1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /*
3 * Copyright 2014-2022 Advanced Micro Devices, Inc.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice shall be included in
13 * all copies or substantial portions of the Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21 * OTHER DEALINGS IN THE SOFTWARE.
22 */
23
24 #include <linux/device.h>
25 #include <linux/export.h>
26 #include <linux/err.h>
27 #include <linux/fs.h>
28 #include <linux/file.h>
29 #include <linux/sched.h>
30 #include <linux/slab.h>
31 #include <linux/uaccess.h>
32 #include <linux/compat.h>
33 #include <uapi/linux/kfd_ioctl.h>
34 #include <linux/time.h>
35 #include <linux/mm.h>
36 #include <linux/mman.h>
37 #include <linux/ptrace.h>
38 #include <linux/dma-buf.h>
39 #include <linux/processor.h>
40 #include "kfd_priv.h"
41 #include "kfd_device_queue_manager.h"
42 #include "kfd_svm.h"
43 #include "amdgpu_amdkfd.h"
44 #include "kfd_smi_events.h"
45 #include "amdgpu_dma_buf.h"
46 #include "kfd_debug.h"
47
48 static long kfd_ioctl(struct file *, unsigned int, unsigned long);
49 static int kfd_open(struct inode *, struct file *);
50 static int kfd_release(struct inode *, struct file *);
51 static int kfd_mmap(struct file *, struct vm_area_struct *);
52
53 static const char kfd_dev_name[] = "kfd";
54
55 static const struct file_operations kfd_fops = {
56 .owner = THIS_MODULE,
57 .unlocked_ioctl = kfd_ioctl,
58 .compat_ioctl = compat_ptr_ioctl,
59 .open = kfd_open,
60 .release = kfd_release,
61 .mmap = kfd_mmap,
62 };
63
64 static int kfd_char_dev_major = -1;
65 struct device *kfd_device;
66 static const struct class kfd_class = {
67 .name = kfd_dev_name,
68 };
69
kfd_lock_pdd_by_id(struct kfd_process * p,__u32 gpu_id)70 static inline struct kfd_process_device *kfd_lock_pdd_by_id(struct kfd_process *p, __u32 gpu_id)
71 {
72 struct kfd_process_device *pdd;
73
74 mutex_lock(&p->mutex);
75 pdd = kfd_process_device_data_by_id(p, gpu_id);
76
77 if (pdd)
78 return pdd;
79
80 mutex_unlock(&p->mutex);
81 return NULL;
82 }
83
kfd_unlock_pdd(struct kfd_process_device * pdd)84 static inline void kfd_unlock_pdd(struct kfd_process_device *pdd)
85 {
86 mutex_unlock(&pdd->process->mutex);
87 }
88
kfd_chardev_init(void)89 int kfd_chardev_init(void)
90 {
91 int err = 0;
92
93 kfd_char_dev_major = register_chrdev(0, kfd_dev_name, &kfd_fops);
94 err = kfd_char_dev_major;
95 if (err < 0)
96 goto err_register_chrdev;
97
98 err = class_register(&kfd_class);
99 if (err)
100 goto err_class_create;
101
102 kfd_device = device_create(&kfd_class, NULL,
103 MKDEV(kfd_char_dev_major, 0),
104 NULL, kfd_dev_name);
105 err = PTR_ERR(kfd_device);
106 if (IS_ERR(kfd_device))
107 goto err_device_create;
108
109 return 0;
110
111 err_device_create:
112 class_unregister(&kfd_class);
113 err_class_create:
114 unregister_chrdev(kfd_char_dev_major, kfd_dev_name);
115 err_register_chrdev:
116 return err;
117 }
118
kfd_chardev_exit(void)119 void kfd_chardev_exit(void)
120 {
121 device_destroy(&kfd_class, MKDEV(kfd_char_dev_major, 0));
122 class_unregister(&kfd_class);
123 unregister_chrdev(kfd_char_dev_major, kfd_dev_name);
124 kfd_device = NULL;
125 }
126
127
kfd_open(struct inode * inode,struct file * filep)128 static int kfd_open(struct inode *inode, struct file *filep)
129 {
130 struct kfd_process *process;
131 bool is_32bit_user_mode;
132
133 if (iminor(inode) != 0)
134 return -ENODEV;
135
136 is_32bit_user_mode = in_compat_syscall();
137
138 if (is_32bit_user_mode) {
139 dev_warn(kfd_device,
140 "Process %d (32-bit) failed to open /dev/kfd\n"
141 "32-bit processes are not supported by amdkfd\n",
142 current->pid);
143 return -EPERM;
144 }
145
146 process = kfd_create_process(current);
147 if (IS_ERR(process))
148 return PTR_ERR(process);
149
150 if (kfd_process_init_cwsr_apu(process, filep)) {
151 kfd_unref_process(process);
152 return -EFAULT;
153 }
154
155 /* filep now owns the reference returned by kfd_create_process */
156 filep->private_data = process;
157
158 dev_dbg(kfd_device, "process pid %d opened kfd node, compat mode (32 bit) - %d\n",
159 process->lead_thread->pid, process->is_32bit_user_mode);
160
161 return 0;
162 }
163
kfd_release(struct inode * inode,struct file * filep)164 static int kfd_release(struct inode *inode, struct file *filep)
165 {
166 struct kfd_process *process = filep->private_data;
167
168 if (process)
169 kfd_unref_process(process);
170
171 return 0;
172 }
173
kfd_ioctl_get_version(struct file * filep,struct kfd_process * p,void * data)174 static int kfd_ioctl_get_version(struct file *filep, struct kfd_process *p,
175 void *data)
176 {
177 struct kfd_ioctl_get_version_args *args = data;
178
179 args->major_version = KFD_IOCTL_MAJOR_VERSION;
180 args->minor_version = KFD_IOCTL_MINOR_VERSION;
181
182 return 0;
183 }
184
set_queue_properties_from_user(struct queue_properties * q_properties,struct kfd_ioctl_create_queue_args * args)185 static int set_queue_properties_from_user(struct queue_properties *q_properties,
186 struct kfd_ioctl_create_queue_args *args)
187 {
188 /*
189 * Repurpose queue percentage to accommodate new features:
190 * bit 0-7: queue percentage
191 * bit 8-15: pm4_target_xcc
192 */
193 if ((args->queue_percentage & 0xFF) > KFD_MAX_QUEUE_PERCENTAGE) {
194 pr_err("Queue percentage must be between 0 to KFD_MAX_QUEUE_PERCENTAGE\n");
195 return -EINVAL;
196 }
197
198 if (args->queue_priority > KFD_MAX_QUEUE_PRIORITY) {
199 pr_err("Queue priority must be between 0 to KFD_MAX_QUEUE_PRIORITY\n");
200 return -EINVAL;
201 }
202
203 if ((args->ring_base_address) &&
204 (!access_ok((const void __user *) args->ring_base_address,
205 sizeof(uint64_t)))) {
206 pr_err("Can't access ring base address\n");
207 return -EFAULT;
208 }
209
210 if (!is_power_of_2(args->ring_size) && (args->ring_size != 0)) {
211 pr_err("Ring size must be a power of 2 or 0\n");
212 return -EINVAL;
213 }
214
215 if (args->ring_size < KFD_MIN_QUEUE_RING_SIZE) {
216 args->ring_size = KFD_MIN_QUEUE_RING_SIZE;
217 pr_debug("Size lower. clamped to KFD_MIN_QUEUE_RING_SIZE");
218 }
219
220 if (!access_ok((const void __user *) args->read_pointer_address,
221 sizeof(uint32_t))) {
222 pr_err("Can't access read pointer\n");
223 return -EFAULT;
224 }
225
226 if (!access_ok((const void __user *) args->write_pointer_address,
227 sizeof(uint32_t))) {
228 pr_err("Can't access write pointer\n");
229 return -EFAULT;
230 }
231
232 if (args->eop_buffer_address &&
233 !access_ok((const void __user *) args->eop_buffer_address,
234 sizeof(uint32_t))) {
235 pr_debug("Can't access eop buffer");
236 return -EFAULT;
237 }
238
239 if (args->ctx_save_restore_address &&
240 !access_ok((const void __user *) args->ctx_save_restore_address,
241 sizeof(uint32_t))) {
242 pr_debug("Can't access ctx save restore buffer");
243 return -EFAULT;
244 }
245
246 q_properties->is_interop = false;
247 q_properties->is_gws = false;
248 q_properties->queue_percent = args->queue_percentage & 0xFF;
249 /* bit 8-15 are repurposed to be PM4 target XCC */
250 q_properties->pm4_target_xcc = (args->queue_percentage >> 8) & 0xFF;
251 q_properties->priority = args->queue_priority;
252 q_properties->queue_address = args->ring_base_address;
253 q_properties->queue_size = args->ring_size;
254 q_properties->read_ptr = (void __user *)args->read_pointer_address;
255 q_properties->write_ptr = (void __user *)args->write_pointer_address;
256 q_properties->eop_ring_buffer_address = args->eop_buffer_address;
257 q_properties->eop_ring_buffer_size = args->eop_buffer_size;
258 q_properties->ctx_save_restore_area_address =
259 args->ctx_save_restore_address;
260 q_properties->ctx_save_restore_area_size = args->ctx_save_restore_size;
261 q_properties->ctl_stack_size = args->ctl_stack_size;
262 q_properties->sdma_engine_id = args->sdma_engine_id;
263 if (args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE ||
264 args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE_AQL)
265 q_properties->type = KFD_QUEUE_TYPE_COMPUTE;
266 else if (args->queue_type == KFD_IOC_QUEUE_TYPE_SDMA)
267 q_properties->type = KFD_QUEUE_TYPE_SDMA;
268 else if (args->queue_type == KFD_IOC_QUEUE_TYPE_SDMA_XGMI)
269 q_properties->type = KFD_QUEUE_TYPE_SDMA_XGMI;
270 else if (args->queue_type == KFD_IOC_QUEUE_TYPE_SDMA_BY_ENG_ID)
271 q_properties->type = KFD_QUEUE_TYPE_SDMA_BY_ENG_ID;
272 else
273 return -ENOTSUPP;
274
275 if (args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE_AQL)
276 q_properties->format = KFD_QUEUE_FORMAT_AQL;
277 else
278 q_properties->format = KFD_QUEUE_FORMAT_PM4;
279
280 pr_debug("Queue Percentage: %d, %d\n",
281 q_properties->queue_percent, args->queue_percentage);
282
283 pr_debug("Queue Priority: %d, %d\n",
284 q_properties->priority, args->queue_priority);
285
286 pr_debug("Queue Address: 0x%llX, 0x%llX\n",
287 q_properties->queue_address, args->ring_base_address);
288
289 pr_debug("Queue Size: 0x%llX, %u\n",
290 q_properties->queue_size, args->ring_size);
291
292 pr_debug("Queue r/w Pointers: %px, %px\n",
293 q_properties->read_ptr,
294 q_properties->write_ptr);
295
296 pr_debug("Queue Format: %d\n", q_properties->format);
297
298 pr_debug("Queue EOP: 0x%llX\n", q_properties->eop_ring_buffer_address);
299
300 pr_debug("Queue CTX save area: 0x%llX\n",
301 q_properties->ctx_save_restore_area_address);
302
303 return 0;
304 }
305
kfd_ioctl_create_queue(struct file * filep,struct kfd_process * p,void * data)306 static int kfd_ioctl_create_queue(struct file *filep, struct kfd_process *p,
307 void *data)
308 {
309 struct kfd_ioctl_create_queue_args *args = data;
310 struct kfd_node *dev;
311 int err = 0;
312 unsigned int queue_id;
313 struct kfd_process_device *pdd;
314 struct queue_properties q_properties;
315 uint32_t doorbell_offset_in_process = 0;
316
317 memset(&q_properties, 0, sizeof(struct queue_properties));
318
319 pr_debug("Creating queue ioctl\n");
320
321 err = set_queue_properties_from_user(&q_properties, args);
322 if (err)
323 return err;
324
325 pr_debug("Looking for gpu id 0x%x\n", args->gpu_id);
326
327 mutex_lock(&p->mutex);
328
329 pdd = kfd_process_device_data_by_id(p, args->gpu_id);
330 if (!pdd) {
331 pr_debug("Could not find gpu id 0x%x\n", args->gpu_id);
332 err = -EINVAL;
333 goto err_pdd;
334 }
335 dev = pdd->dev;
336
337 pdd = kfd_bind_process_to_device(dev, p);
338 if (IS_ERR(pdd)) {
339 err = -ESRCH;
340 goto err_bind_process;
341 }
342
343 if (q_properties.type == KFD_QUEUE_TYPE_SDMA_BY_ENG_ID) {
344 int max_sdma_eng_id = kfd_get_num_sdma_engines(dev) +
345 kfd_get_num_xgmi_sdma_engines(dev) - 1;
346
347 if (q_properties.sdma_engine_id > max_sdma_eng_id) {
348 err = -EINVAL;
349 pr_err("sdma_engine_id %i exceeds maximum id of %i\n",
350 q_properties.sdma_engine_id, max_sdma_eng_id);
351 goto err_sdma_engine_id;
352 }
353 }
354
355 if (!pdd->qpd.proc_doorbells) {
356 err = kfd_alloc_process_doorbells(dev->kfd, pdd);
357 if (err) {
358 pr_debug("failed to allocate process doorbells\n");
359 goto err_bind_process;
360 }
361 }
362
363 err = kfd_queue_acquire_buffers(pdd, &q_properties);
364 if (err) {
365 pr_debug("failed to acquire user queue buffers\n");
366 goto err_acquire_queue_buf;
367 }
368
369 pr_debug("Creating queue for process pid %d on gpu 0x%x\n",
370 p->lead_thread->pid,
371 dev->id);
372
373 err = pqm_create_queue(&p->pqm, dev, &q_properties, &queue_id,
374 NULL, NULL, NULL, &doorbell_offset_in_process);
375 if (err != 0)
376 goto err_create_queue;
377
378 args->queue_id = queue_id;
379
380
381 /* Return gpu_id as doorbell offset for mmap usage */
382 args->doorbell_offset = KFD_MMAP_TYPE_DOORBELL;
383 args->doorbell_offset |= KFD_MMAP_GPU_ID(args->gpu_id);
384 if (KFD_IS_SOC15(dev))
385 /* On SOC15 ASICs, include the doorbell offset within the
386 * process doorbell frame, which is 2 pages.
387 */
388 args->doorbell_offset |= doorbell_offset_in_process;
389
390 mutex_unlock(&p->mutex);
391
392 pr_debug("Queue id %d was created successfully\n", args->queue_id);
393
394 pr_debug("Ring buffer address == 0x%016llX\n",
395 args->ring_base_address);
396
397 pr_debug("Read ptr address == 0x%016llX\n",
398 args->read_pointer_address);
399
400 pr_debug("Write ptr address == 0x%016llX\n",
401 args->write_pointer_address);
402
403 kfd_dbg_ev_raise(KFD_EC_MASK(EC_QUEUE_NEW), p, dev, queue_id, false, NULL, 0);
404 return 0;
405
406 err_create_queue:
407 kfd_queue_unref_bo_vas(pdd, &q_properties);
408 kfd_queue_release_buffers(pdd, &q_properties);
409 err_acquire_queue_buf:
410 err_sdma_engine_id:
411 err_bind_process:
412 err_pdd:
413 mutex_unlock(&p->mutex);
414 return err;
415 }
416
kfd_ioctl_destroy_queue(struct file * filp,struct kfd_process * p,void * data)417 static int kfd_ioctl_destroy_queue(struct file *filp, struct kfd_process *p,
418 void *data)
419 {
420 int retval;
421 struct kfd_ioctl_destroy_queue_args *args = data;
422
423 pr_debug("Destroying queue id %d for process pid %d\n",
424 args->queue_id,
425 p->lead_thread->pid);
426
427 mutex_lock(&p->mutex);
428
429 retval = pqm_destroy_queue(&p->pqm, args->queue_id);
430
431 mutex_unlock(&p->mutex);
432 return retval;
433 }
434
kfd_ioctl_update_queue(struct file * filp,struct kfd_process * p,void * data)435 static int kfd_ioctl_update_queue(struct file *filp, struct kfd_process *p,
436 void *data)
437 {
438 int retval;
439 struct kfd_ioctl_update_queue_args *args = data;
440 struct queue_properties properties;
441
442 /*
443 * Repurpose queue percentage to accommodate new features:
444 * bit 0-7: queue percentage
445 * bit 8-15: pm4_target_xcc
446 */
447 if ((args->queue_percentage & 0xFF) > KFD_MAX_QUEUE_PERCENTAGE) {
448 pr_err("Queue percentage must be between 0 to KFD_MAX_QUEUE_PERCENTAGE\n");
449 return -EINVAL;
450 }
451
452 if (args->queue_priority > KFD_MAX_QUEUE_PRIORITY) {
453 pr_err("Queue priority must be between 0 to KFD_MAX_QUEUE_PRIORITY\n");
454 return -EINVAL;
455 }
456
457 if ((args->ring_base_address) &&
458 (!access_ok((const void __user *) args->ring_base_address,
459 sizeof(uint64_t)))) {
460 pr_err("Can't access ring base address\n");
461 return -EFAULT;
462 }
463
464 if (!is_power_of_2(args->ring_size) && (args->ring_size != 0)) {
465 pr_err("Ring size must be a power of 2 or 0\n");
466 return -EINVAL;
467 }
468
469 if (args->ring_size < KFD_MIN_QUEUE_RING_SIZE) {
470 args->ring_size = KFD_MIN_QUEUE_RING_SIZE;
471 pr_debug("Size lower. clamped to KFD_MIN_QUEUE_RING_SIZE");
472 }
473
474 properties.queue_address = args->ring_base_address;
475 properties.queue_size = args->ring_size;
476 properties.queue_percent = args->queue_percentage & 0xFF;
477 /* bit 8-15 are repurposed to be PM4 target XCC */
478 properties.pm4_target_xcc = (args->queue_percentage >> 8) & 0xFF;
479 properties.priority = args->queue_priority;
480
481 pr_debug("Updating queue id %d for process pid %d\n",
482 args->queue_id, p->lead_thread->pid);
483
484 mutex_lock(&p->mutex);
485
486 retval = pqm_update_queue_properties(&p->pqm, args->queue_id, &properties);
487
488 mutex_unlock(&p->mutex);
489
490 return retval;
491 }
492
kfd_ioctl_set_cu_mask(struct file * filp,struct kfd_process * p,void * data)493 static int kfd_ioctl_set_cu_mask(struct file *filp, struct kfd_process *p,
494 void *data)
495 {
496 int retval;
497 const int max_num_cus = 1024;
498 struct kfd_ioctl_set_cu_mask_args *args = data;
499 struct mqd_update_info minfo = {0};
500 uint32_t __user *cu_mask_ptr = (uint32_t __user *)args->cu_mask_ptr;
501 size_t cu_mask_size = sizeof(uint32_t) * (args->num_cu_mask / 32);
502
503 if ((args->num_cu_mask % 32) != 0) {
504 pr_debug("num_cu_mask 0x%x must be a multiple of 32",
505 args->num_cu_mask);
506 return -EINVAL;
507 }
508
509 minfo.cu_mask.count = args->num_cu_mask;
510 if (minfo.cu_mask.count == 0) {
511 pr_debug("CU mask cannot be 0");
512 return -EINVAL;
513 }
514
515 /* To prevent an unreasonably large CU mask size, set an arbitrary
516 * limit of max_num_cus bits. We can then just drop any CU mask bits
517 * past max_num_cus bits and just use the first max_num_cus bits.
