1 //===- BugReporterVisitors.cpp - Helpers for reporting bugs ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines a set of BugReporter "visitors" which can be used to
10 // enhance the diagnostics reported for a bug.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/StaticAnalyzer/Core/BugReporter/BugReporterVisitors.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/Decl.h"
17 #include "clang/AST/DeclBase.h"
18 #include "clang/AST/DeclCXX.h"
19 #include "clang/AST/Expr.h"
20 #include "clang/AST/ExprCXX.h"
21 #include "clang/AST/ExprObjC.h"
22 #include "clang/AST/Stmt.h"
23 #include "clang/AST/Type.h"
24 #include "clang/ASTMatchers/ASTMatchFinder.h"
25 #include "clang/Analysis/Analyses/Dominators.h"
26 #include "clang/Analysis/AnalysisDeclContext.h"
27 #include "clang/Analysis/CFG.h"
28 #include "clang/Analysis/CFGStmtMap.h"
29 #include "clang/Analysis/PathDiagnostic.h"
30 #include "clang/Analysis/ProgramPoint.h"
31 #include "clang/Basic/IdentifierTable.h"
32 #include "clang/Basic/LLVM.h"
33 #include "clang/Basic/SourceLocation.h"
34 #include "clang/Basic/SourceManager.h"
35 #include "clang/Lex/Lexer.h"
36 #include "clang/StaticAnalyzer/Core/AnalyzerOptions.h"
37 #include "clang/StaticAnalyzer/Core/BugReporter/BugReporter.h"
38 #include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h"
39 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
40 #include "clang/StaticAnalyzer/Core/PathSensitive/ExplodedGraph.h"
41 #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
42 #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
43 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
44 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState_Fwd.h"
45 #include "clang/StaticAnalyzer/Core/PathSensitive/SMTConv.h"
46 #include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h"
47 #include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h"
48 #include "llvm/ADT/ArrayRef.h"
49 #include "llvm/ADT/STLExtras.h"
50 #include "llvm/ADT/SmallPtrSet.h"
51 #include "llvm/ADT/SmallString.h"
52 #include "llvm/ADT/SmallVector.h"
53 #include "llvm/ADT/StringExtras.h"
54 #include "llvm/ADT/StringRef.h"
55 #include "llvm/Support/Casting.h"
56 #include "llvm/Support/ErrorHandling.h"
57 #include "llvm/Support/raw_ostream.h"
58 #include <cassert>
59 #include <deque>
60 #include <memory>
61 #include <optional>
62 #include <stack>
63 #include <string>
64 #include <utility>
65
66 using namespace clang;
67 using namespace ento;
68 using namespace bugreporter;
69
70 //===----------------------------------------------------------------------===//
71 // Utility functions.
72 //===----------------------------------------------------------------------===//
73
peelOffPointerArithmetic(const BinaryOperator * B)74 static const Expr *peelOffPointerArithmetic(const BinaryOperator *B) {
75 if (B->isAdditiveOp() && B->getType()->isPointerType()) {
76 if (B->getLHS()->getType()->isPointerType()) {
77 return B->getLHS();
78 } else if (B->getRHS()->getType()->isPointerType()) {
79 return B->getRHS();
80 }
81 }
82 return nullptr;
83 }
84
85 /// \return A subexpression of @c Ex which represents the
86 /// expression-of-interest.
87 static const Expr *peelOffOuterExpr(const Expr *Ex, const ExplodedNode *N);
88
89 /// Given that expression S represents a pointer that would be dereferenced,
90 /// try to find a sub-expression from which the pointer came from.
91 /// This is used for tracking down origins of a null or undefined value:
92 /// "this is null because that is null because that is null" etc.
93 /// We wipe away field and element offsets because they merely add offsets.
94 /// We also wipe away all casts except lvalue-to-rvalue casts, because the
95 /// latter represent an actual pointer dereference; however, we remove
96 /// the final lvalue-to-rvalue cast before returning from this function
97 /// because it demonstrates more clearly from where the pointer rvalue was
98 /// loaded. Examples:
99 /// x->y.z ==> x (lvalue)
100 /// foo()->y.z ==> foo() (rvalue)
getDerefExpr(const Stmt * S)101 const Expr *bugreporter::getDerefExpr(const Stmt *S) {
102 const auto *E = dyn_cast<Expr>(S);
103 if (!E)
104 return nullptr;
105
106 while (true) {
107 if (const auto *CE = dyn_cast<CastExpr>(E)) {
108 if (CE->getCastKind() == CK_LValueToRValue) {
109 // This cast represents the load we're looking for.
110 break;
111 }
112 E = CE->getSubExpr();
113 } else if (const auto *B = dyn_cast<BinaryOperator>(E)) {
114 // Pointer arithmetic: '*(x + 2)' -> 'x') etc.
115 if (const Expr *Inner = peelOffPointerArithmetic(B)) {
116 E = Inner;
117 } else if (B->isAssignmentOp()) {
118 // Follow LHS of assignments: '*p = 404' -> 'p'.
119 E = B->getLHS();
120 } else {
121 // Probably more arithmetic can be pattern-matched here,
122 // but for now give up.
123 break;
124 }
125 } else if (const auto *U = dyn_cast<UnaryOperator>(E)) {
126 if (U->getOpcode() == UO_Deref || U->getOpcode() == UO_AddrOf ||
127 (U->isIncrementDecrementOp() && U->getType()->isPointerType())) {
128 // Operators '*' and '&' don't actually mean anything.
129 // We look at casts instead.
130 E = U->getSubExpr();
131 } else {
132 // Probably more arithmetic can be pattern-matched here,
133 // but for now give up.
134 break;
135 }
136 }
137 // Pattern match for a few useful cases: a[0], p->f, *p etc.
138 else if (const auto *ME = dyn_cast<MemberExpr>(E)) {
139 // This handles the case when the dereferencing of a member reference
140 // happens. This is needed, because the AST for dereferencing a
141 // member reference looks like the following:
142 // |-MemberExpr
143 // `-DeclRefExpr
144 // Without this special case the notes would refer to the whole object
145 // (struct, class or union variable) instead of just the relevant member.
146
147 if (ME->getMemberDecl()->getType()->isReferenceType())
148 break;
149 E = ME->getBase();
150 } else if (const auto *IvarRef = dyn_cast<ObjCIvarRefExpr>(E)) {
151 E = IvarRef->getBase();
152 } else if (const auto *AE = dyn_cast<ArraySubscriptExpr>(E)) {
153 E = AE->getBase();
154 } else if (const auto *PE = dyn_cast<ParenExpr>(E)) {
155 E = PE->getSubExpr();
156 } else if (const auto *FE = dyn_cast<FullExpr>(E)) {
157 E = FE->getSubExpr();
158 } else {
159 // Other arbitrary stuff.
160 break;
161 }
162 }
163
164 // Special case: remove the final lvalue-to-rvalue cast, but do not recurse
165 // deeper into the sub-expression. This way we return the lvalue from which
166 // our pointer rvalue was loaded.
167 if (const auto *CE = dyn_cast<ImplicitCastExpr>(E))
168 if (CE->getCastKind() == CK_LValueToRValue)
169 E = CE->getSubExpr();
170
171 return E;
172 }
173
getVarDeclForExpression(const Expr * E)174 static const VarDecl *getVarDeclForExpression(const Expr *E) {
175 if (const auto *DR = dyn_cast<DeclRefExpr>(E))
176 return dyn_cast<VarDecl>(DR->getDecl());
177 return nullptr;
178 }
179
180 static const MemRegion *
getLocationRegionIfReference(const Expr * E,const ExplodedNode * N,bool LookingForReference=true)181 getLocationRegionIfReference(const Expr *E, const ExplodedNode *N,
182 bool LookingForReference = true) {
183 if (const auto *ME = dyn_cast<MemberExpr>(E)) {
184 // This handles null references from FieldRegions, for example:
185 // struct Wrapper { int &ref; };
186 // Wrapper w = { *(int *)0 };
187 // w.ref = 1;
188 const Expr *Base = ME->getBase();
189 const VarDecl *VD = getVarDeclForExpression(Base);
190 if (!VD)
191 return nullptr;
192
193 const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl());
194 if (!FD)
195 return nullptr;
196
197 if (FD->getType()->isReferenceType()) {
198 SVal StructSVal = N->getState()->getLValue(VD, N->getLocationContext());
199 return N->getState()->getLValue(FD, StructSVal).getAsRegion();
200 }
201 return nullptr;
202 }
203
204 const VarDecl *VD = getVarDeclForExpression(E);
205 if (!VD)
206 return nullptr;
207 if (LookingForReference && !VD->getType()->isReferenceType())
208 return nullptr;
209 return N->getState()->getLValue(VD, N->getLocationContext()).getAsRegion();
210 }
211
212 /// Comparing internal representations of symbolic values (via
213 /// SVal::operator==()) is a valid way to check if the value was updated,
214 /// unless it's a LazyCompoundVal that may have a different internal
215 /// representation every time it is loaded from the state. In this function we
216 /// do an approximate comparison for lazy compound values, checking that they
217 /// are the immediate snapshots of the tracked region's bindings within the
218 /// node's respective states but not really checking that these snapshots
219 /// actually contain the same set of bindings.
hasVisibleUpdate(const ExplodedNode * LeftNode,SVal LeftVal,const ExplodedNode * RightNode,SVal RightVal)220 static bool hasVisibleUpdate(const ExplodedNode *LeftNode, SVal LeftVal,
221 const ExplodedNode *RightNode, SVal RightVal) {
222 if (LeftVal == RightVal)
223 return true;
224
225 const auto LLCV = LeftVal.getAs<nonloc::LazyCompoundVal>();
226 if (!LLCV)
227 return false;
228
229 const auto RLCV = RightVal.getAs<nonloc::LazyCompoundVal>();
230 if (!RLCV)
231 return false;
232
233 return LLCV->getRegion() == RLCV->getRegion() &&
234 LLCV->getStore() == LeftNode->getState()->getStore() &&
235 RLCV->getStore() == RightNode->getState()->getStore();
236 }
237
getSValForVar(const Expr * CondVarExpr,const ExplodedNode * N)238 static std::optional<SVal> getSValForVar(const Expr *CondVarExpr,
239 const ExplodedNode *N) {
240 ProgramStateRef State = N->getState();
241 const LocationContext *LCtx = N->getLocationContext();
242
243 assert(CondVarExpr);
244 CondVarExpr = CondVarExpr->IgnoreImpCasts();
245
246 // The declaration of the value may rely on a pointer so take its l-value.
247 // FIXME: As seen in VisitCommonDeclRefExpr, sometimes DeclRefExpr may
248 // evaluate to a FieldRegion when it refers to a declaration of a lambda
249 // capture variable. We most likely need to duplicate that logic here.
250 if (const auto *DRE = dyn_cast<DeclRefExpr>(CondVarExpr))
251 if (const auto *VD = dyn_cast<VarDecl>(DRE->getDecl()))
252 return State->getSVal(State->getLValue(VD, LCtx));
253
254 if (const auto *ME = dyn_cast<MemberExpr>(CondVarExpr))
255 if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
256 if (auto FieldL = State->getSVal(ME, LCtx).getAs<Loc>())
257 return State->getRawSVal(*FieldL, FD->getType());
258
259 return std::nullopt;
260 }
261
262 static std::optional<const llvm::APSInt *>
getConcreteIntegerValue(const Expr * CondVarExpr,const ExplodedNode * N)263 getConcreteIntegerValue(const Expr *CondVarExpr, const ExplodedNode *N) {
264
265 if (std::optional<SVal> V = getSValForVar(CondVarExpr, N))
266 if (auto CI = V->getAs<nonloc::ConcreteInt>())
267 return &CI->getValue();
268 return std::nullopt;
269 }
270
isVarAnInterestingCondition(const Expr * CondVarExpr,const ExplodedNode * N,const PathSensitiveBugReport * B)271 static bool isVarAnInterestingCondition(const Expr *CondVarExpr,
272 const ExplodedNode *N,
273 const PathSensitiveBugReport *B) {
274 // Even if this condition is marked as interesting, it isn't *that*
275 // interesting if it didn't happen in a nested stackframe, the user could just
276 // follow the arrows.
277 if (!B->getErrorNode()->getStackFrame()->isParentOf(N->getStackFrame()))
278 return false;
279
280 if (std::optional<SVal> V = getSValForVar(CondVarExpr, N))
281 if (std::optional<bugreporter::TrackingKind> K =
282 B->getInterestingnessKind(*V))
283 return *K == bugreporter::TrackingKind::Condition;
284
285 return false;
286 }
287
isInterestingExpr(const Expr * E,const ExplodedNode * N,const PathSensitiveBugReport * B)288 static bool isInterestingExpr(const Expr *E, const ExplodedNode *N,
289 const PathSensitiveBugReport *B) {
290 if (std::optional<SVal> V = getSValForVar(E, N))
291 return B->getInterestingnessKind(*V).has_value();
292 return false;
293 }
294
295 /// \return name of the macro inside the location \p Loc.
getMacroName(SourceLocation Loc,BugReporterContext & BRC)296 static StringRef getMacroName(SourceLocation Loc,
297 BugReporterContext &BRC) {
298 return Lexer::getImmediateMacroName(
299 Loc,
300 BRC.getSourceManager(),
301 BRC.getASTContext().getLangOpts());
302 }
303
304 /// \return Whether given spelling location corresponds to an expansion
305 /// of a function-like macro.
isFunctionMacroExpansion(SourceLocation Loc,const SourceManager & SM)306 static bool isFunctionMacroExpansion(SourceLocation Loc,
307 const SourceManager &SM) {
308 if (!Loc.isMacroID())
309 return false;
310 while (SM.isMacroArgExpansion(Loc))
311 Loc = SM.getImmediateExpansionRange(Loc).getBegin();
312 std::pair<FileID, unsigned> TLInfo = SM.getDecomposedLoc(Loc);
313 SrcMgr::SLocEntry SE = SM.getSLocEntry(TLInfo.first);
314 const SrcMgr::ExpansionInfo &EInfo = SE.getExpansion();
315 return EInfo.isFunctionMacroExpansion();
316 }
317
318 /// \return Whether \c RegionOfInterest was modified at \p N,
319 /// where \p ValueAfter is \c RegionOfInterest's value at the end of the
320 /// stack frame.
wasRegionOfInterestModifiedAt(const SubRegion * RegionOfInterest,const ExplodedNode * N,SVal ValueAfter)321 static bool wasRegionOfInterestModifiedAt(const SubRegion *RegionOfInterest,
322 const ExplodedNode *N,
323 SVal ValueAfter) {
324 ProgramStateRef State = N->getState();
325 ProgramStateManager &Mgr = N->getState()->getStateManager();
326
327 if (!N->getLocationAs<PostStore>() && !N->getLocationAs<PostInitializer>() &&
328 !N->getLocationAs<PostStmt>())
329 return false;
330
331 // Writing into region of interest.
332 if (auto PS = N->getLocationAs<PostStmt>())
333 if (auto *BO = PS->getStmtAs<BinaryOperator>())
334 if (BO->isAssignmentOp() && RegionOfInterest->isSubRegionOf(
335 N->getSVal(BO->getLHS()).getAsRegion()))
336 return true;
337
338 // SVal after the state is possibly different.
339 SVal ValueAtN = N->getState()->getSVal(RegionOfInterest);
340 if (!Mgr.getSValBuilder()
341 .areEqual(State, ValueAtN, ValueAfter)
342 .isConstrainedTrue() &&
343 (!ValueAtN.isUndef() || !ValueAfter.isUndef()))
344 return true;
345
346 return false;
347 }
348
349 //===----------------------------------------------------------------------===//
350 // Implementation of BugReporterVisitor.
351 //===----------------------------------------------------------------------===//
352
getEndPath(BugReporterContext &,const ExplodedNode *,PathSensitiveBugReport &)353 PathDiagnosticPieceRef BugReporterVisitor::getEndPath(BugReporterContext &,
354 const ExplodedNode *,
355 PathSensitiveBugReport &) {
356 return nullptr;
357 }
358
finalizeVisitor(BugReporterContext &,const ExplodedNode *,PathSensitiveBugReport &)359 void BugReporterVisitor::finalizeVisitor(BugReporterContext &,
360 const ExplodedNode *,
361 PathSensitiveBugReport &) {}
362
363 PathDiagnosticPieceRef
getDefaultEndPath(const BugReporterContext & BRC,const ExplodedNode * EndPathNode,const PathSensitiveBugReport & BR)364 BugReporterVisitor::getDefaultEndPath(const BugReporterContext &BRC,
365 const ExplodedNode *EndPathNode,
366 const PathSensitiveBugReport &BR) {
367 PathDiagnosticLocation L = BR.getLocation();
368 const auto &Ranges = BR.getRanges();
369
370 // Only add the statement itself as a range if we didn't specify any
371 // special ranges for this report.
372 auto P = std::make_shared<PathDiagnosticEventPiece>(
373 L, BR.getDescription(), Ranges.begin() == Ranges.end());
374 for (SourceRange Range : Ranges)
375 P->addRange(Range);
376
377 return P;
378 }
379
380 //===----------------------------------------------------------------------===//
381 // Implementation of NoStateChangeFuncVisitor.
382 //===----------------------------------------------------------------------===//
383
isModifiedInFrame(const ExplodedNode * N)384 bool NoStateChangeFuncVisitor::isModifiedInFrame(const ExplodedNode *N) {
385 const LocationContext *Ctx = N->getLocationContext();
386 const StackFrameContext *SCtx = Ctx->getStackFrame();
387 if (!FramesModifyingCalculated.count(SCtx))
388 findModifyingFrames(N);
389 return FramesModifying.count(SCtx);
390 }
391
markFrameAsModifying(const StackFrameContext * SCtx)392 void NoStateChangeFuncVisitor::markFrameAsModifying(
393 const StackFrameContext *SCtx) {
394 while (!SCtx->inTopFrame()) {
395 auto p = FramesModifying.insert(SCtx);
396 if (!p.second)
397 break; // Frame and all its parents already inserted.
398
399 SCtx = SCtx->getParent()->getStackFrame();
400 }
401 }
402
getMatchingCallExitEnd(const ExplodedNode * N)403 static const ExplodedNode *getMatchingCallExitEnd(const ExplodedNode *N) {
404 assert(N->getLocationAs<CallEnter>());
405 // The stackframe of the callee is only found in the nodes succeeding
406 // the CallEnter node. CallEnter's stack frame refers to the caller.
407 const StackFrameContext *OrigSCtx = N->getFirstSucc()->getStackFrame();
408
409 // Similarly, the nodes preceding CallExitEnd refer to the callee's stack
410 // frame.
411 auto IsMatchingCallExitEnd = [OrigSCtx](const ExplodedNode *N) {
412 return N->getLocationAs<CallExitEnd>() &&
413 OrigSCtx == N->getFirstPred()->getStackFrame();
414 };
415 while (N && !IsMatchingCallExitEnd(N)) {
416 assert(N->succ_size() <= 1 &&
417 "This function is to be used on the trimmed ExplodedGraph!");
418 N = N->getFirstSucc();
419 }
420 return N;
421 }
422
findModifyingFrames(const ExplodedNode * const CallExitBeginN)423 void NoStateChangeFuncVisitor::findModifyingFrames(
424 const ExplodedNode *const CallExitBeginN) {
425
426 assert(CallExitBeginN->getLocationAs<CallExitBegin>());
427
428 const StackFrameContext *const OriginalSCtx =
429 CallExitBeginN->getLocationContext()->getStackFrame();
430
431 const ExplodedNode *CurrCallExitBeginN = CallExitBeginN;
432 const StackFrameContext *CurrentSCtx = OriginalSCtx;
433
434 for (const ExplodedNode *CurrN = CallExitBeginN; CurrN;
435 CurrN = CurrN->getFirstPred()) {
436 // Found a new inlined call.
