291 			*next = 0;
1292 			next++;
1293 		}
1294 
1295 		if (!strcmp(str, "auto")) {
1296 			cfi_mode = CFI_AUTO;
1297 		} else if (!strcmp(str, "off")) {
1298 			cfi_mode = CFI_OFF;
1299 			cfi_rand = false;
1300 		} else if (!strcmp(str, "kcfi")) {
1301 			cfi_mode = CFI_KCFI;
1302 		} else if (!strcmp(str, "fineibt")) {
1303 			cfi_mode = CFI_FINEIBT;
1304 		} else if (!strcmp(str, "norand")) {
1305 			cfi_rand = false;
1306 		} else if (!strcmp(str, "warn")) {
1307 			pr_alert("CFI mismatch non-fatal!\n");
1308 			cfi_warn = true;
1309 		} else if (!strcmp(str, "paranoid")) {
1310 			if (cfi_mode == CFI_FINEIBT) {
1311 				cfi_paranoid = true;
1312 			} else {
1313 				pr_err("Ignoring paranoid; depends on fineibt.\n");
1314 			}
1315 		} else if (!strcmp(str, "bhi")) {
1316 #ifdef CONFIG_FINEIBT_BHI
1317 			if (cfi_mode == CFI_FINEIBT) {
1318 				cfi_bhi = true;
1319 			} else {
1320 				pr_err("Ignoring bhi; depends on fineibt.\n");
1321 			}
1322 #else
1323 			pr_err("Ignoring bhi; depends on FINEIBT_BHI=y.\n");
1324 #endif
1325 		} else {
1326 			pr_err("Ignoring unknown cfi option (%s).", str);
1327 		}
1328 
1329 		str = next;
1330 	}
1331 
1332 	return 0;
1333 }
1334 early_param("cfi", cfi_parse_cmdline);
1335 
1336 /*
1337  * kCFI						FineIBT
1338  *
1339  * __cfi_\func:					__cfi_\func:
1340  *	movl   $0x12345678,%eax		// 5	     endbr64			// 4
1341  *	nop					     subl   $0x12345678,%r10d   // 7
1342  *	nop					     jne    __cfi_\func+6	// 2
1343  *	nop					     nop3			// 3
1344  *	nop
1345  *	nop
1346  *	nop
1347  *	nop
1348  *	nop
1349  *	nop
1350  *	nop
1351  *	nop
1352  *
1353  *
1354  * caller:					caller:
1355  *	movl	$(-0x12345678),%r10d	 // 6	     movl   $0x12345678,%r10d	// 6
1356  *	addl	$-15(%r11),%r10d	 // 4	     lea    -0x10(%r11),%r11	// 4
1357  *	je	1f			 // 2	     nop4			// 4
1358  *	ud2				 // 2
1359  * 1:	cs call	__x86_indirect_thunk_r11 // 6	     call   *%r11; nop3;	// 6
1360  *
1361  */
1362 
1363 /*
1364  * <fineibt_preamble_start>:
1365  *  0:   f3 0f 1e fa             endbr64
1366  *  4:   41 81 <ea> 78 56 34 12  sub    $0x12345678, %r10d
1367  *  b:   75 f9                   jne    6 <fineibt_preamble_start+0x6>
1368  *  d:   0f 1f 00                nopl   (%rax)
1369  *
1370  * Note that the JNE target is the 0xEA byte inside the SUB, this decodes as
1371  * (bad) on x86_64 and raises #UD.
1372  */
1373 asm(	".pushsection .rodata				\n"
1374 	"fineibt_preamble_start:			\n"
1375 	"	endbr64					\n"
1376 	"	subl	$0x12345678, %r10d		\n"
1377 	"fineibt_preamble_bhi:				\n"
1378 	"	jne	fineibt_preamble_start+6	\n"
1379 	ASM_NOP3
1380 	"fineibt_preamble_end:				\n"
1381 	".popsection\n"
1382 );
1383 
1384 extern u8 fineibt_preamble_start[];
1385 extern u8 fineibt_preamble_bhi[];
1386 extern u8 fineibt_preamble_end[];
1387 
1388 #define fineibt_preamble_size (fineibt_preamble_end - fineibt_preamble_start)
1389 #define fineibt_preamble_bhi  (fineibt_preamble_bhi - fineibt_preamble_start)
1390 #define fineibt_preamble_ud   6
1391 #define fineibt_preamble_hash 7
1392 
1393 /*
1394  * <fineibt_caller_start>:
1395  *  0:   41 ba 78 56 34 12       mov    $0x12345678, %r10d
1396  *  6:   4d 8d 5b f0             lea    -0x10(%r11), %r11
1397  *  a:   0f 1f 40 00             nopl   0x0(%rax)
1398  */
1399 asm(	".pushsection .rodata			\n"
1400 	"fineibt_caller_start:			\n"
1401 	"	movl	$0x12345678, %r10d	\n"
1402 	"	lea	-0x10(%r11), %r11	\n"
1403 	ASM_NOP4
1404 	"fineibt_caller_end:			\n"
1405 	".popsection				\n"
1406 );
1407 
1408 extern u8 fineibt_caller_start[];
1409 extern u8 fineibt_caller_end[];
1410 
1411 #define fineibt_caller_size (fineibt_caller_end - fineibt_caller_start)
1412 #define fineibt_caller_hash 2
1413 
1414 #define fineibt_caller_jmp (fineibt_caller_size - 2)
1415 
1416 /*
1417  * Since FineIBT does hash validation on the callee side it is prone to
1418  * circumvention attacks where a 'naked' ENDBR instruction exists that
1419  * is not part of the fineibt_preamble sequence.
1420  *
1421  * Notably the x86 entry points must be ENDBR and equally cannot be
1422  * fineibt_preamble.
1423  *
1424  * The fineibt_paranoid caller sequence adds additional caller side
1425  * hash validation. This stops such circumvention attacks dead, but at the cost
1426  * of adding a load.
1427  *
1428  * <fineibt_paranoid_start>:
1429  *  0:   41 ba 78 56 34 12       mov    $0x12345678, %r10d
1430  *  6:   45 3b 53 f7             cmp    -0x9(%r11), %r10d
1431  *  a:   4d 8d 5b <f0>           lea    -0x10(%r11), %r11
1432  *  e:   75 fd                   jne    d <fineibt_paranoid_start+0xd>
1433  * 10:   41 ff d3                call   *%r11
1434  * 13:   90                      nop
1435  *
1436  * Notably LEA does not modify flags and can be reordered with the CMP,
1437  * avoiding a dependency. Again, using a non-taken (backwards) branch
1438  * for the failure case, abusing LEA's immediate 0xf0 as LOCK prefix for the
1439  * Jcc.d8, causing #UD.
1440  */
1441 asm(	".pushsection .rodata				\n"
1442 	"fineibt_paranoid_start:			\n"
1443 	"	movl	$0x12345678, %r10d		\n"
1444 	"	cmpl	-9(%r11), %r10d			\n"
1445 	"	lea	-0x10(%r11), %r11		\n"
1446 	"	jne	fineibt_paranoid_start+0xd	\n"
1447 	"fineibt_paranoid_ind:				\n"
1448 	"	call	*%r11				\n"
1449 	"	nop					\n"
1450 	"fineibt_paranoid_end:				\n"
1451 	".popsection					\n"
1452 );
1453 
1454 extern u8 fineibt_paranoid_start[];
1455 extern u8 fineibt_paranoid_ind[];
1456 extern u8 fineibt_paranoid_end[];
1457 
1458 #define fineibt_paranoid_size (fineibt_paranoid_end - fineibt_paranoid_start)
1459 #define fineibt_paranoid_ind  (fineibt_paranoid_ind - fineibt_paranoid_start)
1460 #define fineibt_paranoid_ud   0xd
1461 
decode_preamble_hash(void * addr,int * reg)1462 static u32 decode_preamble_hash(void *addr, int *reg)
1463 {
1464 	u8 *p = addr;
1465 
1466 	/* b8+reg 78 56 34 12          movl    $0x12345678,\reg */
1467 	if (p[0] >= 0xb8 && p[0] < 0xc0) {
1468 		if (reg)
1469 			*reg = p[0] - 0xb8;
1470 		return *(u32 *)(addr + 1);
1471 	}
1472 
1473 	return 0; /* invalid hash value */
1474 }
1475 
decode_caller_hash(void * addr)1476 static u32 decode_caller_hash(void *addr)
1477 {
1478 	u8 *p = addr;
1479 
1480 	/* 41 ba 88 a9 cb ed       mov    $(-0x12345678),%r10d */
1481 	if (p[0] == 0x41 && p[1] == 0xba)
1482 		return -*(u32 *)(addr + 2);
1483 
1484 	/* e8 0c 88 a9 cb ed	   jmp.d8  +12 */
1485 	if (p[0] == JMP8_INSN_OPCODE && p[1] == fineibt_caller_jmp)
1486 		return -*(u32 *)(addr + 2);
1487 
1488 	return 0; /* invalid hash value */
1489 }
1490 
1491 /* .retpoline_sites */
cfi_disable_callers(s32 * start,s32 * end)1492 static int cfi_disable_callers(s32 *start, s32 *end)
1493 {
1494 	/*
1495 	 * Disable kCFI by patching in a JMP.d8, this leaves the hash immediate
1496 	 * in tact for later usage. Also see decode_caller_hash() and
1497 	 * cfi_rewrite_callers().