518 */
519 if (minfo.cu_mask.count > max_num_cus) {
520 pr_debug("CU mask cannot be greater than 1024 bits");
521 minfo.cu_mask.count = max_num_cus;
522 cu_mask_size = sizeof(uint32_t) * (max_num_cus/32);
523 }
524
525 minfo.cu_mask.ptr = kzalloc(cu_mask_size, GFP_KERNEL);
526 if (!minfo.cu_mask.ptr)
527 return -ENOMEM;
528
529 retval = copy_from_user(minfo.cu_mask.ptr, cu_mask_ptr, cu_mask_size);
530 if (retval) {
531 pr_debug("Could not copy CU mask from userspace");
532 retval = -EFAULT;
533 goto out;
534 }
535
536 mutex_lock(&p->mutex);
537
538 retval = pqm_update_mqd(&p->pqm, args->queue_id, &minfo);
539
540 mutex_unlock(&p->mutex);
541
542 out:
543 kfree(minfo.cu_mask.ptr);
544 return retval;
545 }
546
kfd_ioctl_get_queue_wave_state(struct file * filep,struct kfd_process * p,void * data)547 static int kfd_ioctl_get_queue_wave_state(struct file *filep,
548 struct kfd_process *p, void *data)
549 {
550 struct kfd_ioctl_get_queue_wave_state_args *args = data;
551 int r;
552
553 mutex_lock(&p->mutex);
554
555 r = pqm_get_wave_state(&p->pqm, args->queue_id,
556 (void __user *)args->ctl_stack_address,
557 &args->ctl_stack_used_size,
558 &args->save_area_used_size);
559
560 mutex_unlock(&p->mutex);
561
562 return r;
563 }
564
kfd_ioctl_set_memory_policy(struct file * filep,struct kfd_process * p,void * data)565 static int kfd_ioctl_set_memory_policy(struct file *filep,
566 struct kfd_process *p, void *data)
567 {
568 struct kfd_ioctl_set_memory_policy_args *args = data;
569 int err = 0;
570 struct kfd_process_device *pdd;
571 enum cache_policy default_policy, alternate_policy;
572
573 if (args->default_policy != KFD_IOC_CACHE_POLICY_COHERENT
574 && args->default_policy != KFD_IOC_CACHE_POLICY_NONCOHERENT) {
575 return -EINVAL;
576 }
577
578 if (args->alternate_policy != KFD_IOC_CACHE_POLICY_COHERENT
579 && args->alternate_policy != KFD_IOC_CACHE_POLICY_NONCOHERENT) {
580 return -EINVAL;
581 }
582
583 mutex_lock(&p->mutex);
584 pdd = kfd_process_device_data_by_id(p, args->gpu_id);
585 if (!pdd) {
586 pr_debug("Could not find gpu id 0x%x\n", args->gpu_id);
587 err = -EINVAL;
588 goto err_pdd;
589 }
590
591 pdd = kfd_bind_process_to_device(pdd->dev, p);
592 if (IS_ERR(pdd)) {
593 err = -ESRCH;
594 goto out;
595 }
596
597 default_policy = (args->default_policy == KFD_IOC_CACHE_POLICY_COHERENT)
598 ? cache_policy_coherent : cache_policy_noncoherent;
599
600 alternate_policy =
601 (args->alternate_policy == KFD_IOC_CACHE_POLICY_COHERENT)
602 ? cache_policy_coherent : cache_policy_noncoherent;
603
604 if (!pdd->dev->dqm->ops.set_cache_memory_policy(pdd->dev->dqm,
605 &pdd->qpd,
606 default_policy,
607 alternate_policy,
608 (void __user *)args->alternate_aperture_base,
609 args->alternate_aperture_size,
610 args->misc_process_flag))
611 err = -EINVAL;
612
613 out:
614 err_pdd:
615 mutex_unlock(&p->mutex);
616
617 return err;
618 }
619
kfd_ioctl_set_trap_handler(struct file * filep,struct kfd_process * p,void * data)620 static int kfd_ioctl_set_trap_handler(struct file *filep,
621 struct kfd_process *p, void *data)
622 {
623 struct kfd_ioctl_set_trap_handler_args *args = data;
624 int err = 0;
625 struct kfd_process_device *pdd;
626
627 mutex_lock(&p->mutex);
628
629 pdd = kfd_process_device_data_by_id(p, args->gpu_id);
630 if (!pdd) {
631 err = -EINVAL;
632 goto err_pdd;
633 }
634
635 pdd = kfd_bind_process_to_device(pdd->dev, p);
636 if (IS_ERR(pdd)) {
637 err = -ESRCH;
638 goto out;
639 }
640
641 kfd_process_set_trap_handler(&pdd->qpd, args->tba_addr, args->tma_addr);
642
643 out:
644 err_pdd:
645 mutex_unlock(&p->mutex);
646
647 return err;
648 }
649
kfd_ioctl_dbg_register(struct file * filep,struct kfd_process * p,void * data)650 static int kfd_ioctl_dbg_register(struct file *filep,
651 struct kfd_process *p, void *data)
652 {
653 return -EPERM;
654 }
655
kfd_ioctl_dbg_unregister(struct file * filep,struct kfd_process * p,void * data)656 static int kfd_ioctl_dbg_unregister(struct file *filep,
657 struct kfd_process *p, void *data)
658 {
659 return -EPERM;
660 }
661
kfd_ioctl_dbg_address_watch(struct file * filep,struct kfd_process * p,void * data)662 static int kfd_ioctl_dbg_address_watch(struct file *filep,
663 struct kfd_process *p, void *data)
664 {
665 return -EPERM;
666 }
667
668 /* Parse and generate fixed size data structure for wave control */
kfd_ioctl_dbg_wave_control(struct file * filep,struct kfd_process * p,void * data)669 static int kfd_ioctl_dbg_wave_control(struct file *filep,
670 struct kfd_process *p, void *data)
671 {
672 return -EPERM;
673 }
674
kfd_ioctl_get_clock_counters(struct file * filep,struct kfd_process * p,void * data)675 static int kfd_ioctl_get_clock_counters(struct file *filep,
676 struct kfd_process *p, void *data)
677 {
678 struct kfd_ioctl_get_clock_counters_args *args = data;
679 struct kfd_process_device *pdd;
680
681 mutex_lock(&p->mutex);
682 pdd = kfd_process_device_data_by_id(p, args->gpu_id);
683 mutex_unlock(&p->mutex);
684 if (pdd)
685 /* Reading GPU clock counter from KGD */
686 args->gpu_clock_counter = amdgpu_amdkfd_get_gpu_clock_counter(pdd->dev->adev);
687 else
688 /* Node without GPU resource */
689 args->gpu_clock_counter = 0;
690
691 /* No access to rdtsc. Using raw monotonic time */
692 args->cpu_clock_counter = ktime_get_raw_ns();
693 args->system_clock_counter = ktime_get_boottime_ns();
694
695 /* Since the counter is in nano-seconds we use 1GHz frequency */
696 args->system_clock_freq = 1000000000;
697
698 return 0;
699 }
700
701
kfd_ioctl_get_process_apertures(struct file * filp,struct kfd_process * p,void * data)702 static int kfd_ioctl_get_process_apertures(struct file *filp,
703 struct kfd_process *p, void *data)
704 {
705 struct kfd_ioctl_get_process_apertures_args *args = data;
706 struct kfd_process_device_apertures *pAperture;
707 int i;
708
709 dev_dbg(kfd_device, "get apertures for process pid %d", p->lead_thread->pid);
710
711 args->num_of_nodes = 0;
712
713 mutex_lock(&p->mutex);
714 /* Run over all pdd of the process */
715 for (i = 0; i < p->n_pdds; i++) {
716 struct kfd_process_device *pdd = p->pdds[i];
717
718 pAperture =
719 &args->process_apertures[args->num_of_nodes];
720 pAperture->gpu_id = pdd->dev->id;
721 pAperture->lds_base = pdd->lds_base;
722 pAperture->lds_limit = pdd->lds_limit;
723 pAperture->gpuvm_base = pdd->gpuvm_base;
724 pAperture->gpuvm_limit = pdd->gpuvm_limit;
725 pAperture->scratch_base = pdd->scratch_base;
726 pAperture->scratch_limit = pdd->scratch_limit;
727
728 dev_dbg(kfd_device,
729 "node id %u\n", args->num_of_nodes);
730 dev_dbg(kfd_device,
731 "gpu id %u\n", pdd->dev->id);
732 dev_dbg(kfd_device,
733 "lds_base %llX\n", pdd->lds_base);
734 dev_dbg(kfd_device,
735 "lds_limit %llX\n", pdd->lds_limit);
736 dev_dbg(kfd_device,
737 "gpuvm_base %llX\n", pdd->gpuvm_base);
738 dev_dbg(kfd_device,
739 "gpuvm_limit %llX\n", pdd->gpuvm_limit);
740 dev_dbg(kfd_device,
741 "scratch_base %llX\n", pdd->scratch_base);
742 dev_dbg(kfd_device,
743 "scratch_limit %llX\n", pdd->scratch_limit);
744
745 if (++args->num_of_nodes >= NUM_OF_SUPPORTED_GPUS)
746 break;
747 }
748 mutex_unlock(&p->mutex);
749
750 return 0;
751 }
752
kfd_ioctl_get_process_apertures_new(struct file * filp,struct kfd_process * p,void * data)753 static int kfd_ioctl_get_process_apertures_new(struct file *filp,
754 struct kfd_process *p, void *data)
755 {
756 struct kfd_ioctl_get_process_apertures_new_args *args = data;
757 struct kfd_process_device_apertures *pa;
758 int ret;
759 int i;
760
761 dev_dbg(kfd_device, "get apertures for process pid %d",
762 p->lead_thread->pid);
763
764 if (args->num_of_nodes == 0) {
765 /* Return number of nodes, so that user space can alloacate
766 * sufficient memory
767 */
768 mutex_lock(&p->mutex);
769 args->num_of_nodes = p->n_pdds;
770 goto out_unlock;
771 }
772
773 /* Fill in process-aperture information for all available
774 * nodes, but not more than args->num_of_nodes as that is
775 * the amount of memory allocated by user
776 */
777 pa = kcalloc(args->num_of_nodes, sizeof(struct kfd_process_device_apertures),
778 GFP_KERNEL);
779 if (!pa)
780 return -ENOMEM;
781
782 mutex_lock(&p->mutex);
783
784 if (!p->n_pdds) {
785 args->num_of_nodes = 0;
786 kfree(pa);
787 goto out_unlock;
788 }
789
790 /* Run over all pdd of the process */
791 for (i = 0; i < min(p->n_pdds, args->num_of_nodes); i++) {
792 struct kfd_process_device *pdd = p->pdds[i];
793
794 pa[i].gpu_id = pdd->dev->id;
795 pa[i].lds_base = pdd->lds_base;
796 pa[i].lds_limit = pdd->lds_limit;
797 pa[i].gpuvm_base = pdd->gpuvm_base;
798 pa[i].gpuvm_limit = pdd->gpuvm_limit;
799 pa[i].scratch_base = pdd->scratch_base;
800 pa[i].scratch_limit = pdd->scratch_limit;
801
802 dev_dbg(kfd_device,
803 "gpu id %u\n", pdd->dev->id);
804 dev_dbg(kfd_device,
805 "lds_base %llX\n", pdd->lds_base);
806 dev_dbg(kfd_device,
807 "lds_limit %llX\n", pdd->lds_limit);
808 dev_dbg(kfd_device,
809 "gpuvm_base %llX\n", pdd->gpuvm_base);
810 dev_dbg(kfd_device,
811 "gpuvm_limit %llX\n", pdd->gpuvm_limit);
812 dev_dbg(kfd_device,
813 "scratch_base %llX\n", pdd->scratch_base);
814 dev_dbg(kfd_device,
815 "scratch_limit %llX\n", pdd->scratch_limit);
816 }
817 mutex_unlock(&p->mutex);
818
819 args->num_of_nodes = i;
820 ret = copy_to_user(
821 (void __user *)args->kfd_process_device_apertures_ptr,
822 pa,
823 (i * sizeof(struct kfd_process_device_apertures)));
824 kfree(pa);
825 return ret ? -EFAULT : 0;
826
827 out_unlock:
828 mutex_unlock(&p->mutex);
829 return 0;
830 }
831
kfd_ioctl_create_event(struct file * filp,struct kfd_process * p,void * data)832 static int kfd_ioctl_create_event(struct file *filp, struct kfd_process *p,
833 void *data)
834 {
835 struct kfd_ioctl_create_event_args *args = data;
836 int err;
837
838 /* For dGPUs the event page is allocated in user mode. The
839 * handle is passed to KFD with the first call to this IOCTL
840 * through the event_page_offset field.
