xref: /freebsd/contrib/llvm-project/llvm/include/llvm/ADT/APInt.h (revision 0fca6ea1d4eea4c934cfff25ac9ee8ad6fe95583)
1 //===-- llvm/ADT/APInt.h - For Arbitrary Precision Integer -----*- C++ -*--===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements a class to represent arbitrary precision
11 /// integral constant values and operations on them.
12 ///
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef LLVM_ADT_APINT_H
16 #define LLVM_ADT_APINT_H
17 
18 #include "llvm/Support/Compiler.h"
19 #include "llvm/Support/MathExtras.h"
20 #include "llvm/Support/float128.h"
21 #include <cassert>
22 #include <climits>
23 #include <cstring>
24 #include <optional>
25 #include <utility>
26 
27 namespace llvm {
28 class FoldingSetNodeID;
29 class StringRef;
30 class hash_code;
31 class raw_ostream;
32 struct Align;
33 class DynamicAPInt;
34 
35 template <typename T> class SmallVectorImpl;
36 template <typename T> class ArrayRef;
37 template <typename T, typename Enable> struct DenseMapInfo;
38 
39 class APInt;
40 
41 inline APInt operator-(APInt);
42 
43 //===----------------------------------------------------------------------===//
44 //                              APInt Class
45 //===----------------------------------------------------------------------===//
46 
47 /// Class for arbitrary precision integers.
48 ///
49 /// APInt is a functional replacement for common case unsigned integer type like
50 /// "unsigned", "unsigned long" or "uint64_t", but also allows non-byte-width
51 /// integer sizes and large integer value types such as 3-bits, 15-bits, or more
52 /// than 64-bits of precision. APInt provides a variety of arithmetic operators
53 /// and methods to manipulate integer values of any bit-width. It supports both
54 /// the typical integer arithmetic and comparison operations as well as bitwise
55 /// manipulation.
56 ///
57 /// The class has several invariants worth noting:
58 ///   * All bit, byte, and word positions are zero-based.
59 ///   * Once the bit width is set, it doesn't change except by the Truncate,
60 ///     SignExtend, or ZeroExtend operations.
61 ///   * All binary operators must be on APInt instances of the same bit width.
62 ///     Attempting to use these operators on instances with different bit
63 ///     widths will yield an assertion.
64 ///   * The value is stored canonically as an unsigned value. For operations
65 ///     where it makes a difference, there are both signed and unsigned variants
66 ///     of the operation. For example, sdiv and udiv. However, because the bit
67 ///     widths must be the same, operations such as Mul and Add produce the same
68 ///     results regardless of whether the values are interpreted as signed or
69 ///     not.
70 ///   * In general, the class tries to follow the style of computation that LLVM
71 ///     uses in its IR. This simplifies its use for LLVM.
72 ///   * APInt supports zero-bit-width values, but operations that require bits
73 ///     are not defined on it (e.g. you cannot ask for the sign of a zero-bit
74 ///     integer).  This means that operations like zero extension and logical
75 ///     shifts are defined, but sign extension and ashr is not.  Zero bit values
76 ///     compare and hash equal to themselves, and countLeadingZeros returns 0.
77 ///
78 class [[nodiscard]] APInt {
79 public:
80   typedef uint64_t WordType;
81 
82   /// This enum is used to hold the constants we needed for APInt.
83   enum : unsigned {
84     /// Byte size of a word.
85     APINT_WORD_SIZE = sizeof(WordType),
86     /// Bits in a word.
87     APINT_BITS_PER_WORD = APINT_WORD_SIZE * CHAR_BIT
88   };
89 
90   enum class Rounding {
91     DOWN,
92     TOWARD_ZERO,
93     UP,
94   };
95 
96   static constexpr WordType WORDTYPE_MAX = ~WordType(0);
97 
98   /// \name Constructors
99   /// @{
100 
101   /// Create a new APInt of numBits width, initialized as val.
102   ///
103   /// If isSigned is true then val is treated as if it were a signed value
104   /// (i.e. as an int64_t) and the appropriate sign extension to the bit width
105   /// will be done. Otherwise, no sign extension occurs (high order bits beyond
106   /// the range of val are zero filled).
107   ///
108   /// \param numBits the bit width of the constructed APInt
109   /// \param val the initial value of the APInt
110   /// \param isSigned how to treat signedness of val
111   APInt(unsigned numBits, uint64_t val, bool isSigned = false)
BitWidth(numBits)112       : BitWidth(numBits) {
113     if (isSingleWord()) {
114       U.VAL = val;
115       clearUnusedBits();
116     } else {
117       initSlowCase(val, isSigned);
118     }
119   }
120 
121   /// Construct an APInt of numBits width, initialized as bigVal[].
122   ///
123   /// Note that bigVal.size() can be smaller or larger than the corresponding
124   /// bit width but any extraneous bits will be dropped.
125   ///
126   /// \param numBits the bit width of the constructed APInt
127   /// \param bigVal a sequence of words to form the initial value of the APInt
128   APInt(unsigned numBits, ArrayRef<uint64_t> bigVal);
129 
130   /// Equivalent to APInt(numBits, ArrayRef<uint64_t>(bigVal, numWords)), but
131   /// deprecated because this constructor is prone to ambiguity with the
132   /// APInt(unsigned, uint64_t, bool) constructor.
133   ///
134   /// If this overload is ever deleted, care should be taken to prevent calls
135   /// from being incorrectly captured by the APInt(unsigned, uint64_t, bool)
136   /// constructor.
137   APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[]);
138 
139   /// Construct an APInt from a string representation.
140   ///
141   /// This constructor interprets the string \p str in the given radix. The
142   /// interpretation stops when the first character that is not suitable for the
143   /// radix is encountered, or the end of the string. Acceptable radix values
144   /// are 2, 8, 10, 16, and 36. It is an error for the value implied by the
145   /// string to require more bits than numBits.
146   ///
147   /// \param numBits the bit width of the constructed APInt
148   /// \param str the string to be interpreted
149   /// \param radix the radix to use for the conversion
150   APInt(unsigned numBits, StringRef str, uint8_t radix);
151 
152   /// Default constructor that creates an APInt with a 1-bit zero value.
APInt()153   explicit APInt() { U.VAL = 0; }
154 
155   /// Copy Constructor.
APInt(const APInt & that)156   APInt(const APInt &that) : BitWidth(that.BitWidth) {
157     if (isSingleWord())
158       U.VAL = that.U.VAL;
159     else
160       initSlowCase(that);
161   }
162 
163   /// Move Constructor.
APInt(APInt && that)164   APInt(APInt &&that) : BitWidth(that.BitWidth) {
165     memcpy(&U, &that.U, sizeof(U));
166     that.BitWidth = 0;
167   }
168 
169   /// Destructor.
~APInt()170   ~APInt() {
171     if (needsCleanup())
172       delete[] U.pVal;
173   }
174 
175   /// @}
176   /// \name Value Generators
177   /// @{
178 
179   /// Get the '0' value for the specified bit-width.
getZero(unsigned numBits)180   static APInt getZero(unsigned numBits) { return APInt(numBits, 0); }
181 
182   /// Return an APInt zero bits wide.
getZeroWidth()183   static APInt getZeroWidth() { return getZero(0); }
184 
185   /// Gets maximum unsigned value of APInt for specific bit width.
getMaxValue(unsigned numBits)186   static APInt getMaxValue(unsigned numBits) { return getAllOnes(numBits); }
187 
188   /// Gets maximum signed value of APInt for a specific bit width.
getSignedMaxValue(unsigned numBits)189   static APInt getSignedMaxValue(unsigned numBits) {
190     APInt API = getAllOnes(numBits);
191     API.clearBit(numBits - 1);
192     return API;
193   }
194 
195   /// Gets minimum unsigned value of APInt for a specific bit width.
getMinValue(unsigned numBits)196   static APInt getMinValue(unsigned numBits) { return APInt(numBits, 0); }
197 
198   /// Gets minimum signed value of APInt for a specific bit width.
getSignedMinValue(unsigned numBits)199   static APInt getSignedMinValue(unsigned numBits) {
200     APInt API(numBits, 0);
201     API.setBit(numBits - 1);
202     return API;
203   }
204 
205   /// Get the SignMask for a specific bit width.
206   ///
207   /// This is just a wrapper function of getSignedMinValue(), and it helps code
208   /// readability when we want to get a SignMask.
getSignMask(unsigned BitWidth)209   static APInt getSignMask(unsigned BitWidth) {
210     return getSignedMinValue(BitWidth);
211   }
212 
213   /// Return an APInt of a specified width with all bits set.
getAllOnes(unsigned numBits)214   static APInt getAllOnes(unsigned numBits) {
215     return APInt(numBits, WORDTYPE_MAX, true);
216   }
217 
218   /// Return an APInt with exactly one bit set in the result.
getOneBitSet(unsigned numBits,unsigned BitNo)219   static APInt getOneBitSet(unsigned numBits, unsigned BitNo) {
220     APInt Res(numBits, 0);
221     Res.setBit(BitNo);
222     return Res;
223   }
224 
225   /// Get a value with a block of bits set.
226   ///
227   /// Constructs an APInt value that has a contiguous range of bits set. The
228   /// bits from loBit (inclusive) to hiBit (exclusive) will be set. All other
229   /// bits will be zero. For example, with parameters(32, 0, 16) you would get
230   /// 0x0000FFFF. Please call getBitsSetWithWrap if \p loBit may be greater than
231   /// \p hiBit.
232   ///
233   /// \param numBits the intended bit width of the result
234   /// \param loBit the index of the lowest bit set.
235   /// \param hiBit the index of the highest bit set.
236   ///
237   /// \returns An APInt value with the requested bits set.
getBitsSet(unsigned numBits,unsigned loBit,unsigned hiBit)238   static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit) {
239     APInt Res(numBits, 0);
240     Res.setBits(loBit, hiBit);
241     return Res;
242   }
243 
244   /// Wrap version of getBitsSet.
245   /// If \p hiBit is bigger than \p loBit, this is same with getBitsSet.
246   /// If \p hiBit is not bigger than \p loBit, the set bits "wrap". For example,
247   /// with parameters (32, 28, 4), you would get 0xF000000F.
248   /// If \p hiBit is equal to \p loBit, you would get a result with all bits
249   /// set.
getBitsSetWithWrap(unsigned numBits,unsigned loBit,unsigned hiBit)250   static APInt getBitsSetWithWrap(unsigned numBits, unsigned loBit,
251                                   unsigned hiBit) {
252     APInt Res(numBits, 0);
253     Res.setBitsWithWrap(loBit, hiBit);
254     return Res;
255   }
256 
257   /// Constructs an APInt value that has a contiguous range of bits set. The
258   /// bits from loBit (inclusive) to numBits (exclusive) will be set. All other
259   /// bits will be zero. For example, with parameters(32, 12) you would get
260   /// 0xFFFFF000.
261   ///
262   /// \param numBits the intended bit width of the result
263   /// \param loBit the index of the lowest bit to set.
264   ///
265   /// \returns An APInt value with the requested bits set.
getBitsSetFrom(unsigned numBits,unsigned loBit)266   static APInt getBitsSetFrom(unsigned numBits, unsigned loBit) {
267     APInt Res(numBits, 0);
268     Res.setBitsFrom(loBit);
269     return Res;
270   }
271 
272   /// Constructs an APInt value that has the top hiBitsSet bits set.
273   ///
274   /// \param numBits the bitwidth of the result
275   /// \param hiBitsSet the number of high-order bits set in the result.
getHighBitsSet(unsigned numBits,unsigned hiBitsSet)276   static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet) {
277     APInt Res(numBits, 0);
278     Res.setHighBits(hiBitsSet);
279     return Res;
280   }
281 
282   /// Constructs an APInt value that has the bottom loBitsSet bits set.
283   ///
284   /// \param numBits the bitwidth of the result
285   /// \param loBitsSet the number of low-order bits set in the result.
getLowBitsSet(unsigned numBits,unsigned loBitsSet)286   static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet) {
287     APInt Res(numBits, 0);
288     Res.setLowBits(loBitsSet);
289     return Res;
290   }
291 
292   /// Return a value containing V broadcasted over NewLen bits.
293   static APInt getSplat(unsigned NewLen, const APInt &V);
294 
295   /// @}
296   /// \name Value Tests
297   /// @{
298 
299   /// Determine if this APInt just has one word to store value.