1498 	 */
1499 	const u8 jmp[] = { JMP8_INSN_OPCODE, fineibt_caller_jmp };
1500 	s32 *s;
1501 
1502 	for (s = start; s < end; s++) {
1503 		void *addr = (void *)s + *s;
1504 		u32 hash;
1505 
1506 		addr -= fineibt_caller_size;
1507 		hash = decode_caller_hash(addr);
1508 		if (!hash) /* nocfi callers */
1509 			continue;
1510 
1511 		text_poke_early(addr, jmp, 2);
1512 	}
1513 
1514 	return 0;
1515 }
1516 
cfi_enable_callers(s32 * start,s32 * end)1517 static int cfi_enable_callers(s32 *start, s32 *end)
1518 {
1519 	/*
1520 	 * Re-enable kCFI, undo what cfi_disable_callers() did.
1521 	 */
1522 	const u8 mov[] = { 0x41, 0xba };
1523 	s32 *s;
1524 
1525 	for (s = start; s < end; s++) {
1526 		void *addr = (void *)s + *s;
1527 		u32 hash;
1528 
1529 		addr -= fineibt_caller_size;
1530 		hash = decode_caller_hash(addr);
1531 		if (!hash) /* nocfi callers */
1532 			continue;
1533 
1534 		text_poke_early(addr, mov, 2);
1535 	}
1536 
1537 	return 0;
1538 }
1539 
1540 /* .cfi_sites */
cfi_rand_preamble(s32 * start,s32 * end)1541 static int cfi_rand_preamble(s32 *start, s32 *end)
1542 {
1543 	s32 *s;
1544 
1545 	for (s = start; s < end; s++) {
1546 		void *addr = (void *)s + *s;
1547 		u32 hash;
1548 
1549 		hash = decode_preamble_hash(addr, NULL);
1550 		if (WARN(!hash, "no CFI hash found at: %pS %px %*ph\n",
1551 			 addr, addr, 5, addr))
1552 			return -EINVAL;
1553 
1554 		hash = cfi_rehash(hash);
1555 		text_poke_early(addr + 1, &hash, 4);
1556 	}
1557 
1558 	return 0;
1559 }
1560 
cfi_fineibt_bhi_preamble(void * addr,int arity)1561 static void cfi_fineibt_bhi_preamble(void *addr, int arity)
1562 {
1563 	if (!arity)
1564 		return;
1565 
1566 	if (!cfi_warn && arity == 1) {
1567 		/*
1568 		 * Crazy scheme to allow arity-1 inline:
1569 		 *
1570 		 * __cfi_foo:
1571 		 *  0: f3 0f 1e fa             endbr64
1572 		 *  4: 41 81 <ea> 78 56 34 12  sub     0x12345678, %r10d
1573 		 *  b: 49 0f 45 fa             cmovne  %r10, %rdi
1574 		 *  f: 75 f5                   jne     __cfi_foo+6
1575 		 * 11: 0f 1f 00                nopl    (%rax)
1576 		 *
1577 		 * Code that direct calls to foo()+0, decodes the tail end as:
1578 		 *
1579 		 * foo:
1580 		 *  0: f5                      cmc
1581 		 *  1: 0f 1f 00                nopl    (%rax)
1582 		 *
1583 		 * which clobbers CF, but does not affect anything ABI
1584 		 * wise.
1585 		 *
1586 		 * Notably, this scheme is incompatible with permissive CFI
1587 		 * because the CMOVcc is unconditional and RDI will have been
1588 		 * clobbered.
1589 		 */
1590 		const u8 magic[9] = {
1591 			0x49, 0x0f, 0x45, 0xfa,
1592 			0x75, 0xf5,
1593 			BYTES_NOP3,
1594 		};
1595 
1596 		text_poke_early(addr + fineibt_preamble_bhi, magic, 9);
1597 
1598 		return;
1599 	}
1600 
1601 	text_poke_early(addr + fineibt_preamble_bhi,
1602 			text_gen_insn(CALL_INSN_OPCODE,
1603 				      addr + fineibt_preamble_bhi,
1604 				      __bhi_args[arity]),
1605 			CALL_INSN_SIZE);
1606 }
1607 
cfi_rewrite_preamble(s32 * start,s32 * end)1608 static int cfi_rewrite_preamble(s32 *start, s32 *end)
1609 {
1610 	s32 *s;
1611 
1612 	for (s = start; s < end; s++) {
1613 		void *addr = (void *)s + *s;
1614 		int arity;
1615 		u32 hash;
1616 
1617 		/*
1618 		 * When the function doesn't start with ENDBR the compiler will
1619 		 * have determined there are no indirect calls to it and we
1620 		 * don't need no CFI either.
1621 		 */
1622 		if (!is_endbr(addr + 16))
1623 			continue;
1624 
1625 		hash = decode_preamble_hash(addr, &arity);
1626 		if (WARN(!hash, "no CFI hash found at: %pS %px %*ph\n",
1627 			 addr, addr, 5, addr))
1628 			return -EINVAL;
1629 
1630 		text_poke_early(addr, fineibt_preamble_start, fineibt_preamble_size);
1631 		WARN_ON(*(u32 *)(addr + fineibt_preamble_hash) != 0x12345678);
1632 		text_poke_early(addr + fineibt_preamble_hash, &hash, 4);
1633 
1634 		WARN_ONCE(!IS_ENABLED(CONFIG_FINEIBT_BHI) && arity,
1635 			  "kCFI preamble has wrong register at: %pS %*ph\n",
1636 			  addr, 5, addr);
1637 
1638 		if (cfi_bhi)
1639 			cfi_fineibt_bhi_preamble(addr, arity);
1640 	}
1641 
1642 	return 0;
1643 }
1644 
cfi_rewrite_endbr(s32 * start,s32 * end)1645 static void cfi_rewrite_endbr(s32 *start, s32 *end)
1646 {
1647 	s32 *s;
1648 
1649 	for (s = start; s < end; s++) {
1650 		void *addr = (void *)s + *s;
1651 
1652 		if (!exact_endbr(addr + 16))
1653 			continue;
1654 
1655 		poison_endbr(addr + 16);
1656 	}
1657 }
1658 
1659 /* .retpoline_sites */
cfi_rand_callers(s32 * start,s32 * end)1660 static int cfi_rand_callers(s32 *start, s32 *end)
1661 {
1662 	s32 *s;
1663 
1664 	for (s = start; s < end; s++) {
1665 		void *addr = (void *)s + *s;
1666 		u32 hash;
1667 
1668 		addr -= fineibt_caller_size;
1669 		hash = decode_caller_hash(addr);
1670 		if (hash) {
1671 			hash = -cfi_rehash(hash);
1672 			text_poke_early(addr + 2, &hash, 4);
1673 		}
1674 	}
1675 
1676 	return 0;
1677 }
1678 
emit_paranoid_trampoline(void * addr,struct insn * insn,int reg,u8 * bytes)1679 static int emit_paranoid_trampoline(void *addr, struct insn *insn, int reg, u8 *bytes)
1680 {
1681 	u8 *thunk = (void *)__x86_indirect_its_thunk_array[reg] - 2;
1682 
1683 #ifdef CONFIG_MITIGATION_ITS
1684 	u8 *tmp = its_allocate_thunk(reg);
1685 	if (tmp)
1686 		thunk = tmp;
1687 #endif
1688 
1689 	return __emit_trampoline(addr, insn, bytes, thunk, thunk);
1690 }
1691 
cfi_rewrite_callers(s32 * start,s32 * end)1692 static int cfi_rewrite_callers(s32 *start, s32 *end)
1693 {
1694 	s32 *s;
1695 
1696 	BUG_ON(fineibt_paranoid_size != 20);
1697 
1698 	for (s = start; s < end; s++) {
1699 		void *addr = (void *)s + *s;
1700 		struct insn insn;
1701 		u8 bytes[20];
1702 		u32 hash;
1703 		int ret;
1704 		u8 op;
1705 
1706 		addr -= fineibt_caller_size;
1707 		hash = decode_caller_hash(addr);
1708 		if (!hash)
1709 			continue;
1710 
1711 		if (!cfi_paranoid) {
1712 			text_poke_early(addr, fineibt_caller_start, fineibt_caller_size);
1713 			WARN_ON(*(u32 *)(addr + fineibt_caller_hash) != 0x12345678);
1714 			text_poke_early(addr + fineibt_caller_hash, &hash, 4);
1715 			/* rely on apply_retpolines() */
1716 			continue;
1717 		}
1718 
1719 		/* cfi_paranoid */
1720 		ret = insn_decode_kernel(&insn, addr + fineibt_caller_size);
1721 		if (WARN_ON_ONCE(ret < 0))
1722 			continue;
1723 
1724 		op = insn.opcode.bytes[0];
1725 		if (op != CALL_INSN_OPCODE && op != JMP32_INSN_OPCODE) {
1726 			WARN_ON_ONCE(1);
1727 			continue;
1728 		}
1729 
1730 		memcpy(bytes, fineibt_paranoid_start, fineibt_paranoid_size);
1731 		memcpy(bytes + fineibt_caller_hash, &hash, 4);
1732 
1733 		if (cpu_wants_indirect_its_thunk_at((unsigned long)addr + fineibt_paranoid_ind, 11)) {
1734 			emit_paranoid_trampoline(addr + fineibt_caller_size,
1735 						 &insn, 11, bytes + fineibt_caller_size);
1736 		} else {
1737 			ret = emit_indirect(op, 11, bytes + fineibt_paranoid_ind);
1738 			if (WARN_ON_ONCE(ret != 3))
1739 				continue;
1740 		}
1741 
1742 		text_poke_early(addr, bytes, fineibt_paranoid_size);
1743 	}
1744 
1745 	return 0;
1746 }
1747 
__apply_fineibt(s32 * start_retpoline,s32 * end_retpoline,s32 * start_cfi,s32 * end_cfi,bool builtin)1748 static void __apply_fineibt(s32 *start_retpoline, s32 *end_retpoline,
1749 			    s32 *start_cfi, s32 *end_cfi, bool builtin)
1750 {
1751 	int ret;
1752 
1753 	if (WARN_ONCE(fineibt_preamble_size != 16,
1754 		      "FineIBT preamble wrong size: %ld", fineibt_preamble_size))
1755 		return;
1756 
1757 	if (cfi_mode == CFI_AUTO) {
1758 		cfi_mode = CFI_KCFI;
1759 		if (HAS_KERNEL_IBT && cpu_feature_enabled(X86_FEATURE_IBT)) {
1760 			/*
1761 			 * FRED has much saner context on exception entry and
1762 			 * is less easy to take advantage of.