841 */
842 if (args->event_page_offset) {
843 mutex_lock(&p->mutex);
844 err = kfd_kmap_event_page(p, args->event_page_offset);
845 mutex_unlock(&p->mutex);
846 if (err)
847 return err;
848 }
849
850 err = kfd_event_create(filp, p, args->event_type,
851 args->auto_reset != 0, args->node_id,
852 &args->event_id, &args->event_trigger_data,
853 &args->event_page_offset,
854 &args->event_slot_index);
855
856 pr_debug("Created event (id:0x%08x) (%s)\n", args->event_id, __func__);
857 return err;
858 }
859
kfd_ioctl_destroy_event(struct file * filp,struct kfd_process * p,void * data)860 static int kfd_ioctl_destroy_event(struct file *filp, struct kfd_process *p,
861 void *data)
862 {
863 struct kfd_ioctl_destroy_event_args *args = data;
864
865 return kfd_event_destroy(p, args->event_id);
866 }
867
kfd_ioctl_set_event(struct file * filp,struct kfd_process * p,void * data)868 static int kfd_ioctl_set_event(struct file *filp, struct kfd_process *p,
869 void *data)
870 {
871 struct kfd_ioctl_set_event_args *args = data;
872
873 return kfd_set_event(p, args->event_id);
874 }
875
kfd_ioctl_reset_event(struct file * filp,struct kfd_process * p,void * data)876 static int kfd_ioctl_reset_event(struct file *filp, struct kfd_process *p,
877 void *data)
878 {
879 struct kfd_ioctl_reset_event_args *args = data;
880
881 return kfd_reset_event(p, args->event_id);
882 }
883
kfd_ioctl_wait_events(struct file * filp,struct kfd_process * p,void * data)884 static int kfd_ioctl_wait_events(struct file *filp, struct kfd_process *p,
885 void *data)
886 {
887 struct kfd_ioctl_wait_events_args *args = data;
888
889 return kfd_wait_on_events(p, args->num_events,
890 (void __user *)args->events_ptr,
891 (args->wait_for_all != 0),
892 &args->timeout, &args->wait_result);
893 }
kfd_ioctl_set_scratch_backing_va(struct file * filep,struct kfd_process * p,void * data)894 static int kfd_ioctl_set_scratch_backing_va(struct file *filep,
895 struct kfd_process *p, void *data)
896 {
897 struct kfd_ioctl_set_scratch_backing_va_args *args = data;
898 struct kfd_process_device *pdd;
899 struct kfd_node *dev;
900 long err;
901
902 mutex_lock(&p->mutex);
903 pdd = kfd_process_device_data_by_id(p, args->gpu_id);
904 if (!pdd) {
905 err = -EINVAL;
906 goto err_pdd;
907 }
908 dev = pdd->dev;
909
910 pdd = kfd_bind_process_to_device(dev, p);
911 if (IS_ERR(pdd)) {
912 err = PTR_ERR(pdd);
913 goto bind_process_to_device_fail;
914 }
915
916 pdd->qpd.sh_hidden_private_base = args->va_addr;
917
918 mutex_unlock(&p->mutex);
919
920 if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS &&
921 pdd->qpd.vmid != 0 && dev->kfd2kgd->set_scratch_backing_va)
922 dev->kfd2kgd->set_scratch_backing_va(
923 dev->adev, args->va_addr, pdd->qpd.vmid);
924
925 return 0;
926
927 bind_process_to_device_fail:
928 err_pdd:
929 mutex_unlock(&p->mutex);
930 return err;
931 }
932
kfd_ioctl_get_tile_config(struct file * filep,struct kfd_process * p,void * data)933 static int kfd_ioctl_get_tile_config(struct file *filep,
934 struct kfd_process *p, void *data)
935 {
936 struct kfd_ioctl_get_tile_config_args *args = data;
937 struct kfd_process_device *pdd;
938 struct tile_config config;
939 int err = 0;
940
941 mutex_lock(&p->mutex);
942 pdd = kfd_process_device_data_by_id(p, args->gpu_id);
943 mutex_unlock(&p->mutex);
944 if (!pdd)
945 return -EINVAL;
946
947 amdgpu_amdkfd_get_tile_config(pdd->dev->adev, &config);
948
949 args->gb_addr_config = config.gb_addr_config;
950 args->num_banks = config.num_banks;
951 args->num_ranks = config.num_ranks;
952
953 if (args->num_tile_configs > config.num_tile_configs)
954 args->num_tile_configs = config.num_tile_configs;
955 err = copy_to_user((void __user *)args->tile_config_ptr,
956 config.tile_config_ptr,
957 args->num_tile_configs * sizeof(uint32_t));
958 if (err) {
959 args->num_tile_configs = 0;
960 return -EFAULT;
961 }
962
963 if (args->num_macro_tile_configs > config.num_macro_tile_configs)
964 args->num_macro_tile_configs =
965 config.num_macro_tile_configs;
966 err = copy_to_user((void __user *)args->macro_tile_config_ptr,
967 config.macro_tile_config_ptr,
968 args->num_macro_tile_configs * sizeof(uint32_t));
969 if (err) {
970 args->num_macro_tile_configs = 0;
971 return -EFAULT;
972 }
973
974 return 0;
975 }
976
kfd_ioctl_acquire_vm(struct file * filep,struct kfd_process * p,void * data)977 static int kfd_ioctl_acquire_vm(struct file *filep, struct kfd_process *p,
978 void *data)
979 {
980 struct kfd_ioctl_acquire_vm_args *args = data;
981 struct kfd_process_device *pdd;
982 struct file *drm_file;
983 int ret;
984
985 drm_file = fget(args->drm_fd);
986 if (!drm_file)
987 return -EINVAL;
988
989 mutex_lock(&p->mutex);
990 pdd = kfd_process_device_data_by_id(p, args->gpu_id);
991 if (!pdd) {
992 ret = -EINVAL;
993 goto err_pdd;
994 }
995
996 if (pdd->drm_file) {
997 ret = pdd->drm_file == drm_file ? 0 : -EBUSY;
998 goto err_drm_file;
999 }
1000
1001 ret = kfd_process_device_init_vm(pdd, drm_file);
1002 if (ret)
1003 goto err_unlock;
1004
1005 /* On success, the PDD keeps the drm_file reference */
1006 mutex_unlock(&p->mutex);
1007
1008 return 0;
1009
1010 err_unlock:
1011 err_pdd:
1012 err_drm_file:
1013 mutex_unlock(&p->mutex);
1014 fput(drm_file);
1015 return ret;
1016 }
1017
kfd_dev_is_large_bar(struct kfd_node * dev)1018 bool kfd_dev_is_large_bar(struct kfd_node *dev)
1019 {
1020 if (dev->kfd->adev->debug_largebar) {
1021 pr_debug("Simulate large-bar allocation on non large-bar machine\n");
1022 return true;
1023 }
1024
1025 if (dev->local_mem_info.local_mem_size_private == 0 &&
1026 dev->local_mem_info.local_mem_size_public > 0)
1027 return true;
1028
1029 if (dev->local_mem_info.local_mem_size_public == 0 &&
1030 dev->kfd->adev->gmc.is_app_apu) {
1031 pr_debug("APP APU, Consider like a large bar system\n");
1032 return true;
1033 }
1034
1035 return false;
1036 }
1037
kfd_ioctl_get_available_memory(struct file * filep,struct kfd_process * p,void * data)1038 static int kfd_ioctl_get_available_memory(struct file *filep,
1039 struct kfd_process *p, void *data)
1040 {
1041 struct kfd_ioctl_get_available_memory_args *args = data;
1042 struct kfd_process_device *pdd = kfd_lock_pdd_by_id(p, args->gpu_id);
1043
1044 if (!pdd)
1045 return -EINVAL;
1046 args->available = amdgpu_amdkfd_get_available_memory(pdd->dev->adev,
1047 pdd->dev->node_id);
1048 kfd_unlock_pdd(pdd);
1049 return 0;
1050 }
1051
kfd_ioctl_alloc_memory_of_gpu(struct file * filep,struct kfd_process * p,void * data)1052 static int kfd_ioctl_alloc_memory_of_gpu(struct file *filep,
1053 struct kfd_process *p, void *data)
1054 {
1055 struct kfd_ioctl_alloc_memory_of_gpu_args *args = data;
1056 struct kfd_process_device *pdd;
1057 void *mem;
1058 struct kfd_node *dev;
1059 int idr_handle;
1060 long err;
1061 uint64_t offset = args->mmap_offset;
1062 uint32_t flags = args->flags;
1063
1064 if (args->size == 0)
1065 return -EINVAL;
1066
1067 #if IS_ENABLED(CONFIG_HSA_AMD_SVM)
1068 /* Flush pending deferred work to avoid racing with deferred actions
1069 * from previous memory map changes (e.g. munmap).
1070 */
1071 svm_range_list_lock_and_flush_work(&p->svms, current->mm);
1072 mutex_lock(&p->svms.lock);
1073 mmap_write_unlock(current->mm);
1074 if (interval_tree_iter_first(&p->svms.objects,
1075 args->va_addr >> PAGE_SHIFT,
1076 (args->va_addr + args->size - 1) >> PAGE_SHIFT)) {
1077 pr_err("Address: 0x%llx already allocated by SVM\n",
1078 args->va_addr);
1079 mutex_unlock(&p->svms.lock);
1080 return -EADDRINUSE;
1081 }
1082
1083 /* When register user buffer check if it has been registered by svm by
1084 * buffer cpu virtual address.
1085 */
1086 if ((flags & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) &&
1087 interval_tree_iter_first(&p->svms.objects,
1088 args->mmap_offset >> PAGE_SHIFT,
1089 (args->mmap_offset + args->size - 1) >> PAGE_SHIFT)) {
1090 pr_err("User Buffer Address: 0x%llx already allocated by SVM\n",
1091 args->mmap_offset);
1092 mutex_unlock(&p->svms.lock);
1093 return -EADDRINUSE;
1094 }
1095
1096 mutex_unlock(&p->svms.lock);
1097 #endif
1098 mutex_lock(&p->mutex);
1099 pdd = kfd_process_device_data_by_id(p, args->gpu_id);
1100 if (!pdd) {
1101 err = -EINVAL;
1102 goto err_pdd;
1103 }
1104
1105 dev = pdd->dev;
1106
1107 if ((flags & KFD_IOC_ALLOC_MEM_FLAGS_PUBLIC) &&
1108 (flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) &&
1109 !kfd_dev_is_large_bar(dev)) {
1110 pr_err("Alloc host visible vram on small bar is not allowed\n");
1111 err = -EINVAL;
1112 goto err_large_bar;
1113 }
1114
1115 pdd = kfd_bind_process_to_device(dev, p);
1116 if (IS_ERR(pdd)) {
1117 err = PTR_ERR(pdd);
1118 goto err_unlock;
1119 }
1120
1121 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL) {
1122 if (args->size != kfd_doorbell_process_slice(dev->kfd)) {
1123 err = -EINVAL;
1124 goto err_unlock;
1125 }
1126 offset = kfd_get_process_doorbells(pdd);
1127 if (!offset) {
1128 err = -ENOMEM;
1129 goto err_unlock;
1130 }
1131 } else if (flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP) {
1132 if (args->size != PAGE_SIZE) {
1133 err = -EINVAL;
1134 goto err_unlock;
1135 }
1136 offset = dev->adev->rmmio_remap.bus_addr;
1137 if (!offset || (PAGE_SIZE > 4096)) {
1138 err = -ENOMEM;
1139 goto err_unlock;
1140 }
1141 }
1142
1143 err = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(
1144 dev->adev, args->va_addr, args->size,
1145 pdd->drm_priv, (struct kgd_mem **) &mem, &offset,
1146 flags, false);
1147
1148 if (err)
1149 goto err_unlock;
1150
1151 idr_handle = kfd_process_device_create_obj_handle(pdd, mem);
1152 if (idr_handle < 0) {
1153 err = -EFAULT;
1154 goto err_free;
1155 }
1156
1157 /* Update the VRAM usage count */
1158 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) {
1159 uint64_t size = args->size;
1160
1161 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_AQL_QUEUE_MEM)
1162 size >>= 1;
1163 atomic64_add(PAGE_ALIGN(size), &pdd->vram_usage);
1164 }
1165
1166 mutex_unlock(&p->mutex);
1167
1168 args->handle = MAKE_HANDLE(args->gpu_id, idr_handle);
1169 args->mmap_offset = offset;
1170
1171 /* MMIO is mapped through kfd device
1172 * Generate a kfd mmap offset
1173 */
1174 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)
1175 args->mmap_offset = KFD_MMAP_TYPE_MMIO
1176 | KFD_MMAP_GPU_ID(args->gpu_id);
1177
1178 return 0;
1179
1180 err_free:
1181 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->adev, (struct kgd_mem *)mem,
1182 pdd->drm_priv, NULL);
1183 err_unlock:
1184 err_pdd:
1185 err_large_bar:
1186 mutex_unlock(&p->mutex);
1187 return err;
1188 }
1189
kfd_ioctl_free_memory_of_gpu(struct file * filep,struct kfd_process * p,void * data)1190 static int kfd_ioctl_free_memory_of_gpu(struct file *filep,
1191 struct kfd_process *p, void *data)
1192 {
1193 struct kfd_ioctl_free_memory_of_gpu_args *args = data;
1194 struct kfd_process_device *pdd;
1195 void *mem;
1196 int ret;
1197 uint64_t size = 0;
1198
1199 mutex_lock(&p->mutex);
1200 /*
1201 * Safeguard to prevent user space from freeing signal BO.
1202 * It will be freed at process termination.
1203 */
1204 if (p->signal_handle && (p->signal_handle == args->handle)) {
1205 pr_err("Free signal BO is not allowed\n");
1206 ret = -EPERM;
1207 goto err_unlock;
1208 }
1209
1210 pdd = kfd_process_device_data_by_id(p, GET_GPU_ID(args->handle));
1211 if (!pdd) {
1212 pr_err("Process device data doesn't exist\n");
1213 ret = -EINVAL;
1214 goto err_pdd;
1215 }
1216
1217 mem = kfd_process_device_translate_handle(
1218 pdd, GET_IDR_HANDLE(args->handle));
1219 if (!mem) {
1220 ret = -EINVAL;
1221 goto err_unlock;
1222 }
1223
1224 ret = amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev,
1225 (struct kgd_mem *)mem, pdd->drm_priv, &size);
1226
1227 /* If freeing the buffer failed, leave the handle in place for
1228 * clean-up during process tear-down.