300   ///
301   /// \returns true if the number of bits <= 64, false otherwise.
isSingleWord()302   bool isSingleWord() const { return BitWidth <= APINT_BITS_PER_WORD; }
303 
304   /// Determine sign of this APInt.
305   ///
306   /// This tests the high bit of this APInt to determine if it is set.
307   ///
308   /// \returns true if this APInt is negative, false otherwise
isNegative()309   bool isNegative() const { return (*this)[BitWidth - 1]; }
310 
311   /// Determine if this APInt Value is non-negative (>= 0)
312   ///
313   /// This tests the high bit of the APInt to determine if it is unset.
isNonNegative()314   bool isNonNegative() const { return !isNegative(); }
315 
316   /// Determine if sign bit of this APInt is set.
317   ///
318   /// This tests the high bit of this APInt to determine if it is set.
319   ///
320   /// \returns true if this APInt has its sign bit set, false otherwise.
isSignBitSet()321   bool isSignBitSet() const { return (*this)[BitWidth - 1]; }
322 
323   /// Determine if sign bit of this APInt is clear.
324   ///
325   /// This tests the high bit of this APInt to determine if it is clear.
326   ///
327   /// \returns true if this APInt has its sign bit clear, false otherwise.
isSignBitClear()328   bool isSignBitClear() const { return !isSignBitSet(); }
329 
330   /// Determine if this APInt Value is positive.
331   ///
332   /// This tests if the value of this APInt is positive (> 0). Note
333   /// that 0 is not a positive value.
334   ///
335   /// \returns true if this APInt is positive.
isStrictlyPositive()336   bool isStrictlyPositive() const { return isNonNegative() && !isZero(); }
337 
338   /// Determine if this APInt Value is non-positive (<= 0).
339   ///
340   /// \returns true if this APInt is non-positive.
isNonPositive()341   bool isNonPositive() const { return !isStrictlyPositive(); }
342 
343   /// Determine if this APInt Value only has the specified bit set.
344   ///
345   /// \returns true if this APInt only has the specified bit set.
isOneBitSet(unsigned BitNo)346   bool isOneBitSet(unsigned BitNo) const {
347     return (*this)[BitNo] && popcount() == 1;
348   }
349 
350   /// Determine if all bits are set.  This is true for zero-width values.
isAllOnes()351   bool isAllOnes() const {
352     if (BitWidth == 0)
353       return true;
354     if (isSingleWord())
355       return U.VAL == WORDTYPE_MAX >> (APINT_BITS_PER_WORD - BitWidth);
356     return countTrailingOnesSlowCase() == BitWidth;
357   }
358 
359   /// Determine if this value is zero, i.e. all bits are clear.
isZero()360   bool isZero() const {
361     if (isSingleWord())
362       return U.VAL == 0;
363     return countLeadingZerosSlowCase() == BitWidth;
364   }
365 
366   /// Determine if this is a value of 1.
367   ///
368   /// This checks to see if the value of this APInt is one.
isOne()369   bool isOne() const {
370     if (isSingleWord())
371       return U.VAL == 1;
372     return countLeadingZerosSlowCase() == BitWidth - 1;
373   }
374 
375   /// Determine if this is the largest unsigned value.
376   ///
377   /// This checks to see if the value of this APInt is the maximum unsigned
378   /// value for the APInt's bit width.
isMaxValue()379   bool isMaxValue() const { return isAllOnes(); }
380 
381   /// Determine if this is the largest signed value.
382   ///
383   /// This checks to see if the value of this APInt is the maximum signed
384   /// value for the APInt's bit width.
isMaxSignedValue()385   bool isMaxSignedValue() const {
386     if (isSingleWord()) {
387       assert(BitWidth && "zero width values not allowed");
388       return U.VAL == ((WordType(1) << (BitWidth - 1)) - 1);
389     }
390     return !isNegative() && countTrailingOnesSlowCase() == BitWidth - 1;
391   }
392 
393   /// Determine if this is the smallest unsigned value.
394   ///
395   /// This checks to see if the value of this APInt is the minimum unsigned
396   /// value for the APInt's bit width.
isMinValue()397   bool isMinValue() const { return isZero(); }
398 
399   /// Determine if this is the smallest signed value.
400   ///
401   /// This checks to see if the value of this APInt is the minimum signed
402   /// value for the APInt's bit width.
isMinSignedValue()403   bool isMinSignedValue() const {
404     if (isSingleWord()) {
405       assert(BitWidth && "zero width values not allowed");
406       return U.VAL == (WordType(1) << (BitWidth - 1));
407     }
408     return isNegative() && countTrailingZerosSlowCase() == BitWidth - 1;
409   }
410 
411   /// Check if this APInt has an N-bits unsigned integer value.
isIntN(unsigned N)412   bool isIntN(unsigned N) const { return getActiveBits() <= N; }
413 
414   /// Check if this APInt has an N-bits signed integer value.
isSignedIntN(unsigned N)415   bool isSignedIntN(unsigned N) const { return getSignificantBits() <= N; }
416 
417   /// Check if this APInt's value is a power of two greater than zero.
418   ///
419   /// \returns true if the argument APInt value is a power of two > 0.
isPowerOf2()420   bool isPowerOf2() const {
421     if (isSingleWord()) {
422       assert(BitWidth && "zero width values not allowed");
423       return isPowerOf2_64(U.VAL);
424     }
425     return countPopulationSlowCase() == 1;
426   }
427 
428   /// Check if this APInt's negated value is a power of two greater than zero.
isNegatedPowerOf2()429   bool isNegatedPowerOf2() const {
430     assert(BitWidth && "zero width values not allowed");
431     if (isNonNegative())
432       return false;
433     // NegatedPowerOf2 - shifted mask in the top bits.
434     unsigned LO = countl_one();
435     unsigned TZ = countr_zero();
436     return (LO + TZ) == BitWidth;
437   }
438 
439   /// Checks if this APInt -interpreted as an address- is aligned to the
440   /// provided value.
441   bool isAligned(Align A) const;
442 
443   /// Check if the APInt's value is returned by getSignMask.
444   ///
445   /// \returns true if this is the value returned by getSignMask.
isSignMask()446   bool isSignMask() const { return isMinSignedValue(); }
447 
448   /// Convert APInt to a boolean value.
449   ///
450   /// This converts the APInt to a boolean value as a test against zero.
getBoolValue()451   bool getBoolValue() const { return !isZero(); }
452 
453   /// If this value is smaller than the specified limit, return it, otherwise
454   /// return the limit value.  This causes the value to saturate to the limit.
455   uint64_t getLimitedValue(uint64_t Limit = UINT64_MAX) const {
456     return ugt(Limit) ? Limit : getZExtValue();
457   }
458 
459   /// Check if the APInt consists of a repeated bit pattern.
460   ///
461   /// e.g. 0x01010101 satisfies isSplat(8).
462   /// \param SplatSizeInBits The size of the pattern in bits. Must divide bit
463   /// width without remainder.
464   bool isSplat(unsigned SplatSizeInBits) const;
465 
466   /// \returns true if this APInt value is a sequence of \param numBits ones
467   /// starting at the least significant bit with the remainder zero.
isMask(unsigned numBits)468   bool isMask(unsigned numBits) const {
469     assert(numBits != 0 && "numBits must be non-zero");
470     assert(numBits <= BitWidth && "numBits out of range");
471     if (isSingleWord())
472       return U.VAL == (WORDTYPE_MAX >> (APINT_BITS_PER_WORD - numBits));
473     unsigned Ones = countTrailingOnesSlowCase();
474     return (numBits == Ones) &&
475            ((Ones + countLeadingZerosSlowCase()) == BitWidth);
476   }
477 
478   /// \returns true if this APInt is a non-empty sequence of ones starting at
479   /// the least significant bit with the remainder zero.
480   /// Ex. isMask(0x0000FFFFU) == true.
isMask()481   bool isMask() const {
482     if (isSingleWord())
483       return isMask_64(U.VAL);
484     unsigned Ones = countTrailingOnesSlowCase();
485     return (Ones > 0) && ((Ones + countLeadingZerosSlowCase()) == BitWidth);
486   }
487 
488   /// Return true if this APInt value contains a non-empty sequence of ones with
489   /// the remainder zero.
isShiftedMask()490   bool isShiftedMask() const {
491     if (isSingleWord())
492       return isShiftedMask_64(U.VAL);
493     unsigned Ones = countPopulationSlowCase();
494     unsigned LeadZ = countLeadingZerosSlowCase();
495     return (Ones + LeadZ + countr_zero()) == BitWidth;
496   }
497 
498   /// Return true if this APInt value contains a non-empty sequence of ones with
499   /// the remainder zero. If true, \p MaskIdx will specify the index of the
500   /// lowest set bit and \p MaskLen is updated to specify the length of the
501   /// mask, else neither are updated.
isShiftedMask(unsigned & MaskIdx,unsigned & MaskLen)502   bool isShiftedMask(unsigned &MaskIdx, unsigned &MaskLen) const {
503     if (isSingleWord())
504       return isShiftedMask_64(U.VAL, MaskIdx, MaskLen);
505     unsigned Ones = countPopulationSlowCase();
506     unsigned LeadZ = countLeadingZerosSlowCase();
507     unsigned TrailZ = countTrailingZerosSlowCase();
508     if ((Ones + LeadZ + TrailZ) != BitWidth)
509       return false;
510     MaskLen = Ones;
511     MaskIdx = TrailZ;
512     return true;
513   }
514 
515   /// Compute an APInt containing numBits highbits from this APInt.
516   ///
517   /// Get an APInt with the same BitWidth as this APInt, just zero mask the low
518   /// bits and right shift to the least significant bit.
519   ///
520   /// \returns the high "numBits" bits of this APInt.
521   APInt getHiBits(unsigned numBits) const;
522 
523   /// Compute an APInt containing numBits lowbits from this APInt.
524   ///
525   /// Get an APInt with the same BitWidth as this APInt, just zero mask the high
526   /// bits.
527   ///
528   /// \returns the low "numBits" bits of this APInt.
529   APInt getLoBits(unsigned numBits) const;
530 
531   /// Determine if two APInts have the same value, after zero-extending
532   /// one of them (if needed!) to ensure that the bit-widths match.
isSameValue(const APInt & I1,const APInt & I2)533   static bool isSameValue(const APInt &I1, const APInt &I2) {
534     if (I1.getBitWidth() == I2.getBitWidth())
535       return I1 == I2;
536 
537     if (I1.getBitWidth() > I2.getBitWidth())
538       return I1 == I2.zext(I1.getBitWidth());
539 
540     return I1.zext(I2.getBitWidth()) == I2;
541   }
542 
543   /// Overload to compute a hash_code for an APInt value.
544   friend hash_code hash_value(const APInt &Arg);
545 
546   /// This function returns a pointer to the internal storage of the APInt.
547   /// This is useful for writing out the APInt in binary form without any
548   /// conversions.
getRawData()549   const uint64_t *getRawData() const {
550     if (isSingleWord())
551       return &U.VAL;
552     return &U.pVal[0];
553   }
554 
555   /// @}
556   /// \name Unary Operators
557   /// @{
558 
559   /// Postfix increment operator.  Increment *this by 1.
560   ///
561   /// \returns a new APInt value representing the original value of *this.
562   APInt operator++(int) {
563     APInt API(*this);
564     ++(*this);
565     return API;
566   }
567 
568   /// Prefix increment operator.
569   ///
570   /// \returns *this incremented by one
571   APInt &operator++();
572 
573   /// Postfix decrement operator. Decrement *this by 1.
574   ///
575   /// \returns a new APInt value representing the original value of *this.
576   APInt operator--(int) {
577     APInt API(*this);
578     --(*this);
579     return API;
580   }
581 
582   /// Prefix decrement operator.
583   ///
584   /// \returns *this decremented by one.
585   APInt &operator--();
586 
587   /// Logical negation operation on this APInt returns true if zero, like normal
588   /// integers.
589   bool operator!() const { return isZero(); }
590 
591   /// @}
592   /// \name Assignment Operators
593   /// @{
594 
595   /// Copy assignment operator.
596   ///
597   /// \returns *this after assignment of RHS.
598   APInt &operator=(const APInt &RHS) {
599     // The common case (both source or dest being inline) doesn't require
600     // allocation or deallocation.