1763 			 */
1764 			if (!cpu_feature_enabled(X86_FEATURE_FRED))
1765 				cfi_paranoid = true;
1766 			cfi_mode = CFI_FINEIBT;
1767 		}
1768 	}
1769 
1770 	/*
1771 	 * Rewrite the callers to not use the __cfi_ stubs, such that we might
1772 	 * rewrite them. This disables all CFI. If this succeeds but any of the
1773 	 * later stages fails, we're without CFI.
1774 	 */
1775 	ret = cfi_disable_callers(start_retpoline, end_retpoline);
1776 	if (ret)
1777 		goto err;
1778 
1779 	if (cfi_rand) {
1780 		if (builtin) {
1781 			cfi_seed = get_random_u32();
1782 			cfi_bpf_hash = cfi_rehash(cfi_bpf_hash);
1783 			cfi_bpf_subprog_hash = cfi_rehash(cfi_bpf_subprog_hash);
1784 		}
1785 
1786 		ret = cfi_rand_preamble(start_cfi, end_cfi);
1787 		if (ret)
1788 			goto err;
1789 
1790 		ret = cfi_rand_callers(start_retpoline, end_retpoline);
1791 		if (ret)
1792 			goto err;
1793 	}
1794 
1795 	switch (cfi_mode) {
1796 	case CFI_OFF:
1797 		if (builtin)
1798 			pr_info("Disabling CFI\n");
1799 		return;
1800 
1801 	case CFI_KCFI:
1802 		ret = cfi_enable_callers(start_retpoline, end_retpoline);
1803 		if (ret)
1804 			goto err;
1805 
1806 		if (builtin)
1807 			pr_info("Using kCFI\n");
1808 		return;
1809 
1810 	case CFI_FINEIBT:
1811 		/* place the FineIBT preamble at func()-16 */
1812 		ret = cfi_rewrite_preamble(start_cfi, end_cfi);
1813 		if (ret)
1814 			goto err;
1815 
1816 		/* rewrite the callers to target func()-16 */
1817 		ret = cfi_rewrite_callers(start_retpoline, end_retpoline);
1818 		if (ret)
1819 			goto err;
1820 
1821 		/* now that nobody targets func()+0, remove ENDBR there */
1822 		cfi_rewrite_endbr(start_cfi, end_cfi);
1823 
1824 		if (builtin) {
1825 			pr_info("Using %sFineIBT%s CFI\n",
1826 				cfi_paranoid ? "paranoid " : "",
1827 				cfi_bhi ? "+BHI" : "");
1828 		}
1829 		return;
1830 
1831 	default:
1832 		break;
1833 	}
1834 
1835 err:
1836 	pr_err("Something went horribly wrong trying to rewrite the CFI implementation.\n");
1837 }
1838 
poison_hash(void * addr)1839 static inline void poison_hash(void *addr)
1840 {
1841 	*(u32 *)addr = 0;
1842 }
1843 
poison_cfi(void * addr)1844 static void poison_cfi(void *addr)
1845 {
1846 	/*
1847 	 * Compilers manage to be inconsistent with ENDBR vs __cfi prefixes,
1848 	 * some (static) functions for which they can determine the address
1849 	 * is never taken do not get a __cfi prefix, but *DO* get an ENDBR.
1850 	 *
1851 	 * As such, these functions will get sealed, but we need to be careful
1852 	 * to not unconditionally scribble the previous function.
1853 	 */
1854 	switch (cfi_mode) {
1855 	case CFI_FINEIBT:
1856 		/*
1857 		 * FineIBT prefix should start with an ENDBR.
1858 		 */
1859 		if (!is_endbr(addr))
1860 			break;
1861 
1862 		/*
1863 		 * __cfi_\func:
1864 		 *	osp nopl (%rax)
1865 		 *	subl	$0, %r10d
1866 		 *	jz	1f
1867 		 *	ud2
1868 		 * 1:	nop
1869 		 */
1870 		poison_endbr(addr);
1871 		poison_hash(addr + fineibt_preamble_hash);
1872 		break;
1873 
1874 	case CFI_KCFI:
1875 		/*
1876 		 * kCFI prefix should start with a valid hash.
1877 		 */
1878 		if (!decode_preamble_hash(addr, NULL))
1879 			break;
1880 
1881 		/*
1882 		 * __cfi_\func:
1883 		 *	movl	$0, %eax
1884 		 *	.skip	11, 0x90
1885 		 */
1886 		poison_hash(addr + 1);
1887 		break;
1888 
1889 	default:
1890 		break;
1891 	}
1892 }
1893 
1894 /*
1895  * When regs->ip points to a 0xEA byte in the FineIBT preamble,
1896  * return true and fill out target and type.
1897  *
1898  * We check the preamble by checking for the ENDBR instruction relative to the
1899  * 0xEA instruction.
1900  */
decode_fineibt_preamble(struct pt_regs * regs,unsigned long * target,u32 * type)1901 static bool decode_fineibt_preamble(struct pt_regs *regs, unsigned long *target, u32 *type)
1902 {
1903 	unsigned long addr = regs->ip - fineibt_preamble_ud;
1904 	u32 hash;
1905 
1906 	if (!exact_endbr((void *)addr))
1907 		return false;
1908 
1909 	*target = addr + fineibt_preamble_size;
1910 
1911 	__get_kernel_nofault(&hash, addr + fineibt_preamble_hash, u32, Efault);
1912 	*type = (u32)regs->r10 + hash;
1913 
1914 	/*
1915 	 * Since regs->ip points to the middle of an instruction; it cannot
1916 	 * continue with the normal fixup.
1917 	 */
1918 	regs->ip = *target;
1919 
1920 	return true;
1921 
1922 Efault:
1923 	return false;
1924 }
1925 
1926 /*
1927  * regs->ip points to one of the UD2 in __bhi_args[].
1928  */
decode_fineibt_bhi(struct pt_regs * regs,unsigned long * target,u32 * type)1929 static bool decode_fineibt_bhi(struct pt_regs *regs, unsigned long *target, u32 *type)
1930 {
1931 	unsigned long addr;
1932 	u32 hash;
1933 
1934 	if (!cfi_bhi)
1935 		return false;
1936 
1937 	if (regs->ip < (unsigned long)__bhi_args ||
1938 	    regs->ip >= (unsigned long)__bhi_args_end)
1939 		return false;
1940 
1941 	/*
1942 	 * Fetch the return address from the stack, this points to the
1943 	 * FineIBT preamble. Since the CALL instruction is in the 5 last
1944 	 * bytes of the preamble, the return address is in fact the target
1945 	 * address.
1946 	 */
1947 	__get_kernel_nofault(&addr, regs->sp, unsigned long, Efault);
1948 	*target = addr;
1949 
1950 	addr -= fineibt_preamble_size;
1951 	if (!exact_endbr((void *)addr))
1952 		return false;
1953 
1954 	__get_kernel_nofault(&hash, addr + fineibt_preamble_hash, u32, Efault);
1955 	*type = (u32)regs->r10 + hash;
1956 
1957 	/*
1958 	 * The UD2 sites are constructed with a RET immediately following,
1959 	 * as such the non-fatal case can use the regular fixup.
1960 	 */
1961 	return true;
1962 
1963 Efault:
1964 	return false;
1965 }
1966 
is_paranoid_thunk(unsigned long addr)1967 static bool is_paranoid_thunk(unsigned long addr)
1968 {
1969 	u32 thunk;
1970 
1971 	__get_kernel_nofault(&thunk, (u32 *)addr, u32, Efault);
1972 	return (thunk & 0x00FFFFFF) == 0xfd75ea;
1973 
1974 Efault:
1975 	return false;
1976 }
1977 
1978 /*
1979  * regs->ip points to a LOCK Jcc.d8 instruction from the fineibt_paranoid_start[]
1980  * sequence, or to an invalid instruction (0xea) + Jcc.d8 for cfi_paranoid + ITS
1981  * thunk.
1982  */
decode_fineibt_paranoid(struct pt_regs * regs,unsigned long * target,u32 * type)1983 static bool decode_fineibt_paranoid(struct pt_regs *regs, unsigned long *target, u32 *type)
1984 {
1985 	unsigned long addr = regs->ip - fineibt_paranoid_ud;
1986 
1987 	if (!cfi_paranoid)
1988 		return false;
1989 
1990 	if (is_cfi_trap(addr + fineibt_caller_size - LEN_UD2)) {
1991 		*target = regs->r11 + fineibt_preamble_size;
1992 		*type = regs->r10;
1993 
1994 		/*
1995 		 * Since the trapping instruction is the exact, but LOCK prefixed,
1996 		 * Jcc.d8 that got us here, the normal fixup will work.