437 if (CurrN->getLocationAs<CallExitBegin>()) {
438 CurrCallExitBeginN = CurrN;
439 CurrentSCtx = CurrN->getStackFrame();
440 FramesModifyingCalculated.insert(CurrentSCtx);
441 // We won't see a change in between two identical exploded nodes: skip.
442 continue;
443 }
444
445 if (auto CE = CurrN->getLocationAs<CallEnter>()) {
446 if (const ExplodedNode *CallExitEndN = getMatchingCallExitEnd(CurrN))
447 if (wasModifiedInFunction(CurrN, CallExitEndN))
448 markFrameAsModifying(CurrentSCtx);
449
450 // We exited this inlined call, lets actualize the stack frame.
451 CurrentSCtx = CurrN->getStackFrame();
452
453 // Stop calculating at the current function, but always regard it as
454 // modifying, so we can avoid notes like this:
455 // void f(Foo &F) {
456 // F.field = 0; // note: 0 assigned to 'F.field'
457 // // note: returning without writing to 'F.field'
458 // }
459 if (CE->getCalleeContext() == OriginalSCtx) {
460 markFrameAsModifying(CurrentSCtx);
461 break;
462 }
463 }
464
465 if (wasModifiedBeforeCallExit(CurrN, CurrCallExitBeginN))
466 markFrameAsModifying(CurrentSCtx);
467 }
468 }
469
VisitNode(const ExplodedNode * N,BugReporterContext & BR,PathSensitiveBugReport & R)470 PathDiagnosticPieceRef NoStateChangeFuncVisitor::VisitNode(
471 const ExplodedNode *N, BugReporterContext &BR, PathSensitiveBugReport &R) {
472
473 const LocationContext *Ctx = N->getLocationContext();
474 const StackFrameContext *SCtx = Ctx->getStackFrame();
475 ProgramStateRef State = N->getState();
476 auto CallExitLoc = N->getLocationAs<CallExitBegin>();
477
478 // No diagnostic if region was modified inside the frame.
479 if (!CallExitLoc || isModifiedInFrame(N))
480 return nullptr;
481
482 CallEventRef<> Call =
483 BR.getStateManager().getCallEventManager().getCaller(SCtx, State);
484
485 // Optimistically suppress uninitialized value bugs that result
486 // from system headers having a chance to initialize the value
487 // but failing to do so. It's too unlikely a system header's fault.
488 // It's much more likely a situation in which the function has a failure
489 // mode that the user decided not to check. If we want to hunt such
490 // omitted checks, we should provide an explicit function-specific note
491 // describing the precondition under which the function isn't supposed to
492 // initialize its out-parameter, and additionally check that such
493 // precondition can actually be fulfilled on the current path.
494 if (Call->isInSystemHeader()) {
495 // We make an exception for system header functions that have no branches.
496 // Such functions unconditionally fail to initialize the variable.
497 // If they call other functions that have more paths within them,
498 // this suppression would still apply when we visit these inner functions.
499 // One common example of a standard function that doesn't ever initialize
500 // its out parameter is operator placement new; it's up to the follow-up
501 // constructor (if any) to initialize the memory.
502 if (!N->getStackFrame()->getCFG()->isLinear()) {
503 static int i = 0;
504 R.markInvalid(&i, nullptr);
505 }
506 return nullptr;
507 }
508
509 if (const auto *MC = dyn_cast<ObjCMethodCall>(Call)) {
510 // If we failed to construct a piece for self, we still want to check
511 // whether the entity of interest is in a parameter.
512 if (PathDiagnosticPieceRef Piece = maybeEmitNoteForObjCSelf(R, *MC, N))
513 return Piece;
514 }
515
516 if (const auto *CCall = dyn_cast<CXXConstructorCall>(Call)) {
517 // Do not generate diagnostics for not modified parameters in
518 // constructors.
519 return maybeEmitNoteForCXXThis(R, *CCall, N);
520 }
521
522 return maybeEmitNoteForParameters(R, *Call, N);
523 }
524
525 //===----------------------------------------------------------------------===//
526 // Implementation of NoStoreFuncVisitor.
527 //===----------------------------------------------------------------------===//
528
529 namespace {
530 /// Put a diagnostic on return statement of all inlined functions
531 /// for which the region of interest \p RegionOfInterest was passed into,
532 /// but not written inside, and it has caused an undefined read or a null
533 /// pointer dereference outside.
534 class NoStoreFuncVisitor final : public NoStateChangeFuncVisitor {
535 const SubRegion *RegionOfInterest;
536 MemRegionManager &MmrMgr;
537 const SourceManager &SM;
538 const PrintingPolicy &PP;
539
540 /// Recursion limit for dereferencing fields when looking for the
541 /// region of interest.
542 /// The limit of two indicates that we will dereference fields only once.
543 static const unsigned DEREFERENCE_LIMIT = 2;
544
545 using RegionVector = SmallVector<const MemRegion *, 5>;
546
547 public:
NoStoreFuncVisitor(const SubRegion * R,bugreporter::TrackingKind TKind)548 NoStoreFuncVisitor(const SubRegion *R, bugreporter::TrackingKind TKind)
549 : NoStateChangeFuncVisitor(TKind), RegionOfInterest(R),
550 MmrMgr(R->getMemRegionManager()),
551 SM(MmrMgr.getContext().getSourceManager()),
552 PP(MmrMgr.getContext().getPrintingPolicy()) {}
553
Profile(llvm::FoldingSetNodeID & ID) const554 void Profile(llvm::FoldingSetNodeID &ID) const override {
555 static int Tag = 0;
556 ID.AddPointer(&Tag);
557 ID.AddPointer(RegionOfInterest);
558 }
559
560 private:
561 /// \return Whether \c RegionOfInterest was modified at \p CurrN compared to
562 /// the value it holds in \p CallExitBeginN.
563 bool wasModifiedBeforeCallExit(const ExplodedNode *CurrN,
564 const ExplodedNode *CallExitBeginN) override;
565
566 /// Attempts to find the region of interest in a given record decl,
567 /// by either following the base classes or fields.
568 /// Dereferences fields up to a given recursion limit.
569 /// Note that \p Vec is passed by value, leading to quadratic copying cost,
570 /// but it's OK in practice since its length is limited to DEREFERENCE_LIMIT.
571 /// \return A chain fields leading to the region of interest or std::nullopt.
572 const std::optional<RegionVector>
573 findRegionOfInterestInRecord(const RecordDecl *RD, ProgramStateRef State,
574 const MemRegion *R, const RegionVector &Vec = {},
575 int depth = 0);
576
577 // Region of interest corresponds to an IVar, exiting a method
578 // which could have written into that IVar, but did not.
579 PathDiagnosticPieceRef maybeEmitNoteForObjCSelf(PathSensitiveBugReport &R,
580 const ObjCMethodCall &Call,
581 const ExplodedNode *N) final;
582
583 PathDiagnosticPieceRef maybeEmitNoteForCXXThis(PathSensitiveBugReport &R,
584 const CXXConstructorCall &Call,
585 const ExplodedNode *N) final;
586
587 PathDiagnosticPieceRef
588 maybeEmitNoteForParameters(PathSensitiveBugReport &R, const CallEvent &Call,
589 const ExplodedNode *N) final;
590
591 /// Consume the information on the no-store stack frame in order to
592 /// either emit a note or suppress the report enirely.
593 /// \return Diagnostics piece for region not modified in the current function,
594 /// if it decides to emit one.
595 PathDiagnosticPieceRef
596 maybeEmitNote(PathSensitiveBugReport &R, const CallEvent &Call,
597 const ExplodedNode *N, const RegionVector &FieldChain,
598 const MemRegion *MatchedRegion, StringRef FirstElement,
599 bool FirstIsReferenceType, unsigned IndirectionLevel);
600
601 bool prettyPrintRegionName(const RegionVector &FieldChain,
602 const MemRegion *MatchedRegion,
603 StringRef FirstElement, bool FirstIsReferenceType,
604 unsigned IndirectionLevel,
605 llvm::raw_svector_ostream &os);
606
607 StringRef prettyPrintFirstElement(StringRef FirstElement,
608 bool MoreItemsExpected,
609 int IndirectionLevel,
610 llvm::raw_svector_ostream &os);
611 };
612 } // namespace
613
614 /// \return Whether the method declaration \p Parent
615 /// syntactically has a binary operation writing into the ivar \p Ivar.
potentiallyWritesIntoIvar(const Decl * Parent,const ObjCIvarDecl * Ivar)616 static bool potentiallyWritesIntoIvar(const Decl *Parent,
617 const ObjCIvarDecl *Ivar) {
618 using namespace ast_matchers;
619 const char *IvarBind = "Ivar";
620 if (!Parent || !Parent->hasBody())
621 return false;
622 StatementMatcher WriteIntoIvarM = binaryOperator(
623 hasOperatorName("="),
624 hasLHS(ignoringParenImpCasts(
625 objcIvarRefExpr(hasDeclaration(equalsNode(Ivar))).bind(IvarBind))));
626 StatementMatcher ParentM = stmt(hasDescendant(WriteIntoIvarM));
627 auto Matches = match(ParentM, *Parent->getBody(), Parent->getASTContext());
628 for (BoundNodes &Match : Matches) {
629 auto IvarRef = Match.getNodeAs<ObjCIvarRefExpr>(IvarBind);
630 if (IvarRef->isFreeIvar())
631 return true;
632
633 const Expr *Base = IvarRef->getBase();
634 if (const auto *ICE = dyn_cast<ImplicitCastExpr>(Base))
635 Base = ICE->getSubExpr();
636
637 if (const auto *DRE = dyn_cast<DeclRefExpr>(Base))
638 if (const auto *ID = dyn_cast<ImplicitParamDecl>(DRE->getDecl()))
639 if (ID->getParameterKind() == ImplicitParamKind::ObjCSelf)
640 return true;
641
642 return false;
643 }
644 return false;
645 }
646
647 /// Attempts to find the region of interest in a given CXX decl,
648 /// by either following the base classes or fields.
649 /// Dereferences fields up to a given recursion limit.
650 /// Note that \p Vec is passed by value, leading to quadratic copying cost,
651 /// but it's OK in practice since its length is limited to DEREFERENCE_LIMIT.
652 /// \return A chain fields leading to the region of interest or std::nullopt.
653 const std::optional<NoStoreFuncVisitor::RegionVector>
findRegionOfInterestInRecord(const RecordDecl * RD,ProgramStateRef State,const MemRegion * R,const NoStoreFuncVisitor::RegionVector & Vec,int depth)654 NoStoreFuncVisitor::findRegionOfInterestInRecord(
655 const RecordDecl *RD, ProgramStateRef State, const MemRegion *R,
656 const NoStoreFuncVisitor::RegionVector &Vec /* = {} */,
657 int depth /* = 0 */) {
658
659 if (depth == DEREFERENCE_LIMIT) // Limit the recursion depth.
660 return std::nullopt;
661
662 if (const auto *RDX = dyn_cast<CXXRecordDecl>(RD))
663 if (!RDX->hasDefinition())
664 return std::nullopt;
665
666 // Recursively examine the base classes.
667 // Note that following base classes does not increase the recursion depth.
668 if (const auto *RDX = dyn_cast<CXXRecordDecl>(RD))
669 for (const auto &II : RDX->bases())
670 if (const RecordDecl *RRD = II.getType()->getAsRecordDecl())
671 if (std::optional<RegionVector> Out =
672 findRegionOfInterestInRecord(RRD, State, R, Vec, depth))
673 return Out;
674
675 for (const FieldDecl *I : RD->fields()) {
676 QualType FT = I->getType();
677 const FieldRegion *FR = MmrMgr.getFieldRegion(I, cast<SubRegion>(R));
678 const SVal V = State->getSVal(FR);
679 const MemRegion *VR = V.getAsRegion();
680
681 RegionVector VecF = Vec;
682 VecF.push_back(FR);
683
684 if (RegionOfInterest == VR)
685 return VecF;
686
687 if (const RecordDecl *RRD = FT->getAsRecordDecl())
688 if (auto Out =
689 findRegionOfInterestInRecord(RRD, State, FR, VecF, depth + 1))
690 return Out;
691
692 QualType PT = FT->getPointeeType();
693 if (PT.isNull() || PT->isVoidType() || !VR)
694 continue;
695
696 if (const RecordDecl *RRD = PT->getAsRecordDecl())
697 if (std::optional<RegionVector> Out =
698 findRegionOfInterestInRecord(RRD, State, VR, VecF, depth + 1))
699 return Out;
700 }
701
702 return std::nullopt;
703 }
704
705 PathDiagnosticPieceRef
maybeEmitNoteForObjCSelf(PathSensitiveBugReport & R,const ObjCMethodCall & Call,const ExplodedNode * N)706 NoStoreFuncVisitor::maybeEmitNoteForObjCSelf(PathSensitiveBugReport &R,
707 const ObjCMethodCall &Call,
708 const ExplodedNode *N) {
709 if (const auto *IvarR = dyn_cast<ObjCIvarRegion>(RegionOfInterest)) {
710 const MemRegion *SelfRegion = Call.getReceiverSVal().getAsRegion();
711 if (RegionOfInterest->isSubRegionOf(SelfRegion) &&
712 potentiallyWritesIntoIvar(Call.getRuntimeDefinition().getDecl(),
713 IvarR->getDecl()))
714 return maybeEmitNote(R, Call, N, {}, SelfRegion, "self",
715 /*FirstIsReferenceType=*/false, 1);
716 }
717 return nullptr;
718 }
719
720 PathDiagnosticPieceRef
maybeEmitNoteForCXXThis(PathSensitiveBugReport & R,const CXXConstructorCall & Call,const ExplodedNode * N)721 NoStoreFuncVisitor::maybeEmitNoteForCXXThis(PathSensitiveBugReport &R,
722 const CXXConstructorCall &Call,
723 const ExplodedNode *N) {
724 const MemRegion *ThisR = Call.getCXXThisVal().getAsRegion();
725 if (RegionOfInterest->isSubRegionOf(ThisR) && !Call.getDecl()->isImplicit())
726 return maybeEmitNote(R, Call, N, {}, ThisR, "this",
727 /*FirstIsReferenceType=*/false, 1);
728
729 // Do not generate diagnostics for not modified parameters in
730 // constructors.
731 return nullptr;
732 }
733
734 /// \return whether \p Ty points to a const type, or is a const reference.
isPointerToConst(QualType Ty)735 static bool isPointerToConst(QualType Ty) {
736 return !Ty->getPointeeType().isNull() &&
737 Ty->getPointeeType().getCanonicalType().isConstQualified();
738 }
739
maybeEmitNoteForParameters(PathSensitiveBugReport & R,const CallEvent & Call,const ExplodedNode * N)740 PathDiagnosticPieceRef NoStoreFuncVisitor::maybeEmitNoteForParameters(
741 PathSensitiveBugReport &R, const CallEvent &Call, const ExplodedNode *N) {
742 ArrayRef<ParmVarDecl *> Parameters = Call.parameters();
743 for (unsigned I = 0; I < Call.getNumArgs() && I < Parameters.size(); ++I) {
744 const ParmVarDecl *PVD = Parameters[I];
745 SVal V = Call.getArgSVal(I);
746 bool ParamIsReferenceType = PVD->getType()->isReferenceType();
747 std::string ParamName = PVD->getNameAsString();
748
749 unsigned IndirectionLevel = 1;
750 QualType T = PVD->getType();
751 while (const MemRegion *MR = V.getAsRegion()) {
752 if (RegionOfInterest->isSubRegionOf(MR) && !isPointerToConst(T))
753 return maybeEmitNote(R, Call, N, {}, MR, ParamName,
754 ParamIsReferenceType, IndirectionLevel);
755
756 QualType PT = T->getPointeeType();
757 if (PT.isNull() || PT->isVoidType())
758 break;
759
760 ProgramStateRef State = N->getState();
761
762 if (const RecordDecl *RD = PT->getAsRecordDecl())
763 if (std::optional<RegionVector> P =
764 findRegionOfInterestInRecord(RD, State, MR))
765 return maybeEmitNote(R, Call, N, *P, RegionOfInterest, ParamName,
766 ParamIsReferenceType, IndirectionLevel);
767
768 V = State->getSVal(MR, PT);
769 T = PT;
770 IndirectionLevel++;
771 }
772 }
773
774 return nullptr;
775 }
776
wasModifiedBeforeCallExit(const ExplodedNode * CurrN,const ExplodedNode * CallExitBeginN)777 bool NoStoreFuncVisitor::wasModifiedBeforeCallExit(
778 const ExplodedNode *CurrN, const ExplodedNode *CallExitBeginN) {
779 return ::wasRegionOfInterestModifiedAt(
780 RegionOfInterest, CurrN,
781 CallExitBeginN->getState()->getSVal(RegionOfInterest));
782 }
783
784 static llvm::StringLiteral WillBeUsedForACondition =
785 ", which participates in a condition later";
786
maybeEmitNote(PathSensitiveBugReport & R,const CallEvent & Call,const ExplodedNode * N,const RegionVector & FieldChain,const MemRegion * MatchedRegion,StringRef FirstElement,bool FirstIsReferenceType,unsigned IndirectionLevel)787 PathDiagnosticPieceRef NoStoreFuncVisitor::maybeEmitNote(
788 PathSensitiveBugReport &R, const CallEvent &Call, const ExplodedNode *N,
789 const RegionVector &FieldChain, const MemRegion *MatchedRegion,
790 StringRef FirstElement, bool FirstIsReferenceType,
791 unsigned IndirectionLevel) {
792
793 PathDiagnosticLocation L =
794 PathDiagnosticLocation::create(N->getLocation(), SM);
795
796 // For now this shouldn't trigger, but once it does (as we add more
797 // functions to the body farm), we'll need to decide if these reports
798 // are worth suppressing as well.
799 if (!L.hasValidLocation())
800 return nullptr;
801
802 SmallString<256> sbuf;
803 llvm::raw_svector_ostream os(sbuf);
804 os << "Returning without writing to '";
805
806 // Do not generate the note if failed to pretty-print.
807 if (!prettyPrintRegionName(FieldChain, MatchedRegion, FirstElement,
808 FirstIsReferenceType, IndirectionLevel, os))
809 return nullptr;
810
811 os << "'";
812 if (TKind == bugreporter::TrackingKind::Condition)
813 os << WillBeUsedForACondition;
814 return std::make_shared<PathDiagnosticEventPiece>(L, os.str());
815 }
816
prettyPrintRegionName(const RegionVector & FieldChain,const MemRegion * MatchedRegion,StringRef FirstElement,bool FirstIsReferenceType,unsigned IndirectionLevel,llvm::raw_svector_ostream & os)817 bool NoStoreFuncVisitor::prettyPrintRegionName(const RegionVector &FieldChain,
818 const MemRegion *MatchedRegion,
819 StringRef FirstElement,
820 bool FirstIsReferenceType,
821 unsigned IndirectionLevel,
822 llvm::raw_svector_ostream &os) {
823
824 if (FirstIsReferenceType)
825 IndirectionLevel--;
826
827 RegionVector RegionSequence;
828
829 // Add the regions in the reverse order, then reverse the resulting array.
830 assert(RegionOfInterest->isSubRegionOf(MatchedRegion));
831 const MemRegion *R = RegionOfInterest;
832 while (R != MatchedRegion) {
833 RegionSequence.push_back(R);
834 R = cast<SubRegion>(R)->getSuperRegion();
835 }
836 std::reverse(RegionSequence.begin(), RegionSequence.end());
837 RegionSequence.append(FieldChain.begin(), FieldChain.end());
838
839 StringRef Sep;
840 for (const MemRegion *R : RegionSequence) {
841
842 // Just keep going up to the base region.
843 // Element regions may appear due to casts.
