1 // SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
2 // Copyright(c) 2015-17 Intel Corporation.
3
4 #include <linux/acpi.h>
5 #include <linux/delay.h>
6 #include <linux/mod_devicetable.h>
7 #include <linux/pm_runtime.h>
8 #include <linux/soundwire/sdw_registers.h>
9 #include <linux/soundwire/sdw.h>
10 #include <linux/soundwire/sdw_type.h>
11 #include <linux/string_choices.h>
12 #include "bus.h"
13 #include "irq.h"
14 #include "sysfs_local.h"
15
16 static DEFINE_IDA(sdw_bus_ida);
17
sdw_get_id(struct sdw_bus * bus)18 static int sdw_get_id(struct sdw_bus *bus)
19 {
20 int rc = ida_alloc(&sdw_bus_ida, GFP_KERNEL);
21
22 if (rc < 0)
23 return rc;
24
25 bus->id = rc;
26
27 if (bus->controller_id == -1)
28 bus->controller_id = rc;
29
30 return 0;
31 }
32
33 /**
34 * sdw_bus_master_add() - add a bus Master instance
35 * @bus: bus instance
36 * @parent: parent device
37 * @fwnode: firmware node handle
38 *
39 * Initializes the bus instance, read properties and create child
40 * devices.
41 */
sdw_bus_master_add(struct sdw_bus * bus,struct device * parent,struct fwnode_handle * fwnode)42 int sdw_bus_master_add(struct sdw_bus *bus, struct device *parent,
43 struct fwnode_handle *fwnode)
44 {
45 struct sdw_master_prop *prop = NULL;
46 int ret;
47
48 if (!parent) {
49 pr_err("SoundWire parent device is not set\n");
50 return -ENODEV;
51 }
52
53 ret = sdw_get_id(bus);
54 if (ret < 0) {
55 dev_err(parent, "Failed to get bus id\n");
56 return ret;
57 }
58
59 ida_init(&bus->slave_ida);
60
61 ret = sdw_master_device_add(bus, parent, fwnode);
62 if (ret < 0) {
63 dev_err(parent, "Failed to add master device at link %d\n",
64 bus->link_id);
65 return ret;
66 }
67
68 if (!bus->ops) {
69 dev_err(bus->dev, "SoundWire Bus ops are not set\n");
70 return -EINVAL;
71 }
72
73 if (!bus->compute_params) {
74 dev_err(bus->dev,
75 "Bandwidth allocation not configured, compute_params no set\n");
76 return -EINVAL;
77 }
78
79 /*
80 * Give each bus_lock and msg_lock a unique key so that lockdep won't
81 * trigger a deadlock warning when the locks of several buses are
82 * grabbed during configuration of a multi-bus stream.
83 */
84 lockdep_register_key(&bus->msg_lock_key);
85 __mutex_init(&bus->msg_lock, "msg_lock", &bus->msg_lock_key);
86
87 lockdep_register_key(&bus->bus_lock_key);
88 __mutex_init(&bus->bus_lock, "bus_lock", &bus->bus_lock_key);
89
90 INIT_LIST_HEAD(&bus->slaves);
91 INIT_LIST_HEAD(&bus->m_rt_list);
92
93 /*
94 * Initialize multi_link flag
95 */
96 bus->multi_link = false;
97 if (bus->ops->read_prop) {
98 ret = bus->ops->read_prop(bus);
99 if (ret < 0) {
100 dev_err(bus->dev,
101 "Bus read properties failed:%d\n", ret);
102 return ret;
103 }
104 }
105
106 sdw_bus_debugfs_init(bus);
107
108 /*
109 * Device numbers in SoundWire are 0 through 15. Enumeration device
110 * number (0), Broadcast device number (15), Group numbers (12 and
111 * 13) and Master device number (14) are not used for assignment so
112 * mask these and other higher bits.
113 */
114
115 /* Set higher order bits */
116 *bus->assigned = ~GENMASK(SDW_BROADCAST_DEV_NUM, SDW_ENUM_DEV_NUM);
117
118 /* Set enumeration device number and broadcast device number */
119 set_bit(SDW_ENUM_DEV_NUM, bus->assigned);
120 set_bit(SDW_BROADCAST_DEV_NUM, bus->assigned);
121
122 /* Set group device numbers and master device number */
123 set_bit(SDW_GROUP12_DEV_NUM, bus->assigned);
124 set_bit(SDW_GROUP13_DEV_NUM, bus->assigned);
125 set_bit(SDW_MASTER_DEV_NUM, bus->assigned);
126
127 ret = sdw_irq_create(bus, fwnode);
128 if (ret)
129 return ret;
130
131 /*
132 * SDW is an enumerable bus, but devices can be powered off. So,
133 * they won't be able to report as present.
134 *
135 * Create Slave devices based on Slaves described in
136 * the respective firmware (ACPI/DT)
137 */
138 if (IS_ENABLED(CONFIG_ACPI) && ACPI_HANDLE(bus->dev))
139 ret = sdw_acpi_find_slaves(bus);
140 else if (IS_ENABLED(CONFIG_OF) && bus->dev->of_node)
141 ret = sdw_of_find_slaves(bus);
142 else
143 ret = -ENOTSUPP; /* No ACPI/DT so error out */
144
145 if (ret < 0) {
146 dev_err(bus->dev, "Finding slaves failed:%d\n", ret);
147 sdw_irq_delete(bus);
148 return ret;
149 }
150
151 /*
152 * Initialize clock values based on Master properties. The max
153 * frequency is read from max_clk_freq property. Current assumption
154 * is that the bus will start at highest clock frequency when
155 * powered on.
156 *
157 * Default active bank will be 0 as out of reset the Slaves have
158 * to start with bank 0 (Table 40 of Spec)
159 */
160 prop = &bus->prop;
161 bus->params.max_dr_freq = prop->max_clk_freq * SDW_DOUBLE_RATE_FACTOR;
162 bus->params.curr_dr_freq = bus->params.max_dr_freq;
163 bus->params.curr_bank = SDW_BANK0;
164 bus->params.next_bank = SDW_BANK1;
165
166 return 0;
167 }
168 EXPORT_SYMBOL(sdw_bus_master_add);
169
sdw_delete_slave(struct device * dev,void * data)170 static int sdw_delete_slave(struct device *dev, void *data)
171 {
172 struct sdw_slave *slave = dev_to_sdw_dev(dev);
173 struct sdw_bus *bus = slave->bus;
174
175 pm_runtime_disable(dev);
176
177 sdw_slave_debugfs_exit(slave);
178
179 mutex_lock(&bus->bus_lock);
180
181 if (slave->dev_num) { /* clear dev_num if assigned */
182 clear_bit(slave->dev_num, bus->assigned);
183 if (bus->ops && bus->ops->put_device_num)
184 bus->ops->put_device_num(bus, slave);
185 }
186 list_del_init(&slave->node);
187 mutex_unlock(&bus->bus_lock);
188
189 device_unregister(dev);
190 return 0;
191 }
192
193 /**
194 * sdw_bus_master_delete() - delete the bus master instance
195 * @bus: bus to be deleted
196 *
197 * Remove the instance, delete the child devices.
198 */
sdw_bus_master_delete(struct sdw_bus * bus)199 void sdw_bus_master_delete(struct sdw_bus *bus)
200 {
201 device_for_each_child(bus->dev, NULL, sdw_delete_slave);
202
203 sdw_irq_delete(bus);
204
205 sdw_master_device_del(bus);
206
207 sdw_bus_debugfs_exit(bus);
208 lockdep_unregister_key(&bus->bus_lock_key);
209 lockdep_unregister_key(&bus->msg_lock_key);
210 ida_free(&sdw_bus_ida, bus->id);
211 }
212 EXPORT_SYMBOL(sdw_bus_master_delete);
213
214 /*
215 * SDW IO Calls
216 */
217
find_response_code(enum sdw_command_response resp)218 static inline int find_response_code(enum sdw_command_response resp)
219 {
220 switch (resp) {
221 case SDW_CMD_OK:
222 return 0;
223
224 case SDW_CMD_IGNORED:
225 return -ENODATA;
226
227 case SDW_CMD_TIMEOUT:
228 return -ETIMEDOUT;
229
230 default:
231 return -EIO;
232 }
233 }
234
do_transfer(struct sdw_bus * bus,struct sdw_msg * msg)235 static inline int do_transfer(struct sdw_bus *bus, struct sdw_msg *msg)
236 {
237 int retry = bus->prop.err_threshold;
238 enum sdw_command_response resp;
239 int ret = 0, i;
240
241 for (i = 0; i <= retry; i++) {
242 resp = bus->ops->xfer_msg(bus, msg);
243 ret = find_response_code(resp);
244
245 /* if cmd is ok or ignored return */
246 if (ret == 0 || ret == -ENODATA)
247 return ret;
248 }
249
250 return ret;
251 }
252
do_transfer_defer(struct sdw_bus * bus,struct sdw_msg * msg)253 static inline int do_transfer_defer(struct sdw_bus *bus,
254 struct sdw_msg *msg)
255 {
256 struct sdw_defer *defer = &bus->defer_msg;
257 int retry = bus->prop.err_threshold;
258 enum sdw_command_response resp;
259 int ret = 0, i;
260
261 defer->msg = msg;
262 defer->length = msg->len;
263 init_completion(&defer->complete);
264
265 for (i = 0; i <= retry; i++) {
266 resp = bus->ops->xfer_msg_defer(bus);
267 ret = find_response_code(resp);
268 /* if cmd is ok or ignored return */
269 if (ret == 0 || ret == -ENODATA)
270 return ret;
271 }
272
273 return ret;
274 }
275
sdw_transfer_unlocked(struct sdw_bus * bus,struct sdw_msg * msg)276 static int sdw_transfer_unlocked(struct sdw_bus *bus, struct sdw_msg *msg)
277 {
278 int ret;
279
280 ret = do_transfer(bus, msg);
281 if (ret != 0 && ret != -ENODATA)
282 dev_err(bus->dev, "trf on Slave %d failed:%d %s addr %x count %d\n",
283 msg->dev_num, ret,
284 str_write_read(msg->flags & SDW_MSG_FLAG_WRITE),
285 msg->addr, msg->len);
286
287 return ret;
288 }
289
290 /**
291 * sdw_transfer() - Synchronous transfer message to a SDW Slave device
292 * @bus: SDW bus
293 * @msg: SDW message to be xfered
294 */
sdw_transfer(struct sdw_bus * bus,struct sdw_msg * msg)295 int sdw_transfer(struct sdw_bus *bus, struct sdw_msg *msg)
296 {
297 int ret;
298
299 mutex_lock(&bus->msg_lock);
300
301 ret = sdw_transfer_unlocked(bus, msg);
302
303 mutex_unlock(&bus->msg_lock);
304
305 return ret;
306 }
307
308 /**
309 * sdw_show_ping_status() - Direct report of PING status, to be used by Peripheral drivers
310 * @bus: SDW bus
311 * @sync_delay: Delay before reading status
312 */
sdw_show_ping_status(struct sdw_bus * bus,bool sync_delay)313 void sdw_show_ping_status(struct sdw_bus *bus, bool sync_delay)
314 {
315 u32 status;
316
317 if (!bus->ops->read_ping_status)
318 return;
319
320 /*
321 * wait for peripheral to sync if desired. 10-15ms should be more than
322 * enough in most cases.