1997 		 */
1998 		return true;
1999 	}
2000 
2001 	/*
2002 	 * The cfi_paranoid + ITS thunk combination results in:
2003 	 *
2004 	 *  0:   41 ba 78 56 34 12       mov    $0x12345678, %r10d
2005 	 *  6:   45 3b 53 f7             cmp    -0x9(%r11), %r10d
2006 	 *  a:   4d 8d 5b f0             lea    -0x10(%r11), %r11
2007 	 *  e:   2e e8 XX XX XX XX	 cs call __x86_indirect_paranoid_thunk_r11
2008 	 *
2009 	 * Where the paranoid_thunk looks like:
2010 	 *
2011 	 *  1d:  <ea>                    (bad)
2012 	 *  __x86_indirect_paranoid_thunk_r11:
2013 	 *  1e:  75 fd                   jne 1d
2014 	 *  __x86_indirect_its_thunk_r11:
2015 	 *  20:  41 ff eb                jmp *%r11
2016 	 *  23:  cc                      int3
2017 	 *
2018 	 */
2019 	if (is_paranoid_thunk(regs->ip)) {
2020 		*target = regs->r11 + fineibt_preamble_size;
2021 		*type = regs->r10;
2022 
2023 		regs->ip = *target;
2024 		return true;
2025 	}
2026 
2027 	return false;
2028 }
2029 
decode_fineibt_insn(struct pt_regs * regs,unsigned long * target,u32 * type)2030 bool decode_fineibt_insn(struct pt_regs *regs, unsigned long *target, u32 *type)
2031 {
2032 	if (decode_fineibt_paranoid(regs, target, type))
2033 		return true;
2034 
2035 	if (decode_fineibt_bhi(regs, target, type))
2036 		return true;
2037 
2038 	return decode_fineibt_preamble(regs, target, type);
2039 }
2040 
2041 #else /* !CONFIG_FINEIBT: */
2042 
__apply_fineibt(s32 * start_retpoline,s32 * end_retpoline,s32 * start_cfi,s32 * end_cfi,bool builtin)2043 static void __apply_fineibt(s32 *start_retpoline, s32 *end_retpoline,
2044 			    s32 *start_cfi, s32 *end_cfi, bool builtin)
2045 {
2046 }
2047 
2048 #ifdef CONFIG_X86_KERNEL_IBT
poison_cfi(void * addr)2049 static void poison_cfi(void *addr) { }
2050 #endif
2051 
2052 #endif /* !CONFIG_FINEIBT */
2053 
apply_fineibt(s32 * start_retpoline,s32 * end_retpoline,s32 * start_cfi,s32 * end_cfi)2054 void apply_fineibt(s32 *start_retpoline, s32 *end_retpoline,
2055 		   s32 *start_cfi, s32 *end_cfi)
2056 {
2057 	return __apply_fineibt(start_retpoline, end_retpoline,
2058 			       start_cfi, end_cfi,
2059 			       /* .builtin = */ false);
2060 }
2061 
2062 #ifdef CONFIG_SMP
alternatives_smp_lock(const s32 * start,const s32 * end,u8 * text,u8 * text_end)2063 static void alternatives_smp_lock(const s32 *start, const s32 *end,
2064 				  u8 *text, u8 *text_end)
2065 {
2066 	const s32 *poff;
2067 
2068 	for (poff = start; poff < end; poff++) {
2069 		u8 *ptr = (u8 *)poff + *poff;
2070 
2071 		if (!*poff || ptr < text || ptr >= text_end)
2072 			continue;
2073 		/* turn DS segment override prefix into lock prefix */
2074 		if (*ptr == 0x3e)
2075 			text_poke(ptr, ((unsigned char []){0xf0}), 1);
2076 	}
2077 }
2078 
alternatives_smp_unlock(const s32 * start,const s32 * end,u8 * text,u8 * text_end)2079 static void alternatives_smp_unlock(const s32 *start, const s32 *end,
2080 				    u8 *text, u8 *text_end)
2081 {
2082 	const s32 *poff;
2083 
2084 	for (poff = start; poff < end; poff++) {
2085 		u8 *ptr = (u8 *)poff + *poff;
2086 
2087 		if (!*poff || ptr < text || ptr >= text_end)
2088 			continue;
2089 		/* turn lock prefix into DS segment override prefix */
2090 		if (*ptr == 0xf0)
2091 			text_poke(ptr, ((unsigned char []){0x3E}), 1);
2092 	}
2093 }
2094 
2095 struct smp_alt_module {
2096 	/* what is this ??? */
2097 	struct module	*mod;
2098 	char		*name;
2099 
2100 	/* ptrs to lock prefixes */
2101 	const s32	*locks;
2102 	const s32	*locks_end;
2103 
2104 	/* .text segment, needed to avoid patching init code ;) */
2105 	u8		*text;
2106 	u8		*text_end;
2107 
2108 	struct list_head next;
2109 };
2110 static LIST_HEAD(smp_alt_modules);
2111 static bool uniproc_patched = false;	/* protected by text_mutex */
2112 
alternatives_smp_module_add(struct module * mod,char * name,void * locks,void * locks_end,void * text,void * text_end)2113 void __init_or_module alternatives_smp_module_add(struct module *mod,
2114 						  char *name,
2115 						  void *locks, void *locks_end,
2116 						  void *text,  void *text_end)
2117 {
2118 	struct smp_alt_module *smp;
2119 
2120 	mutex_lock(&text_mutex);
2121 	if (!uniproc_patched)
2122 		goto unlock;
2123 
2124 	if (num_possible_cpus() == 1)
2125 		/* Don't bother remembering, we'll never have to undo it. */
2126 		goto smp_unlock;
2127 
2128 	smp = kzalloc(sizeof(*smp), GFP_KERNEL);
2129 	if (NULL == smp)
2130 		/* we'll run the (safe but slow) SMP code then ... */
2131 		goto unlock;
2132 
2133 	smp->mod	= mod;
2134 	smp->name	= name;
2135 	smp->locks	= locks;
2136 	smp->locks_end	= locks_end;
2137 	smp->text	= text;
2138 	smp->text_end	= text_end;
2139 	DPRINTK(SMP, "locks %p -> %p, text %p -> %p, name %s\n",
2140 		smp->locks, smp->locks_end,
2141 		smp->text, smp->text_end, smp->name);
2142 
2143 	list_add_tail(&smp->next, &smp_alt_modules);
2144 smp_unlock:
2145 	alternatives_smp_unlock(locks, locks_end, text, text_end);
2146 unlock:
2147 	mutex_unlock(&text_mutex);
2148 }
2149 
alternatives_smp_module_del(struct module * mod)2150 void __init_or_module alternatives_smp_module_del(struct module *mod)
2151 {
2152 	struct smp_alt_module *item;
2153 
2154 	mutex_lock(&text_mutex);
2155 	list_for_each_entry(item, &smp_alt_modules, next) {
2156 		if (mod != item->mod)
2157 			continue;
2158 		list_del(&item->next);
2159 		kfree(item);
2160 		break;
2161 	}
2162 	mutex_unlock(&text_mutex);
2163 }
2164 
alternatives_enable_smp(void)2165 void alternatives_enable_smp(void)
2166 {
2167 	struct smp_alt_module *mod;
2168 
2169 	/* Why bother if there are no other CPUs? */
2170 	BUG_ON(num_possible_cpus() == 1);
2171 
2172 	mutex_lock(&text_mutex);
2173 
2174 	if (uniproc_patched) {
2175 		pr_info("switching to SMP code\n");
2176 		BUG_ON(num_online_cpus() != 1);
2177 		clear_cpu_cap(&boot_cpu_data, X86_FEATURE_UP);
2178 		clear_cpu_cap(&cpu_data(0), X86_FEATURE_UP);
2179 		list_for_each_entry(mod, &smp_alt_modules, next)
2180 			alternatives_smp_lock(mod->locks, mod->locks_end,
2181 					      mod->text, mod->text_end);
2182 		uniproc_patched = false;
2183 	}
2184 	mutex_unlock(&text_mutex);
2185 }
2186 
2187 /*
2188  * Return 1 if the address range is reserved for SMP-alternatives.
2189  * Must hold text_mutex.
2190  */
alternatives_text_reserved(void * start,void * end)2191 int alternatives_text_reserved(void *start, void *end)
2192 {
2193 	struct smp_alt_module *mod;
2194 	const s32 *poff;
2195 	u8 *text_start = start;
2196 	u8 *text_end = end;
2197 
2198 	lockdep_assert_held(&text_mutex);
2199 
2200 	list_for_each_entry(mod, &smp_alt_modules, next) {
2201 		if (mod->text > text_end || mod->text_end < text_start)
2202 			continue;
2203 		for (poff = mod->locks; poff < mod->locks_end; poff++) {
2204 			const u8 *ptr = (const u8 *)poff + *poff;
2205 
2206 			if (text_start <= ptr && text_end > ptr)
2207 				return 1;
2208 		}
2209 	}
2210 
2211 	return 0;
2212 }
2213 #endif /* CONFIG_SMP */
2214 
2215 /*
2216  * Self-test for the INT3 based CALL emulation code.
2217  *
2218  * This exercises int3_emulate_call() to make sure INT3 pt_regs are set up
2219  * properly and that there is a stack gap between the INT3 frame and the
2220  * previous context. Without this gap doing a virtual PUSH on the interrupted
2221  * stack would corrupt the INT3 IRET frame.