844 if (isa<CXXBaseObjectRegion, CXXTempObjectRegion>(R))
845 continue;
846
847 if (Sep.empty())
848 Sep = prettyPrintFirstElement(FirstElement,
849 /*MoreItemsExpected=*/true,
850 IndirectionLevel, os);
851
852 os << Sep;
853
854 // Can only reasonably pretty-print DeclRegions.
855 if (!isa<DeclRegion>(R))
856 return false;
857
858 const auto *DR = cast<DeclRegion>(R);
859 Sep = DR->getValueType()->isAnyPointerType() ? "->" : ".";
860 DR->getDecl()->getDeclName().print(os, PP);
861 }
862
863 if (Sep.empty())
864 prettyPrintFirstElement(FirstElement,
865 /*MoreItemsExpected=*/false, IndirectionLevel, os);
866 return true;
867 }
868
prettyPrintFirstElement(StringRef FirstElement,bool MoreItemsExpected,int IndirectionLevel,llvm::raw_svector_ostream & os)869 StringRef NoStoreFuncVisitor::prettyPrintFirstElement(
870 StringRef FirstElement, bool MoreItemsExpected, int IndirectionLevel,
871 llvm::raw_svector_ostream &os) {
872 StringRef Out = ".";
873
874 if (IndirectionLevel > 0 && MoreItemsExpected) {
875 IndirectionLevel--;
876 Out = "->";
877 }
878
879 if (IndirectionLevel > 0 && MoreItemsExpected)
880 os << "(";
881
882 for (int i = 0; i < IndirectionLevel; i++)
883 os << "*";
884 os << FirstElement;
885
886 if (IndirectionLevel > 0 && MoreItemsExpected)
887 os << ")";
888
889 return Out;
890 }
891
892 //===----------------------------------------------------------------------===//
893 // Implementation of MacroNullReturnSuppressionVisitor.
894 //===----------------------------------------------------------------------===//
895
896 namespace {
897
898 /// Suppress null-pointer-dereference bugs where dereferenced null was returned
899 /// the macro.
900 class MacroNullReturnSuppressionVisitor final : public BugReporterVisitor {
901 const SubRegion *RegionOfInterest;
902 const SVal ValueAtDereference;
903
904 // Do not invalidate the reports where the value was modified
905 // after it got assigned to from the macro.
906 bool WasModified = false;
907
908 public:
MacroNullReturnSuppressionVisitor(const SubRegion * R,const SVal V)909 MacroNullReturnSuppressionVisitor(const SubRegion *R, const SVal V)
910 : RegionOfInterest(R), ValueAtDereference(V) {}
911
VisitNode(const ExplodedNode * N,BugReporterContext & BRC,PathSensitiveBugReport & BR)912 PathDiagnosticPieceRef VisitNode(const ExplodedNode *N,
913 BugReporterContext &BRC,
914 PathSensitiveBugReport &BR) override {
915 if (WasModified)
916 return nullptr;
917
918 auto BugPoint = BR.getErrorNode()->getLocation().getAs<StmtPoint>();
919 if (!BugPoint)
920 return nullptr;
921
922 const SourceManager &SMgr = BRC.getSourceManager();
923 if (auto Loc = matchAssignment(N)) {
924 if (isFunctionMacroExpansion(*Loc, SMgr)) {
925 std::string MacroName = std::string(getMacroName(*Loc, BRC));
926 SourceLocation BugLoc = BugPoint->getStmt()->getBeginLoc();
927 if (!BugLoc.isMacroID() || getMacroName(BugLoc, BRC) != MacroName)
928 BR.markInvalid(getTag(), MacroName.c_str());
929 }
930 }
931
932 if (wasRegionOfInterestModifiedAt(RegionOfInterest, N, ValueAtDereference))
933 WasModified = true;
934
935 return nullptr;
936 }
937
addMacroVisitorIfNecessary(const ExplodedNode * N,const MemRegion * R,bool EnableNullFPSuppression,PathSensitiveBugReport & BR,const SVal V)938 static void addMacroVisitorIfNecessary(
939 const ExplodedNode *N, const MemRegion *R,
940 bool EnableNullFPSuppression, PathSensitiveBugReport &BR,
941 const SVal V) {
942 AnalyzerOptions &Options = N->getState()->getAnalysisManager().options;
943 if (EnableNullFPSuppression && Options.ShouldSuppressNullReturnPaths &&
944 isa<Loc>(V))
945 BR.addVisitor<MacroNullReturnSuppressionVisitor>(R->getAs<SubRegion>(),
946 V);
947 }
948
getTag() const949 void* getTag() const {
950 static int Tag = 0;
951 return static_cast<void *>(&Tag);
952 }
953
Profile(llvm::FoldingSetNodeID & ID) const954 void Profile(llvm::FoldingSetNodeID &ID) const override {
955 ID.AddPointer(getTag());
956 }
957
958 private:
959 /// \return Source location of right hand side of an assignment
960 /// into \c RegionOfInterest, empty optional if none found.
matchAssignment(const ExplodedNode * N)961 std::optional<SourceLocation> matchAssignment(const ExplodedNode *N) {
962 const Stmt *S = N->getStmtForDiagnostics();
963 ProgramStateRef State = N->getState();
964 auto *LCtx = N->getLocationContext();
965 if (!S)
966 return std::nullopt;
967
968 if (const auto *DS = dyn_cast<DeclStmt>(S)) {
969 if (const auto *VD = dyn_cast<VarDecl>(DS->getSingleDecl()))
970 if (const Expr *RHS = VD->getInit())
971 if (RegionOfInterest->isSubRegionOf(
972 State->getLValue(VD, LCtx).getAsRegion()))
973 return RHS->getBeginLoc();
974 } else if (const auto *BO = dyn_cast<BinaryOperator>(S)) {
975 const MemRegion *R = N->getSVal(BO->getLHS()).getAsRegion();
976 const Expr *RHS = BO->getRHS();
977 if (BO->isAssignmentOp() && RegionOfInterest->isSubRegionOf(R)) {
978 return RHS->getBeginLoc();
979 }
980 }
981 return std::nullopt;
982 }
983 };
984
985 } // end of anonymous namespace
986
987 namespace {
988
989 /// Emits an extra note at the return statement of an interesting stack frame.
990 ///
991 /// The returned value is marked as an interesting value, and if it's null,
992 /// adds a visitor to track where it became null.
993 ///
994 /// This visitor is intended to be used when another visitor discovers that an
995 /// interesting value comes from an inlined function call.
996 class ReturnVisitor : public TrackingBugReporterVisitor {
997 const StackFrameContext *CalleeSFC;
998 enum {
999 Initial,
1000 MaybeUnsuppress,
1001 Satisfied
1002 } Mode = Initial;
1003
1004 bool EnableNullFPSuppression;
1005 bool ShouldInvalidate = true;
1006 AnalyzerOptions& Options;
1007 bugreporter::TrackingKind TKind;
1008
1009 public:
ReturnVisitor(TrackerRef ParentTracker,const StackFrameContext * Frame,bool Suppressed,AnalyzerOptions & Options,bugreporter::TrackingKind TKind)1010 ReturnVisitor(TrackerRef ParentTracker, const StackFrameContext *Frame,
1011 bool Suppressed, AnalyzerOptions &Options,
1012 bugreporter::TrackingKind TKind)
1013 : TrackingBugReporterVisitor(ParentTracker), CalleeSFC(Frame),
1014 EnableNullFPSuppression(Suppressed), Options(Options), TKind(TKind) {}
1015
getTag()1016 static void *getTag() {
1017 static int Tag = 0;
1018 return static_cast<void *>(&Tag);
1019 }
1020
Profile(llvm::FoldingSetNodeID & ID) const1021 void Profile(llvm::FoldingSetNodeID &ID) const override {
1022 ID.AddPointer(ReturnVisitor::getTag());
1023 ID.AddPointer(CalleeSFC);
1024 ID.AddBoolean(EnableNullFPSuppression);
1025 }
1026
visitNodeInitial(const ExplodedNode * N,BugReporterContext & BRC,PathSensitiveBugReport & BR)1027 PathDiagnosticPieceRef visitNodeInitial(const ExplodedNode *N,
1028 BugReporterContext &BRC,
1029 PathSensitiveBugReport &BR) {
1030 // Only print a message at the interesting return statement.
1031 if (N->getLocationContext() != CalleeSFC)
1032 return nullptr;
1033
1034 std::optional<StmtPoint> SP = N->getLocationAs<StmtPoint>();
1035 if (!SP)
1036 return nullptr;
1037
1038 const auto *Ret = dyn_cast<ReturnStmt>(SP->getStmt());
1039 if (!Ret)
1040 return nullptr;
1041
1042 // Okay, we're at the right return statement, but do we have the return
1043 // value available?
1044 ProgramStateRef State = N->getState();
1045 SVal V = State->getSVal(Ret, CalleeSFC);
1046 if (V.isUnknownOrUndef())
1047 return nullptr;
1048
1049 // Don't print any more notes after this one.
1050 Mode = Satisfied;
1051
1052 const Expr *RetE = Ret->getRetValue();
1053 assert(RetE && "Tracking a return value for a void function");
1054
1055 // Handle cases where a reference is returned and then immediately used.
1056 std::optional<Loc> LValue;
1057 if (RetE->isGLValue()) {
1058 if ((LValue = V.getAs<Loc>())) {
1059 SVal RValue = State->getRawSVal(*LValue, RetE->getType());
1060 if (isa<DefinedSVal>(RValue))
1061 V = RValue;
1062 }
1063 }
1064
1065 // Ignore aggregate rvalues.
1066 if (isa<nonloc::LazyCompoundVal, nonloc::CompoundVal>(V))
1067 return nullptr;
1068
1069 RetE = RetE->IgnoreParenCasts();
1070
1071 // Let's track the return value.
1072 getParentTracker().track(RetE, N, {TKind, EnableNullFPSuppression});
1073
1074 // Build an appropriate message based on the return value.
1075 SmallString<64> Msg;
1076 llvm::raw_svector_ostream Out(Msg);
1077
1078 bool WouldEventBeMeaningless = false;
1079
1080 if (State->isNull(V).isConstrainedTrue()) {
1081 if (isa<Loc>(V)) {
1082
1083 // If we have counter-suppression enabled, make sure we keep visiting
1084 // future nodes. We want to emit a path note as well, in case
1085 // the report is resurrected as valid later on.
1086 if (EnableNullFPSuppression &&
1087 Options.ShouldAvoidSuppressingNullArgumentPaths)
1088 Mode = MaybeUnsuppress;
1089
1090 if (RetE->getType()->isObjCObjectPointerType()) {
1091 Out << "Returning nil";
1092 } else {
1093 Out << "Returning null pointer";
1094 }
1095 } else {
1096 Out << "Returning zero";
1097 }
1098
1099 } else {
1100 if (auto CI = V.getAs<nonloc::ConcreteInt>()) {
1101 Out << "Returning the value " << CI->getValue();
1102 } else {
1103 // There is nothing interesting about returning a value, when it is
1104 // plain value without any constraints, and the function is guaranteed
1105 // to return that every time. We could use CFG::isLinear() here, but
1106 // constexpr branches are obvious to the compiler, not necesserily to
1107 // the programmer.
1108 if (N->getCFG().size() == 3)
1109 WouldEventBeMeaningless = true;
1110
1111 Out << (isa<Loc>(V) ? "Returning pointer" : "Returning value");
1112 }
1113 }
1114
1115 if (LValue) {
1116 if (const MemRegion *MR = LValue->getAsRegion()) {
1117 if (MR->canPrintPretty()) {
1118 Out << " (reference to ";
1119 MR->printPretty(Out);
1120 Out << ")";
1121 }
1122 }
1123 } else {
1124 // FIXME: We should have a more generalized location printing mechanism.
1125 if (const auto *DR = dyn_cast<DeclRefExpr>(RetE))
1126 if (const auto *DD = dyn_cast<DeclaratorDecl>(DR->getDecl()))
1127 Out << " (loaded from '" << *DD << "')";
1128 }
1129
1130 PathDiagnosticLocation L(Ret, BRC.getSourceManager(), CalleeSFC);
1131 if (!L.isValid() || !L.asLocation().isValid())
1132 return nullptr;
1133
1134 if (TKind == bugreporter::TrackingKind::Condition)
1135 Out << WillBeUsedForACondition;
1136
1137 auto EventPiece = std::make_shared<PathDiagnosticEventPiece>(L, Out.str());
1138
1139 // If we determined that the note is meaningless, make it prunable, and
1140 // don't mark the stackframe interesting.
1141 if (WouldEventBeMeaningless)
1142 EventPiece->setPrunable(true);
1143 else
1144 BR.markInteresting(CalleeSFC);
1145
1146 return EventPiece;
1147 }
1148
visitNodeMaybeUnsuppress(const ExplodedNode * N,BugReporterContext & BRC,PathSensitiveBugReport & BR)1149 PathDiagnosticPieceRef visitNodeMaybeUnsuppress(const ExplodedNode *N,
1150 BugReporterContext &BRC,
1151 PathSensitiveBugReport &BR) {
1152 assert(Options.ShouldAvoidSuppressingNullArgumentPaths);
1153
1154 // Are we at the entry node for this call?
1155 std::optional<CallEnter> CE = N->getLocationAs<CallEnter>();
1156 if (!CE)
1157 return nullptr;
1158
1159 if (CE->getCalleeContext() != CalleeSFC)
1160 return nullptr;
1161
1162 Mode = Satisfied;
1163
1164 // Don't automatically suppress a report if one of the arguments is
1165 // known to be a null pointer. Instead, start tracking /that/ null
1166 // value back to its origin.
1167 ProgramStateManager &StateMgr = BRC.getStateManager();
1168 CallEventManager &CallMgr = StateMgr.getCallEventManager();
1169
1170 ProgramStateRef State = N->getState();
1171 CallEventRef<> Call = CallMgr.getCaller(CalleeSFC, State);
1172 for (unsigned I = 0, E = Call->getNumArgs(); I != E; ++I) {
1173 std::optional<Loc> ArgV = Call->getArgSVal(I).getAs<Loc>();
1174 if (!ArgV)
1175 continue;
1176
1177 const Expr *ArgE = Call->getArgExpr(I);
1178 if (!ArgE)
1179 continue;
1180
1181 // Is it possible for this argument to be non-null?
1182 if (!State->isNull(*ArgV).isConstrainedTrue())
1183 continue;
1184
1185 if (getParentTracker()
1186 .track(ArgE, N, {TKind, EnableNullFPSuppression})
1187 .FoundSomethingToTrack)
1188 ShouldInvalidate = false;
1189
1190 // If we /can't/ track the null pointer, we should err on the side of
1191 // false negatives, and continue towards marking this report invalid.
1192 // (We will still look at the other arguments, though.)
1193 }
1194
1195 return nullptr;
1196 }
1197
VisitNode(const ExplodedNode * N,BugReporterContext & BRC,PathSensitiveBugReport & BR)1198 PathDiagnosticPieceRef VisitNode(const ExplodedNode *N,
1199 BugReporterContext &BRC,
1200 PathSensitiveBugReport &BR) override {
1201 switch (Mode) {
1202 case Initial:
1203 return visitNodeInitial(N, BRC, BR);
1204 case MaybeUnsuppress:
1205 return visitNodeMaybeUnsuppress(N, BRC, BR);
1206 case Satisfied:
1207 return nullptr;
1208 }
1209
1210 llvm_unreachable("Invalid visit mode!");
1211 }
1212
finalizeVisitor(BugReporterContext &,const ExplodedNode *,PathSensitiveBugReport & BR)1213 void finalizeVisitor(BugReporterContext &, const ExplodedNode *,
1214 PathSensitiveBugReport &BR) override {
1215 if (EnableNullFPSuppression && ShouldInvalidate)
1216 BR.markInvalid(ReturnVisitor::getTag(), CalleeSFC);
1217 }
1218 };
1219
1220 //===----------------------------------------------------------------------===//
1221 // StoreSiteFinder
1222 //===----------------------------------------------------------------------===//
1223
1224 /// Finds last store into the given region,
1225 /// which is different from a given symbolic value.
1226 class StoreSiteFinder final : public TrackingBugReporterVisitor {
1227 const MemRegion *R;
1228 SVal V;
1229 bool Satisfied = false;
1230
1231 TrackingOptions Options;
1232 const StackFrameContext *OriginSFC;
1233
1234 public:
1235 /// \param V We're searching for the store where \c R received this value.
1236 /// \param R The region we're tracking.
1237 /// \param Options Tracking behavior options.
1238 /// \param OriginSFC Only adds notes when the last store happened in a
1239 /// different stackframe to this one. Disregarded if the tracking kind
1240 /// is thorough.
1241 /// This is useful, because for non-tracked regions, notes about
1242 /// changes to its value in a nested stackframe could be pruned, and
1243 /// this visitor can prevent that without polluting the bugpath too
1244 /// much.
StoreSiteFinder(bugreporter::TrackerRef ParentTracker,SVal V,const MemRegion * R,TrackingOptions Options,const StackFrameContext * OriginSFC=nullptr)1245 StoreSiteFinder(bugreporter::TrackerRef ParentTracker, SVal V,
1246 const MemRegion *R, TrackingOptions Options,
1247 const StackFrameContext *OriginSFC = nullptr)
1248 : TrackingBugReporterVisitor(ParentTracker), R(R), V(V), Options(Options),
1249 OriginSFC(OriginSFC) {
1250 assert(R);
1251 }
1252
1253 void Profile(llvm::FoldingSetNodeID &ID) const override;
1254
1255 PathDiagnosticPieceRef VisitNode(const ExplodedNode *N,
1256 BugReporterContext &BRC,
1257 PathSensitiveBugReport &BR) override;
1258 };
1259 } // namespace
1260
Profile(llvm::FoldingSetNodeID & ID) const1261 void StoreSiteFinder::Profile(llvm::FoldingSetNodeID &ID) const {
1262 static int tag = 0;
1263 ID.AddPointer(&tag);
1264 ID.AddPointer(R);
1265 ID.Add(V);
1266 ID.AddInteger(static_cast<int>(Options.Kind));
1267 ID.AddBoolean(Options.EnableNullFPSuppression);
1268 }
1269
1270 /// Returns true if \p N represents the DeclStmt declaring and initializing
1271 /// \p VR.
isInitializationOfVar(const ExplodedNode * N,const VarRegion * VR)1272 static bool isInitializationOfVar(const ExplodedNode *N, const VarRegion *VR) {
1273 std::optional<PostStmt> P = N->getLocationAs<PostStmt>();
1274 if (!P)
1275 return false;
1276
1277 const DeclStmt *DS = P->getStmtAs<DeclStmt>();
1278 if (!DS)
1279 return false;
1280
1281 if (DS->getSingleDecl() != VR->getDecl())
1282 return false;
1283
1284 const MemSpaceRegion *VarSpace = VR->getMemorySpace();
1285 const auto *FrameSpace = dyn_cast<StackSpaceRegion>(VarSpace);
1286 if (!FrameSpace) {
1287 // If we ever directly evaluate global DeclStmts, this assertion will be
1288 // invalid, but this still seems preferable to silently accepting an
1289 // initialization that may be for a path-sensitive variable.