323 */
324 if (sync_delay)
325 usleep_range(10000, 15000);
326
327 mutex_lock(&bus->msg_lock);
328
329 status = bus->ops->read_ping_status(bus);
330
331 mutex_unlock(&bus->msg_lock);
332
333 if (!status)
334 dev_warn(bus->dev, "%s: no peripherals attached\n", __func__);
335 else
336 dev_dbg(bus->dev, "PING status: %#x\n", status);
337 }
338 EXPORT_SYMBOL(sdw_show_ping_status);
339
340 /**
341 * sdw_transfer_defer() - Asynchronously transfer message to a SDW Slave device
342 * @bus: SDW bus
343 * @msg: SDW message to be xfered
344 *
345 * Caller needs to hold the msg_lock lock while calling this
346 */
sdw_transfer_defer(struct sdw_bus * bus,struct sdw_msg * msg)347 int sdw_transfer_defer(struct sdw_bus *bus, struct sdw_msg *msg)
348 {
349 int ret;
350
351 if (!bus->ops->xfer_msg_defer)
352 return -ENOTSUPP;
353
354 ret = do_transfer_defer(bus, msg);
355 if (ret != 0 && ret != -ENODATA)
356 dev_err(bus->dev, "Defer trf on Slave %d failed:%d\n",
357 msg->dev_num, ret);
358
359 return ret;
360 }
361
sdw_fill_msg(struct sdw_msg * msg,struct sdw_slave * slave,u32 addr,size_t count,u16 dev_num,u8 flags,u8 * buf)362 int sdw_fill_msg(struct sdw_msg *msg, struct sdw_slave *slave,
363 u32 addr, size_t count, u16 dev_num, u8 flags, u8 *buf)
364 {
365 memset(msg, 0, sizeof(*msg));
366 msg->addr = addr; /* addr is 16 bit and truncated here */
367 msg->len = count;
368 msg->dev_num = dev_num;
369 msg->flags = flags;
370 msg->buf = buf;
371
372 if (addr < SDW_REG_NO_PAGE) /* no paging area */
373 return 0;
374
375 if (addr >= SDW_REG_MAX) { /* illegal addr */
376 pr_err("SDW: Invalid address %x passed\n", addr);
377 return -EINVAL;
378 }
379
380 if (addr < SDW_REG_OPTIONAL_PAGE) { /* 32k but no page */
381 if (slave && !slave->prop.paging_support)
382 return 0;
383 /* no need for else as that will fall-through to paging */
384 }
385
386 /* paging mandatory */
387 if (dev_num == SDW_ENUM_DEV_NUM || dev_num == SDW_BROADCAST_DEV_NUM) {
388 pr_err("SDW: Invalid device for paging :%d\n", dev_num);
389 return -EINVAL;
390 }
391
392 if (!slave) {
393 pr_err("SDW: No slave for paging addr\n");
394 return -EINVAL;
395 }
396
397 if (!slave->prop.paging_support) {
398 dev_err(&slave->dev,
399 "address %x needs paging but no support\n", addr);
400 return -EINVAL;
401 }
402
403 msg->addr_page1 = FIELD_GET(SDW_SCP_ADDRPAGE1_MASK, addr);
404 msg->addr_page2 = FIELD_GET(SDW_SCP_ADDRPAGE2_MASK, addr);
405 msg->addr |= BIT(15);
406 msg->page = true;
407
408 return 0;
409 }
410
411 /*
412 * Read/Write IO functions.
413 */
414
sdw_ntransfer_no_pm(struct sdw_slave * slave,u32 addr,u8 flags,size_t count,u8 * val)415 static int sdw_ntransfer_no_pm(struct sdw_slave *slave, u32 addr, u8 flags,
416 size_t count, u8 *val)
417 {
418 struct sdw_msg msg;
419 size_t size;
420 int ret;
421
422 while (count) {
423 // Only handle bytes up to next page boundary
424 size = min_t(size_t, count, (SDW_REGADDR + 1) - (addr & SDW_REGADDR));
425
426 ret = sdw_fill_msg(&msg, slave, addr, size, slave->dev_num, flags, val);
427 if (ret < 0)
428 return ret;
429
430 ret = sdw_transfer(slave->bus, &msg);
431 if (ret < 0 && !slave->is_mockup_device)
432 return ret;
433
434 addr += size;
435 val += size;
436 count -= size;
437 }
438
439 return 0;
440 }
441
442 /**
443 * sdw_nread_no_pm() - Read "n" contiguous SDW Slave registers with no PM
444 * @slave: SDW Slave
445 * @addr: Register address
446 * @count: length
447 * @val: Buffer for values to be read
448 *
449 * Note that if the message crosses a page boundary each page will be
450 * transferred under a separate invocation of the msg_lock.
451 */
sdw_nread_no_pm(struct sdw_slave * slave,u32 addr,size_t count,u8 * val)452 int sdw_nread_no_pm(struct sdw_slave *slave, u32 addr, size_t count, u8 *val)
453 {
454 return sdw_ntransfer_no_pm(slave, addr, SDW_MSG_FLAG_READ, count, val);
455 }
456 EXPORT_SYMBOL(sdw_nread_no_pm);
457
458 /**
459 * sdw_nwrite_no_pm() - Write "n" contiguous SDW Slave registers with no PM
460 * @slave: SDW Slave
461 * @addr: Register address
462 * @count: length
463 * @val: Buffer for values to be written
464 *
465 * Note that if the message crosses a page boundary each page will be
466 * transferred under a separate invocation of the msg_lock.
467 */
sdw_nwrite_no_pm(struct sdw_slave * slave,u32 addr,size_t count,const u8 * val)468 int sdw_nwrite_no_pm(struct sdw_slave *slave, u32 addr, size_t count, const u8 *val)
469 {
470 return sdw_ntransfer_no_pm(slave, addr, SDW_MSG_FLAG_WRITE, count, (u8 *)val);
471 }
472 EXPORT_SYMBOL(sdw_nwrite_no_pm);
473
474 /**
475 * sdw_write_no_pm() - Write a SDW Slave register with no PM
476 * @slave: SDW Slave
477 * @addr: Register address
478 * @value: Register value
479 */
sdw_write_no_pm(struct sdw_slave * slave,u32 addr,u8 value)480 int sdw_write_no_pm(struct sdw_slave *slave, u32 addr, u8 value)
481 {
482 return sdw_nwrite_no_pm(slave, addr, 1, &value);
483 }
484 EXPORT_SYMBOL(sdw_write_no_pm);
485
486 static int
sdw_bread_no_pm(struct sdw_bus * bus,u16 dev_num,u32 addr)487 sdw_bread_no_pm(struct sdw_bus *bus, u16 dev_num, u32 addr)
488 {
489 struct sdw_msg msg;
490 u8 buf;
491 int ret;
492
493 ret = sdw_fill_msg(&msg, NULL, addr, 1, dev_num,
494 SDW_MSG_FLAG_READ, &buf);
495 if (ret < 0)
496 return ret;
497
498 ret = sdw_transfer(bus, &msg);
499 if (ret < 0)
500 return ret;
501
502 return buf;
503 }
504
505 static int
sdw_bwrite_no_pm(struct sdw_bus * bus,u16 dev_num,u32 addr,u8 value)506 sdw_bwrite_no_pm(struct sdw_bus *bus, u16 dev_num, u32 addr, u8 value)
507 {
508 struct sdw_msg msg;
509 int ret;
510
511 ret = sdw_fill_msg(&msg, NULL, addr, 1, dev_num,
512 SDW_MSG_FLAG_WRITE, &value);
513 if (ret < 0)
514 return ret;
515
516 return sdw_transfer(bus, &msg);
517 }
518
sdw_bread_no_pm_unlocked(struct sdw_bus * bus,u16 dev_num,u32 addr)519 int sdw_bread_no_pm_unlocked(struct sdw_bus *bus, u16 dev_num, u32 addr)
520 {
521 struct sdw_msg msg;
522 u8 buf;
523 int ret;
524
525 ret = sdw_fill_msg(&msg, NULL, addr, 1, dev_num,
526 SDW_MSG_FLAG_READ, &buf);
527 if (ret < 0)
528 return ret;
529
530 ret = sdw_transfer_unlocked(bus, &msg);
531 if (ret < 0)
532 return ret;
533
534 return buf;
535 }
536 EXPORT_SYMBOL(sdw_bread_no_pm_unlocked);
537
sdw_bwrite_no_pm_unlocked(struct sdw_bus * bus,u16 dev_num,u32 addr,u8 value)538 int sdw_bwrite_no_pm_unlocked(struct sdw_bus *bus, u16 dev_num, u32 addr, u8 value)
539 {
540 struct sdw_msg msg;
541 int ret;
542
543 ret = sdw_fill_msg(&msg, NULL, addr, 1, dev_num,
544 SDW_MSG_FLAG_WRITE, &value);
545 if (ret < 0)
546 return ret;
547
548 return sdw_transfer_unlocked(bus, &msg);
549 }
550 EXPORT_SYMBOL(sdw_bwrite_no_pm_unlocked);
551
552 /**
553 * sdw_read_no_pm() - Read a SDW Slave register with no PM
554 * @slave: SDW Slave
555 * @addr: Register address
556 */
sdw_read_no_pm(struct sdw_slave * slave,u32 addr)557 int sdw_read_no_pm(struct sdw_slave *slave, u32 addr)
558 {
559 u8 buf;
560 int ret;
561
562 ret = sdw_nread_no_pm(slave, addr, 1, &buf);
563 if (ret < 0)
564 return ret;
565 else
566 return buf;
567 }
568 EXPORT_SYMBOL(sdw_read_no_pm);
569
sdw_update_no_pm(struct sdw_slave * slave,u32 addr,u8 mask,u8 val)570 int sdw_update_no_pm(struct sdw_slave *slave, u32 addr, u8 mask, u8 val)
571 {
572 int tmp;
573
574 tmp = sdw_read_no_pm(slave, addr);
575 if (tmp < 0)
576 return tmp;
577
578 tmp = (tmp & ~mask) | val;
579 return sdw_write_no_pm(slave, addr, tmp);
580 }
581 EXPORT_SYMBOL(sdw_update_no_pm);
582
583 /* Read-Modify-Write Slave register */
sdw_update(struct sdw_slave * slave,u32 addr,u8 mask,u8 val)584 int sdw_update(struct sdw_slave *slave, u32 addr, u8 mask, u8 val)
585 {
586 int tmp;
587
588 tmp = sdw_read(slave, addr);
589 if (tmp < 0)
590 return tmp;
591
592 tmp = (tmp & ~mask) | val;
593 return sdw_write(slave, addr, tmp);
594 }
595 EXPORT_SYMBOL(sdw_update);
596
597 /**
598 * sdw_nread() - Read "n" contiguous SDW Slave registers
599 * @slave: SDW Slave
600 * @addr: Register address
601 * @count: length
602 * @val: Buffer for values to be read
603 *
604 * This version of the function will take a PM reference to the slave
605 * device.