2222  *
2223  * See entry_{32,64}.S for more details.
2224  */
2225 
2226 /*
2227  * We define the int3_magic() function in assembly to control the calling
2228  * convention such that we can 'call' it from assembly.
2229  */
2230 
2231 extern void int3_magic(unsigned int *ptr); /* defined in asm */
2232 
2233 asm (
2234 "	.pushsection	.init.text, \"ax\", @progbits\n"
2235 "	.type		int3_magic, @function\n"
2236 "int3_magic:\n"
2237 	ANNOTATE_NOENDBR
2238 "	movl	$1, (%" _ASM_ARG1 ")\n"
2239 	ASM_RET
2240 "	.size		int3_magic, .-int3_magic\n"
2241 "	.popsection\n"
2242 );
2243 
2244 extern void int3_selftest_ip(void); /* defined in asm below */
2245 
2246 static int __init
int3_exception_notify(struct notifier_block * self,unsigned long val,void * data)2247 int3_exception_notify(struct notifier_block *self, unsigned long val, void *data)
2248 {
2249 	unsigned long selftest = (unsigned long)&int3_selftest_ip;
2250 	struct die_args *args = data;
2251 	struct pt_regs *regs = args->regs;
2252 
2253 	OPTIMIZER_HIDE_VAR(selftest);
2254 
2255 	if (!regs || user_mode(regs))
2256 		return NOTIFY_DONE;
2257 
2258 	if (val != DIE_INT3)
2259 		return NOTIFY_DONE;
2260 
2261 	if (regs->ip - INT3_INSN_SIZE != selftest)
2262 		return NOTIFY_DONE;
2263 
2264 	int3_emulate_call(regs, (unsigned long)&int3_magic);
2265 	return NOTIFY_STOP;
2266 }
2267 
2268 /* Must be noinline to ensure uniqueness of int3_selftest_ip. */
int3_selftest(void)2269 static noinline void __init int3_selftest(void)
2270 {
2271 	static __initdata struct notifier_block int3_exception_nb = {
2272 		.notifier_call	= int3_exception_notify,
2273 		.priority	= INT_MAX-1, /* last */
2274 	};
2275 	unsigned int val = 0;
2276 
2277 	BUG_ON(register_die_notifier(&int3_exception_nb));
2278 
2279 	/*
2280 	 * Basically: int3_magic(&val); but really complicated :-)
2281 	 *
2282 	 * INT3 padded with NOP to CALL_INSN_SIZE. The int3_exception_nb
2283 	 * notifier above will emulate CALL for us.
2284 	 */
2285 	asm volatile ("int3_selftest_ip:\n\t"
2286 		      ANNOTATE_NOENDBR
2287 		      "    int3; nop; nop; nop; nop\n\t"
2288 		      : ASM_CALL_CONSTRAINT
2289 		      : __ASM_SEL_RAW(a, D) (&val)
2290 		      : "memory");
2291 
2292 	BUG_ON(val != 1);
2293 
2294 	unregister_die_notifier(&int3_exception_nb);
2295 }
2296 
2297 static __initdata int __alt_reloc_selftest_addr;
2298 
2299 extern void __init __alt_reloc_selftest(void *arg);
__alt_reloc_selftest(void * arg)2300 __visible noinline void __init __alt_reloc_selftest(void *arg)
2301 {
2302 	WARN_ON(arg != &__alt_reloc_selftest_addr);
2303 }
2304 
alt_reloc_selftest(void)2305 static noinline void __init alt_reloc_selftest(void)
2306 {
2307 	/*
2308 	 * Tests text_poke_apply_relocation().
2309 	 *
2310 	 * This has a relative immediate (CALL) in a place other than the first
2311 	 * instruction and additionally on x86_64 we get a RIP-relative LEA:
2312 	 *
2313 	 *   lea    0x0(%rip),%rdi  # 5d0: R_X86_64_PC32    .init.data+0x5566c
2314 	 *   call   +0              # 5d5: R_X86_64_PLT32   __alt_reloc_selftest-0x4
2315 	 *
2316 	 * Getting this wrong will either crash and burn or tickle the WARN
2317 	 * above.
2318 	 */
2319 	asm_inline volatile (
2320 		ALTERNATIVE("", "lea %[mem], %%" _ASM_ARG1 "; call __alt_reloc_selftest;", X86_FEATURE_ALWAYS)
2321 		: ASM_CALL_CONSTRAINT
2322 		: [mem] "m" (__alt_reloc_selftest_addr)
2323 		: _ASM_ARG1
2324 	);
2325 }
2326 
alternative_instructions(void)2327 void __init alternative_instructions(void)
2328 {
2329 	u64 ibt;
2330 
2331 	int3_selftest();
2332 
2333 	/*
2334 	 * The patching is not fully atomic, so try to avoid local
2335 	 * interruptions that might execute the to be patched code.
2336 	 * Other CPUs are not running.
2337 	 */
2338 	stop_nmi();
2339 
2340 	/*
2341 	 * Don't stop machine check exceptions while patching.
2342 	 * MCEs only happen when something got corrupted and in this
2343 	 * case we must do something about the corruption.
2344 	 * Ignoring it is worse than an unlikely patching race.
2345 	 * Also machine checks tend to be broadcast and if one CPU
2346 	 * goes into machine check the others follow quickly, so we don't
2347 	 * expect a machine check to cause undue problems during to code
2348 	 * patching.
2349 	 */
2350 
2351 	/*
2352 	 * Make sure to set (artificial) features depending on used paravirt
2353 	 * functions which can later influence alternative patching.
2354 	 */
2355 	paravirt_set_cap();
2356 
2357 	/* Keep CET-IBT disabled until caller/callee are patched */
2358 	ibt = ibt_save(/*disable*/ true);
2359 
2360 	__apply_fineibt(__retpoline_sites, __retpoline_sites_end,
2361 			__cfi_sites, __cfi_sites_end, true);
2362 
2363 	/*
2364 	 * Rewrite the retpolines, must be done before alternatives since
2365 	 * those can rewrite the retpoline thunks.
2366 	 */
2367 	apply_retpolines(__retpoline_sites, __retpoline_sites_end);
2368 	apply_returns(__return_sites, __return_sites_end);
2369 
2370 	its_fini_core();
2371 
2372 	/*
2373 	 * Adjust all CALL instructions to point to func()-10, including
2374 	 * those in .altinstr_replacement.
2375 	 */
2376 	callthunks_patch_builtin_calls();
2377 
2378 	apply_alternatives(__alt_instructions, __alt_instructions_end);
2379 
2380 	/*
2381 	 * Seal all functions that do not have their address taken.
2382 	 */
2383 	apply_seal_endbr(__ibt_endbr_seal, __ibt_endbr_seal_end);
2384 
2385 	ibt_restore(ibt);
2386 
2387 #ifdef CONFIG_SMP
2388 	/* Patch to UP if other cpus not imminent. */
2389 	if (!noreplace_smp && (num_present_cpus() == 1 || setup_max_cpus <= 1)) {
2390 		uniproc_patched = true;
2391 		alternatives_smp_module_add(NULL, "core kernel",
2392 					    __smp_locks, __smp_locks_end,
2393 					    _text, _etext);
2394 	}
2395 
2396 	if (!uniproc_patched || num_possible_cpus() == 1) {
2397 		free_init_pages("SMP alternatives",
2398 				(unsigned long)__smp_locks,
2399 				(unsigned long)__smp_locks_end);
2400 	}
2401 #endif
2402 
2403 	restart_nmi();
2404 	alternatives_patched = 1;
2405 
2406 	alt_reloc_selftest();
2407 }
2408 
2409 /**
2410  * text_poke_early - Update instructions on a live kernel at boot time
2411  * @addr: address to modify
2412  * @opcode: source of the copy
2413  * @len: length to copy
2414  *
2415  * When you use this code to patch more than one byte of an instruction
2416  * you need to make sure that other CPUs cannot execute this code in parallel.
2417  * Also no thread must be currently preempted in the middle of these
2418  * instructions. And on the local CPU you need to be protected against NMI or
2419  * MCE handlers seeing an inconsistent instruction while you patch.
2420  */
text_poke_early(void * addr,const void * opcode,size_t len)2421 void __init_or_module text_poke_early(void *addr, const void *opcode,
2422 				      size_t len)
2423 {
2424 	unsigned long flags;
2425 
2426 	if (boot_cpu_has(X86_FEATURE_NX) &&
2427 	    is_module_text_address((unsigned long)addr)) {
2428 		/*
2429 		 * Modules text is marked initially as non-executable, so the
2430 		 * code cannot be running and speculative code-fetches are
2431 		 * prevented. Just change the code.
2432 		 */
2433 		memcpy(addr, opcode, len);
2434 	} else {
2435 		local_irq_save(flags);
2436 		memcpy(addr, opcode, len);
2437 		sync_core();
2438 		local_irq_restore(flags);
2439 
2440 		/*
2441 		 * Could also do a CLFLUSH here to speed up CPU recovery; but
2442 		 * that causes hangs on some VIA CPUs.