601     if (isSingleWord() && RHS.isSingleWord()) {
602       U.VAL = RHS.U.VAL;
603       BitWidth = RHS.BitWidth;
604       return *this;
605     }
606 
607     assignSlowCase(RHS);
608     return *this;
609   }
610 
611   /// Move assignment operator.
612   APInt &operator=(APInt &&that) {
613 #ifdef EXPENSIVE_CHECKS
614     // Some std::shuffle implementations still do self-assignment.
615     if (this == &that)
616       return *this;
617 #endif
618     assert(this != &that && "Self-move not supported");
619     if (!isSingleWord())
620       delete[] U.pVal;
621 
622     // Use memcpy so that type based alias analysis sees both VAL and pVal
623     // as modified.
624     memcpy(&U, &that.U, sizeof(U));
625 
626     BitWidth = that.BitWidth;
627     that.BitWidth = 0;
628     return *this;
629   }
630 
631   /// Assignment operator.
632   ///
633   /// The RHS value is assigned to *this. If the significant bits in RHS exceed
634   /// the bit width, the excess bits are truncated. If the bit width is larger
635   /// than 64, the value is zero filled in the unspecified high order bits.
636   ///
637   /// \returns *this after assignment of RHS value.
638   APInt &operator=(uint64_t RHS) {
639     if (isSingleWord()) {
640       U.VAL = RHS;
641       return clearUnusedBits();
642     }
643     U.pVal[0] = RHS;
644     memset(U.pVal + 1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
645     return *this;
646   }
647 
648   /// Bitwise AND assignment operator.
649   ///
650   /// Performs a bitwise AND operation on this APInt and RHS. The result is
651   /// assigned to *this.
652   ///
653   /// \returns *this after ANDing with RHS.
654   APInt &operator&=(const APInt &RHS) {
655     assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
656     if (isSingleWord())
657       U.VAL &= RHS.U.VAL;
658     else
659       andAssignSlowCase(RHS);
660     return *this;
661   }
662 
663   /// Bitwise AND assignment operator.
664   ///
665   /// Performs a bitwise AND operation on this APInt and RHS. RHS is
666   /// logically zero-extended or truncated to match the bit-width of
667   /// the LHS.
668   APInt &operator&=(uint64_t RHS) {
669     if (isSingleWord()) {
670       U.VAL &= RHS;
671       return *this;
672     }
673     U.pVal[0] &= RHS;
674     memset(U.pVal + 1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
675     return *this;
676   }
677 
678   /// Bitwise OR assignment operator.
679   ///
680   /// Performs a bitwise OR operation on this APInt and RHS. The result is
681   /// assigned *this;
682   ///
683   /// \returns *this after ORing with RHS.
684   APInt &operator|=(const APInt &RHS) {
685     assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
686     if (isSingleWord())
687       U.VAL |= RHS.U.VAL;
688     else
689       orAssignSlowCase(RHS);
690     return *this;
691   }
692 
693   /// Bitwise OR assignment operator.
694   ///
695   /// Performs a bitwise OR operation on this APInt and RHS. RHS is
696   /// logically zero-extended or truncated to match the bit-width of
697   /// the LHS.
698   APInt &operator|=(uint64_t RHS) {
699     if (isSingleWord()) {
700       U.VAL |= RHS;
701       return clearUnusedBits();
702     }
703     U.pVal[0] |= RHS;
704     return *this;
705   }
706 
707   /// Bitwise XOR assignment operator.
708   ///
709   /// Performs a bitwise XOR operation on this APInt and RHS. The result is
710   /// assigned to *this.
711   ///
712   /// \returns *this after XORing with RHS.
713   APInt &operator^=(const APInt &RHS) {
714     assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
715     if (isSingleWord())
716       U.VAL ^= RHS.U.VAL;
717     else
718       xorAssignSlowCase(RHS);
719     return *this;
720   }
721 
722   /// Bitwise XOR assignment operator.
723   ///
724   /// Performs a bitwise XOR operation on this APInt and RHS. RHS is
725   /// logically zero-extended or truncated to match the bit-width of
726   /// the LHS.
727   APInt &operator^=(uint64_t RHS) {
728     if (isSingleWord()) {
729       U.VAL ^= RHS;
730       return clearUnusedBits();
731     }
732     U.pVal[0] ^= RHS;
733     return *this;
734   }
735 
736   /// Multiplication assignment operator.
737   ///
738   /// Multiplies this APInt by RHS and assigns the result to *this.
739   ///
740   /// \returns *this
741   APInt &operator*=(const APInt &RHS);
742   APInt &operator*=(uint64_t RHS);
743 
744   /// Addition assignment operator.
745   ///
746   /// Adds RHS to *this and assigns the result to *this.
747   ///
748   /// \returns *this
749   APInt &operator+=(const APInt &RHS);
750   APInt &operator+=(uint64_t RHS);
751 
752   /// Subtraction assignment operator.
753   ///
754   /// Subtracts RHS from *this and assigns the result to *this.
755   ///
756   /// \returns *this
757   APInt &operator-=(const APInt &RHS);
758   APInt &operator-=(uint64_t RHS);
759 
760   /// Left-shift assignment function.
761   ///
762   /// Shifts *this left by shiftAmt and assigns the result to *this.
763   ///
764   /// \returns *this after shifting left by ShiftAmt
765   APInt &operator<<=(unsigned ShiftAmt) {
766     assert(ShiftAmt <= BitWidth && "Invalid shift amount");
767     if (isSingleWord()) {
768       if (ShiftAmt == BitWidth)
769         U.VAL = 0;
770       else
771         U.VAL <<= ShiftAmt;
772       return clearUnusedBits();
773     }
774     shlSlowCase(ShiftAmt);
775     return *this;
776   }
777 
778   /// Left-shift assignment function.
779   ///
780   /// Shifts *this left by shiftAmt and assigns the result to *this.
781   ///
782   /// \returns *this after shifting left by ShiftAmt
783   APInt &operator<<=(const APInt &ShiftAmt);
784 
785   /// @}
786   /// \name Binary Operators
787   /// @{
788 
789   /// Multiplication operator.
790   ///
791   /// Multiplies this APInt by RHS and returns the result.
792   APInt operator*(const APInt &RHS) const;
793 
794   /// Left logical shift operator.
795   ///
796   /// Shifts this APInt left by \p Bits and returns the result.
797   APInt operator<<(unsigned Bits) const { return shl(Bits); }
798 
799   /// Left logical shift operator.
800   ///
801   /// Shifts this APInt left by \p Bits and returns the result.
802   APInt operator<<(const APInt &Bits) const { return shl(Bits); }
803 
804   /// Arithmetic right-shift function.
805   ///
806   /// Arithmetic right-shift this APInt by shiftAmt.
ashr(unsigned ShiftAmt)807   APInt ashr(unsigned ShiftAmt) const {
808     APInt R(*this);
809     R.ashrInPlace(ShiftAmt);
810     return R;
811   }
812 
813   /// Arithmetic right-shift this APInt by ShiftAmt in place.
ashrInPlace(unsigned ShiftAmt)814   void ashrInPlace(unsigned ShiftAmt) {
815     assert(ShiftAmt <= BitWidth && "Invalid shift amount");
816     if (isSingleWord()) {
817       int64_t SExtVAL = SignExtend64(U.VAL, BitWidth);
818       if (ShiftAmt == BitWidth)
819         U.VAL = SExtVAL >> (APINT_BITS_PER_WORD - 1); // Fill with sign bit.
820       else
821         U.VAL = SExtVAL >> ShiftAmt;
822       clearUnusedBits();
823       return;
824     }
825     ashrSlowCase(ShiftAmt);
826   }
827 
828   /// Logical right-shift function.
829   ///
830   /// Logical right-shift this APInt by shiftAmt.
lshr(unsigned shiftAmt)831   APInt lshr(unsigned shiftAmt) const {
832     APInt R(*this);
833     R.lshrInPlace(shiftAmt);
834     return R;
835   }
836 
837   /// Logical right-shift this APInt by ShiftAmt in place.
lshrInPlace(unsigned ShiftAmt)838   void lshrInPlace(unsigned ShiftAmt) {
839     assert(ShiftAmt <= BitWidth && "Invalid shift amount");
840     if (isSingleWord()) {
841       if (ShiftAmt == BitWidth)
842         U.VAL = 0;
843       else
844         U.VAL >>= ShiftAmt;
845       return;
846     }
847     lshrSlowCase(ShiftAmt);
848   }
849 
850   /// Left-shift function.
851   ///
852   /// Left-shift this APInt by shiftAmt.
shl(unsigned shiftAmt)853   APInt shl(unsigned shiftAmt) const {
854     APInt R(*this);
855     R <<= shiftAmt;
856     return R;
857   }
858 
859   /// relative logical shift right
relativeLShr(int RelativeShift)860   APInt relativeLShr(int RelativeShift) const {
861     return RelativeShift > 0 ? lshr(RelativeShift) : shl(-RelativeShift);
862   }
863 
864   /// relative logical shift left
relativeLShl(int RelativeShift)865   APInt relativeLShl(int RelativeShift) const {
866     return relativeLShr(-RelativeShift);
867   }
868 
869   /// relative arithmetic shift right
relativeAShr(int RelativeShift)870   APInt relativeAShr(int RelativeShift) const {
871     return RelativeShift > 0 ? ashr(RelativeShift) : shl(-RelativeShift);
872   }
873 
874   /// relative arithmetic shift left
relativeAShl(int RelativeShift)875   APInt relativeAShl(int RelativeShift) const {
876     return relativeAShr(-RelativeShift);
877   }
878 
879   /// Rotate left by rotateAmt.
880   APInt rotl(unsigned rotateAmt) const;
881 
882   /// Rotate right by rotateAmt.
883   APInt rotr(unsigned rotateAmt) const;
884 
885   /// Arithmetic right-shift function.
886   ///
887   /// Arithmetic right-shift this APInt by shiftAmt.
ashr(const APInt & ShiftAmt)888   APInt ashr(const APInt &ShiftAmt) const {
889     APInt R(*this);
890     R.ashrInPlace(ShiftAmt);
891     return R;
892   }
893 
894   /// Arithmetic right-shift this APInt by shiftAmt in place.
895   void ashrInPlace(const APInt &shiftAmt);
896 
897   /// Logical right-shift function.
898   ///
899   /// Logical right-shift this APInt by shiftAmt.
lshr(const APInt & ShiftAmt)900   APInt lshr(const APInt &ShiftAmt) const {
901     APInt R(*this);
902     R.lshrInPlace(ShiftAmt);
903     return R;
904   }
905 
906   /// Logical right-shift this APInt by ShiftAmt in place.
907   void lshrInPlace(const APInt &ShiftAmt);
908 
909   /// Left-shift function.
910   ///
911   /// Left-shift this APInt by shiftAmt.
shl(const APInt & ShiftAmt)912   APInt shl(const APInt &ShiftAmt) const {
913     APInt R(*this);
914     R <<= ShiftAmt;
915     return R;
916   }
917 
918   /// Rotate left by rotateAmt.
919   APInt rotl(const APInt &rotateAmt) const;
920 
921   /// Rotate right by rotateAmt.
922   APInt rotr(const APInt &rotateAmt) const;
923 
924   /// Concatenate the bits from "NewLSB" onto the bottom of *this.  This is
925   /// equivalent to:
926   ///   (this->zext(NewWidth) << NewLSB.getBitWidth()) | NewLSB.zext(NewWidth)
concat(const APInt & NewLSB)927   APInt concat(const APInt &NewLSB) const {
928     /// If the result will be small, then both the merged values are small.
929     unsigned NewWidth = getBitWidth() + NewLSB.getBitWidth();
930     if (NewWidth <= APINT_BITS_PER_WORD)
931       return APInt(NewWidth, (U.VAL << NewLSB.getBitWidth()) | NewLSB.U.VAL);
932     return concatSlowCase(NewLSB);
933   }
934 
935   /// Unsigned division operation.
936   ///
937   /// Perform an unsigned divide operation on this APInt by RHS. Both this and
938   /// RHS are treated as unsigned quantities for purposes of this division.
939   ///
940   /// \returns a new APInt value containing the division result, rounded towards
941   /// zero.
942   APInt udiv(const APInt &RHS) const;
943   APInt udiv(uint64_t RHS) const;
944 
945   /// Signed division function for APInt.
946   ///
947   /// Signed divide this APInt by APInt RHS.