606 * Note that if the message crosses a page boundary each page will be
607 * transferred under a separate invocation of the msg_lock.
608 */
sdw_nread(struct sdw_slave * slave,u32 addr,size_t count,u8 * val)609 int sdw_nread(struct sdw_slave *slave, u32 addr, size_t count, u8 *val)
610 {
611 int ret;
612
613 ret = pm_runtime_get_sync(&slave->dev);
614 if (ret < 0 && ret != -EACCES) {
615 pm_runtime_put_noidle(&slave->dev);
616 return ret;
617 }
618
619 ret = sdw_nread_no_pm(slave, addr, count, val);
620
621 pm_runtime_mark_last_busy(&slave->dev);
622 pm_runtime_put(&slave->dev);
623
624 return ret;
625 }
626 EXPORT_SYMBOL(sdw_nread);
627
628 /**
629 * sdw_nwrite() - Write "n" contiguous SDW Slave registers
630 * @slave: SDW Slave
631 * @addr: Register address
632 * @count: length
633 * @val: Buffer for values to be written
634 *
635 * This version of the function will take a PM reference to the slave
636 * device.
637 * Note that if the message crosses a page boundary each page will be
638 * transferred under a separate invocation of the msg_lock.
639 */
sdw_nwrite(struct sdw_slave * slave,u32 addr,size_t count,const u8 * val)640 int sdw_nwrite(struct sdw_slave *slave, u32 addr, size_t count, const u8 *val)
641 {
642 int ret;
643
644 ret = pm_runtime_get_sync(&slave->dev);
645 if (ret < 0 && ret != -EACCES) {
646 pm_runtime_put_noidle(&slave->dev);
647 return ret;
648 }
649
650 ret = sdw_nwrite_no_pm(slave, addr, count, val);
651
652 pm_runtime_mark_last_busy(&slave->dev);
653 pm_runtime_put(&slave->dev);
654
655 return ret;
656 }
657 EXPORT_SYMBOL(sdw_nwrite);
658
659 /**
660 * sdw_read() - Read a SDW Slave register
661 * @slave: SDW Slave
662 * @addr: Register address
663 *
664 * This version of the function will take a PM reference to the slave
665 * device.
666 */
sdw_read(struct sdw_slave * slave,u32 addr)667 int sdw_read(struct sdw_slave *slave, u32 addr)
668 {
669 u8 buf;
670 int ret;
671
672 ret = sdw_nread(slave, addr, 1, &buf);
673 if (ret < 0)
674 return ret;
675
676 return buf;
677 }
678 EXPORT_SYMBOL(sdw_read);
679
680 /**
681 * sdw_write() - Write a SDW Slave register
682 * @slave: SDW Slave
683 * @addr: Register address
684 * @value: Register value
685 *
686 * This version of the function will take a PM reference to the slave
687 * device.
688 */
sdw_write(struct sdw_slave * slave,u32 addr,u8 value)689 int sdw_write(struct sdw_slave *slave, u32 addr, u8 value)
690 {
691 return sdw_nwrite(slave, addr, 1, &value);
692 }
693 EXPORT_SYMBOL(sdw_write);
694
695 /*
696 * SDW alert handling
697 */
698
699 /* called with bus_lock held */
sdw_get_slave(struct sdw_bus * bus,int i)700 static struct sdw_slave *sdw_get_slave(struct sdw_bus *bus, int i)
701 {
702 struct sdw_slave *slave;
703
704 list_for_each_entry(slave, &bus->slaves, node) {
705 if (slave->dev_num == i)
706 return slave;
707 }
708
709 return NULL;
710 }
711
sdw_compare_devid(struct sdw_slave * slave,struct sdw_slave_id id)712 int sdw_compare_devid(struct sdw_slave *slave, struct sdw_slave_id id)
713 {
714 if (slave->id.mfg_id != id.mfg_id ||
715 slave->id.part_id != id.part_id ||
716 slave->id.class_id != id.class_id ||
717 (slave->id.unique_id != SDW_IGNORED_UNIQUE_ID &&
718 slave->id.unique_id != id.unique_id))
719 return -ENODEV;
720
721 return 0;
722 }
723 EXPORT_SYMBOL(sdw_compare_devid);
724
725 /* called with bus_lock held */
sdw_get_device_num(struct sdw_slave * slave)726 static int sdw_get_device_num(struct sdw_slave *slave)
727 {
728 struct sdw_bus *bus = slave->bus;
729 int bit;
730
731 if (bus->ops && bus->ops->get_device_num) {
732 bit = bus->ops->get_device_num(bus, slave);
733 if (bit < 0)
734 goto err;
735 } else {
736 bit = find_first_zero_bit(bus->assigned, SDW_MAX_DEVICES);
737 if (bit == SDW_MAX_DEVICES) {
738 bit = -ENODEV;
739 goto err;
740 }
741 }
742
743 /*
744 * Do not update dev_num in Slave data structure here,
745 * Update once program dev_num is successful
746 */
747 set_bit(bit, bus->assigned);
748
749 err:
750 return bit;
751 }
752
sdw_assign_device_num(struct sdw_slave * slave)753 static int sdw_assign_device_num(struct sdw_slave *slave)
754 {
755 struct sdw_bus *bus = slave->bus;
756 struct device *dev = bus->dev;
757 int ret;
758
759 /* check first if device number is assigned, if so reuse that */
760 if (!slave->dev_num) {
761 if (!slave->dev_num_sticky) {
762 int dev_num;
763
764 mutex_lock(&slave->bus->bus_lock);
765 dev_num = sdw_get_device_num(slave);
766 mutex_unlock(&slave->bus->bus_lock);
767 if (dev_num < 0) {
768 dev_err(dev, "Get dev_num failed: %d\n", dev_num);
769 return dev_num;
770 }
771
772 slave->dev_num_sticky = dev_num;
773 } else {
774 dev_dbg(dev, "Slave already registered, reusing dev_num: %d\n",
775 slave->dev_num_sticky);
776 }
777 }
778
779 /* Clear the slave->dev_num to transfer message on device 0 */
780 slave->dev_num = 0;
781
782 ret = sdw_write_no_pm(slave, SDW_SCP_DEVNUMBER, slave->dev_num_sticky);
783 if (ret < 0) {
784 dev_err(dev, "Program device_num %d failed: %d\n",
785 slave->dev_num_sticky, ret);
786 return ret;
787 }
788
789 /* After xfer of msg, restore dev_num */
790 slave->dev_num = slave->dev_num_sticky;
791
792 if (bus->ops && bus->ops->new_peripheral_assigned)
793 bus->ops->new_peripheral_assigned(bus, slave, slave->dev_num);
794
795 return 0;
796 }
797
sdw_extract_slave_id(struct sdw_bus * bus,u64 addr,struct sdw_slave_id * id)798 void sdw_extract_slave_id(struct sdw_bus *bus,
799 u64 addr, struct sdw_slave_id *id)
800 {
801 dev_dbg(bus->dev, "SDW Slave Addr: %llx\n", addr);
802
803 id->sdw_version = SDW_VERSION(addr);
804 id->unique_id = SDW_UNIQUE_ID(addr);
805 id->mfg_id = SDW_MFG_ID(addr);
806 id->part_id = SDW_PART_ID(addr);
807 id->class_id = SDW_CLASS_ID(addr);
808
809 dev_dbg(bus->dev,
810 "SDW Slave class_id 0x%02x, mfg_id 0x%04x, part_id 0x%04x, unique_id 0x%x, version 0x%x\n",
811 id->class_id, id->mfg_id, id->part_id, id->unique_id, id->sdw_version);
812 }
813 EXPORT_SYMBOL(sdw_extract_slave_id);
814
is_clock_scaling_supported_by_slave(struct sdw_slave * slave)815 bool is_clock_scaling_supported_by_slave(struct sdw_slave *slave)
816 {
817 /*
818 * Dynamic scaling is a defined by SDCA. However, some devices expose the class ID but
819 * can't support dynamic scaling. We might need a quirk to handle such devices.