1290 assert(VR->getDecl()->isStaticLocal() && "non-static stackless VarRegion");
1291 return true;
1292 }
1293
1294 assert(VR->getDecl()->hasLocalStorage());
1295 const LocationContext *LCtx = N->getLocationContext();
1296 return FrameSpace->getStackFrame() == LCtx->getStackFrame();
1297 }
1298
isObjCPointer(const MemRegion * R)1299 static bool isObjCPointer(const MemRegion *R) {
1300 if (R->isBoundable())
1301 if (const auto *TR = dyn_cast<TypedValueRegion>(R))
1302 return TR->getValueType()->isObjCObjectPointerType();
1303
1304 return false;
1305 }
1306
isObjCPointer(const ValueDecl * D)1307 static bool isObjCPointer(const ValueDecl *D) {
1308 return D->getType()->isObjCObjectPointerType();
1309 }
1310
1311 /// Show diagnostics for initializing or declaring a region \p R with a bad value.
showBRDiagnostics(llvm::raw_svector_ostream & OS,StoreInfo SI)1312 static void showBRDiagnostics(llvm::raw_svector_ostream &OS, StoreInfo SI) {
1313 const bool HasPrefix = SI.Dest->canPrintPretty();
1314
1315 if (HasPrefix) {
1316 SI.Dest->printPretty(OS);
1317 OS << " ";
1318 }
1319
1320 const char *Action = nullptr;
1321
1322 switch (SI.StoreKind) {
1323 case StoreInfo::Initialization:
1324 Action = HasPrefix ? "initialized to " : "Initializing to ";
1325 break;
1326 case StoreInfo::BlockCapture:
1327 Action = HasPrefix ? "captured by block as " : "Captured by block as ";
1328 break;
1329 default:
1330 llvm_unreachable("Unexpected store kind");
1331 }
1332
1333 if (isa<loc::ConcreteInt>(SI.Value)) {
1334 OS << Action << (isObjCPointer(SI.Dest) ? "nil" : "a null pointer value");
1335
1336 } else if (auto CVal = SI.Value.getAs<nonloc::ConcreteInt>()) {
1337 OS << Action << CVal->getValue();
1338
1339 } else if (SI.Origin && SI.Origin->canPrintPretty()) {
1340 OS << Action << "the value of ";
1341 SI.Origin->printPretty(OS);
1342
1343 } else if (SI.StoreKind == StoreInfo::Initialization) {
1344 // We don't need to check here, all these conditions were
1345 // checked by StoreSiteFinder, when it figured out that it is
1346 // initialization.
1347 const auto *DS =
1348 cast<DeclStmt>(SI.StoreSite->getLocationAs<PostStmt>()->getStmt());
1349
1350 if (SI.Value.isUndef()) {
1351 if (isa<VarRegion>(SI.Dest)) {
1352 const auto *VD = cast<VarDecl>(DS->getSingleDecl());
1353
1354 if (VD->getInit()) {
1355 OS << (HasPrefix ? "initialized" : "Initializing")
1356 << " to a garbage value";
1357 } else {
1358 OS << (HasPrefix ? "declared" : "Declaring")
1359 << " without an initial value";
1360 }
1361 }
1362 } else {
1363 OS << (HasPrefix ? "initialized" : "Initialized") << " here";
1364 }
1365 }
1366 }
1367
1368 /// Display diagnostics for passing bad region as a parameter.
showBRParamDiagnostics(llvm::raw_svector_ostream & OS,StoreInfo SI)1369 static void showBRParamDiagnostics(llvm::raw_svector_ostream &OS,
1370 StoreInfo SI) {
1371 const auto *VR = cast<VarRegion>(SI.Dest);
1372 const auto *D = VR->getDecl();
1373
1374 OS << "Passing ";
1375
1376 if (isa<loc::ConcreteInt>(SI.Value)) {
1377 OS << (isObjCPointer(D) ? "nil object reference" : "null pointer value");
1378
1379 } else if (SI.Value.isUndef()) {
1380 OS << "uninitialized value";
1381
1382 } else if (auto CI = SI.Value.getAs<nonloc::ConcreteInt>()) {
1383 OS << "the value " << CI->getValue();
1384
1385 } else if (SI.Origin && SI.Origin->canPrintPretty()) {
1386 SI.Origin->printPretty(OS);
1387
1388 } else {
1389 OS << "value";
1390 }
1391
1392 if (const auto *Param = dyn_cast<ParmVarDecl>(VR->getDecl())) {
1393 // Printed parameter indexes are 1-based, not 0-based.
1394 unsigned Idx = Param->getFunctionScopeIndex() + 1;
1395 OS << " via " << Idx << llvm::getOrdinalSuffix(Idx) << " parameter";
1396 if (VR->canPrintPretty()) {
1397 OS << " ";
1398 VR->printPretty(OS);
1399 }
1400 } else if (const auto *ImplParam = dyn_cast<ImplicitParamDecl>(D)) {
1401 if (ImplParam->getParameterKind() == ImplicitParamKind::ObjCSelf) {
1402 OS << " via implicit parameter 'self'";
1403 }
1404 }
1405 }
1406
1407 /// Show default diagnostics for storing bad region.
showBRDefaultDiagnostics(llvm::raw_svector_ostream & OS,StoreInfo SI)1408 static void showBRDefaultDiagnostics(llvm::raw_svector_ostream &OS,
1409 StoreInfo SI) {
1410 const bool HasSuffix = SI.Dest->canPrintPretty();
1411
1412 if (isa<loc::ConcreteInt>(SI.Value)) {
1413 OS << (isObjCPointer(SI.Dest) ? "nil object reference stored"
1414 : (HasSuffix ? "Null pointer value stored"
1415 : "Storing null pointer value"));
1416
1417 } else if (SI.Value.isUndef()) {
1418 OS << (HasSuffix ? "Uninitialized value stored"
1419 : "Storing uninitialized value");
1420
1421 } else if (auto CV = SI.Value.getAs<nonloc::ConcreteInt>()) {
1422 if (HasSuffix)
1423 OS << "The value " << CV->getValue() << " is assigned";
1424 else
1425 OS << "Assigning " << CV->getValue();
1426
1427 } else if (SI.Origin && SI.Origin->canPrintPretty()) {
1428 if (HasSuffix) {
1429 OS << "The value of ";
1430 SI.Origin->printPretty(OS);
1431 OS << " is assigned";
1432 } else {
1433 OS << "Assigning the value of ";
1434 SI.Origin->printPretty(OS);
1435 }
1436
1437 } else {
1438 OS << (HasSuffix ? "Value assigned" : "Assigning value");
1439 }
1440
1441 if (HasSuffix) {
1442 OS << " to ";
1443 SI.Dest->printPretty(OS);
1444 }
1445 }
1446
isTrivialCopyOrMoveCtor(const CXXConstructExpr * CE)1447 static bool isTrivialCopyOrMoveCtor(const CXXConstructExpr *CE) {
1448 if (!CE)
1449 return false;
1450
1451 const auto *CtorDecl = CE->getConstructor();
1452
1453 return CtorDecl->isCopyOrMoveConstructor() && CtorDecl->isTrivial();
1454 }
1455
tryExtractInitializerFromList(const InitListExpr * ILE,const MemRegion * R)1456 static const Expr *tryExtractInitializerFromList(const InitListExpr *ILE,
1457 const MemRegion *R) {
1458
1459 const auto *TVR = dyn_cast_or_null<TypedValueRegion>(R);
1460
1461 if (!TVR)
1462 return nullptr;
1463
1464 const auto ITy = ILE->getType().getCanonicalType();
1465
1466 // Push each sub-region onto the stack.
1467 std::stack<const TypedValueRegion *> TVRStack;
1468 while (isa<FieldRegion>(TVR) || isa<ElementRegion>(TVR)) {
1469 // We found a region that matches the type of the init list,
1470 // so we assume this is the outer-most region. This can happen
1471 // if the initializer list is inside a class. If our assumption
1472 // is wrong, we return a nullptr in the end.
1473 if (ITy == TVR->getValueType().getCanonicalType())
1474 break;
1475
1476 TVRStack.push(TVR);
1477 TVR = cast<TypedValueRegion>(TVR->getSuperRegion());
1478 }
1479
1480 // If the type of the outer most region doesn't match the type
1481 // of the ILE, we can't match the ILE and the region.
1482 if (ITy != TVR->getValueType().getCanonicalType())
1483 return nullptr;
1484
1485 const Expr *Init = ILE;
1486 while (!TVRStack.empty()) {
1487 TVR = TVRStack.top();
1488 TVRStack.pop();
1489
1490 // We hit something that's not an init list before
1491 // running out of regions, so we most likely failed.
1492 if (!isa<InitListExpr>(Init))
1493 return nullptr;
1494
1495 ILE = cast<InitListExpr>(Init);
1496 auto NumInits = ILE->getNumInits();
1497
1498 if (const auto *FR = dyn_cast<FieldRegion>(TVR)) {
1499 const auto *FD = FR->getDecl();
1500
1501 if (FD->getFieldIndex() >= NumInits)
1502 return nullptr;
1503
1504 Init = ILE->getInit(FD->getFieldIndex());
1505 } else if (const auto *ER = dyn_cast<ElementRegion>(TVR)) {
1506 const auto Ind = ER->getIndex();
1507
1508 // If index is symbolic, we can't figure out which expression
1509 // belongs to the region.
1510 if (!Ind.isConstant())
1511 return nullptr;
1512
1513 const auto IndVal = Ind.getAsInteger()->getLimitedValue();
1514 if (IndVal >= NumInits)
1515 return nullptr;
1516
1517 Init = ILE->getInit(IndVal);
1518 }
1519 }
1520
1521 return Init;
1522 }
1523
VisitNode(const ExplodedNode * Succ,BugReporterContext & BRC,PathSensitiveBugReport & BR)1524 PathDiagnosticPieceRef StoreSiteFinder::VisitNode(const ExplodedNode *Succ,
1525 BugReporterContext &BRC,
1526 PathSensitiveBugReport &BR) {
1527 if (Satisfied)
1528 return nullptr;
1529
1530 const ExplodedNode *StoreSite = nullptr;
1531 const ExplodedNode *Pred = Succ->getFirstPred();
1532 const Expr *InitE = nullptr;
1533 bool IsParam = false;
1534
1535 // First see if we reached the declaration of the region.
1536 if (const auto *VR = dyn_cast<VarRegion>(R)) {
1537 if (isInitializationOfVar(Pred, VR)) {
1538 StoreSite = Pred;
1539 InitE = VR->getDecl()->getInit();
1540 }
1541 }
1542
1543 // If this is a post initializer expression, initializing the region, we
1544 // should track the initializer expression.
1545 if (std::optional<PostInitializer> PIP =
1546 Pred->getLocationAs<PostInitializer>()) {
1547 const MemRegion *FieldReg = (const MemRegion *)PIP->getLocationValue();
1548 if (FieldReg == R) {
1549 StoreSite = Pred;
1550 InitE = PIP->getInitializer()->getInit();
1551 }
1552 }
1553
1554 // Otherwise, see if this is the store site:
1555 // (1) Succ has this binding and Pred does not, i.e. this is
1556 // where the binding first occurred.
1557 // (2) Succ has this binding and is a PostStore node for this region, i.e.
1558 // the same binding was re-assigned here.
1559 if (!StoreSite) {
1560 if (Succ->getState()->getSVal(R) != V)
1561 return nullptr;
1562
1563 if (hasVisibleUpdate(Pred, Pred->getState()->getSVal(R), Succ, V)) {
1564 std::optional<PostStore> PS = Succ->getLocationAs<PostStore>();
1565 if (!PS || PS->getLocationValue() != R)
1566 return nullptr;
1567 }
1568
1569 StoreSite = Succ;
1570
1571 if (std::optional<PostStmt> P = Succ->getLocationAs<PostStmt>()) {
1572 // If this is an assignment expression, we can track the value
1573 // being assigned.
1574 if (const BinaryOperator *BO = P->getStmtAs<BinaryOperator>()) {
1575 if (BO->isAssignmentOp())
1576 InitE = BO->getRHS();
1577 }
1578 // If we have a declaration like 'S s{1,2}' that needs special
1579 // handling, we handle it here.
1580 else if (const auto *DS = P->getStmtAs<DeclStmt>()) {
1581 const auto *Decl = DS->getSingleDecl();
1582 if (isa<VarDecl>(Decl)) {
1583 const auto *VD = cast<VarDecl>(Decl);
1584
1585 // FIXME: Here we only track the inner most region, so we lose
1586 // information, but it's still better than a crash or no information
1587 // at all.
1588 //
1589 // E.g.: The region we have is 's.s2.s3.s4.y' and we only track 'y',
1590 // and throw away the rest.
1591 if (const auto *ILE = dyn_cast<InitListExpr>(VD->getInit()))
1592 InitE = tryExtractInitializerFromList(ILE, R);
1593 }
1594 } else if (const auto *CE = P->getStmtAs<CXXConstructExpr>()) {
1595
1596 const auto State = Succ->getState();
1597
1598 if (isTrivialCopyOrMoveCtor(CE) && isa<SubRegion>(R)) {
1599 // Migrate the field regions from the current object to
1600 // the parent object. If we track 'a.y.e' and encounter
1601 // 'S a = b' then we need to track 'b.y.e'.
1602
1603 // Push the regions to a stack, from last to first, so
1604 // considering the example above the stack will look like
1605 // (bottom) 'e' -> 'y' (top).
1606
1607 std::stack<const SubRegion *> SRStack;
1608 const SubRegion *SR = cast<SubRegion>(R);
1609 while (isa<FieldRegion>(SR) || isa<ElementRegion>(SR)) {
1610 SRStack.push(SR);
1611 SR = cast<SubRegion>(SR->getSuperRegion());
1612 }
1613
1614 // Get the region for the object we copied/moved from.
1615 const auto *OriginEx = CE->getArg(0);
1616 const auto OriginVal =
1617 State->getSVal(OriginEx, Succ->getLocationContext());
1618
1619 // Pop the stored field regions and apply them to the origin
1620 // object in the same order we had them on the copy.
1621 // OriginField will evolve like 'b' -> 'b.y' -> 'b.y.e'.
1622 SVal OriginField = OriginVal;
1623 while (!SRStack.empty()) {
1624 const auto *TopR = SRStack.top();
1625 SRStack.pop();
1626
1627 if (const auto *FR = dyn_cast<FieldRegion>(TopR)) {
1628 OriginField = State->getLValue(FR->getDecl(), OriginField);
1629 } else if (const auto *ER = dyn_cast<ElementRegion>(TopR)) {
1630 OriginField = State->getLValue(ER->getElementType(),
1631 ER->getIndex(), OriginField);
1632 } else {
1633 // FIXME: handle other region type
1634 }
1635 }
1636
1637 // Track 'b.y.e'.
1638 getParentTracker().track(V, OriginField.getAsRegion(), Options);
1639 InitE = OriginEx;
1640 }
1641 }
1642 // This branch can occur in cases like `Ctor() : field{ x, y } {}'.
1643 else if (const auto *ILE = P->getStmtAs<InitListExpr>()) {
1644 // FIXME: Here we only track the top level region, so we lose
1645 // information, but it's still better than a crash or no information
1646 // at all.
1647 //
1648 // E.g.: The region we have is 's.s2.s3.s4.y' and we only track 'y', and
1649 // throw away the rest.
1650 InitE = tryExtractInitializerFromList(ILE, R);
1651 }
1652 }
1653
1654 // If this is a call entry, the variable should be a parameter.
1655 // FIXME: Handle CXXThisRegion as well. (This is not a priority because
1656 // 'this' should never be NULL, but this visitor isn't just for NULL and
1657 // UndefinedVal.)
1658 if (std::optional<CallEnter> CE = Succ->getLocationAs<CallEnter>()) {
1659 if (const auto *VR = dyn_cast<VarRegion>(R)) {
1660
1661 if (const auto *Param = dyn_cast<ParmVarDecl>(VR->getDecl())) {
1662 ProgramStateManager &StateMgr = BRC.getStateManager();
1663 CallEventManager &CallMgr = StateMgr.getCallEventManager();
1664
1665 CallEventRef<> Call = CallMgr.getCaller(CE->getCalleeContext(),
1666 Succ->getState());
1667 InitE = Call->getArgExpr(Param->getFunctionScopeIndex());
1668 } else {
1669 // Handle Objective-C 'self'.
1670 assert(isa<ImplicitParamDecl>(VR->getDecl()));
1671 InitE = cast<ObjCMessageExpr>(CE->getCalleeContext()->getCallSite())
1672 ->getInstanceReceiver()->IgnoreParenCasts();
1673 }
1674 IsParam = true;
1675 }
1676 }
1677
1678 // If this is a CXXTempObjectRegion, the Expr responsible for its creation
1679 // is wrapped inside of it.
1680 if (const auto *TmpR = dyn_cast<CXXTempObjectRegion>(R))
1681 InitE = TmpR->getExpr();
1682 }
1683
1684 if (!StoreSite)
1685 return nullptr;
1686
1687 Satisfied = true;
1688
1689 // If we have an expression that provided the value, try to track where it
1690 // came from.
1691 if (InitE) {
1692 if (!IsParam)
1693 InitE = InitE->IgnoreParenCasts();
1694
1695 getParentTracker().track(InitE, StoreSite, Options);
1696 }
1697
1698 // Let's try to find the region where the value came from.
1699 const MemRegion *OldRegion = nullptr;
1700
1701 // If we have init expression, it might be simply a reference
1702 // to a variable, so we can use it.
1703 if (InitE) {
1704 // That region might still be not exactly what we are looking for.
1705 // In situations like `int &ref = val;`, we can't say that
1706 // `ref` is initialized with `val`, rather refers to `val`.
1707 //
1708 // In order, to mitigate situations like this, we check if the last
1709 // stored value in that region is the value that we track.
1710 //
1711 // TODO: support other situations better.
1712 if (const MemRegion *Candidate =
1713 getLocationRegionIfReference(InitE, Succ, false)) {
1714 const StoreManager &SM = BRC.getStateManager().getStoreManager();
1715
1716 // Here we traverse the graph up to find the last node where the
1717 // candidate region is still in the store.
1718 for (const ExplodedNode *N = StoreSite; N; N = N->getFirstPred()) {
1719 if (SM.includedInBindings(N->getState()->getStore(), Candidate)) {
1720 // And if it was bound to the target value, we can use it.
1721 if (N->getState()->getSVal(Candidate) == V) {
1722 OldRegion = Candidate;
1723 }
1724 break;
1725 }
1726 }
1727 }
1728 }
1729
1730 // Otherwise, if the current region does indeed contain the value
1731 // we are looking for, we can look for a region where this value
1732 // was before.
1733 //
1734 // It can be useful for situations like:
1735 // new = identity(old)
1736 // where the analyzer knows that 'identity' returns the value of its
1737 // first argument.
1738 //
1739 // NOTE: If the region R is not a simple var region, it can contain
1740 // V in one of its subregions.
1741 if (!OldRegion && StoreSite->getState()->getSVal(R) == V) {
1742 // Let's go up the graph to find the node where the region is
1743 // bound to V.
1744 const ExplodedNode *NodeWithoutBinding = StoreSite->getFirstPred();
1745 for (;
1746 NodeWithoutBinding && NodeWithoutBinding->getState()->getSVal(R) == V;
1747 NodeWithoutBinding = NodeWithoutBinding->getFirstPred()) {
1748 }
1749
1750 if (NodeWithoutBinding) {
1751 // Let's try to find a unique binding for the value in that node.
1752 // We want to use this to find unique bindings because of the following
1753 // situations:
1754 // b = a;
1755 // c = identity(b);
1756 //
1757 // Telling the user that the value of 'a' is assigned to 'c', while
1758 // correct, can be confusing.
1759 StoreManager::FindUniqueBinding FB(V.getAsLocSymbol());
1760 BRC.getStateManager().iterBindings(NodeWithoutBinding->getState(), FB);
1761 if (FB)
1762 OldRegion = FB.getRegion();
1763 }
1764 }
1765
1766 if (Options.Kind == TrackingKind::Condition && OriginSFC &&
1767 !OriginSFC->isParentOf(StoreSite->getStackFrame()))
1768 return nullptr;
1769
1770 // Okay, we've found the binding. Emit an appropriate message.