948   ///
949   /// The result is rounded towards zero.
950   APInt sdiv(const APInt &RHS) const;
951   APInt sdiv(int64_t RHS) const;
952 
953   /// Unsigned remainder operation.
954   ///
955   /// Perform an unsigned remainder operation on this APInt with RHS being the
956   /// divisor. Both this and RHS are treated as unsigned quantities for purposes
957   /// of this operation.
958   ///
959   /// \returns a new APInt value containing the remainder result
960   APInt urem(const APInt &RHS) const;
961   uint64_t urem(uint64_t RHS) const;
962 
963   /// Function for signed remainder operation.
964   ///
965   /// Signed remainder operation on APInt.
966   ///
967   /// Note that this is a true remainder operation and not a modulo operation
968   /// because the sign follows the sign of the dividend which is *this.
969   APInt srem(const APInt &RHS) const;
970   int64_t srem(int64_t RHS) const;
971 
972   /// Dual division/remainder interface.
973   ///
974   /// Sometimes it is convenient to divide two APInt values and obtain both the
975   /// quotient and remainder. This function does both operations in the same
976   /// computation making it a little more efficient. The pair of input arguments
977   /// may overlap with the pair of output arguments. It is safe to call
978   /// udivrem(X, Y, X, Y), for example.
979   static void udivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient,
980                       APInt &Remainder);
981   static void udivrem(const APInt &LHS, uint64_t RHS, APInt &Quotient,
982                       uint64_t &Remainder);
983 
984   static void sdivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient,
985                       APInt &Remainder);
986   static void sdivrem(const APInt &LHS, int64_t RHS, APInt &Quotient,
987                       int64_t &Remainder);
988 
989   // Operations that return overflow indicators.
990   APInt sadd_ov(const APInt &RHS, bool &Overflow) const;
991   APInt uadd_ov(const APInt &RHS, bool &Overflow) const;
992   APInt ssub_ov(const APInt &RHS, bool &Overflow) const;
993   APInt usub_ov(const APInt &RHS, bool &Overflow) const;
994   APInt sdiv_ov(const APInt &RHS, bool &Overflow) const;
995   APInt smul_ov(const APInt &RHS, bool &Overflow) const;
996   APInt umul_ov(const APInt &RHS, bool &Overflow) const;
997   APInt sshl_ov(const APInt &Amt, bool &Overflow) const;
998   APInt sshl_ov(unsigned Amt, bool &Overflow) const;
999   APInt ushl_ov(const APInt &Amt, bool &Overflow) const;
1000   APInt ushl_ov(unsigned Amt, bool &Overflow) const;
1001 
1002   /// Signed integer floor division operation.
1003   ///
1004   /// Rounds towards negative infinity, i.e. 5 / -2 = -3. Iff minimum value
1005   /// divided by -1 set Overflow to true.
1006   APInt sfloordiv_ov(const APInt &RHS, bool &Overflow) const;
1007 
1008   // Operations that saturate
1009   APInt sadd_sat(const APInt &RHS) const;
1010   APInt uadd_sat(const APInt &RHS) const;
1011   APInt ssub_sat(const APInt &RHS) const;
1012   APInt usub_sat(const APInt &RHS) const;
1013   APInt smul_sat(const APInt &RHS) const;
1014   APInt umul_sat(const APInt &RHS) const;
1015   APInt sshl_sat(const APInt &RHS) const;
1016   APInt sshl_sat(unsigned RHS) const;
1017   APInt ushl_sat(const APInt &RHS) const;
1018   APInt ushl_sat(unsigned RHS) const;
1019 
1020   /// Array-indexing support.
1021   ///
1022   /// \returns the bit value at bitPosition
1023   bool operator[](unsigned bitPosition) const {
1024     assert(bitPosition < getBitWidth() && "Bit position out of bounds!");
1025     return (maskBit(bitPosition) & getWord(bitPosition)) != 0;
1026   }
1027 
1028   /// @}
1029   /// \name Comparison Operators
1030   /// @{
1031 
1032   /// Equality operator.
1033   ///
1034   /// Compares this APInt with RHS for the validity of the equality
1035   /// relationship.
1036   bool operator==(const APInt &RHS) const {
1037     assert(BitWidth == RHS.BitWidth && "Comparison requires equal bit widths");
1038     if (isSingleWord())
1039       return U.VAL == RHS.U.VAL;
1040     return equalSlowCase(RHS);
1041   }
1042 
1043   /// Equality operator.
1044   ///
1045   /// Compares this APInt with a uint64_t for the validity of the equality
1046   /// relationship.
1047   ///
1048   /// \returns true if *this == Val
1049   bool operator==(uint64_t Val) const {
1050     return (isSingleWord() || getActiveBits() <= 64) && getZExtValue() == Val;
1051   }
1052 
1053   /// Equality comparison.
1054   ///
1055   /// Compares this APInt with RHS for the validity of the equality
1056   /// relationship.
1057   ///
1058   /// \returns true if *this == Val
eq(const APInt & RHS)1059   bool eq(const APInt &RHS) const { return (*this) == RHS; }
1060 
1061   /// Inequality operator.
1062   ///
1063   /// Compares this APInt with RHS for the validity of the inequality
1064   /// relationship.
1065   ///
1066   /// \returns true if *this != Val
1067   bool operator!=(const APInt &RHS) const { return !((*this) == RHS); }
1068 
1069   /// Inequality operator.
1070   ///
1071   /// Compares this APInt with a uint64_t for the validity of the inequality
1072   /// relationship.
1073   ///
1074   /// \returns true if *this != Val
1075   bool operator!=(uint64_t Val) const { return !((*this) == Val); }
1076 
1077   /// Inequality comparison
1078   ///
1079   /// Compares this APInt with RHS for the validity of the inequality
1080   /// relationship.
1081   ///
1082   /// \returns true if *this != Val
ne(const APInt & RHS)1083   bool ne(const APInt &RHS) const { return !((*this) == RHS); }
1084 
1085   /// Unsigned less than comparison
1086   ///
1087   /// Regards both *this and RHS as unsigned quantities and compares them for
1088   /// the validity of the less-than relationship.
1089   ///
1090   /// \returns true if *this < RHS when both are considered unsigned.
ult(const APInt & RHS)1091   bool ult(const APInt &RHS) const { return compare(RHS) < 0; }
1092 
1093   /// Unsigned less than comparison
1094   ///
1095   /// Regards both *this as an unsigned quantity and compares it with RHS for
1096   /// the validity of the less-than relationship.
1097   ///
1098   /// \returns true if *this < RHS when considered unsigned.
ult(uint64_t RHS)1099   bool ult(uint64_t RHS) const {
1100     // Only need to check active bits if not a single word.
1101     return (isSingleWord() || getActiveBits() <= 64) && getZExtValue() < RHS;
1102   }
1103 
1104   /// Signed less than comparison
1105   ///
1106   /// Regards both *this and RHS as signed quantities and compares them for
1107   /// validity of the less-than relationship.
1108   ///
1109   /// \returns true if *this < RHS when both are considered signed.
slt(const APInt & RHS)1110   bool slt(const APInt &RHS) const { return compareSigned(RHS) < 0; }
1111 
1112   /// Signed less than comparison
1113   ///
1114   /// Regards both *this as a signed quantity and compares it with RHS for
1115   /// the validity of the less-than relationship.
1116   ///
1117   /// \returns true if *this < RHS when considered signed.
slt(int64_t RHS)1118   bool slt(int64_t RHS) const {
1119     return (!isSingleWord() && getSignificantBits() > 64)
1120                ? isNegative()
1121                : getSExtValue() < RHS;
1122   }
1123 
1124   /// Unsigned less or equal comparison
1125   ///
1126   /// Regards both *this and RHS as unsigned quantities and compares them for
1127   /// validity of the less-or-equal relationship.
1128   ///
1129   /// \returns true if *this <= RHS when both are considered unsigned.
ule(const APInt & RHS)1130   bool ule(const APInt &RHS) const { return compare(RHS) <= 0; }
1131 
1132   /// Unsigned less or equal comparison
1133   ///
1134   /// Regards both *this as an unsigned quantity and compares it with RHS for
1135   /// the validity of the less-or-equal relationship.
1136   ///
1137   /// \returns true if *this <= RHS when considered unsigned.
ule(uint64_t RHS)1138   bool ule(uint64_t RHS) const { return !ugt(RHS); }
1139 
1140   /// Signed less or equal comparison
1141   ///
1142   /// Regards both *this and RHS as signed quantities and compares them for
1143   /// validity of the less-or-equal relationship.
1144   ///
1145   /// \returns true if *this <= RHS when both are considered signed.
sle(const APInt & RHS)1146   bool sle(const APInt &RHS) const { return compareSigned(RHS) <= 0; }
1147 
1148   /// Signed less or equal comparison
1149   ///
1150   /// Regards both *this as a signed quantity and compares it with RHS for the
1151   /// validity of the less-or-equal relationship.
1152   ///
1153   /// \returns true if *this <= RHS when considered signed.
sle(uint64_t RHS)1154   bool sle(uint64_t RHS) const { return !sgt(RHS); }
1155 
1156   /// Unsigned greater than comparison
1157   ///
1158   /// Regards both *this and RHS as unsigned quantities and compares them for
1159   /// the validity of the greater-than relationship.
1160   ///
1161   /// \returns true if *this > RHS when both are considered unsigned.
ugt(const APInt & RHS)1162   bool ugt(const APInt &RHS) const { return !ule(RHS); }
1163 
1164   /// Unsigned greater than comparison
1165   ///
1166   /// Regards both *this as an unsigned quantity and compares it with RHS for
1167   /// the validity of the greater-than relationship.
1168   ///
1169   /// \returns true if *this > RHS when considered unsigned.
ugt(uint64_t RHS)1170   bool ugt(uint64_t RHS) const {
1171     // Only need to check active bits if not a single word.
1172     return (!isSingleWord() && getActiveBits() > 64) || getZExtValue() > RHS;
1173   }
1174 
1175   /// Signed greater than comparison
1176   ///
1177   /// Regards both *this and RHS as signed quantities and compares them for the
1178   /// validity of the greater-than relationship.
1179   ///
1180   /// \returns true if *this > RHS when both are considered signed.
sgt(const APInt & RHS)1181   bool sgt(const APInt &RHS) const { return !sle(RHS); }
1182 
1183   /// Signed greater than comparison
1184   ///
1185   /// Regards both *this as a signed quantity and compares it with RHS for
1186   /// the validity of the greater-than relationship.
1187   ///
1188   /// \returns true if *this > RHS when considered signed.
sgt(int64_t RHS)1189   bool sgt(int64_t RHS) const {
1190     return (!isSingleWord() && getSignificantBits() > 64)
1191                ? !isNegative()
1192                : getSExtValue() > RHS;
1193   }
1194 
1195   /// Unsigned greater or equal comparison
1196   ///
1197   /// Regards both *this and RHS as unsigned quantities and compares them for
1198   /// validity of the greater-or-equal relationship.
1199   ///
1200   /// \returns true if *this >= RHS when both are considered unsigned.
uge(const APInt & RHS)1201   bool uge(const APInt &RHS) const { return !ult(RHS); }
1202 
1203   /// Unsigned greater or equal comparison
1204   ///
1205   /// Regards both *this as an unsigned quantity and compares it with RHS for
1206   /// the validity of the greater-or-equal relationship.
1207   ///
1208   /// \returns true if *this >= RHS when considered unsigned.
uge(uint64_t RHS)1209   bool uge(uint64_t RHS) const { return !ult(RHS); }
1210 
1211   /// Signed greater or equal comparison
1212   ///
1213   /// Regards both *this and RHS as signed quantities and compares them for
1214   /// validity of the greater-or-equal relationship.
1215   ///
1216   /// \returns true if *this >= RHS when both are considered signed.
sge(const APInt & RHS)1217   bool sge(const APInt &RHS) const { return !slt(RHS); }
1218 
1219   /// Signed greater or equal comparison
1220   ///
1221   /// Regards both *this as a signed quantity and compares it with RHS for
1222   /// the validity of the greater-or-equal relationship.