1229 */
1230 if (!ret)
1231 kfd_process_device_remove_obj_handle(
1232 pdd, GET_IDR_HANDLE(args->handle));
1233
1234 atomic64_sub(size, &pdd->vram_usage);
1235
1236 err_unlock:
1237 err_pdd:
1238 mutex_unlock(&p->mutex);
1239 return ret;
1240 }
1241
kfd_ioctl_map_memory_to_gpu(struct file * filep,struct kfd_process * p,void * data)1242 static int kfd_ioctl_map_memory_to_gpu(struct file *filep,
1243 struct kfd_process *p, void *data)
1244 {
1245 struct kfd_ioctl_map_memory_to_gpu_args *args = data;
1246 struct kfd_process_device *pdd, *peer_pdd;
1247 void *mem;
1248 struct kfd_node *dev;
1249 long err = 0;
1250 int i;
1251 uint32_t *devices_arr = NULL;
1252
1253 if (!args->n_devices) {
1254 pr_debug("Device IDs array empty\n");
1255 return -EINVAL;
1256 }
1257 if (args->n_success > args->n_devices) {
1258 pr_debug("n_success exceeds n_devices\n");
1259 return -EINVAL;
1260 }
1261
1262 devices_arr = kmalloc_array(args->n_devices, sizeof(*devices_arr),
1263 GFP_KERNEL);
1264 if (!devices_arr)
1265 return -ENOMEM;
1266
1267 err = copy_from_user(devices_arr,
1268 (void __user *)args->device_ids_array_ptr,
1269 args->n_devices * sizeof(*devices_arr));
1270 if (err != 0) {
1271 err = -EFAULT;
1272 goto copy_from_user_failed;
1273 }
1274
1275 mutex_lock(&p->mutex);
1276 pdd = kfd_process_device_data_by_id(p, GET_GPU_ID(args->handle));
1277 if (!pdd) {
1278 err = -EINVAL;
1279 goto get_process_device_data_failed;
1280 }
1281 dev = pdd->dev;
1282
1283 pdd = kfd_bind_process_to_device(dev, p);
1284 if (IS_ERR(pdd)) {
1285 err = PTR_ERR(pdd);
1286 goto bind_process_to_device_failed;
1287 }
1288
1289 mem = kfd_process_device_translate_handle(pdd,
1290 GET_IDR_HANDLE(args->handle));
1291 if (!mem) {
1292 err = -ENOMEM;
1293 goto get_mem_obj_from_handle_failed;
1294 }
1295
1296 for (i = args->n_success; i < args->n_devices; i++) {
1297 peer_pdd = kfd_process_device_data_by_id(p, devices_arr[i]);
1298 if (!peer_pdd) {
1299 pr_debug("Getting device by id failed for 0x%x\n",
1300 devices_arr[i]);
1301 err = -EINVAL;
1302 goto get_mem_obj_from_handle_failed;
1303 }
1304
1305 peer_pdd = kfd_bind_process_to_device(peer_pdd->dev, p);
1306 if (IS_ERR(peer_pdd)) {
1307 err = PTR_ERR(peer_pdd);
1308 goto get_mem_obj_from_handle_failed;
1309 }
1310
1311 err = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(
1312 peer_pdd->dev->adev, (struct kgd_mem *)mem,
1313 peer_pdd->drm_priv);
1314 if (err) {
1315 struct pci_dev *pdev = peer_pdd->dev->adev->pdev;
1316
1317 dev_err(dev->adev->dev,
1318 "Failed to map peer:%04x:%02x:%02x.%d mem_domain:%d\n",
1319 pci_domain_nr(pdev->bus),
1320 pdev->bus->number,
1321 PCI_SLOT(pdev->devfn),
1322 PCI_FUNC(pdev->devfn),
1323 ((struct kgd_mem *)mem)->domain);
1324 goto map_memory_to_gpu_failed;
1325 }
1326 args->n_success = i+1;
1327 }
1328
1329 err = amdgpu_amdkfd_gpuvm_sync_memory(dev->adev, (struct kgd_mem *) mem, true);
1330 if (err) {
1331 pr_debug("Sync memory failed, wait interrupted by user signal\n");
1332 goto sync_memory_failed;
1333 }
1334
1335 mutex_unlock(&p->mutex);
1336
1337 /* Flush TLBs after waiting for the page table updates to complete */
1338 for (i = 0; i < args->n_devices; i++) {
1339 peer_pdd = kfd_process_device_data_by_id(p, devices_arr[i]);
1340 if (WARN_ON_ONCE(!peer_pdd))
1341 continue;
1342 kfd_flush_tlb(peer_pdd, TLB_FLUSH_LEGACY);
1343 }
1344 kfree(devices_arr);
1345
1346 return err;
1347
1348 get_process_device_data_failed:
1349 bind_process_to_device_failed:
1350 get_mem_obj_from_handle_failed:
1351 map_memory_to_gpu_failed:
1352 sync_memory_failed:
1353 mutex_unlock(&p->mutex);
1354 copy_from_user_failed:
1355 kfree(devices_arr);
1356
1357 return err;
1358 }
1359
kfd_ioctl_unmap_memory_from_gpu(struct file * filep,struct kfd_process * p,void * data)1360 static int kfd_ioctl_unmap_memory_from_gpu(struct file *filep,
1361 struct kfd_process *p, void *data)
1362 {
1363 struct kfd_ioctl_unmap_memory_from_gpu_args *args = data;
1364 struct kfd_process_device *pdd, *peer_pdd;
1365 void *mem;
1366 long err = 0;
1367 uint32_t *devices_arr = NULL, i;
1368 bool flush_tlb;
1369
1370 if (!args->n_devices) {
1371 pr_debug("Device IDs array empty\n");
1372 return -EINVAL;
1373 }
1374 if (args->n_success > args->n_devices) {
1375 pr_debug("n_success exceeds n_devices\n");
1376 return -EINVAL;
1377 }
1378
1379 devices_arr = kmalloc_array(args->n_devices, sizeof(*devices_arr),
1380 GFP_KERNEL);
1381 if (!devices_arr)
1382 return -ENOMEM;
1383
1384 err = copy_from_user(devices_arr,
1385 (void __user *)args->device_ids_array_ptr,
1386 args->n_devices * sizeof(*devices_arr));
1387 if (err != 0) {
1388 err = -EFAULT;
1389 goto copy_from_user_failed;
1390 }
1391
1392 mutex_lock(&p->mutex);
1393 pdd = kfd_process_device_data_by_id(p, GET_GPU_ID(args->handle));
1394 if (!pdd) {
1395 err = -EINVAL;
1396 goto bind_process_to_device_failed;
1397 }
1398
1399 mem = kfd_process_device_translate_handle(pdd,
1400 GET_IDR_HANDLE(args->handle));
1401 if (!mem) {
1402 err = -ENOMEM;
1403 goto get_mem_obj_from_handle_failed;
1404 }
1405
1406 for (i = args->n_success; i < args->n_devices; i++) {
1407 peer_pdd = kfd_process_device_data_by_id(p, devices_arr[i]);
1408 if (!peer_pdd) {
1409 err = -EINVAL;
1410 goto get_mem_obj_from_handle_failed;
1411 }
1412 err = amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(
1413 peer_pdd->dev->adev, (struct kgd_mem *)mem, peer_pdd->drm_priv);
1414 if (err) {
1415 pr_debug("Failed to unmap from gpu %d/%d\n", i, args->n_devices);
1416 goto unmap_memory_from_gpu_failed;
1417 }
1418 args->n_success = i+1;
1419 }
1420
1421 flush_tlb = kfd_flush_tlb_after_unmap(pdd->dev->kfd);
1422 if (flush_tlb) {
1423 err = amdgpu_amdkfd_gpuvm_sync_memory(pdd->dev->adev,
1424 (struct kgd_mem *) mem, true);
1425 if (err) {
1426 pr_debug("Sync memory failed, wait interrupted by user signal\n");
1427 goto sync_memory_failed;
1428 }
1429 }
1430
1431 /* Flush TLBs after waiting for the page table updates to complete */
1432 for (i = 0; i < args->n_devices; i++) {
1433 peer_pdd = kfd_process_device_data_by_id(p, devices_arr[i]);
1434 if (WARN_ON_ONCE(!peer_pdd))
1435 continue;
1436 if (flush_tlb)
1437 kfd_flush_tlb(peer_pdd, TLB_FLUSH_HEAVYWEIGHT);
1438
1439 /* Remove dma mapping after tlb flush to avoid IO_PAGE_FAULT */
1440 err = amdgpu_amdkfd_gpuvm_dmaunmap_mem(mem, peer_pdd->drm_priv);
1441 if (err)
1442 goto sync_memory_failed;
1443 }
1444
1445 mutex_unlock(&p->mutex);
1446
1447 kfree(devices_arr);
1448
1449 return 0;
1450
1451 bind_process_to_device_failed:
1452 get_mem_obj_from_handle_failed:
1453 unmap_memory_from_gpu_failed:
1454 sync_memory_failed:
1455 mutex_unlock(&p->mutex);
1456 copy_from_user_failed:
1457 kfree(devices_arr);
1458 return err;
1459 }
1460
kfd_ioctl_alloc_queue_gws(struct file * filep,struct kfd_process * p,void * data)1461 static int kfd_ioctl_alloc_queue_gws(struct file *filep,
1462 struct kfd_process *p, void *data)
1463 {
1464 int retval;
1465 struct kfd_ioctl_alloc_queue_gws_args *args = data;
1466 struct queue *q;
1467 struct kfd_node *dev;
1468
1469 mutex_lock(&p->mutex);
1470 q = pqm_get_user_queue(&p->pqm, args->queue_id);
1471
1472 if (q) {
1473 dev = q->device;
1474 } else {
1475 retval = -EINVAL;
1476 goto out_unlock;
1477 }
1478
1479 if (!dev->gws) {
1480 retval = -ENODEV;
1481 goto out_unlock;
1482 }
1483
1484 if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
1485 retval = -ENODEV;
1486 goto out_unlock;
1487 }
1488
1489 if (p->debug_trap_enabled && (!kfd_dbg_has_gws_support(dev) ||
1490 kfd_dbg_has_cwsr_workaround(dev))) {
1491 retval = -EBUSY;
1492 goto out_unlock;
1493 }
1494
1495 retval = pqm_set_gws(&p->pqm, args->queue_id, args->num_gws ? dev->gws : NULL);
1496 mutex_unlock(&p->mutex);
1497
1498 args->first_gws = 0;
1499 return retval;
1500
1501 out_unlock:
1502 mutex_unlock(&p->mutex);
1503 return retval;
1504 }
1505
kfd_ioctl_get_dmabuf_info(struct file * filep,struct kfd_process * p,void * data)1506 static int kfd_ioctl_get_dmabuf_info(struct file *filep,
1507 struct kfd_process *p, void *data)
1508 {
1509 struct kfd_ioctl_get_dmabuf_info_args *args = data;
1510 struct kfd_node *dev = NULL;
1511 struct amdgpu_device *dmabuf_adev;
1512 void *metadata_buffer = NULL;
1513 uint32_t flags;
1514 int8_t xcp_id;
1515 unsigned int i;
1516 int r;
1517
1518 /* Find a KFD GPU device that supports the get_dmabuf_info query */
1519 for (i = 0; kfd_topology_enum_kfd_devices(i, &dev) == 0; i++)
1520 if (dev && !kfd_devcgroup_check_permission(dev))
1521 break;
1522 if (!dev)
1523 return -EINVAL;
1524
1525 if (args->metadata_ptr) {
1526 metadata_buffer = kzalloc(args->metadata_size, GFP_KERNEL);
1527 if (!metadata_buffer)
1528 return -ENOMEM;
1529 }
1530
1531 /* Get dmabuf info from KGD */
1532 r = amdgpu_amdkfd_get_dmabuf_info(dev->adev, args->dmabuf_fd,
1533 &dmabuf_adev, &args->size,
1534 metadata_buffer, args->metadata_size,
1535 &args->metadata_size, &flags, &xcp_id);
1536 if (r)
1537 goto exit;
1538
1539 if (xcp_id >= 0)
1540 args->gpu_id = dmabuf_adev->kfd.dev->nodes[xcp_id]->id;
1541 else
1542 args->gpu_id = dev->id;
1543 args->flags = flags;
1544
1545 /* Copy metadata buffer to user mode */
1546 if (metadata_buffer) {
1547 r = copy_to_user((void __user *)args->metadata_ptr,
1548 metadata_buffer, args->metadata_size);
1549 if (r != 0)
1550 r = -EFAULT;
1551 }
1552
1553 exit:
1554 kfree(metadata_buffer);
1555
1556 return r;
1557 }
1558
kfd_ioctl_import_dmabuf(struct file * filep,struct kfd_process * p,void * data)1559 static int kfd_ioctl_import_dmabuf(struct file *filep,
1560 struct kfd_process *p, void *data)
1561 {
1562 struct kfd_ioctl_import_dmabuf_args *args = data;
1563 struct kfd_process_device *pdd;
1564 int idr_handle;
1565 uint64_t size;
1566 void *mem;
1567 int r;
1568
1569 mutex_lock(&p->mutex);
1570 pdd = kfd_process_device_data_by_id(p, args->gpu_id);
1571 if (!pdd) {
1572 r = -EINVAL;
1573 goto err_unlock;
1574 }
1575
1576 pdd = kfd_bind_process_to_device(pdd->dev, p);
1577 if (IS_ERR(pdd)) {
1578 r = PTR_ERR(pdd);
1579 goto err_unlock;
1580 }
1581
1582 r = amdgpu_amdkfd_gpuvm_import_dmabuf_fd(pdd->dev->adev, args->dmabuf_fd,
1583 args->va_addr, pdd->drm_priv,
1584 (struct kgd_mem **)&mem, &size,
1585 NULL);
1586 if (r)
1587 goto err_unlock;
1588
1589 idr_handle = kfd_process_device_create_obj_handle(pdd, mem);
1590 if (idr_handle < 0) {
1591 r = -EFAULT;
1592 goto err_free;
1593 }
1594
1595 mutex_unlock(&p->mutex);
1596
1597 args->handle = MAKE_HANDLE(args->gpu_id, idr_handle);
1598
1599 return 0;
1600
1601 err_free:
1602 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev, (struct kgd_mem *)mem,
1603 pdd->drm_priv, NULL);
1604 err_unlock:
1605 mutex_unlock(&p->mutex);
1606 return r;
1607 }
1608
kfd_ioctl_export_dmabuf(struct file * filep,struct kfd_process * p,void * data)1609 static int kfd_ioctl_export_dmabuf(struct file *filep,
1610 struct kfd_process *p, void *data)
1611 {
1612 struct kfd_ioctl_export_dmabuf_args *args = data;
1613 struct kfd_process_device *pdd;
1614 struct dma_buf *dmabuf;
1615 struct kfd_node *dev;
1616 void *mem;
1617 int ret = 0;
1618
1619 dev = kfd_device_by_id(GET_GPU_ID(args->handle));
1620 if (!dev)
1621 return -EINVAL;
1622
1623 mutex_lock(&p->mutex);
1624
1625 pdd = kfd_get_process_device_data(dev, p);
1626 if (!pdd) {
1627 ret = -EINVAL;
1628 goto err_unlock;
1629 }
1630
1631 mem = kfd_process_device_translate_handle(pdd,
1632 GET_IDR_HANDLE(args->handle));
1633 if (!mem) {
1634 ret = -EINVAL;
1635 goto err_unlock;
1636 }
1637
1638 ret = amdgpu_amdkfd_gpuvm_export_dmabuf(mem, &dmabuf);
1639 mutex_unlock(&p->mutex);
1640 if (ret)
1641 goto err_out;
1642
1643 ret = dma_buf_fd(dmabuf, args->flags);
1644 if (ret < 0) {
1645 dma_buf_put(dmabuf);
1646 goto err_out;
1647 }
1648 /* dma_buf_fd assigns the reference count to the fd, no need to
1649 * put the reference here.
1650 */
1651 args->dmabuf_fd = ret;
1652
1653 return 0;
1654
1655 err_unlock:
1656 mutex_unlock(&p->mutex);
1657 err_out:
1658 return ret;
1659 }
1660
1661 /* Handle requests for watching SMI events */
kfd_ioctl_smi_events(struct file * filep,struct kfd_process * p,void * data)1662 static int kfd_ioctl_smi_events(struct file *filep,
1663 struct kfd_process *p, void *data)
1664 {
1665 struct kfd_ioctl_smi_events_args *args = data;
1666 struct kfd_process_device *pdd;
1667
1668 mutex_lock(&p->mutex);
1669
1670 pdd = kfd_process_device_data_by_id(p, args->gpuid);
1671 mutex_unlock(&p->mutex);
1672 if (!pdd)
1673 return -EINVAL;
1674
1675 return kfd_smi_event_open(pdd->dev, &args->anon_fd);
1676 }
1677
1678 #if IS_ENABLED(CONFIG_HSA_AMD_SVM)
1679
kfd_ioctl_set_xnack_mode(struct file * filep,struct kfd_process * p,void * data)1680 static int kfd_ioctl_set_xnack_mode(struct file *filep,
1681 struct kfd_process *p, void *data)
1682 {
1683 struct kfd_ioctl_set_xnack_mode_args *args = data;
1684 int r = 0;
1685
1686 mutex_lock(&p->mutex);
1687 if (args->xnack_enabled >= 0) {
1688 if (!list_empty(&p->pqm.queues)) {
1689 pr_debug("Process has user queues running\n");
1690 r = -EBUSY;
1691 goto out_unlock;
1692 }
1693
1694 if (p->xnack_enabled == args->xnack_enabled)
1695 goto out_unlock;
1696
1697 if (args->xnack_enabled && !kfd_process_xnack_mode(p, true)) {
1698 r = -EPERM;
1699 goto out_unlock;
1700 }
1701
1702 r = svm_range_switch_xnack_reserve_mem(p, args->xnack_enabled);
1703 } else {
1704 args->xnack_enabled = p->xnack_enabled;
1705 }
1706
1707 out_unlock:
1708 mutex_unlock(&p->mutex);
1709
1710 return r;
1711 }
1712
kfd_ioctl_svm(struct file * filep,struct kfd_process * p,void * data)1713 static int kfd_ioctl_svm(struct file *filep, struct kfd_process *p, void *data)
1714 {
1715 struct kfd_ioctl_svm_args *args = data;
1716 int r = 0;
1717
1718 pr_debug("start 0x%llx size 0x%llx op 0x%x nattr 0x%x\n",
1719 args->start_addr, args->size, args->op, args->nattr);
1720
1721 if ((args->start_addr & ~PAGE_MASK) || (args->size & ~PAGE_MASK))
1722 return -EINVAL;
1723 if (!args->start_addr || !args->size)
1724 return -EINVAL;
1725
1726 r = svm_ioctl(p, args->op, args->start_addr, args->size, args->nattr,
1727 args->attrs);
1728
1729 return r;
1730 }
1731 #else
kfd_ioctl_set_xnack_mode(struct file * filep,struct kfd_process * p,void * data)1732 static int kfd_ioctl_set_xnack_mode(struct file *filep,
1733 struct kfd_process *p, void *data)
1734 {
1735 return -EPERM;
1736 }
kfd_ioctl_svm(struct file * filep,struct kfd_process * p,void * data)1737 static int kfd_ioctl_svm(struct file *filep, struct kfd_process *p, void *data)
1738 {
1739 return -EPERM;
1740 }
1741 #endif
1742
criu_checkpoint_process(struct kfd_process * p,uint8_t __user * user_priv_data,uint64_t * priv_offset)1743 static int criu_checkpoint_process(struct kfd_process *p,
1744 uint8_t __user *user_priv_data,
1745 uint64_t *priv_offset)
1746 {
1747 struct kfd_criu_process_priv_data process_priv;
1748 int ret;
1749
1750 memset(&process_priv, 0, sizeof(process_priv));
1751
1752 process_priv.version = KFD_CRIU_PRIV_VERSION;
1753 /* For CR, we don't consider negative xnack mode which is used for
1754 * querying without changing it, here 0 simply means disabled and 1
1755 * means enabled so retry for finding a valid PTE.
1756 */
1757 process_priv.xnack_mode = p->xnack_enabled ? 1 : 0;
1758
1759 ret = copy_to_user(user_priv_data + *priv_offset,
1760 &process_priv, sizeof(process_priv));
1761
1762 if (ret) {
1763 pr_err("Failed to copy process information to user\n");
1764 ret = -EFAULT;
1765 }
1766
1767 *priv_offset += sizeof(process_priv);
1768 return ret;
1769 }
1770
criu_checkpoint_devices(struct kfd_process * p,uint32_t num_devices,uint8_t __user * user_addr,uint8_t __user * user_priv_data,uint64_t * priv_offset)1771 static int criu_checkpoint_devices(struct kfd_process *p,
1772 uint32_t num_devices,
1773 uint8_t __user *user_addr,
1774 uint8_t __user *user_priv_data,
1775 uint64_t *priv_offset)
1776 {
1777 struct kfd_criu_device_priv_data *device_priv = NULL;
1778 struct kfd_criu_device_bucket *device_buckets = NULL;
1779 int ret = 0, i;
1780
1781 device_buckets = kvzalloc(num_devices * sizeof(*device_buckets), GFP_KERNEL);
1782 if (!device_buckets) {
1783 ret = -ENOMEM;
1784 goto exit;
1785 }
1786
1787 device_priv = kvzalloc(num_devices * sizeof(*device_priv), GFP_KERNEL);
1788 if (!device_priv) {
1789 ret = -ENOMEM;
1790 goto exit;
1791 }
1792
1793 for (i = 0; i < num_devices; i++) {
1794 struct kfd_process_device *pdd = p->pdds[i];
1795
1796 device_buckets[i].user_gpu_id = pdd->user_gpu_id;
1797 device_buckets[i].actual_gpu_id = pdd->dev->id;
1798
1799 /*
1800 * priv_data does not contain useful information for now and is reserved for
1801 * future use, so we do not set its contents.