1771 SmallString<256> sbuf;
1772 llvm::raw_svector_ostream os(sbuf);
1773
1774 StoreInfo SI = {StoreInfo::Assignment, // default kind
1775 StoreSite,
1776 InitE,
1777 V,
1778 R,
1779 OldRegion};
1780
1781 if (std::optional<PostStmt> PS = StoreSite->getLocationAs<PostStmt>()) {
1782 const Stmt *S = PS->getStmt();
1783 const auto *DS = dyn_cast<DeclStmt>(S);
1784 const auto *VR = dyn_cast<VarRegion>(R);
1785
1786 if (DS) {
1787 SI.StoreKind = StoreInfo::Initialization;
1788 } else if (isa<BlockExpr>(S)) {
1789 SI.StoreKind = StoreInfo::BlockCapture;
1790 if (VR) {
1791 // See if we can get the BlockVarRegion.
1792 ProgramStateRef State = StoreSite->getState();
1793 SVal V = StoreSite->getSVal(S);
1794 if (const auto *BDR =
1795 dyn_cast_or_null<BlockDataRegion>(V.getAsRegion())) {
1796 if (const VarRegion *OriginalR = BDR->getOriginalRegion(VR)) {
1797 getParentTracker().track(State->getSVal(OriginalR), OriginalR,
1798 Options, OriginSFC);
1799 }
1800 }
1801 }
1802 }
1803 } else if (SI.StoreSite->getLocation().getAs<CallEnter>() &&
1804 isa<VarRegion>(SI.Dest)) {
1805 SI.StoreKind = StoreInfo::CallArgument;
1806 }
1807
1808 return getParentTracker().handle(SI, BRC, Options);
1809 }
1810
1811 //===----------------------------------------------------------------------===//
1812 // Implementation of TrackConstraintBRVisitor.
1813 //===----------------------------------------------------------------------===//
1814
Profile(llvm::FoldingSetNodeID & ID) const1815 void TrackConstraintBRVisitor::Profile(llvm::FoldingSetNodeID &ID) const {
1816 static int tag = 0;
1817 ID.AddPointer(&tag);
1818 ID.AddString(Message);
1819 ID.AddBoolean(Assumption);
1820 ID.Add(Constraint);
1821 }
1822
1823 /// Return the tag associated with this visitor. This tag will be used
1824 /// to make all PathDiagnosticPieces created by this visitor.
getTag()1825 const char *TrackConstraintBRVisitor::getTag() {
1826 return "TrackConstraintBRVisitor";
1827 }
1828
isZeroCheck() const1829 bool TrackConstraintBRVisitor::isZeroCheck() const {
1830 return !Assumption && Constraint.getAs<Loc>();
1831 }
1832
isUnderconstrained(const ExplodedNode * N) const1833 bool TrackConstraintBRVisitor::isUnderconstrained(const ExplodedNode *N) const {
1834 if (isZeroCheck())
1835 return N->getState()->isNull(Constraint).isUnderconstrained();
1836 return (bool)N->getState()->assume(Constraint, !Assumption);
1837 }
1838
VisitNode(const ExplodedNode * N,BugReporterContext & BRC,PathSensitiveBugReport &)1839 PathDiagnosticPieceRef TrackConstraintBRVisitor::VisitNode(
1840 const ExplodedNode *N, BugReporterContext &BRC, PathSensitiveBugReport &) {
1841 const ExplodedNode *PrevN = N->getFirstPred();
1842 if (IsSatisfied)
1843 return nullptr;
1844
1845 // Start tracking after we see the first state in which the value is
1846 // constrained.
1847 if (!IsTrackingTurnedOn)
1848 if (!isUnderconstrained(N))
1849 IsTrackingTurnedOn = true;
1850 if (!IsTrackingTurnedOn)
1851 return nullptr;
1852
1853 // Check if in the previous state it was feasible for this constraint
1854 // to *not* be true.
1855 if (isUnderconstrained(PrevN)) {
1856 IsSatisfied = true;
1857
1858 // At this point, the negation of the constraint should be infeasible. If it
1859 // is feasible, make sure that the negation of the constrainti was
1860 // infeasible in the current state. If it is feasible, we somehow missed
1861 // the transition point.
1862 assert(!isUnderconstrained(N));
1863
1864 // Construct a new PathDiagnosticPiece.
1865 ProgramPoint P = N->getLocation();
1866
1867 // If this node already have a specialized note, it's probably better
1868 // than our generic note.
1869 // FIXME: This only looks for note tags, not for other ways to add a note.
1870 if (isa_and_nonnull<NoteTag>(P.getTag()))
1871 return nullptr;
1872
1873 PathDiagnosticLocation L =
1874 PathDiagnosticLocation::create(P, BRC.getSourceManager());
1875 if (!L.isValid())
1876 return nullptr;
1877
1878 auto X = std::make_shared<PathDiagnosticEventPiece>(L, Message);
1879 X->setTag(getTag());
1880 return std::move(X);
1881 }
1882
1883 return nullptr;
1884 }
1885
1886 //===----------------------------------------------------------------------===//
1887 // Implementation of SuppressInlineDefensiveChecksVisitor.
1888 //===----------------------------------------------------------------------===//
1889
1890 SuppressInlineDefensiveChecksVisitor::
SuppressInlineDefensiveChecksVisitor(DefinedSVal Value,const ExplodedNode * N)1891 SuppressInlineDefensiveChecksVisitor(DefinedSVal Value, const ExplodedNode *N)
1892 : V(Value) {
1893 // Check if the visitor is disabled.
1894 AnalyzerOptions &Options = N->getState()->getAnalysisManager().options;
1895 if (!Options.ShouldSuppressInlinedDefensiveChecks)
1896 IsSatisfied = true;
1897 }
1898
Profile(llvm::FoldingSetNodeID & ID) const1899 void SuppressInlineDefensiveChecksVisitor::Profile(
1900 llvm::FoldingSetNodeID &ID) const {
1901 static int id = 0;
1902 ID.AddPointer(&id);
1903 ID.Add(V);
1904 }
1905
getTag()1906 const char *SuppressInlineDefensiveChecksVisitor::getTag() {
1907 return "IDCVisitor";
1908 }
1909
1910 PathDiagnosticPieceRef
VisitNode(const ExplodedNode * Succ,BugReporterContext & BRC,PathSensitiveBugReport & BR)1911 SuppressInlineDefensiveChecksVisitor::VisitNode(const ExplodedNode *Succ,
1912 BugReporterContext &BRC,
1913 PathSensitiveBugReport &BR) {
1914 const ExplodedNode *Pred = Succ->getFirstPred();
1915 if (IsSatisfied)
1916 return nullptr;
1917
1918 // Start tracking after we see the first state in which the value is null.
1919 if (!IsTrackingTurnedOn)
1920 if (Succ->getState()->isNull(V).isConstrainedTrue())
1921 IsTrackingTurnedOn = true;
1922 if (!IsTrackingTurnedOn)
1923 return nullptr;
1924
1925 // Check if in the previous state it was feasible for this value
1926 // to *not* be null.
1927 if (!Pred->getState()->isNull(V).isConstrainedTrue() &&
1928 Succ->getState()->isNull(V).isConstrainedTrue()) {
1929 IsSatisfied = true;
1930
1931 // Check if this is inlined defensive checks.
1932 const LocationContext *CurLC = Succ->getLocationContext();
1933 const LocationContext *ReportLC = BR.getErrorNode()->getLocationContext();
1934 if (CurLC != ReportLC && !CurLC->isParentOf(ReportLC)) {
1935 BR.markInvalid("Suppress IDC", CurLC);
1936 return nullptr;
1937 }
1938
1939 // Treat defensive checks in function-like macros as if they were an inlined
1940 // defensive check. If the bug location is not in a macro and the
1941 // terminator for the current location is in a macro then suppress the
1942 // warning.
1943 auto BugPoint = BR.getErrorNode()->getLocation().getAs<StmtPoint>();
1944
1945 if (!BugPoint)
1946 return nullptr;
1947
1948 ProgramPoint CurPoint = Succ->getLocation();
1949 const Stmt *CurTerminatorStmt = nullptr;
1950 if (auto BE = CurPoint.getAs<BlockEdge>()) {
1951 CurTerminatorStmt = BE->getSrc()->getTerminator().getStmt();
1952 } else if (auto SP = CurPoint.getAs<StmtPoint>()) {
1953 const Stmt *CurStmt = SP->getStmt();
1954 if (!CurStmt->getBeginLoc().isMacroID())
1955 return nullptr;
1956
1957 CFGStmtMap *Map = CurLC->getAnalysisDeclContext()->getCFGStmtMap();
1958 CurTerminatorStmt = Map->getBlock(CurStmt)->getTerminatorStmt();
1959 } else {
1960 return nullptr;
1961 }
1962
1963 if (!CurTerminatorStmt)
1964 return nullptr;
1965
1966 SourceLocation TerminatorLoc = CurTerminatorStmt->getBeginLoc();
1967 if (TerminatorLoc.isMacroID()) {
1968 SourceLocation BugLoc = BugPoint->getStmt()->getBeginLoc();
1969
1970 // Suppress reports unless we are in that same macro.
1971 if (!BugLoc.isMacroID() ||
1972 getMacroName(BugLoc, BRC) != getMacroName(TerminatorLoc, BRC)) {
1973 BR.markInvalid("Suppress Macro IDC", CurLC);
1974 }
1975 return nullptr;
1976 }
1977 }
1978 return nullptr;
1979 }
1980
1981 //===----------------------------------------------------------------------===//
1982 // TrackControlDependencyCondBRVisitor.
1983 //===----------------------------------------------------------------------===//
1984
1985 namespace {
1986 /// Tracks the expressions that are a control dependency of the node that was
1987 /// supplied to the constructor.
1988 /// For example:
1989 ///
1990 /// cond = 1;
1991 /// if (cond)
1992 /// 10 / 0;
1993 ///
1994 /// An error is emitted at line 3. This visitor realizes that the branch
1995 /// on line 2 is a control dependency of line 3, and tracks it's condition via
1996 /// trackExpressionValue().
1997 class TrackControlDependencyCondBRVisitor final
1998 : public TrackingBugReporterVisitor {
1999 const ExplodedNode *Origin;
2000 ControlDependencyCalculator ControlDeps;
2001 llvm::SmallSet<const CFGBlock *, 32> VisitedBlocks;
2002
2003 public:
TrackControlDependencyCondBRVisitor(TrackerRef ParentTracker,const ExplodedNode * O)2004 TrackControlDependencyCondBRVisitor(TrackerRef ParentTracker,
2005 const ExplodedNode *O)
2006 : TrackingBugReporterVisitor(ParentTracker), Origin(O),
2007 ControlDeps(&O->getCFG()) {}
2008
Profile(llvm::FoldingSetNodeID & ID) const2009 void Profile(llvm::FoldingSetNodeID &ID) const override {
2010 static int x = 0;
2011 ID.AddPointer(&x);
2012 }
2013
2014 PathDiagnosticPieceRef VisitNode(const ExplodedNode *N,
2015 BugReporterContext &BRC,
2016 PathSensitiveBugReport &BR) override;
2017 };
2018 } // end of anonymous namespace
2019
2020 static std::shared_ptr<PathDiagnosticEventPiece>
constructDebugPieceForTrackedCondition(const Expr * Cond,const ExplodedNode * N,BugReporterContext & BRC)2021 constructDebugPieceForTrackedCondition(const Expr *Cond,
2022 const ExplodedNode *N,
2023 BugReporterContext &BRC) {
2024
2025 if (BRC.getAnalyzerOptions().AnalysisDiagOpt == PD_NONE ||
2026 !BRC.getAnalyzerOptions().ShouldTrackConditionsDebug)
2027 return nullptr;
2028
2029 std::string ConditionText = std::string(Lexer::getSourceText(
2030 CharSourceRange::getTokenRange(Cond->getSourceRange()),
2031 BRC.getSourceManager(), BRC.getASTContext().getLangOpts()));
2032
2033 return std::make_shared<PathDiagnosticEventPiece>(
2034 PathDiagnosticLocation::createBegin(
2035 Cond, BRC.getSourceManager(), N->getLocationContext()),
2036 (Twine() + "Tracking condition '" + ConditionText + "'").str());
2037 }
2038
isAssertlikeBlock(const CFGBlock * B,ASTContext & Context)2039 static bool isAssertlikeBlock(const CFGBlock *B, ASTContext &Context) {
2040 if (B->succ_size() != 2)
2041 return false;
2042
2043 const CFGBlock *Then = B->succ_begin()->getReachableBlock();
2044 const CFGBlock *Else = (B->succ_begin() + 1)->getReachableBlock();
2045
2046 if (!Then || !Else)
2047 return false;
2048
2049 if (Then->isInevitablySinking() != Else->isInevitablySinking())
2050 return true;
2051
2052 // For the following condition the following CFG would be built:
2053 //
2054 // ------------->
2055 // / \
2056 // [B1] -> [B2] -> [B3] -> [sink]
2057 // assert(A && B || C); \ \
2058 // -----------> [go on with the execution]
2059 //
2060 // It so happens that CFGBlock::getTerminatorCondition returns 'A' for block
2061 // B1, 'A && B' for B2, and 'A && B || C' for B3. Let's check whether we
2062 // reached the end of the condition!
2063 if (const Stmt *ElseCond = Else->getTerminatorCondition())
2064 if (const auto *BinOp = dyn_cast<BinaryOperator>(ElseCond))
2065 if (BinOp->isLogicalOp())
2066 return isAssertlikeBlock(Else, Context);
2067
2068 return false;
2069 }
2070
2071 PathDiagnosticPieceRef
VisitNode(const ExplodedNode * N,BugReporterContext & BRC,PathSensitiveBugReport & BR)2072 TrackControlDependencyCondBRVisitor::VisitNode(const ExplodedNode *N,
2073 BugReporterContext &BRC,
2074 PathSensitiveBugReport &BR) {
2075 // We can only reason about control dependencies within the same stack frame.
2076 if (Origin->getStackFrame() != N->getStackFrame())
2077 return nullptr;
2078
2079 CFGBlock *NB = const_cast<CFGBlock *>(N->getCFGBlock());
2080
2081 // Skip if we already inspected this block.
2082 if (!VisitedBlocks.insert(NB).second)
2083 return nullptr;
2084
2085 CFGBlock *OriginB = const_cast<CFGBlock *>(Origin->getCFGBlock());
2086
2087 // TODO: Cache CFGBlocks for each ExplodedNode.
2088 if (!OriginB || !NB)
2089 return nullptr;
2090
2091 if (isAssertlikeBlock(NB, BRC.getASTContext()))
2092 return nullptr;
2093
2094 if (ControlDeps.isControlDependent(OriginB, NB)) {
2095 // We don't really want to explain for range loops. Evidence suggests that
2096 // the only thing that leads to is the addition of calls to operator!=.
2097 if (llvm::isa_and_nonnull<CXXForRangeStmt>(NB->getTerminatorStmt()))
2098 return nullptr;
2099
2100 if (const Expr *Condition = NB->getLastCondition()) {
2101
2102 // If we can't retrieve a sensible condition, just bail out.
2103 const Expr *InnerExpr = peelOffOuterExpr(Condition, N);
2104 if (!InnerExpr)
2105 return nullptr;
2106
2107 // If the condition was a function call, we likely won't gain much from
2108 // tracking it either. Evidence suggests that it will mostly trigger in
2109 // scenarios like this:
2110 //
2111 // void f(int *x) {
2112 // x = nullptr;
2113 // if (alwaysTrue()) // We don't need a whole lot of explanation
2114 // // here, the function name is good enough.
2115 // *x = 5;
2116 // }
2117 //
2118 // Its easy to create a counterexample where this heuristic would make us
2119 // lose valuable information, but we've never really seen one in practice.
2120 if (isa<CallExpr>(InnerExpr))
2121 return nullptr;
2122
2123 // Keeping track of the already tracked conditions on a visitor level
2124 // isn't sufficient, because a new visitor is created for each tracked
2125 // expression, hence the BugReport level set.
2126 if (BR.addTrackedCondition(N)) {
2127 getParentTracker().track(InnerExpr, N,
2128 {bugreporter::TrackingKind::Condition,
2129 /*EnableNullFPSuppression=*/false});
2130 return constructDebugPieceForTrackedCondition(Condition, N, BRC);
2131 }
2132 }
2133 }
2134
2135 return nullptr;
2136 }
2137
2138 //===----------------------------------------------------------------------===//
2139 // Implementation of trackExpressionValue.
2140 //===----------------------------------------------------------------------===//
2141
peelOffOuterExpr(const Expr * Ex,const ExplodedNode * N)2142 static const Expr *peelOffOuterExpr(const Expr *Ex, const ExplodedNode *N) {
2143
2144 Ex = Ex->IgnoreParenCasts();
2145 if (const auto *FE = dyn_cast<FullExpr>(Ex))
2146 return peelOffOuterExpr(FE->getSubExpr(), N);
2147 if (const auto *OVE = dyn_cast<OpaqueValueExpr>(Ex))
2148 return peelOffOuterExpr(OVE->getSourceExpr(), N);
2149 if (const auto *POE = dyn_cast<PseudoObjectExpr>(Ex)) {
2150 const auto *PropRef = dyn_cast<ObjCPropertyRefExpr>(POE->getSyntacticForm());
2151 if (PropRef && PropRef->isMessagingGetter()) {
2152 const Expr *GetterMessageSend =
2153 POE->getSemanticExpr(POE->getNumSemanticExprs() - 1);
2154 assert(isa<ObjCMessageExpr>(GetterMessageSend->IgnoreParenCasts()));
2155 return peelOffOuterExpr(GetterMessageSend, N);
2156 }
2157 }
2158
2159 // Peel off the ternary operator.
2160 if (const auto *CO = dyn_cast<ConditionalOperator>(Ex)) {
2161 // Find a node where the branching occurred and find out which branch
2162 // we took (true/false) by looking at the ExplodedGraph.
2163 const ExplodedNode *NI = N;
2164 do {
2165 ProgramPoint ProgPoint = NI->getLocation();
2166 if (std::optional<BlockEdge> BE = ProgPoint.getAs<BlockEdge>()) {
2167 const CFGBlock *srcBlk = BE->getSrc();
2168 if (const Stmt *term = srcBlk->getTerminatorStmt()) {
2169 if (term == CO) {
2170 bool TookTrueBranch = (*(srcBlk->succ_begin()) == BE->getDst());
2171 if (TookTrueBranch)
2172 return peelOffOuterExpr(CO->getTrueExpr(), N);
2173 else
2174 return peelOffOuterExpr(CO->getFalseExpr(), N);
2175 }
2176 }
2177 }
2178 NI = NI->getFirstPred();
2179 } while (NI);
2180 }
2181
2182 if (auto *BO = dyn_cast<BinaryOperator>(Ex))
2183 if (const Expr *SubEx = peelOffPointerArithmetic(BO))
2184 return peelOffOuterExpr(SubEx, N);
2185
2186 if (auto *UO = dyn_cast<UnaryOperator>(Ex)) {
2187 if (UO->getOpcode() == UO_LNot)
2188 return peelOffOuterExpr(UO->getSubExpr(), N);
2189
2190 // FIXME: There's a hack in our Store implementation that always computes
2191 // field offsets around null pointers as if they are always equal to 0.
2192 // The idea here is to report accesses to fields as null dereferences
2193 // even though the pointer value that's being dereferenced is actually
2194 // the offset of the field rather than exactly 0.
2195 // See the FIXME in StoreManager's getLValueFieldOrIvar() method.
2196 // This code interacts heavily with this hack; otherwise the value
2197 // would not be null at all for most fields, so we'd be unable to track it.