1223   ///
1224   /// \returns true if *this >= RHS when considered signed.
sge(int64_t RHS)1225   bool sge(int64_t RHS) const { return !slt(RHS); }
1226 
1227   /// This operation tests if there are any pairs of corresponding bits
1228   /// between this APInt and RHS that are both set.
intersects(const APInt & RHS)1229   bool intersects(const APInt &RHS) const {
1230     assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
1231     if (isSingleWord())
1232       return (U.VAL & RHS.U.VAL) != 0;
1233     return intersectsSlowCase(RHS);
1234   }
1235 
1236   /// This operation checks that all bits set in this APInt are also set in RHS.
isSubsetOf(const APInt & RHS)1237   bool isSubsetOf(const APInt &RHS) const {
1238     assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
1239     if (isSingleWord())
1240       return (U.VAL & ~RHS.U.VAL) == 0;
1241     return isSubsetOfSlowCase(RHS);
1242   }
1243 
1244   /// @}
1245   /// \name Resizing Operators
1246   /// @{
1247 
1248   /// Truncate to new width.
1249   ///
1250   /// Truncate the APInt to a specified width. It is an error to specify a width
1251   /// that is greater than the current width.
1252   APInt trunc(unsigned width) const;
1253 
1254   /// Truncate to new width with unsigned saturation.
1255   ///
1256   /// If the APInt, treated as unsigned integer, can be losslessly truncated to
1257   /// the new bitwidth, then return truncated APInt. Else, return max value.
1258   APInt truncUSat(unsigned width) const;
1259 
1260   /// Truncate to new width with signed saturation.
1261   ///
1262   /// If this APInt, treated as signed integer, can be losslessly truncated to
1263   /// the new bitwidth, then return truncated APInt. Else, return either
1264   /// signed min value if the APInt was negative, or signed max value.
1265   APInt truncSSat(unsigned width) const;
1266 
1267   /// Sign extend to a new width.
1268   ///
1269   /// This operation sign extends the APInt to a new width. If the high order
1270   /// bit is set, the fill on the left will be done with 1 bits, otherwise zero.
1271   /// It is an error to specify a width that is less than the
1272   /// current width.
1273   APInt sext(unsigned width) const;
1274 
1275   /// Zero extend to a new width.
1276   ///
1277   /// This operation zero extends the APInt to a new width. The high order bits
1278   /// are filled with 0 bits.  It is an error to specify a width that is less
1279   /// than the current width.
1280   APInt zext(unsigned width) const;
1281 
1282   /// Sign extend or truncate to width
1283   ///
1284   /// Make this APInt have the bit width given by \p width. The value is sign
1285   /// extended, truncated, or left alone to make it that width.
1286   APInt sextOrTrunc(unsigned width) const;
1287 
1288   /// Zero extend or truncate to width
1289   ///
1290   /// Make this APInt have the bit width given by \p width. The value is zero
1291   /// extended, truncated, or left alone to make it that width.
1292   APInt zextOrTrunc(unsigned width) const;
1293 
1294   /// @}
1295   /// \name Bit Manipulation Operators
1296   /// @{
1297 
1298   /// Set every bit to 1.
setAllBits()1299   void setAllBits() {
1300     if (isSingleWord())
1301       U.VAL = WORDTYPE_MAX;
1302     else
1303       // Set all the bits in all the words.
1304       memset(U.pVal, -1, getNumWords() * APINT_WORD_SIZE);
1305     // Clear the unused ones
1306     clearUnusedBits();
1307   }
1308 
1309   /// Set the given bit to 1 whose position is given as "bitPosition".
setBit(unsigned BitPosition)1310   void setBit(unsigned BitPosition) {
1311     assert(BitPosition < BitWidth && "BitPosition out of range");
1312     WordType Mask = maskBit(BitPosition);
1313     if (isSingleWord())
1314       U.VAL |= Mask;
1315     else
1316       U.pVal[whichWord(BitPosition)] |= Mask;
1317   }
1318 
1319   /// Set the sign bit to 1.
setSignBit()1320   void setSignBit() { setBit(BitWidth - 1); }
1321 
1322   /// Set a given bit to a given value.
setBitVal(unsigned BitPosition,bool BitValue)1323   void setBitVal(unsigned BitPosition, bool BitValue) {
1324     if (BitValue)
1325       setBit(BitPosition);
1326     else
1327       clearBit(BitPosition);
1328   }
1329 
1330   /// Set the bits from loBit (inclusive) to hiBit (exclusive) to 1.
1331   /// This function handles "wrap" case when \p loBit >= \p hiBit, and calls
1332   /// setBits when \p loBit < \p hiBit.
1333   /// For \p loBit == \p hiBit wrap case, set every bit to 1.
setBitsWithWrap(unsigned loBit,unsigned hiBit)1334   void setBitsWithWrap(unsigned loBit, unsigned hiBit) {
1335     assert(hiBit <= BitWidth && "hiBit out of range");
1336     assert(loBit <= BitWidth && "loBit out of range");
1337     if (loBit < hiBit) {
1338       setBits(loBit, hiBit);
1339       return;
1340     }
1341     setLowBits(hiBit);
1342     setHighBits(BitWidth - loBit);
1343   }
1344 
1345   /// Set the bits from loBit (inclusive) to hiBit (exclusive) to 1.
1346   /// This function handles case when \p loBit <= \p hiBit.
setBits(unsigned loBit,unsigned hiBit)1347   void setBits(unsigned loBit, unsigned hiBit) {
1348     assert(hiBit <= BitWidth && "hiBit out of range");
1349     assert(loBit <= BitWidth && "loBit out of range");
1350     assert(loBit <= hiBit && "loBit greater than hiBit");
1351     if (loBit == hiBit)
1352       return;
1353     if (loBit < APINT_BITS_PER_WORD && hiBit <= APINT_BITS_PER_WORD) {
1354       uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - (hiBit - loBit));
1355       mask <<= loBit;
1356       if (isSingleWord())
1357         U.VAL |= mask;
1358       else
1359         U.pVal[0] |= mask;
1360     } else {
1361       setBitsSlowCase(loBit, hiBit);
1362     }
1363   }
1364 
1365   /// Set the top bits starting from loBit.
setBitsFrom(unsigned loBit)1366   void setBitsFrom(unsigned loBit) { return setBits(loBit, BitWidth); }
1367 
1368   /// Set the bottom loBits bits.
setLowBits(unsigned loBits)1369   void setLowBits(unsigned loBits) { return setBits(0, loBits); }
1370 
1371   /// Set the top hiBits bits.
setHighBits(unsigned hiBits)1372   void setHighBits(unsigned hiBits) {
1373     return setBits(BitWidth - hiBits, BitWidth);
1374   }
1375 
1376   /// Set every bit to 0.
clearAllBits()1377   void clearAllBits() {
1378     if (isSingleWord())
1379       U.VAL = 0;
1380     else
1381       memset(U.pVal, 0, getNumWords() * APINT_WORD_SIZE);
1382   }
1383 
1384   /// Set a given bit to 0.
1385   ///
1386   /// Set the given bit to 0 whose position is given as "bitPosition".
clearBit(unsigned BitPosition)1387   void clearBit(unsigned BitPosition) {
1388     assert(BitPosition < BitWidth && "BitPosition out of range");
1389     WordType Mask = ~maskBit(BitPosition);
1390     if (isSingleWord())
1391       U.VAL &= Mask;
1392     else
1393       U.pVal[whichWord(BitPosition)] &= Mask;
1394   }
1395 
1396   /// Set bottom loBits bits to 0.
clearLowBits(unsigned loBits)1397   void clearLowBits(unsigned loBits) {
1398     assert(loBits <= BitWidth && "More bits than bitwidth");
1399     APInt Keep = getHighBitsSet(BitWidth, BitWidth - loBits);
1400     *this &= Keep;
1401   }
1402 
1403   /// Set top hiBits bits to 0.
clearHighBits(unsigned hiBits)1404   void clearHighBits(unsigned hiBits) {
1405     assert(hiBits <= BitWidth && "More bits than bitwidth");
1406     APInt Keep = getLowBitsSet(BitWidth, BitWidth - hiBits);
1407     *this &= Keep;
1408   }
1409 
1410   /// Set the sign bit to 0.
clearSignBit()1411   void clearSignBit() { clearBit(BitWidth - 1); }
1412 
1413   /// Toggle every bit to its opposite value.
flipAllBits()1414   void flipAllBits() {
1415     if (isSingleWord()) {
1416       U.VAL ^= WORDTYPE_MAX;
1417       clearUnusedBits();
1418     } else {
1419       flipAllBitsSlowCase();
1420     }
1421   }
1422 
1423   /// Toggles a given bit to its opposite value.
1424   ///
1425   /// Toggle a given bit to its opposite value whose position is given
1426   /// as "bitPosition".
1427   void flipBit(unsigned bitPosition);
1428 
1429   /// Negate this APInt in place.
negate()1430   void negate() {
1431     flipAllBits();
1432     ++(*this);
1433   }
1434 
1435   /// Insert the bits from a smaller APInt starting at bitPosition.
1436   void insertBits(const APInt &SubBits, unsigned bitPosition);
1437   void insertBits(uint64_t SubBits, unsigned bitPosition, unsigned numBits);
1438 
1439   /// Return an APInt with the extracted bits [bitPosition,bitPosition+numBits).
1440   APInt extractBits(unsigned numBits, unsigned bitPosition) const;
1441   uint64_t extractBitsAsZExtValue(unsigned numBits, unsigned bitPosition) const;
1442 
1443   /// @}
1444   /// \name Value Characterization Functions
1445   /// @{
1446 
1447   /// Return the number of bits in the APInt.
getBitWidth()1448   unsigned getBitWidth() const { return BitWidth; }
1449 
1450   /// Get the number of words.
1451   ///
1452   /// Here one word's bitwidth equals to that of uint64_t.
1453   ///
1454   /// \returns the number of words to hold the integer value of this APInt.
getNumWords()1455   unsigned getNumWords() const { return getNumWords(BitWidth); }
1456 
1457   /// Get the number of words.
1458   ///
1459   /// *NOTE* Here one word's bitwidth equals to that of uint64_t.
1460   ///
1461   /// \returns the number of words to hold the integer value with a given bit
1462   /// width.
getNumWords(unsigned BitWidth)1463   static unsigned getNumWords(unsigned BitWidth) {
1464     return ((uint64_t)BitWidth + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD;
1465   }
1466 
1467   /// Compute the number of active bits in the value
1468   ///
1469   /// This function returns the number of active bits which is defined as the
1470   /// bit width minus the number of leading zeros. This is used in several
1471   /// computations to see how "wide" the value is.
getActiveBits()1472   unsigned getActiveBits() const { return BitWidth - countl_zero(); }
1473 
1474   /// Compute the number of active words in the value of this APInt.
1475   ///
1476   /// This is used in conjunction with getActiveData to extract the raw value of
1477   /// the APInt.
getActiveWords()1478   unsigned getActiveWords() const {
1479     unsigned numActiveBits = getActiveBits();
1480     return numActiveBits ? whichWord(numActiveBits - 1) + 1 : 1;
1481   }
1482 
1483   /// Get the minimum bit size for this signed APInt
1484   ///
1485   /// Computes the minimum bit width for this APInt while considering it to be a
1486   /// signed (and probably negative) value. If the value is not negative, this
1487   /// function returns the same value as getActiveBits()+1. Otherwise, it
1488   /// returns the smallest bit width that will retain the negative value. For
1489   /// example, -1 can be written as 0b1 or 0xFFFFFFFFFF. 0b1 is shorter and so
1490   /// for -1, this function will always return 1.
getSignificantBits()1491   unsigned getSignificantBits() const {
1492     return BitWidth - getNumSignBits() + 1;
1493   }
1494 
1495   /// Get zero extended value
1496   ///
1497   /// This method attempts to return the value of this APInt as a zero extended
1498   /// uint64_t. The bitwidth must be <= 64 or the value must fit within a
1499   /// uint64_t. Otherwise an assertion will result.
getZExtValue()1500   uint64_t getZExtValue() const {
1501     if (isSingleWord())
1502       return U.VAL;
1503     assert(getActiveBits() <= 64 && "Too many bits for uint64_t");
1504     return U.pVal[0];
1505   }
1506 
1507   /// Get zero extended value if possible
1508   ///
1509   /// This method attempts to return the value of this APInt as a zero extended
1510   /// uint64_t. The bitwidth must be <= 64 or the value must fit within a
1511   /// uint64_t. Otherwise no value is returned.
tryZExtValue()1512   std::optional<uint64_t> tryZExtValue() const {
1513     return (getActiveBits() <= 64) ? std::optional<uint64_t>(getZExtValue())
1514                                    : std::nullopt;
1515   };
1516 
1517   /// Get sign extended value
1518   ///
1519   /// This method attempts to return the value of this APInt as a sign extended
1520   /// int64_t. The bit width must be <= 64 or the value must fit within an
1521   /// int64_t. Otherwise an assertion will result.
getSExtValue()1522   int64_t getSExtValue() const {
1523     if (isSingleWord())
1524       return SignExtend64(U.VAL, BitWidth);
1525     assert(getSignificantBits() <= 64 && "Too many bits for int64_t");
1526     return int64_t(U.pVal[0]);
1527   }
1528 
1529   /// Get sign extended value if possible
1530   ///
1531   /// This method attempts to return the value of this APInt as a sign extended
1532   /// int64_t. The bitwidth must be <= 64 or the value must fit within an
1533   /// int64_t. Otherwise no value is returned.
trySExtValue()1534   std::optional<int64_t> trySExtValue() const {
1535     return (getSignificantBits() <= 64) ? std::optional<int64_t>(getSExtValue())
1536                                         : std::nullopt;
1537   };
1538 
1539   /// Get bits required for string value.