1802 */
1803 }
1804
1805 ret = copy_to_user(user_addr, device_buckets, num_devices * sizeof(*device_buckets));
1806 if (ret) {
1807 pr_err("Failed to copy device information to user\n");
1808 ret = -EFAULT;
1809 goto exit;
1810 }
1811
1812 ret = copy_to_user(user_priv_data + *priv_offset,
1813 device_priv,
1814 num_devices * sizeof(*device_priv));
1815 if (ret) {
1816 pr_err("Failed to copy device information to user\n");
1817 ret = -EFAULT;
1818 }
1819 *priv_offset += num_devices * sizeof(*device_priv);
1820
1821 exit:
1822 kvfree(device_buckets);
1823 kvfree(device_priv);
1824 return ret;
1825 }
1826
get_process_num_bos(struct kfd_process * p)1827 static uint32_t get_process_num_bos(struct kfd_process *p)
1828 {
1829 uint32_t num_of_bos = 0;
1830 int i;
1831
1832 /* Run over all PDDs of the process */
1833 for (i = 0; i < p->n_pdds; i++) {
1834 struct kfd_process_device *pdd = p->pdds[i];
1835 void *mem;
1836 int id;
1837
1838 idr_for_each_entry(&pdd->alloc_idr, mem, id) {
1839 struct kgd_mem *kgd_mem = (struct kgd_mem *)mem;
1840
1841 if (!kgd_mem->va || kgd_mem->va > pdd->gpuvm_base)
1842 num_of_bos++;
1843 }
1844 }
1845 return num_of_bos;
1846 }
1847
criu_get_prime_handle(struct kgd_mem * mem,int flags,u32 * shared_fd,struct file ** file)1848 static int criu_get_prime_handle(struct kgd_mem *mem,
1849 int flags, u32 *shared_fd,
1850 struct file **file)
1851 {
1852 struct dma_buf *dmabuf;
1853 int ret;
1854
1855 ret = amdgpu_amdkfd_gpuvm_export_dmabuf(mem, &dmabuf);
1856 if (ret) {
1857 pr_err("dmabuf export failed for the BO\n");
1858 return ret;
1859 }
1860
1861 ret = get_unused_fd_flags(flags);
1862 if (ret < 0) {
1863 pr_err("dmabuf create fd failed, ret:%d\n", ret);
1864 goto out_free_dmabuf;
1865 }
1866
1867 *shared_fd = ret;
1868 *file = dmabuf->file;
1869 return 0;
1870
1871 out_free_dmabuf:
1872 dma_buf_put(dmabuf);
1873 return ret;
1874 }
1875
commit_files(struct file ** files,struct kfd_criu_bo_bucket * bo_buckets,unsigned int count,int err)1876 static void commit_files(struct file **files,
1877 struct kfd_criu_bo_bucket *bo_buckets,
1878 unsigned int count,
1879 int err)
1880 {
1881 while (count--) {
1882 struct file *file = files[count];
1883
1884 if (!file)
1885 continue;
1886 if (err) {
1887 fput(file);
1888 put_unused_fd(bo_buckets[count].dmabuf_fd);
1889 } else {
1890 fd_install(bo_buckets[count].dmabuf_fd, file);
1891 }
1892 }
1893 }
1894
criu_checkpoint_bos(struct kfd_process * p,uint32_t num_bos,uint8_t __user * user_bos,uint8_t __user * user_priv_data,uint64_t * priv_offset)1895 static int criu_checkpoint_bos(struct kfd_process *p,
1896 uint32_t num_bos,
1897 uint8_t __user *user_bos,
1898 uint8_t __user *user_priv_data,
1899 uint64_t *priv_offset)
1900 {
1901 struct kfd_criu_bo_bucket *bo_buckets;
1902 struct kfd_criu_bo_priv_data *bo_privs;
1903 struct file **files = NULL;
1904 int ret = 0, pdd_index, bo_index = 0, id;
1905 void *mem;
1906
1907 bo_buckets = kvzalloc(num_bos * sizeof(*bo_buckets), GFP_KERNEL);
1908 if (!bo_buckets)
1909 return -ENOMEM;
1910
1911 bo_privs = kvzalloc(num_bos * sizeof(*bo_privs), GFP_KERNEL);
1912 if (!bo_privs) {
1913 ret = -ENOMEM;
1914 goto exit;
1915 }
1916
1917 files = kvzalloc(num_bos * sizeof(struct file *), GFP_KERNEL);
1918 if (!files) {
1919 ret = -ENOMEM;
1920 goto exit;
1921 }
1922
1923 for (pdd_index = 0; pdd_index < p->n_pdds; pdd_index++) {
1924 struct kfd_process_device *pdd = p->pdds[pdd_index];
1925 struct amdgpu_bo *dumper_bo;
1926 struct kgd_mem *kgd_mem;
1927
1928 idr_for_each_entry(&pdd->alloc_idr, mem, id) {
1929 struct kfd_criu_bo_bucket *bo_bucket;
1930 struct kfd_criu_bo_priv_data *bo_priv;
1931 int i, dev_idx = 0;
1932
1933 kgd_mem = (struct kgd_mem *)mem;
1934 dumper_bo = kgd_mem->bo;
1935
1936 /* Skip checkpointing BOs that are used for Trap handler
1937 * code and state. Currently, these BOs have a VA that
1938 * is less GPUVM Base
1939 */
1940 if (kgd_mem->va && kgd_mem->va <= pdd->gpuvm_base)
1941 continue;
1942
1943 bo_bucket = &bo_buckets[bo_index];
1944 bo_priv = &bo_privs[bo_index];
1945
1946 bo_bucket->gpu_id = pdd->user_gpu_id;
1947 bo_bucket->addr = (uint64_t)kgd_mem->va;
1948 bo_bucket->size = amdgpu_bo_size(dumper_bo);
1949 bo_bucket->alloc_flags = (uint32_t)kgd_mem->alloc_flags;
1950 bo_priv->idr_handle = id;
1951
1952 if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) {
1953 ret = amdgpu_ttm_tt_get_userptr(&dumper_bo->tbo,
1954 &bo_priv->user_addr);
1955 if (ret) {
1956 pr_err("Failed to obtain user address for user-pointer bo\n");
1957 goto exit;
1958 }
1959 }
1960 if (bo_bucket->alloc_flags
1961 & (KFD_IOC_ALLOC_MEM_FLAGS_VRAM | KFD_IOC_ALLOC_MEM_FLAGS_GTT)) {
1962 ret = criu_get_prime_handle(kgd_mem,
1963 bo_bucket->alloc_flags &
1964 KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ? DRM_RDWR : 0,
1965 &bo_bucket->dmabuf_fd, &files[bo_index]);
1966 if (ret)
1967 goto exit;
1968 } else {
1969 bo_bucket->dmabuf_fd = KFD_INVALID_FD;
1970 }
1971
1972 if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL)
1973 bo_bucket->offset = KFD_MMAP_TYPE_DOORBELL |
1974 KFD_MMAP_GPU_ID(pdd->dev->id);
1975 else if (bo_bucket->alloc_flags &
1976 KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)
1977 bo_bucket->offset = KFD_MMAP_TYPE_MMIO |
1978 KFD_MMAP_GPU_ID(pdd->dev->id);
1979 else
1980 bo_bucket->offset = amdgpu_bo_mmap_offset(dumper_bo);
1981
1982 for (i = 0; i < p->n_pdds; i++) {
1983 if (amdgpu_amdkfd_bo_mapped_to_dev(p->pdds[i]->drm_priv, kgd_mem))
1984 bo_priv->mapped_gpuids[dev_idx++] = p->pdds[i]->user_gpu_id;
1985 }
1986
1987 pr_debug("bo_size = 0x%llx, bo_addr = 0x%llx bo_offset = 0x%llx\n"
1988 "gpu_id = 0x%x alloc_flags = 0x%x idr_handle = 0x%x",
1989 bo_bucket->size,
1990 bo_bucket->addr,
1991 bo_bucket->offset,
1992 bo_bucket->gpu_id,
1993 bo_bucket->alloc_flags,
1994 bo_priv->idr_handle);
1995 bo_index++;
1996 }
1997 }
1998
1999 ret = copy_to_user(user_bos, bo_buckets, num_bos * sizeof(*bo_buckets));
2000 if (ret) {
2001 pr_err("Failed to copy BO information to user\n");
2002 ret = -EFAULT;
2003 goto exit;
2004 }
2005
2006 ret = copy_to_user(user_priv_data + *priv_offset, bo_privs, num_bos * sizeof(*bo_privs));
2007 if (ret) {
2008 pr_err("Failed to copy BO priv information to user\n");
2009 ret = -EFAULT;
2010 goto exit;
2011 }
2012
2013 *priv_offset += num_bos * sizeof(*bo_privs);
2014
2015 exit:
2016 commit_files(files, bo_buckets, bo_index, ret);
2017 kvfree(files);
2018 kvfree(bo_buckets);
2019 kvfree(bo_privs);
2020 return ret;
2021 }
2022
criu_get_process_object_info(struct kfd_process * p,uint32_t * num_devices,uint32_t * num_bos,uint32_t * num_objects,uint64_t * objs_priv_size)2023 static int criu_get_process_object_info(struct kfd_process *p,
2024 uint32_t *num_devices,
2025 uint32_t *num_bos,
2026 uint32_t *num_objects,
2027 uint64_t *objs_priv_size)
2028 {
2029 uint64_t queues_priv_data_size, svm_priv_data_size, priv_size;
2030 uint32_t num_queues, num_events, num_svm_ranges;
2031 int ret;
2032
2033 *num_devices = p->n_pdds;
2034 *num_bos = get_process_num_bos(p);
2035
2036 ret = kfd_process_get_queue_info(p, &num_queues, &queues_priv_data_size);
2037 if (ret)
2038 return ret;
2039
2040 num_events = kfd_get_num_events(p);
2041
2042 svm_range_get_info(p, &num_svm_ranges, &svm_priv_data_size);
2043
2044 *num_objects = num_queues + num_events + num_svm_ranges;
2045
2046 if (objs_priv_size) {
2047 priv_size = sizeof(struct kfd_criu_process_priv_data);
2048 priv_size += *num_devices * sizeof(struct kfd_criu_device_priv_data);
2049 priv_size += *num_bos * sizeof(struct kfd_criu_bo_priv_data);
2050 priv_size += queues_priv_data_size;
2051 priv_size += num_events * sizeof(struct kfd_criu_event_priv_data);
2052 priv_size += svm_priv_data_size;
2053 *objs_priv_size = priv_size;
2054 }
2055 return 0;
2056 }
2057
criu_checkpoint(struct file * filep,struct kfd_process * p,struct kfd_ioctl_criu_args * args)2058 static int criu_checkpoint(struct file *filep,
2059 struct kfd_process *p,
2060 struct kfd_ioctl_criu_args *args)
2061 {
2062 int ret;
2063 uint32_t num_devices, num_bos, num_objects;
2064 uint64_t priv_size, priv_offset = 0, bo_priv_offset;
2065
2066 if (!args->devices || !args->bos || !args->priv_data)
2067 return -EINVAL;
2068
2069 mutex_lock(&p->mutex);
2070
2071 if (!p->n_pdds) {
2072 pr_err("No pdd for given process\n");
2073 ret = -ENODEV;
2074 goto exit_unlock;
2075 }
2076
2077 /* Confirm all process queues are evicted */
2078 if (!p->queues_paused) {
2079 pr_err("Cannot dump process when queues are not in evicted state\n");
2080 /* CRIU plugin did not call op PROCESS_INFO before checkpointing */
2081 ret = -EINVAL;
2082 goto exit_unlock;
2083 }
2084
2085 ret = criu_get_process_object_info(p, &num_devices, &num_bos, &num_objects, &priv_size);
2086 if (ret)
2087 goto exit_unlock;
2088
2089 if (num_devices != args->num_devices ||
2090 num_bos != args->num_bos ||
2091 num_objects != args->num_objects ||
2092 priv_size != args->priv_data_size) {
2093
2094 ret = -EINVAL;
2095 goto exit_unlock;
2096 }
2097
2098 /* each function will store private data inside priv_data and adjust priv_offset */
2099 ret = criu_checkpoint_process(p, (uint8_t __user *)args->priv_data, &priv_offset);
2100 if (ret)
2101 goto exit_unlock;
2102
2103 ret = criu_checkpoint_devices(p, num_devices, (uint8_t __user *)args->devices,
2104 (uint8_t __user *)args->priv_data, &priv_offset);
2105 if (ret)
2106 goto exit_unlock;
2107
2108 /* Leave room for BOs in the private data. They need to be restored
2109 * before events, but we checkpoint them last to simplify the error
2110 * handling.
2111 */
2112 bo_priv_offset = priv_offset;
2113 priv_offset += num_bos * sizeof(struct kfd_criu_bo_priv_data);
2114
2115 if (num_objects) {
2116 ret = kfd_criu_checkpoint_queues(p, (uint8_t __user *)args->priv_data,
2117 &priv_offset);
2118 if (ret)
2119 goto exit_unlock;
2120
2121 ret = kfd_criu_checkpoint_events(p, (uint8_t __user *)args->priv_data,
2122 &priv_offset);
2123 if (ret)
2124 goto exit_unlock;
2125
2126 ret = kfd_criu_checkpoint_svm(p, (uint8_t __user *)args->priv_data, &priv_offset);
2127 if (ret)
2128 goto exit_unlock;
2129 }
2130
2131 /* This must be the last thing in this function that can fail.
2132 * Otherwise we leak dmabuf file descriptors.
2133 */
2134 ret = criu_checkpoint_bos(p, num_bos, (uint8_t __user *)args->bos,
2135 (uint8_t __user *)args->priv_data, &bo_priv_offset);
2136
2137 exit_unlock:
2138 mutex_unlock(&p->mutex);
2139 if (ret)
2140 pr_err("Failed to dump CRIU ret:%d\n", ret);
2141 else
2142 pr_debug("CRIU dump ret:%d\n", ret);
2143
2144 return ret;
2145 }
2146
criu_restore_process(struct kfd_process * p,struct kfd_ioctl_criu_args * args,uint64_t * priv_offset,uint64_t max_priv_data_size)2147 static int criu_restore_process(struct kfd_process *p,
2148 struct kfd_ioctl_criu_args *args,
2149 uint64_t *priv_offset,
2150 uint64_t max_priv_data_size)
2151 {
2152 int ret = 0;
2153 struct kfd_criu_process_priv_data process_priv;
2154
2155 if (*priv_offset + sizeof(process_priv) > max_priv_data_size)
2156 return -EINVAL;
2157
2158 ret = copy_from_user(&process_priv,
2159 (void __user *)(args->priv_data + *priv_offset),
2160 sizeof(process_priv));
2161 if (ret) {
2162 pr_err("Failed to copy process private information from user\n");
2163 ret = -EFAULT;
2164 goto exit;
2165 }
2166 *priv_offset += sizeof(process_priv);
2167
2168 if (process_priv.version != KFD_CRIU_PRIV_VERSION) {
2169 pr_err("Invalid CRIU API version (checkpointed:%d current:%d)\n",
2170 process_priv.version, KFD_CRIU_PRIV_VERSION);
2171 return -EINVAL;
2172 }
2173
2174 pr_debug("Setting XNACK mode\n");
2175 if (process_priv.xnack_mode && !kfd_process_xnack_mode(p, true)) {
2176 pr_err("xnack mode cannot be set\n");
2177 ret = -EPERM;
2178 goto exit;
2179 } else {
2180 pr_debug("set xnack mode: %d\n", process_priv.xnack_mode);
2181 p->xnack_enabled = process_priv.xnack_mode;
2182 }
2183
2184 exit:
2185 return ret;
2186 }
2187
criu_restore_devices(struct kfd_process * p,struct kfd_ioctl_criu_args * args,uint64_t * priv_offset,uint64_t max_priv_data_size)2188 static int criu_restore_devices(struct kfd_process *p,
2189 struct kfd_ioctl_criu_args *args,
2190 uint64_t *priv_offset,
2191 uint64_t max_priv_data_size)
2192 {
2193 struct kfd_criu_device_bucket *device_buckets;
2194 struct kfd_criu_device_priv_data *device_privs;
2195 int ret = 0;
2196 uint32_t i;
2197
2198 if (args->num_devices != p->n_pdds)
2199 return -EINVAL;
2200
2201 if (*priv_offset + (args->num_devices * sizeof(*device_privs)) > max_priv_data_size)
2202 return -EINVAL;
2203
2204 device_buckets = kmalloc_array(args->num_devices, sizeof(*device_buckets), GFP_KERNEL);
2205 if (!device_buckets)
2206 return -ENOMEM;
2207
2208 ret = copy_from_user(device_buckets, (void __user *)args->devices,
2209 args->num_devices * sizeof(*device_buckets));
2210 if (ret) {
2211 pr_err("Failed to copy devices buckets from user\n");
2212 ret = -EFAULT;
2213 goto exit;
2214 }
2215
2216 for (i = 0; i < args->num_devices; i++) {
2217 struct kfd_node *dev;
2218 struct kfd_process_device *pdd;
2219 struct file *drm_file;
2220
2221 /* device private data is not currently used */
2222
2223 if (!device_buckets[i].user_gpu_id) {
2224 pr_err("Invalid user gpu_id\n");
2225 ret = -EINVAL;
2226 goto exit;
2227 }
2228
2229 dev = kfd_device_by_id(device_buckets[i].actual_gpu_id);
2230 if (!dev) {
2231 pr_err("Failed to find device with gpu_id = %x\n",
2232 device_buckets[i].actual_gpu_id);
2233 ret = -EINVAL;
2234 goto exit;
2235 }
2236
2237 pdd = kfd_get_process_device_data(dev, p);
2238 if (!pdd) {
2239 pr_err("Failed to get pdd for gpu_id = %x\n",
2240 device_buckets[i].actual_gpu_id);
2241 ret = -EINVAL;
2242 goto exit;
2243 }
2244 pdd->user_gpu_id = device_buckets[i].user_gpu_id;
2245
2246 drm_file = fget(device_buckets[i].drm_fd);
2247 if (!drm_file) {
2248 pr_err("Invalid render node file descriptor sent from plugin (%d)\n",
2249 device_buckets[i].drm_fd);
2250 ret = -EINVAL;
2251 goto exit;
2252 }
2253
2254 if (pdd->drm_file) {
2255 ret = -EINVAL;
2256 goto exit;
2257 }
2258
2259 /* create the vm using render nodes for kfd pdd */
2260 if (kfd_process_device_init_vm(pdd, drm_file)) {
2261 pr_err("could not init vm for given pdd\n");
2262 /* On success, the PDD keeps the drm_file reference */
2263 fput(drm_file);
2264 ret = -EINVAL;
2265 goto exit;
2266 }
2267 /*
2268 * pdd now already has the vm bound to render node so below api won't create a new
2269 * exclusive kfd mapping but use existing one with renderDXXX but is still needed
2270 * for iommu v2 binding and runtime pm.