820 */
821 return slave->id.class_id;
822 }
823 EXPORT_SYMBOL(is_clock_scaling_supported_by_slave);
824
sdw_program_device_num(struct sdw_bus * bus,bool * programmed)825 static int sdw_program_device_num(struct sdw_bus *bus, bool *programmed)
826 {
827 u8 buf[SDW_NUM_DEV_ID_REGISTERS] = {0};
828 struct sdw_slave *slave, *_s;
829 struct sdw_slave_id id;
830 struct sdw_msg msg;
831 bool found;
832 int count = 0, ret;
833 u64 addr;
834
835 *programmed = false;
836
837 /* No Slave, so use raw xfer api */
838 ret = sdw_fill_msg(&msg, NULL, SDW_SCP_DEVID_0,
839 SDW_NUM_DEV_ID_REGISTERS, 0, SDW_MSG_FLAG_READ, buf);
840 if (ret < 0)
841 return ret;
842
843 do {
844 ret = sdw_transfer(bus, &msg);
845 if (ret == -ENODATA) { /* end of device id reads */
846 dev_dbg(bus->dev, "No more devices to enumerate\n");
847 ret = 0;
848 break;
849 }
850 if (ret < 0) {
851 dev_err(bus->dev, "DEVID read fail:%d\n", ret);
852 break;
853 }
854
855 /*
856 * Construct the addr and extract. Cast the higher shift
857 * bits to avoid truncation due to size limit.
858 */
859 addr = buf[5] | (buf[4] << 8) | (buf[3] << 16) |
860 ((u64)buf[2] << 24) | ((u64)buf[1] << 32) |
861 ((u64)buf[0] << 40);
862
863 sdw_extract_slave_id(bus, addr, &id);
864
865 found = false;
866 /* Now compare with entries */
867 list_for_each_entry_safe(slave, _s, &bus->slaves, node) {
868 if (sdw_compare_devid(slave, id) == 0) {
869 found = true;
870
871 /*
872 * To prevent skipping state-machine stages don't
873 * program a device until we've seen it UNATTACH.
874 * Must return here because no other device on #0
875 * can be detected until this one has been
876 * assigned a device ID.
877 */
878 if (slave->status != SDW_SLAVE_UNATTACHED)
879 return 0;
880
881 /*
882 * Assign a new dev_num to this Slave and
883 * not mark it present. It will be marked
884 * present after it reports ATTACHED on new
885 * dev_num
886 */
887 ret = sdw_assign_device_num(slave);
888 if (ret < 0) {
889 dev_err(bus->dev,
890 "Assign dev_num failed:%d\n",
891 ret);
892 return ret;
893 }
894
895 *programmed = true;
896
897 break;
898 }
899 }
900
901 if (!found) {
902 /* TODO: Park this device in Group 13 */
903
904 /*
905 * add Slave device even if there is no platform
906 * firmware description. There will be no driver probe
907 * but the user/integration will be able to see the
908 * device, enumeration status and device number in sysfs
909 */
910 sdw_slave_add(bus, &id, NULL);
911
912 dev_err(bus->dev, "Slave Entry not found\n");
913 }
914
915 count++;
916
917 /*
918 * Check till error out or retry (count) exhausts.
919 * Device can drop off and rejoin during enumeration
920 * so count till twice the bound.
921 */
922
923 } while (ret == 0 && count < (SDW_MAX_DEVICES * 2));
924
925 return ret;
926 }
927
sdw_modify_slave_status(struct sdw_slave * slave,enum sdw_slave_status status)928 static void sdw_modify_slave_status(struct sdw_slave *slave,
929 enum sdw_slave_status status)
930 {
931 struct sdw_bus *bus = slave->bus;
932
933 mutex_lock(&bus->bus_lock);
934
935 dev_vdbg(bus->dev,
936 "changing status slave %d status %d new status %d\n",
937 slave->dev_num, slave->status, status);
938
939 if (status == SDW_SLAVE_UNATTACHED) {
940 dev_dbg(&slave->dev,
941 "initializing enumeration and init completion for Slave %d\n",
942 slave->dev_num);
943
944 reinit_completion(&slave->enumeration_complete);
945 reinit_completion(&slave->initialization_complete);
946
947 } else if ((status == SDW_SLAVE_ATTACHED) &&
948 (slave->status == SDW_SLAVE_UNATTACHED)) {
949 dev_dbg(&slave->dev,
950 "signaling enumeration completion for Slave %d\n",
951 slave->dev_num);
952
953 complete_all(&slave->enumeration_complete);
954 }
955 slave->status = status;
956 mutex_unlock(&bus->bus_lock);
957 }
958
sdw_slave_clk_stop_callback(struct sdw_slave * slave,enum sdw_clk_stop_mode mode,enum sdw_clk_stop_type type)959 static int sdw_slave_clk_stop_callback(struct sdw_slave *slave,
960 enum sdw_clk_stop_mode mode,
961 enum sdw_clk_stop_type type)
962 {
963 int ret = 0;
964
965 mutex_lock(&slave->sdw_dev_lock);
966
967 if (slave->probed) {
968 struct device *dev = &slave->dev;
969 struct sdw_driver *drv = drv_to_sdw_driver(dev->driver);
970
971 if (drv->ops && drv->ops->clk_stop)
972 ret = drv->ops->clk_stop(slave, mode, type);
973 }
974
975 mutex_unlock(&slave->sdw_dev_lock);
976
977 return ret;
978 }
979
sdw_slave_clk_stop_prepare(struct sdw_slave * slave,enum sdw_clk_stop_mode mode,bool prepare)980 static int sdw_slave_clk_stop_prepare(struct sdw_slave *slave,
981 enum sdw_clk_stop_mode mode,
982 bool prepare)
983 {
984 bool wake_en;
985 u32 val = 0;
986 int ret;
987
988 wake_en = slave->prop.wake_capable;
989
990 if (prepare) {
991 val = SDW_SCP_SYSTEMCTRL_CLK_STP_PREP;
992
993 if (mode == SDW_CLK_STOP_MODE1)
994 val |= SDW_SCP_SYSTEMCTRL_CLK_STP_MODE1;
995
996 if (wake_en)
997 val |= SDW_SCP_SYSTEMCTRL_WAKE_UP_EN;
998 } else {
999 ret = sdw_read_no_pm(slave, SDW_SCP_SYSTEMCTRL);
1000 if (ret < 0) {
1001 if (ret != -ENODATA)
1002 dev_err(&slave->dev, "SDW_SCP_SYSTEMCTRL read failed:%d\n", ret);
1003 return ret;
1004 }
1005 val = ret;
1006 val &= ~(SDW_SCP_SYSTEMCTRL_CLK_STP_PREP);
1007 }
1008
1009 ret = sdw_write_no_pm(slave, SDW_SCP_SYSTEMCTRL, val);
1010
1011 if (ret < 0 && ret != -ENODATA)
1012 dev_err(&slave->dev, "SDW_SCP_SYSTEMCTRL write failed:%d\n", ret);
1013
1014 return ret;
1015 }
1016
sdw_bus_wait_for_clk_prep_deprep(struct sdw_bus * bus,u16 dev_num,bool prepare)1017 static int sdw_bus_wait_for_clk_prep_deprep(struct sdw_bus *bus, u16 dev_num, bool prepare)
1018 {
1019 int retry = bus->clk_stop_timeout;
1020 int val;
1021
1022 do {
1023 val = sdw_bread_no_pm(bus, dev_num, SDW_SCP_STAT);
1024 if (val < 0) {
1025 if (val != -ENODATA)
1026 dev_err(bus->dev, "SDW_SCP_STAT bread failed:%d\n", val);
1027 return val;
1028 }
1029 val &= SDW_SCP_STAT_CLK_STP_NF;
1030 if (!val) {
1031 dev_dbg(bus->dev, "clock stop %s done slave:%d\n",
1032 prepare ? "prepare" : "deprepare",
1033 dev_num);
1034 return 0;
1035 }
1036
1037 usleep_range(1000, 1500);
1038 retry--;
1039 } while (retry);
1040
1041 dev_dbg(bus->dev, "clock stop %s did not complete for slave:%d\n",
1042 prepare ? "prepare" : "deprepare",
1043 dev_num);
1044
1045 return -ETIMEDOUT;
1046 }
1047
1048 /**
1049 * sdw_bus_prep_clk_stop: prepare Slave(s) for clock stop
1050 *
1051 * @bus: SDW bus instance
1052 *
1053 * Query Slave for clock stop mode and prepare for that mode.
1054 */
sdw_bus_prep_clk_stop(struct sdw_bus * bus)1055 int sdw_bus_prep_clk_stop(struct sdw_bus *bus)
1056 {
1057 bool simple_clk_stop = true;
1058 struct sdw_slave *slave;
1059 bool is_slave = false;
1060 int ret = 0;
1061
1062 /*
1063 * In order to save on transition time, prepare
1064 * each Slave and then wait for all Slave(s) to be
1065 * prepared for clock stop.
1066 * If one of the Slave devices has lost sync and
1067 * replies with Command Ignored/-ENODATA, we continue
1068 * the loop
1069 */
1070 list_for_each_entry(slave, &bus->slaves, node) {
1071 if (!slave->dev_num)
1072 continue;
1073
1074 if (slave->status != SDW_SLAVE_ATTACHED &&
1075 slave->status != SDW_SLAVE_ALERT)
1076 continue;
1077
1078 /* Identify if Slave(s) are available on Bus */
1079 is_slave = true;
1080
1081 ret = sdw_slave_clk_stop_callback(slave,
1082 SDW_CLK_STOP_MODE0,
1083 SDW_CLK_PRE_PREPARE);
1084 if (ret < 0 && ret != -ENODATA) {
1085 dev_err(&slave->dev, "clock stop pre-prepare cb failed:%d\n", ret);
1086 return ret;
1087 }
1088
1089 /* Only prepare a Slave device if needed */
1090 if (!slave->prop.simple_clk_stop_capable) {
1091 simple_clk_stop = false;
1092
1093 ret = sdw_slave_clk_stop_prepare(slave,
1094 SDW_CLK_STOP_MODE0,
1095 true);
1096 if (ret < 0 && ret != -ENODATA) {
1097 dev_err(&slave->dev, "clock stop prepare failed:%d\n", ret);
1098 return ret;
1099 }
1100 }
1101 }
1102
1103 /* Skip remaining clock stop preparation if no Slave is attached */
1104 if (!is_slave)
1105 return 0;
1106
1107 /*
1108 * Don't wait for all Slaves to be ready if they follow the simple
1109 * state machine
1110 */
1111 if (!simple_clk_stop) {
1112 ret = sdw_bus_wait_for_clk_prep_deprep(bus,
1113 SDW_BROADCAST_DEV_NUM, true);
1114 /*
1115 * if there are no Slave devices present and the reply is
1116 * Command_Ignored/-ENODATA, we don't need to continue with the
1117 * flow and can just return here. The error code is not modified
1118 * and its handling left as an exercise for the caller.