1540   ///
1541   /// This method determines how many bits are required to hold the APInt
1542   /// equivalent of the string given by \p str.
1543   static unsigned getBitsNeeded(StringRef str, uint8_t radix);
1544 
1545   /// Get the bits that are sufficient to represent the string value. This may
1546   /// over estimate the amount of bits required, but it does not require
1547   /// parsing the value in the string.
1548   static unsigned getSufficientBitsNeeded(StringRef Str, uint8_t Radix);
1549 
1550   /// The APInt version of std::countl_zero.
1551   ///
1552   /// It counts the number of zeros from the most significant bit to the first
1553   /// one bit.
1554   ///
1555   /// \returns BitWidth if the value is zero, otherwise returns the number of
1556   ///   zeros from the most significant bit to the first one bits.
countl_zero()1557   unsigned countl_zero() const {
1558     if (isSingleWord()) {
1559       unsigned unusedBits = APINT_BITS_PER_WORD - BitWidth;
1560       return llvm::countl_zero(U.VAL) - unusedBits;
1561     }
1562     return countLeadingZerosSlowCase();
1563   }
1564 
countLeadingZeros()1565   unsigned countLeadingZeros() const { return countl_zero(); }
1566 
1567   /// Count the number of leading one bits.
1568   ///
1569   /// This function is an APInt version of std::countl_one. It counts the number
1570   /// of ones from the most significant bit to the first zero bit.
1571   ///
1572   /// \returns 0 if the high order bit is not set, otherwise returns the number
1573   /// of 1 bits from the most significant to the least
countl_one()1574   unsigned countl_one() const {
1575     if (isSingleWord()) {
1576       if (LLVM_UNLIKELY(BitWidth == 0))
1577         return 0;
1578       return llvm::countl_one(U.VAL << (APINT_BITS_PER_WORD - BitWidth));
1579     }
1580     return countLeadingOnesSlowCase();
1581   }
1582 
countLeadingOnes()1583   unsigned countLeadingOnes() const { return countl_one(); }
1584 
1585   /// Computes the number of leading bits of this APInt that are equal to its
1586   /// sign bit.
getNumSignBits()1587   unsigned getNumSignBits() const {
1588     return isNegative() ? countl_one() : countl_zero();
1589   }
1590 
1591   /// Count the number of trailing zero bits.
1592   ///
1593   /// This function is an APInt version of std::countr_zero. It counts the
1594   /// number of zeros from the least significant bit to the first set bit.
1595   ///
1596   /// \returns BitWidth if the value is zero, otherwise returns the number of
1597   /// zeros from the least significant bit to the first one bit.
countr_zero()1598   unsigned countr_zero() const {
1599     if (isSingleWord()) {
1600       unsigned TrailingZeros = llvm::countr_zero(U.VAL);
1601       return (TrailingZeros > BitWidth ? BitWidth : TrailingZeros);
1602     }
1603     return countTrailingZerosSlowCase();
1604   }
1605 
countTrailingZeros()1606   unsigned countTrailingZeros() const { return countr_zero(); }
1607 
1608   /// Count the number of trailing one bits.
1609   ///
1610   /// This function is an APInt version of std::countr_one. It counts the number
1611   /// of ones from the least significant bit to the first zero bit.
1612   ///
1613   /// \returns BitWidth if the value is all ones, otherwise returns the number
1614   /// of ones from the least significant bit to the first zero bit.
countr_one()1615   unsigned countr_one() const {
1616     if (isSingleWord())
1617       return llvm::countr_one(U.VAL);
1618     return countTrailingOnesSlowCase();
1619   }
1620 
countTrailingOnes()1621   unsigned countTrailingOnes() const { return countr_one(); }
1622 
1623   /// Count the number of bits set.
1624   ///
1625   /// This function is an APInt version of std::popcount. It counts the number
1626   /// of 1 bits in the APInt value.
1627   ///
1628   /// \returns 0 if the value is zero, otherwise returns the number of set bits.
popcount()1629   unsigned popcount() const {
1630     if (isSingleWord())
1631       return llvm::popcount(U.VAL);
1632     return countPopulationSlowCase();
1633   }
1634 
1635   /// @}
1636   /// \name Conversion Functions
1637   /// @{
1638   void print(raw_ostream &OS, bool isSigned) const;
1639 
1640   /// Converts an APInt to a string and append it to Str.  Str is commonly a
1641   /// SmallString. If Radix > 10, UpperCase determine the case of letter
1642   /// digits.
1643   void toString(SmallVectorImpl<char> &Str, unsigned Radix, bool Signed,
1644                 bool formatAsCLiteral = false, bool UpperCase = true,
1645                 bool InsertSeparators = false) const;
1646 
1647   /// Considers the APInt to be unsigned and converts it into a string in the
1648   /// radix given. The radix can be 2, 8, 10 16, or 36.
1649   void toStringUnsigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
1650     toString(Str, Radix, false, false);
1651   }
1652 
1653   /// Considers the APInt to be signed and converts it into a string in the
1654   /// radix given. The radix can be 2, 8, 10, 16, or 36.
1655   void toStringSigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
1656     toString(Str, Radix, true, false);
1657   }
1658 
1659   /// \returns a byte-swapped representation of this APInt Value.
1660   APInt byteSwap() const;
1661 
1662   /// \returns the value with the bit representation reversed of this APInt
1663   /// Value.
1664   APInt reverseBits() const;
1665 
1666   /// Converts this APInt to a double value.
1667   double roundToDouble(bool isSigned) const;
1668 
1669   /// Converts this unsigned APInt to a double value.
roundToDouble()1670   double roundToDouble() const { return roundToDouble(false); }
1671 
1672   /// Converts this signed APInt to a double value.
signedRoundToDouble()1673   double signedRoundToDouble() const { return roundToDouble(true); }
1674 
1675   /// Converts APInt bits to a double
1676   ///
1677   /// The conversion does not do a translation from integer to double, it just
1678   /// re-interprets the bits as a double. Note that it is valid to do this on
1679   /// any bit width. Exactly 64 bits will be translated.
bitsToDouble()1680   double bitsToDouble() const { return llvm::bit_cast<double>(getWord(0)); }
1681 
1682 #ifdef HAS_IEE754_FLOAT128
bitsToQuad()1683   float128 bitsToQuad() const {
1684     __uint128_t ul = ((__uint128_t)U.pVal[1] << 64) + U.pVal[0];
1685     return llvm::bit_cast<float128>(ul);
1686   }
1687 #endif
1688 
1689   /// Converts APInt bits to a float
1690   ///
1691   /// The conversion does not do a translation from integer to float, it just
1692   /// re-interprets the bits as a float. Note that it is valid to do this on
1693   /// any bit width. Exactly 32 bits will be translated.
bitsToFloat()1694   float bitsToFloat() const {
1695     return llvm::bit_cast<float>(static_cast<uint32_t>(getWord(0)));
1696   }
1697 
1698   /// Converts a double to APInt bits.
1699   ///
1700   /// The conversion does not do a translation from double to integer, it just
1701   /// re-interprets the bits of the double.
doubleToBits(double V)1702   static APInt doubleToBits(double V) {
1703     return APInt(sizeof(double) * CHAR_BIT, llvm::bit_cast<uint64_t>(V));
1704   }
1705 
1706   /// Converts a float to APInt bits.
1707   ///
1708   /// The conversion does not do a translation from float to integer, it just
1709   /// re-interprets the bits of the float.
floatToBits(float V)1710   static APInt floatToBits(float V) {
1711     return APInt(sizeof(float) * CHAR_BIT, llvm::bit_cast<uint32_t>(V));
1712   }
1713 
1714   /// @}
1715   /// \name Mathematics Operations
1716   /// @{
1717 
1718   /// \returns the floor log base 2 of this APInt.
logBase2()1719   unsigned logBase2() const { return getActiveBits() - 1; }
1720 
1721   /// \returns the ceil log base 2 of this APInt.
ceilLogBase2()1722   unsigned ceilLogBase2() const {
1723     APInt temp(*this);
1724     --temp;
1725     return temp.getActiveBits();
1726   }
1727 
1728   /// \returns the nearest log base 2 of this APInt. Ties round up.
1729   ///
1730   /// NOTE: When we have a BitWidth of 1, we define:
1731   ///
1732   ///   log2(0) = UINT32_MAX
1733   ///   log2(1) = 0
1734   ///
1735   /// to get around any mathematical concerns resulting from
1736   /// referencing 2 in a space where 2 does no exist.
1737   unsigned nearestLogBase2() const;
1738 
1739   /// \returns the log base 2 of this APInt if its an exact power of two, -1
1740   /// otherwise
exactLogBase2()1741   int32_t exactLogBase2() const {
1742     if (!isPowerOf2())
1743       return -1;
1744     return logBase2();
1745   }
1746 
1747   /// Compute the square root.
1748   APInt sqrt() const;
1749 
1750   /// Get the absolute value.  If *this is < 0 then return -(*this), otherwise
1751   /// *this.  Note that the "most negative" signed number (e.g. -128 for 8 bit
1752   /// wide APInt) is unchanged due to how negation works.
abs()1753   APInt abs() const {
1754     if (isNegative())
1755       return -(*this);
1756     return *this;
1757   }
1758 
1759   /// \returns the multiplicative inverse of an odd APInt modulo 2^BitWidth.
1760   APInt multiplicativeInverse() const;
1761 
1762   /// @}
1763   /// \name Building-block Operations for APInt and APFloat
1764   /// @{
1765 
1766   // These building block operations operate on a representation of arbitrary
1767   // precision, two's-complement, bignum integer values. They should be
1768   // sufficient to implement APInt and APFloat bignum requirements. Inputs are
1769   // generally a pointer to the base of an array of integer parts, representing
1770   // an unsigned bignum, and a count of how many parts there are.
1771 
1772   /// Sets the least significant part of a bignum to the input value, and zeroes
1773   /// out higher parts.
1774   static void tcSet(WordType *, WordType, unsigned);
1775 
1776   /// Assign one bignum to another.
1777   static void tcAssign(WordType *, const WordType *, unsigned);
1778 
1779   /// Returns true if a bignum is zero, false otherwise.
1780   static bool tcIsZero(const WordType *, unsigned);
1781 
1782   /// Extract the given bit of a bignum; returns 0 or 1.  Zero-based.
1783   static int tcExtractBit(const WordType *, unsigned bit);
1784 
1785   /// Copy the bit vector of width srcBITS from SRC, starting at bit srcLSB, to
1786   /// DST, of dstCOUNT parts, such that the bit srcLSB becomes the least
1787   /// significant bit of DST.  All high bits above srcBITS in DST are
1788   /// zero-filled.
1789   static void tcExtract(WordType *, unsigned dstCount, const WordType *,
1790                         unsigned srcBits, unsigned srcLSB);
1791 
1792   /// Set the given bit of a bignum.  Zero-based.
1793   static void tcSetBit(WordType *, unsigned bit);
1794 
1795   /// Clear the given bit of a bignum.  Zero-based.
1796   static void tcClearBit(WordType *, unsigned bit);
1797 
1798   /// Returns the bit number of the least or most significant set bit of a
1799   /// number.  If the input number has no bits set -1U is returned.