2271 */
2272 pdd = kfd_bind_process_to_device(dev, p);
2273 if (IS_ERR(pdd)) {
2274 ret = PTR_ERR(pdd);
2275 goto exit;
2276 }
2277
2278 if (!pdd->qpd.proc_doorbells) {
2279 ret = kfd_alloc_process_doorbells(dev->kfd, pdd);
2280 if (ret)
2281 goto exit;
2282 }
2283 }
2284
2285 /*
2286 * We are not copying device private data from user as we are not using the data for now,
2287 * but we still adjust for its private data.
2288 */
2289 *priv_offset += args->num_devices * sizeof(*device_privs);
2290
2291 exit:
2292 kfree(device_buckets);
2293 return ret;
2294 }
2295
criu_restore_memory_of_gpu(struct kfd_process_device * pdd,struct kfd_criu_bo_bucket * bo_bucket,struct kfd_criu_bo_priv_data * bo_priv,struct kgd_mem ** kgd_mem)2296 static int criu_restore_memory_of_gpu(struct kfd_process_device *pdd,
2297 struct kfd_criu_bo_bucket *bo_bucket,
2298 struct kfd_criu_bo_priv_data *bo_priv,
2299 struct kgd_mem **kgd_mem)
2300 {
2301 int idr_handle;
2302 int ret;
2303 const bool criu_resume = true;
2304 u64 offset;
2305
2306 if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL) {
2307 if (bo_bucket->size !=
2308 kfd_doorbell_process_slice(pdd->dev->kfd))
2309 return -EINVAL;
2310
2311 offset = kfd_get_process_doorbells(pdd);
2312 if (!offset)
2313 return -ENOMEM;
2314 } else if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP) {
2315 /* MMIO BOs need remapped bus address */
2316 if (bo_bucket->size != PAGE_SIZE) {
2317 pr_err("Invalid page size\n");
2318 return -EINVAL;
2319 }
2320 offset = pdd->dev->adev->rmmio_remap.bus_addr;
2321 if (!offset || (PAGE_SIZE > 4096)) {
2322 pr_err("amdgpu_amdkfd_get_mmio_remap_phys_addr failed\n");
2323 return -ENOMEM;
2324 }
2325 } else if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) {
2326 offset = bo_priv->user_addr;
2327 }
2328 /* Create the BO */
2329 ret = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(pdd->dev->adev, bo_bucket->addr,
2330 bo_bucket->size, pdd->drm_priv, kgd_mem,
2331 &offset, bo_bucket->alloc_flags, criu_resume);
2332 if (ret) {
2333 pr_err("Could not create the BO\n");
2334 return ret;
2335 }
2336 pr_debug("New BO created: size:0x%llx addr:0x%llx offset:0x%llx\n",
2337 bo_bucket->size, bo_bucket->addr, offset);
2338
2339 /* Restore previous IDR handle */
2340 pr_debug("Restoring old IDR handle for the BO");
2341 idr_handle = idr_alloc(&pdd->alloc_idr, *kgd_mem, bo_priv->idr_handle,
2342 bo_priv->idr_handle + 1, GFP_KERNEL);
2343
2344 if (idr_handle < 0) {
2345 pr_err("Could not allocate idr\n");
2346 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev, *kgd_mem, pdd->drm_priv,
2347 NULL);
2348 return -ENOMEM;
2349 }
2350
2351 if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL)
2352 bo_bucket->restored_offset = KFD_MMAP_TYPE_DOORBELL | KFD_MMAP_GPU_ID(pdd->dev->id);
2353 if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP) {
2354 bo_bucket->restored_offset = KFD_MMAP_TYPE_MMIO | KFD_MMAP_GPU_ID(pdd->dev->id);
2355 } else if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_GTT) {
2356 bo_bucket->restored_offset = offset;
2357 } else if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) {
2358 bo_bucket->restored_offset = offset;
2359 /* Update the VRAM usage count */
2360 atomic64_add(bo_bucket->size, &pdd->vram_usage);
2361 }
2362 return 0;
2363 }
2364
criu_restore_bo(struct kfd_process * p,struct kfd_criu_bo_bucket * bo_bucket,struct kfd_criu_bo_priv_data * bo_priv,struct file ** file)2365 static int criu_restore_bo(struct kfd_process *p,
2366 struct kfd_criu_bo_bucket *bo_bucket,
2367 struct kfd_criu_bo_priv_data *bo_priv,
2368 struct file **file)
2369 {
2370 struct kfd_process_device *pdd;
2371 struct kgd_mem *kgd_mem;
2372 int ret;
2373 int j;
2374
2375 pr_debug("Restoring BO size:0x%llx addr:0x%llx gpu_id:0x%x flags:0x%x idr_handle:0x%x\n",
2376 bo_bucket->size, bo_bucket->addr, bo_bucket->gpu_id, bo_bucket->alloc_flags,
2377 bo_priv->idr_handle);
2378
2379 pdd = kfd_process_device_data_by_id(p, bo_bucket->gpu_id);
2380 if (!pdd) {
2381 pr_err("Failed to get pdd\n");
2382 return -ENODEV;
2383 }
2384
2385 ret = criu_restore_memory_of_gpu(pdd, bo_bucket, bo_priv, &kgd_mem);
2386 if (ret)
2387 return ret;
2388
2389 /* now map these BOs to GPU/s */
2390 for (j = 0; j < p->n_pdds; j++) {
2391 struct kfd_node *peer;
2392 struct kfd_process_device *peer_pdd;
2393
2394 if (!bo_priv->mapped_gpuids[j])
2395 break;
2396
2397 peer_pdd = kfd_process_device_data_by_id(p, bo_priv->mapped_gpuids[j]);
2398 if (!peer_pdd)
2399 return -EINVAL;
2400
2401 peer = peer_pdd->dev;
2402
2403 peer_pdd = kfd_bind_process_to_device(peer, p);
2404 if (IS_ERR(peer_pdd))
2405 return PTR_ERR(peer_pdd);
2406
2407 ret = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(peer->adev, kgd_mem,
2408 peer_pdd->drm_priv);
2409 if (ret) {
2410 pr_err("Failed to map to gpu %d/%d\n", j, p->n_pdds);
2411 return ret;
2412 }
2413 }
2414
2415 pr_debug("map memory was successful for the BO\n");
2416 /* create the dmabuf object and export the bo */
2417 if (bo_bucket->alloc_flags
2418 & (KFD_IOC_ALLOC_MEM_FLAGS_VRAM | KFD_IOC_ALLOC_MEM_FLAGS_GTT)) {
2419 ret = criu_get_prime_handle(kgd_mem, DRM_RDWR,
2420 &bo_bucket->dmabuf_fd, file);
2421 if (ret)
2422 return ret;
2423 } else {
2424 bo_bucket->dmabuf_fd = KFD_INVALID_FD;
2425 }
2426
2427 return 0;
2428 }
2429
criu_restore_bos(struct kfd_process * p,struct kfd_ioctl_criu_args * args,uint64_t * priv_offset,uint64_t max_priv_data_size)2430 static int criu_restore_bos(struct kfd_process *p,
2431 struct kfd_ioctl_criu_args *args,
2432 uint64_t *priv_offset,
2433 uint64_t max_priv_data_size)
2434 {
2435 struct kfd_criu_bo_bucket *bo_buckets = NULL;
2436 struct kfd_criu_bo_priv_data *bo_privs = NULL;
2437 struct file **files = NULL;
2438 int ret = 0;
2439 uint32_t i = 0;
2440
2441 if (*priv_offset + (args->num_bos * sizeof(*bo_privs)) > max_priv_data_size)
2442 return -EINVAL;
2443
2444 /* Prevent MMU notifications until stage-4 IOCTL (CRIU_RESUME) is received */
2445 amdgpu_amdkfd_block_mmu_notifications(p->kgd_process_info);
2446
2447 bo_buckets = kvmalloc_array(args->num_bos, sizeof(*bo_buckets), GFP_KERNEL);
2448 if (!bo_buckets)
2449 return -ENOMEM;
2450
2451 files = kvzalloc(args->num_bos * sizeof(struct file *), GFP_KERNEL);
2452 if (!files) {
2453 ret = -ENOMEM;
2454 goto exit;
2455 }
2456
2457 ret = copy_from_user(bo_buckets, (void __user *)args->bos,
2458 args->num_bos * sizeof(*bo_buckets));
2459 if (ret) {
2460 pr_err("Failed to copy BOs information from user\n");
2461 ret = -EFAULT;
2462 goto exit;
2463 }
2464
2465 bo_privs = kvmalloc_array(args->num_bos, sizeof(*bo_privs), GFP_KERNEL);
2466 if (!bo_privs) {
2467 ret = -ENOMEM;
2468 goto exit;
2469 }
2470
2471 ret = copy_from_user(bo_privs, (void __user *)args->priv_data + *priv_offset,
2472 args->num_bos * sizeof(*bo_privs));
2473 if (ret) {
2474 pr_err("Failed to copy BOs information from user\n");
2475 ret = -EFAULT;
2476 goto exit;
2477 }
2478 *priv_offset += args->num_bos * sizeof(*bo_privs);
2479
2480 /* Create and map new BOs */
2481 for (; i < args->num_bos; i++) {
2482 ret = criu_restore_bo(p, &bo_buckets[i], &bo_privs[i], &files[i]);
2483 if (ret) {
2484 pr_debug("Failed to restore BO[%d] ret%d\n", i, ret);
2485 goto exit;
2486 }
2487 } /* done */
2488
2489 /* Copy only the buckets back so user can read bo_buckets[N].restored_offset */
2490 ret = copy_to_user((void __user *)args->bos,
2491 bo_buckets,
2492 (args->num_bos * sizeof(*bo_buckets)));
2493 if (ret)
2494 ret = -EFAULT;
2495
2496 exit:
2497 commit_files(files, bo_buckets, i, ret);
2498 kvfree(files);
2499 kvfree(bo_buckets);
2500 kvfree(bo_privs);
2501 return ret;
2502 }
2503
criu_restore_objects(struct file * filep,struct kfd_process * p,struct kfd_ioctl_criu_args * args,uint64_t * priv_offset,uint64_t max_priv_data_size)2504 static int criu_restore_objects(struct file *filep,
2505 struct kfd_process *p,
2506 struct kfd_ioctl_criu_args *args,
2507 uint64_t *priv_offset,
2508 uint64_t max_priv_data_size)
2509 {
2510 int ret = 0;
2511 uint32_t i;
2512
2513 BUILD_BUG_ON(offsetof(struct kfd_criu_queue_priv_data, object_type));
2514 BUILD_BUG_ON(offsetof(struct kfd_criu_event_priv_data, object_type));
2515 BUILD_BUG_ON(offsetof(struct kfd_criu_svm_range_priv_data, object_type));
2516
2517 for (i = 0; i < args->num_objects; i++) {
2518 uint32_t object_type;
2519
2520 if (*priv_offset + sizeof(object_type) > max_priv_data_size) {
2521 pr_err("Invalid private data size\n");
2522 return -EINVAL;
2523 }
2524
2525 ret = get_user(object_type, (uint32_t __user *)(args->priv_data + *priv_offset));
2526 if (ret) {
2527 pr_err("Failed to copy private information from user\n");
2528 goto exit;
2529 }
2530
2531 switch (object_type) {
2532 case KFD_CRIU_OBJECT_TYPE_QUEUE:
2533 ret = kfd_criu_restore_queue(p, (uint8_t __user *)args->priv_data,
2534 priv_offset, max_priv_data_size);
2535 if (ret)
2536 goto exit;
2537 break;
2538 case KFD_CRIU_OBJECT_TYPE_EVENT:
2539 ret = kfd_criu_restore_event(filep, p, (uint8_t __user *)args->priv_data,
2540 priv_offset, max_priv_data_size);
2541 if (ret)
2542 goto exit;
2543 break;
2544 case KFD_CRIU_OBJECT_TYPE_SVM_RANGE:
2545 ret = kfd_criu_restore_svm(p, (uint8_t __user *)args->priv_data,
2546 priv_offset, max_priv_data_size);
2547 if (ret)
2548 goto exit;
2549 break;
2550 default:
2551 pr_err("Invalid object type:%u at index:%d\n", object_type, i);
2552 ret = -EINVAL;
2553 goto exit;
2554 }
2555 }
2556 exit:
2557 return ret;
2558 }
2559
criu_restore(struct file * filep,struct kfd_process * p,struct kfd_ioctl_criu_args * args)2560 static int criu_restore(struct file *filep,
2561 struct kfd_process *p,
2562 struct kfd_ioctl_criu_args *args)
2563 {
2564 uint64_t priv_offset = 0;
2565 int ret = 0;
2566
2567 pr_debug("CRIU restore (num_devices:%u num_bos:%u num_objects:%u priv_data_size:%llu)\n",
2568 args->num_devices, args->num_bos, args->num_objects, args->priv_data_size);
2569
2570 if (!args->bos || !args->devices || !args->priv_data || !args->priv_data_size ||
2571 !args->num_devices || !args->num_bos)
2572 return -EINVAL;
2573
2574 mutex_lock(&p->mutex);
2575
2576 /*
2577 * Set the process to evicted state to avoid running any new queues before all the memory
2578 * mappings are ready.