2443 		 */
2444 	}
2445 }
2446 
2447 __ro_after_init struct mm_struct *text_poke_mm;
2448 __ro_after_init unsigned long text_poke_mm_addr;
2449 
text_poke_memcpy(void * dst,const void * src,size_t len)2450 static void text_poke_memcpy(void *dst, const void *src, size_t len)
2451 {
2452 	memcpy(dst, src, len);
2453 }
2454 
text_poke_memset(void * dst,const void * src,size_t len)2455 static void text_poke_memset(void *dst, const void *src, size_t len)
2456 {
2457 	int c = *(const int *)src;
2458 
2459 	memset(dst, c, len);
2460 }
2461 
2462 typedef void text_poke_f(void *dst, const void *src, size_t len);
2463 
__text_poke(text_poke_f func,void * addr,const void * src,size_t len)2464 static void *__text_poke(text_poke_f func, void *addr, const void *src, size_t len)
2465 {
2466 	bool cross_page_boundary = offset_in_page(addr) + len > PAGE_SIZE;
2467 	struct page *pages[2] = {NULL};
2468 	struct mm_struct *prev_mm;
2469 	unsigned long flags;
2470 	pte_t pte, *ptep;
2471 	spinlock_t *ptl;
2472 	pgprot_t pgprot;
2473 
2474 	/*
2475 	 * While boot memory allocator is running we cannot use struct pages as
2476 	 * they are not yet initialized. There is no way to recover.
2477 	 */
2478 	BUG_ON(!after_bootmem);
2479 
2480 	if (!core_kernel_text((unsigned long)addr)) {
2481 		pages[0] = vmalloc_to_page(addr);
2482 		if (cross_page_boundary)
2483 			pages[1] = vmalloc_to_page(addr + PAGE_SIZE);
2484 	} else {
2485 		pages[0] = virt_to_page(addr);
2486 		WARN_ON(!PageReserved(pages[0]));
2487 		if (cross_page_boundary)
2488 			pages[1] = virt_to_page(addr + PAGE_SIZE);
2489 	}
2490 	/*
2491 	 * If something went wrong, crash and burn since recovery paths are not
2492 	 * implemented.
2493 	 */
2494 	BUG_ON(!pages[0] || (cross_page_boundary && !pages[1]));
2495 
2496 	/*
2497 	 * Map the page without the global bit, as TLB flushing is done with
2498 	 * flush_tlb_mm_range(), which is intended for non-global PTEs.
2499 	 */
2500 	pgprot = __pgprot(pgprot_val(PAGE_KERNEL) & ~_PAGE_GLOBAL);
2501 
2502 	/*
2503 	 * The lock is not really needed, but this allows to avoid open-coding.
2504 	 */
2505 	ptep = get_locked_pte(text_poke_mm, text_poke_mm_addr, &ptl);
2506 
2507 	/*
2508 	 * This must not fail; preallocated in poking_init().
2509 	 */
2510 	VM_BUG_ON(!ptep);
2511 
2512 	local_irq_save(flags);
2513 
2514 	pte = mk_pte(pages[0], pgprot);
2515 	set_pte_at(text_poke_mm, text_poke_mm_addr, ptep, pte);
2516 
2517 	if (cross_page_boundary) {
2518 		pte = mk_pte(pages[1], pgprot);
2519 		set_pte_at(text_poke_mm, text_poke_mm_addr + PAGE_SIZE, ptep + 1, pte);
2520 	}
2521 
2522 	/*
2523 	 * Loading the temporary mm behaves as a compiler barrier, which
2524 	 * guarantees that the PTE will be set at the time memcpy() is done.
2525 	 */
2526 	prev_mm = use_temporary_mm(text_poke_mm);
2527 
2528 	kasan_disable_current();
2529 	func((u8 *)text_poke_mm_addr + offset_in_page(addr), src, len);
2530 	kasan_enable_current();
2531 
2532 	/*
2533 	 * Ensure that the PTE is only cleared after the instructions of memcpy
2534 	 * were issued by using a compiler barrier.
2535 	 */
2536 	barrier();
2537 
2538 	pte_clear(text_poke_mm, text_poke_mm_addr, ptep);
2539 	if (cross_page_boundary)
2540 		pte_clear(text_poke_mm, text_poke_mm_addr + PAGE_SIZE, ptep + 1);
2541 
2542 	/*
2543 	 * Loading the previous page-table hierarchy requires a serializing
2544 	 * instruction that already allows the core to see the updated version.
2545 	 * Xen-PV is assumed to serialize execution in a similar manner.
2546 	 */
2547 	unuse_temporary_mm(prev_mm);
2548 
2549 	/*
2550 	 * Flushing the TLB might involve IPIs, which would require enabled
2551 	 * IRQs, but not if the mm is not used, as it is in this point.
2552 	 */
2553 	flush_tlb_mm_range(text_poke_mm, text_poke_mm_addr, text_poke_mm_addr +
2554 			   (cross_page_boundary ? 2 : 1) * PAGE_SIZE,
2555 			   PAGE_SHIFT, false);
2556 
2557 	if (func == text_poke_memcpy) {
2558 		/*
2559 		 * If the text does not match what we just wrote then something is
2560 		 * fundamentally screwy; there's nothing we can really do about that.
2561 		 */
2562 		BUG_ON(memcmp(addr, src, len));
2563 	}
2564 
2565 	local_irq_restore(flags);
2566 	pte_unmap_unlock(ptep, ptl);
2567 	return addr;
2568 }
2569 
2570 /**
2571  * text_poke - Update instructions on a live kernel
2572  * @addr: address to modify
2573  * @opcode: source of the copy
2574  * @len: length to copy
2575  *
2576  * Only atomic text poke/set should be allowed when not doing early patching.
2577  * It means the size must be writable atomically and the address must be aligned
2578  * in a way that permits an atomic write. It also makes sure we fit on a single
2579  * page.
2580  *
2581  * Note that the caller must ensure that if the modified code is part of a
2582  * module, the module would not be removed during poking. This can be achieved
2583  * by registering a module notifier, and ordering module removal and patching
2584  * through a mutex.
2585  */
text_poke(void * addr,const void * opcode,size_t len)2586 void *text_poke(void *addr, const void *opcode, size_t len)
2587 {
2588 	lockdep_assert_held(&text_mutex);
2589 
2590 	return __text_poke(text_poke_memcpy, addr, opcode, len);
2591 }
2592 
2593 /**
2594  * text_poke_kgdb - Update instructions on a live kernel by kgdb
2595  * @addr: address to modify
2596  * @opcode: source of the copy
2597  * @len: length to copy
2598  *
2599  * Only atomic text poke/set should be allowed when not doing early patching.
2600  * It means the size must be writable atomically and the address must be aligned
2601  * in a way that permits an atomic write. It also makes sure we fit on a single
2602  * page.
2603  *
2604  * Context: should only be used by kgdb, which ensures no other core is running,
2605  *	    despite the fact it does not hold the text_mutex.
2606  */
text_poke_kgdb(void * addr,const void * opcode,size_t len)2607 void *text_poke_kgdb(void *addr, const void *opcode, size_t len)
2608 {
2609 	return __text_poke(text_poke_memcpy, addr, opcode, len);
2610 }
2611 
text_poke_copy_locked(void * addr,const void * opcode,size_t len,bool core_ok)2612 void *text_poke_copy_locked(void *addr, const void *opcode, size_t len,
2613 			    bool core_ok)
2614 {
2615 	unsigned long start = (unsigned long)addr;
2616 	size_t patched = 0;
2617 
2618 	if (WARN_ON_ONCE(!core_ok && core_kernel_text(start)))
2619 		return NULL;
2620 
2621 	while (patched < len) {
2622 		unsigned long ptr = start + patched;
2623 		size_t s;
2624 
2625 		s = min_t(size_t, PAGE_SIZE * 2 - offset_in_page(ptr), len - patched);
2626 
2627 		__text_poke(text_poke_memcpy, (void *)ptr, opcode + patched, s);
2628 		patched += s;
2629 	}
2630 	return addr;
2631 }
2632 
2633 /**
2634  * text_poke_copy - Copy instructions into (an unused part of) RX memory
2635  * @addr: address to modify
2636  * @opcode: source of the copy
2637  * @len: length to copy, could be more than 2x PAGE_SIZE
2638  *
2639  * Not safe against concurrent execution; useful for JITs to dump
2640  * new code blocks into unused regions of RX memory. Can be used in
2641  * conjunction with synchronize_rcu_tasks() to wait for existing
2642  * execution to quiesce after having made sure no existing functions
2643  * pointers are live.
2644  */
text_poke_copy(void * addr,const void * opcode,size_t len)2645 void *text_poke_copy(void *addr, const void *opcode, size_t len)
2646 {
2647 	mutex_lock(&text_mutex);
2648 	addr = text_poke_copy_locked(addr, opcode, len, false);
2649 	mutex_unlock(&text_mutex);
2650 	return addr;
2651 }
2652 
2653 /**
2654  * text_poke_set - memset into (an unused part of) RX memory
2655  * @addr: address to modify
2656  * @c: the byte to fill the area with
2657  * @len: length to copy, could be more than 2x PAGE_SIZE
2658  *
2659  * This is useful to overwrite unused regions of RX memory with illegal
2660  * instructions.