1119 */
1120 if (ret < 0)
1121 return ret;
1122 }
1123
1124 /* Inform slaves that prep is done */
1125 list_for_each_entry(slave, &bus->slaves, node) {
1126 if (!slave->dev_num)
1127 continue;
1128
1129 if (slave->status != SDW_SLAVE_ATTACHED &&
1130 slave->status != SDW_SLAVE_ALERT)
1131 continue;
1132
1133 ret = sdw_slave_clk_stop_callback(slave,
1134 SDW_CLK_STOP_MODE0,
1135 SDW_CLK_POST_PREPARE);
1136
1137 if (ret < 0 && ret != -ENODATA) {
1138 dev_err(&slave->dev, "clock stop post-prepare cb failed:%d\n", ret);
1139 return ret;
1140 }
1141 }
1142
1143 return 0;
1144 }
1145 EXPORT_SYMBOL(sdw_bus_prep_clk_stop);
1146
1147 /**
1148 * sdw_bus_clk_stop: stop bus clock
1149 *
1150 * @bus: SDW bus instance
1151 *
1152 * After preparing the Slaves for clock stop, stop the clock by broadcasting
1153 * write to SCP_CTRL register.
1154 */
sdw_bus_clk_stop(struct sdw_bus * bus)1155 int sdw_bus_clk_stop(struct sdw_bus *bus)
1156 {
1157 int ret;
1158
1159 /*
1160 * broadcast clock stop now, attached Slaves will ACK this,
1161 * unattached will ignore
1162 */
1163 ret = sdw_bwrite_no_pm(bus, SDW_BROADCAST_DEV_NUM,
1164 SDW_SCP_CTRL, SDW_SCP_CTRL_CLK_STP_NOW);
1165 if (ret < 0) {
1166 if (ret != -ENODATA)
1167 dev_err(bus->dev, "ClockStopNow Broadcast msg failed %d\n", ret);
1168 return ret;
1169 }
1170
1171 return 0;
1172 }
1173 EXPORT_SYMBOL(sdw_bus_clk_stop);
1174
1175 /**
1176 * sdw_bus_exit_clk_stop: Exit clock stop mode
1177 *
1178 * @bus: SDW bus instance
1179 *
1180 * This De-prepares the Slaves by exiting Clock Stop Mode 0. For the Slaves
1181 * exiting Clock Stop Mode 1, they will be de-prepared after they enumerate
1182 * back.
1183 */
sdw_bus_exit_clk_stop(struct sdw_bus * bus)1184 int sdw_bus_exit_clk_stop(struct sdw_bus *bus)
1185 {
1186 bool simple_clk_stop = true;
1187 struct sdw_slave *slave;
1188 bool is_slave = false;
1189 int ret;
1190
1191 /*
1192 * In order to save on transition time, de-prepare
1193 * each Slave and then wait for all Slave(s) to be
1194 * de-prepared after clock resume.
1195 */
1196 list_for_each_entry(slave, &bus->slaves, node) {
1197 if (!slave->dev_num)
1198 continue;
1199
1200 if (slave->status != SDW_SLAVE_ATTACHED &&
1201 slave->status != SDW_SLAVE_ALERT)
1202 continue;
1203
1204 /* Identify if Slave(s) are available on Bus */
1205 is_slave = true;
1206
1207 ret = sdw_slave_clk_stop_callback(slave, SDW_CLK_STOP_MODE0,
1208 SDW_CLK_PRE_DEPREPARE);
1209 if (ret < 0)
1210 dev_warn(&slave->dev, "clock stop pre-deprepare cb failed:%d\n", ret);
1211
1212 /* Only de-prepare a Slave device if needed */
1213 if (!slave->prop.simple_clk_stop_capable) {
1214 simple_clk_stop = false;
1215
1216 ret = sdw_slave_clk_stop_prepare(slave, SDW_CLK_STOP_MODE0,
1217 false);
1218
1219 if (ret < 0)
1220 dev_warn(&slave->dev, "clock stop deprepare failed:%d\n", ret);
1221 }
1222 }
1223
1224 /* Skip remaining clock stop de-preparation if no Slave is attached */
1225 if (!is_slave)
1226 return 0;
1227
1228 /*
1229 * Don't wait for all Slaves to be ready if they follow the simple
1230 * state machine
1231 */
1232 if (!simple_clk_stop) {
1233 ret = sdw_bus_wait_for_clk_prep_deprep(bus, SDW_BROADCAST_DEV_NUM, false);
1234 if (ret < 0)
1235 dev_warn(bus->dev, "clock stop deprepare wait failed:%d\n", ret);
1236 }
1237
1238 list_for_each_entry(slave, &bus->slaves, node) {
1239 if (!slave->dev_num)
1240 continue;
1241
1242 if (slave->status != SDW_SLAVE_ATTACHED &&
1243 slave->status != SDW_SLAVE_ALERT)
1244 continue;
1245
1246 ret = sdw_slave_clk_stop_callback(slave, SDW_CLK_STOP_MODE0,
1247 SDW_CLK_POST_DEPREPARE);
1248 if (ret < 0)
1249 dev_warn(&slave->dev, "clock stop post-deprepare cb failed:%d\n", ret);
1250 }
1251
1252 return 0;
1253 }
1254 EXPORT_SYMBOL(sdw_bus_exit_clk_stop);
1255
sdw_configure_dpn_intr(struct sdw_slave * slave,int port,bool enable,int mask)1256 int sdw_configure_dpn_intr(struct sdw_slave *slave,
1257 int port, bool enable, int mask)
1258 {
1259 u32 addr;
1260 int ret;
1261 u8 val = 0;
1262
1263 if (slave->bus->params.s_data_mode != SDW_PORT_DATA_MODE_NORMAL) {
1264 dev_dbg(&slave->dev, "TEST FAIL interrupt %s\n",
1265 str_on_off(enable));
1266 mask |= SDW_DPN_INT_TEST_FAIL;
1267 }
1268
1269 addr = SDW_DPN_INTMASK(port);
1270
1271 /* Set/Clear port ready interrupt mask */
1272 if (enable) {
1273 val |= mask;
1274 val |= SDW_DPN_INT_PORT_READY;
1275 } else {
1276 val &= ~(mask);
1277 val &= ~SDW_DPN_INT_PORT_READY;
1278 }
1279
1280 ret = sdw_update_no_pm(slave, addr, (mask | SDW_DPN_INT_PORT_READY), val);
1281 if (ret < 0)
1282 dev_err(&slave->dev,
1283 "SDW_DPN_INTMASK write failed:%d\n", val);
1284
1285 return ret;
1286 }
1287
sdw_slave_get_scale_index(struct sdw_slave * slave,u8 * base)1288 int sdw_slave_get_scale_index(struct sdw_slave *slave, u8 *base)
1289 {
1290 u32 mclk_freq = slave->bus->prop.mclk_freq;
1291 u32 curr_freq = slave->bus->params.curr_dr_freq >> 1;
1292 unsigned int scale;
1293 u8 scale_index;
1294
1295 if (!mclk_freq) {
1296 dev_err(&slave->dev,
1297 "no bus MCLK, cannot set SDW_SCP_BUS_CLOCK_BASE\n");
1298 return -EINVAL;
1299 }
1300
1301 /*
1302 * map base frequency using Table 89 of SoundWire 1.2 spec.
1303 * The order of the tests just follows the specification, this
1304 * is not a selection between possible values or a search for
1305 * the best value but just a mapping. Only one case per platform
1306 * is relevant.
1307 * Some BIOS have inconsistent values for mclk_freq but a
1308 * correct root so we force the mclk_freq to avoid variations.
1309 */
1310 if (!(19200000 % mclk_freq)) {
1311 mclk_freq = 19200000;
1312 *base = SDW_SCP_BASE_CLOCK_19200000_HZ;
1313 } else if (!(22579200 % mclk_freq)) {
1314 mclk_freq = 22579200;
1315 *base = SDW_SCP_BASE_CLOCK_22579200_HZ;
1316 } else if (!(24576000 % mclk_freq)) {
1317 mclk_freq = 24576000;
1318 *base = SDW_SCP_BASE_CLOCK_24576000_HZ;
1319 } else if (!(32000000 % mclk_freq)) {
1320 mclk_freq = 32000000;
1321 *base = SDW_SCP_BASE_CLOCK_32000000_HZ;
1322 } else if (!(96000000 % mclk_freq)) {
1323 mclk_freq = 24000000;
1324 *base = SDW_SCP_BASE_CLOCK_24000000_HZ;
1325 } else {
1326 dev_err(&slave->dev,
1327 "Unsupported clock base, mclk %d\n",
1328 mclk_freq);
1329 return -EINVAL;
1330 }
1331
1332 if (mclk_freq % curr_freq) {
1333 dev_err(&slave->dev,
1334 "mclk %d is not multiple of bus curr_freq %d\n",
1335 mclk_freq, curr_freq);
1336 return -EINVAL;
1337 }
1338
1339 scale = mclk_freq / curr_freq;
1340
1341 /*
1342 * map scale to Table 90 of SoundWire 1.2 spec - and check
1343 * that the scale is a power of two and maximum 64
1344 */
1345 scale_index = ilog2(scale);
1346
1347 if (BIT(scale_index) != scale || scale_index > 6) {
1348 dev_err(&slave->dev,
1349 "No match found for scale %d, bus mclk %d curr_freq %d\n",
1350 scale, mclk_freq, curr_freq);
1351 return -EINVAL;
1352 }
1353 scale_index++;
1354
1355 dev_dbg(&slave->dev,
1356 "Configured bus base %d, scale %d, mclk %d, curr_freq %d\n",
1357 *base, scale_index, mclk_freq, curr_freq);
1358
1359 return scale_index;
1360 }
1361 EXPORT_SYMBOL(sdw_slave_get_scale_index);
1362
sdw_slave_set_frequency(struct sdw_slave * slave)1363 static int sdw_slave_set_frequency(struct sdw_slave *slave)
1364 {
1365 int scale_index;
1366 u8 base;
1367 int ret;
1368
1369 /*
1370 * frequency base and scale registers are required for SDCA
1371 * devices. They may also be used for 1.2+/non-SDCA devices.