1800   static unsigned tcLSB(const WordType *, unsigned n);
1801   static unsigned tcMSB(const WordType *parts, unsigned n);
1802 
1803   /// Negate a bignum in-place.
1804   static void tcNegate(WordType *, unsigned);
1805 
1806   /// DST += RHS + CARRY where CARRY is zero or one.  Returns the carry flag.
1807   static WordType tcAdd(WordType *, const WordType *, WordType carry, unsigned);
1808   /// DST += RHS.  Returns the carry flag.
1809   static WordType tcAddPart(WordType *, WordType, unsigned);
1810 
1811   /// DST -= RHS + CARRY where CARRY is zero or one. Returns the carry flag.
1812   static WordType tcSubtract(WordType *, const WordType *, WordType carry,
1813                              unsigned);
1814   /// DST -= RHS.  Returns the carry flag.
1815   static WordType tcSubtractPart(WordType *, WordType, unsigned);
1816 
1817   /// DST += SRC * MULTIPLIER + PART   if add is true
1818   /// DST  = SRC * MULTIPLIER + PART   if add is false
1819   ///
1820   /// Requires 0 <= DSTPARTS <= SRCPARTS + 1.  If DST overlaps SRC they must
1821   /// start at the same point, i.e. DST == SRC.
1822   ///
1823   /// If DSTPARTS == SRC_PARTS + 1 no overflow occurs and zero is returned.
1824   /// Otherwise DST is filled with the least significant DSTPARTS parts of the
1825   /// result, and if all of the omitted higher parts were zero return zero,
1826   /// otherwise overflow occurred and return one.
1827   static int tcMultiplyPart(WordType *dst, const WordType *src,
1828                             WordType multiplier, WordType carry,
1829                             unsigned srcParts, unsigned dstParts, bool add);
1830 
1831   /// DST = LHS * RHS, where DST has the same width as the operands and is
1832   /// filled with the least significant parts of the result.  Returns one if
1833   /// overflow occurred, otherwise zero.  DST must be disjoint from both
1834   /// operands.
1835   static int tcMultiply(WordType *, const WordType *, const WordType *,
1836                         unsigned);
1837 
1838   /// DST = LHS * RHS, where DST has width the sum of the widths of the
1839   /// operands. No overflow occurs. DST must be disjoint from both operands.
1840   static void tcFullMultiply(WordType *, const WordType *, const WordType *,
1841                              unsigned, unsigned);
1842 
1843   /// If RHS is zero LHS and REMAINDER are left unchanged, return one.
1844   /// Otherwise set LHS to LHS / RHS with the fractional part discarded, set
1845   /// REMAINDER to the remainder, return zero.  i.e.
1846   ///
1847   ///  OLD_LHS = RHS * LHS + REMAINDER
1848   ///
1849   /// SCRATCH is a bignum of the same size as the operands and result for use by
1850   /// the routine; its contents need not be initialized and are destroyed.  LHS,
1851   /// REMAINDER and SCRATCH must be distinct.
1852   static int tcDivide(WordType *lhs, const WordType *rhs, WordType *remainder,
1853                       WordType *scratch, unsigned parts);
1854 
1855   /// Shift a bignum left Count bits. Shifted in bits are zero. There are no
1856   /// restrictions on Count.
1857   static void tcShiftLeft(WordType *, unsigned Words, unsigned Count);
1858 
1859   /// Shift a bignum right Count bits.  Shifted in bits are zero.  There are no
1860   /// restrictions on Count.
1861   static void tcShiftRight(WordType *, unsigned Words, unsigned Count);
1862 
1863   /// Comparison (unsigned) of two bignums.
1864   static int tcCompare(const WordType *, const WordType *, unsigned);
1865 
1866   /// Increment a bignum in-place.  Return the carry flag.
tcIncrement(WordType * dst,unsigned parts)1867   static WordType tcIncrement(WordType *dst, unsigned parts) {
1868     return tcAddPart(dst, 1, parts);
1869   }
1870 
1871   /// Decrement a bignum in-place.  Return the borrow flag.
tcDecrement(WordType * dst,unsigned parts)1872   static WordType tcDecrement(WordType *dst, unsigned parts) {
1873     return tcSubtractPart(dst, 1, parts);
1874   }
1875 
1876   /// Used to insert APInt objects, or objects that contain APInt objects, into
1877   ///  FoldingSets.
1878   void Profile(FoldingSetNodeID &id) const;
1879 
1880   /// debug method
1881   void dump() const;
1882 
1883   /// Returns whether this instance allocated memory.
needsCleanup()1884   bool needsCleanup() const { return !isSingleWord(); }
1885 
1886 private:
1887   /// This union is used to store the integer value. When the
1888   /// integer bit-width <= 64, it uses VAL, otherwise it uses pVal.
1889   union {
1890     uint64_t VAL;   ///< Used to store the <= 64 bits integer value.
1891     uint64_t *pVal; ///< Used to store the >64 bits integer value.
1892   } U;
1893 
1894   unsigned BitWidth = 1; ///< The number of bits in this APInt.
1895 
1896   friend struct DenseMapInfo<APInt, void>;
1897   friend class APSInt;
1898 
1899   // Make DynamicAPInt a friend so it can access BitWidth directly.
1900   friend DynamicAPInt;
1901 
1902   /// This constructor is used only internally for speed of construction of
1903   /// temporaries. It is unsafe since it takes ownership of the pointer, so it
1904   /// is not public.
1905   APInt(uint64_t *val, unsigned bits) : BitWidth(bits) { U.pVal = val; }
1906 
1907   /// Determine which word a bit is in.
1908   ///
1909   /// \returns the word position for the specified bit position.
1910   static unsigned whichWord(unsigned bitPosition) {
1911     return bitPosition / APINT_BITS_PER_WORD;
1912   }
1913 
1914   /// Determine which bit in a word the specified bit position is in.
1915   static unsigned whichBit(unsigned bitPosition) {
1916     return bitPosition % APINT_BITS_PER_WORD;
1917   }
1918 
1919   /// Get a single bit mask.
1920   ///
1921   /// \returns a uint64_t with only bit at "whichBit(bitPosition)" set
1922   /// This method generates and returns a uint64_t (word) mask for a single
1923   /// bit at a specific bit position. This is used to mask the bit in the
1924   /// corresponding word.
1925   static uint64_t maskBit(unsigned bitPosition) {
1926     return 1ULL << whichBit(bitPosition);
1927   }
1928 
1929   /// Clear unused high order bits
1930   ///
1931   /// This method is used internally to clear the top "N" bits in the high order
1932   /// word that are not used by the APInt. This is needed after the most
1933   /// significant word is assigned a value to ensure that those bits are
1934   /// zero'd out.
1935   APInt &clearUnusedBits() {
1936     // Compute how many bits are used in the final word.
1937     unsigned WordBits = ((BitWidth - 1) % APINT_BITS_PER_WORD) + 1;
1938 
1939     // Mask out the high bits.
1940     uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - WordBits);
1941     if (LLVM_UNLIKELY(BitWidth == 0))
1942       mask = 0;
1943 
1944     if (isSingleWord())
1945       U.VAL &= mask;
1946     else
1947       U.pVal[getNumWords() - 1] &= mask;
1948     return *this;
1949   }
1950 
1951   /// Get the word corresponding to a bit position
1952   /// \returns the corresponding word for the specified bit position.
1953   uint64_t getWord(unsigned bitPosition) const {
1954     return isSingleWord() ? U.VAL : U.pVal[whichWord(bitPosition)];
1955   }
1956 
1957   /// Utility method to change the bit width of this APInt to new bit width,
1958   /// allocating and/or deallocating as necessary. There is no guarantee on the
1959   /// value of any bits upon return. Caller should populate the bits after.
1960   void reallocate(unsigned NewBitWidth);
1961 
1962   /// Convert a char array into an APInt
1963   ///
1964   /// \param radix 2, 8, 10, 16, or 36
1965   /// Converts a string into a number.  The string must be non-empty
1966   /// and well-formed as a number of the given base. The bit-width
1967   /// must be sufficient to hold the result.
1968   ///
1969   /// This is used by the constructors that take string arguments.
1970   ///
1971   /// StringRef::getAsInteger is superficially similar but (1) does
1972   /// not assume that the string is well-formed and (2) grows the
1973   /// result to hold the input.
1974   void fromString(unsigned numBits, StringRef str, uint8_t radix);
1975 
1976   /// An internal division function for dividing APInts.
1977   ///
1978   /// This is used by the toString method to divide by the radix. It simply
1979   /// provides a more convenient form of divide for internal use since KnuthDiv
1980   /// has specific constraints on its inputs. If those constraints are not met
1981   /// then it provides a simpler form of divide.
1982   static void divide(const WordType *LHS, unsigned lhsWords,
1983                      const WordType *RHS, unsigned rhsWords, WordType *Quotient,
1984                      WordType *Remainder);
1985 
1986   /// out-of-line slow case for inline constructor
1987   void initSlowCase(uint64_t val, bool isSigned);
1988 
1989   /// shared code between two array constructors
1990   void initFromArray(ArrayRef<uint64_t> array);
1991 
1992   /// out-of-line slow case for inline copy constructor
1993   void initSlowCase(const APInt &that);
1994 
1995   /// out-of-line slow case for shl
1996   void shlSlowCase(unsigned ShiftAmt);
1997 
1998   /// out-of-line slow case for lshr.
1999   void lshrSlowCase(unsigned ShiftAmt);
2000 
2001   /// out-of-line slow case for ashr.
2002   void ashrSlowCase(unsigned ShiftAmt);
2003 
2004   /// out-of-line slow case for operator=
2005   void assignSlowCase(const APInt &RHS);
2006 
2007   /// out-of-line slow case for operator==
2008   bool equalSlowCase(const APInt &RHS) const LLVM_READONLY;
2009 
2010   /// out-of-line slow case for countLeadingZeros
2011   unsigned countLeadingZerosSlowCase() const LLVM_READONLY;
2012 
2013   /// out-of-line slow case for countLeadingOnes.
2014   unsigned countLeadingOnesSlowCase() const LLVM_READONLY;
2015 
2016   /// out-of-line slow case for countTrailingZeros.
2017   unsigned countTrailingZerosSlowCase() const LLVM_READONLY;
2018 
2019   /// out-of-line slow case for countTrailingOnes
2020   unsigned countTrailingOnesSlowCase() const LLVM_READONLY;
2021 
2022   /// out-of-line slow case for countPopulation
2023   unsigned countPopulationSlowCase() const LLVM_READONLY;
2024 
2025   /// out-of-line slow case for intersects.
2026   bool intersectsSlowCase(const APInt &RHS) const LLVM_READONLY;
2027 
2028   /// out-of-line slow case for isSubsetOf.
2029   bool isSubsetOfSlowCase(const APInt &RHS) const LLVM_READONLY;
2030 
2031   /// out-of-line slow case for setBits.
2032   void setBitsSlowCase(unsigned loBit, unsigned hiBit);
2033 
2034   /// out-of-line slow case for flipAllBits.
2035   void flipAllBitsSlowCase();
2036 
2037   /// out-of-line slow case for concat.
2038   APInt concatSlowCase(const APInt &NewLSB) const;
2039 
2040   /// out-of-line slow case for operator&=.
2041   void andAssignSlowCase(const APInt &RHS);
2042 
2043   /// out-of-line slow case for operator|=.
2044   void orAssignSlowCase(const APInt &RHS);
2045 
2046   /// out-of-line slow case for operator^=.
2047   void xorAssignSlowCase(const APInt &RHS);
2048 
2049   /// Unsigned comparison. Returns -1, 0, or 1 if this APInt is less than, equal
2050   /// to, or greater than RHS.
2051   int compare(const APInt &RHS) const LLVM_READONLY;
2052 
2053   /// Signed comparison. Returns -1, 0, or 1 if this APInt is less than, equal
2054   /// to, or greater than RHS.
2055   int compareSigned(const APInt &RHS) const LLVM_READONLY;
2056 
2057   /// @}
2058 };
2059 
2060 inline bool operator==(uint64_t V1, const APInt &V2) { return V2 == V1; }
2061 
2062 inline bool operator!=(uint64_t V1, const APInt &V2) { return V2 != V1; }
2063 
2064 /// Unary bitwise complement operator.
2065 ///
2066 /// \returns an APInt that is the bitwise complement of \p v.