2661  */
text_poke_set(void * addr,int c,size_t len)2662 void *text_poke_set(void *addr, int c, size_t len)
2663 {
2664 	unsigned long start = (unsigned long)addr;
2665 	size_t patched = 0;
2666 
2667 	if (WARN_ON_ONCE(core_kernel_text(start)))
2668 		return NULL;
2669 
2670 	mutex_lock(&text_mutex);
2671 	while (patched < len) {
2672 		unsigned long ptr = start + patched;
2673 		size_t s;
2674 
2675 		s = min_t(size_t, PAGE_SIZE * 2 - offset_in_page(ptr), len - patched);
2676 
2677 		__text_poke(text_poke_memset, (void *)ptr, (void *)&c, s);
2678 		patched += s;
2679 	}
2680 	mutex_unlock(&text_mutex);
2681 	return addr;
2682 }
2683 
do_sync_core(void * info)2684 static void do_sync_core(void *info)
2685 {
2686 	sync_core();
2687 }
2688 
smp_text_poke_sync_each_cpu(void)2689 void smp_text_poke_sync_each_cpu(void)
2690 {
2691 	on_each_cpu(do_sync_core, NULL, 1);
2692 }
2693 
2694 /*
2695  * NOTE: crazy scheme to allow patching Jcc.d32 but not increase the size of
2696  * this thing. When len == 6 everything is prefixed with 0x0f and we map
2697  * opcode to Jcc.d8, using len to distinguish.
2698  */
2699 struct smp_text_poke_loc {
2700 	/* addr := _stext + rel_addr */
2701 	s32 rel_addr;
2702 	s32 disp;
2703 	u8 len;
2704 	u8 opcode;
2705 	const u8 text[TEXT_POKE_MAX_OPCODE_SIZE];
2706 	/* see smp_text_poke_batch_finish() */
2707 	u8 old;
2708 };
2709 
2710 #define TEXT_POKE_ARRAY_MAX (PAGE_SIZE / sizeof(struct smp_text_poke_loc))
2711 
2712 static struct smp_text_poke_array {
2713 	struct smp_text_poke_loc vec[TEXT_POKE_ARRAY_MAX];
2714 	int nr_entries;
2715 } text_poke_array;
2716 
2717 static DEFINE_PER_CPU(atomic_t, text_poke_array_refs);
2718 
2719 /*
2720  * These four __always_inline annotations imply noinstr, necessary
2721  * due to smp_text_poke_int3_handler() being noinstr:
2722  */
2723 
try_get_text_poke_array(void)2724 static __always_inline bool try_get_text_poke_array(void)
2725 {
2726 	atomic_t *refs = this_cpu_ptr(&text_poke_array_refs);
2727 
2728 	if (!raw_atomic_inc_not_zero(refs))
2729 		return false;
2730 
2731 	return true;
2732 }
2733 
put_text_poke_array(void)2734 static __always_inline void put_text_poke_array(void)
2735 {
2736 	atomic_t *refs = this_cpu_ptr(&text_poke_array_refs);
2737 
2738 	smp_mb__before_atomic();
2739 	raw_atomic_dec(refs);
2740 }
2741 
text_poke_addr(const struct smp_text_poke_loc * tpl)2742 static __always_inline void *text_poke_addr(const struct smp_text_poke_loc *tpl)
2743 {
2744 	return _stext + tpl->rel_addr;
2745 }
2746 
patch_cmp(const void * tpl_a,const void * tpl_b)2747 static __always_inline int patch_cmp(const void *tpl_a, const void *tpl_b)
2748 {
2749 	if (tpl_a < text_poke_addr(tpl_b))
2750 		return -1;
2751 	if (tpl_a > text_poke_addr(tpl_b))
2752 		return 1;
2753 	return 0;
2754 }
2755 
smp_text_poke_int3_handler(struct pt_regs * regs)2756 noinstr int smp_text_poke_int3_handler(struct pt_regs *regs)
2757 {
2758 	struct smp_text_poke_loc *tpl;
2759 	int ret = 0;
2760 	void *ip;
2761 
2762 	if (user_mode(regs))
2763 		return 0;
2764 
2765 	/*
2766 	 * Having observed our INT3 instruction, we now must observe
2767 	 * text_poke_array with non-zero refcount:
2768 	 *
2769 	 *	text_poke_array_refs = 1		INT3
2770 	 *	WMB			RMB
2771 	 *	write INT3		if (text_poke_array_refs != 0)
2772 	 */
2773 	smp_rmb();
2774 
2775 	if (!try_get_text_poke_array())
2776 		return 0;
2777 
2778 	/*
2779 	 * Discount the INT3. See smp_text_poke_batch_finish().
2780 	 */
2781 	ip = (void *) regs->ip - INT3_INSN_SIZE;
2782 
2783 	/*
2784 	 * Skip the binary search if there is a single member in the vector.
2785 	 */
2786 	if (unlikely(text_poke_array.nr_entries > 1)) {
2787 		tpl = __inline_bsearch(ip, text_poke_array.vec, text_poke_array.nr_entries,
2788 				      sizeof(struct smp_text_poke_loc),
2789 				      patch_cmp);
2790 		if (!tpl)
2791 			goto out_put;
2792 	} else {
2793 		tpl = text_poke_array.vec;
2794 		if (text_poke_addr(tpl) != ip)
2795 			goto out_put;
2796 	}
2797 
2798 	ip += tpl->len;
2799 
2800 	switch (tpl->opcode) {
2801 	case INT3_INSN_OPCODE:
2802 		/*
2803 		 * Someone poked an explicit INT3, they'll want to handle it,
2804 		 * do not consume.
2805 		 */
2806 		goto out_put;
2807 
2808 	case RET_INSN_OPCODE:
2809 		int3_emulate_ret(regs);
2810 		break;
2811 
2812 	case CALL_INSN_OPCODE:
2813 		int3_emulate_call(regs, (long)ip + tpl->disp);
2814 		break;
2815 
2816 	case JMP32_INSN_OPCODE:
2817 	case JMP8_INSN_OPCODE:
2818 		int3_emulate_jmp(regs, (long)ip + tpl->disp);
2819 		break;
2820 
2821 	case 0x70 ... 0x7f: /* Jcc */
2822 		int3_emulate_jcc(regs, tpl->opcode & 0xf, (long)ip, tpl->disp);
2823 		break;
2824 
2825 	default:
2826 		BUG();
2827 	}
2828 
2829 	ret = 1;
2830 
2831 out_put:
2832 	put_text_poke_array();
2833 	return ret;
2834 }
2835 
2836 /**
2837  * smp_text_poke_batch_finish() -- update instructions on live kernel on SMP
2838  *
2839  * Input state:
2840  *  text_poke_array.vec: vector of instructions to patch
2841  *  text_poke_array.nr_entries: number of entries in the vector
2842  *
2843  * Modify multi-byte instructions by using INT3 breakpoints on SMP.
2844  * We completely avoid using stop_machine() here, and achieve the
2845  * synchronization using INT3 breakpoints and SMP cross-calls.
2846  *
2847  * The way it is done:
2848  *	- For each entry in the vector:
2849  *		- add an INT3 trap to the address that will be patched
2850  *	- SMP sync all CPUs
2851  *	- For each entry in the vector:
2852  *		- update all but the first byte of the patched range
2853  *	- SMP sync all CPUs
2854  *	- For each entry in the vector:
2855  *		- replace the first byte (INT3) by the first byte of the
2856  *		  replacing opcode
2857  *	- SMP sync all CPUs
2858  */
smp_text_poke_batch_finish(void)2859 void smp_text_poke_batch_finish(void)
2860 {
2861 	unsigned char int3 = INT3_INSN_OPCODE;
2862 	unsigned int i;
2863 	int do_sync;
2864 
2865 	if (!text_poke_array.nr_entries)
2866 		return;
2867 
2868 	lockdep_assert_held(&text_mutex);
2869 
2870 	/*
2871 	 * Corresponds to the implicit memory barrier in try_get_text_poke_array() to
2872 	 * ensure reading a non-zero refcount provides up to date text_poke_array data.
2873 	 */
2874 	for_each_possible_cpu(i)
2875 		atomic_set_release(per_cpu_ptr(&text_poke_array_refs, i), 1);
2876 
2877 	/*
2878 	 * Function tracing can enable thousands of places that need to be
2879 	 * updated. This can take quite some time, and with full kernel debugging
2880 	 * enabled, this could cause the softlockup watchdog to trigger.
2881 	 * This function gets called every 256 entries added to be patched.
2882 	 * Call cond_resched() here to make sure that other tasks can get scheduled
2883 	 * while processing all the functions being patched.
2884 	 */
2885 	cond_resched();
2886 
2887 	/*
2888 	 * Corresponding read barrier in INT3 notifier for making sure the
2889 	 * text_poke_array.nr_entries and handler are correctly ordered wrt. patching.
2890 	 */
2891 	smp_wmb();
2892 
2893 	/*
2894 	 * First step: add a INT3 trap to the address that will be patched.
2895 	 */
2896 	for (i = 0; i < text_poke_array.nr_entries; i++) {
2897 		text_poke_array.vec[i].old = *(u8 *)text_poke_addr(&text_poke_array.vec[i]);
2898 		text_poke(text_poke_addr(&text_poke_array.vec[i]), &int3, INT3_INSN_SIZE);
2899 	}
2900 
2901 	smp_text_poke_sync_each_cpu();
2902 
2903 	/*
2904 	 * Second step: update all but the first byte of the patched range.