2198 if (UO->getOpcode() == UO_AddrOf && UO->getSubExpr()->isLValue())
2199 if (const Expr *DerefEx = bugreporter::getDerefExpr(UO->getSubExpr()))
2200 return peelOffOuterExpr(DerefEx, N);
2201 }
2202
2203 return Ex;
2204 }
2205
2206 /// Find the ExplodedNode where the lvalue (the value of 'Ex')
2207 /// was computed.
findNodeForExpression(const ExplodedNode * N,const Expr * Inner)2208 static const ExplodedNode* findNodeForExpression(const ExplodedNode *N,
2209 const Expr *Inner) {
2210 while (N) {
2211 if (N->getStmtForDiagnostics() == Inner)
2212 return N;
2213 N = N->getFirstPred();
2214 }
2215 return N;
2216 }
2217
2218 //===----------------------------------------------------------------------===//
2219 // Tracker implementation
2220 //===----------------------------------------------------------------------===//
2221
constructNote(StoreInfo SI,BugReporterContext & BRC,StringRef NodeText)2222 PathDiagnosticPieceRef StoreHandler::constructNote(StoreInfo SI,
2223 BugReporterContext &BRC,
2224 StringRef NodeText) {
2225 // Construct a new PathDiagnosticPiece.
2226 ProgramPoint P = SI.StoreSite->getLocation();
2227 PathDiagnosticLocation L;
2228 if (P.getAs<CallEnter>() && SI.SourceOfTheValue)
2229 L = PathDiagnosticLocation(SI.SourceOfTheValue, BRC.getSourceManager(),
2230 P.getLocationContext());
2231
2232 if (!L.isValid() || !L.asLocation().isValid())
2233 L = PathDiagnosticLocation::create(P, BRC.getSourceManager());
2234
2235 if (!L.isValid() || !L.asLocation().isValid())
2236 return nullptr;
2237
2238 return std::make_shared<PathDiagnosticEventPiece>(L, NodeText);
2239 }
2240
2241 namespace {
2242 class DefaultStoreHandler final : public StoreHandler {
2243 public:
2244 using StoreHandler::StoreHandler;
2245
handle(StoreInfo SI,BugReporterContext & BRC,TrackingOptions Opts)2246 PathDiagnosticPieceRef handle(StoreInfo SI, BugReporterContext &BRC,
2247 TrackingOptions Opts) override {
2248 // Okay, we've found the binding. Emit an appropriate message.
2249 SmallString<256> Buffer;
2250 llvm::raw_svector_ostream OS(Buffer);
2251
2252 switch (SI.StoreKind) {
2253 case StoreInfo::Initialization:
2254 case StoreInfo::BlockCapture:
2255 showBRDiagnostics(OS, SI);
2256 break;
2257 case StoreInfo::CallArgument:
2258 showBRParamDiagnostics(OS, SI);
2259 break;
2260 case StoreInfo::Assignment:
2261 showBRDefaultDiagnostics(OS, SI);
2262 break;
2263 }
2264
2265 if (Opts.Kind == bugreporter::TrackingKind::Condition)
2266 OS << WillBeUsedForACondition;
2267
2268 return constructNote(SI, BRC, OS.str());
2269 }
2270 };
2271
2272 class ControlDependencyHandler final : public ExpressionHandler {
2273 public:
2274 using ExpressionHandler::ExpressionHandler;
2275
handle(const Expr * Inner,const ExplodedNode * InputNode,const ExplodedNode * LVNode,TrackingOptions Opts)2276 Tracker::Result handle(const Expr *Inner, const ExplodedNode *InputNode,
2277 const ExplodedNode *LVNode,
2278 TrackingOptions Opts) override {
2279 PathSensitiveBugReport &Report = getParentTracker().getReport();
2280
2281 // We only track expressions if we believe that they are important. Chances
2282 // are good that control dependencies to the tracking point are also
2283 // important because of this, let's explain why we believe control reached
2284 // this point.
2285 // TODO: Shouldn't we track control dependencies of every bug location,
2286 // rather than only tracked expressions?
2287 if (LVNode->getState()
2288 ->getAnalysisManager()
2289 .getAnalyzerOptions()
2290 .ShouldTrackConditions) {
2291 Report.addVisitor<TrackControlDependencyCondBRVisitor>(
2292 &getParentTracker(), InputNode);
2293 return {/*FoundSomethingToTrack=*/true};
2294 }
2295
2296 return {};
2297 }
2298 };
2299
2300 class NilReceiverHandler final : public ExpressionHandler {
2301 public:
2302 using ExpressionHandler::ExpressionHandler;
2303
handle(const Expr * Inner,const ExplodedNode * InputNode,const ExplodedNode * LVNode,TrackingOptions Opts)2304 Tracker::Result handle(const Expr *Inner, const ExplodedNode *InputNode,
2305 const ExplodedNode *LVNode,
2306 TrackingOptions Opts) override {
2307 // The message send could be nil due to the receiver being nil.
2308 // At this point in the path, the receiver should be live since we are at
2309 // the message send expr. If it is nil, start tracking it.
2310 if (const Expr *Receiver =
2311 NilReceiverBRVisitor::getNilReceiver(Inner, LVNode))
2312 return getParentTracker().track(Receiver, LVNode, Opts);
2313
2314 return {};
2315 }
2316 };
2317
2318 class ArrayIndexHandler final : public ExpressionHandler {
2319 public:
2320 using ExpressionHandler::ExpressionHandler;
2321
handle(const Expr * Inner,const ExplodedNode * InputNode,const ExplodedNode * LVNode,TrackingOptions Opts)2322 Tracker::Result handle(const Expr *Inner, const ExplodedNode *InputNode,
2323 const ExplodedNode *LVNode,
2324 TrackingOptions Opts) override {
2325 // Track the index if this is an array subscript.
2326 if (const auto *Arr = dyn_cast<ArraySubscriptExpr>(Inner))
2327 return getParentTracker().track(
2328 Arr->getIdx(), LVNode,
2329 {Opts.Kind, /*EnableNullFPSuppression*/ false});
2330
2331 return {};
2332 }
2333 };
2334
2335 // TODO: extract it into more handlers
2336 class InterestingLValueHandler final : public ExpressionHandler {
2337 public:
2338 using ExpressionHandler::ExpressionHandler;
2339
handle(const Expr * Inner,const ExplodedNode * InputNode,const ExplodedNode * LVNode,TrackingOptions Opts)2340 Tracker::Result handle(const Expr *Inner, const ExplodedNode *InputNode,
2341 const ExplodedNode *LVNode,
2342 TrackingOptions Opts) override {
2343 ProgramStateRef LVState = LVNode->getState();
2344 const StackFrameContext *SFC = LVNode->getStackFrame();
2345 PathSensitiveBugReport &Report = getParentTracker().getReport();
2346 Tracker::Result Result;
2347
2348 // See if the expression we're interested refers to a variable.
2349 // If so, we can track both its contents and constraints on its value.
2350 if (ExplodedGraph::isInterestingLValueExpr(Inner)) {
2351 SVal LVal = LVNode->getSVal(Inner);
2352
2353 const MemRegion *RR = getLocationRegionIfReference(Inner, LVNode);
2354 bool LVIsNull = LVState->isNull(LVal).isConstrainedTrue();
2355
2356 // If this is a C++ reference to a null pointer, we are tracking the
2357 // pointer. In addition, we should find the store at which the reference
2358 // got initialized.
2359 if (RR && !LVIsNull)
2360 Result.combineWith(getParentTracker().track(LVal, RR, Opts, SFC));
2361
2362 // In case of C++ references, we want to differentiate between a null
2363 // reference and reference to null pointer.
2364 // If the LVal is null, check if we are dealing with null reference.
2365 // For those, we want to track the location of the reference.
2366 const MemRegion *R =
2367 (RR && LVIsNull) ? RR : LVNode->getSVal(Inner).getAsRegion();
2368
2369 if (R) {
2370
2371 // Mark both the variable region and its contents as interesting.
2372 SVal V = LVState->getRawSVal(loc::MemRegionVal(R));
2373 Report.addVisitor<NoStoreFuncVisitor>(cast<SubRegion>(R), Opts.Kind);
2374
2375 // When we got here, we do have something to track, and we will
2376 // interrupt.
2377 Result.FoundSomethingToTrack = true;
2378 Result.WasInterrupted = true;
2379
2380 MacroNullReturnSuppressionVisitor::addMacroVisitorIfNecessary(
2381 LVNode, R, Opts.EnableNullFPSuppression, Report, V);
2382
2383 Report.markInteresting(V, Opts.Kind);
2384 Report.addVisitor<UndefOrNullArgVisitor>(R);
2385
2386 // If the contents are symbolic and null, find out when they became
2387 // null.
2388 if (V.getAsLocSymbol(/*IncludeBaseRegions=*/true))
2389 if (LVState->isNull(V).isConstrainedTrue())
2390 Report.addVisitor<TrackConstraintBRVisitor>(
2391 V.castAs<DefinedSVal>(),
2392 /*Assumption=*/false, "Assuming pointer value is null");
2393
2394 // Add visitor, which will suppress inline defensive checks.
2395 if (auto DV = V.getAs<DefinedSVal>())
2396 if (!DV->isZeroConstant() && Opts.EnableNullFPSuppression)
2397 // Note that LVNode may be too late (i.e., too far from the
2398 // InputNode) because the lvalue may have been computed before the
2399 // inlined call was evaluated. InputNode may as well be too early
2400 // here, because the symbol is already dead; this, however, is fine
2401 // because we can still find the node in which it collapsed to null
2402 // previously.
2403 Report.addVisitor<SuppressInlineDefensiveChecksVisitor>(*DV,
2404 InputNode);
2405 getParentTracker().track(V, R, Opts, SFC);
2406 }
2407 }
2408
2409 return Result;
2410 }
2411 };
2412
2413 /// Adds a ReturnVisitor if the given statement represents a call that was
2414 /// inlined.
2415 ///
2416 /// This will search back through the ExplodedGraph, starting from the given
2417 /// node, looking for when the given statement was processed. If it turns out
2418 /// the statement is a call that was inlined, we add the visitor to the
2419 /// bug report, so it can print a note later.
2420 class InlinedFunctionCallHandler final : public ExpressionHandler {
2421 using ExpressionHandler::ExpressionHandler;
2422
handle(const Expr * E,const ExplodedNode * InputNode,const ExplodedNode * ExprNode,TrackingOptions Opts)2423 Tracker::Result handle(const Expr *E, const ExplodedNode *InputNode,
2424 const ExplodedNode *ExprNode,
2425 TrackingOptions Opts) override {
2426 if (!CallEvent::isCallStmt(E))
2427 return {};
2428
2429 // First, find when we processed the statement.
2430 // If we work with a 'CXXNewExpr' that is going to be purged away before
2431 // its call take place. We would catch that purge in the last condition
2432 // as a 'StmtPoint' so we have to bypass it.
2433 const bool BypassCXXNewExprEval = isa<CXXNewExpr>(E);
2434
2435 // This is moving forward when we enter into another context.
2436 const StackFrameContext *CurrentSFC = ExprNode->getStackFrame();
2437
2438 do {
2439 // If that is satisfied we found our statement as an inlined call.
2440 if (std::optional<CallExitEnd> CEE =
2441 ExprNode->getLocationAs<CallExitEnd>())
2442 if (CEE->getCalleeContext()->getCallSite() == E)
2443 break;
2444
2445 // Try to move forward to the end of the call-chain.
2446 ExprNode = ExprNode->getFirstPred();
2447 if (!ExprNode)
2448 break;
2449
2450 const StackFrameContext *PredSFC = ExprNode->getStackFrame();
2451
2452 // If that is satisfied we found our statement.
2453 // FIXME: This code currently bypasses the call site for the
2454 // conservatively evaluated allocator.
2455 if (!BypassCXXNewExprEval)
2456 if (std::optional<StmtPoint> SP = ExprNode->getLocationAs<StmtPoint>())
2457 // See if we do not enter into another context.
2458 if (SP->getStmt() == E && CurrentSFC == PredSFC)
2459 break;
2460
2461 CurrentSFC = PredSFC;
2462 } while (ExprNode->getStackFrame() == CurrentSFC);
2463
2464 // Next, step over any post-statement checks.
2465 while (ExprNode && ExprNode->getLocation().getAs<PostStmt>())
2466 ExprNode = ExprNode->getFirstPred();
2467 if (!ExprNode)
2468 return {};
2469
2470 // Finally, see if we inlined the call.
2471 std::optional<CallExitEnd> CEE = ExprNode->getLocationAs<CallExitEnd>();
2472 if (!CEE)
2473 return {};
2474
2475 const StackFrameContext *CalleeContext = CEE->getCalleeContext();
2476 if (CalleeContext->getCallSite() != E)
2477 return {};
2478
2479 // Check the return value.
2480 ProgramStateRef State = ExprNode->getState();
2481 SVal RetVal = ExprNode->getSVal(E);
2482
2483 // Handle cases where a reference is returned and then immediately used.
2484 if (cast<Expr>(E)->isGLValue())
2485 if (std::optional<Loc> LValue = RetVal.getAs<Loc>())
2486 RetVal = State->getSVal(*LValue);
2487
2488 // See if the return value is NULL. If so, suppress the report.
2489 AnalyzerOptions &Options = State->getAnalysisManager().options;
2490
2491 bool EnableNullFPSuppression = false;
2492 if (Opts.EnableNullFPSuppression && Options.ShouldSuppressNullReturnPaths)
2493 if (std::optional<Loc> RetLoc = RetVal.getAs<Loc>())
2494 EnableNullFPSuppression = State->isNull(*RetLoc).isConstrainedTrue();
2495
2496 PathSensitiveBugReport &Report = getParentTracker().getReport();
2497 Report.addVisitor<ReturnVisitor>(&getParentTracker(), CalleeContext,
2498 EnableNullFPSuppression, Options,
2499 Opts.Kind);
2500 return {true};
2501 }
2502 };
2503
2504 class DefaultExpressionHandler final : public ExpressionHandler {
2505 public:
2506 using ExpressionHandler::ExpressionHandler;
2507
handle(const Expr * Inner,const ExplodedNode * InputNode,const ExplodedNode * LVNode,TrackingOptions Opts)2508 Tracker::Result handle(const Expr *Inner, const ExplodedNode *InputNode,
2509 const ExplodedNode *LVNode,
2510 TrackingOptions Opts) override {
2511 ProgramStateRef LVState = LVNode->getState();
2512 const StackFrameContext *SFC = LVNode->getStackFrame();
2513 PathSensitiveBugReport &Report = getParentTracker().getReport();
2514 Tracker::Result Result;
2515
2516 // If the expression is not an "lvalue expression", we can still
2517 // track the constraints on its contents.
2518 SVal V = LVState->getSValAsScalarOrLoc(Inner, LVNode->getLocationContext());
2519
2520 // Is it a symbolic value?
2521 if (auto L = V.getAs<loc::MemRegionVal>()) {
2522 // FIXME: this is a hack for fixing a later crash when attempting to
2523 // dereference a void* pointer.
2524 // We should not try to dereference pointers at all when we don't care
2525 // what is written inside the pointer.
2526 bool CanDereference = true;
2527 if (const auto *SR = L->getRegionAs<SymbolicRegion>()) {
2528 if (SR->getPointeeStaticType()->isVoidType())
2529 CanDereference = false;
2530 } else if (L->getRegionAs<AllocaRegion>())
2531 CanDereference = false;
2532
2533 // At this point we are dealing with the region's LValue.
2534 // However, if the rvalue is a symbolic region, we should track it as
2535 // well. Try to use the correct type when looking up the value.
2536 SVal RVal;
2537 if (ExplodedGraph::isInterestingLValueExpr(Inner))
2538 RVal = LVState->getRawSVal(*L, Inner->getType());
2539 else if (CanDereference)
2540 RVal = LVState->getSVal(L->getRegion());
2541
2542 if (CanDereference) {
2543 Report.addVisitor<UndefOrNullArgVisitor>(L->getRegion());
2544 Result.FoundSomethingToTrack = true;
2545
2546 if (!RVal.isUnknown())
2547 Result.combineWith(
2548 getParentTracker().track(RVal, L->getRegion(), Opts, SFC));
2549 }
2550
2551 const MemRegion *RegionRVal = RVal.getAsRegion();
2552 if (isa_and_nonnull<SymbolicRegion>(RegionRVal)) {
2553 Report.markInteresting(RegionRVal, Opts.Kind);
2554 Report.addVisitor<TrackConstraintBRVisitor>(
2555 loc::MemRegionVal(RegionRVal),
2556 /*Assumption=*/false, "Assuming pointer value is null");
2557 Result.FoundSomethingToTrack = true;
2558 }
2559 }
2560
2561 return Result;
2562 }
2563 };
2564
2565 /// Attempts to add visitors to track an RValue expression back to its point of
2566 /// origin.
2567 class PRValueHandler final : public ExpressionHandler {
2568 public:
2569 using ExpressionHandler::ExpressionHandler;
2570
handle(const Expr * E,const ExplodedNode * InputNode,const ExplodedNode * ExprNode,TrackingOptions Opts)2571 Tracker::Result handle(const Expr *E, const ExplodedNode *InputNode,
2572 const ExplodedNode *ExprNode,
2573 TrackingOptions Opts) override {
2574 if (!E->isPRValue())
2575 return {};
2576
2577 const ExplodedNode *RVNode = findNodeForExpression(ExprNode, E);
2578 if (!RVNode)
2579 return {};
2580
2581 Tracker::Result CombinedResult;
2582 Tracker &Parent = getParentTracker();
2583
2584 const auto track = [&CombinedResult, &Parent, ExprNode,
2585 Opts](const Expr *Inner) {
2586 CombinedResult.combineWith(Parent.track(Inner, ExprNode, Opts));
2587 };
2588
2589 // FIXME: Initializer lists can appear in many different contexts
2590 // and most of them needs a special handling. For now let's handle
2591 // what we can. If the initializer list only has 1 element, we track
2592 // that.
2593 // This snippet even handles nesting, e.g.: int *x{{{{{y}}}}};
2594 if (const auto *ILE = dyn_cast<InitListExpr>(E)) {
2595 if (ILE->getNumInits() == 1) {
2596 track(ILE->getInit(0));
2597
2598 return CombinedResult;
2599 }
2600
2601 return {};
2602 }
2603
2604 ProgramStateRef RVState = RVNode->getState();
2605 SVal V = RVState->getSValAsScalarOrLoc(E, RVNode->getLocationContext());
2606 const auto *BO = dyn_cast<BinaryOperator>(E);
2607
2608 if (!BO || !BO->isMultiplicativeOp() || !V.isZeroConstant())
2609 return {};
2610
2611 SVal RHSV = RVState->getSVal(BO->getRHS(), RVNode->getLocationContext());
2612 SVal LHSV = RVState->getSVal(BO->getLHS(), RVNode->getLocationContext());
2613
2614 // Track both LHS and RHS of a multiplication.
2615 if (BO->getOpcode() == BO_Mul) {
2616 if (LHSV.isZeroConstant())
2617 track(BO->getLHS());
2618 if (RHSV.isZeroConstant())
2619 track(BO->getRHS());
2620 } else { // Track only the LHS of a division or a modulo.
2621 if (LHSV.isZeroConstant())
2622 track(BO->getLHS());
2623 }
2624
2625 return CombinedResult;
2626 }
2627 };
2628 } // namespace
2629
Tracker(PathSensitiveBugReport & Report)2630 Tracker::Tracker(PathSensitiveBugReport &Report) : Report(Report) {
2631 // Default expression handlers.
2632 addLowPriorityHandler<ControlDependencyHandler>();
2633 addLowPriorityHandler<NilReceiverHandler>();
2634 addLowPriorityHandler<ArrayIndexHandler>();
2635 addLowPriorityHandler<InterestingLValueHandler>();
2636 addLowPriorityHandler<InlinedFunctionCallHandler>();
2637 addLowPriorityHandler<DefaultExpressionHandler>();
2638 addLowPriorityHandler<PRValueHandler>();
2639 // Default store handlers.