2067 inline APInt operator~(APInt v) {
2068   v.flipAllBits();
2069   return v;
2070 }
2071 
2072 inline APInt operator&(APInt a, const APInt &b) {
2073   a &= b;
2074   return a;
2075 }
2076 
2077 inline APInt operator&(const APInt &a, APInt &&b) {
2078   b &= a;
2079   return std::move(b);
2080 }
2081 
2082 inline APInt operator&(APInt a, uint64_t RHS) {
2083   a &= RHS;
2084   return a;
2085 }
2086 
2087 inline APInt operator&(uint64_t LHS, APInt b) {
2088   b &= LHS;
2089   return b;
2090 }
2091 
2092 inline APInt operator|(APInt a, const APInt &b) {
2093   a |= b;
2094   return a;
2095 }
2096 
2097 inline APInt operator|(const APInt &a, APInt &&b) {
2098   b |= a;
2099   return std::move(b);
2100 }
2101 
2102 inline APInt operator|(APInt a, uint64_t RHS) {
2103   a |= RHS;
2104   return a;
2105 }
2106 
2107 inline APInt operator|(uint64_t LHS, APInt b) {
2108   b |= LHS;
2109   return b;
2110 }
2111 
2112 inline APInt operator^(APInt a, const APInt &b) {
2113   a ^= b;
2114   return a;
2115 }
2116 
2117 inline APInt operator^(const APInt &a, APInt &&b) {
2118   b ^= a;
2119   return std::move(b);
2120 }
2121 
2122 inline APInt operator^(APInt a, uint64_t RHS) {
2123   a ^= RHS;
2124   return a;
2125 }
2126 
2127 inline APInt operator^(uint64_t LHS, APInt b) {
2128   b ^= LHS;
2129   return b;
2130 }
2131 
2132 inline raw_ostream &operator<<(raw_ostream &OS, const APInt &I) {
2133   I.print(OS, true);
2134   return OS;
2135 }
2136 
2137 inline APInt operator-(APInt v) {
2138   v.negate();
2139   return v;
2140 }
2141 
2142 inline APInt operator+(APInt a, const APInt &b) {
2143   a += b;
2144   return a;
2145 }
2146 
2147 inline APInt operator+(const APInt &a, APInt &&b) {
2148   b += a;
2149   return std::move(b);
2150 }
2151 
2152 inline APInt operator+(APInt a, uint64_t RHS) {
2153   a += RHS;
2154   return a;
2155 }
2156 
2157 inline APInt operator+(uint64_t LHS, APInt b) {
2158   b += LHS;
2159   return b;
2160 }
2161 
2162 inline APInt operator-(APInt a, const APInt &b) {
2163   a -= b;
2164   return a;
2165 }
2166 
2167 inline APInt operator-(const APInt &a, APInt &&b) {
2168   b.negate();
2169   b += a;
2170   return std::move(b);
2171 }
2172 
2173 inline APInt operator-(APInt a, uint64_t RHS) {
2174   a -= RHS;
2175   return a;
2176 }
2177 
2178 inline APInt operator-(uint64_t LHS, APInt b) {
2179   b.negate();
2180   b += LHS;
2181   return b;
2182 }
2183 
2184 inline APInt operator*(APInt a, uint64_t RHS) {
2185   a *= RHS;
2186   return a;
2187 }
2188 
2189 inline APInt operator*(uint64_t LHS, APInt b) {
2190   b *= LHS;
2191   return b;
2192 }
2193 
2194 namespace APIntOps {
2195 
2196 /// Determine the smaller of two APInts considered to be signed.
2197 inline const APInt &smin(const APInt &A, const APInt &B) {
2198   return A.slt(B) ? A : B;
2199 }
2200 
2201 /// Determine the larger of two APInts considered to be signed.
2202 inline const APInt &smax(const APInt &A, const APInt &B) {
2203   return A.sgt(B) ? A : B;
2204 }
2205 
2206 /// Determine the smaller of two APInts considered to be unsigned.
2207 inline const APInt &umin(const APInt &A, const APInt &B) {
2208   return A.ult(B) ? A : B;
2209 }
2210 
2211 /// Determine the larger of two APInts considered to be unsigned.
2212 inline const APInt &umax(const APInt &A, const APInt &B) {
2213   return A.ugt(B) ? A : B;
2214 }
2215 
2216 /// Determine the absolute difference of two APInts considered to be signed.
2217 inline const APInt abds(const APInt &A, const APInt &B) {
2218   return A.sge(B) ? (A - B) : (B - A);
2219 }
2220 
2221 /// Determine the absolute difference of two APInts considered to be unsigned.
2222 inline const APInt abdu(const APInt &A, const APInt &B) {
2223   return A.uge(B) ? (A - B) : (B - A);
2224 }
2225 
2226 /// Compute the floor of the signed average of C1 and C2
2227 APInt avgFloorS(const APInt &C1, const APInt &C2);
2228 
2229 /// Compute the floor of the unsigned average of C1 and C2
2230 APInt avgFloorU(const APInt &C1, const APInt &C2);
2231 
2232 /// Compute the ceil of the signed average of C1 and C2
2233 APInt avgCeilS(const APInt &C1, const APInt &C2);
2234 
2235 /// Compute the ceil of the unsigned average of C1 and C2
2236 APInt avgCeilU(const APInt &C1, const APInt &C2);
2237 
2238 /// Performs (2*N)-bit multiplication on sign-extended operands.
2239 /// Returns the high N bits of the multiplication result.
2240 APInt mulhs(const APInt &C1, const APInt &C2);
2241 
2242 /// Performs (2*N)-bit multiplication on zero-extended operands.
2243 /// Returns the high N bits of the multiplication result.
2244 APInt mulhu(const APInt &C1, const APInt &C2);
2245 
2246 /// Compute GCD of two unsigned APInt values.
2247 ///
2248 /// This function returns the greatest common divisor of the two APInt values
2249 /// using Stein's algorithm.
2250 ///
2251 /// \returns the greatest common divisor of A and B.
2252 APInt GreatestCommonDivisor(APInt A, APInt B);
2253 
2254 /// Converts the given APInt to a double value.
2255 ///
2256 /// Treats the APInt as an unsigned value for conversion purposes.
2257 inline double RoundAPIntToDouble(const APInt &APIVal) {
2258   return APIVal.roundToDouble();
2259 }
2260 
2261 /// Converts the given APInt to a double value.
2262 ///
2263 /// Treats the APInt as a signed value for conversion purposes.
2264 inline double RoundSignedAPIntToDouble(const APInt &APIVal) {
2265   return APIVal.signedRoundToDouble();
2266 }
2267 
2268 /// Converts the given APInt to a float value.
2269 inline float RoundAPIntToFloat(const APInt &APIVal) {
2270   return float(RoundAPIntToDouble(APIVal));
2271 }
2272 
2273 /// Converts the given APInt to a float value.
2274 ///
2275 /// Treats the APInt as a signed value for conversion purposes.
2276 inline float RoundSignedAPIntToFloat(const APInt &APIVal) {
2277   return float(APIVal.signedRoundToDouble());
2278 }
2279 
2280 /// Converts the given double value into a APInt.
2281 ///
2282 /// This function convert a double value to an APInt value.
2283 APInt RoundDoubleToAPInt(double Double, unsigned width);
2284 
2285 /// Converts a float value into a APInt.
2286 ///
2287 /// Converts a float value into an APInt value.
2288 inline APInt RoundFloatToAPInt(float Float, unsigned width) {
2289   return RoundDoubleToAPInt(double(Float), width);
2290 }
2291 
2292 /// Return A unsign-divided by B, rounded by the given rounding mode.
2293 APInt RoundingUDiv(const APInt &A, const APInt &B, APInt::Rounding RM);
2294 
2295 /// Return A sign-divided by B, rounded by the given rounding mode.
2296 APInt RoundingSDiv(const APInt &A, const APInt &B, APInt::Rounding RM);
2297 
2298 /// Let q(n) = An^2 + Bn + C, and BW = bit width of the value range
2299 /// (e.g. 32 for i32).
2300 /// This function finds the smallest number n, such that
2301 /// (a) n >= 0 and q(n) = 0, or
2302 /// (b) n >= 1 and q(n-1) and q(n), when evaluated in the set of all
2303 ///     integers, belong to two different intervals [Rk, Rk+R),
2304 ///     where R = 2^BW, and k is an integer.
2305 /// The idea here is to find when q(n) "overflows" 2^BW, while at the
2306 /// same time "allowing" subtraction. In unsigned modulo arithmetic a
2307 /// subtraction (treated as addition of negated numbers) would always
2308 /// count as an overflow, but here we want to allow values to decrease
2309 /// and increase as long as they are within the same interval.
2310 /// Specifically, adding of two negative numbers should not cause an
2311 /// overflow (as long as the magnitude does not exceed the bit width).
2312 /// On the other hand, given a positive number, adding a negative
2313 /// number to it can give a negative result, which would cause the
2314 /// value to go from [-2^BW, 0) to [0, 2^BW). In that sense, zero is
2315 /// treated as a special case of an overflow.
2316 ///
2317 /// This function returns std::nullopt if after finding k that minimizes the
2318 /// positive solution to q(n) = kR, both solutions are contained between
2319 /// two consecutive integers.
2320 ///
2321 /// There are cases where q(n) > T, and q(n+1) < T (assuming evaluation
2322 /// in arithmetic modulo 2^BW, and treating the values as signed) by the
2323 /// virtue of *signed* overflow. This function will *not* find such an n,
2324 /// however it may find a value of n satisfying the inequalities due to
2325 /// an *unsigned* overflow (if the values are treated as unsigned).
2326 /// To find a solution for a signed overflow, treat it as a problem of
2327 /// finding an unsigned overflow with a range with of BW-1.
2328 ///
2329 /// The returned value may have a different bit width from the input
2330 /// coefficients.
2331 std::optional<APInt> SolveQuadraticEquationWrap(APInt A, APInt B, APInt C,
2332                                                 unsigned RangeWidth);
2333 
2334 /// Compare two values, and if they are different, return the position of the
2335 /// most significant bit that is different in the values.
2336 std::optional<unsigned> GetMostSignificantDifferentBit(const APInt &A,
2337                                                        const APInt &B);
2338 
2339 /// Splat/Merge neighboring bits to widen/narrow the bitmask represented
2340 /// by \param A to \param NewBitWidth bits.
2341 ///
2342 /// MatchAnyBits: (Default)
2343 /// e.g. ScaleBitMask(0b0101, 8) -> 0b00110011
2344 /// e.g. ScaleBitMask(0b00011011, 4) -> 0b0111
2345 ///
2346 /// MatchAllBits:
2347 /// e.g. ScaleBitMask(0b0101, 8) -> 0b00110011
2348 /// e.g. ScaleBitMask(0b00011011, 4) -> 0b0001
2349 /// A.getBitwidth() or NewBitWidth must be a whole multiples of the other.
2350 APInt ScaleBitMask(const APInt &A, unsigned NewBitWidth,
2351                    bool MatchAllBits = false);
2352 } // namespace APIntOps
2353 
2354 // See friend declaration above. This additional declaration is required in
2355 // order to compile LLVM with IBM xlC compiler.
2356 hash_code hash_value(const APInt &Arg);
2357 
2358 /// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst
2359 /// with the integer held in IntVal.
2360 void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst, unsigned StoreBytes);
2361 
2362 /// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting
2363 /// from Src into IntVal, which is assumed to be wide enough and to hold zero.
2364 void LoadIntFromMemory(APInt &IntVal, const uint8_t *Src, unsigned LoadBytes);
2365 
2366 /// Provide DenseMapInfo for APInt.
2367 template <> struct DenseMapInfo<APInt, void> {
2368   static inline APInt getEmptyKey() {
2369     APInt V(nullptr, 0);
2370     V.U.VAL = ~0ULL;
2371     return V;
2372   }
2373 
2374   static inline APInt getTombstoneKey() {
2375     APInt V(nullptr, 0);
2376     V.U.VAL = ~1ULL;
2377     return V;
2378   }
2379 
2380   static unsigned getHashValue(const APInt &Key);
2381 
2382   static bool isEqual(const APInt &LHS, const APInt &RHS) {
2383     return LHS.getBitWidth() == RHS.getBitWidth() && LHS == RHS;
2384   }
2385 };
2386 
2387 } // namespace llvm
2388 
2389 #endif
2390