1372 * Driver can set the property directly, for now there's no
1373 * DisCo property to discover support for the scaling registers
1374 * from platform firmware.
1375 */
1376 if (!slave->id.class_id && !slave->prop.clock_reg_supported)
1377 return 0;
1378
1379 scale_index = sdw_slave_get_scale_index(slave, &base);
1380 if (scale_index < 0)
1381 return scale_index;
1382
1383 ret = sdw_write_no_pm(slave, SDW_SCP_BUS_CLOCK_BASE, base);
1384 if (ret < 0) {
1385 dev_err(&slave->dev,
1386 "SDW_SCP_BUS_CLOCK_BASE write failed:%d\n", ret);
1387 return ret;
1388 }
1389
1390 /* initialize scale for both banks */
1391 ret = sdw_write_no_pm(slave, SDW_SCP_BUSCLOCK_SCALE_B0, scale_index);
1392 if (ret < 0) {
1393 dev_err(&slave->dev,
1394 "SDW_SCP_BUSCLOCK_SCALE_B0 write failed:%d\n", ret);
1395 return ret;
1396 }
1397 ret = sdw_write_no_pm(slave, SDW_SCP_BUSCLOCK_SCALE_B1, scale_index);
1398 if (ret < 0)
1399 dev_err(&slave->dev,
1400 "SDW_SCP_BUSCLOCK_SCALE_B1 write failed:%d\n", ret);
1401
1402 return ret;
1403 }
1404
sdw_initialize_slave(struct sdw_slave * slave)1405 static int sdw_initialize_slave(struct sdw_slave *slave)
1406 {
1407 struct sdw_slave_prop *prop = &slave->prop;
1408 int status;
1409 int ret;
1410 u8 val;
1411
1412 ret = sdw_slave_set_frequency(slave);
1413 if (ret < 0)
1414 return ret;
1415
1416 if (slave->bus->prop.quirks & SDW_MASTER_QUIRKS_CLEAR_INITIAL_CLASH) {
1417 /* Clear bus clash interrupt before enabling interrupt mask */
1418 status = sdw_read_no_pm(slave, SDW_SCP_INT1);
1419 if (status < 0) {
1420 dev_err(&slave->dev,
1421 "SDW_SCP_INT1 (BUS_CLASH) read failed:%d\n", status);
1422 return status;
1423 }
1424 if (status & SDW_SCP_INT1_BUS_CLASH) {
1425 dev_warn(&slave->dev, "Bus clash detected before INT mask is enabled\n");
1426 ret = sdw_write_no_pm(slave, SDW_SCP_INT1, SDW_SCP_INT1_BUS_CLASH);
1427 if (ret < 0) {
1428 dev_err(&slave->dev,
1429 "SDW_SCP_INT1 (BUS_CLASH) write failed:%d\n", ret);
1430 return ret;
1431 }
1432 }
1433 }
1434 if ((slave->bus->prop.quirks & SDW_MASTER_QUIRKS_CLEAR_INITIAL_PARITY) &&
1435 !(prop->quirks & SDW_SLAVE_QUIRKS_INVALID_INITIAL_PARITY)) {
1436 /* Clear parity interrupt before enabling interrupt mask */
1437 status = sdw_read_no_pm(slave, SDW_SCP_INT1);
1438 if (status < 0) {
1439 dev_err(&slave->dev,
1440 "SDW_SCP_INT1 (PARITY) read failed:%d\n", status);
1441 return status;
1442 }
1443 if (status & SDW_SCP_INT1_PARITY) {
1444 dev_warn(&slave->dev, "PARITY error detected before INT mask is enabled\n");
1445 ret = sdw_write_no_pm(slave, SDW_SCP_INT1, SDW_SCP_INT1_PARITY);
1446 if (ret < 0) {
1447 dev_err(&slave->dev,
1448 "SDW_SCP_INT1 (PARITY) write failed:%d\n", ret);
1449 return ret;
1450 }
1451 }
1452 }
1453
1454 /*
1455 * Set SCP_INT1_MASK register, typically bus clash and
1456 * implementation-defined interrupt mask. The Parity detection
1457 * may not always be correct on startup so its use is
1458 * device-dependent, it might e.g. only be enabled in
1459 * steady-state after a couple of frames.
1460 */
1461 val = prop->scp_int1_mask;
1462
1463 /* Enable SCP interrupts */
1464 ret = sdw_update_no_pm(slave, SDW_SCP_INTMASK1, val, val);
1465 if (ret < 0) {
1466 dev_err(&slave->dev,
1467 "SDW_SCP_INTMASK1 write failed:%d\n", ret);
1468 return ret;
1469 }
1470
1471 /* No need to continue if DP0 is not present */
1472 if (!prop->dp0_prop)
1473 return 0;
1474
1475 /* Enable DP0 interrupts */
1476 val = prop->dp0_prop->imp_def_interrupts;
1477 val |= SDW_DP0_INT_PORT_READY | SDW_DP0_INT_BRA_FAILURE;
1478
1479 ret = sdw_update_no_pm(slave, SDW_DP0_INTMASK, val, val);
1480 if (ret < 0)
1481 dev_err(&slave->dev,
1482 "SDW_DP0_INTMASK read failed:%d\n", ret);
1483 return ret;
1484 }
1485
sdw_handle_dp0_interrupt(struct sdw_slave * slave,u8 * slave_status)1486 static int sdw_handle_dp0_interrupt(struct sdw_slave *slave, u8 *slave_status)
1487 {
1488 u8 clear, impl_int_mask;
1489 int status, status2, ret, count = 0;
1490
1491 status = sdw_read_no_pm(slave, SDW_DP0_INT);
1492 if (status < 0) {
1493 dev_err(&slave->dev,
1494 "SDW_DP0_INT read failed:%d\n", status);
1495 return status;
1496 }
1497
1498 do {
1499 clear = status & ~(SDW_DP0_INTERRUPTS | SDW_DP0_SDCA_CASCADE);
1500
1501 if (status & SDW_DP0_INT_TEST_FAIL) {
1502 dev_err(&slave->dev, "Test fail for port 0\n");
1503 clear |= SDW_DP0_INT_TEST_FAIL;
1504 }
1505
1506 /*
1507 * Assumption: PORT_READY interrupt will be received only for
1508 * ports implementing Channel Prepare state machine (CP_SM)
1509 */
1510
1511 if (status & SDW_DP0_INT_PORT_READY) {
1512 complete(&slave->port_ready[0]);
1513 clear |= SDW_DP0_INT_PORT_READY;
1514 }
1515
1516 if (status & SDW_DP0_INT_BRA_FAILURE) {
1517 dev_err(&slave->dev, "BRA failed\n");
1518 clear |= SDW_DP0_INT_BRA_FAILURE;
1519 }
1520
1521 impl_int_mask = SDW_DP0_INT_IMPDEF1 |
1522 SDW_DP0_INT_IMPDEF2 | SDW_DP0_INT_IMPDEF3;
1523
1524 if (status & impl_int_mask) {
1525 clear |= impl_int_mask;
1526 *slave_status = clear;
1527 }
1528
1529 /* clear the interrupts but don't touch reserved and SDCA_CASCADE fields */
1530 ret = sdw_write_no_pm(slave, SDW_DP0_INT, clear);
1531 if (ret < 0) {
1532 dev_err(&slave->dev,
1533 "SDW_DP0_INT write failed:%d\n", ret);
1534 return ret;
1535 }
1536
1537 /* Read DP0 interrupt again */
1538 status2 = sdw_read_no_pm(slave, SDW_DP0_INT);
1539 if (status2 < 0) {
1540 dev_err(&slave->dev,
1541 "SDW_DP0_INT read failed:%d\n", status2);
1542 return status2;
1543 }
1544 /* filter to limit loop to interrupts identified in the first status read */
1545 status &= status2;
1546
1547 count++;
1548
1549 /* we can get alerts while processing so keep retrying */
1550 } while ((status & SDW_DP0_INTERRUPTS) && (count < SDW_READ_INTR_CLEAR_RETRY));
1551
1552 if (count == SDW_READ_INTR_CLEAR_RETRY)
1553 dev_warn(&slave->dev, "Reached MAX_RETRY on DP0 read\n");
1554
1555 return ret;
1556 }
1557
sdw_handle_port_interrupt(struct sdw_slave * slave,int port,u8 * slave_status)1558 static int sdw_handle_port_interrupt(struct sdw_slave *slave,
1559 int port, u8 *slave_status)
1560 {
1561 u8 clear, impl_int_mask;
1562 int status, status2, ret, count = 0;
1563 u32 addr;
1564
1565 if (port == 0)
1566 return sdw_handle_dp0_interrupt(slave, slave_status);
1567
1568 addr = SDW_DPN_INT(port);
1569 status = sdw_read_no_pm(slave, addr);
1570 if (status < 0) {
1571 dev_err(&slave->dev,
1572 "SDW_DPN_INT read failed:%d\n", status);
1573
1574 return status;
1575 }
1576
1577 do {
1578 clear = status & ~SDW_DPN_INTERRUPTS;
1579
1580 if (status & SDW_DPN_INT_TEST_FAIL) {
1581 dev_err(&slave->dev, "Test fail for port:%d\n", port);
1582 clear |= SDW_DPN_INT_TEST_FAIL;
1583 }
1584
1585 /*
1586 * Assumption: PORT_READY interrupt will be received only
1587 * for ports implementing CP_SM.