2579 */
2580 ret = kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_CRIU_RESTORE);
2581 if (ret)
2582 goto exit_unlock;
2583
2584 /* Each function will adjust priv_offset based on how many bytes they consumed */
2585 ret = criu_restore_process(p, args, &priv_offset, args->priv_data_size);
2586 if (ret)
2587 goto exit_unlock;
2588
2589 ret = criu_restore_devices(p, args, &priv_offset, args->priv_data_size);
2590 if (ret)
2591 goto exit_unlock;
2592
2593 ret = criu_restore_bos(p, args, &priv_offset, args->priv_data_size);
2594 if (ret)
2595 goto exit_unlock;
2596
2597 ret = criu_restore_objects(filep, p, args, &priv_offset, args->priv_data_size);
2598 if (ret)
2599 goto exit_unlock;
2600
2601 if (priv_offset != args->priv_data_size) {
2602 pr_err("Invalid private data size\n");
2603 ret = -EINVAL;
2604 }
2605
2606 exit_unlock:
2607 mutex_unlock(&p->mutex);
2608 if (ret)
2609 pr_err("Failed to restore CRIU ret:%d\n", ret);
2610 else
2611 pr_debug("CRIU restore successful\n");
2612
2613 return ret;
2614 }
2615
criu_unpause(struct file * filep,struct kfd_process * p,struct kfd_ioctl_criu_args * args)2616 static int criu_unpause(struct file *filep,
2617 struct kfd_process *p,
2618 struct kfd_ioctl_criu_args *args)
2619 {
2620 int ret;
2621
2622 mutex_lock(&p->mutex);
2623
2624 if (!p->queues_paused) {
2625 mutex_unlock(&p->mutex);
2626 return -EINVAL;
2627 }
2628
2629 ret = kfd_process_restore_queues(p);
2630 if (ret)
2631 pr_err("Failed to unpause queues ret:%d\n", ret);
2632 else
2633 p->queues_paused = false;
2634
2635 mutex_unlock(&p->mutex);
2636
2637 return ret;
2638 }
2639
criu_resume(struct file * filep,struct kfd_process * p,struct kfd_ioctl_criu_args * args)2640 static int criu_resume(struct file *filep,
2641 struct kfd_process *p,
2642 struct kfd_ioctl_criu_args *args)
2643 {
2644 struct kfd_process *target = NULL;
2645 struct pid *pid = NULL;
2646 int ret = 0;
2647
2648 pr_debug("Inside %s, target pid for criu restore: %d\n", __func__,
2649 args->pid);
2650
2651 pid = find_get_pid(args->pid);
2652 if (!pid) {
2653 pr_err("Cannot find pid info for %i\n", args->pid);
2654 return -ESRCH;
2655 }
2656
2657 pr_debug("calling kfd_lookup_process_by_pid\n");
2658 target = kfd_lookup_process_by_pid(pid);
2659
2660 put_pid(pid);
2661
2662 if (!target) {
2663 pr_debug("Cannot find process info for %i\n", args->pid);
2664 return -ESRCH;
2665 }
2666
2667 mutex_lock(&target->mutex);
2668 ret = kfd_criu_resume_svm(target);
2669 if (ret) {
2670 pr_err("kfd_criu_resume_svm failed for %i\n", args->pid);
2671 goto exit;
2672 }
2673
2674 ret = amdgpu_amdkfd_criu_resume(target->kgd_process_info);
2675 if (ret)
2676 pr_err("amdgpu_amdkfd_criu_resume failed for %i\n", args->pid);
2677
2678 exit:
2679 mutex_unlock(&target->mutex);
2680
2681 kfd_unref_process(target);
2682 return ret;
2683 }
2684
criu_process_info(struct file * filep,struct kfd_process * p,struct kfd_ioctl_criu_args * args)2685 static int criu_process_info(struct file *filep,
2686 struct kfd_process *p,
2687 struct kfd_ioctl_criu_args *args)
2688 {
2689 int ret = 0;
2690
2691 mutex_lock(&p->mutex);
2692
2693 if (!p->n_pdds) {
2694 pr_err("No pdd for given process\n");
2695 ret = -ENODEV;
2696 goto err_unlock;
2697 }
2698
2699 ret = kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_CRIU_CHECKPOINT);
2700 if (ret)
2701 goto err_unlock;
2702
2703 p->queues_paused = true;
2704
2705 args->pid = task_pid_nr_ns(p->lead_thread,
2706 task_active_pid_ns(p->lead_thread));
2707
2708 ret = criu_get_process_object_info(p, &args->num_devices, &args->num_bos,
2709 &args->num_objects, &args->priv_data_size);
2710 if (ret)
2711 goto err_unlock;
2712
2713 dev_dbg(kfd_device, "Num of devices:%u bos:%u objects:%u priv_data_size:%lld\n",
2714 args->num_devices, args->num_bos, args->num_objects,
2715 args->priv_data_size);
2716
2717 err_unlock:
2718 if (ret) {
2719 kfd_process_restore_queues(p);
2720 p->queues_paused = false;
2721 }
2722 mutex_unlock(&p->mutex);
2723 return ret;
2724 }
2725
kfd_ioctl_criu(struct file * filep,struct kfd_process * p,void * data)2726 static int kfd_ioctl_criu(struct file *filep, struct kfd_process *p, void *data)
2727 {
2728 struct kfd_ioctl_criu_args *args = data;
2729 int ret;
2730
2731 dev_dbg(kfd_device, "CRIU operation: %d\n", args->op);
2732 switch (args->op) {
2733 case KFD_CRIU_OP_PROCESS_INFO:
2734 ret = criu_process_info(filep, p, args);
2735 break;
2736 case KFD_CRIU_OP_CHECKPOINT:
2737 ret = criu_checkpoint(filep, p, args);
2738 break;
2739 case KFD_CRIU_OP_UNPAUSE:
2740 ret = criu_unpause(filep, p, args);
2741 break;
2742 case KFD_CRIU_OP_RESTORE:
2743 ret = criu_restore(filep, p, args);
2744 break;
2745 case KFD_CRIU_OP_RESUME:
2746 ret = criu_resume(filep, p, args);
2747 break;
2748 default:
2749 dev_dbg(kfd_device, "Unsupported CRIU operation:%d\n", args->op);
2750 ret = -EINVAL;
2751 break;
2752 }
2753
2754 if (ret)
2755 dev_dbg(kfd_device, "CRIU operation:%d err:%d\n", args->op, ret);
2756
2757 return ret;
2758 }
2759
runtime_enable(struct kfd_process * p,uint64_t r_debug,bool enable_ttmp_setup)2760 static int runtime_enable(struct kfd_process *p, uint64_t r_debug,
2761 bool enable_ttmp_setup)
2762 {
2763 int i = 0, ret = 0;
2764
2765 if (p->is_runtime_retry)
2766 goto retry;
2767
2768 if (p->runtime_info.runtime_state != DEBUG_RUNTIME_STATE_DISABLED)
2769 return -EBUSY;
2770
2771 for (i = 0; i < p->n_pdds; i++) {
2772 struct kfd_process_device *pdd = p->pdds[i];
2773
2774 if (pdd->qpd.queue_count)
2775 return -EEXIST;
2776
2777 /*
2778 * Setup TTMPs by default.
2779 * Note that this call must remain here for MES ADD QUEUE to
2780 * skip_process_ctx_clear unconditionally as the first call to
2781 * SET_SHADER_DEBUGGER clears any stale process context data
2782 * saved in MES.
2783 */
2784 if (pdd->dev->kfd->shared_resources.enable_mes)
2785 kfd_dbg_set_mes_debug_mode(pdd, !kfd_dbg_has_cwsr_workaround(pdd->dev));
2786 }
2787
2788 p->runtime_info.runtime_state = DEBUG_RUNTIME_STATE_ENABLED;
2789 p->runtime_info.r_debug = r_debug;
2790 p->runtime_info.ttmp_setup = enable_ttmp_setup;
2791
2792 if (p->runtime_info.ttmp_setup) {
2793 for (i = 0; i < p->n_pdds; i++) {
2794 struct kfd_process_device *pdd = p->pdds[i];
2795
2796 if (!kfd_dbg_is_rlc_restore_supported(pdd->dev)) {
2797 amdgpu_gfx_off_ctrl(pdd->dev->adev, false);
2798 pdd->dev->kfd2kgd->enable_debug_trap(
2799 pdd->dev->adev,
2800 true,
2801 pdd->dev->vm_info.last_vmid_kfd);
2802 } else if (kfd_dbg_is_per_vmid_supported(pdd->dev)) {
2803 pdd->spi_dbg_override = pdd->dev->kfd2kgd->enable_debug_trap(
2804 pdd->dev->adev,
2805 false,
2806 0);
2807 }
2808 }
2809 }
2810
2811 retry:
2812 if (p->debug_trap_enabled) {
2813 if (!p->is_runtime_retry) {
2814 kfd_dbg_trap_activate(p);
2815 kfd_dbg_ev_raise(KFD_EC_MASK(EC_PROCESS_RUNTIME),
2816 p, NULL, 0, false, NULL, 0);
2817 }
2818
2819 mutex_unlock(&p->mutex);
2820 ret = down_interruptible(&p->runtime_enable_sema);
2821 mutex_lock(&p->mutex);
2822
2823 p->is_runtime_retry = !!ret;
2824 }
2825
2826 return ret;
2827 }
2828
runtime_disable(struct kfd_process * p)2829 static int runtime_disable(struct kfd_process *p)
2830 {
2831 int i = 0, ret;
2832 bool was_enabled = p->runtime_info.runtime_state == DEBUG_RUNTIME_STATE_ENABLED;
2833
2834 p->runtime_info.runtime_state = DEBUG_RUNTIME_STATE_DISABLED;
2835 p->runtime_info.r_debug = 0;
2836
2837 if (p->debug_trap_enabled) {
2838 if (was_enabled)
2839 kfd_dbg_trap_deactivate(p, false, 0);
2840
2841 if (!p->is_runtime_retry)
2842 kfd_dbg_ev_raise(KFD_EC_MASK(EC_PROCESS_RUNTIME),
2843 p, NULL, 0, false, NULL, 0);
2844
2845 mutex_unlock(&p->mutex);
2846 ret = down_interruptible(&p->runtime_enable_sema);
2847 mutex_lock(&p->mutex);
2848
2849 p->is_runtime_retry = !!ret;
2850 if (ret)
2851 return ret;
2852 }
2853
2854 if (was_enabled && p->runtime_info.ttmp_setup) {
2855 for (i = 0; i < p->n_pdds; i++) {
2856 struct kfd_process_device *pdd = p->pdds[i];
2857
2858 if (!kfd_dbg_is_rlc_restore_supported(pdd->dev))
2859 amdgpu_gfx_off_ctrl(pdd->dev->adev, true);
2860 }
2861 }
2862
2863 p->runtime_info.ttmp_setup = false;
2864
2865 /* disable ttmp setup */
2866 for (i = 0; i < p->n_pdds; i++) {
2867 struct kfd_process_device *pdd = p->pdds[i];
2868
2869 if (kfd_dbg_is_per_vmid_supported(pdd->dev)) {
2870 pdd->spi_dbg_override =
2871 pdd->dev->kfd2kgd->disable_debug_trap(
2872 pdd->dev->adev,
2873 false,
2874 pdd->dev->vm_info.last_vmid_kfd);
2875
2876 if (!pdd->dev->kfd->shared_resources.enable_mes)
2877 debug_refresh_runlist(pdd->dev->dqm);
2878 else
2879 kfd_dbg_set_mes_debug_mode(pdd,
2880 !kfd_dbg_has_cwsr_workaround(pdd->dev));
2881 }
2882 }
2883
2884 return 0;
2885 }
2886
kfd_ioctl_runtime_enable(struct file * filep,struct kfd_process * p,void * data)2887 static int kfd_ioctl_runtime_enable(struct file *filep, struct kfd_process *p, void *data)
2888 {
2889 struct kfd_ioctl_runtime_enable_args *args = data;
2890 int r;
2891
2892 mutex_lock(&p->mutex);
2893
2894 if (args->mode_mask & KFD_RUNTIME_ENABLE_MODE_ENABLE_MASK)
2895 r = runtime_enable(p, args->r_debug,
2896 !!(args->mode_mask & KFD_RUNTIME_ENABLE_MODE_TTMP_SAVE_MASK));
2897 else
2898 r = runtime_disable(p);
2899
2900 mutex_unlock(&p->mutex);
2901
2902 return r;
2903 }
2904
kfd_ioctl_set_debug_trap(struct file * filep,struct kfd_process * p,void * data)2905 static int kfd_ioctl_set_debug_trap(struct file *filep, struct kfd_process *p, void *data)
2906 {
2907 struct kfd_ioctl_dbg_trap_args *args = data;
2908 struct task_struct *thread = NULL;
2909 struct mm_struct *mm = NULL;
2910 struct pid *pid = NULL;
2911 struct kfd_process *target = NULL;
2912 struct kfd_process_device *pdd = NULL;
2913 int r = 0;
2914
2915 if (sched_policy == KFD_SCHED_POLICY_NO_HWS) {
2916 pr_err("Debugging does not support sched_policy %i", sched_policy);
2917 return -EINVAL;
2918 }
2919
2920 pid = find_get_pid(args->pid);
2921 if (!pid) {
2922 pr_debug("Cannot find pid info for %i\n", args->pid);
2923 r = -ESRCH;
2924 goto out;
2925 }
2926
2927 thread = get_pid_task(pid, PIDTYPE_PID);
2928 if (!thread) {
2929 r = -ESRCH;
2930 goto out;
2931 }
2932
2933 mm = get_task_mm(thread);
2934 if (!mm) {
2935 r = -ESRCH;
2936 goto out;
2937 }
2938
2939 if (args->op == KFD_IOC_DBG_TRAP_ENABLE) {
2940 bool create_process;
2941
2942 rcu_read_lock();
2943 create_process = thread && thread != current && ptrace_parent(thread) == current;
2944 rcu_read_unlock();
2945
2946 target = create_process ? kfd_create_process(thread) :
2947 kfd_lookup_process_by_pid(pid);
2948 } else {
2949 target = kfd_lookup_process_by_pid(pid);
2950 }
2951
2952 if (IS_ERR_OR_NULL(target)) {
2953 pr_debug("Cannot find process PID %i to debug\n", args->pid);
2954 r = target ? PTR_ERR(target) : -ESRCH;
2955 target = NULL;
2956 goto out;
2957 }
2958
2959 /* Check if target is still PTRACED. */
2960 rcu_read_lock();
2961 if (target != p && args->op != KFD_IOC_DBG_TRAP_DISABLE
2962 && ptrace_parent(target->lead_thread) != current) {
2963 pr_err("PID %i is not PTRACED and cannot be debugged\n", args->pid);
2964 r = -EPERM;
2965 }
2966 rcu_read_unlock();
2967
2968 if (r)
2969 goto out;
2970
2971 mutex_lock(&target->mutex);
2972
2973 if (args->op != KFD_IOC_DBG_TRAP_ENABLE && !target->debug_trap_enabled) {
2974 pr_err("PID %i not debug enabled for op %i\n", args->pid, args->op);
2975 r = -EINVAL;
2976 goto unlock_out;
2977 }
2978
2979 if (target->runtime_info.runtime_state != DEBUG_RUNTIME_STATE_ENABLED &&
2980 (args->op == KFD_IOC_DBG_TRAP_SET_WAVE_LAUNCH_OVERRIDE ||
2981 args->op == KFD_IOC_DBG_TRAP_SET_WAVE_LAUNCH_MODE ||
2982 args->op == KFD_IOC_DBG_TRAP_SUSPEND_QUEUES ||
2983 args->op == KFD_IOC_DBG_TRAP_RESUME_QUEUES ||
2984 args->op == KFD_IOC_DBG_TRAP_SET_NODE_ADDRESS_WATCH ||
2985 args->op == KFD_IOC_DBG_TRAP_CLEAR_NODE_ADDRESS_WATCH ||
2986 args->op == KFD_IOC_DBG_TRAP_SET_FLAGS)) {
2987 r = -EPERM;
2988 goto unlock_out;
2989 }
2990
2991 if (args->op == KFD_IOC_DBG_TRAP_SET_NODE_ADDRESS_WATCH ||
2992 args->op == KFD_IOC_DBG_TRAP_CLEAR_NODE_ADDRESS_WATCH) {
2993 int user_gpu_id = kfd_process_get_user_gpu_id(target,
2994 args->op == KFD_IOC_DBG_TRAP_SET_NODE_ADDRESS_WATCH ?