2640 addHighPriorityHandler<DefaultStoreHandler>();
2641 }
2642
track(const Expr * E,const ExplodedNode * N,TrackingOptions Opts)2643 Tracker::Result Tracker::track(const Expr *E, const ExplodedNode *N,
2644 TrackingOptions Opts) {
2645 if (!E || !N)
2646 return {};
2647
2648 const Expr *Inner = peelOffOuterExpr(E, N);
2649 const ExplodedNode *LVNode = findNodeForExpression(N, Inner);
2650 if (!LVNode)
2651 return {};
2652
2653 Result CombinedResult;
2654 // Iterate through the handlers in the order according to their priorities.
2655 for (ExpressionHandlerPtr &Handler : ExpressionHandlers) {
2656 CombinedResult.combineWith(Handler->handle(Inner, N, LVNode, Opts));
2657 if (CombinedResult.WasInterrupted) {
2658 // There is no need to confuse our users here.
2659 // We got interrupted, but our users don't need to know about it.
2660 CombinedResult.WasInterrupted = false;
2661 break;
2662 }
2663 }
2664
2665 return CombinedResult;
2666 }
2667
track(SVal V,const MemRegion * R,TrackingOptions Opts,const StackFrameContext * Origin)2668 Tracker::Result Tracker::track(SVal V, const MemRegion *R, TrackingOptions Opts,
2669 const StackFrameContext *Origin) {
2670 if (!V.isUnknown()) {
2671 Report.addVisitor<StoreSiteFinder>(this, V, R, Opts, Origin);
2672 return {true};
2673 }
2674 return {};
2675 }
2676
handle(StoreInfo SI,BugReporterContext & BRC,TrackingOptions Opts)2677 PathDiagnosticPieceRef Tracker::handle(StoreInfo SI, BugReporterContext &BRC,
2678 TrackingOptions Opts) {
2679 // Iterate through the handlers in the order according to their priorities.
2680 for (StoreHandlerPtr &Handler : StoreHandlers) {
2681 if (PathDiagnosticPieceRef Result = Handler->handle(SI, BRC, Opts))
2682 // If the handler produced a non-null piece, return it.
2683 // There is no need in asking other handlers.
2684 return Result;
2685 }
2686 return {};
2687 }
2688
trackExpressionValue(const ExplodedNode * InputNode,const Expr * E,PathSensitiveBugReport & Report,TrackingOptions Opts)2689 bool bugreporter::trackExpressionValue(const ExplodedNode *InputNode,
2690 const Expr *E,
2691
2692 PathSensitiveBugReport &Report,
2693 TrackingOptions Opts) {
2694 return Tracker::create(Report)
2695 ->track(E, InputNode, Opts)
2696 .FoundSomethingToTrack;
2697 }
2698
trackStoredValue(SVal V,const MemRegion * R,PathSensitiveBugReport & Report,TrackingOptions Opts,const StackFrameContext * Origin)2699 void bugreporter::trackStoredValue(SVal V, const MemRegion *R,
2700 PathSensitiveBugReport &Report,
2701 TrackingOptions Opts,
2702 const StackFrameContext *Origin) {
2703 Tracker::create(Report)->track(V, R, Opts, Origin);
2704 }
2705
2706 //===----------------------------------------------------------------------===//
2707 // Implementation of NulReceiverBRVisitor.
2708 //===----------------------------------------------------------------------===//
2709
getNilReceiver(const Stmt * S,const ExplodedNode * N)2710 const Expr *NilReceiverBRVisitor::getNilReceiver(const Stmt *S,
2711 const ExplodedNode *N) {
2712 const auto *ME = dyn_cast<ObjCMessageExpr>(S);
2713 if (!ME)
2714 return nullptr;
2715 if (const Expr *Receiver = ME->getInstanceReceiver()) {
2716 ProgramStateRef state = N->getState();
2717 SVal V = N->getSVal(Receiver);
2718 if (state->isNull(V).isConstrainedTrue())
2719 return Receiver;
2720 }
2721 return nullptr;
2722 }
2723
2724 PathDiagnosticPieceRef
VisitNode(const ExplodedNode * N,BugReporterContext & BRC,PathSensitiveBugReport & BR)2725 NilReceiverBRVisitor::VisitNode(const ExplodedNode *N, BugReporterContext &BRC,
2726 PathSensitiveBugReport &BR) {
2727 std::optional<PreStmt> P = N->getLocationAs<PreStmt>();
2728 if (!P)
2729 return nullptr;
2730
2731 const Stmt *S = P->getStmt();
2732 const Expr *Receiver = getNilReceiver(S, N);
2733 if (!Receiver)
2734 return nullptr;
2735
2736 llvm::SmallString<256> Buf;
2737 llvm::raw_svector_ostream OS(Buf);
2738
2739 if (const auto *ME = dyn_cast<ObjCMessageExpr>(S)) {
2740 OS << "'";
2741 ME->getSelector().print(OS);
2742 OS << "' not called";
2743 }
2744 else {
2745 OS << "No method is called";
2746 }
2747 OS << " because the receiver is nil";
2748
2749 // The receiver was nil, and hence the method was skipped.
2750 // Register a BugReporterVisitor to issue a message telling us how
2751 // the receiver was null.
2752 bugreporter::trackExpressionValue(N, Receiver, BR,
2753 {bugreporter::TrackingKind::Thorough,
2754 /*EnableNullFPSuppression*/ false});
2755 // Issue a message saying that the method was skipped.
2756 PathDiagnosticLocation L(Receiver, BRC.getSourceManager(),
2757 N->getLocationContext());
2758 return std::make_shared<PathDiagnosticEventPiece>(L, OS.str());
2759 }
2760
2761 //===----------------------------------------------------------------------===//
2762 // Visitor that tries to report interesting diagnostics from conditions.
2763 //===----------------------------------------------------------------------===//
2764
2765 /// Return the tag associated with this visitor. This tag will be used
2766 /// to make all PathDiagnosticPieces created by this visitor.
getTag()2767 const char *ConditionBRVisitor::getTag() { return "ConditionBRVisitor"; }
2768
2769 PathDiagnosticPieceRef
VisitNode(const ExplodedNode * N,BugReporterContext & BRC,PathSensitiveBugReport & BR)2770 ConditionBRVisitor::VisitNode(const ExplodedNode *N, BugReporterContext &BRC,
2771 PathSensitiveBugReport &BR) {
2772 auto piece = VisitNodeImpl(N, BRC, BR);
2773 if (piece) {
2774 piece->setTag(getTag());
2775 if (auto *ev = dyn_cast<PathDiagnosticEventPiece>(piece.get()))
2776 ev->setPrunable(true, /* override */ false);
2777 }
2778 return piece;
2779 }
2780
2781 PathDiagnosticPieceRef
VisitNodeImpl(const ExplodedNode * N,BugReporterContext & BRC,PathSensitiveBugReport & BR)2782 ConditionBRVisitor::VisitNodeImpl(const ExplodedNode *N,
2783 BugReporterContext &BRC,
2784 PathSensitiveBugReport &BR) {
2785 ProgramPoint ProgPoint = N->getLocation();
2786 const std::pair<const ProgramPointTag *, const ProgramPointTag *> &Tags =
2787 ExprEngine::geteagerlyAssumeBinOpBifurcationTags();
2788
2789 // If an assumption was made on a branch, it should be caught
2790 // here by looking at the state transition.
2791 if (std::optional<BlockEdge> BE = ProgPoint.getAs<BlockEdge>()) {
2792 const CFGBlock *SrcBlock = BE->getSrc();
2793 if (const Stmt *Term = SrcBlock->getTerminatorStmt()) {
2794 // If the tag of the previous node is 'Eagerly Assume...' the current
2795 // 'BlockEdge' has the same constraint information. We do not want to
2796 // report the value as it is just an assumption on the predecessor node
2797 // which will be caught in the next VisitNode() iteration as a 'PostStmt'.
2798 const ProgramPointTag *PreviousNodeTag =
2799 N->getFirstPred()->getLocation().getTag();
2800 if (PreviousNodeTag == Tags.first || PreviousNodeTag == Tags.second)
2801 return nullptr;
2802
2803 return VisitTerminator(Term, N, SrcBlock, BE->getDst(), BR, BRC);
2804 }
2805 return nullptr;
2806 }
2807
2808 if (std::optional<PostStmt> PS = ProgPoint.getAs<PostStmt>()) {
2809 const ProgramPointTag *CurrentNodeTag = PS->getTag();
2810 if (CurrentNodeTag != Tags.first && CurrentNodeTag != Tags.second)
2811 return nullptr;
2812
2813 bool TookTrue = CurrentNodeTag == Tags.first;
2814 return VisitTrueTest(cast<Expr>(PS->getStmt()), BRC, BR, N, TookTrue);
2815 }
2816
2817 return nullptr;
2818 }
2819
VisitTerminator(const Stmt * Term,const ExplodedNode * N,const CFGBlock * srcBlk,const CFGBlock * dstBlk,PathSensitiveBugReport & R,BugReporterContext & BRC)2820 PathDiagnosticPieceRef ConditionBRVisitor::VisitTerminator(
2821 const Stmt *Term, const ExplodedNode *N, const CFGBlock *srcBlk,
2822 const CFGBlock *dstBlk, PathSensitiveBugReport &R,
2823 BugReporterContext &BRC) {
2824 const Expr *Cond = nullptr;
2825
2826 // In the code below, Term is a CFG terminator and Cond is a branch condition
2827 // expression upon which the decision is made on this terminator.
2828 //
2829 // For example, in "if (x == 0)", the "if (x == 0)" statement is a terminator,
2830 // and "x == 0" is the respective condition.
2831 //
2832 // Another example: in "if (x && y)", we've got two terminators and two
2833 // conditions due to short-circuit nature of operator "&&":
2834 // 1. The "if (x && y)" statement is a terminator,
2835 // and "y" is the respective condition.
2836 // 2. Also "x && ..." is another terminator,
2837 // and "x" is its condition.
2838
2839 switch (Term->getStmtClass()) {
2840 // FIXME: Stmt::SwitchStmtClass is worth handling, however it is a bit
2841 // more tricky because there are more than two branches to account for.
2842 default:
2843 return nullptr;
2844 case Stmt::IfStmtClass:
2845 Cond = cast<IfStmt>(Term)->getCond();
2846 break;
2847 case Stmt::ConditionalOperatorClass:
2848 Cond = cast<ConditionalOperator>(Term)->getCond();
2849 break;
2850 case Stmt::BinaryOperatorClass:
2851 // When we encounter a logical operator (&& or ||) as a CFG terminator,
2852 // then the condition is actually its LHS; otherwise, we'd encounter
2853 // the parent, such as if-statement, as a terminator.
2854 const auto *BO = cast<BinaryOperator>(Term);
2855 assert(BO->isLogicalOp() &&
2856 "CFG terminator is not a short-circuit operator!");
2857 Cond = BO->getLHS();
2858 break;
2859 }
2860
2861 Cond = Cond->IgnoreParens();
2862
2863 // However, when we encounter a logical operator as a branch condition,
2864 // then the condition is actually its RHS, because LHS would be
2865 // the condition for the logical operator terminator.
2866 while (const auto *InnerBO = dyn_cast<BinaryOperator>(Cond)) {
2867 if (!InnerBO->isLogicalOp())
2868 break;
2869 Cond = InnerBO->getRHS()->IgnoreParens();
2870 }
2871
2872 assert(Cond);
2873 assert(srcBlk->succ_size() == 2);
2874 const bool TookTrue = *(srcBlk->succ_begin()) == dstBlk;
2875 return VisitTrueTest(Cond, BRC, R, N, TookTrue);
2876 }
2877
2878 PathDiagnosticPieceRef
VisitTrueTest(const Expr * Cond,BugReporterContext & BRC,PathSensitiveBugReport & R,const ExplodedNode * N,bool TookTrue)2879 ConditionBRVisitor::VisitTrueTest(const Expr *Cond, BugReporterContext &BRC,
2880 PathSensitiveBugReport &R,
2881 const ExplodedNode *N, bool TookTrue) {
2882 ProgramStateRef CurrentState = N->getState();
2883 ProgramStateRef PrevState = N->getFirstPred()->getState();
2884 const LocationContext *LCtx = N->getLocationContext();
2885
2886 // If the constraint information is changed between the current and the
2887 // previous program state we assuming the newly seen constraint information.
2888 // If we cannot evaluate the condition (and the constraints are the same)
2889 // the analyzer has no information about the value and just assuming it.
2890 // FIXME: This logic is not entirely correct, because e.g. in code like
2891 // void f(unsigned arg) {
2892 // if (arg >= 0) {
2893 // // ...
2894 // }
2895 // }
2896 // it will say that the "arg >= 0" check is _assuming_ something new because
2897 // the constraint that "$arg >= 0" is 1 was added to the list of known
2898 // constraints. However, the unsigned value is always >= 0 so semantically
2899 // this is not a "real" assumption.
2900 bool IsAssuming =
2901 !BRC.getStateManager().haveEqualConstraints(CurrentState, PrevState) ||
2902 CurrentState->getSVal(Cond, LCtx).isUnknownOrUndef();
2903
2904 // These will be modified in code below, but we need to preserve the original
2905 // values in case we want to throw the generic message.
2906 const Expr *CondTmp = Cond;
2907 bool TookTrueTmp = TookTrue;
2908
2909 while (true) {
2910 CondTmp = CondTmp->IgnoreParenCasts();
2911 switch (CondTmp->getStmtClass()) {
2912 default:
2913 break;
2914 case Stmt::BinaryOperatorClass:
2915 if (auto P = VisitTrueTest(Cond, cast<BinaryOperator>(CondTmp),
2916 BRC, R, N, TookTrueTmp, IsAssuming))
2917 return P;
2918 break;
2919 case Stmt::DeclRefExprClass:
2920 if (auto P = VisitTrueTest(Cond, cast<DeclRefExpr>(CondTmp),
2921 BRC, R, N, TookTrueTmp, IsAssuming))
2922 return P;
2923 break;
2924 case Stmt::MemberExprClass:
2925 if (auto P = VisitTrueTest(Cond, cast<MemberExpr>(CondTmp),
2926 BRC, R, N, TookTrueTmp, IsAssuming))
2927 return P;
2928 break;
2929 case Stmt::UnaryOperatorClass: {
2930 const auto *UO = cast<UnaryOperator>(CondTmp);
2931 if (UO->getOpcode() == UO_LNot) {
2932 TookTrueTmp = !TookTrueTmp;
2933 CondTmp = UO->getSubExpr();
2934 continue;
2935 }
2936 break;
2937 }
2938 }
2939 break;
2940 }
2941
2942 // Condition too complex to explain? Just say something so that the user
2943 // knew we've made some path decision at this point.
2944 // If it is too complex and we know the evaluation of the condition do not
2945 // repeat the note from 'BugReporter.cpp'
2946 if (!IsAssuming)
2947 return nullptr;
2948
2949 PathDiagnosticLocation Loc(Cond, BRC.getSourceManager(), LCtx);
2950 if (!Loc.isValid() || !Loc.asLocation().isValid())
2951 return nullptr;
2952
2953 return std::make_shared<PathDiagnosticEventPiece>(
2954 Loc, TookTrue ? GenericTrueMessage : GenericFalseMessage);
2955 }
2956
patternMatch(const Expr * Ex,const Expr * ParentEx,raw_ostream & Out,BugReporterContext & BRC,PathSensitiveBugReport & report,const ExplodedNode * N,std::optional<bool> & prunable,bool IsSameFieldName)2957 bool ConditionBRVisitor::patternMatch(const Expr *Ex, const Expr *ParentEx,
2958 raw_ostream &Out, BugReporterContext &BRC,
2959 PathSensitiveBugReport &report,
2960 const ExplodedNode *N,
2961 std::optional<bool> &prunable,
2962 bool IsSameFieldName) {
2963 const Expr *OriginalExpr = Ex;
2964 Ex = Ex->IgnoreParenCasts();
2965
2966 if (isa<GNUNullExpr, ObjCBoolLiteralExpr, CXXBoolLiteralExpr, IntegerLiteral,
2967 FloatingLiteral>(Ex)) {
2968 // Use heuristics to determine if the expression is a macro
2969 // expanding to a literal and if so, use the macro's name.
2970 SourceLocation BeginLoc = OriginalExpr->getBeginLoc();
2971 SourceLocation EndLoc = OriginalExpr->getEndLoc();
2972 if (BeginLoc.isMacroID() && EndLoc.isMacroID()) {
2973 const SourceManager &SM = BRC.getSourceManager();
2974 const LangOptions &LO = BRC.getASTContext().getLangOpts();
2975 if (Lexer::isAtStartOfMacroExpansion(BeginLoc, SM, LO) &&
2976 Lexer::isAtEndOfMacroExpansion(EndLoc, SM, LO)) {
2977 CharSourceRange R = Lexer::getAsCharRange({BeginLoc, EndLoc}, SM, LO);
2978 Out << Lexer::getSourceText(R, SM, LO);
2979 return false;
2980 }
2981 }
2982 }
2983
2984 if (const auto *DR = dyn_cast<DeclRefExpr>(Ex)) {
2985 const bool quotes = isa<VarDecl>(DR->getDecl());
2986 if (quotes) {
2987 Out << '\'';
2988 const LocationContext *LCtx = N->getLocationContext();
2989 const ProgramState *state = N->getState().get();
2990 if (const MemRegion *R = state->getLValue(cast<VarDecl>(DR->getDecl()),
2991 LCtx).getAsRegion()) {
2992 if (report.isInteresting(R))
2993 prunable = false;
2994 else {
2995 const ProgramState *state = N->getState().get();
2996 SVal V = state->getSVal(R);
2997 if (report.isInteresting(V))
2998 prunable = false;
2999 }
3000 }
3001 }
3002 Out << DR->getDecl()->getDeclName().getAsString();
3003 if (quotes)
3004 Out << '\'';
3005 return quotes;
3006 }
3007
3008 if (const auto *IL = dyn_cast<IntegerLiteral>(Ex)) {
3009 QualType OriginalTy = OriginalExpr->getType();
3010 if (OriginalTy->isPointerType()) {
3011 if (IL->getValue() == 0) {
3012 Out << "null";
3013 return false;
3014 }
3015 }
3016 else if (OriginalTy->isObjCObjectPointerType()) {
3017 if (IL->getValue() == 0) {
3018 Out << "nil";
3019 return false;
3020 }
3021 }
3022
3023 Out << IL->getValue();
3024 return false;
3025 }
3026
3027 if (const auto *ME = dyn_cast<MemberExpr>(Ex)) {
3028 if (!IsSameFieldName)
3029 Out << "field '" << ME->getMemberDecl()->getName() << '\'';
3030 else
3031 Out << '\''
3032 << Lexer::getSourceText(
3033 CharSourceRange::getTokenRange(Ex->getSourceRange()),
3034 BRC.getSourceManager(), BRC.getASTContext().getLangOpts(),
3035 nullptr)
3036 << '\'';
3037 }
3038
3039 return false;
3040 }
3041
VisitTrueTest(const Expr * Cond,const BinaryOperator * BExpr,BugReporterContext & BRC,PathSensitiveBugReport & R,const ExplodedNode * N,bool TookTrue,bool IsAssuming)3042 PathDiagnosticPieceRef ConditionBRVisitor::VisitTrueTest(
3043 const Expr *Cond, const BinaryOperator *BExpr, BugReporterContext &BRC,
3044 PathSensitiveBugReport &R, const ExplodedNode *N, bool TookTrue,
3045 bool IsAssuming) {
3046 bool shouldInvert = false;
3047 std::optional<bool> shouldPrune;
3048
3049 // Check if the field name of the MemberExprs is ambiguous. Example:
3050 // " 'a.d' is equal to 'h.d' " in 'test/Analysis/null-deref-path-notes.cpp'.