1588 */
1589 if (status & SDW_DPN_INT_PORT_READY) {
1590 complete(&slave->port_ready[port]);
1591 clear |= SDW_DPN_INT_PORT_READY;
1592 }
1593
1594 impl_int_mask = SDW_DPN_INT_IMPDEF1 |
1595 SDW_DPN_INT_IMPDEF2 | SDW_DPN_INT_IMPDEF3;
1596
1597 if (status & impl_int_mask) {
1598 clear |= impl_int_mask;
1599 *slave_status = clear;
1600 }
1601
1602 /* clear the interrupt but don't touch reserved fields */
1603 ret = sdw_write_no_pm(slave, addr, clear);
1604 if (ret < 0) {
1605 dev_err(&slave->dev,
1606 "SDW_DPN_INT write failed:%d\n", ret);
1607 return ret;
1608 }
1609
1610 /* Read DPN interrupt again */
1611 status2 = sdw_read_no_pm(slave, addr);
1612 if (status2 < 0) {
1613 dev_err(&slave->dev,
1614 "SDW_DPN_INT read failed:%d\n", status2);
1615 return status2;
1616 }
1617 /* filter to limit loop to interrupts identified in the first status read */
1618 status &= status2;
1619
1620 count++;
1621
1622 /* we can get alerts while processing so keep retrying */
1623 } while ((status & SDW_DPN_INTERRUPTS) && (count < SDW_READ_INTR_CLEAR_RETRY));
1624
1625 if (count == SDW_READ_INTR_CLEAR_RETRY)
1626 dev_warn(&slave->dev, "Reached MAX_RETRY on port read");
1627
1628 return ret;
1629 }
1630
sdw_handle_slave_alerts(struct sdw_slave * slave)1631 static int sdw_handle_slave_alerts(struct sdw_slave *slave)
1632 {
1633 struct sdw_slave_intr_status slave_intr;
1634 u8 clear = 0, bit, port_status[15] = {0};
1635 int port_num, stat, ret, count = 0;
1636 unsigned long port;
1637 bool slave_notify;
1638 u8 sdca_cascade = 0;
1639 u8 buf, buf2[2];
1640 bool parity_check;
1641 bool parity_quirk;
1642
1643 sdw_modify_slave_status(slave, SDW_SLAVE_ALERT);
1644
1645 ret = pm_runtime_get_sync(&slave->dev);
1646 if (ret < 0 && ret != -EACCES) {
1647 dev_err(&slave->dev, "Failed to resume device: %d\n", ret);
1648 pm_runtime_put_noidle(&slave->dev);
1649 return ret;
1650 }
1651
1652 /* Read Intstat 1, Intstat 2 and Intstat 3 registers */
1653 ret = sdw_read_no_pm(slave, SDW_SCP_INT1);
1654 if (ret < 0) {
1655 dev_err(&slave->dev,
1656 "SDW_SCP_INT1 read failed:%d\n", ret);
1657 goto io_err;
1658 }
1659 buf = ret;
1660
1661 ret = sdw_nread_no_pm(slave, SDW_SCP_INTSTAT2, 2, buf2);
1662 if (ret < 0) {
1663 dev_err(&slave->dev,
1664 "SDW_SCP_INT2/3 read failed:%d\n", ret);
1665 goto io_err;
1666 }
1667
1668 if (slave->id.class_id) {
1669 ret = sdw_read_no_pm(slave, SDW_DP0_INT);
1670 if (ret < 0) {
1671 dev_err(&slave->dev,
1672 "SDW_DP0_INT read failed:%d\n", ret);
1673 goto io_err;
1674 }
1675 sdca_cascade = ret & SDW_DP0_SDCA_CASCADE;
1676 }
1677
1678 do {
1679 slave_notify = false;
1680
1681 /*
1682 * Check parity, bus clash and Slave (impl defined)
1683 * interrupt
1684 */
1685 if (buf & SDW_SCP_INT1_PARITY) {
1686 parity_check = slave->prop.scp_int1_mask & SDW_SCP_INT1_PARITY;
1687 parity_quirk = !slave->first_interrupt_done &&
1688 (slave->prop.quirks & SDW_SLAVE_QUIRKS_INVALID_INITIAL_PARITY);
1689
1690 if (parity_check && !parity_quirk)
1691 dev_err(&slave->dev, "Parity error detected\n");
1692 clear |= SDW_SCP_INT1_PARITY;
1693 }
1694
1695 if (buf & SDW_SCP_INT1_BUS_CLASH) {
1696 if (slave->prop.scp_int1_mask & SDW_SCP_INT1_BUS_CLASH)
1697 dev_err(&slave->dev, "Bus clash detected\n");
1698 clear |= SDW_SCP_INT1_BUS_CLASH;
1699 }
1700
1701 /*
1702 * When bus clash or parity errors are detected, such errors
1703 * are unlikely to be recoverable errors.
1704 * TODO: In such scenario, reset bus. Make this configurable
1705 * via sysfs property with bus reset being the default.
1706 */
1707
1708 if (buf & SDW_SCP_INT1_IMPL_DEF) {
1709 if (slave->prop.scp_int1_mask & SDW_SCP_INT1_IMPL_DEF) {
1710 dev_dbg(&slave->dev, "Slave impl defined interrupt\n");
1711 slave_notify = true;
1712 }
1713 clear |= SDW_SCP_INT1_IMPL_DEF;
1714 }
1715
1716 /* the SDCA interrupts are cleared in the codec driver .interrupt_callback() */
1717 if (sdca_cascade)
1718 slave_notify = true;
1719
1720 /* Check port 0 - 3 interrupts */
1721 port = buf & SDW_SCP_INT1_PORT0_3;
1722
1723 /* To get port number corresponding to bits, shift it */
1724 port = FIELD_GET(SDW_SCP_INT1_PORT0_3, port);
1725 for_each_set_bit(bit, &port, 8) {
1726 sdw_handle_port_interrupt(slave, bit,
1727 &port_status[bit]);
1728 }
1729
1730 /* Check if cascade 2 interrupt is present */
1731 if (buf & SDW_SCP_INT1_SCP2_CASCADE) {
1732 port = buf2[0] & SDW_SCP_INTSTAT2_PORT4_10;
1733 for_each_set_bit(bit, &port, 8) {
1734 /* scp2 ports start from 4 */
1735 port_num = bit + 4;
1736 sdw_handle_port_interrupt(slave,
1737 port_num,
1738 &port_status[port_num]);
1739 }
1740 }
1741
1742 /* now check last cascade */
1743 if (buf2[0] & SDW_SCP_INTSTAT2_SCP3_CASCADE) {
1744 port = buf2[1] & SDW_SCP_INTSTAT3_PORT11_14;
1745 for_each_set_bit(bit, &port, 8) {
1746 /* scp3 ports start from 11 */
1747 port_num = bit + 11;
1748 sdw_handle_port_interrupt(slave,
1749 port_num,
1750 &port_status[port_num]);
1751 }
1752 }
1753
1754 /* Update the Slave driver */
1755 if (slave_notify) {
1756 mutex_lock(&slave->sdw_dev_lock);
1757
1758 if (slave->probed) {
1759 struct device *dev = &slave->dev;
1760 struct sdw_driver *drv = drv_to_sdw_driver(dev->driver);
1761
1762 if (slave->prop.use_domain_irq && slave->irq)
1763 handle_nested_irq(slave->irq);
1764
1765 if (drv->ops && drv->ops->interrupt_callback) {
1766 slave_intr.sdca_cascade = sdca_cascade;
1767 slave_intr.control_port = clear;
1768 memcpy(slave_intr.port, &port_status,
1769 sizeof(slave_intr.port));
1770
1771 drv->ops->interrupt_callback(slave, &slave_intr);
1772 }
1773 }
1774
1775 mutex_unlock(&slave->sdw_dev_lock);
1776 }
1777
1778 /* Ack interrupt */
1779 ret = sdw_write_no_pm(slave, SDW_SCP_INT1, clear);
1780 if (ret < 0) {
1781 dev_err(&slave->dev,
1782 "SDW_SCP_INT1 write failed:%d\n", ret);
1783 goto io_err;
1784 }
1785
1786 /* at this point all initial interrupt sources were handled */
1787 slave->first_interrupt_done = true;
1788
1789 /*
1790 * Read status again to ensure no new interrupts arrived
1791 * while servicing interrupts.
1792 */
1793 ret = sdw_read_no_pm(slave, SDW_SCP_INT1);
1794 if (ret < 0) {
1795 dev_err(&slave->dev,
1796 "SDW_SCP_INT1 recheck read failed:%d\n", ret);
1797 goto io_err;
1798 }
1799 buf = ret;
1800
1801 ret = sdw_nread_no_pm(slave, SDW_SCP_INTSTAT2, 2, buf2);
1802 if (ret < 0) {
1803 dev_err(&slave->dev,
1804 "SDW_SCP_INT2/3 recheck read failed:%d\n", ret);
1805 goto io_err;
1806 }
1807
1808 if (slave->id.class_id) {
1809 ret = sdw_read_no_pm(slave, SDW_DP0_INT);
1810 if (ret < 0) {
1811 dev_err(&slave->dev,
1812 "SDW_DP0_INT recheck read failed:%d\n", ret);
1813 goto io_err;
1814 }
1815 sdca_cascade = ret & SDW_DP0_SDCA_CASCADE;
1816 }
1817
1818 /*
1819 * Make sure no interrupts are pending
1820 */
1821 stat = buf || buf2[0] || buf2[1] || sdca_cascade;
1822
1823 /*
1824 * Exit loop if Slave is continuously in ALERT state even
1825 * after servicing the interrupt multiple times.