2995 args->set_node_address_watch.gpu_id :
2996 args->clear_node_address_watch.gpu_id);
2997
2998 pdd = kfd_process_device_data_by_id(target, user_gpu_id);
2999 if (user_gpu_id == -EINVAL || !pdd) {
3000 r = -ENODEV;
3001 goto unlock_out;
3002 }
3003 }
3004
3005 switch (args->op) {
3006 case KFD_IOC_DBG_TRAP_ENABLE:
3007 if (target != p)
3008 target->debugger_process = p;
3009
3010 r = kfd_dbg_trap_enable(target,
3011 args->enable.dbg_fd,
3012 (void __user *)args->enable.rinfo_ptr,
3013 &args->enable.rinfo_size);
3014 if (!r)
3015 target->exception_enable_mask = args->enable.exception_mask;
3016
3017 break;
3018 case KFD_IOC_DBG_TRAP_DISABLE:
3019 r = kfd_dbg_trap_disable(target);
3020 break;
3021 case KFD_IOC_DBG_TRAP_SEND_RUNTIME_EVENT:
3022 r = kfd_dbg_send_exception_to_runtime(target,
3023 args->send_runtime_event.gpu_id,
3024 args->send_runtime_event.queue_id,
3025 args->send_runtime_event.exception_mask);
3026 break;
3027 case KFD_IOC_DBG_TRAP_SET_EXCEPTIONS_ENABLED:
3028 kfd_dbg_set_enabled_debug_exception_mask(target,
3029 args->set_exceptions_enabled.exception_mask);
3030 break;
3031 case KFD_IOC_DBG_TRAP_SET_WAVE_LAUNCH_OVERRIDE:
3032 r = kfd_dbg_trap_set_wave_launch_override(target,
3033 args->launch_override.override_mode,
3034 args->launch_override.enable_mask,
3035 args->launch_override.support_request_mask,
3036 &args->launch_override.enable_mask,
3037 &args->launch_override.support_request_mask);
3038 break;
3039 case KFD_IOC_DBG_TRAP_SET_WAVE_LAUNCH_MODE:
3040 r = kfd_dbg_trap_set_wave_launch_mode(target,
3041 args->launch_mode.launch_mode);
3042 break;
3043 case KFD_IOC_DBG_TRAP_SUSPEND_QUEUES:
3044 r = suspend_queues(target,
3045 args->suspend_queues.num_queues,
3046 args->suspend_queues.grace_period,
3047 args->suspend_queues.exception_mask,
3048 (uint32_t *)args->suspend_queues.queue_array_ptr);
3049
3050 break;
3051 case KFD_IOC_DBG_TRAP_RESUME_QUEUES:
3052 r = resume_queues(target, args->resume_queues.num_queues,
3053 (uint32_t *)args->resume_queues.queue_array_ptr);
3054 break;
3055 case KFD_IOC_DBG_TRAP_SET_NODE_ADDRESS_WATCH:
3056 r = kfd_dbg_trap_set_dev_address_watch(pdd,
3057 args->set_node_address_watch.address,
3058 args->set_node_address_watch.mask,
3059 &args->set_node_address_watch.id,
3060 args->set_node_address_watch.mode);
3061 break;
3062 case KFD_IOC_DBG_TRAP_CLEAR_NODE_ADDRESS_WATCH:
3063 r = kfd_dbg_trap_clear_dev_address_watch(pdd,
3064 args->clear_node_address_watch.id);
3065 break;
3066 case KFD_IOC_DBG_TRAP_SET_FLAGS:
3067 r = kfd_dbg_trap_set_flags(target, &args->set_flags.flags);
3068 break;
3069 case KFD_IOC_DBG_TRAP_QUERY_DEBUG_EVENT:
3070 r = kfd_dbg_ev_query_debug_event(target,
3071 &args->query_debug_event.queue_id,
3072 &args->query_debug_event.gpu_id,
3073 args->query_debug_event.exception_mask,
3074 &args->query_debug_event.exception_mask);
3075 break;
3076 case KFD_IOC_DBG_TRAP_QUERY_EXCEPTION_INFO:
3077 r = kfd_dbg_trap_query_exception_info(target,
3078 args->query_exception_info.source_id,
3079 args->query_exception_info.exception_code,
3080 args->query_exception_info.clear_exception,
3081 (void __user *)args->query_exception_info.info_ptr,
3082 &args->query_exception_info.info_size);
3083 break;
3084 case KFD_IOC_DBG_TRAP_GET_QUEUE_SNAPSHOT:
3085 r = pqm_get_queue_snapshot(&target->pqm,
3086 args->queue_snapshot.exception_mask,
3087 (void __user *)args->queue_snapshot.snapshot_buf_ptr,
3088 &args->queue_snapshot.num_queues,
3089 &args->queue_snapshot.entry_size);
3090 break;
3091 case KFD_IOC_DBG_TRAP_GET_DEVICE_SNAPSHOT:
3092 r = kfd_dbg_trap_device_snapshot(target,
3093 args->device_snapshot.exception_mask,
3094 (void __user *)args->device_snapshot.snapshot_buf_ptr,
3095 &args->device_snapshot.num_devices,
3096 &args->device_snapshot.entry_size);
3097 break;
3098 default:
3099 pr_err("Invalid option: %i\n", args->op);
3100 r = -EINVAL;
3101 }
3102
3103 unlock_out:
3104 mutex_unlock(&target->mutex);
3105
3106 out:
3107 if (thread)
3108 put_task_struct(thread);
3109
3110 if (mm)
3111 mmput(mm);
3112
3113 if (pid)
3114 put_pid(pid);
3115
3116 if (target)
3117 kfd_unref_process(target);
3118
3119 return r;
3120 }
3121
3122 #define AMDKFD_IOCTL_DEF(ioctl, _func, _flags) \
3123 [_IOC_NR(ioctl)] = {.cmd = ioctl, .func = _func, .flags = _flags, \
3124 .cmd_drv = 0, .name = #ioctl}
3125
3126 /** Ioctl table */
3127 static const struct amdkfd_ioctl_desc amdkfd_ioctls[] = {
3128 AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_VERSION,
3129 kfd_ioctl_get_version, 0),
3130
3131 AMDKFD_IOCTL_DEF(AMDKFD_IOC_CREATE_QUEUE,
3132 kfd_ioctl_create_queue, 0),
3133
3134 AMDKFD_IOCTL_DEF(AMDKFD_IOC_DESTROY_QUEUE,
3135 kfd_ioctl_destroy_queue, 0),
3136
3137 AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_MEMORY_POLICY,
3138 kfd_ioctl_set_memory_policy, 0),
3139
3140 AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_CLOCK_COUNTERS,
3141 kfd_ioctl_get_clock_counters, 0),
3142
3143 AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_PROCESS_APERTURES,
3144 kfd_ioctl_get_process_apertures, 0),
3145
3146 AMDKFD_IOCTL_DEF(AMDKFD_IOC_UPDATE_QUEUE,
3147 kfd_ioctl_update_queue, 0),
3148
3149 AMDKFD_IOCTL_DEF(AMDKFD_IOC_CREATE_EVENT,
3150 kfd_ioctl_create_event, 0),
3151
3152 AMDKFD_IOCTL_DEF(AMDKFD_IOC_DESTROY_EVENT,
3153 kfd_ioctl_destroy_event, 0),
3154
3155 AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_EVENT,
3156 kfd_ioctl_set_event, 0),
3157
3158 AMDKFD_IOCTL_DEF(AMDKFD_IOC_RESET_EVENT,
3159 kfd_ioctl_reset_event, 0),
3160
3161 AMDKFD_IOCTL_DEF(AMDKFD_IOC_WAIT_EVENTS,
3162 kfd_ioctl_wait_events, 0),
3163
3164 AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_REGISTER_DEPRECATED,
3165 kfd_ioctl_dbg_register, 0),
3166
3167 AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_UNREGISTER_DEPRECATED,
3168 kfd_ioctl_dbg_unregister, 0),
3169
3170 AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_ADDRESS_WATCH_DEPRECATED,
3171 kfd_ioctl_dbg_address_watch, 0),
3172
3173 AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_WAVE_CONTROL_DEPRECATED,
3174 kfd_ioctl_dbg_wave_control, 0),
3175
3176 AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_SCRATCH_BACKING_VA,
3177 kfd_ioctl_set_scratch_backing_va, 0),
3178
3179 AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_TILE_CONFIG,
3180 kfd_ioctl_get_tile_config, 0),
3181
3182 AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_TRAP_HANDLER,
3183 kfd_ioctl_set_trap_handler, 0),
3184
3185 AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_PROCESS_APERTURES_NEW,
3186 kfd_ioctl_get_process_apertures_new, 0),
3187
3188 AMDKFD_IOCTL_DEF(AMDKFD_IOC_ACQUIRE_VM,
3189 kfd_ioctl_acquire_vm, 0),
3190
3191 AMDKFD_IOCTL_DEF(AMDKFD_IOC_ALLOC_MEMORY_OF_GPU,
3192 kfd_ioctl_alloc_memory_of_gpu, 0),
3193
3194 AMDKFD_IOCTL_DEF(AMDKFD_IOC_FREE_MEMORY_OF_GPU,
3195 kfd_ioctl_free_memory_of_gpu, 0),
3196
3197 AMDKFD_IOCTL_DEF(AMDKFD_IOC_MAP_MEMORY_TO_GPU,
3198 kfd_ioctl_map_memory_to_gpu, 0),
3199
3200 AMDKFD_IOCTL_DEF(AMDKFD_IOC_UNMAP_MEMORY_FROM_GPU,
3201 kfd_ioctl_unmap_memory_from_gpu, 0),
3202
3203 AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_CU_MASK,
3204 kfd_ioctl_set_cu_mask, 0),
3205
3206 AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_QUEUE_WAVE_STATE,
3207 kfd_ioctl_get_queue_wave_state, 0),
3208
3209 AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_DMABUF_INFO,
3210 kfd_ioctl_get_dmabuf_info, 0),
3211
3212 AMDKFD_IOCTL_DEF(AMDKFD_IOC_IMPORT_DMABUF,
3213 kfd_ioctl_import_dmabuf, 0),
3214
3215 AMDKFD_IOCTL_DEF(AMDKFD_IOC_ALLOC_QUEUE_GWS,
3216 kfd_ioctl_alloc_queue_gws, 0),
3217
3218 AMDKFD_IOCTL_DEF(AMDKFD_IOC_SMI_EVENTS,
3219 kfd_ioctl_smi_events, 0),
3220
3221 AMDKFD_IOCTL_DEF(AMDKFD_IOC_SVM, kfd_ioctl_svm, 0),
3222
3223 AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_XNACK_MODE,
3224 kfd_ioctl_set_xnack_mode, 0),
3225
3226 AMDKFD_IOCTL_DEF(AMDKFD_IOC_CRIU_OP,
3227 kfd_ioctl_criu, KFD_IOC_FLAG_CHECKPOINT_RESTORE),
3228
3229 AMDKFD_IOCTL_DEF(AMDKFD_IOC_AVAILABLE_MEMORY,
3230 kfd_ioctl_get_available_memory, 0),
3231
3232 AMDKFD_IOCTL_DEF(AMDKFD_IOC_EXPORT_DMABUF,
3233 kfd_ioctl_export_dmabuf, 0),
3234
3235 AMDKFD_IOCTL_DEF(AMDKFD_IOC_RUNTIME_ENABLE,
3236 kfd_ioctl_runtime_enable, 0),
3237
3238 AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_TRAP,
3239 kfd_ioctl_set_debug_trap, 0),
3240 };
3241
3242 #define AMDKFD_CORE_IOCTL_COUNT ARRAY_SIZE(amdkfd_ioctls)
3243
kfd_ioctl(struct file * filep,unsigned int cmd,unsigned long arg)3244 static long kfd_ioctl(struct file *filep, unsigned int cmd, unsigned long arg)
3245 {
3246 struct kfd_process *process;
3247 amdkfd_ioctl_t *func;
3248 const struct amdkfd_ioctl_desc *ioctl = NULL;
3249 unsigned int nr = _IOC_NR(cmd);
3250 char stack_kdata[128];
3251 char *kdata = NULL;
3252 unsigned int usize, asize;
3253 int retcode = -EINVAL;
3254 bool ptrace_attached = false;
3255
3256 if (nr >= AMDKFD_CORE_IOCTL_COUNT)
3257 goto err_i1;
3258
3259 if ((nr >= AMDKFD_COMMAND_START) && (nr < AMDKFD_COMMAND_END)) {
3260 u32 amdkfd_size;
3261
3262 ioctl = &amdkfd_ioctls[nr];
3263
3264 amdkfd_size = _IOC_SIZE(ioctl->cmd);
3265 usize = asize = _IOC_SIZE(cmd);
3266 if (amdkfd_size > asize)
3267 asize = amdkfd_size;
3268
3269 cmd = ioctl->cmd;
3270 } else
3271 goto err_i1;
3272
3273 dev_dbg(kfd_device, "ioctl cmd 0x%x (#0x%x), arg 0x%lx\n", cmd, nr, arg);
3274
3275 /* Get the process struct from the filep. Only the process
3276 * that opened /dev/kfd can use the file descriptor. Child
3277 * processes need to create their own KFD device context.
3278 */
3279 process = filep->private_data;
3280
3281 rcu_read_lock();
3282 if ((ioctl->flags & KFD_IOC_FLAG_CHECKPOINT_RESTORE) &&
3283 ptrace_parent(process->lead_thread) == current)
3284 ptrace_attached = true;
3285 rcu_read_unlock();
3286
3287 if (process->lead_thread != current->group_leader
3288 && !ptrace_attached) {
3289 dev_dbg(kfd_device, "Using KFD FD in wrong process\n");
3290 retcode = -EBADF;
3291 goto err_i1;
3292 }
3293
3294 /* Do not trust userspace, use our own definition */
3295 func = ioctl->func;
3296
3297 if (unlikely(!func)) {
3298 dev_dbg(kfd_device, "no function\n");
3299 retcode = -EINVAL;
3300 goto err_i1;
3301 }
3302
3303 /*
3304 * Versions of docker shipped in Ubuntu 18.xx and 20.xx do not support
3305 * CAP_CHECKPOINT_RESTORE, so we also allow access if CAP_SYS_ADMIN as CAP_SYS_ADMIN is a
3306 * more priviledged access.
3307 */
3308 if (unlikely(ioctl->flags & KFD_IOC_FLAG_CHECKPOINT_RESTORE)) {
3309 if (!capable(CAP_CHECKPOINT_RESTORE) &&
3310 !capable(CAP_SYS_ADMIN)) {
3311 retcode = -EACCES;
3312 goto err_i1;
3313 }
3314 }
3315
3316 if (cmd & (IOC_IN | IOC_OUT)) {
3317 if (asize <= sizeof(stack_kdata)) {
3318 kdata = stack_kdata;
3319 } else {
3320 kdata = kmalloc(asize, GFP_KERNEL);
3321 if (!kdata) {
3322 retcode = -ENOMEM;
3323 goto err_i1;
3324 }
3325 }
3326 if (asize > usize)
3327 memset(kdata + usize, 0, asize - usize);
3328 }
3329
3330 if (cmd & IOC_IN) {
3331 if (copy_from_user(kdata, (void __user *)arg, usize) != 0) {
3332 retcode = -EFAULT;
3333 goto err_i1;
3334 }
3335 } else if (cmd & IOC_OUT) {
3336 memset(kdata, 0, usize);
3337 }
3338
3339 retcode = func(filep, process, kdata);
3340
3341 if (cmd & IOC_OUT)
3342 if (copy_to_user((void __user *)arg, kdata, usize) != 0)
3343 retcode = -EFAULT;
3344
3345 err_i1:
3346 if (!ioctl)
3347 dev_dbg(kfd_device, "invalid ioctl: pid=%d, cmd=0x%02x, nr=0x%02x\n",
3348 task_pid_nr(current), cmd, nr);
3349
3350 if (kdata != stack_kdata)
3351 kfree(kdata);
3352
3353 if (retcode)
3354 dev_dbg(kfd_device, "ioctl cmd (#0x%x), arg 0x%lx, ret = %d\n",
3355 nr, arg, retcode);
3356
3357 return retcode;
3358 }
3359
kfd_mmio_mmap(struct kfd_node * dev,struct kfd_process * process,struct vm_area_struct * vma)3360 static int kfd_mmio_mmap(struct kfd_node *dev, struct kfd_process *process,
3361 struct vm_area_struct *vma)
3362 {
3363 phys_addr_t address;
3364
3365 if (vma->vm_end - vma->vm_start != PAGE_SIZE)
3366 return -EINVAL;
3367
3368 if (PAGE_SIZE > 4096)
3369 return -EINVAL;
3370
3371 address = dev->adev->rmmio_remap.bus_addr;
3372
3373 vm_flags_set(vma, VM_IO | VM_DONTCOPY | VM_DONTEXPAND | VM_NORESERVE |
3374 VM_DONTDUMP | VM_PFNMAP);
3375
3376 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
3377
3378 pr_debug("process pid %d mapping mmio page\n"
3379 " target user address == 0x%08llX\n"
3380 " physical address == 0x%08llX\n"
3381 " vm_flags == 0x%04lX\n"
3382 " size == 0x%04lX\n",
3383 process->lead_thread->pid, (unsigned long long) vma->vm_start,
3384 address, vma->vm_flags, PAGE_SIZE);
3385
3386 return io_remap_pfn_range(vma,
3387 vma->vm_start,
3388 address >> PAGE_SHIFT,
3389 PAGE_SIZE,
3390 vma->vm_page_prot);
3391 }
3392
3393
kfd_mmap(struct file * filp,struct vm_area_struct * vma)3394 static int kfd_mmap(struct file *filp, struct vm_area_struct *vma)
3395 {
3396 struct kfd_process *process;
3397 struct kfd_node *dev = NULL;
3398 unsigned long mmap_offset;
3399 unsigned int gpu_id;
3400
3401 process = kfd_get_process(current);
3402 if (IS_ERR(process))
3403 return PTR_ERR(process);
3404
3405 mmap_offset = vma->vm_pgoff << PAGE_SHIFT;
3406 gpu_id = KFD_MMAP_GET_GPU_ID(mmap_offset);
3407 if (gpu_id)
3408 dev = kfd_device_by_id(gpu_id);
3409
3410 switch (mmap_offset & KFD_MMAP_TYPE_MASK) {
3411 case KFD_MMAP_TYPE_DOORBELL:
3412 if (!dev)
3413 return -ENODEV;
3414 return kfd_doorbell_mmap(dev, process, vma);
3415
3416 case KFD_MMAP_TYPE_EVENTS:
3417 return kfd_event_mmap(process, vma);
3418
3419 case KFD_MMAP_TYPE_RESERVED_MEM:
3420 if (!dev)
3421 return -ENODEV;
3422 return kfd_reserved_mem_mmap(dev, process, vma);
3423 case KFD_MMAP_TYPE_MMIO:
3424 if (!dev)
3425 return -ENODEV;
3426 return kfd_mmio_mmap(dev, process, vma);
3427 }
3428
3429 return -EFAULT;
3430 }
3431