3051 bool IsSameFieldName = false;
3052 const auto *LhsME = dyn_cast<MemberExpr>(BExpr->getLHS()->IgnoreParenCasts());
3053 const auto *RhsME = dyn_cast<MemberExpr>(BExpr->getRHS()->IgnoreParenCasts());
3054
3055 if (LhsME && RhsME)
3056 IsSameFieldName =
3057 LhsME->getMemberDecl()->getName() == RhsME->getMemberDecl()->getName();
3058
3059 SmallString<128> LhsString, RhsString;
3060 {
3061 llvm::raw_svector_ostream OutLHS(LhsString), OutRHS(RhsString);
3062 const bool isVarLHS = patternMatch(BExpr->getLHS(), BExpr, OutLHS, BRC, R,
3063 N, shouldPrune, IsSameFieldName);
3064 const bool isVarRHS = patternMatch(BExpr->getRHS(), BExpr, OutRHS, BRC, R,
3065 N, shouldPrune, IsSameFieldName);
3066
3067 shouldInvert = !isVarLHS && isVarRHS;
3068 }
3069
3070 BinaryOperator::Opcode Op = BExpr->getOpcode();
3071
3072 if (BinaryOperator::isAssignmentOp(Op)) {
3073 // For assignment operators, all that we care about is that the LHS
3074 // evaluates to "true" or "false".
3075 return VisitConditionVariable(LhsString, BExpr->getLHS(), BRC, R, N,
3076 TookTrue);
3077 }
3078
3079 // For non-assignment operations, we require that we can understand
3080 // both the LHS and RHS.
3081 if (LhsString.empty() || RhsString.empty() ||
3082 !BinaryOperator::isComparisonOp(Op) || Op == BO_Cmp)
3083 return nullptr;
3084
3085 // Should we invert the strings if the LHS is not a variable name?
3086 SmallString<256> buf;
3087 llvm::raw_svector_ostream Out(buf);
3088 Out << (IsAssuming ? "Assuming " : "")
3089 << (shouldInvert ? RhsString : LhsString) << " is ";
3090
3091 // Do we need to invert the opcode?
3092 if (shouldInvert)
3093 switch (Op) {
3094 default: break;
3095 case BO_LT: Op = BO_GT; break;
3096 case BO_GT: Op = BO_LT; break;
3097 case BO_LE: Op = BO_GE; break;
3098 case BO_GE: Op = BO_LE; break;
3099 }
3100
3101 if (!TookTrue)
3102 switch (Op) {
3103 case BO_EQ: Op = BO_NE; break;
3104 case BO_NE: Op = BO_EQ; break;
3105 case BO_LT: Op = BO_GE; break;
3106 case BO_GT: Op = BO_LE; break;
3107 case BO_LE: Op = BO_GT; break;
3108 case BO_GE: Op = BO_LT; break;
3109 default:
3110 return nullptr;
3111 }
3112
3113 switch (Op) {
3114 case BO_EQ:
3115 Out << "equal to ";
3116 break;
3117 case BO_NE:
3118 Out << "not equal to ";
3119 break;
3120 default:
3121 Out << BinaryOperator::getOpcodeStr(Op) << ' ';
3122 break;
3123 }
3124
3125 Out << (shouldInvert ? LhsString : RhsString);
3126 const LocationContext *LCtx = N->getLocationContext();
3127 const SourceManager &SM = BRC.getSourceManager();
3128
3129 if (isVarAnInterestingCondition(BExpr->getLHS(), N, &R) ||
3130 isVarAnInterestingCondition(BExpr->getRHS(), N, &R))
3131 Out << WillBeUsedForACondition;
3132
3133 // Convert 'field ...' to 'Field ...' if it is a MemberExpr.
3134 std::string Message = std::string(Out.str());
3135 Message[0] = toupper(Message[0]);
3136
3137 // If we know the value create a pop-up note to the value part of 'BExpr'.
3138 if (!IsAssuming) {
3139 PathDiagnosticLocation Loc;
3140 if (!shouldInvert) {
3141 if (LhsME && LhsME->getMemberLoc().isValid())
3142 Loc = PathDiagnosticLocation(LhsME->getMemberLoc(), SM);
3143 else
3144 Loc = PathDiagnosticLocation(BExpr->getLHS(), SM, LCtx);
3145 } else {
3146 if (RhsME && RhsME->getMemberLoc().isValid())
3147 Loc = PathDiagnosticLocation(RhsME->getMemberLoc(), SM);
3148 else
3149 Loc = PathDiagnosticLocation(BExpr->getRHS(), SM, LCtx);
3150 }
3151
3152 return std::make_shared<PathDiagnosticPopUpPiece>(Loc, Message);
3153 }
3154
3155 PathDiagnosticLocation Loc(Cond, SM, LCtx);
3156 auto event = std::make_shared<PathDiagnosticEventPiece>(Loc, Message);
3157 if (shouldPrune)
3158 event->setPrunable(*shouldPrune);
3159 return event;
3160 }
3161
VisitConditionVariable(StringRef LhsString,const Expr * CondVarExpr,BugReporterContext & BRC,PathSensitiveBugReport & report,const ExplodedNode * N,bool TookTrue)3162 PathDiagnosticPieceRef ConditionBRVisitor::VisitConditionVariable(
3163 StringRef LhsString, const Expr *CondVarExpr, BugReporterContext &BRC,
3164 PathSensitiveBugReport &report, const ExplodedNode *N, bool TookTrue) {
3165 // FIXME: If there's already a constraint tracker for this variable,
3166 // we shouldn't emit anything here (c.f. the double note in
3167 // test/Analysis/inlining/path-notes.c)
3168 SmallString<256> buf;
3169 llvm::raw_svector_ostream Out(buf);
3170 Out << "Assuming " << LhsString << " is ";
3171
3172 if (!printValue(CondVarExpr, Out, N, TookTrue, /*IsAssuming=*/true))
3173 return nullptr;
3174
3175 const LocationContext *LCtx = N->getLocationContext();
3176 PathDiagnosticLocation Loc(CondVarExpr, BRC.getSourceManager(), LCtx);
3177
3178 if (isVarAnInterestingCondition(CondVarExpr, N, &report))
3179 Out << WillBeUsedForACondition;
3180
3181 auto event = std::make_shared<PathDiagnosticEventPiece>(Loc, Out.str());
3182
3183 if (isInterestingExpr(CondVarExpr, N, &report))
3184 event->setPrunable(false);
3185
3186 return event;
3187 }
3188
VisitTrueTest(const Expr * Cond,const DeclRefExpr * DRE,BugReporterContext & BRC,PathSensitiveBugReport & report,const ExplodedNode * N,bool TookTrue,bool IsAssuming)3189 PathDiagnosticPieceRef ConditionBRVisitor::VisitTrueTest(
3190 const Expr *Cond, const DeclRefExpr *DRE, BugReporterContext &BRC,
3191 PathSensitiveBugReport &report, const ExplodedNode *N, bool TookTrue,
3192 bool IsAssuming) {
3193 const auto *VD = dyn_cast<VarDecl>(DRE->getDecl());
3194 if (!VD)
3195 return nullptr;
3196
3197 SmallString<256> Buf;
3198 llvm::raw_svector_ostream Out(Buf);
3199
3200 Out << (IsAssuming ? "Assuming '" : "'") << VD->getDeclName() << "' is ";
3201
3202 if (!printValue(DRE, Out, N, TookTrue, IsAssuming))
3203 return nullptr;
3204
3205 const LocationContext *LCtx = N->getLocationContext();
3206
3207 if (isVarAnInterestingCondition(DRE, N, &report))
3208 Out << WillBeUsedForACondition;
3209
3210 // If we know the value create a pop-up note to the 'DRE'.
3211 if (!IsAssuming) {
3212 PathDiagnosticLocation Loc(DRE, BRC.getSourceManager(), LCtx);
3213 return std::make_shared<PathDiagnosticPopUpPiece>(Loc, Out.str());
3214 }
3215
3216 PathDiagnosticLocation Loc(Cond, BRC.getSourceManager(), LCtx);
3217 auto event = std::make_shared<PathDiagnosticEventPiece>(Loc, Out.str());
3218
3219 if (isInterestingExpr(DRE, N, &report))
3220 event->setPrunable(false);
3221
3222 return std::move(event);
3223 }
3224
VisitTrueTest(const Expr * Cond,const MemberExpr * ME,BugReporterContext & BRC,PathSensitiveBugReport & report,const ExplodedNode * N,bool TookTrue,bool IsAssuming)3225 PathDiagnosticPieceRef ConditionBRVisitor::VisitTrueTest(
3226 const Expr *Cond, const MemberExpr *ME, BugReporterContext &BRC,
3227 PathSensitiveBugReport &report, const ExplodedNode *N, bool TookTrue,
3228 bool IsAssuming) {
3229 SmallString<256> Buf;
3230 llvm::raw_svector_ostream Out(Buf);
3231
3232 Out << (IsAssuming ? "Assuming field '" : "Field '")
3233 << ME->getMemberDecl()->getName() << "' is ";
3234
3235 if (!printValue(ME, Out, N, TookTrue, IsAssuming))
3236 return nullptr;
3237
3238 const LocationContext *LCtx = N->getLocationContext();
3239 PathDiagnosticLocation Loc;
3240
3241 // If we know the value create a pop-up note to the member of the MemberExpr.
3242 if (!IsAssuming && ME->getMemberLoc().isValid())
3243 Loc = PathDiagnosticLocation(ME->getMemberLoc(), BRC.getSourceManager());
3244 else
3245 Loc = PathDiagnosticLocation(Cond, BRC.getSourceManager(), LCtx);
3246
3247 if (!Loc.isValid() || !Loc.asLocation().isValid())
3248 return nullptr;
3249
3250 if (isVarAnInterestingCondition(ME, N, &report))
3251 Out << WillBeUsedForACondition;
3252
3253 // If we know the value create a pop-up note.
3254 if (!IsAssuming)
3255 return std::make_shared<PathDiagnosticPopUpPiece>(Loc, Out.str());
3256
3257 auto event = std::make_shared<PathDiagnosticEventPiece>(Loc, Out.str());
3258 if (isInterestingExpr(ME, N, &report))
3259 event->setPrunable(false);
3260 return event;
3261 }
3262
printValue(const Expr * CondVarExpr,raw_ostream & Out,const ExplodedNode * N,bool TookTrue,bool IsAssuming)3263 bool ConditionBRVisitor::printValue(const Expr *CondVarExpr, raw_ostream &Out,
3264 const ExplodedNode *N, bool TookTrue,
3265 bool IsAssuming) {
3266 QualType Ty = CondVarExpr->getType();
3267
3268 if (Ty->isPointerType()) {
3269 Out << (TookTrue ? "non-null" : "null");
3270 return true;
3271 }
3272
3273 if (Ty->isObjCObjectPointerType()) {
3274 Out << (TookTrue ? "non-nil" : "nil");
3275 return true;
3276 }
3277
3278 if (!Ty->isIntegralOrEnumerationType())
3279 return false;
3280
3281 std::optional<const llvm::APSInt *> IntValue;
3282 if (!IsAssuming)
3283 IntValue = getConcreteIntegerValue(CondVarExpr, N);
3284
3285 if (IsAssuming || !IntValue) {
3286 if (Ty->isBooleanType())
3287 Out << (TookTrue ? "true" : "false");
3288 else
3289 Out << (TookTrue ? "not equal to 0" : "0");
3290 } else {
3291 if (Ty->isBooleanType())
3292 Out << ((*IntValue)->getBoolValue() ? "true" : "false");
3293 else
3294 Out << **IntValue;
3295 }
3296
3297 return true;
3298 }
3299
3300 constexpr llvm::StringLiteral ConditionBRVisitor::GenericTrueMessage;
3301 constexpr llvm::StringLiteral ConditionBRVisitor::GenericFalseMessage;
3302
isPieceMessageGeneric(const PathDiagnosticPiece * Piece)3303 bool ConditionBRVisitor::isPieceMessageGeneric(
3304 const PathDiagnosticPiece *Piece) {
3305 return Piece->getString() == GenericTrueMessage ||
3306 Piece->getString() == GenericFalseMessage;
3307 }
3308
3309 //===----------------------------------------------------------------------===//
3310 // Implementation of LikelyFalsePositiveSuppressionBRVisitor.
3311 //===----------------------------------------------------------------------===//
3312
finalizeVisitor(BugReporterContext & BRC,const ExplodedNode * N,PathSensitiveBugReport & BR)3313 void LikelyFalsePositiveSuppressionBRVisitor::finalizeVisitor(
3314 BugReporterContext &BRC, const ExplodedNode *N,
3315 PathSensitiveBugReport &BR) {
3316 // Here we suppress false positives coming from system headers. This list is
3317 // based on known issues.
3318 const AnalyzerOptions &Options = BRC.getAnalyzerOptions();
3319 const Decl *D = N->getLocationContext()->getDecl();
3320
3321 if (AnalysisDeclContext::isInStdNamespace(D)) {
3322 // Skip reports within the 'std' namespace. Although these can sometimes be
3323 // the user's fault, we currently don't report them very well, and
3324 // Note that this will not help for any other data structure libraries, like
3325 // TR1, Boost, or llvm/ADT.
3326 if (Options.ShouldSuppressFromCXXStandardLibrary) {
3327 BR.markInvalid(getTag(), nullptr);
3328 return;
3329 } else {
3330 // If the complete 'std' suppression is not enabled, suppress reports
3331 // from the 'std' namespace that are known to produce false positives.
3332
3333 // The analyzer issues a false use-after-free when std::list::pop_front
3334 // or std::list::pop_back are called multiple times because we cannot
3335 // reason about the internal invariants of the data structure.
3336 if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) {
3337 const CXXRecordDecl *CD = MD->getParent();
3338 if (CD->getName() == "list") {
3339 BR.markInvalid(getTag(), nullptr);
3340 return;
3341 }
3342 }
3343
3344 // The analyzer issues a false positive when the constructor of
3345 // std::__independent_bits_engine from algorithms is used.
3346 if (const auto *MD = dyn_cast<CXXConstructorDecl>(D)) {
3347 const CXXRecordDecl *CD = MD->getParent();
3348 if (CD->getName() == "__independent_bits_engine") {
3349 BR.markInvalid(getTag(), nullptr);
3350 return;
3351 }
3352 }
3353
3354 for (const LocationContext *LCtx = N->getLocationContext(); LCtx;
3355 LCtx = LCtx->getParent()) {
3356 const auto *MD = dyn_cast<CXXMethodDecl>(LCtx->getDecl());
3357 if (!MD)
3358 continue;
3359
3360 const CXXRecordDecl *CD = MD->getParent();
3361 // The analyzer issues a false positive on
3362 // std::basic_string<uint8_t> v; v.push_back(1);
3363 // and
3364 // std::u16string s; s += u'a';
3365 // because we cannot reason about the internal invariants of the
3366 // data structure.
3367 if (CD->getName() == "basic_string") {
3368 BR.markInvalid(getTag(), nullptr);
3369 return;
3370 }
3371
3372 // The analyzer issues a false positive on
3373 // std::shared_ptr<int> p(new int(1)); p = nullptr;
3374 // because it does not reason properly about temporary destructors.
3375 if (CD->getName() == "shared_ptr") {
3376 BR.markInvalid(getTag(), nullptr);
3377 return;
3378 }
3379 }
3380 }
3381 }
3382
3383 // Skip reports within the sys/queue.h macros as we do not have the ability to
3384 // reason about data structure shapes.
3385 const SourceManager &SM = BRC.getSourceManager();
3386 FullSourceLoc Loc = BR.getLocation().asLocation();
3387 while (Loc.isMacroID()) {
3388 Loc = Loc.getSpellingLoc();
3389 if (SM.getFilename(Loc).ends_with("sys/queue.h")) {
3390 BR.markInvalid(getTag(), nullptr);
3391 return;
3392 }
3393 }
3394 }
3395
3396 //===----------------------------------------------------------------------===//
3397 // Implementation of UndefOrNullArgVisitor.
3398 //===----------------------------------------------------------------------===//
3399
3400 PathDiagnosticPieceRef
VisitNode(const ExplodedNode * N,BugReporterContext & BRC,PathSensitiveBugReport & BR)3401 UndefOrNullArgVisitor::VisitNode(const ExplodedNode *N, BugReporterContext &BRC,
3402 PathSensitiveBugReport &BR) {
3403 ProgramStateRef State = N->getState();
3404 ProgramPoint ProgLoc = N->getLocation();
3405
3406 // We are only interested in visiting CallEnter nodes.
3407 std::optional<CallEnter> CEnter = ProgLoc.getAs<CallEnter>();
3408 if (!CEnter)
3409 return nullptr;
3410
3411 // Check if one of the arguments is the region the visitor is tracking.
3412 CallEventManager &CEMgr = BRC.getStateManager().getCallEventManager();
3413 CallEventRef<> Call = CEMgr.getCaller(CEnter->getCalleeContext(), State);
3414 unsigned Idx = 0;
3415 ArrayRef<ParmVarDecl *> parms = Call->parameters();
3416
3417 for (const auto ParamDecl : parms) {
3418 const MemRegion *ArgReg = Call->getArgSVal(Idx).getAsRegion();
3419 ++Idx;
3420
3421 // Are we tracking the argument or its subregion?
3422 if ( !ArgReg || !R->isSubRegionOf(ArgReg->StripCasts()))
3423 continue;
3424
3425 // Check the function parameter type.
3426 assert(ParamDecl && "Formal parameter has no decl?");
3427 QualType T = ParamDecl->getType();
3428
3429 if (!(T->isAnyPointerType() || T->isReferenceType())) {
3430 // Function can only change the value passed in by address.
3431 continue;
3432 }
3433
3434 // If it is a const pointer value, the function does not intend to
3435 // change the value.
3436 if (T->getPointeeType().isConstQualified())
3437 continue;
3438
3439 // Mark the call site (LocationContext) as interesting if the value of the
3440 // argument is undefined or '0'/'NULL'.
3441 SVal BoundVal = State->getSVal(R);
3442 if (BoundVal.isUndef() || BoundVal.isZeroConstant()) {
3443 BR.markInteresting(CEnter->getCalleeContext());
3444 return nullptr;
3445 }
3446 }
3447 return nullptr;
3448 }
3449
3450 //===----------------------------------------------------------------------===//
3451 // Implementation of TagVisitor.
3452 //===----------------------------------------------------------------------===//
3453
3454 int NoteTag::Kind = 0;
3455
Profile(llvm::FoldingSetNodeID & ID) const3456 void TagVisitor::Profile(llvm::FoldingSetNodeID &ID) const {
3457 static int Tag = 0;
3458 ID.AddPointer(&Tag);
3459 }
3460
VisitNode(const ExplodedNode * N,BugReporterContext & BRC,PathSensitiveBugReport & R)3461 PathDiagnosticPieceRef TagVisitor::VisitNode(const ExplodedNode *N,
3462 BugReporterContext &BRC,
3463 PathSensitiveBugReport &R) {
3464 ProgramPoint PP = N->getLocation();
3465 const NoteTag *T = dyn_cast_or_null<NoteTag>(PP.getTag());
3466 if (!T)
3467 return nullptr;
3468
3469 if (std::optional<std::string> Msg = T->generateMessage(BRC, R)) {
3470 PathDiagnosticLocation Loc =
3471 PathDiagnosticLocation::create(PP, BRC.getSourceManager());
3472 auto Piece = std::make_shared<PathDiagnosticEventPiece>(Loc, *Msg);
3473 Piece->setPrunable(T->isPrunable());
3474 return Piece;
3475 }
3476
3477 return nullptr;
3478 }
3479