1826 */
1827 count++;
1828
1829 /* we can get alerts while processing so keep retrying */
1830 } while (stat != 0 && count < SDW_READ_INTR_CLEAR_RETRY);
1831
1832 if (count == SDW_READ_INTR_CLEAR_RETRY)
1833 dev_warn(&slave->dev, "Reached MAX_RETRY on alert read\n");
1834
1835 io_err:
1836 pm_runtime_mark_last_busy(&slave->dev);
1837 pm_runtime_put_autosuspend(&slave->dev);
1838
1839 return ret;
1840 }
1841
sdw_update_slave_status(struct sdw_slave * slave,enum sdw_slave_status status)1842 static int sdw_update_slave_status(struct sdw_slave *slave,
1843 enum sdw_slave_status status)
1844 {
1845 int ret = 0;
1846
1847 mutex_lock(&slave->sdw_dev_lock);
1848
1849 if (slave->probed) {
1850 struct device *dev = &slave->dev;
1851 struct sdw_driver *drv = drv_to_sdw_driver(dev->driver);
1852
1853 if (drv->ops && drv->ops->update_status)
1854 ret = drv->ops->update_status(slave, status);
1855 }
1856
1857 mutex_unlock(&slave->sdw_dev_lock);
1858
1859 return ret;
1860 }
1861
1862 /**
1863 * sdw_handle_slave_status() - Handle Slave status
1864 * @bus: SDW bus instance
1865 * @status: Status for all Slave(s)
1866 */
sdw_handle_slave_status(struct sdw_bus * bus,enum sdw_slave_status status[])1867 int sdw_handle_slave_status(struct sdw_bus *bus,
1868 enum sdw_slave_status status[])
1869 {
1870 enum sdw_slave_status prev_status;
1871 struct sdw_slave *slave;
1872 bool attached_initializing, id_programmed;
1873 int i, ret = 0;
1874
1875 /* first check if any Slaves fell off the bus */
1876 for (i = 1; i <= SDW_MAX_DEVICES; i++) {
1877 mutex_lock(&bus->bus_lock);
1878 if (test_bit(i, bus->assigned) == false) {
1879 mutex_unlock(&bus->bus_lock);
1880 continue;
1881 }
1882 mutex_unlock(&bus->bus_lock);
1883
1884 slave = sdw_get_slave(bus, i);
1885 if (!slave)
1886 continue;
1887
1888 if (status[i] == SDW_SLAVE_UNATTACHED &&
1889 slave->status != SDW_SLAVE_UNATTACHED) {
1890 dev_warn(&slave->dev, "Slave %d state check1: UNATTACHED, status was %d\n",
1891 i, slave->status);
1892 sdw_modify_slave_status(slave, SDW_SLAVE_UNATTACHED);
1893
1894 /* Ensure driver knows that peripheral unattached */
1895 ret = sdw_update_slave_status(slave, status[i]);
1896 if (ret < 0)
1897 dev_warn(&slave->dev, "Update Slave status failed:%d\n", ret);
1898 }
1899 }
1900
1901 if (status[0] == SDW_SLAVE_ATTACHED) {
1902 dev_dbg(bus->dev, "Slave attached, programming device number\n");
1903
1904 /*
1905 * Programming a device number will have side effects,
1906 * so we deal with other devices at a later time.
1907 * This relies on those devices reporting ATTACHED, which will
1908 * trigger another call to this function. This will only
1909 * happen if at least one device ID was programmed.
1910 * Error returns from sdw_program_device_num() are currently
1911 * ignored because there's no useful recovery that can be done.
1912 * Returning the error here could result in the current status
1913 * of other devices not being handled, because if no device IDs
1914 * were programmed there's nothing to guarantee a status change
1915 * to trigger another call to this function.
1916 */
1917 sdw_program_device_num(bus, &id_programmed);
1918 if (id_programmed)
1919 return 0;
1920 }
1921
1922 /* Continue to check other slave statuses */
1923 for (i = 1; i <= SDW_MAX_DEVICES; i++) {
1924 mutex_lock(&bus->bus_lock);
1925 if (test_bit(i, bus->assigned) == false) {
1926 mutex_unlock(&bus->bus_lock);
1927 continue;
1928 }
1929 mutex_unlock(&bus->bus_lock);
1930
1931 slave = sdw_get_slave(bus, i);
1932 if (!slave)
1933 continue;
1934
1935 attached_initializing = false;
1936
1937 switch (status[i]) {
1938 case SDW_SLAVE_UNATTACHED:
1939 if (slave->status == SDW_SLAVE_UNATTACHED)
1940 break;
1941
1942 dev_warn(&slave->dev, "Slave %d state check2: UNATTACHED, status was %d\n",
1943 i, slave->status);
1944
1945 sdw_modify_slave_status(slave, SDW_SLAVE_UNATTACHED);
1946 break;
1947
1948 case SDW_SLAVE_ALERT:
1949 ret = sdw_handle_slave_alerts(slave);
1950 if (ret < 0)
1951 dev_err(&slave->dev,
1952 "Slave %d alert handling failed: %d\n",
1953 i, ret);
1954 break;
1955
1956 case SDW_SLAVE_ATTACHED:
1957 if (slave->status == SDW_SLAVE_ATTACHED)
1958 break;
1959
1960 prev_status = slave->status;
1961 sdw_modify_slave_status(slave, SDW_SLAVE_ATTACHED);
1962
1963 if (prev_status == SDW_SLAVE_ALERT)
1964 break;
1965
1966 attached_initializing = true;
1967
1968 ret = sdw_initialize_slave(slave);
1969 if (ret < 0)
1970 dev_err(&slave->dev,
1971 "Slave %d initialization failed: %d\n",
1972 i, ret);
1973
1974 break;
1975
1976 default:
1977 dev_err(&slave->dev, "Invalid slave %d status:%d\n",
1978 i, status[i]);
1979 break;
1980 }
1981
1982 ret = sdw_update_slave_status(slave, status[i]);
1983 if (ret < 0)
1984 dev_err(&slave->dev,
1985 "Update Slave status failed:%d\n", ret);
1986 if (attached_initializing) {
1987 dev_dbg(&slave->dev,
1988 "signaling initialization completion for Slave %d\n",
1989 slave->dev_num);
1990
1991 complete_all(&slave->initialization_complete);
1992
1993 /*
1994 * If the manager became pm_runtime active, the peripherals will be
1995 * restarted and attach, but their pm_runtime status may remain
1996 * suspended. If the 'update_slave_status' callback initiates
1997 * any sort of deferred processing, this processing would not be
1998 * cancelled on pm_runtime suspend.
1999 * To avoid such zombie states, we queue a request to resume.
2000 * This would be a no-op in case the peripheral was being resumed
2001 * by e.g. the ALSA/ASoC framework.
2002 */
2003 pm_request_resume(&slave->dev);
2004 }
2005 }
2006
2007 return ret;
2008 }
2009 EXPORT_SYMBOL(sdw_handle_slave_status);
2010
sdw_clear_slave_status(struct sdw_bus * bus,u32 request)2011 void sdw_clear_slave_status(struct sdw_bus *bus, u32 request)
2012 {
2013 struct sdw_slave *slave;
2014 int i;
2015
2016 /* Check all non-zero devices */
2017 for (i = 1; i <= SDW_MAX_DEVICES; i++) {
2018 mutex_lock(&bus->bus_lock);
2019 if (test_bit(i, bus->assigned) == false) {
2020 mutex_unlock(&bus->bus_lock);
2021 continue;
2022 }
2023 mutex_unlock(&bus->bus_lock);
2024
2025 slave = sdw_get_slave(bus, i);
2026 if (!slave)
2027 continue;
2028
2029 if (slave->status != SDW_SLAVE_UNATTACHED) {
2030 sdw_modify_slave_status(slave, SDW_SLAVE_UNATTACHED);
2031 slave->first_interrupt_done = false;
2032 sdw_update_slave_status(slave, SDW_SLAVE_UNATTACHED);
2033 }
2034
2035 /* keep track of request, used in pm_runtime resume */
2036 slave->unattach_request = request;
2037 }
2038 }
2039 EXPORT_SYMBOL(sdw_clear_slave_status);
2040
sdw_bpt_send_async(struct sdw_bus * bus,struct sdw_slave * slave,struct sdw_bpt_msg * msg)2041 int sdw_bpt_send_async(struct sdw_bus *bus, struct sdw_slave *slave, struct sdw_bpt_msg *msg)
2042 {
2043 if (msg->len > SDW_BPT_MSG_MAX_BYTES) {
2044 dev_err(bus->dev, "Invalid BPT message length %d\n", msg->len);
2045 return -EINVAL;
2046 }
2047
2048 /* check device is enumerated */
2049 if (slave->dev_num == SDW_ENUM_DEV_NUM ||
2050 slave->dev_num > SDW_MAX_DEVICES) {
2051 dev_err(&slave->dev, "Invalid device number %d\n", slave->dev_num);
2052 return -ENODEV;
2053 }
2054
2055 /* make sure all callbacks are defined */
2056 if (!bus->ops->bpt_send_async ||
2057 !bus->ops->bpt_wait) {
2058 dev_err(bus->dev, "BPT callbacks not defined\n");
2059 return -EOPNOTSUPP;
2060 }
2061
2062 return bus->ops->bpt_send_async(bus, slave, msg);
2063 }
2064 EXPORT_SYMBOL(sdw_bpt_send_async);
2065
sdw_bpt_wait(struct sdw_bus * bus,struct sdw_slave * slave,struct sdw_bpt_msg * msg)2066 int sdw_bpt_wait(struct sdw_bus *bus, struct sdw_slave *slave, struct sdw_bpt_msg *msg)
2067 {
2068 return bus->ops->bpt_wait(bus, slave, msg);
2069 }
2070 EXPORT_SYMBOL(sdw_bpt_wait);
2071
sdw_bpt_send_sync(struct sdw_bus * bus,struct sdw_slave * slave,struct sdw_bpt_msg * msg)2072 int sdw_bpt_send_sync(struct sdw_bus *bus, struct sdw_slave *slave, struct sdw_bpt_msg *msg)
2073 {
2074 int ret;
2075
2076 ret = sdw_bpt_send_async(bus, slave, msg);
2077 if (ret < 0)
2078 return ret;
2079
2080 return sdw_bpt_wait(bus, slave, msg);
2081 }
2082 EXPORT_SYMBOL(sdw_bpt_send_sync);
2083