2905 	 */
2906 	for (do_sync = 0, i = 0; i < text_poke_array.nr_entries; i++) {
2907 		u8 old[TEXT_POKE_MAX_OPCODE_SIZE+1] = { text_poke_array.vec[i].old, };
2908 		u8 _new[TEXT_POKE_MAX_OPCODE_SIZE+1];
2909 		const u8 *new = text_poke_array.vec[i].text;
2910 		int len = text_poke_array.vec[i].len;
2911 
2912 		if (len - INT3_INSN_SIZE > 0) {
2913 			memcpy(old + INT3_INSN_SIZE,
2914 			       text_poke_addr(&text_poke_array.vec[i]) + INT3_INSN_SIZE,
2915 			       len - INT3_INSN_SIZE);
2916 
2917 			if (len == 6) {
2918 				_new[0] = 0x0f;
2919 				memcpy(_new + 1, new, 5);
2920 				new = _new;
2921 			}
2922 
2923 			text_poke(text_poke_addr(&text_poke_array.vec[i]) + INT3_INSN_SIZE,
2924 				  new + INT3_INSN_SIZE,
2925 				  len - INT3_INSN_SIZE);
2926 
2927 			do_sync++;
2928 		}
2929 
2930 		/*
2931 		 * Emit a perf event to record the text poke, primarily to
2932 		 * support Intel PT decoding which must walk the executable code
2933 		 * to reconstruct the trace. The flow up to here is:
2934 		 *   - write INT3 byte
2935 		 *   - IPI-SYNC
2936 		 *   - write instruction tail
2937 		 * At this point the actual control flow will be through the
2938 		 * INT3 and handler and not hit the old or new instruction.
2939 		 * Intel PT outputs FUP/TIP packets for the INT3, so the flow
2940 		 * can still be decoded. Subsequently:
2941 		 *   - emit RECORD_TEXT_POKE with the new instruction
2942 		 *   - IPI-SYNC
2943 		 *   - write first byte
2944 		 *   - IPI-SYNC
2945 		 * So before the text poke event timestamp, the decoder will see
2946 		 * either the old instruction flow or FUP/TIP of INT3. After the
2947 		 * text poke event timestamp, the decoder will see either the
2948 		 * new instruction flow or FUP/TIP of INT3. Thus decoders can
2949 		 * use the timestamp as the point at which to modify the
2950 		 * executable code.
2951 		 * The old instruction is recorded so that the event can be
2952 		 * processed forwards or backwards.
2953 		 */
2954 		perf_event_text_poke(text_poke_addr(&text_poke_array.vec[i]), old, len, new, len);
2955 	}
2956 
2957 	if (do_sync) {
2958 		/*
2959 		 * According to Intel, this core syncing is very likely
2960 		 * not necessary and we'd be safe even without it. But
2961 		 * better safe than sorry (plus there's not only Intel).
2962 		 */
2963 		smp_text_poke_sync_each_cpu();
2964 	}
2965 
2966 	/*
2967 	 * Third step: replace the first byte (INT3) by the first byte of the
2968 	 * replacing opcode.
2969 	 */
2970 	for (do_sync = 0, i = 0; i < text_poke_array.nr_entries; i++) {
2971 		u8 byte = text_poke_array.vec[i].text[0];
2972 
2973 		if (text_poke_array.vec[i].len == 6)
2974 			byte = 0x0f;
2975 
2976 		if (byte == INT3_INSN_OPCODE)
2977 			continue;
2978 
2979 		text_poke(text_poke_addr(&text_poke_array.vec[i]), &byte, INT3_INSN_SIZE);
2980 		do_sync++;
2981 	}
2982 
2983 	if (do_sync)
2984 		smp_text_poke_sync_each_cpu();
2985 
2986 	/*
2987 	 * Remove and wait for refs to be zero.
2988 	 *
2989 	 * Notably, if after step-3 above the INT3 got removed, then the
2990 	 * smp_text_poke_sync_each_cpu() will have serialized against any running INT3
2991 	 * handlers and the below spin-wait will not happen.
2992 	 *
2993 	 * IOW. unless the replacement instruction is INT3, this case goes
2994 	 * unused.
2995 	 */
2996 	for_each_possible_cpu(i) {
2997 		atomic_t *refs = per_cpu_ptr(&text_poke_array_refs, i);
2998 
2999 		if (unlikely(!atomic_dec_and_test(refs)))
3000 			atomic_cond_read_acquire(refs, !VAL);
3001 	}
3002 
3003 	/* They are all completed: */
3004 	text_poke_array.nr_entries = 0;
3005 }
3006 
__smp_text_poke_batch_add(void * addr,const void * opcode,size_t len,const void * emulate)3007 static void __smp_text_poke_batch_add(void *addr, const void *opcode, size_t len, const void *emulate)
3008 {
3009 	struct smp_text_poke_loc *tpl;
3010 	struct insn insn;
3011 	int ret, i = 0;
3012 
3013 	tpl = &text_poke_array.vec[text_poke_array.nr_entries++];
3014 
3015 	if (len == 6)
3016 		i = 1;
3017 	memcpy((void *)tpl->text, opcode+i, len-i);
3018 	if (!emulate)
3019 		emulate = opcode;
3020 
3021 	ret = insn_decode_kernel(&insn, emulate);
3022 	BUG_ON(ret < 0);
3023 
3024 	tpl->rel_addr = addr - (void *)_stext;
3025 	tpl->len = len;
3026 	tpl->opcode = insn.opcode.bytes[0];
3027 
3028 	if (is_jcc32(&insn)) {
3029 		/*
3030 		 * Map Jcc.d32 onto Jcc.d8 and use len to distinguish.
3031 		 */
3032 		tpl->opcode = insn.opcode.bytes[1] - 0x10;
3033 	}
3034 
3035 	switch (tpl->opcode) {
3036 	case RET_INSN_OPCODE:
3037 	case JMP32_INSN_OPCODE:
3038 	case JMP8_INSN_OPCODE:
3039 		/*
3040 		 * Control flow instructions without implied execution of the
3041 		 * next instruction can be padded with INT3.
3042 		 */
3043 		for (i = insn.length; i < len; i++)
3044 			BUG_ON(tpl->text[i] != INT3_INSN_OPCODE);
3045 		break;
3046 
3047 	default:
3048 		BUG_ON(len != insn.length);
3049 	}
3050 
3051 	switch (tpl->opcode) {
3052 	case INT3_INSN_OPCODE:
3053 	case RET_INSN_OPCODE:
3054 		break;
3055 
3056 	case CALL_INSN_OPCODE:
3057 	case JMP32_INSN_OPCODE:
3058 	case JMP8_INSN_OPCODE:
3059 	case 0x70 ... 0x7f: /* Jcc */
3060 		tpl->disp = insn.immediate.value;
3061 		break;
3062 
3063 	default: /* assume NOP */
3064 		switch (len) {
3065 		case 2: /* NOP2 -- emulate as JMP8+0 */
3066 			BUG_ON(memcmp(emulate, x86_nops[len], len));
3067 			tpl->opcode = JMP8_INSN_OPCODE;
3068 			tpl->disp = 0;
3069 			break;
3070 
3071 		case 5: /* NOP5 -- emulate as JMP32+0 */
3072 			BUG_ON(memcmp(emulate, x86_nops[len], len));
3073 			tpl->opcode = JMP32_INSN_OPCODE;
3074 			tpl->disp = 0;
3075 			break;
3076 
3077 		default: /* unknown instruction */
3078 			BUG();
3079 		}
3080 		break;
3081 	}
3082 }
3083 
3084 /*
3085  * We hard rely on the text_poke_array.vec being ordered; ensure this is so by flushing
3086  * early if needed.
3087  */
text_poke_addr_ordered(void * addr)3088 static bool text_poke_addr_ordered(void *addr)
3089 {
3090 	WARN_ON_ONCE(!addr);
3091 
3092 	if (!text_poke_array.nr_entries)
3093 		return true;
3094 
3095 	/*
3096 	 * If the last current entry's address is higher than the
3097 	 * new entry's address we'd like to add, then ordering
3098 	 * is violated and we must first flush all pending patching
3099 	 * requests:
3100 	 */
3101 	if (text_poke_addr(text_poke_array.vec + text_poke_array.nr_entries-1) > addr)
3102 		return false;
3103 
3104 	return true;
3105 }
3106 
3107 /**
3108  * smp_text_poke_batch_add() -- update instruction on live kernel on SMP, batched
3109  * @addr:	address to patch
3110  * @opcode:	opcode of new instruction
3111  * @len:	length to copy
3112  * @emulate:	instruction to be emulated
3113  *
3114  * Add a new instruction to the current queue of to-be-patched instructions
3115  * the kernel maintains. The patching request will not be executed immediately,
3116  * but becomes part of an array of patching requests, optimized for batched
3117  * execution. All pending patching requests will be executed on the next
3118  * smp_text_poke_batch_finish() call.
3119  */
smp_text_poke_batch_add(void * addr,const void * opcode,size_t len,const void * emulate)3120 void __ref smp_text_poke_batch_add(void *addr, const void *opcode, size_t len, const void *emulate)
3121 {
3122 	if (text_poke_array.nr_entries == TEXT_POKE_ARRAY_MAX || !text_poke_addr_ordered(addr))
3123 		smp_text_poke_batch_finish();
3124 	__smp_text_poke_batch_add(addr, opcode, len, emulate);
3125 }
3126 
3127 /**
3128  * smp_text_poke_single() -- update instruction on live kernel on SMP immediately
3129  * @addr:	address to patch
3130  * @opcode:	opcode of new instruction
3131  * @len:	length to copy
3132  * @emulate:	instruction to be emulated
3133  *
3134  * Update a single instruction with the vector in the stack, avoiding
3135  * dynamically allocated memory. This function should be used when it is
3136  * not possible to allocate memory for a vector. The single instruction
3137  * is patched in immediately.
3138  */
smp_text_poke_single(void * addr,const void * opcode,size_t len,const void * emulate)3139 void __ref smp_text_poke_single(void *addr, const void *opcode, size_t len, const void *emulate)
3140 {
3141 	smp_text_poke_batch_add(addr, opcode, len, emulate);
3142 	smp_text_poke_batch_finish();
3143 }
3144